Evidence for an impact-induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization

Adrian R. Muxworthy1,* Phillip A. Bland2, Thomas M. Davison1, James Moore1, Gareth S. Collins1, & Fred J. Ciesla3

1Department of Earth Science and Engineering, Imperial College London, London, UK.
2Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia.
3Department of Geophysical Science, University of Chicago, 5734 South Ellis Av., Chicago, IL 60430, USA

*Corresponding author:
Tel: +44 20 7594 6442
Email: adrian.muxworthy@imperial.ac.uk

Abstract

We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix’s primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix’s remanent magnetization was found to be consistent and low (~6 µT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization formed during or
after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low-velocity collisions can generate significant matrix temperatures, as pore-space compaction attenuates shock energy and dramatically increases the amount of heating. Non-porous chondrules are unaffected, and act as heat-sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero-porosity chondrules, make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.

1. Introduction

Carbonaceous chondrite meteorites bear witness to the range of nebular and asteroidal processes that preceded large-scale planetary accretion. These meteorites contain two principal components: abundant sub-micron and micron-scale matrix materials that form a mineralogically complex aggregate; and mm-scale chondrules, the spherical igneous inclusions that give chondrites their name. The Allende meteorite is a member of the CV group of carbonaceous chondrites. Estimates of the age of the Solar System are based on analyses of components in Allende and other CV chondrites (Amelin et al., 2009). Allende is arguably the most analyzed rock on Earth, but, fundamental aspects of the record of early solar system processes, contained in this meteorite and others, remain poorly understood and a matter of vigorous debate. Their relatively pristine nature has driven the assumption that these meteorites derive from primitive asteroids. However, a body - paleomagnetic studies of Allende (Butler, 1972; Carporzen et al., 2011; Funaki and Wasilewski, 1999; Weiss et al., 2010), numerical modeling (Elkins-
Tanton et al., 2011; Sahijpal and Gupta, 2011) and compositional associations (Humayun and Weiss, 2011) - has prompted the recent suggestion that several chondrite groups are derived from a large differentiated parent asteroid: an object that had a convecting magma ocean, a liquid metallic core and an active dynamo field (Elkins-Tanton et al., 2011; Fu et al., 2014; Humayun and Weiss, 2011; Sahijpal and Gupta, 2011; Weiss et al., 2010).

Three processes are known to control the evolution of chondritic asteroids: (1) thermal metamorphism, (2) aqueous alteration and (3) impact-induced shock metamorphism. All three are significant in interpreting the paleomagnetic record in a meteorite. Shock metamorphism has not been considered a dominant process in the most primitive meteorites, the carbonaceous chondrites: 85% are ranked S1 (‘unshocked’: <4-5GPa) or S2 (‘very weakly shocked’: 5-10GPa) (Scott et al., 1992). The calibration here (assigning a shock level based on observed shock metamorphic textures, with an estimate of the required shock pressure to generate the textures, and the magnitude of post-shock heating) is based on impact recovery experiments on non-porous target rocks, or single crystals. Although both Stöffler et al. (1991) and Scott et al. (1992) noted the importance of porosity in determining shock level and impact heating, its significance has rarely been discussed in works applying the Stöffler et al. (1991) criteria to meteorites. This is unfortunate, as porous targets respond very differently to non-porous targets under shock. Porosity compaction attenuates shock energy in an impact and dramatically increases the amount of heating, as energy is expended crushing out the pore space (e.g., Ahrens and Cole, 1974; Kieffer, 1971; Melosh, 1989; Sharp and de Carli, 2006; Zel'Dovich and Raizer, 1967). The role of porosity is significant when we consider the impact record in carbonaceous chondrite meteorites, as the consensus view is that primordial carbonaceous parent bodies had significant micro-porosity. And it is particularly important when we consider the paleomagnetic record in meteorites. The interpretation of the paleomagnetism data that underpins the idea that primitive meteorites may come from differentiated asteroids is based on a number of assumptions. A fundamental one – drawing on Stöffler et al. (1991) – is that shock heating was minimal.
Allende is classified as shock stage S1 (Scott et al., 1992). Shock effects in the Stöffler et al. (1991) criteria are estimated based on metamorphic textures in large (>50-100µm) chondrule olivines. Shock effects in sub-µm matrix grains are rarely considered. Yet matrix is the host for the magnetic carrier phase. Watt et al. (2006) and Bland et al. (2011) found that the matrix in Allende has a micron-scale fabric. Bland et al. (2011) used fabric analysis to show that the volume of the primary matrix aggregate had been halved in an impact-induced compaction event (determining that the primary matrix porosity, pre-compaction, was of-order 70-80%). In addition to the fabric analysis of meteorite matrix, studies of experimentally synthesized fine-grained material (Blum, 2004; Blum and Schrapler, 2004), and modeled accreted aggregates (Ormel et al., 2008) indicates that primordial matrix porosities were in the 70-80% range. A review of chondrite porosity data (Macke et al., 2011; Sasso et al., 2009) by Bland et al. (Bland et al., 2014) supports this estimate. Static compression experiments indicate that gravitational compression was not significant in asteroids with radii <100 km (Blum, 2004). Impact-induced compaction is more efficient, and generates porosities similar to those seen in chondrites (Beitz et al., 2013). Taken together, and given the textural evidence for impact-induced compaction of initially highly porous matrix aggregates (Watt et al. 2006; Bland et al. 2011), the expectation is that primordial asteroids initially had high porosity, and that the dominant porosity-reduction process was impact-induced compaction. What was the effect of that compaction event on Allende matrix? What pressure and temperature did it experience? These questions have implications for our understanding of the paleomagnetic record in Allende and other (compacted) chondritic meteorites.

