
SIAM J. SCI. COMPUT. c© 2017 SIAM. Published by SIAM under the terms
Vol. 39, No. 5, pp. S681–S701 of the Creative Commons 4.0 license

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM FOR A
CLASS OF COMPOSITE OPTIMIZATION PROBLEMS∗

PANOS PARPAS†

Abstract. Composite optimization models consist of the minimization of the sum of a smooth
(not necessarily convex) function and a nonsmooth convex function. Such models arise in many
applications where, in addition to the composite nature of the objective function, a hierarchy of
models is readily available. It is common to take advantage of this hierarchy of models by first solving
a low fidelity model and then using the solution as a starting point to a high fidelity model. We
adopt an optimization point of view and show how to take advantage of the availability of a hierarchy
of models in a consistent manner. We do not use the low fidelity model just for the computation
of promising starting points but also for the computation of search directions. We establish the
convergence and convergence rate of the proposed algorithm. Our numerical experiments on large
scale image restoration problems and the transition path problem suggest that, for certain classes of
problems, the proposed algorithm is significantly faster than the state of the art.

Key words. composite optimization, multigrid, nonsmooth optimization

AMS subject classifications. 90-08, 90C25, 90C26

DOI. 10.1137/16M1082299

1. Introduction. It is often possible to exploit the structure of large scale opti-
mization models in order to develop algorithms with lower computational complexity.
We consider the case when the fidelity by which the optimization model captures the
underlying application can be controlled. Typical examples include the discretiza-
tion of partial differential equations in computer vision and optimal control [5], the
number of features in machine learning applications [30], the number of states in a
Markov decision processes [27], and nonlinear inverse problems [25]. Indeed anytime
a finite dimensional optimization model arises from an infinite dimensional model it
is straightforward to define such a hierarchy of optimization models. In many areas,
it is common to take advantage of this structure by solving a low fidelity (coarse)
model and then use the solution as a starting point in the high fidelity (fine) model.
In this paper we adopt an optimization point of view and show how to take advantage
of the availability of a hierarchy of models in a consistent manner. We do not use
the coarse model just for the computation of promising starting points but also for
the computation of search directions. We consider optimization models that consist
of the sum of a smooth but not necessarily convex function and a nonsmooth convex
function. These kind of problems are referred to as composite optimization models.

The algorithm we propose is similar to the proximal gradient method (PGM).
There is a substantial amount of literature related to proximal algorithms, and we refer
the reader to [26] for a review of recent developments. The main difference between
PGM and the algorithm we propose is that we use both gradient information and a
coarse model in order to compute a search direction. This modification of PGM for the
computation of the search direction is akin to multigrid algorithms developed recently

∗Received by the editors July 1, 2016; accepted for publication (in revised form) May 8, 2017;
published electronically October 26, 2017.

http://www.siam.org/journals/sisc/39-5/M108229.html
Funding: The work of this author was supported by EPSRC grants EP/M028240 and

EP/K040723 and a Marie Curie Career Integration Grant (PCIG11-GA-2012-321698 SOC-MP-ES).
†Department of Computing, Imperial College London, 180 Queens Gate, SW7 2AZ (p.parpas@

imperial.ac.uk).

S681

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

http://www.siam.org/journals/sisc/39-5/M108229.html
mailto:p.parpas@imperial.ac.uk
mailto:p.parpas@imperial.ac.uk

S682 PANOS PARPAS

by a number of authors. There exists a considerable number of papers exploring the
idea of using multigrid methods in optimization [5]. However, the large majority of
these are concerned with solving the linear system of equations to compute a search
direction using linear multigrid methods (both geometric and algebraic). A different
approach, and the one we adopt in this paper, is the class of multigrid algorithms
proposed in [21] and further developed in [19]. The framework proposed in [21] was
used for the design of a first order unconstrained line search algorithm in [32] and
a trust region algorithm in [12]. The trust region framework was extended to deal
with box constraints in [11]. The general equality constrained case was discussed in
[22], but no convergence proof was given. Numerical experiments with multigrid are
encouraging, and a number of numerical studies have appeared so far; see, e.g., [10, 23].
The algorithm we develop combines elements from PGM (gradient proximal steps)
and the multigrid framework (coarse correction steps) developed in [21] and [32]. We
call the proposed algorithm multilevel proximal gradient method (MPGM).

