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A criterion for exponential consensus
of time-varying non-monotone nonlinear networks

S. Manfredi* and D. Angeli⇧

Abstract— In this paper we present new results on exponential consen-

sus for continuous-time nonlinear time varying networks. A key feature

in the following is that the monotonicity property is not required, unlike

most of existing literature on the subject. Moreover, we give an estimate

of the exponential rate of convergence towards the agreement manifold.

Finally, representative example and counterexample are given.

Index Terms— nonlinear networks, Consensus, Multi agent systems.

I. INTRODUCTION

In recent years the scientific community has devoted considerable
attention to the consensus problem (see [1], [4] and references
therein). In the literature different conditions have been proposed
to assess consensus in discrete and continuous time ([8], [9], just
to cite a few) and under different class of both nonlinear time
invariant and switching/time varying networks as outlined in [12],
[7], [17], [16]. Most of the above frameworks assumed (in implicit
or explicit way) the property monotonicity [20]. Given a function
f(t, x) : R ⇥ Rn ! Rn, piecewise continuous in t and locally
Lipschitz continuous with respect to x, the associated system of
differential equations ẋ(t) = f(t, x(t)), is called monotone if for
any i 2 {1, 2, . . . , n}, f

i

(t, x) is non-decreasing with respect to
x

j

for all j 6= i. Notice that this condition implies monotonicity
of the flow �(t; t

0

, x

0

) with respect to initial conditions, namely,
for all t

0

and all t � t

0

, it holds �(t; t

0

, x

1

) � �(t; t

0

, x

2

)

if x

1

� x

2

(where ”�” is meant componentwise), [20]. This
property is usually guaranteed in linear and nonlinear networks by
respectively requiring the sign definiteness of off diagonal entries of
the adjacency matrix (e.g. [9]) and Jacobian matrix F (x) (e.g. [17]).
An extension to the case of signed graph yielding cluster (bipartite)
consensus (rather than standard consensus) is reported in [18], where
the Jacobian has to fulfil the sign definiteness condition after a
diagonal change of coordinates, thus implying monotonicity ([20])
with respect to the partial order induced by some arbitrary orthant.
An extension to the case where the network topology is time-varying
signed graph is presented in [19]. The assumption of monotonicity
is widely and implicitly assumed in the literature, both in linear
and nonlinear networks scenarios, as it appears natural because
it models coupling influence growing with distance, thus allowing
reasonable convergence speed to the consensus equilibria. However,
many networks of theoretical and practical interest (i.e. opinion
dynamics, swarm of robots, sensor networks) are characterized by
limited or vanishing influence as the state distance goes to infinity.
In this respect, the seminal work [2] proposed a linear-like second
order swarming model where the weighting coefficients a

ij

defining
directed influence between birds are modelled by the following non-
monotone function a

ij

(kx
i

� x

j

k2) =

K

(�

2

+ kx
i

� x

j

k2)� , for
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some fixed K, � > 0 and � � 0. Conditions to ensure that the
birds velocities converge to a common one and their distance remain
bounded are given. The analysis of the importance on the equilibrium
(cluster consensus rather standard consensus) of the limited agents’
communication with coupling function going to zero at some finite
value is carried out in [3] for the opinion dynamic Krause’s model.

A. Paper Contribution
In recent papers [10], [11], we introduced a condition for asymp-

totic agreement (state frozen integral connectivity), suitable for non-
linear time varying monotone networks that extended to this scenario
the notion of integral connectivity introduced by Moreau for linear
networks [9], with the additional merit to be frozen in state variables
and therefore of simpler verification. Herein, we undertake a non
trivial further step by removing the monotonicity assumption, thus
extending remarkably the class of considered systems. Specifically
the paper contributions are: i) guaranteed exponential consensus
under weak connectivity properties (just existence of a spanning tree
for a suitable averaged graph is required) for a large class of non
monotone nonlinear networks with time-varying and state dependent
dynamic and coupling. This encompasses most of the agents models
normally adopted in the literature in the linear and non linear time
varying setting. Specifically, both the dynamic at the node (self-
feedback) and the coupling can be time varying and state dependent
with the notable feature that the strength of attraction between two
agents may vanish as the distance between their state values becomes
larger. This is representative of several network scenarios where it is
meaningful to assume that agents far away from each other have a low
mutual influence. Differently from [2], the proposed condition focuses
on first order consensus for general non monotone interactions and
nonlinear time-varying agent dynamics. With the respect to [3], herein
we address convergence towards standard consensus rather clustering,
with the possibility of decreasing coupling strengths as the distance
goes to infinity for a larger class of nonlinear time varying networks;
ii) we extend the use of a ”State Frozen” concept [10], [11] and
integral connectivity to this non-trivial scenario of non monotone
networks by introducing a suitable agents connectivity property (later
called ”Weak integral connectivity”). This has the merit to avoid the
circular argument by which solutions depend on the connectivity and
the latter is in turn influenced by state evolutions. This type of circular
argument normally makes up for conditions that can hardly be tested,
in the case of time-varying nonlinear agent dynamics and coupling,
without explicit apriori knowledge of solutions; iii) for the described
class of systems, we provide an estimate of the exponential rate of
convergence towards the agreement manifold.