Although the dichotomy between porous and non-porous targets was well known in the impact community, until recently there had been no numerical studies of shock in materials with a bimodal distribution of porous and non-porous components, i.e., a material approximating a chondritic meteorite: (nominally) zero-porosity spherical chondrules (0.1-1mm in size) set in a highly porous matrix aggregate composed of sub-µm monomers. In addition, impact simulations
have typically been performed studying large-scale collisions or crater-forming events. Bland et al. (2014) and Davison et al. (2016) performed numerical modeling of impacts at sufficient resolution to inform the interpretation of features at 100’s µm to cm-scale, i.e., providing an impact simulation baseline appropriate for thin section petrographic studies, or analysis of small meteorite aliquots, and in simulated materials that more closely approximate chondrites. The ability to visualize shock at this ‘meso-scale’, and observe the effect of a shock wave on low-porosity chondrules set in a high-porosity uncompacted matrix (70-80% porosity), was revealing. Even at relatively low impact velocities (1-2km/s), impact induced compaction can have a significant effect, and there is significant heterogeneity in shock effects at scales of ~100 µm (Bland et al., 2014; Davison et al., 2016). Most notably, the matrix behaves very differently than chondrules. The meso-scale simulations revealed that matrix in an Allende compaction scenario would experience much higher post-shock temperature increase (ΔT(final) = 300-400K) than chondrules, which are barely heated (ΔT(final) <20K). Chondrules act as a heat sink – matrix rapidly equilibrates to a bulk post-shock temperature ~200K lower than matrix T(peak). These impacts would generate negligible shock metamorphic textures in chondrule olivine, consistent with assignment of an S1 shock level for Allende.

There is evidence from previous studies (Funaki and Wasilewski, 1999, 2000; Gattacceca et al., 2005; Sugiura et al., 1985; Watson, 1983) that in addition to inducing a crystallographic/rock fabric in Allende matrix, impacts also imparted a magnetic fabric. To determine the magnetic fabric, these previous studies measured the anisotropy of magnetic susceptibility (AMS) of Allende matrix and found an oblate magnetic fabric, which is the expected fabric to result from impact. AMS is a popular approach for determining the magnetic fabric due to the speed of measurement (Jackson, 1991), however, susceptibility measures the magnetic response of all the minerals in a sample, i.e., both remanence carriers (ferromagnets sensu lato) and non-remanence carriers (paramagnets and diamagnets), and as such does not necessarily reflect the anisotropy of the minerals carrying the natural remanent magnetization (NRM).
Given that the NRM carrier phase is frequently located in matrix, does the magnetic remanence carrier display a magnetic fabric, and what is the effect of matrix heating on the NRM carriers? And if heated, does the magnetic phase record a thermomagnetic remanence, and if so what is the origin of magnetic field? To answer these questions, we report a new magnetic study of Allende. In addition to a standard paleomagnetic study we also conduct a fabric study of the magnetic remanence plus an ancient-field intensity study (paleointensity) using modern calibrated and non-calibrated, non-heating methods.

2. Methods

2.1 Paleomagnetic analysis

A 60×3×3mm section of the Allende meteorite was chosen for analysis, and split into 16 ~2-3 mm cubes (Table 1), retaining their relative orientation with respect to each other. To isolate the primary magnetization of the NRM, which is likely to have been super-imposed by secondary magnetizations, we applied the standard non-heating paleomagnetic technique of step-wise alternating-field (AF) demagnetization up to a maximum alternating field of 120 mT. As the samples were small, to improve signal-to-noise ratios, we measured their remanent magnetization characteristics on a 2G SQUID magnetometer at the University of Oxford, fitted with triaxial, static AF demagnetization coils.

To determine the magnetic fabric of the magnetic remanence carriers, we measured the anisotropy of magnetic remanence (AMR). Unlike AMS measurements, AMR measurements isolate the magnetic fabric of the magnetic remanence carriers, and, additionally, AMR is simpler to interpret than AMS; AMS data leads to non-unique interpretations: the magnetic response of small grains (magnetically single-domain (SD)) and larger multi-domain (MD) grains is opposite to each other; in AMS measurements SD grains display ‘inverse’ magnetic anisotropy; in AMR...
measurements all grain-sizes give the same response (Jackson, 1991). The samples were imparted with anhysteretic remanent magnetizations (ARM) in nine individual orientations within the samples, following the protocol of Jelinek (1978). For this we used a peak-alternating field of 200 mT, with a bias field of 100 µT. Before the measurement, the samples were tumbling-AF-demagnetized using a maximum 100 mT field, followed by static three-axis AF demagnetization up to 200 mT. To impart the ARMs we used a Detech D-2000 AF Demagnetizer. To improve the signal-to-noise ratio for the AMR study, the sixteen samples were combined in orientated pairs, to make eight samples.

To better constrain the homogeneity of the magnetization in samples, estimates of the recorded paleointensity were made. Traditionally paleointensity measurements are made by replicating the remanence acquisition mechanisms in the laboratory; this essentially means replicating thermoremanence acquisition by heating samples to high temperatures. Generally, meteoritic materials are susceptible to chemical alteration on heating, so non-heating methods are employed, though for thermally stable samples these methods are generally less accurate (Yu, 2006). With the exception of the Preisach paleointensity protocol (Muxworthy and Heslop, 2011), all non-heating methods are relative methods that rely on a calibration factor that is often determined by examining material that is of terrestrial origin, e.g., ‘REM family’ methods (Acton et al., 2007; Gattacceca and Rochette, 2004). In this paper we employ the Preisach paleointensity protocol that relies on a first-order model to predict the response and behavior of small magnetic particles in materials, and compare the results to those from the REM’ method (Gattacceca and Rochette, 2004). The REM’ method is the latest development of the REM method; rather then determine just the ratio of the NRM to a laboratory induced saturating isothermal remanence (SIRM), the REM’ method compares the ratio of the NRM and SIRM AF demagnetization spectra, thereby determining a series of REM estimates, one for each AF demagnetization step. Generally in the middle of the spectra there is usually a plateau of consistent REM estimates. The REM’ intensity is the average of the REM estimates in the plateau region.
Both the REM’ and Preisach techniques assume that the primary NRM is a thermoremanence (TRM) in origin, and not, for example, a thermo-chemical remanent magnetization. For both techniques the NRMs’ AF demagnetization data is combined with the AF demagnetization data for a laboratory induced SIRM. No further measurements are needed for the REM’ protocol (Gattacceca and Rochette, 2004). For the Preisach method, it is necessary to also measure a series of hysteresis measurements termed first-order reversal curves (FORC) (Roberts et al., 2000). This was done using a Princeton Measurements (now Lakeshore) high-field vibrating sample magnetometer (VSM) at the University of Southampton. In contrast to the original Preisach protocol (Muxworthy and Heslop, 2011), where normalization is undertaken by a single SIRM measurement, in this paper we use SIRM AF demagnetization spectra to normalize (Di Chiara et al., 2017). We also measured the standard hysteresis parameters: (1) coercive force $H_c$, (2) the remanent coercive force $H_{cr}$, and (3) the reduced remanent saturation magnetization $M_r/M_s$.