The literature in multilevel optimization is largely concerned with models where
the underlying dynamics are governed by differential equations, and convergence
proofs exist only for the smooth case and with simple box or equality constraints.
When the functions involved in the optimization problem are convex, the PGM
method is identical to the so-called iterative shrinkage thresholding algorithm (ISTA).
In this case, it is possible to accelerate the algorithm to achieve an improved rate of
convergence. We refer the interested reader to [1] for the accelerated version of ISTA
and to our recent work [15] for accelerated multilevel methods for composite convex
optimization models. The main contribution of this work is the extension of the multi-
level framework to composite optimization problems when the smooth function is not
convex. In addition, our algorithm also allows some amount of nonsmoothness in the
objective function. For example, our algorithm allows the use of indicator functions
to model certain types of constraints. Theoretically, the algorithm is valid for any
convex constraint, but the algorithm is computationally feasible when the proximal
projection step can be performed in closed form or when it has a low computational
cost. Fortunately, many problems in machine learning, computer vision, statistics,
and computational chemistry do satisfy our assumptions.

The general case of models with a nonsmooth objective and constraints has not
received as much attention as the smooth unconstrained case. In [11] the authors
assume that the objective function is twice continuously differentiable and box con-
straints are handled with specialized techniques. The proximal framework we develop
in this paper allows for a large class of nonsmooth optimization models. In addition,
our convergence proof is different from the one given in [21] and [4] in that we do
not assume that the algorithm used in the finest level performs one iteration after
every coarse correction step. Our proof is based on analyzing the whole sequence
generated by the algorithm and does not rely on asymptotic results as in previous
works [12, 32]. Problems involving constraints appear in obstacle problems and more
general variational inequality problems too. Specialized multigrid methods based on
active set, Lagrangian, and penalization methods have all been proposed (see [8] for
a review). A class of nonsmooth problems were addressed in [9] using a nonsmooth
variant of the Newton method. The proposed method differs from the papers above
in that we propose a general framework for first order algorithms that applies to a
wide class of convex and nonconvex nonsmooth problems. Our method does assume
that the only source of nonconvexity is present in the smooth part of the problems
and that the application of the proximal operator is not computationally expensive.
(Exact assumptions are given in the next section.)

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S683

Outline. The rest of the paper is structured as follows: in the next section we
introduce our notation and assumptions. We also discuss the role of quadratic ap-
proximations in composite optimization models and describe our algorithm. The
convergence of the algorithm is established in section 3, and we report numerical
results in section 4.

2. Problem formulation and algorithm description. The main difference
between the proposed algorithm, MPGM, and existing algorithms such as the PGM
is that we do not use a quadratic approximation for all iterations. Instead, we use a
coarse model approximation for some iterations. In this section, we first describe the
optimization problem under investigation and introduce our notation and assump-
tions. We then briefly review the use of quadratic approximations in the conventional
PGM. We then specify how information can be transferred from the low dimensional
model (coarse model) to the fine model and vice versa. Finally, we end this section
by describing the proposed algorithm.

2.1. Optimization model and assumptions. We will assume that the op-
timization model can be formulated using two levels of fidelity, a fine model and a
coarse model. It is important to stress that the proposed algorithm aims to find the
optimal solution of the (original) fine model. The coarse model is only used as an
auxiliary model to construct a direction of search. The coarse model plays a similar
role that the quadratic approximation model plays in the PGM.

We use h and H to indicate whether a particular quantity/property is related to
the fine and coarse model, respectively. It is easy to generalize the algorithm to more
levels, but with only two levels the notation is simpler. The fine model is assumed to
have the following form:

min
xh∈Rh

{
Fh(x) , fh(xh) + gh(xh)

}
.

We make the following assumptions regarding the fine model above.

Assumption 1. The function fh : Rh → R is a smooth (not necessarily convex)
function with a Lipschitz continuous gradient. The Lipschitz constant will be denoted
by Lh.

Assumption 2. The function gh : Rh → R is a continuous convex function that is
possibly nonsmooth but admits a smooth approximation (in the sense of [2, Defini-
tion 2.1]; see also Definition 2.1 below).

Assumption 3. The set X?
h = arg minxh∈Rh Fh(xh) is not empty.

All the assumptions above are standard except the part of Assumption 2 stating
that gh admits a smooth approximation. This later statement requires some further
clarification. First the definition of a smoothable convex function is given below. We
refer the interested reader to [2] for further properties regarding smoothable convex
functions.

