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Abstract—The operation of aggregators of distributed energy 

resources (DER) is a highly complex task that is affected by 

numerous factors of uncertainty such as renewables injections, 

load levels and market conditions. However, traditional 

stochastic programming approaches neglect information around 

temporal dependency of the uncertain variables due to 

computational tractability limitations. This paper proposes a 

novel stochastic dual dynamic programming (SDDP) approach 

for the optimal operation of a DER aggregator. The traditional 

SDDP framework is extended to capture temporal dependency 

of the uncertain wind power output, through the integration of 

an n-order autoregressive (AR) model. This method is 

demonstrated to achieve a better trade-off between solution 

efficiency and computational time requirements compared to 

traditional stochastic programming approaches based on the use 

of scenario trees. 

Index Terms—Aggregators, autoregressive modelling, 

distributed energy resources, stochastic dual dynamic 

programming, uncertainty. 

NOMENCLATURE 

A. Indexes 

𝑡 Index of time periods, running from 1 to 𝑇. 

𝑏 Index of energy storage (ES) units, running from 

1 to 𝐵. 

𝑓 Index of flexible loads (FL), running from 1 to 𝐹. 

𝑤 Index of wind turbines (WT), running from 1 to 

𝑊. 

𝑚 Index of micro-generators, running from 1 to 𝑀. 

B. Parameters 

𝐶𝑡
𝑔𝑟𝑖𝑑

 Grid price at period 𝑡. 

𝐶𝑚
𝑔𝑒𝑛

 Operating cost of micro-generator 𝑚. 

𝐶𝑑𝑒𝑚 Cost of demand shedding. 

𝐸0,𝑏 Initial energy level of ES unit 𝑏. 

𝜂𝑏 Round-trip efficiency of ES unit 𝑏. 

𝐸𝑏
𝑚𝑎𝑥  Maximum energy level of ES unit 𝑏. 

𝐸𝑏
𝑚𝑖𝑛  Minimum energy level of ES unit 𝑏. 

𝑃𝑏
𝑠 Maximum power rating of ES unit 𝑏. 

𝐷𝑡,𝑓
𝑏𝑎𝑠𝑒  Baseline demand of FL 𝑓 at period 𝑡. 

𝑆𝑓 Load shifting limit of FL 𝑓 at period 𝑡. 

𝑃𝑡
𝑔,𝑠𝑒𝑙𝑙

 Maximum power sold to the grid at period 𝑡. 

𝑃𝑡
𝑔,𝑏𝑢𝑦

 Maximum power bought from the grid at period 

𝑡. 

𝑃𝑚
𝑔𝑒𝑛

 Maximum power rating of micro-generator 𝑚. 

𝑃𝑡,𝑤
𝑤𝑖𝑛𝑑 Available wind power output of WT 𝑤 at period 

𝑡. 

𝑃𝑡−𝑛,𝑤
𝑤𝑖𝑛𝑑  Available wind power output of WT 𝑤, 𝑛 periods 

before 𝑡. 

𝜑𝑛,𝑤 𝑛𝑡ℎ autoregressive coefficient associated with 

power output of WT 𝑤. 

𝜀𝑡,𝑤 White noise term associated with power output of 

WT 𝑤 at period 𝑡. 

𝐷𝑡
𝑖𝑛𝑓

 Inflexible demand at period 𝑡. 

𝛥𝑡 Period 𝑡 duration. 

C. Variables 

𝑝𝑡
𝑔𝑟𝑖𝑑

 Power sold to (positive)/bought from (negative) 

the grid at period 𝑡. 

𝑝𝑡,𝑚
𝑔𝑒𝑛

 Power output of micro-generator 𝑚 at period 𝑡. 

𝑝𝑡
𝑑𝑒𝑚 Demand shed at period 𝑡. 

𝑒𝑡,𝑏 Energy level of ES unit 𝑏 at period 𝑡. 

𝑝𝑡,𝑏
𝑠  Power input (positive) / output (negative) of ES 

unit 𝑏 at period 𝑡. 

𝑑𝑡,𝑓
𝑠ℎ  Change of demand of FL 𝑓 due to load shifting at 

period 𝑡. 

𝑑𝑡,𝑓
𝑡𝑜𝑡𝑎𝑙 Demand of FL 𝑓 after load shifting at period 𝑡. 

𝑝𝑡,𝑤
𝑤𝑖𝑛𝑑 Dispatched wind power output of turbine 𝑤 at 

period 𝑡. 