II. NOTATION AND PROBLEM STATEMENT

Throughout the paper all vectors are assumed to be column vectors.
To denote vectors we write x = [x

1

, . . . , x

n

] for the column vector
x 2 Rn. |x| denotes the Euclidean norm of x. 1 is the vector of all
ones and e

j

is the j-th element of the canonical basis of Rn, where n

should normally be clear from the context. The integer interval N =

{1, 2, . . . , n} will be identified with the set of interacting agents. Let
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a compact set K 2 Rn, herein we denote diam(K) = sup{|x� y| :
x, y 2 K}. Let G(N,E) be a weighted directed graph (digraph) with
the set of nodes N = {1, ..., n}, the set of edges E ✓ N ⇥ N . A
node j is reachable from node i if there exists a path in a directed
graph connecting nodes i and j, namely there is a finite sequence
n

1

, n

2

, ..., n

k

of distinct nodes such that (n

i

, n

i+1

) 2 E for i =

1, . . . , k� 1 with n

1

= i and n

k

= j. A digraph G(N,E) is quasi-
strongly connected (or weakly connected) if there exists a node (root
or center) from which any other node is reachable. G(N,E) has
a spanning tree if there exists a spanning tree that is a subgraph
of G. Notice that the condition that G(N,E) has a spanning tree
is equivalent to quasi-strongly connectedness. A directed graph is
connected if any two nodes can be joined by a path.

Consider a network of agents as described by the following system
of nonlinear differential equations:

ẋ(t) = f(t, x(t)) (1)

where x(t) 2 Rn is the state vector, t 2 R
+

denotes time and f is
a vector field f : R

+

⇥ Rn ! Rn describing the dynamics of the
interaction between agents.

We assume: i) f is locally Lipschitz continuous with respect to
x uniformly in time, viz. for all compacts K 2 Rn there exists
L

K

> 0, such that, for all x

a

, x

b

2 K and all t � 0 it holds
|f(t, x

a

)�f(t, x

b

)|  L

K

|x
a

�x

b

|;1 ii) that f admits an agreement
equilibrium set, that is:

E = span{1} ✓ {x 2 Rn

: f(t, x) = 0 8 t 2 R
+

}. (2)

The assumptions on f , imply the local existence and the unicity of
the system’s solution on some maximally extended open interval of
definition.

Let x(t) denote a solution of (1). At any time instant t the following
quantities are of interest:

x

max

(t) = max

k2N

{x
k

(t)}, x

min

(t) = min

k2N

{x
k

(t)}

and �

k

(t) = |x
max

(t) � x

k

(t)| for all k 2 N (or symmetrically
˜

�

k

(t) = |x
min

(t)� x

k

(t)|).
Fixed an arbitrary solution x(·) and an arbitrary time t we define

a time-dependent permutation p

j

(t) of indeces j 2 N such that it
fulfills

x

p1(t)(t)  x

p2(t)(t)  x

p3(t)(t)  . . .  x

pn(t)

(t).

Notice that, if two or more entries of x take some given value, then
the permutation is not uniquely defined. Nevertheless the permutation
always exists and the value x

pi(t)
is independent of how it is

selected. Therefore, for any solution x(t) of (1) we can define the
corresponding re-ordered solution as x

pi(t)
.

III. MAIN RESULTS

Next we state our our main assumption, which will guarantee
exponential convergence towards a consensus state.

Definition 1 (Connectivity indicator function) Given i 6= j 2 N ,
we say that  

ij

(t) : R ! {0, 1} is a connectivity indicator function
if for all compact intervals K ⇢ R there exits "K > 0 yielding for
all x 2 Kn and any t � 0:

sign(x
j

� x

i

)[f

i

(t, x)� f

i

(t, x+ (x

i

� x

j

)e

j

)] (3)
�  

ij

(t)"K|xj

� x

i

|.

1This holds, for instance, when the Jacobian is uniformly bounded as a
function of time.

Definition 2 (Averaged interaction graph) We say that G(N,E) is
an averaged interaction graph for (1) if for some T > 0 and for all
(i, j) 2 E there exists a connectivity indicator function  

ij

(t) and
"̄ > 0 such that for all t � 0:

Z
t+T

t

 

ij

(⌧) d⌧ � "̄. (4)

Assumption 1 (Weak Integral Connectivity) We say that network
(1) fulfills Weak Integral Connectivity if it admits a weakly connected
averaged interaction graph and every pair (i, j) 2 N

2 has an
associated connectivity indicator function. We denote by T

r

✓ E

and r 2 N the spanning tree and root node in G(N,E).

