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Abstract—The adoption of information and communication
technology based centralized volt–var control (VVC) leads to an
optimal operation of a distribution feeder. However, it also poses a
challenge that an adversary can tamper with the metered data and,
thus, can render the VVC action ineffective. Distribution system
state estimation (DSSE) acts as a backbone of centralized VVC.
Distributed energy resources (DER) injection measurements con-
stitute leverage measurements from a DSSE point of view. This
paper proposes two solutions as a volt–var optimization DSSE ma-
licious attack mitigating strategy when the DER injection mea-
surements are compromised. The first solution is based on local
voltage regulation controller set-points. The other solution effec-
tively employs historical data or forecast information. The concept
is based on a cumulant-based probabilistic optimal power flow
with the objective of minimizing the expectation of total power
losses. The effectiveness of the approach is performed on the
95-bus U.K. generic distribution system and validated against
Monte Carlo simulations.

Index Terms—Bad data detection (BDD), distributed energy
resources (DER), malicious attacks, volt var optimization (VVO).

I. INTRODUCTION

MODERN power systems are rapidly integrating growing
capacity of renewable generations. The proportion of

solar generation in present generation portfolio mix is steadily
increasing. UK is scheduled to have 22GW of installed capac-
ity of solar by 2020 [1]. With the increased adoption of such
distributed energy resources (DERs), there is going to be a
paradigm shift of monitoring, control and operation functions
of the distribution network. For its reliable operation, power dis-
tribution network operator (DNO) needs to operate the system
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Fig. 1. A typical distribution management system architecture.

in an optimal manner [2]. In order to achieve this, it is required
to control the different components of the network by a mas-
sive exchange of data from the smart meters, photovoltaic (PV)
inverters to the control center and vice versa through the com-
munication network. This exposes the operation of the network
to malicious attacks from adversaries. Such data tampering will
affect the control functions of the distribution management sys-
tem (DMS) such as integrated volt var control (VVC) and thus,
resulting into less reliable and efficient operation of the network
[3]–[5].

VVC is an integral part of modern distribution management
system. A typical DMS architecture shown in Fig. 1 illustrates
that. The accurate estimation of the states is essential to enable
effective control of the distribution feeder. Based on the esti-
mated states the DMS runs a volt var optimization algorithm to
determine the optimal control set-points of the system. These
set-points are typically voltage, on load tap changer (OLTC)
set-points, and PV inverter reactive injection settings etc. The
DNO takes its decisions based on the optimal control set-points.

With the increase in PV uptake the distribution system will
face the inherent challenge of voltage rise issue [6]. From a
DNO perspective, the voltages at all the feeder nodes are desired
to be within the operational limits. The voltage control devices
i.e. OLTC, voltage regulators, capacitor banks etc. ensure that
the voltages are maintained within limits [7]. Conventionally,
the PVs have been operated at unity power factor [8]. In that
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situation, the overvoltage is curbed by PV active power curtail-
ment. However, under the draft revised IEEE Standard 1547.8,
the PVs are allowed to participate in the voltage and var control
through reactive power support and active power regulation.
This necessitates over-sizing of PV inverters [9], [10]. The
transformer tap changers, voltage regulators, PV inverters need
to coordinate with each other through communication network
for a centralized VVC [11]. The two-way communication based
smart grid voltage control has been proposed in [12]. Most of
the other recent works have also devised communication based
supervisory control to address these challenges [13], [14].

Unlike in transmission systems, the state estimation is not run
in distribution systems very routinely and in real time. More-
over, even the modern smart meter data are not communicated to
the supervisory control and data acquisition system (SCADA)
or DMS so often [15], [16]. Should there be a bad or erroneous
measurement, the bad data detection algorithm identifies and
eliminates that. However, in situations where the leverage mea-
surements – those significantly influence the final state estimates
– are compromised, it is not feasible to eliminate those faulty
measurements. Even with the presence of bad data in leverage
measurements the decision for volt var control has to be taken
immediately.