II. INTRODUCTION 

A. Background 
The envisaged large-scale introduction of renewable 

energy sources (RES) in future power systems, along with the 
intensified efforts towards the electrification of the heating and 
transport sectors, have enhanced the value of distributed 
energy resources (DER), such as flexible loads, controllable 



micro-generators and energy storage [1]. The capability of 
these resources to modify their consumption or production 
profiles can facilitate the economic and environmental 
performance of the system. However, the small individual size 
and inherent unpredictability characterizing such resources 
combined with their continuously increasing penetration in 
power systems have complicated the task of optimal 
scheduling and coordination. This paradigm change has 
triggered the introduction of DER aggregators, which pool a 
significant number of DERs, aggregate their flexibility and 
coordinate their operation [1]. 

However, the operation of a DER aggregator involves 
significant complexity, as it involves the optimal coordination 
of a large number of diverse DER with time-coupled 
characteristics. Furthermore, it is subject to numerous and 
diverse factors of uncertainty, associated with both the 
operation of its DER portfolio (e.g. output of renewable 
micro-generators, consumers’ preferences and requirements) 
as well as market conditions (e.g. wholesale energy prices). As 
a result, identifying the optimal aggregator market strategies 
constitutes a multi-stage stochastic problem, characterized by 
a large number of decision variables and constraints. 
Approaches in the existing literature exhibit serious limitations 
in dealing effectively with such high dimensional problems 
within reasonable computational times. 

In the past, research efforts have focused primarily on 
classic stochastic programming approaches and the use of 
scenario generation and reduction techniques to capture 
resource variability. In [2], a random error term is added to the 
expected values of the energy price and conventional demand 
to represent their uncertain nature in the portfolio optimization 
of an aggregator participating in the forward and spot markets. 
In [3], the profit maximizing policy of a microgrid aggregator 
is derived, where scenarios about uncertain system load, wind 
power output and electricity prices are derived by Monte-
Carlo sampling. Finally, in [4] the problem of optimizing the 
energy procurement schedule of a DER aggregator under 
uncertain energy prices, load and RES output, is addressed. A 
small number of scenarios is obtained, assuming a normal 
probability distribution function, and a scenario reduction 
technique is applied to reduce the combined scenario set. In 
[5], a customized SDDP algorithm is presented and 
implemented in a microgrid context, where uncertain wind 
output, demand and energy price are captured employing a 
scenario tree model. Nodal values of the scenario tree are 
derived from a multivariate truncated normal distribution and 
temporal independence is assumed.  In all previous works, 
temporal dependency of the uncertain variables is not 
explicitly considered and is poorly captured; in other words, 
the impact of current realizations of the uncertain variables on 
their future evolution is underestimated. This means that the 
requirement of computational tractability inhibits the 
incorporation of sophisticated uncertainty models; potentially 
significant time-dependencies are not considered, focusing 
instead on a limited set of scenarios for the next hour. 

On the other hand, robust optimization (RO) techniques, 
instead of relying on a set of possible scenarios, introduce 
uncertainty intervals and aim to identify solutions which both 
ensure feasibility and are near-optimal for all scenarios within 

the defined bounds [6]. In [7], a robust optimization approach 
is proposed for the optimal energy management of a cluster of 
flexible loads under uncertainty in RES output and energy 
price. Historical data and a forecasting tool based on 
autoregressive models are employed to identify upper and 
lower bounds within a given confidence interval for the 
uncertain variables. Finally, in [8], the problem of managing 
demand response for a group of residential appliances, when 
uncertain electricity prices are considered, is evaluated 
through robust optimization. The required uncertainty 
intervals are derived either from a price forecasting model or 
as a percentage around the expected value, if such a model is 
not available. Even though RO can capture to some extent 
time dependencies between uncertain variables and expand the 
scenario set into consideration, it can lead to very conservative 
policies by enforcing feasibility constraints for each scenario 
and adapt the optimal decisions to the worst-case scenarios 
[8]-[9]. 

B. Contributions 
In order to overcome the ‘curse of dimensionality’ 

characterizing high-dimensional problems, which arises from 
the need to consider temporal dependence of stochastic time 
series, this paper proposes a novel approach based on 
stochastic dual dynamic programming (SDDP). The latter was 
introduced in [10] for the optimal scheduling of a 
hydrothermal generation system, driven by the need to model 
the reservoir interconnections for the future inflow sequences. 
The ability of SDDP to refine the solution quality around areas 
of the state space most likely to occur (‘areas of interest’) 
facilitates the solution of high dimensional problems. The 
algorithm employs the dual variables of the problem to build a 
piecewise linear representation of the future cost function 
during each period without the need to discretize the state 
space, thus significantly reducing the problem complexity 
without compromising on the uncertainty representation 
quality. In [11], the possibility of representing stochastic 
processes with probability distributions conditioned on 
previous realizations of the same variable has been 
theoretically explored. 