Definition 2.1 (smoothable convex function [2]). The function gh : Rh → R is
called (α, β,K)-smoothable if there exist β1, β2 satisfying β1 + β2 = β > 0 such that
for every µ > 0 there exists a continuously differentiable convex function gµh : Rh → R
such that the following hold:

(i) gh(xh)− β1µ ≤ gµh(xh) ≤ gh(xh) + β2µ ∀xh ∈ Rh.
(ii) The function gµh has a Lipschitz continuous gradient over Rh and a Lipschitz

constant that is less than or equal to K + α/µ.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S684 PANOS PARPAS

There are many ways to construct a smooth approximation for a nonsmooth
function. We chose the approach described in [2] because it maintains the convexity
of the function. In addition, for most functions that have a closed form expression for
the proximal operator, it is well known how to construct smoothable approximation
that is computationally efficient. For these reasons the smooth approximation defined
above is appropriate for the class of problems we consider in this paper. Any one of
the techniques reviewed in [2] can be used to construct a smooth approximation. For
future reference, we define the smooth approximation of Fh as follows:

(1) Fµh (x) , fh(xh) + gµh(xh).

The incumbent solution at iteration k in resolution h is denoted by xh,k. We use fh,k
and ∇fh,k to denote fh(xh,k) and ∇fh(xh,k), respectively. Unless otherwise specified
we use ‖.‖ to denote ‖.‖2.

2.2. Quadratic approximations and the proximal gradient method. In
order to update the current solution at iteration k, PGM employs a quadratic ap-
proximation of the smooth component of the objective function and then solves the
proximal subproblem,

(2) xh,k+1 = arg min
y

fh,k + 〈∇fh,k, y − xh,k〉+
Lh
2
‖xh,k − y‖2 + g(y).

Note that the above can be rewritten as follows:

xh,k+1 = arg min
y

Lh
2

∥∥∥∥y − (xh,k − 1
Lh
∇fh,k

)∥∥∥∥2

+ g(y).

When the Lipschitz constant is known, the PGM keeps updating the solution vector
by solving the optimization problem above. For later use, we define the generalized
proximal operator as follows:

proxh(x) = arg min
y

1
2
‖y − x‖2 + g(y).

The gradient mapping at the point xh,k is defined as follows:

Dh(Lk, xh,k) , Lk

[
xh,k − proxh

(
xh,k −

1
Lk
∇fh,k

)]
.

Note that in the definition of the gradient mapping above we use Lk instead of the
actual Lipschitz constant Lh. The reason for this is that in general Lh is unknown and
in most practical implementations an estimate is used instead. Using our notation,
the PGM updates the current solution as follows:

xh,k+1 = xh,k −
1
Lk
Dh(Lk, xh,k).

Note that if g(y) is not present, then the PGM reduces to the classical gradient method
(with a fixed time step 1/Lk). If g(y) is an indicator function, then the PGM reduces
to the projected gradient method. The direction of search (Dh) is obtained by solving

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S685

an optimization model either in closed form or using an iterative method. It is known
that the PGM algorithm described in this section converges in the sense that

min
k=1,...,N

‖Dh(Lk, xh,k)‖ ≤ A/N

for some constant A that depends only on the Lipschitz constant of fh and the initial
point xh,0. See [26] for a review of recent results. We note that taking the minimum of
the norm of the optimality conditions is by far the most common convergence criterion
for first order projected gradients methods (see also [24, Theorem 3]).

Since the nonconvex function fh is linearized and gh is convex, it follows that the
proximal subproblem is convex. This convex approximation is solved in every iteration
in order to obtain the next iterate. The algorithm we propose in this paper constructs
the search direction using a different optimization model that is not necessarily convex
but has a reduced number of dimensions. Before we introduce the coarse model, we
need first to address the issue of how to transfer information between different levels.

2.3. Information transfer between levels. Multilevel algorithms require in-
formation to be transferred between levels. In the proposed algorithm we need to
transfer information concerning the incumbent solution, proximal projection, and
gradient around the current point. At the fine level, the design vector xh is a vector
in Rh. At the coarse level the design vector is a vector in RH and H < h. At iteration
k, the proposed algorithm projects the current solution xh,k from the fine level to the
coarse level to obtain an initial point for the coarse model denoted by xH,0. This is
achieved using a suitably designed matrix (IHh) as follows:

xH,0 = IHh xh,k.