Traditionally, the bad data detection has been carried out by
largest normalized residuals, χ2 test, placement of time synchro-
nized phasor measurement units (PMUs) [17]–[19]. Recently
published research [20] has addressed the bad data detection
in the context of leverage point attacks. However, attacking
the leverage measurements is the worst possible form as elim-
inating those measurements would have a significant influence
on the final estimates of the system [21]. The observability
of the network and the state estimation is improved by mea-
surement placement [22]. But, this is not useful in real-time
decision making. Hence, this provides the motivation to have a
real-time decision making process when the tampered leverage
measurements are detected.

In recent years, the research focus has shifted towards the
security of smart distribution systems such as against attacks on
volt var control systems. Teixeira et al. [3] have discussed about
integrity attacks on volt var control and proposed a game theo-
retic approach to counter these attacks. However, they have not
considered PV systems in their framework. Reference [5] have
assessed the security of the system under DER node compro-
mises in a radial system with no reverse power flow. Reference
[4] has discussed the cyber attacks on voltage control with PVs
on a radial system. However, none of them have addressed the
scenario when the leverage PV injection measurements are at-
tacked. To the best of our knowledge, this paper, for the first
time, proposes a optimization strategy to address the issue in
real-time.

The paper is structured as follows – Section II discusses
the possible attack strategies to influence the measurements
and gives a brief description of bad data detection techniques.
Section III explains in detail the proposed approach for the volt
var optimization strategy. Section IV presents a case study and
detailed discussion of the results. The method has been tested on
the UKGDS 95-bus system. The concluding Section V provides
a summary of the specific contributions of the work.

Fig. 2. Attacks at various levels of distribution system.

II. ATTACKS AND BAD DATA DETECTION

A. Cyber Attacks and Attack Scenarios

The VVC is carried out in two ways – centralized control and
distributed control. In distributed control, the whole big problem
is sub-divided into many smaller sub-problems. This makes the
computation faster. However, since there is no master controller,
it is not possible to achieve an optimal operation. In centralized
control, on the other hand, the master controller in the DMS
processes all the information from the slaves and thus, helps
to achieve the optimal control set-points. It utilizes the ICT
infrastructure to transmit measurements and also to transmit
optimal set-points back to voltage control devices. This makes
the centralized control particularly vulnerable to compromises
from the attackers.

An attacker can influence the measurements in the system at
various levels as shown in Fig. 2. The attacker either corrupts the
measurements by attacking through the remote terminal units
(RTUs), or by breaking into the system through the communica-
tion network or by tampering with the SCADA system through
the local area network. Besides, a PV owner for his own profit
may also tamper with the meter in order to show that it produced
more solar power.

The attacker needs to manipulate a number of measurements
to make an attack successful. However, if the measurement is
a critical or leverage and not protected then the attacker is re-
quired to falsify only that measurement [21]. This falsification
of leverage measurements leads to inaccurate estimation of the
states and in this situation, the VVC becomes vulnerable. The
distribution network, spread across a vast geographical region,
is scheduled to host PVs even in remote locations. Hence, a PV
power injection measurement has a high chance of being a lever-
age measurement. This has provided the basis of formulating
the attack scenario when the PV nodal injection measurements
are compromised.

Though PV is considered, here, as an example this attack
scenario is relevant to any other DER or any other leverage
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Fig. 3. The PV injection as leverage measurements.

measurement. A nodal power injection is a leverage measure-
ment point, if there are multiple branches connected to that node.
Also, a nodal power injection is a leverage measurement if one
of the branch impedances connected to it is quite different from
the other one. As a result, the number of non-zero elements in
the Jacobian matrix will be more than the others. In state estima-
tion methodology, the estimated measurement vector is defined
as

Δẑ = KΔz (1)

where, z is the measurement vector and K is the hat matrix. A
leverage measurement will have a large value in the correspond-
ing diagonal element of this hat matrix and thus, will have more
leverage or influence on the estimates than others. An attacker
can make changes to the particular diagonal elements of the hat
matrix to make the attack successful. The details of the attack
strategy is given in [20].

B. Detection of Bad Measurement Data

Fig. 3 shows a generic representation of a realistic network.
It has PV and OLTC as voltage control devices. The PV inverter
and the load are connected to the grid at the point of common
coupling. The PV along with its inverter is capable of control-
ling reactive power at the point of common coupling within
the operational limits of 0.95 leading or lagging power factor.
The figure also illustrates the possibility of PV injection mea-
surement at the PV node to be a leverage measurement. If the
PVs are at the terminal end of a feeder their injection measure-
ments will have significant influence on the final estimates of
the states. An attacker with malicious intentions would ex-
ploit such vulnerabilities of the network to subvert control
functionality of the network.