The contribution of this paper lies in developing an SDDP 
approach for the optimal operation of a DER aggregator, 
which can capture temporal dependencies for the uncertain 
wind power output through the integration of an 
autoregressive model of order 𝑛. Thus, the uncertainty model 
becomes an internal part of the stochastic problem and the 
solution process is explicitly driven by the impact of the 
stochastic variable on the problem itself instead of relying on 
scenario reduction techniques, which can potentially ignore 
important scenarios. Even though we focus on the effect of 
wind output uncertainty on the aggregator operation, the 
application of the proposed model for other types of uncertain 
factors is straightforward. This approach is demonstrated to 
achieve a better trade-off between solution efficiency and 
computational time requirements compared to traditional 
stochastic programming approaches. The comparison of the 
solution efficiency of the two approaches is carried out 
through a Monte-Carlo out-of-sample validation of the 
obtained 1st stage solutions, where realizations are drawn from 
the true distribution of the stochastic process. 



The rest of this paper is organized as follows: Section II 
describes the DER aggregator model. The basic principles of 
the SDDP algorithm and the novel extension for modeling 
temporal dependencies of uncertain variables are shown in 
Section III. The application of the developed model on the 
examined DER aggregator problem and results are presented 
in Section IV. Finally, Section V discusses conclusions and 
future extensions of this work. 

III. PROBLEM DEFINITION 

We focus on the problem of the optimal operation of a 
DER aggregator. This entity coordinates a cluster of flexible 
and inflexible resources and has to come up with an optimal 
set of decisions at each time period of the planning horizon, 
while facing uncertainty regarding the available wind power 
output. The main complexity lies in the time dependency of 
the uncertain variable, since the wind output at each time-
period depends on the observed wind output at the previous 
time periods. As the planning horizon expands, even a modest 
number of wind output realizations per period significantly 
increase the combinations across the whole horizon and the 
size of the problem grows exponentially. Fundamentally, this 
is a multi-stage stochastic problem with recourse, where the 
stochastic outputs are gradually revealed and decisions are 
made considering both the already observed outputs and the 
expected ones. Consequently, an optimal policy, which will 
guarantee the least-cost resource scheduling taking into 
account the time-dependent uncertainty at reasonable 
computational time, has to be derived. 

In this paper we assume that the aggregator manages a 
number of wind turbines with uncertain output, a group of 
flexible and inflexible loads, a group of energy storage units 
and a micro-generator. Additionally, energy can be 
bought/sold from/to the grid and wind output can be curtailed 
if required. Therefore, the aggregator must identify the use of 
the available wind output, the amount of energy that will be 
bought/sold from/to the grid, the flexible loads’ consumption, 
the storage units’ charging/discharging schedule and the 
utilization of the micro-generator at each time period, in order 
to minimize the overall cost. For a particular operation horizon 
𝑡 = {1, . . , 𝑇}, the objective function comprises of the cost of 
the energy transactions (procuring or providing) with the grid 
and the cost of using the micro-generator to cover the energy 
needs of the flexible and inflexible loads: 

𝐶𝑡𝑜𝑡𝑎𝑙 = min
𝑝𝑔𝑟𝑖𝑑,𝑝𝑔𝑒𝑛,𝑝𝑑𝑒𝑚

{∑ [(−𝑝𝑡
𝑔𝑟𝑖𝑑

∙ 𝐶𝑡
𝑔𝑟𝑖𝑑

+𝑡,𝑚

𝑝𝑡,𝑚
𝑔𝑒𝑛

∙ 𝐶𝑚
𝑔𝑒𝑛

+ 𝑝𝑡
𝑑𝑒𝑚 ∙ 𝐶𝑑𝑒𝑚) ∙ 𝛥𝑡]} (1) 

(1) 

The cost of importing and exporting energy from/to the 
grid has been assumed to be the same for simplicity purposes. 
The optimal aggregator cost can be either positive or negative, 
depending on the size of demand, the available RES output 
and the flexibility of its portfolio. The aggregator should 
exploit the flexibility provided by the energy storage units and 
the flexible loads, taking into consideration the effect of wind 
uncertainty. The energy balance of the energy storage units is 
modelled in (2). 

𝑒𝑡,𝑏 = {
𝐸0,𝑏 ∙ 𝜂𝑏 + 𝑝𝑡,𝑏

𝑠 ∙ 𝛥𝑡, 𝑖𝑓 𝑡 = 1 

𝑒𝑡−1,𝑏 ∙ 𝜂𝑏 + 𝑝𝑡,𝑏
𝑠 ∙ 𝛥𝑡, 𝑖𝑓 1 < 𝑡 ≤ 𝑇

 ∀𝑏 (2) 

Constraints (3) - (4) impose limits for both electrical power 
and energy levels of the battery, while energy neutrality for 
the entire planning horizon is preserved through (5). 