Remark 1 Notice that if equation (4) holds for some T , it holds a
fortiori for all ˜

T > T .

Remark 2 In the light of equation (4) this is an assumption of
averaged weak connectedness across uniform time intervals, while
by condition (3), the node interaction property is defined on frozen
state variables across the same interval, making its verification
straightforward. Notice that x+ (x

i

� x

j

)e

j

is a state configuration
in which the agent j-th have already reached consensus with the i-th
agent. Therefore, the proposed state frozen condition is a measure of
how much a single agent is able to pull agent i.

The following fact is well-known for monotone networks and
continues to hold for the considered non monotone scenario under
condition (3).

Lemma 1 The functions x

max

(t) and x

min

(t) are (respectively)
monotonically non-increasing and non-decreasing.

Proof: Equivalently we show that the set:

M
c

:= {x : max

i2N

x

i

 c},

is forward invariant for all c 2 R. Let x in M
c

be arbitrary. Since
M

c

is convex, its tangent cone at x is simply given by TC

x

M
c

=

{z : z

i

 0, 8 i : x
i

= c} (see Proposition 5.5, [5]). Moreover, being
f

i

(t, x

i

1) = 0 and taking into account condition (3), for all i such
that x

i

= c and any t it holds:

f

i

(t, x) = [f

i

(t, x)� f

i

(t, x+ (x

i

� x

1

)e

1

)]+

[f

i

(t, x+ (x

i

� x

1

)e

1

)� f

i

(t, x+ (x

i

� x

1

)e

1

+ (x

i

� x

2

)e

2

)]

+[f

i

(t, x+ (x

i

� x

1

)e

1

+ (x

i

� x

2

)e

2

)�
f

i

(t, x+ (x

i

� x

1

)e

1

+ (x

i

� x

2

)e

2

+ (x

i

� x

3

)e

3

)] + . . .+ [f

i

(t, x+ (x

i

� x

1

)e

1

+ (x

i

� x

2

)e

2

+ . . .+ (x

i

� x

n�1

)e

n�1

)

� f

i

(t, x+ (x

i

� x

1

)e

1

+ (x

i

� x

2

)e

2

+ . . .+ (x

i

� x

n

)e

n

)] + f

i

(t, x

i

1)

 �
X

j2N

 

ij

(t)"K|xj

� x

i

|  0

Hence f(t, x) 2 TC

x

M
c

. As this holds for all x 2 M
c

it
proves forward invariance of M

c

(by Nagumo’s Theorem - [6])
and monotonicity of x

max

(t). A symmetric argument can be used
to prove monotonicity of x

min

(t) by showing forward invariance of
N

c

= {x : min

i2N

x

i

� c}.
In what follows we will present a key lemma which will allow us to
later prove exponential asymptotic consensus.

Lemma 2 Let r 2 N be the root of the spanning tree as from
Assumption 1. For all initial conditions x(0) 2 Rn, there exists a
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finite positive integer ¯

k and µ > 0 (uniform in time) such that, for
all t � 0, the following holds along the solutions of (1):

x

max

(t+

¯

kT )  x

max

(t)� µ|x
max

(t)� x

r

(t)| (5)

and:

x

min

(t+

¯

kT ) � x

min

(t) + µ|x
min

(t)� x

r

(t)|. (6)

Proof: We prove the Lemma for x

max

(t), a similar argument
holds for x

min

(t). Let " = "̄"K, and d(q) : N ! N denote the
distance in the spanning tree of node q from the root r of the tree
T
r

as in Assumption 1. Let us deal first with nodes q at distance
d(q) = 1. We carry out an iterative proof where each STEP is
composed of several cases.

STEP 1

Case a): x
r

(⌧)  x

q

(⌧), for all ⌧ 2 [t, t+ 2T ].
To come up with a suitable estimate we further need to consider the
following subcases.