Prior to VVC, the DNO detects the tampered measurement
by the bad data detection (BDD) algorithm. Literature shows
that there has been significant research on the bad data detec-
tion techniques employed. The largest normal residuals, χ2 test
and others are some of the techniques [17]–[19]. However, these
techniques fail if multiple leverage measurements are attacked.
The DRGP-GSR technique proposed in [20] shows how to
detect bad data when the leverage measurements are attacked.
The diagnostic robust generalized potential (DRGP) technique
separates the measurement set into two sets of leverage and non-
leverage sets. This nullifies the effect of masking/swamping. The

generalized studentized residual (GSR) of each measurements
in each set then detects the erroneous measurements, if any. The
measurements with bad data will have GSR values more than
the cut-off.

After the identification of bad data, the subsequent optimal
set-point calculation has to be carried out. How to calculate VVC
set-points and maintain efficacy of the VVC in the presence of
detected bad data is discussed in the following section.

III. VOLT VAR OPTIMIZATION STRATEGY WITH BAD DATA

In case of situations where bad data are detected, one would
settle for the sub-optimal solution. However, for the reliable and
effective operation of the distribution network, the distribution
network operator needs to obtain the optimal control set points
i.e. OLTC secondary voltage and PV inverter set-points. The volt
var control is thus formulated here as a stochastic optimization
problem. The OLTC secondary voltage and PV inverter voltages
are the control variables and the stochastic nature is associated
with the PV output and load demand.

A. Problem Formulation

The problem is formulated as a probabilistic optimal power
flow (OPF). The objective of the DNO is to minimize the oper-
ational losses of the system. But, in the probabilistic sense, it is
the expectation of the losses which needed to be minimized.

minimize Ef (Ploss) (2)

where, Ploss is the total loss of the system.
The minimization objective is constrained by many op-

erational and system constraints. These are enumerated and
explained below:

1) Voltage Constraints: For voltage control the main objec-
tive is to maintain the voltage of the system at different nodes
within operational limits. This limit is within ±5% of the nom-
inal voltage. Hence, in the probabilistic sense, the probability
of bus voltage V to be within the limits should be as high as
possible.

Prob (V ≤ Vmax,l) ≥ βV ,max (3)

Prob (V ≥ Vmin,l) ≥ βV ,min (4)

These acceptance probabilities βV ,max and βV ,min are generally
95%. Vmax,l and Vmin,l are the voltage limits.

2) Branch Current Flow Limits: The current flowing
through the branches is limited by their thermal capacities. The
probability of current I to be outside the limits should be less
than 5%.

Prob(I ≤ Imax,l) ≥ βI (5)

where, Imax,l is the thermal capacity limit.
3) Solar PV Inverter Limits: To maximize the revenue from

PV, the owners would like to operate the PV at maximum power
point tracking control. It will be financially attractive to PV
owners to curtail active output as less as possible. Therefore,

Ef (Pcurt) ≤ ηcurt (6)
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where, Pcurt is the curtalied active power.
The reactive power support from the PV inverters is limited

by inverter over-capacity limit. Mathematically,

Prob((P 2
s + Q2

s ) > Sinv ) ≤ βs (7)

where, Ps , Qs are the active power and reactive power outputs
from solar and Sinv is the PV inverter capacity.

4) Power Balance Constraint: At each node, the active and
reactive power must satisfy the equality constraints. The total
power injected at each node must be equal to the difference
of generated power and load power. The detailed modelling is
carried out as given in [23], [24].

5) Tap Operation Limits: The OLTC in the substation is
equipped with taps to participate in voltage control. The OLTC
is, however, limited by the tap operational limits. Generally,
the OLTC tap positions in the distribution system are generally
within ±16. In other words, there are only 33 tap positions
possible. Hence, the probability of voltage at the secondary of
the transformer to be within the upper and lower limits should
be more than 95%.

Prob(Vt ≤ Vtm a x , l
) ≥ βt,max (8)

Prob(Vt ≥ Vtm in , l
) ≥ βt,min (9)

where, Vtm a x , l
and Vtm in , l

are the voltage limits for the substa-
tion secondary bus and βt,max and βt,min are the corresponding
acceptance probabilities.