𝐸𝑏
𝑚𝑖𝑛 ≤ 𝑒𝑡,𝑏 ≤ 𝐸𝑏

𝑚𝑎𝑥 ∀𝑡, 𝑏 (3) 

−𝑃𝑏
𝑠 ≤ 𝑝𝑡,𝑏

𝑠 ≤ 𝑃𝑏
𝑠 ∀𝑡, 𝑏 (4) 

𝑒𝑇,𝑏 = 𝐸0,𝑏 ∀𝑏 (5) 

Additionally, a group of different flexible loads, 
characterized by diverse operational features, is part of the 
aggregator’s portfolio. A generic model for the flexible load, 
which can defer consumption across time if energy needs are 
covered during the planning horizon, has been adopted and 
modelled with (6) - (8): 

𝑑𝑡,𝑓
𝑡𝑜𝑡𝑎𝑙 = 𝐷𝑡,𝑓

𝑏𝑎𝑠𝑒 + 𝑑𝑡,𝑓
𝑠ℎ  ∀𝑡, 𝑓 (6) 

−𝑆𝑓 ∙ 𝐷𝑡,𝑓
𝑏𝑎𝑠𝑒 ≤ 𝑑𝑡,𝑓

𝑠ℎ ≤ 𝑆𝑓 ∙ 𝐷𝑡,𝑓
𝑏𝑎𝑠𝑒  ∀𝑡, 𝑓 (7) 

∑ 𝑑𝑡,𝑓
𝑠ℎ

𝑡
= 0 ∀𝑓 (8) 

Moreover, (9) - (11) impose limits on the power available 
from the wind turbines, the grid and the micro-generators 
respectively. Finally, power balance is expressed in (12). 

𝑝𝑡,𝑤
𝑤𝑖𝑛𝑑 ≤ 𝑃𝑡,𝑤

𝑤𝑖𝑛𝑑 ∀𝑡, 𝑤 (9) 

−𝑃𝑡
𝑔,𝑏𝑢𝑦

≤ 𝑝𝑡
𝑔𝑟𝑖𝑑

≤ 𝑃𝑡
𝑔,𝑠𝑒𝑙𝑙

 ∀𝑡 (10) 

𝑝𝑡,𝑚
𝑔𝑒𝑛

≤ 𝑃𝑚
𝑔𝑒𝑛

 ∀𝑡, 𝑚 (11) 

∑ 𝑝𝑡,𝑏
𝑠

𝑏
− ∑ 𝑝𝑡,𝑤

𝑤𝑖𝑛𝑑

𝑤
+ 𝑝𝑡

𝑔𝑟𝑖𝑑
 

∀𝑡 (12) 
+ ∑ 𝑑𝑡,𝑓

𝑡𝑜𝑡𝑎𝑙

𝑓
+ 𝐷𝑡

𝑖𝑛𝑓
− 𝑝𝑡,𝑚

𝑔𝑒𝑛
= 0 

IV. STOCHASTIC DUAL DYNAMIC PROGRAMMING 

A. General Formulation 

The key principle of SDDP is that the original multi-stage 
stochastic problem can be decomposed into a series of master 
problems and sub-problems, with the use of appropriate dual 
variables. The master problems minimize the costs incurred by 
the immediate decisions at each period, while the respective 
sub-problems minimize the future cost at future periods, given 
the optimal decisions of the respective master problem. This is 

expressed by (13) - (14), where 𝑒𝑡−1,𝑏 and 𝑑𝑡−1,𝑓
𝑎𝑔𝑔

 are the state 

variables of the stochastic problem, 𝐶𝑡 is the master problem 
cost at period 𝑡 and 𝛼𝑡 corresponds to the future cost function 
for periods 𝑡 + 1 up to 𝑇. 

𝐹𝐶𝑡−1(𝑒𝑡−1,𝑏 , 𝑑𝑡−1,𝑓
𝑎𝑔𝑔

) = 𝑚𝑖𝑛[𝐶𝑡 + 𝛼𝑡(𝑒𝑡,𝑏 , 𝑑𝑡,𝑓
𝑎𝑔𝑔

)] (13) 

𝐶𝑡 = (−𝑝𝑡
𝑔𝑟𝑖𝑑

∙ 𝐶𝑡
𝑔𝑟𝑖𝑑

+ 𝑝𝑡,𝑚
𝑔𝑒𝑛

∙ 𝐶𝑚
𝑔𝑒𝑛

+ 𝑝𝑡
𝑑𝑒𝑚 ∙ 𝐶𝑑𝑒𝑚) ∙ 𝛥𝑡 (14) 

In (13), the objective function of master problem for 
period 𝑡 is the minimization of the sum of current period’s cost 
𝐶𝑡 and an approximation of the cost of the remaining hours 𝛼𝑡 
obtained by solving the sub-problem which corresponds to 𝛼𝑡. 
Then, for the next period, 𝛼𝑡 is the current master problem 
while 𝛼𝑡+1 is the respective sub-problem. We observe that a 
single-stage problem acts both as a master problem for period 
𝑡 and as a sub-problem for 𝑡 −1. 