Subcase a

1

) �

q

(t)  1

2

�

r

(t). Define q̄(⌧) 2 {1, . . . , n} so as
to fulfill p

q̄(⌧)

(⌧) = q. In the following expressions, the time
dependence of q̄ will be omitted for the sake of simplicity of notation.
Then, for any node q at distance 1 from the root it holds for all
⌧ 2 [t, t+ 2T ]:

x

q

(⌧)� x

q

(t) =

Z
⌧

t

f

q

(✓, x(✓)) d✓ =

Z
⌧

t

✓
[f

q

(✓, x(✓))� f

q

(✓, x(✓) + (x

q

(✓)�

x

pq̄�1(✓)
(✓))e

pq̄�1(✓)
)] + [f

q

(✓, x(✓)+

(x

q

(✓)� x

pq̄�1(✓)
(✓))e

pq̄�1(✓)
)� f

q

(✓, x(✓)+

(x

q

(✓)� x

pq̄�1(✓)
(✓))e

pq̄�1(✓)
+ (x

q

(✓)�
x

pq̄�2(✓)
(✓))e

pq̄�2(✓)
)] + [f

q

(✓, x(✓) + (x

q

(✓)

� x

pq̄�1(✓))
(✓))e

pq̄�1(✓)

+ (x

q

(✓)� x

pq̄�2(✓)
(✓))e

pq̄�2(✓)
)�

f

q

(✓, x(✓) + (x

q

(✓)� x

pq̄�1(✓)
(✓))e

pq̄�1(✓)

+ (x

q

(✓)� x

pq̄�2(✓)
(✓))e

pq̄�2(✓)

+ (x

q

(✓)� x

pq̄�3(✓)
(✓))e

pq̄�3(✓)
)]+

. . .+ [f

q

(✓, x(✓) + (x

q

(✓)� x

pq̄�1(✓)
(✓))e

pq̄�1(✓)
+ . . .

+ (x

q

(✓)� x

p2(✓)(✓))ep2(✓))

� f

q

(✓, x(✓) + (x

q

(✓)� x

pq̄�1(✓)
(✓))e

pq̄�1(✓)

+ . . .+ (x

q

(✓)� x

p1(✓)(✓))ep1(✓))]

+ f

q

(✓, x(✓) + (x

q

(✓)� x

pq̄�1(✓)
(✓))e

pq̄�1(✓)

+ . . .+ (x

q

(✓)� x

p1(✓)(✓))ep1(✓))

◆
d✓

The application of Assumption 1 to each of the terms in the integrand
of the previous expression (except for the last one) leads to:

x

q

(⌧)� x

q

(t) 

�
Z

⌧

t

X

j:xj(✓)<xq(✓)

 

qj

(✓)"K|xq

(✓)� x

j

(✓)|d✓

+

Z
⌧

t

f

q

(✓, x(✓) + (x

q

(✓)� x

pq̄�1(✓)
(✓))e

pq̄�1(✓)

+ . . .+ (x

q

(✓)� x

p1(✓)(✓))ep1(✓)) d✓

The former calculations are instrumental for the subsequent exploita-
tion of uniform Lipshitz continuity of f as detailed below:

x

q

(⌧)� x

q

(t) 

�
Z

⌧

t

X

j:xj(✓)<xq(✓)

 

qj

(✓)"K|xq

(✓)� x

j

(✓)|d✓

+

Z
⌧

t

✓
[f

q

(✓, x(✓) + (x

q

(✓)� x

pq̄�1)epq̄�1+

. . .+ (x

q

(✓)� x

p1(✓)(✓))ep1(✓))� f

q

(✓, x

q

(✓)1)]

+ f

q

(✓, x

q

(✓)1)

◆
d✓.

Being f

q

(✓, x

q

(✓)1) = 0, it results:

x

q

(⌧)� x

q

(t) 

�
Z

⌧

t

X

j:xj(✓)<xq(✓)

 

qj

(✓)"K|xq

(✓)� x

j

(✓)|d✓

� L

Z
⌧

t

X

j:xj(✓)�xq(✓)

[x

q

(✓)� x

j

(✓)] d✓

 �
Z

⌧

t

X

j:xj(✓)<xq(✓)

 

qj

(✓)"K|xq

(✓)� x

j

(✓)|d✓

� L

Z
⌧

t

X

j:xj(✓)�xq(✓)

[x

q

(✓)� x

max

(t)] d✓

 �
Z

⌧

t

X

j:xj(✓)<xq(✓)

 

qj

(✓)"K|xq

(✓)� x

j

(✓)|d✓

� (n� 1)L

Z
⌧

t

[x

q

(✓)� x

max

(t)] d✓,

with L denotes the (time-independent) Lipschitz constant of f

q

. In
particular for all ⌧ 2 [t+ T, t+ 2T ] we see that:

x

q

(⌧)� x

max

(t)  x

q

(⌧)� x

q

(t) (7)

 �
Z

⌧

t

X

j:xj(✓)<xq(✓)

 

qj

(✓)"K|xq

(✓)� x

j

(✓)|d✓

� (n� 1)L

Z
⌧

t

[x

q

(✓)� x

max

(t)] d✓

 �
Z

⌧

t

 

qr

(✓) "K|xq

(✓)� x

r

(✓)|d✓

� (n� 1)L

Z
⌧

t

[x

q

(✓)� x

max

(t)] d✓.