To assess the magnetic mineralogy of the remanence carriers, three samples were imparted with a saturation isothermal remanence (SIRM), and continuously thermally demagnetized using an Orion three-axis low-field VSM at Imperial College London.

### 2.2 Macroscale and mesoscale modeling

Simulations of the impact processing on the macro- and mesoscale were performed using the iSALE shock physics code (Amsden et al., 1980; Collins et al., 2004; Wünne mann et al., 2006). Porosity was modeled using the ε-α porous compaction model (Collins et al., 2011; Wünne mann et al., 2006). The ANEOS equation of state table for forsterite (Benz et al., 1989) was used to describe the bulk material in macroscale simulations and both the chondrules and matrix in mesoscale simulations. Lagrangian tracer particles were used to track the peak pressures and temperatures throughout both the macroscale and mesoscale simulations. The macroscale
simulations included self-gravity (using the algorithm described in Barnes and Hut (1986)), so the full crater formation and collapse process could be simulated. Mesoscale simulations followed the methodology described in Davison et al. (2016). Randomly placed non-porous chondrules were surrounded by porous matrix. Matrix abundance was set to 70%, and initial matrix porosity was 0.7 (leaving an initial bulk porosity of ~ 0.5). The initial temperature was set to 400 K. An impact velocity of 1 km/s was chosen to give a final matrix and bulk porosity consistent with Allende.

3 Results

3.1 Identification of primary magnetization directions.

In 14 of the 16 samples, a high-coercivity (HC) remanent magnetization component with unblocking fields > 20 mT was identified; in all samples, the NRM did not fully demagnetize by 120 mT, but the HC component was tending towards the origin (Fig. 1). Principal component analysis (PCA) was used to fit the components (Kirschvink, 1980). Plotting the directions on an equal area projection plot (Fig. 2), the HC components are clearly clustered ($\alpha_{95}=6.5^\circ$), whilst the more poorly defined low-coercivity (LC) components are scattered. These results are in agreement with previous work for Allende matrix, which identified a HC unidirectional magnetization (e.g., Banerjee and Hargraves, 1972; Butler, 1972; Carporzen et al., 2011; Fu et al., 2014; Nagata, 1979; Sugiura et al., 1985; Sugiura and Strangway, 1985; Wasilewski, 1981).

3.2 Hysteresis parameters

The samples’ displayed near consistent hysteresis parameters (Table 1). In terms of domain state these parameters are indicative of large pseudo-single-domain/MD material. The coercive force values (Table 1) are too high for MD magnetite, and are more indicative of iron sulphides.
Two FORC diagrams are shown in Fig. 3. As a first-order approximation, the x-axis of a FORC diagram can be interpreted as the coercive force distribution, whereas spreading on y-axis is representative of magnetic interactions within the system, both inter-grain magnetostatic interactions and/or internal interactions within multidomain grains (Roberts et al., 2014). Fig. 3a is representative of all samples, except sample a1b (Fig. 3b). Fig 3a is typical of iron sulphides, which have relatively higher coercivity distributions than iron oxides and FeNi particles (Roberts et al., 2014). Sample a1b is distinctly different; it had a large chondrule near its surface that is very likely the cause of the anomalous magnetic behavior.

3.3 Thermomagnetic Analysis

The magnetization in two of the samples was mostly demagnetized (>95%) by 590–605K, suggesting the presence of pyrrhotite, which has a Curie temperature of ∼595K (Dekkers, 1989), with a high-temperature tail persisting to >750K (Fig. 4). Pyrrhotite has been previously reported as the primary magnetic mineral in Allende matrix samples (Fu et al., 2014; e.g., Wasilewski, 1981; Weiss et al., 2010). Fu et al, (2014), determined a mean matrix composition of Fe$_{6.1}$Ni$_{2.8}$S$_{8.0}$, which for formation at <670K corresponds to an equilibrium assemblage of pentlandite, troilite and hexagonal pyrrhotite (Vaughan and Craig, 1978). The high-temperature tail is probably magnetite and awaruite as suggested previously (Funaki and Wasilewski, 2000), however, it has recently shown (Tarduno et al., 2016); that Allende matrix is highly unstable to heating, and acquires remanence even on heating in zero-field to < 620 K; for this to happen requires the creation of a new magnetic phase that is magnetically coupled to the existing remanence carrier. It is possible that the high-temperature tail observed in this study (Fig. 4) is an artifact created during this study.
The other sample (a1b), had not reached its Curie temperature by 1000K, indicating a Ni-poor FeNi phase (Leedahl et al., 2016); this sample also had a NRM intensity six times greater than the next strongest sample, and was one of the two samples for which HC and LC components were not identified. As stated above sample a1b had a large chondrule near the surface. Although not thought to be common, Ni-poor FeNi phases have been previously petrographically identified in Allende chondrules (Emmerton et al., 2011).