According to the SDDP algorithm, an iterative process 
which involves the successive solution of all the master 



problems (forward pass) and then all the sub-problems 
(backward pass), is initiated. During each iteration, a set of 
linear constraints (‘cuts’) is gradually built to provide a finer 
piecewise linear approximation of the future cost function 
(sub-problem) for each period. Each linear constraint is 
expressed in terms of the change in the sub-problem’s optimal 
objective function value with respect to the master problem’s 
state variables, as shown in (15). 

𝛼𝑡
𝑖(𝑒𝑡,𝑏 , 𝑑𝑡,𝑓

𝑎𝑔𝑔
) ≥ 𝛼𝑡,𝑘

𝑖−1(𝑒𝑡,𝑏,𝑖−1,𝑘 , 𝑑𝑡,𝑓,𝑖−1,𝑘
𝑎𝑔𝑔

) 

∀𝑘 (15) 
+ ∑ 𝜆𝑡,𝑏,𝑖−1,𝑘

𝐸 ∙ (𝑒𝑡,𝑏 − 𝑒𝑡,𝑏,𝑖−1,𝑘)

𝑏

 

+ ∑ 𝜆𝑡,𝑓,𝑖−1,𝑘
𝐷 ∙ (𝑑𝑡,𝑓

𝑎𝑔𝑔
− 𝑑𝑡,𝑓,𝑖−1,𝑘

𝑎𝑔𝑔
)

𝑓

 

B. Forward Pass 

The first step of the iterative simulation process is the 
forward pass calculation, where the master problems for 
periods 1 to 𝑇 are solved. At each iteration, ‘areas’ of the state 
space more likely to occur are identified and stored for use 
during the backward pass calculation when the sub-problem 
approximation is constructed. By identifying such areas of 
interest and focusing solution search around areas of the state 
space more likely to contain the optimal solution, naïve 
discretization of the state space is avoided and significant 
computational savings are achieved. Each run of the forward 
pass involves the sampling of different values of the stochastic 
variables. Since the main purpose of the forward pass is to 
drive the solution process towards ‘interesting’ areas of the 
state space, a multitude of samples 𝑘 = {1, . . , 𝑁𝐾} can be 
obtained and solved in parallel at each iteration, leading to 
further computational benefits. Constraints (2) - (4), (6) - (7), 
(9) - (12) and (15) constitute the master problems solved for 
each period, while (5) and (8) are added at period 𝑇. 

C. Backward Pass 

The next step of the simulation process is the backward 

pass, where the sub-problems for periods 𝑇 to 2 are 

successively solved (period 1 is associated solely to a master 

problem). The backward pass aims to gradually improve the 

approximation of the future cost functions. Bender’s cuts 

approximating each sub-problem’s objective function are 

constructed for the areas of the state space identified during 

the forward pass. Consequently, the master problem’s optimal 

decisions, which are the values of the state variables 

corresponding to period 𝑡 − 1, are applied and their impact on 

the optimal sub-problem objective function value is captured 

through the corresponding dual variables. For each point of 

interest 𝑘, the backward pass is solved for all the 𝑠 =
{1, . . , 𝑁𝑆}  different samples of the stochastic variables, 

leading to 𝑘 ∙ 𝑠 problems for each period. In order to alleviate 

the computational burden that arises due to the large number 

of problems, the sub-problems referring to the same time-

period can be solved in parallel. The sub-problems consist of 

all the constraints introduced for the master problems, 

augmented by constraints (16) - (17), where the auxiliary 

variables 𝑒̃𝑡,𝑏,𝑠 and 𝑒̃𝑡,𝑓,𝑠
𝑎𝑔𝑔

 are introduced and used for the 

calculation of the dual variables associated with the sub-

problem’s state variables. After solving all the sub-problems 

referring to period 𝑡, the respective cuts for each point of 

interest 𝑘 are built as per (15), where 𝛼𝑡,𝑘
𝑖−1, 𝜆𝑡,𝑏,𝑖−1,𝑘

𝐸  and 

𝜆𝑡,𝑓,𝑖−1,𝑘
𝐷  are calculated from (18) - (20). The derived cuts are 

appended to the master problem pertaining to period 𝑡 − 1. 