By the triangular inequality it holds:

�|x
q

(✓)� x

r

(✓)|  �|x
max

(t)� x

r

(✓)|+ |x
max

(t)� x

q

(✓)|,

moreover, by Lipschitz continuity of f
r

, we may infer:

|x
max

(t)� x

r

(✓)| � e

�L(✓�t)|x
max

(t)� x

r

(t)|.

Combining the above inequalities, we may restate the bound for
x

q

(⌧)� x

max

(t) expressed in (7) as detailed below:

x

q

(⌧)� x

max

(t)  (8)

�
Z

⌧

t

 

qr

(✓)"Ke
�L(✓�t)|x

max

(t)� x

r

(t)|d✓

�
Z

⌧

t

 

qr

(✓)"K[xq

(✓)� x

max

(t)] d✓

� (n� 1)L

Z
⌧

t

[x

q

(✓)� x

max

(✓)] d✓
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 �"Ke
�2LT |x

max

(t)� x

r

(t)|
Z

⌧

t

 

qr

(✓) d✓

� "K

Z
⌧

t

[x

q

(✓)� x

max

(t)] d✓

� (n� 1)L

Z
⌧

t

[x

q

(✓)� x

max

(t)] d✓ (9)

 �"e

�2LT |x
max

(t)� x

r

(t)|� "K

Z
⌧

t

[x

q

(✓)� x

max

(t)] d✓

� (n� 1)L

Z
⌧

t

[x

q

(✓)� x

max

(t)] d✓,

with " = "K"̄. By defining �(⌧) =

R
⌧

t

[x

q

(✓)� x

max

(t)] d✓ we can
recast equation (8) as:

d

d⌧

�(⌧)  �"e

�2LT |x
max

(t)� x

r

(t)|

� ((n� 1)L+ "K)�(⌧),

which holds for all ⌧ 2 [t + T, t + 2T ]. Since �(t + T )  0, by a
standard comparison principle we see that:

�(⌧)  �µ

�

(⌧)|x
max

(t)� x

r

(t)|, (10)

with

µ

�

(⌧) = e

�2LT

"[1� e

�((n�1)L+"K)(⌧�T�t)

]

((n� 1)L+ "K)
,

which holds for all ⌧ 2 [t+T, t+2T ]. In particular, for ⌧ = t+2T

equation (10) yields:

�(t+ 2T )  �µ

�

|x
max

(t)� x

r

(t)|, (11)

with

µ

�

=

"

((n� 1)L+ "K)
e

�2LT

[1� e

�((n�1)L+"K)T

].

From the mean value theorem it results:

9t⇤ 2 [t, t+ 2T ] : x

q

(t

⇤
)� x

max

(t) =

�(t+ 2T )

2T

. (12)

By Lipschitz continuity of f , convergence of x
q

(t) towards x

max

(t)

is at most exponential in time and therefore we may infer:

x

q

(t+ 2T )� x

max

(t)  (x

q

(t

⇤
)� x

max

(t))e

�2LT

. (13)

From (12) and (13) it results:

x

q

(t+ 2T )� x

max

(t)  �(t+ 2T )

2T

e

�2LT (14)

Finally, in order to derive an estimate of how decreasing is x

q

(t)

which is uniform in time we combine (14) and (11) and obtain:

x

q

(t+ 2T )� x

max

(t)  �µ

a1�r(t),

with µ

a1 = e

�4LT

"[1�e

�((n�1)L+"K)T
]

2((n�1)L+"K)T

and �

r

(t) = |x
max

(t) �
x

r

(t)|.
Subcase a

2

) �

q

(t) >

1

2

�

r

(t)

In this scenario, by Lipschitz continuity of f , convergence of x
q

(⌧)

towards the value x

max

(t) is at most exponential, and therefore we
may infer:

|x
max

(t)� x

q

(t+ 2T )| � e

�2LT |x
max

(t)� x

q

(t)|.

that yields:

x

q

(t+ 2T )  x

max

(t)� e

�2LT |x
max

(t)� x

q

(t)|
= x

max

(t)� e

�2LT

�

q

(t)  x

max

(t)� µ

a2�r(t),

with µ

a2 =

1

2

e

�2LT and �

r

(t) = |x
max

(t)� x

r

(t)|.
Case b): x

r

(⌧) � x

q

(⌧) for all ⌧ 2 [t, t+ 2T ]

In this case considering that �
q

(t) � �

r

(t) and exploiting Lipschitz
continuity of f , we may infer:

x

q

(t + 2T )  x

max

(t) � e

�2LT |x
max

(t) � x

q

(t)| = x

max

(t) �
e

�2LT

�

q

(t)  x

max

(t)� µ

b

�

r

(t), with µ

b

= e

�2LT .
Case c): 9⌧̄ 2 (0, 2T ] such that x

q

(t+ ⌧̄) = x

r

(t+ ⌧̄).