The matrix IHh ∈ RH×h is called a restriction operator and its purpose is to transfer
information from the fine to the coarse model. There are many ways to define this
operator and we will discuss some possibilities in section 3. This is a standard tech-
nique in multigrid methods both for solutions of linear and nonlinear equations and
for optimization algorithms [7, 21]. In addition to the restriction operator, we also
need to transfer information from the coarse model to the fine model. This is done
using the prolongation operator IhH ∈ Rh×H . The standard assumption in multigrid
literature [7] is to assume that IHh = c(IhH)>, where c is some positive scalar.

2.4. Coarse model construction. The construction of the coarse models in
multilevel algorithms is a subtle process. It is this process that sets apart rigorous
multilevel algorithms with performance guarantees from other approaches (e.g., krig-
ing methods) used in the engineering literature. A key property of the coarse model
is that locally (i.e., at the initial point of the coarse model, xH,0) the optimality
conditions of the two models match in a certain sense. In the unconstrained case,
this is achieved by adding a linear term in the objective function of the coarse model
[12, 21, 32]. In the constrained case the linear term is used to match the gradient
of the Lagrangian [21]. However, the theory for the constrained case of multilevel
algorithms is less developed, and the nonsmooth case has received even less attention.

For nonsmooth optimization problems, we propose a coarse model that has the
following form:

(3) FH(xH) = fH(xH) + gH(xH) + 〈vH , xH〉.

We make similar assumptions for the coarse model as we did for the fine model.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S686 PANOS PARPAS

Assumption 4. The functions fH : RH → R and gH : RH → R are smooth
functions with a Lipschitz continuous gradient. In addition the function gH is convex.
The Lipschitz constant for fH + gH will be denoted by LH .

Assumption 5. The set X?
H = arg minxH∈RH FH(x) is not empty.

As is standard in the multigrid literature we assume that when fh and gh are
given the construction of fH and gH is possible. Finally, the third term in (3) will be
used to ensure that the gradient of the smooth model is consistent with the gradient
of the smooth fine model (1). The vH term changes every time the coarse model is
used, and it is given by

(4) vH = IHh ∇F
µ
h,k − (∇fH,0 +∇gH,0).

It is easy to see that with the definition of vH given above, the following first order
coherency condition holds:

IHh ∇F
µ
h,k = ∇FH,0.

The definition of the vH term and the so-called first order coherency condition was
proposed in [21] (for the differentiable case).

To establish convergence of the algorithm, the main assumptions on the coarse
model, Assumptions 4 and 5 above, together with definition (4) are enough. In partic-
ular, this means that the functions fH and gH may not be just reduced order versions
of fh and gh. As an example, one can choose fH to be a reduced order quadratic
approximation of fh. In this case, the direction obtained from the coarse model will
contain information from the Hessian of fh without having to solve a large system
of equations in Rh. This approximation is called the Galerkin approximation in the
multigrid literature and has been shown to be effective in optimization in [10]. Of
course, for the coarse model to be useful in practice it is important to exploit the
hierarchical structure of the underlying application. Many applications that include
discretized partial differential equations, image processing applications, or any ap-
plication that includes an approximation of an infinite dimensional object are good
candidates for the application of the proposed algorithm. Obviously, the choice of the
lower dimensional model will have a great bearing on the success of the algorithm.
If the underlying model has no hierarchical structure, then a multilevel method may
not be appropriate as at best it may provide a good starting point.

2.5. Multilevel proximal gradient method (MPGM). Rather than com-
puting a search direction using a quadratic approximation, we propose to construct
an approximation with favorable computational characteristics for at least some iter-
ations. In the context of optimization, favorable computational characteristics means
reducing the dimensions of the problem and increasing its smoothness. This approach
facilitates the use of nonlinear approximations around the current point. The motiva-
tion behind this class of approximations is that the global nature of the approximation
would reflect global properties of the model that would (hopefully) yield better search
directions.

At iteration k the algorithm can compute a search direction using one of two
approximation techniques. The first possibility is to construct a quadratic approxi-
mation for fh around xh,k in order to obtain xh,k+1 from the solution of the proximal
subproblem in (2). We then say that the algorithm performed a gradient correction
iteration. The classical PGM only performs gradient correction iterations. The sec-
ond possibility for the proposed algorithm is to use the coarse model in (3) in lieu
of a quadratic approximation. When this type of step is performed we say that the

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S687

algorithm performs a coarse correction iteration. Note that gradient correction itera-
tions do not use the smooth approximation. The smooth approximation is only used
in order to construct a smooth coarse model and for the computation of the coarse
correction. The conditions that need to be satisfied for the algorithm to perform a
coarse iteration are given below.