𝑒̃𝑡,𝑏,𝑠 = 𝑒𝑡,𝑏,𝑖−1,𝑘 : 𝜆𝑡,𝑏,𝑠
𝐸  ∀𝑡, 𝑏, 𝑠 (16) 

𝑑̃𝑡,𝑓,𝑠
𝑎𝑔𝑔

= 𝑑𝑡,𝑓,𝑖−1,𝑘
𝑎𝑔𝑔

 : 𝜆𝑡,𝑓,𝑠
𝐷  ∀𝑡, 𝑓, 𝑠 (17) 

𝜆𝑡,𝑏,𝑘
𝐸 = ∑ 𝜆𝑡,𝑏,𝑠

𝐸 /𝑁𝑆
𝑠

  ∀𝑡, 𝑏, 𝑘 (18) 

𝜆𝑡,𝑓,𝑘
𝐷 = ∑ 𝜆𝑡,𝑓,𝑠

𝐷

𝑠
/𝑁𝑆  ∀𝑡, 𝑓, 𝑘 (19) 

𝛼𝑡,𝑘 = ∑ 𝛼𝑡,𝑠
𝑠

/𝑁𝑆  ∀𝑡, 𝑘 (20) 

D. Convergence Criteria 

Iterations between the forward and backward passes 
continue until an accurate approximation of the future cost 
functions has been built and an optimal solution of a target 
quality has been reached. More specifically, upper and lower 
bounds of the optimal solution are defined and calculated at 
each iteration, and the algorithm terminates when the distance 
between these bounds is within a tolerance value. The upper 
and lower are bounds are given by (21) - (22), and 
convergence of the two bounds is checked at the end of each 
forward pass run, according to (23), as in [5]. 

𝑧𝑖 =  𝐶1,𝑖 + 𝛼1,𝑖 
(21) 

𝑧𝑖 = ∑ 𝐶𝑡,𝑘/𝑁𝐾
𝑡,𝑘

 (22) 

𝑧𝑖 − (1.96 ∙ σ/√𝑁𝑆) ≤ 𝑧𝑖 ≤ 𝑧𝑖 + (1.96 ∙ σ/√𝑁𝑆) (23) 

E. Extension to Time-Dependent Uncertainty 

SDDP has been mainly used for addressing large 
stochastic problems, under the assumption that the temporal 
evolution of the uncertain variable is time-independent. In this 
section we incorporate more information regarding the 
uncertain variable at hand (in this case the time dependency of 
wind power outputs) instead of solely relying on a limited set 
of realizations (whose probability is independent to the 
stochastic process’s history), can provide a more optimal 
result and contribute towards well-informed decision making. 

The proposed algorithm can accommodate the introduction 
of uncertain variables with temporal dependency, as long as 
the linearity of the stochastic problem is preserved, so that the 
computation of the required dual variables is feasible. 

Consequently, an 𝑛𝑡ℎ order autoregressive model, as 
expressed in (24), has been selected for capturing the 
stochasticity related to uncertain wind outputs, since it can 
provide a linear representation of the uncertain variable, while 
being capable of accurately capturing temporal correlation.  

𝑃𝑡,𝑤
𝑤𝑖𝑛𝑑 = ∑ 𝜑𝑛,𝑤 ∙ 𝑃𝑡−𝑛,𝑤

𝑤𝑖𝑛𝑑

𝑛
+ 𝜀𝑡,𝑤 ∀𝑤 (24) 

In order to accommodate the introduction of the AR 
model, the state space of the problem needs to be expanded 
and previous realizations of the stochastic variable, which 
explicitly affect the current one, become state variables, while 
future cost functions are approximated taking into account the 
stochastic process history. Consequently, (24) is added to both 
the master and sub-problems and sampling of the error term 



𝜀𝑡,𝑤 provides the different wind output realizations. The 

expansion of the state space with variables 𝑃𝑡−1,𝑤
𝑤𝑖𝑛𝑑  to 𝑃𝑡−𝑛,𝑤

𝑤𝑖𝑛𝑑  

(where 𝑛 is order of the AR model) necessitates the 
introduction of additional dual variables related to the previous 
wind realizations. In addition, the cuts approximating the 
future cost function are expanded to capture the impact of the 
new state variables on the future cost, as shown in (25) - (27). 

𝑎𝑡
𝑖 (𝑒𝑡,𝑏 , 𝑑𝑡,𝑓

𝑎𝑔𝑔
, 𝑃𝑤,𝑡−1

𝑤𝑖𝑛𝑑 , … , 𝑃𝑤,𝑡−𝑛
𝑤𝑖𝑛𝑑 )

≥ 𝑎𝑡,𝑘
𝑖−1(𝑒𝑡,𝑏,𝑖,𝑘, 𝑑𝑡,𝑓,𝑖,𝑘

𝑎𝑔𝑔
, 𝑃𝑤,𝑡−1,𝑖,𝑘

𝑤𝑖𝑛𝑑 , 𝑃𝑤,𝑡−𝑛,𝑖,𝑘
𝑤𝑖𝑛𝑑 )

+ ∑ 𝜆𝑡,𝑏,𝑖,𝑘
𝐸 ∙ (𝑒𝑡,𝑏 − 𝑒𝑡,𝑏,𝑖,𝑘)