B. Mitigation of Malicious Attacks

Once the bad data is detected by the DRGP-GSR methodol-
ogy, as discussed in Section II, the DNO needs to mitigate the
effect of bad leverage data without eliminating them. Consid-
ering the fact that the state estimation is not run in less than
15 minutes interval, with the wrong set of state estimates the
volt var control would be erroneous.

A decision needs to be taken based on the faulty data and
rescheduling needs to be done. As a result, a real time proba-
bilistic volt var control is proposed, here, as a remedy to this.
In order to have a prompt and fast decision, the DNO has four
things at its disposal. These are – the historical measurement
data, historical demand profile, historical solar output profile,
and forecast of load and solar output. Based on these histor-
ical data the probability distribution curves of each demand
and solar output are constructed. With the change in historical
data in 5 minute time horizon, the probability density curves
are updated as well. The DNO then runs an optimization every
5 minutes with voltage at the secondary of the transformer as
one of the variables. The taps, however, are re-evaluated in every
30 minutes. The DNO would, in the end, settle for the statistical
mean of the system variables from this probabilistic optimal
power flow. However, in the worst case, when the system se-
curity is at stake the DNO settles for the sub-optimal solution
based on local conditions. The adopted mitigation strategy to
alleviate the effect of malicious attacks is illustrated in Fig. 4. It
is further described below:

1) Cyber Attack Mitigating Stochastic Optimal Solution
(CAMSOS): This remedy is based on coordinated control of

Fig. 4. VVO with malicious attack mitigation strategy.

the voltage and reactive power in the network with an objective
of minimizing the active power losses in a stochastic sense. The
optimal reactive power dispatch is based on either historical
load and PV output data of high granularity (1-sec) or on fore-
casted load and PV output. The probability distribution curves
are generated from these data. However, the decision to adopt
historical or forecasted data will depend on the DNO. The DNO
will choose the one with lesser variance and this will assist in
getting a better optimal solution. The optimal power flow for-
mulation, introduced in the previous subsection, is a stochastic
one, which is carried out by cumulant based probabilistic volt
var optimization (CPVVO) – a combined logarithmic barrier
primal dual interior point and cumulant based method.

The inequality constraints are converted to equality con-
straints by non-negative slack variables sl. The details of the
method are given in [25].

At the optimal solution, the derivative (gradient) of the La-
grangian is zero. This is known as the Karush-Kuhn-Tucker
(KKT) condition. To achieve this, all the non-linear equations
are linearized around the operating point by Taylor’s theorem.
Then at each iteration, the state variables are updated based on
Newton’s step which is given below:

Hs(x)Δx = −∇L(x) (10)

where,
x: The vector of state variables
Hs(x): The Hessian matrix
∇L(x): The gradient or derivative of the Lagrangian
The solution of the above Newton step in (10) at each itera-

tion is then carried out by cumulant based probabilistic optimal
power flow [26], [27]. The stochasticity is due to the random-
ness of some or all of the variables. The random parameters
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considered here are the loads at different nodes and the PV
output. The randomness is characterised by some known or
unknown distribution functions known as probability density
functions (pdf) from historical or forecasted data. The Gaussian
mixture model (GMM) of the pdfs is formed, thereafter. The
cumulant is a logarithm of the Laplace transform of the original
random variable. By linearity property, the nth order cumulants
are given by

(CΔx,n ) = −(H−1).nC∇L(x),n (11)

Once the cumulants of the output variables (voltage and taps)
are obtained they are converted back to pdfs by Cornish-Fisher
or Gram-Charlier [28], [29] expansion functions. The detailed
steps of the cumulant method are given as below:

1) Calculate the statistical moments of injected power from
the distribution functions of loads and PV output

2) Calculate the cumulants of injected power from the
moments

3) Compute the cumulants upto 9th order of the state
variables from the Newton step

4) Calculate the Cornish-Fisher expansion coefficients from
the cumulants and moments

5) The pdf and cdf of the state variables are obtained from
the cumulants by the expansion function

Once the pdf and cdfs of state variables are reconstructed,
the statistical step, which is the difference between the current
value and the peak value, for each variable is computed. Each
variable is then updated for the next iteration according to

Δx = α(w1ΔxNewton + w2Δxstatistical) (12)

where, α is the step length parameter and w1 and w2 are weights
associated with each incremental step. The procedure is contin-
ued for the next iterations until convergence. Fig. 5 zooms a part
of Fig. 4 showing the detailed CAMSOS procedure proposed
here.