Condition 1. A coarse correction iteration is performed when both conditions
below are satisfied,

‖IHh Dh,k‖ > κ‖Dh,k‖,
‖xh,k − x̃h‖ > η‖x̃h‖,

(5)

where x̃h is the last point to trigger a coarse correction iteration, and κ, η ∈ (0, 1).

By default, the algorithm performs gradient correction iterations as long as Con-
dition 1 is not satisfied. Once it is satisfied, the algorithm will do a coarse correction
iteration. The conditions were based on our own numerical experiments and the re-
sults in [12, 21, 32]. The first condition in (5) prevents the algorithm from performing
coarse iterations when the first order optimality conditions are almost satisfied. If the
current fine level iterate is close to being optimal the coarse model constructs a correc-
tion term that is nearly zero. Typically, κ is the tolerance on the norm of the first order
optimality condition of (the fine) level h or alternatively κ ∈ (0,min(1,min ‖IHh ‖)).
The second condition in (5) prevents a coarse correction iteration when the current
point is very close to x̃h. The motivation is that performing a coarse correction at a
point xh,k that satisfies both the above conditions will yield a new point close to the
current xh,k. Note that, based on our numerical experiments, it is unlikely that the
first condition will be satisfied and the second will not be.

Suppose for now that the algorithm decides to perform a coarse correction iter-
ation at the current point xh,k. Then the coarse model in (3) is constructed using
the initial point xH,0 = IHh xh,k. Note that the linear term in (4) changes every time
the algorithm deploys the coarse model approximation. The algorithm then performs
m > 0 iterations of the PGM algorithm on the coarse model (3). For the convergence
of the algorithm it is not necessary to use PGM on the coarse model. A faster algo-
rithm can be used, but for the sake of consistency we perform the analysis with PGM.
After m iterations we obtain the coarse correction term,

eH,m = xH,0 − xH,m.

After the coarse correction term is computed, it is projected to the fine level using the
prolongation operator and it is used as a search direction. We denote the direction of
search obtained from the coarse model as dh,k and is defined as follows:

dh,k , IhHeH,m.

The current solution at the fine level is updated as follows:

xh,k+1 = prox
(
x+
h,k − βk∇fh(x+

h,k)
)
,

where
x+
h,k = xh,k − αkdh,k.

The two step sizes αk and βk are selected according to an Armijo step size strategy and
a backtracking strategy, respectively. Both of these step size strategies are standard
and are specified in Algorithm 1 below.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S688 PANOS PARPAS

Algorithm 1: Multilevel Proximal Gradient Method (MPGM)

1 Input:
2 Initial point: xh,0
3 Error tolerance parameter: εh > 0
4 Line search parameters: 0 < κ1 <

1
2 , 1− κ1 ≤ κ2 ≤ 1

5 Coarse model parameters: m > 0, µ > 0, and 0 < γ < 1
6 Initialization: Set iteration counters k = 0, r = 0
7 if Condition 1 is satisfied at xh,k then
8 Set xH,0 = IHh xh,k, and use the coarse model (3) with the following linear

term:

(6) vH = IHh ∇F
µk

h,k − (∇fH,0 +∇gH,0),

where µk = µγr.
9 For l = 0, . . . ,m

xH,l+1 = xH,l − βH,l∇FH(xH,l),

where βH,l is chosen so that
(7)
FH,0+κ2〈∇FH(xH,0), xH,l+1−xH,0〉 < FH(xH,l+1) ≤ FH,l−κ1βH,l‖∇FH,l‖2.

10 Set dh,k = IhH(xH,0 − xH,m), r ← r + 1 and compute

x+
h,k = xh,k − αh,kdh,k,

where αh,k is chosen such that

(8) Fh(x+
h,k) ≤ Fh,k − αh,k〈∇Fµk

h,k, dh,k〉.

Update the current solution,

(9) xh,k+1 = x+
h,k −

1
Lk
Dh(Lk, x+

h,k),

where Lk is chosen such that
(10)

f(xh,k+1) ≥ f(xh,k) + 〈∇f(xh,k), xh,k+1 − xh,k〉+
Lk
2
‖xh,k+1 − xh,k‖2.