𝑏

+ ∑ 𝜆𝑡,𝑓,𝑖,𝑘
𝐷 ∙ (𝑑𝑡,𝑓

𝑎𝑔𝑔
− 𝑑𝑡,𝑓,𝑖,𝑘

𝑎𝑔𝑔
)

𝑓

+ ∑ 𝜆𝑡,𝑤,𝑖,𝑘
𝑤𝑛 ∙ (𝑃𝑡−𝑛,𝑤

𝑤𝑖𝑛𝑑 − 𝑃𝑡−𝑛,𝑤,𝑖,𝑘
𝑤𝑖𝑛𝑑 )

𝑤,𝑛

 

(25) 

𝑃̃𝑡−1,𝑤,𝑠
𝑤𝑖𝑛𝑑 = 𝑃𝑡−1,𝑤,𝑖,𝑘

𝑤𝑖𝑛𝑑   : 𝜆𝑡,𝑤,𝑖,𝑠
𝑤1  ∀𝑡, 𝑤, 𝑘 (26) 

𝑃̃𝑡−𝑛,𝑤,𝑠
𝑤𝑖𝑛𝑑 = 𝑃𝑡−𝑛,𝑤,𝑖,𝑘

𝑤𝑖𝑛𝑑   : 𝜆𝑡,𝑤,𝑖,𝑠
𝑤𝑛  ∀𝑡, 𝑤, 𝑘 (27) 

We should emphasize that 𝑃𝑡−1,𝑤
𝑤𝑖𝑛𝑑  to 𝑃𝑡−𝑛,𝑤

𝑤𝑖𝑛𝑑  are known 

quantities, where the sub-problem for period 𝑡 is solved, since 
the uncertainty for this stage has been resolved, so the 
complexity of the respective cut is not increased. It should also 
be noted that, even though an AR model has been selected in 
our case, the proposed modification can be applied for any 
linear uncertainty model in a straightforward way. 

V. CASE STUDY 

A. Case study description 

In this section a case study, where the proposed algorithm 
is applied to the problem of a DER aggregator, which 
coordinates a flexible load, a battery, a wind turbine and an 
inflexible load, is presented. The aggregator must come up 
with the optimal decision set for dispatching its available 
flexible resources, while facing uncertainty regarding the 
available wind power output. The study parameters are shown 
in Table I. The peak demand of the aggregator’s portfolio is 
400 kW when the flexibility option is not exercised, while the 
maximum power that can be imported from the grid is set to 
400 kW as well, so that there is always sufficient demand 
supply, even in cases of wind scarcity. The battery size, 
charging and discharging power ratings have been selected 
such that the battery can cover the biggest part of the total 
demand for a period and even accommodate available wind 
power outputs at periods of wind power abundance. We 
should note that the option of exporting power to the grid is 
not available, so that the battery is not used for energy 
arbitrage with the upstream system. This is done for 
simplicity, in order to focus solely on the battery’s role in 
wind management. A planning horizon of 6 hours is studied, 
since wind power output forecasting beyond that horizon is 
not considered sufficiently accurate and the battery’s energy 
capacity (and round-trip efficiency) is not large enough to 
warrant consideration of strategic charging/discharging 
beyond a few hours ahead of need. 

In order to build a realistic wind output model, historical 
values of wind power output in the Northern UK area for a 

representative month have been obtained from [12]. The time 
dependency of the uncertain wind output is captured through a 
lag-1 autoregressive model as shown in (24). The performance 
of the proposed SDDP model is evaluated against a traditional 
scenario tree approach for modelling uncertain variables. An 
ARIMA(5,1,2) model has been fit to the historical wind power 
output data and then a sufficient number of scenarios have 
been sampled and used both for fitting the AR(1) model and 
constructing scenario tree representations of varying degrees 
of complexity. As presented at Table II, six scenario trees 
were constructed according to a scenario reduction process 
based on Kantorovich distance [13]. 

TABLE I.  CASE STUDY PARAMETERS 

Energy Storage Parameters 
𝐸𝑏

𝑚𝑎𝑥/𝐸𝑏
𝑚𝑖𝑛 700 kWh/140 kWh 

𝑃𝑏
𝑠 280 kW 

𝐸0,𝑏 350 kWh 

𝜂𝑏 0.9 

Flexible Load Parameters 
𝐷𝑡,𝑓

𝑏𝑎𝑠𝑒 200 kW 

𝑆𝑓 10% 

System Parameters 

𝑃𝑡,𝑤
𝑤𝑖𝑛𝑑/𝑃𝑡

𝑔,𝑠𝑒𝑙𝑙
 1000 kW/0 kW 

𝑃𝑡
𝑔,𝑏𝑢𝑦

/𝑃𝑔𝑒𝑛 400 kW/100 kW 

𝐷𝑡
𝑖𝑛𝑓

 200 kW 

𝐶𝑡
𝑔𝑟𝑖𝑑

, 𝐶𝑡
𝑔𝑒𝑛

 0.15 £/kWh/1 £/kWh 
 

TABLE II.  SCENARIO TREES STRUCTURE 

Complexity 
Level 

Structure 
(nodes per stage) 