By Lipschitz continuity of f , convergence of x
r

and x

q

towards the
value x

max

(t) is at most exponential. This, along with assumption
x

q

(t+ ⌧̄) = x

r

(t+ ⌧̄), yields:

|x
max

(t)� x

q

(t+ 2T )| � e

�L(2T�⌧̄)|x
max

(t)� x

q

(t+ ⌧̄)|
= e

�L(2T�⌧̄)|x
max

(t)� x

r

(t+ ⌧̄)| � e

�2LT |x
max

(t)� x

r

(t)|,

and therefore x

q

(t+ 2T )  x

max

(t)� µ

c

�

r

(t) with µ

c

= e

�2LT .
Therefore, in any of cases a, b and c it results

x

q

(t+ 2T )  x

max

(t)� µ

1

�

r

(t)

or in other terms:

|x
max

(t)� x

q

(t+ 2T )| � µ

1

�

r

(t) (15)

with µ

1

= min{µ
a1 , µa2 , µb

, µ

c

} and �

r

(t) = |x
max

(t)� x

r

(t)|.

STEP 2

Next we deal with nodes k 2 N with d(k) = 2. Let q be such that
d(q) = 1 and (q, k) 2 T

r

. We consider different cases.
Case a): x

k

(t+ ⌧) � x

q

(t+ ⌧), for all ⌧ 2 [2T, 4T ]

Subcase a

1

): �
k

(t + 2T )  1

2

�

q

(t + 2T ). The analytical derivation
is similar to that of the STEP 1-Subcase a

1

) and here omitted for
sake of brevity. It yields to the following estimates:

x

k

(t+ 4T )� x

max

(t)  �(t+ 4T )

2T

e

�2LT (16)

 �µ

a1 |xmax

(t)� x

q

(t+ 2T )|

with µ

a1 = e

�4LT

"[1�e

�((n�1)L+"K)T
]

2((n�1)L+"K)T

.
Subcase a

2

): �
k

(t+2T ) � 1

2

�

q

(t+2T ). In this scenario taking into
account that by Lipschitz continuity of f it results |x

max

(t+4T )�
x

k

(t+ 4T )| � e

�2LT |x
max

(t+ 2T )� x

k

(t+ 2T )|, we may infer:

x

k

(t+ 4T )� x

max

(t) = x

k

(t+ 4T )� x

max

(t+ 2T )

� [x

max

(t)� x

max

(t+ 2T )]  x

k

(t+ 4T )� x

max

(t+ 4T )

� [x

max

(t)� x

max

(t+ 2T )]

 �e

�2LT |x
max

(t+ 2T )� x

k

(t+ 2T )|
� [x

max

(t)� x

max

(t+ 2T )]

= �e

�2LT

�

k

(t+ 2T )� [x

max

(t)� x

max

(t+ 2T )]

 �e

�2LT

1

2

�

q

(t+ 2T )� [x

max

(t)� x

max

(t+ 2T )]

= �e

�2LT

1

2

[x

max

(t+ 2T )� x

q

(t+ 2T )]

� [x

max

(t)� x

max

(t+ 2T )]

 �e

�2LT

1

2

[x

max

(t)� x

q

(t+ 2T )]

+ e

�2LT

1

2

[x

max

(t)� x

max

(t+ 2T )]� [x

max

(t)� x

max

(t+ 2T )]

= �µ

a2 [xmax

(t)� x

q

(t+ 2T )]

� (1� µ

a2)[xmax

(t)� x

max

(t+ 2T )]

 �µ

a2 [xmax

(t)� x

q

(t+ 2T )]

being µ

a2 = e

�2LT

1

2

< 1.
Case b): x

q

(t+ ⌧) � x

k

(t+ ⌧) ⌧ 2 [2T, 4T ]

In this case, we may infer:

x

k

(t+ 4T )  x

max

(t)� e

�2LT |x
max

(t)� x

k

(t+ 2T )|
 x

max

(t)� µ

b

|x
max

(t)� x

q

(t+ 2T )|,

with µ

b

= e

�2LT .
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Case c): x
q

(t+ ⌧̄) = x

k

(t+ ⌧̄) for some ⌧̄ 2 (2T, 4T ].
By Lipschitz continuity of f , it results:

|x
max

(t)� x

k

(t+ 4T )| � e

�L(4T�⌧̄)|x
max

(t)� x

k

(t+ ⌧̄)|
= e

�L(4T�⌧̄)|x
max

(t)� x

q

(t+ ⌧̄)|
� e

�2LT |x
max

(t)� x

q

(t+ 2T )| = µ

c

|x
max

(t)� x

q

(t+ 2T )|,

with µ

c

= e

�2LT .
Therefore, in any of cases a, b and c it results:

x

k

(t+ 4T )  x

max

(t)� µ

2

|x
max

(t)� x

q

(t+ 2T )| (17)

with µ

2

= min{µ
a1 , µa2 , µb

, µ

c

}.
Consequently, in order to derive an estimate of how decreasing

is x

k

(t) which is uniform in time by combining (17) and (15) we
obtain:

x

k

(t+ 4T )� x

max

(t)  �µ

1

µ

2

|x
max

(t)� x

r

(t)|. (18)