### 3.4 Anisotropy of ARM

Only eight samples were used to determine the anisotropy, which is statistically low (Tauxe, 2010), however, the results from all eight samples were very consistent, especially with respect to the minimum anisotropy axis (Fig. 5). The samples were found to be highly anisotropic (mean \( P' = 2.2 \) (Jelinek, 1981)), displaying a strong planar/oblate anisotropy (foliation, \( T = 0.74 \), (Jelinek, 1981)), within which there is a preferred direction. The anisotropy reported here appears very high compared to those reported in the literature for other minerals, but these should be compared to the values for pure pyrrhotite samples, e.g., \( P' > 40 \) (Louzada et al., 2010).

Previous magnetic fabric studies of Allende matrix all measured anisotropy of magnetic susceptibility (AMS) (Funaki and Wasilewski, 1999, 2000; Gattacceca et al., 2005; Sugiura et al., 1985); these studies all found an oblate anisotropy. Gattacceca et al. (2005) reported an anisotropy value \( P \sim 1.09 \), which is much lower than the value reported here; however, AMR is known to produce higher anisotropies than AMS, particularly for pyrrhotite-bearing samples (Clement et al., 2008).

### 3.5 Paleointensity determinations

...
Both the REM' method (Gattacceca and Rochette, 2004) and the Preisach method (Di Chiara et al., 2017; Muxworthy and Heslop, 2011) were employed to determine paleointensity estimates (Table 1). For both paleointensity techniques, orthogonal projection plots (Fig. 1) are used to select the AF range of the component of interest, i.e., the HC component. The REM' paleointensity estimates are simply made by identifying an AF demagnetization range of the HC component for which the NRM/SIRM ratio is relatively constant, averaging this NRM/SIRM ratio and multiplying the average by 3000 to yield an estimate in micro-Tesla (Gattacceca and Rochette, 2004). The REM' method produced a narrow range of estimates (Table 1), with a mean of 12.2 ± 1.4 µT with a 95% confidence interval (CI) of 11–13 µT (Table 1).

The Preisach paleointensity method works by using the room-temperature-measured FORC diagram (Fig. 3) to generate a Preisach distribution (Muxworthy and Heslop, 2011; Muxworthy et al., 2011b). Using thermally activated Preisach theory, the measured Preisach distribution is used to predict the TRM/SIRM ratio as a function of applied field intensity. The predicted TRM/SIRM ratios are compared with the measured NRM/SIRM ratios to estimate the paleointensity. In a similar manner to the REM' procedure, to allow for multi-component magnetizations, the Preisach method determines paleofield estimates for each demagnetization step of the NRM (Fig. 1), and identifies areas of consistency (Di Chiara et al., 2017). The Preisach method allows for different cooling rates to be used in the paleointensity calculation. We considered three rates: 6 min, 1 hr and 24 hr to cool from the Curie temperature to ambient, though this range of cooling rates only contributed a difference of ~0.3 µT to the estimates. The mean estimate for the 1-hour cooling time was 5.9 ± 1.2 µT (CI<sub>95</sub> 5 – 7 µT) (Table 1).

4. Discussion

Paleomagnetic analysis clearly demonstrated that the remanent magnetization within the Allende sample was uniform and the matrix's magnetic signal was dominated by pyrrhotite (Fe<sub>1-x</sub>S (x=0-
In all but two of the samples, high-coercivity component directions were clearly aligned, yielding a well-constrained mean direction with a 95% confidence cone ($\alpha_{95}$) of 6.5° (Table 1). Given the formation mechanism of the principal magnetic carrier phase (pyrrhotite) - a component of the µm to sub-µm matrix material that is interstitial to the mm-sized spherical chondrules - the uni-directional HC magnetic remanence must be post-accretional. This is in agreement with previous studies, which have also found a consistent unidirectional magnetization in the Allende matrix (e.g., Banerjee and Hargraves, 1972; Butler, 1972; Carporzen et al., 2011; Fu et al., 2014; Nagata, 1979; Wasilewski, 1981; Weiss et al., 2010). Previous studies have also found on thermal demagnetization of Allende NRM, this HC unidirectional magnetization aligns with the 'MT' (mid-temperature) component of the three component thermal demagnetization spectra (Carporzen et al., 2011; Fu et al., 2014); the high-temperature (HT) component is only seen in certain chondrules.

The paleointensity data also supports a coeval magnetization process throughout the sample. The Preisach paleointensity estimates are lower than the REM' methods; from studies on terrestrial historical lavas the Preisach method has been demonstrated to be more accurate than the REM family of methods (Muxworthy et al., 2011b). We therefore take a paleofield estimate of $5.9 \pm 1.2 \mu T$, which has little inter-sample variation (Table 1) suggesting that they have recorded the same field. Compared to other paleofield estimates for Allende bulk/matrix material, this value is slightly lower than previous non-heating estimates: 12–18 µT (Wasilewski, 1981) and ~22 µT (REM') by Emmerton et al. (2011), but lower than the ‘AF estimate’ of ~50–60 µT of Carporzen et al. (2011), a Thellier (heating) estimate of > 100 µT (Banerjee and Hargraves, 1972) and a single Preisach estimate of ~128 µT of Emmerton et al. (2011). The two differing Emmerton et al. (2011) estimates are for the same sample; usually REM methods yield higher paleointensity estimates than the Preisach method (Muxworthy et al., 2011b). The Emmerton et al. (2011) Preisach palaeointensity estimate was determined using an earlier version of the method (Muxworthy et
al., 2011b); here we use the protocol outlined in Di Chiara et al. (2017). The Carporzen et al. (2011) study was not strictly non-heating as the estimates involved a thermal-calibration step. Generally, paleointensity estimates determined by heating protocols, e.g. Thellier-type approaches, yield higher estimates (Butler, 1972; Carporzen et al., 2011). Due to known irreversible alteration of the Allende matrix material above 50°C (Tarduno et al., 2016; Wasilewski, 1981), these heating estimates should be treated with caution; Tarduno et al (2016) found that the Allende matrix acquires remanence even on heating in zero-field