Number of 
nodes 

Number of 
scenarios 

C1 1-1-1-1-1-1 6 1 

C2 1-2-2-2-2-2 11 2 

C3 1-2-4-6-8-10 31 10 

C4 1-2-4-8-12-16 43 16 

C5 1-2-4-8-16-32 63 32 

C6 1-3-9-27-81-243 364 243 

In order to compare the solution efficiency and quantify 

the expected benefit of the seven models, out-of-sample 

Monte Carlo validation is used. In this framework, 10 wind 

power starting points are considered (5%, 15%, up to 95% of 

𝑃1
𝑤𝑖𝑛𝑑) to (i) construct scenario of different complexity as 

shown below (ii) identify the optimal first-stage decisions for 

all six scenario tree models and the SDDP model. 

Subsequently, for each starting point, 1000 6-hour scenario 

paths are sampled from the original ARIMA model and each 

scenario is solved to optimality. In this way we can compute 

the impact that an under-informed first-stage decision can 

have on subsequent operation; note that this provides a lower 

bound to the potential benefit of using a more advanced 

method since perfect information is assumed from 𝑡 = 2 

onwards. The modelling was carried out in MATLAB 

R2015a and FICO Xpress [14], on a 3.33 GHz Intel Xeon 

computer. 

B. Results 

Figure 1. illustrates the expected monthly aggregator cost 
for the different scenario tree complexities and the SDDP 
model. It can be observed that the solutions obtained by the 
SDDP model outperform the first 2 scenario tree types by 
8.5%. The third tree type exhibits a significant decrease in the 
expected cost, implying that 10 scenarios capture more 
precisely the problem uncertainty, but still SDDP reduces cost 



by 1.5%. It is only after C5, that the solutions obtained from 
the trees outperform the ones obtained from SDDP, but still 
the difference not significant. It should be mentioned that the 
simulation times for the SDDP model are equivalent to the 
simpler scenario tree types, while it is almost half of the most 
complex one. The computational benefit is even more 
pronounced if the planning horizon is increased.

 

Figure 1.  Expected cost for SDDP and different scenario tree types. 

 

Figure 2.  Difference in expected cost between SDDP and different scenario 

trees for different initial wind power output. 

Figure 2. depicts the comparison of the expected cost 
between the SDDP model and the 1st, 3rd and 6th scenario tree 
structures for each wind output starting point, where positive 
(negative) values signify that SDDP outperforms (under-
performs) the scenario tree solution for the specific wind 
output. We should notice that SDDP performs significantly 
better than trees for almost all starting points. In general, 
benefits are augmented for low wind starting points, while 
they diminish when we proceed towards the last ones. This is 
an expected outcome, as low wind starting points means that 
most probably less wind will be available in the operating 
window, rendering the quality of the forecast important and 
increasing the impact of strategic decisions regarding initial 
charging/discharging. On the other hand, for the high-wind 
starting points, there is abundance of wind and whichever 
decision is made at the beginning of the period has minor 
impact on the aggregator’s expected cost.  

VI. CONCLUSION 

This paper presents an algorithm for the optimal operation 
of a DER aggregator under uncertain wind power output, 
while taking into account the temporal dependency of the 
uncertain variable. An extension of the SDDP algorithm, 
where an AR model is incorporated has been presented and 
analyzed. This approach does not require discretization of 
neither the state space nor the uncertain variables, thus 
eliminating problems that would emanate due to the ‘curse of 
dimensionality’. The proposed approach has been showcased 

for a representative DER aggregator portfolio, which consists 
of an ES unit, a flexible load, a wind turbine and an inflexible 
load and has been compared to scenario trees with different 
complexity levels. The proposed approach exhibits significant 
benefits compared to scenario trees of low and medium 
complexity, which are significantly enhanced for low wind 
outputs. The benefits seem to diminish at cases of wind 
abundance, when available wind can satisfy the demand needs 
independently of the aggregator’s decision making process. 

The future goals of this work evolve in two axes. The first 
one constitutes the further enhancement of the algorithm with 
more complex uncertainty models, which will be able to 
capture the temporal dependencies of more than one uncertain 
variables and the inter-dependencies among them. The second 
goal comprises the expansion of the aggregator portfolio, so 
that it will include more assets, so that we could study the 
impact of different portfolio compositions and flexibility 
levels on the optimal aggregator strategy. 
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