2) Local Setting Solution (LSS): As a secondary backup, this
remedy is resorted to based on the local control of the voltage
control devices. The PV inverters and substation OLTCs are
equipped with their own controllers. It means that once the bad
data is detected, the coordinated control of the network is relin-
quished and the devices are allowed to operate based on their
own local controller settings. In order to maintain the voltages
within operating limits, the PV inverter control set-points are
reset to local controller settings and the substation OLTC to
pre-determined set-points. In this case, system voltage control
is achieved by designing set-points for the worst case scenario.
Two worst case scenarios are considered – maximum output of
the PV generator under low load demand and maximum load
demand with low PV generation. Non-coordinated operation
of OLTC, VR and PV plant is considered. Only the primary
objective of maintaining the system voltage at all the buses is
considered and set-points are calculated. Since, the set-points
are not based on any objective function, the solution is not opti-
mal and the active power losses may not always be minimized.

Fig. 5. Cyber attack mitigating stochastic optimal solution.

IV. RESULTS AND DISCUSSIONS

The 95 bus UK generic distribution system (UKGDS) is
shown in Fig. 6. It is a 33/11kV system. There are two solar
PV plants, each of 1 MW capacity, on bus 18 and bus 89. Ac-
cording to G83/G59 Engineering recommendation [30], [31],
the PV inverters are over-sized to allow them to operate upto
0.95 lag/lead pf. The line data and load data for the system are
obtained from [32] and the daily load profile with four different
kinds of customers has been generated by load profile indices as
mentioned there. The solar output profile is generated from the
1-second resolution data at UK Power Networks (UKPN), UK
taken in the month of June, 2014. The solar output profile and
load demand profile are shown in Fig. 7 and Fig. 8 respectively.
The PV is assumed to operate as a static synchronous compen-
sator (STATCOM) at night and thus provides reactive power
support. The load distribution and solar distribution curves are
generated from their historical data.

There is one OLTC in the substation. The two solar PVs are
placed at the ends of two feeders. This makes the PV injection
measurements leverage ones.

The proposed algorithm is studied for the following two cases.
The cases are so chosen such that the possibility of voltage
violation will be high.
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Fig. 6. The 95 node generic distribution system.

Fig. 7. The PV power output profile in a day.

A. Case1: At Peak Solar Power Output

In this case, the PV power output is at its peak. Normally,
in the month of June, the peak occurs at around 12 pm. At
that time, the demand is relatively low. The state estimator is
run and bad data detector detects the solar PV power injection
at node 89 as bad data. The probability distribution curves are
generated from the historical PV and load demand data at 12
pm for the month of June. Figs. 9 and 10 show the distribution
curves and their Gaussian mixture components. The statisti-
cal moments, central moments and cumulants up to 9th order
are generated from the distribution curve. The probabilistic op-

Fig. 8. The daily active power demand profile of the ukgds system.

Fig. 9. Probability distribution of solar active power output at 12 pm.

Fig. 10. Probability distribution of load demand at 12 pm.

timal power flow, as described in Section III, is carried out.
After convergence, the cumulants of PV inverter voltage set-
points are converted back to their probability density functions.
The results of the probabilistic OPF is shown in a boxplot in
Fig. 11. The boxplot indicates that the voltages at both the nodes
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Fig. 11. Boxplot of voltages of buses for Case 1.

TABLE I
% IMPROVEMENT IN MEAN AND VARIANCE FOR CASE 1

Proposed cumulant based method
Variables compared with MCS

% improvement in mean % improvement in variance

Voltage 0.9% 3.44%
Angle 1.6% 4.76%
Active power 1.46% 4.85%
Reactive power 1.56% 4.97%

TABLE II
OPTIMAL SET POINTS FOR PV AND OLTC IN CASE 1

OLTC secondary 1.0125
Bus 18 1.029
Bus 89 1.025

are not violated. Table I further shows the improvement in the
mean and variance of the variables according to the proposed
method. It has been compared with the mean and variance of a
1500-sample Monte Carlo simulation (MCS). The mean val-
ues of the distributions from the cumulant based method are
generally within 1% of the mean values from Monte Carlo sim-
ulations. The optimal set-points generated from the OPF are
shown in Table II.