Recent electron backscatter diffraction (EBSD) analysis (Bland et al., 2011; Watt et al., 2006) has found a pervasive uniaxial crystallographic fabric in Allende delineated by oriented matrix grains. Grain rotation occurred in response to impact shock, and an initially highly porous random aggregate of sub-µm fayalitic olivine grains was compacted to produce a uniaxial crystallographic matrix fabric (Bland et al., 2011; Watt et al., 2006). The AMR analysis of the magnetic fabric found the sample to be highly anisotropic (mean P’ = 2.2 (Jelinek, 1981)), displaying a strong planar anisotropy (foliation, T=0.74, (Jelinek, 1981)), within which there is a preferred direction. The mean high-coercivity remanence direction of the NRM lies at 95% confidence ellipse within the easy-plane (Fig. 5). Given the high-anisotropy of the sample, it seems likely that the direction of the NRM is controlled/influenced to a degree by the intrinsic crystallographic fabric of the samples’ matrix (Bland et al., 2011; Watt et al., 2006). This in turn supports a common, impact compaction mechanism for both the crystallographic and the magnetic fabric, which would have induced ordering of the matrix pyrrhotite grains’ orientations, along with fayalitic olivine.

Given the planar nature of the fabric, we consider the most likely cause of the magnetic fabric to be an impact event. If impact generated, what information does this imply about the
magnetization process? What are the implications for the remanent magnetization? Is the remanent magnetization controlled or affected by the impact? There are three scenarios:

1) the HC component of the NRM was formed at the same time as impact,
2) the HC component was formed pre-impact, and was rotated into the plane,
3) the HC component was formed post-impact, and the magnetic-remanence direction was strongly controlled by the existing fabric.

Impacts are thought to induce a remanent magnetization through one of two mechanisms: (1) sufficient heating to induce thermomagnetic recording (Néel, 1955), and (2) piezomagnetism (shock-magnetism) due to the interaction of the elastic and magnetic properties of a mineral (magnetoelastic interaction) (Nagata, 1961); both mechanisms require the presence of an external field. However, shock-magnetization is thought to only magnetize the low-coercivity magnetic minerals (Cisowski and Fuller, 1978; Louzada et al., 2010), i.e., ‘soft’ magnetic minerals that are unlikely to be stable over billions of years, whereas thermoremanent magnetizations (TRM) have the potential to be stable over many billions of years (Néel, 1955).

Within the paleomagnetic community, it is generally considered that for a TRM to be induced, high-shock pressures (>40 GPa) are required to produce sufficient heating (Weiss et al., 2010). This level of shock (>S4 in ordinary chondrites) would generate pervasive shock metamorphism throughout a meteorite. Allende is classified as stage S1 (shock pressures <5 GPa) - macroscopic shock textures are absent (Scott et al., 1992). Peak-shock pressures <4.5 GPa are thought to leave a meteorite unscathed, with no effects resulting from a post-shock temperature increase of ~20K (Stöffler et al., 1991). In addition, although an impact may amplify an existing field, and a transient field may be produced by an impact (Crawford and Schultz, 1988, 1993, 1999; Doell et al., 1970; Hide, 1972; Hood, 1987; Hood and Artemieva, 2008; Srnka, 1977), slow cooling from a high post-shock temperature would not allow a magnetic phase to
thermomagnetically record the transient (minutes) field generated by a large impact (Weiss et al., 2010). The assumption here is that even if an impact is large enough to produce a temperature increase sufficient for a magnetic phase to record a TRM, because a large volume of the target is affected, cooling will be slow. The consensus view therefore is that post-shock heating in CCs is negligible – certainly too low to affect the paleomagnetic record in these rocks; and that while impacts may well generate or amplify fields (Weiss et al., 2010), those fields are too brief to be thermomagnetically recorded in the meteorite.

However, as discussed previously, this interpretation is founded on an empirical shock metamorphism calibration (Stöffler et al., 1991), based on shock recovery experiments in non-porous materials. Porous materials respond very differently, and as outlined in the introduction, it is likely that primordial chondritic parent bodies had significant porosity. Pore-space compaction attenuates shock energy and dramatically increases the amount of heating: a temperature increase sufficient for a magnetic phase to record a thermomagnetic remanence is achievable, even in a low-velocity collision. Impact modeling that accounts for the high porosity of primordial matrix indicates that chondrite matrix could be heated to temperatures well above the Curie temperature of pyrrhotite (~320°C) in even low-velocity collisions (1-2km/s), where bulk shock pressure does not exceed 4GPa (Bland et al., 2014) – consistent with an S1 shock level. Thus, TRM is possible in typical primitive parent body collisions. Indeed, in evolving from highly porous primordial objects, to the meteorites that we see today, it is inevitable. If compacted by impact, all chondrites would have been effected by this process. Therefore a pre-impact origin of the remanence (scenario 2) can be excluded, because even low-velocity impacts are likely reset any pre-existing magnetic remanence.
The assumption that slow cooling from a high post-shock temperature would not allow a magnetic phase to thermally record a transient field can also be deconstructed. It applies if the bulk post-shock temperature of the whole object exceeds the Curie point of the magnetic phase. With notable exceptions (e.g., Beitz et al., 2013), impact modeling and experiments assume uniform material properties in the target. In these scenarios, an estimate of bulk post-shock temperature has relevance in understanding heating at scales appropriate for interpreting meteorite data. But chondrites are not homogenous targets. More appropriately, they can be approximated as a target that has bimodal material properties – a fine-grained highly porous aggregate (matrix) juxtaposed against non-porous clasts (chondrules). In this scenario, bulk post-shock temperature does not provide a useful guide to interpreting meteorite data. Bland et al. (2014) and Davison et al. (2016) showed that impact-induced compaction results in significant matrix-heating, but that chondrules are largely unaffected. The result is a localized, transient temperature ‘spike’ in matrix, as chondrules act as a heat sink. Davison et al. (2016) performed a simple finite difference calculation to solve the heat conduction equation and estimate the timescale for temperature equilibration. They found that this timescale is dependent on the final matrix porosity, but for impact scenarios consistent with Allende, the matrix and chondrules likely equilibrated on the order of 10s seconds. This behavior has significance in understanding the paleomagnetic record in meteorites. Specifically, in a scenario where matrix is heated higher than the Curie point of the magnetic phase, but matrix and chondrules together equilibrate to a bulk post-shock temperature that is less than the Curie point, a matrix magnetic carrier phase would record a thermomagnetic remanence from any ambient field – stable or unstable, transient or long-lived. We have used mesoscale impact modeling to explore scenarios consistent with observations from Allende (constrained by estimated initial porosity, current bulk and matrix porosity, and the strength of the impact-induced matrix fabric). In our mesoscale modeling we find that a 1km/s planar impact scenario provides a good match to Allende porosity and fabric data. A number of studies converge on a peak metamorphic temperature for Allende of ~600K (Bonal et al., 2007; Rietmeijer and Mackinnon, 1985; Weinbruch et al., 1994; Zanda et al., 1995). Even assuming that
the impact occurred long after peak metamorphism (in this scenario we consider a starting temperature of 400K), we still find that a large fraction of matrix is heated above the pyrrhotite Curie point, before being cooled rapidly below it (Figure 6). This ability of chondrites to essentially record a ‘snapshot’ of any ambient field during impact-induced compaction significantly increases the number of options for the origin of the field. Specifically, it opens up the possibility that we are observing paleomagnetic evidence of transient or unstable fields.