A similar procedure can be used to construct an estimate of the
convergence rate for an arbitrary node at distance d(k)+ 1 based on
the estimate for nodes at distance d(k). By induction, for any node
k at distance d(k) from the root, the following inequality holds:

x

k

(t+ 2d(k)T )� x

max

(t)  �
⇣Q

d(k)

i=1

µ

i

⌘
|x

max

(t)� x

r

(t)|
= �µ(d(k))|x

max

(t)� x

r

(t)|,

with µ(d(k)) =

Q
d(k)

i=1

µ

i

being a positive constant for any fixed
d(k). Given the fact that only a finite number of agents are present
and by Assumption 1 every agent k has a finite distance from the
root, a uniform estimate of the convergence rate can be provided.
Estimate (19) is still not of the form needed to prove our claim as
the estimated rate of contraction is d(k)-dependent and the number
of T intervals needed in order to guarantee such decrease in x

max

is proportional to d(k). Nevertheless, µ(d(k)) 2 (0, 1) for any d(k)

and by monotonicity of x

max

(t) (see Lemma 1) and finiteness of
the number of agents, one can take without loss of generality ¯

k :=

2(n� 1) and µ = µ(

¯

k/2) = µ(n� 1). This concludes the proof of
the Lemma.

Theorem 1 Consider the network modeled by equations (1), if As-
sumptions 1 hold, then the equilibrium set is uniformly exponentially
stable and, for any initial condition x(0), x(t) converges to an
agreement equilibrium state with the following contraction rate:

V (x(t+ s

¯

kT ))  (1� µ̂)

s

V (x(t)). (19)

with µ̂ = µ(n� 1).

The result follows by a Lyapunov argument, considering the function:
V (x) = max

k2N

x

k

� min

k2N

x

k

, and exploiting Lemmas 1 and
2. It is omitted for sake of brevity.

IV. EXAMPLE AND COUNTEREXAMPLE

In this Section we will discuss two illustrative examples. We
consider the following nonlinear non-monotone network composed
of agents N connected according to the topology of a connected
graph G(N,E) as detailed in the following equations:

ẋ

i

= �

i

(t)

X

j2Ni

max{0, x
j

� x

i

}
1 + [max{0, x

j

� x

i

}]2 (20)

+ �

i

(t)

X

j2Ni

min{0, x
j

� x

i

}
1 + [min{0, x

j

� x

i

}]2 ,

N

i

being the set of neighbours of node i, �
i

(t) = �(t� (i� 1)⌧̄),
i = 1 . . . 4, ⌧̄ = 0.25 and �(t) is a periodic function represented in
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Fig. 1. Convergence to the consensus state: (a) �(t) (b) dynamic evolution
of x.

Fig. 1-(a) with period T

�

= 2. Let the connectivity indicator function
be:

 

ij

(t) =

(
1, if �(t) � 0.2, (i, j) 2 T

r

;

0, otherwise,

we may take T = 2, so that
R

t+T

t

 

ij

(⌧) d⌧ =

2

5

T

�

= 0.8 := "̄ > 0

holds for every (i, j) 2 E. Moreover, by letting "K = 0.2/[1 +

diam

2

(K)] we see that

sign(x
j

� x

i

)�

i

(t)

⇢
max{0, x

j

� x

i

}
1 + [max{0, x

j

� x

i

}]2+

min{0, x
j

� x

i

}
1 + [min{0, x

j

� x

i

}]2

�
�  

ij

(t)"K|xj

� x

i

|,

for all t and all (i, j) 2 E. Therefore, G(N,E) is an Averaged
interaction graph, and, being connected, it admits a spanning tree
T
r

as requested in Assumption 1. It is worth pointing out that the
assumptions are stated in terms of ”frozen” state variables, greatly
simplifying the a priori verification of the conditions guaranteeing
exponential consensus for non-monotone nonlinear time-varying net-
works (see Fig. 1-(b) for a simulation).

Remark 3 Verification of connectivity conditions according to inte-
gral type ones (i.e. Moreau’s definition in [9]) is not straightforward.
Similar difficulties are encountered with all available criteria for
consensus of time-varying linear networks ([8], [12], [13]), including
the approach for nonlinear networks proposed in [16]. The fully time-
varying set-up, with time-varying weights as in equation (20), is also
not covered by asymptotic consensus conditions for state dependent
nonlinear networks [14].