B. Case2: At Peak Load Demand

In this case, the load demand is at its peak. Usually, the load
demand occurs at around 7 pm in the evening but then, the solar
output is relatively low. Here also, the tampered data is detected
in the PV injection measurement at node 89. The solar power
output and load distribution curves and their Gaussian mixture
components at 7 pm in the month of June are shown in Figs. 12
and 13. The statistical moment and cumulants up to 9th order are
generated from the pdfs. After the probabilistic OPF converges,
the pdfs of the voltages are generated. Similar to Case 1, the

Fig. 12. Probability distribution of solar active power output at 7 pm.

Fig. 13. Probability distribution of load demand at 7 pm.

TABLE III
% IMPROVEMENT IN MEAN AND VARIANCE FOR CASE 2

Proposed cumulant based method
Variables compared with MCS

% improvement in mean % improvement in variance

Voltage 1.2% 4.86%
Angle 1.86% 4.47%
Active power 1.76% 5.49%
Reactive power 1.65% 5.15%

improvement in the mean and variance of the variables com-
pared with that of a 1500-sample Monte Carlo simulation is
shown in Table III. The boxplot in Fig. 14 further proves that
the voltage remain within limits throughout the process. The
optimal set-points are given in Table IV.

The algorithm is coded in Matlab and run on a computer
with Intel Xeon processor @3.33 GHz and 12 GB RAM. The
proposed method minimizes the operational losses in the system.
Table V presents the expectation of losses in both Case 1 and
Case 2. The algorithm converges in less than 1 minute. This
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Fig. 14. Boxplot of voltages of buses for Case 2.

TABLE IV
OPTIMAL SET POINTS FOR PV AND OLTC IN CASE 2

OLTC secondary 1.00625
Bus 18 1.016
Bus 89 1.011

TABLE V
EXPECTATION OF LOSSES

E(Ploss )

Case 1 9.45 kW
Case 2 9.24 kW

enables the network operator to take prompt and quick control
decisions. The proposed method is studied for two extreme test
cases – when the solar output is at its peak and the demand is low
and when the demand is at its peak and solar output is relatively
low. The month of June is so chosen as the solar output is quite
variable in the month of June in the UK. The results for both
cases justify that the approach works effectively to obtain the
optimal set-points and at the same time minimizes the losses.
This further shows that the proposed approach will work for
all the other cases of load and PV output and their variability
through a day.

V. CONCLUSION

Due to the utilization of the communication network for the
network control, the distribution systems of today are vulner-
able. An adversary, who has knowledge about the power sys-
tem, makes compromises to the network and thus, hampers the
effective volt var control. The adversary will choose to tamper
with the leverage measurements ensuring failed state estimation
and non-operational VVC. The DER injection measurements,
which are leverage measurements, are especially prone to these
attacks. This paper has proposed two solutions to tackle this sce-
nario. These two solutions are cyber attack mitigating stochastic
optimal solution (CAMSOS) and local setting solution (LSS).

It is necessary to estimate the states of the system and detect
the bad measurement data. The DRGP-GSR method detects the
bad data when the DER injection (high leverage points) mea-
surements are attacked. Once the bad data is detected, rather
than utilizing these states their probability density functions
are utilized. The CAMSOS proposes utilization of DER power
generation and load forecast probability density functions, if
these measurements are attacked. Another approach available
for CAMSOS is to make use of the historical measurements
to compute probability density function of the state which is
attacked. The stochastic optimal power flow calculates the volt-
age control device set-points. As a secondary backup, another
remedy is based on the local monitoring of the voltage con-
trol devices. Once the bad data is detected, coordinated control
is relinquished and the predetermined set-points are designed
based on the worst case scenarios. The approach, proposed here,
is validated with a realistic distribution system and is shown
to have satisfactory results. The proposed method will assist
the DNO/DMS to take immediate and effective VVC decisions
when the measurements are tampered with.
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