Therefore, if the remanent magnetization was acquired at the time of impact, for the magnetization to still exist, the magnetization must be a thermoremanence. Basing their hypothesis on Muxworthy et al. (2011a) (a precursor to Bland et al. (2014)), Fu et al. (2014) also postulated this mechanism as the origin of the MT (=HC) component observed in the matrix and the chondrules. As some of the chondrules also exhibit a HT component, the MT remanence would, for these chondrules, be a partial rather than a full TRM. Fu et al. (2014) also considered scenario (3), i.e., the remanent magnetization is post-impact; in this case the magnetization would most likely be chemical/crystallization remanent magnetization (CRM). This CRM would have been recorded during the formation of new pyrrhotite (aqueous metamorphism) in the presence of a magnetic field of unknown origin, but this is reliant on the magnetic fabric of the newly formed pyrrhotite grains being controlled by the existing crystallographic fabric, which is possible, though the texture is not always fully inherited (Barrie et al., 2010; Craig and Vokes, 1993). Kojima and Tomeoka (1996) and Krot et al. (1998) identified crosscutting iron oxides and sulfide phases, suggesting post-impact formation; it likely that these phases formed in zero-field as the magnetite signal does not appear to carry a remanence (Carporzen et al., 2011; Watson, 1983). These crosscutting iron oxides and sulfide phases also appear isotropic and will likely not contribute significantly to the magnetic fabric. Finally, in addition to the magnetic fabric it should be noted that the relationship of iron oxide and sulphide veins (Kojima and Tomeoka, 1996; Krot et al., 1998) to the larger Allende fabric measured later (via high-resolution EBSD analysis of matrix...
(Bland et al., 2011; Watt et al., 2006) and CT analysis of larger components (Tait et al., 2016) has not been established. Allende matrix remains highly porous ~40% (Bland et al., 2011). Whether compaction was sufficient for veins to visibly rotate within that aggregate is unknown. In short, more work is required to unambiguously determine the formation time and fabric (magnetic, crystallographic and shape).

What is the origin of the recorded magnetic field? Studies have suggested that core-dynamos within the CV and CM parent bodies are an explanation for the paleomagnetic record in meteorites (Carporzen et al., 2011; Fu et al., 2014; Weiss et al., 2010). We have presented evidence that potentially connects the paleomagnetic record in Allende to an impact that compacted Allende matrix and generated a pervasive matrix fabric. This does not specifically rule-out a core dynamo, but it does open up a variety of new possibilities to explain the magnetization. External magnetic fields become a possibility. For external fields to be a viable alternative to a core-dynamo requires that Allende must have been proximal to those fields. Based on our estimated bulk P(shock) for Allende we can place some constraint on the position of Allende within the parent body with respect to a wide range of impact scenarios. To do this we employ the iSALE shock physics code (Collins et al., 2004; Wünnemann et al., 2006) to model the macroscale pair-wise collision of planetesimals (e.g., Davison et al., 2012; Davison et al., 2010). Bulk pore-space compaction was modeled using the $\epsilon$-\(\alpha\) porous compaction model (Collins et al., 2011; Wünnemann et al., 2006), with both impactor and target given an initial bulk porosity of 50%. The simulations included self-gravity (using the algorithm described in Barnes and Hut (1986), so the full crater formation and collapse process could be simulated (Figure 7). Lagrangian tracer particles tracked the peak pressure of material throughout the simulation. Peak pressures in the range 1.25 to 2 GPa (appropriate for Allende, and highlighted in green in Figure 7) are routinely encountered relatively close to the crater, in the breccia lens. The meteorite could have been exposed to an external field that impact-induced compaction allowed it to record.
There are two possibilities for an external field: an impact generated field and a disk field. The magnitude of an impact generated field can be estimated based on scaling relations derived from experimental data (Crawford and Schultz, 2000; Crawford and Schultz, 1999). The events that we are concerned with are relatively large impacts into ~100km diameter parent bodies, where large (transient) fields (orders of magnitude greater than the 11±4µT field that we observe in Allende) appear to be possible (the value of the magnetic field experienced will depend on the position of the material relative to the impact). There will be significant uncertainties in empirical scaling relations, and discharge mechanisms may exist, but this experimental work suggests that Allende could have been proximal to an impact-generated field far in excess of that required to explain the paleomagnetic data. The second possibility is disk fields. Although the palaeomagnetic record in CMs is similar to CVs, the interpretation is different: Weiss et al. (2010), Carporzen (2011), and Fu et al. (2014) assume a core-dynamo in the case of the CVs, while Cournede et al. (2015) highlight the possibility that CM chondrite magnetization might have an external (nebula) origin. We agree, and extend that logic to the CVs. Our knowledge of the field strength and topology of disk fields is limited: Fu et al. (2014) report that the Semarkona meteorite records a nebular field of 54 ± 21 µT (1-3 Myr), and Stephens et al. (2014) observe that a T Tauri star has a complex magnetic structure. Magnetohydrodynamic (MHD) simulations predict 1–100µT fields in the mid-plane at asteroidal distances (Bai and Stone, 2013; Gammie, 1996; Turner and Sano, 2008). However, as Cournede et al. (2015) note, the disk has the potential to inherit a net vertical field from the cloud in which it forms, which may then be modified by MHD turbulence moderated by low ionization. The latest MHD results indicate that this may generate relatively stable fields rather than the time-dependent ones found earlier: fields of order 10µT (Crutcher, 2012) to 100µT (Wardle, 2007). The CM and CV parent bodies would have been exposed to these fields in the first 4 Myrs after CAI formation; recent Mn-Cr dating of secondary Ca-Fe silicates in CVs obtained ages of 3.2 Ma after CAI (MacPherson et al., 2017), apparently cogenetic with fayalite
(and magnetite) and formed during alteration on the CV3 parent body. While there is some
evidence to suggest that the solar nebula field had decayed by ~3.8 Ma after CAI (Wang et al.,
2017), there is no data suggesting that it was absent at earlier times. CVs could have been
exposed to a disk field following hydrothermal alteration and formation of secondary minerals at
3.2 Ma after CAI, and recorded that field during transient heating of matrix following impact-
induced compaction.