Notice that the proposed analytical derivation does not cope with
the scenario where the interaction can vanish at finite distance (in this
respect a preliminary investigation is reported in [15]), rather with
interactions vanishing asymptotically. Next we consider an example
showing how Assumption 1 cannot be relaxed by allowing state
and time dependent connectivity indicator functions even in the
case of a pseudo linear embedding. Specifically, we show that if



0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2016.2598650, IEEE
Transactions on Automatic Control

6

 

ij

=  

ij

(t, x), Assumption 1 is not sufficient to claim consensus.
Let consider a network of 3 agents:

ẋ

1

= max

⇢
0, |x

2

� x

1

+ 2� sin(t)|� 1

2

�
(x

2

� x

1

)

ẋ

2

=

1

2 cos

⇡

6

✓
sin

2

✓
t

2

� ⇡

12

◆
(x

3

� x

2

) (21)

+ cos

2

✓
t

2

� ⇡

12

◆
(x

1

� x

2

)

◆

ẋ

3

= max

⇢
0, |x

2

� x

3

� 2� sin(t)|� 1

2

�
(x

2

� x

3

).

By direct computation it is possible to show that 9"̄K > 0 :

8x
1

, x

2

, x

3

2 K, 8 t � 0,

Z
t+2⇡

t

max

⇢
0, |x

2

� x

1

+ 2� sin(⌧)|� 1

2

�
d⌧ � "̄K,

and
Z

t+2⇡

t

max

⇢
0, |x

2

� x

3

� 2� sin(⌧)|� 1

2

�
d⌧ � "̄K,

which can be seen as a form of state dependent connectivity from x

2

respectively to x

1

and x

3

. Moreover,

8t � 0,

1

2 cos

⇣
⇡

6

⌘
Z

t+2⇡

t

sin

2

⇣
⌧

2

� ⇡

12

⌘
d⌧ =

⇡p
3

,

which ensures (purely time dependent) connectivity from x

3

to x

2

,
and, similarly:

8t � 0,

1

2 cos

⇣
⇡

6

⌘
Z

t+2⇡

t

cos

2

⇣
⌧

2

� ⇡

12

⌘
d⌧ =

⇡p
3

for the connectivity from x

1

to x

2

. It is possible to show that network
(21) does not always converge to a consensus equilibrium, as the
vector [2, sin(t),�2] is the solution corresponding to initial condition
[2, 0,�2]. Indeed let the initial state condition [2, 0,�2], the vector
x̄(t)

.

= [2, sin(t),�2] is the solution of the second equation in (21)
being:

˙

x̄

2

=

1

2 cos

⇡

6

✓
sin

2

✓
t

2

� ⇡

12

◆
(�2� sin(t))+

cos

2

✓
t

2

� ⇡

12

◆
(2� sin(t))

◆
=

1

2 cos

⇡

6

✓
� 2 sin

2

✓
t

2

� ⇡

12

◆

+ 2 cos

2

✓
t

2

� ⇡

12

◆
� sin(t)

◆

=

1

2 cos

⇡

6

✓
2 cos

⇣
t� ⇡

6

⌘
� sin(t)

◆

=

1

2 cos

⇡

6

✓
2 cos(t) cos

⇣
⇡

6

⌘
+ 2 sin(t) sin

⇣
⇡

6

⌘
� sin(t)

◆

=

1

2 cos

⇡

6

✓
2 cos(t) cos

⇣
⇡

6

⌘
+ 2 sin(t)

1

2

� sin(t)

◆

=

1

2 cos

⇡

6

✓
2 cos(t) cos

⇣
⇡

6

⌘◆
= cos(t) =

d

dt

sin(t),

Remark 4 The example shows how lack of monotonicity allows the
creation of state and time dependent “holes” where influence of
neighbouring agents is not felt. While all state locations experience
enough interaction strength over time, individual agents (which are
generally not frozen at a particular location) may fail to perform

their pulling task as they keep moving within such holes. To the best
of our knowledge no criteria for consensus exist in the literature to
allow existence of connectivity holes and yet ruling out the possibility
of individual agents getting trapped within them as in the example.
While the example may appear as pathological, this is meant to
illustrate how our conditions are in some sense necessary, and where
the main obstruction stands in order to possibly generalize our
criterion.

V. CONCLUSIONS

In this paper, we introduced a criterion for asymptotic exponential
consensus avoiding the assumption of monotonicity that is widely
adopted, explicitly or implicitly, in the literature. The criterion extends
to this class of nonlinear scenario with state dependent dynamics
and coupling the possibility of guaranteeing consensus through an
averaged notion of connectivity allowing the coupling strength inter-
actions to vanish as the state agent distance goes to infinity.
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