5. Conclusions

This study has shown that the Allende matrix has a strong planar magnetic fabric: there is an
easy magnetic plane, which is likely to have formed during impact. The high-coercivity component
of the NRM is aligned with this easy magnetic plane, suggesting that the remanent magnetization
direction is strongly influenced by the fabric. This is in agreement with previous studies (Sugiura
et al., 1985). The NRM is either a thermoremanence formed during the impact or a
chemical/crystallization remanent magnetization formed subsequent to impact (though in the
latter case this would require pyrrhotite growth to be controlled by the pre-existing fayalitic olivine
fabric). Our modeling indicates that a low intensity (~1km/s) impact into a simulated target would
generate bulk and matrix porosity that are a match to Allende, as well as an impact-induced
crystallographic matrix fabric consistent with observations (Bland et al., 2011). Importantly, this
scenario would generate matrix heating sufficient to likely reset any previous remanent
magnetization in the matrix, and because matrix heating is brief, it allows the magnetic carrier
phase to record a transient or unstable field. We note that chondrites - bimodal mixtures of a
highly porous matrix aggregate, and nominally zero porosity chondrules – constitute an impact
target material that is uniquely capable of recording these events. Impacts into homogeneously
porous targets, or low-porosity targets (e.g. planetary crusts (terrestrial impact craters)) generate
less fine-scale heterogeneity in heating – bulk $T_{\text{final}}$ is a useful proxy to $T_{\text{final}}$ at fine scale. They
cannot record transient fields. The paleointensity estimates could not identify the origin of the magnetic field, i.e., impact generated, planetesimal dynamo, or nebula etc. But an impact-generated field or nebula field recorded during transient heating of matrix would provide an explanation for the mutually orientated nature of the primary magnetization, without having to invoke a paleofield and magnetization mechanism that is inconsistent with Allende’s well-constrained low-temperature history and undifferentiated nature.

Acknowledgements

ARM would like to thank the paleomagnetism groups at the Universities of Oxford and Southampton, for use of their equipment. ARM, GSC and TMD acknowledge the support of UK STFC (grant ST/J001260/1). PAB would like to thank the Australian Research Council for support under their Australian Laureate Fellowship scheme.

References


### Table 1. Hysteresis parameters and paleofield intensity estimates for the subsamples.

<table>
<thead>
<tr>
<th>sample</th>
<th>mass (mg)</th>
<th>$H_c$ (mT)</th>
<th>$H_{cr}$ (mT)</th>
<th>$M_r/M_s$ range</th>
<th>steps</th>
<th>REM' (µT)</th>
<th>Preisach° (µT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1a</td>
<td>83.3</td>
<td>18</td>
<td>79</td>
<td>0.12</td>
<td>30–100</td>
<td>8</td>
<td>13.7 ± 0.4</td>
</tr>
<tr>
<td>a1b</td>
<td>69.0</td>
<td>13</td>
<td>41</td>
<td>0.16</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>a2a</td>
<td>88.7</td>
<td>20</td>
<td>78</td>
<td>0.16</td>
<td>35–100</td>
<td>7</td>
<td>11.5 ± 0.6</td>
</tr>
<tr>
<td>a2b</td>
<td>77.7</td>
<td>22</td>
<td>80</td>
<td>0.14</td>
<td>20–70</td>
<td>7</td>
<td>11.1 ± 0.3</td>
</tr>
<tr>
<td>a2c</td>
<td>73.5</td>
<td>21</td>
<td>82</td>
<td>0.14</td>
<td>35–100</td>
<td>7</td>
<td>11.0 ± 0.4</td>
</tr>
<tr>
<td>a2d</td>
<td>130.2</td>
<td>21</td>
<td>85</td>
<td>0.14</td>
<td>35–100</td>
<td>7</td>
<td>11.1 ± 0.3</td>
</tr>
<tr>
<td>a2e</td>
<td>129.3</td>
<td>18</td>
<td>83</td>
<td>0.10</td>
<td>30–100</td>
<td>8</td>
<td>12.8 ± 1.0</td>
</tr>
<tr>
<td>a2f</td>
<td>112.2</td>
<td>20</td>
<td>82</td>
<td>0.14</td>
<td>35–100</td>
<td>7</td>
<td>13.6 ± 1.0</td>
</tr>
<tr>
<td>a2g</td>
<td>113.6</td>
<td>19</td>
<td>84</td>
<td>0.13</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>a2h</td>
<td>208.8</td>
<td>18</td>
<td>80</td>
<td>0.13</td>
<td>25–100</td>
<td>9</td>
<td>13.1 ± 1.0</td>
</tr>
<tr>
<td>a3aa</td>
<td>64.8</td>
<td>19</td>
<td>77</td>
<td>0.14</td>
<td>50–100</td>
<td>5</td>
<td>13.7 ± 1.1</td>
</tr>
<tr>
<td>a3ab</td>
<td>82.5</td>
<td>18</td>
<td>79</td>
<td>0.12</td>
<td>25–100</td>
<td>9</td>
<td>12 ± 2</td>
</tr>
<tr>
<td>a3ba</td>
<td>49.5</td>
<td>19</td>
<td>76</td>
<td>0.15</td>
<td>30–70</td>
<td>6</td>
<td>13.5 ± 1.5</td>
</tr>
<tr>
<td>a3bb</td>
<td>64.0</td>
<td>20</td>
<td>82</td>
<td>0.13</td>
<td>35–70</td>
<td>5</td>
<td>12.7 ± 1.0</td>
</tr>
<tr>
<td>a4a</td>
<td>75.0</td>
<td>19</td>
<td>81</td>
<td>0.14</td>
<td>50–120</td>
<td>6</td>
<td>13.7 ± 0.4</td>
</tr>
<tr>
<td>a4b</td>
<td>60.6</td>
<td>21</td>
<td>81</td>
<td>0.15</td>
<td>35–100</td>
<td>7</td>
<td>8.9 ± 1.0</td>
</tr>
</tbody>
</table>

* a Range over which the REMc and Preisach estimates were made.
* b Number of AF demagnetization steps used in the REMc and Preisach estimations.
* c Preisach estimate made using a cooling time of 1 hour to cool from the Curie temperature to ambient temperature.
* d No estimate as no clear HC component identified.
* e Measured FORC diagram of poor quality.
* f No estimate as no clear palaeointensity range identified.
Figure captions

Figure 1. Two example orthogonal projection plots of the NRM AF demagnetization data from samples: (a) a2h and (b) a4a. For both samples HC and LC components are highlighted. Components are identified as segments of the demagnetization data that display straight lines. As the peak AF is increased, the samples become demagnetized and their magnetization’s tend towards the origin of the projection plots.

Figure 2. Equal area projection plot showing the direction of both the HC and LC components of the 14 samples for which these were identified using orthogonal projection plots (Fig. 1). A mean direction for the HC components is calculated: 1) D is the declination of the mean HC direction in sample coordinates, 2) I is the inclination of the mean HC direction in sample coordinates, 3) $\alpha_{95}$ is the 95% confidence ellipse of the mean HC direction, and 4) N is the number of HC directions used to determine the mean. Solid symbols are in the bottom hemisphere, open in the upper hemisphere.

Figure 3. FORC diagrams for samples: a) a1a and b) a1b. Sample a1a displayed a FORC diagram representative of most of the samples, sample a1b was anomalous in character. The smoothing factor is 5, and the averaging time is 100 ms.

Figure 4. Continuous thermal demagnetization curve for sample a2h induced with a saturating isothermal remanent magnetization (SIRM) in a field of 1 T.

Figure 5. Lower hemisphere projections of the principal (squares), major (triangles) and minor (circles) eigenvectors with 95% confidence ellipses, determined by measuring the anisotropy of AARM. The confidence limits for the principal and major axes are quite large. For comparison the mean direction of the NRM HC component with 95% confidence ellipse is also plotted. D and I are the declination and inclination of the HC mean.
Figure 6. Mesoscale modeling, showing a 1km/s planar impact into a simulated carbonaceous chondrite precursor with an initial 70:30 matrix:chondrule-volume ratio, an initial matrix porosity of 70%, and an initial temperature of 400K. The impact produces a material that has an Allende-like matrix:chondrule mix, with bulk porosity (21%), matrix porosity (38%), and crystallographic fabric intensity, that are a good match to the meteorite (Bland et al., 2011; Macke et al., 2011). A number of studies converge on a peak metamorphic temperature for Allende of ~600K (Bonal et al., 2007; Rietmeijer and Mackinnon, 1985; Weinbruch et al., 1994; Zanda et al., 1995). White contours on the temperature plot separate the material that was heated above and that which remained below the Curie temperature. Note that the matrix that remained cooler than the Curie temperature was in the lee of the chondrules, where it was also less compacted by the shock wave. The simulation shows that even at a conservatively low initial temperature of 400K, under these conditions the majority of matrix is heated above the pyrrhotite Curie temperature.

Figure 7. Selections from macro-scale modeling of impacts between porous planetesimals for a range of impactor and target body sizes. All have a constant initial temperature of 300K, bulk porosity of 50% (the computational mesh does not resolve chondrule-scale heterogeneity at the planetesimal scale so bulk porosity was parameterized), and impact velocity of 4km/s. The left hand side of each model is at 250 sec after crater growth. Green tracer particles were shocked to a pressure of 1.25-2GPa – fabric analysis and modeling indicate that the Allende protolith was present in this region of the target.
(a) sample a2h: specimen coordinates, normalized

(b) sample a4a: specimen coordinates, normalized
mean HC:
D = 306.7°
I = 3.9°
α_{95} = 6.5°
N = 14
mean HC:
D = 306.7°
I = 3.9°
(a) $r_t = 50 \text{ km}$
   $r_i = 5 \text{ km}$

(b) $r_t = 100 \text{ km}$
   $r_i = 10 \text{ km}$

(c) $r_t = 250 \text{ km}$
   $r_i = 25 \text{ km}$

(d) $r_t = 250 \text{ km}$
   $r_i = 50 \text{ km}$