Set k ← k + 1 and go to step 7.
11 end
12 else
13

xh,k+1 = xh,k −
1
Lk
Dh(Lk, xh,k),

where Lk is chosen to satisfy the condition in (10).
14 If

min
0≤j≤k+1

‖D(Lj , xh,j)‖2 < εh,

then terminate.
15 Otherwise set k ← k + 1 and go to step 7.
16 end

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S689

The algorithm is fully specified in the caption above (see Algorithm 1), but a
few remarks are in order. First, if Condition 1 is never satisfied, then the algorithm
reduces to the proximal gradient method. Its convergence with the specific step size
strategy used above will be established in the next section. Of course, Condition 1
will be satisfied, at least in some iterations, for all cases of practical interest. In this
case, the main difference between the proposed algorithm and the proximal gradient
algorithm is the computation of the search direction dh,k which is used to compute
an intermediate point x+

h,k. To compute the coarse correction term dh,k, the proposed
algorithm performs m iterations of a first order algorithm. In fact, the only difference
between the steps performed at the coarse level and the steepest descent algorithm
applied to (3) is the step size strategy in (7). The right-hand side of (7) is nothing but
the standard Armijo condition. The left-hand side of (7) is the line search condition
used in [32]. Finally, the termination check can easily be implemented efficiently
without the need to hold all the previous incumbent solutions in memory. Indeed the
only solution required to be kept in memory is the best solution encountered so far.

A point that needs to be discussed is the number of parameters that need to be
specified for MPGM. Once the coarse model is specified, the only other requirement
is to specify the smooth line search parameters (see line 4). These parameters are the
ones that appear in standard Armijo line search procedures and are in general not too
difficult to specify. In order to specify the coarse model we need to specify the γ and
µ parameters. In practice we found that the algorithm is not very sensitive to these
two parameters, as long as the µk is not allowed to become too small. A possible
strategy to achieve this along with some default values that we found work very well
are discussed in section 4.

The specification of the algorithm above assumes that only two levels are used.
In practical implementations of the algorithm, it is beneficial to use more than two
levels. However, the algorithm is easy to extend to more than two levels. In order to
extend the algorithm to more than two levels, we use Algorithm 1 recursively. To be
concrete, in the three-level case we take (3) as the “fine” model, construct a coarse
model, and use Algorithm 1 to (approximately) solve it. Note that the second level
is already smooth, so there is no need to use the smooth approximation. The same
procedure is used for more than three levels.

3. Global convergence rate analysis. In this section we establish the conver-
gence of the algorithm under different assumptions. The first result (Theorem 3.1)
covers the general case when fh has a Lipschitz continuous gradient (but is not nec-
essarily convex), and gh is convex but is not necessarily smooth. In Theorem 3.1 the
coarse model is not assumed to be convex. As in the single level case (see, e.g., [24,
Theorem 3]) convergence is in terms of the following optimality criterion:

RN = min
0≤k≤N

‖D(Lh,k, xh,k)‖2.

We remind the reader that the parameter µk appearing in the theorem below is the
smoothing parameter used to specify the smooth fine model in (1).

Theorem 3.1. Suppose that Assumptions 1–5 hold and that Lh,k ≥ Lh/2. Then
the iterates of Algorithm 1 satisfy

(11) RN ≤
2Lh
N

(
Fh,0 − F ?h + β

N∑
k=0

µk

)
,

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S690 PANOS PARPAS

where

µk =

{
µ̂ if Condition 1 was satisfied at iteration k,
0 otherwise,

where µ̂ is some positive scalar that may depend on k.

Proof. Note that if a coarse correction is performed, then according to (9), xh,k+1
is the solution of the following optimization problem:

xh,k+1 = arg min
y

〈
∇fh(x+

h,k), y − x+
h,k

〉
+
Lk
2
‖y − x+

h,k‖
2 + gh(y).

It follows from the optimality condition of the problem above:〈
∇fh(x+

h,k) + g̃(xh,k+1) + Lk(xh,k+1 − x+
h,k), y − xh,k+1

〉
≥ 0,

where g̃(xh,k+1) ∈ ∂g(xh,k+1). Rearranging the inequality above and specializing it
to y = x+

h,k, we obtain

〈
∇fh(x+

h,k), xh,k+1 − x+
h,k

〉
≤
〈
g̃(xh,k+1), x+

h,k − xh,k+1

〉
− Lk‖x+

h,k − xh,k+1‖2

≤ g(x+
h,k)− g(xh,k+1)− Lk‖x+

h,k − xh,k+1‖2,

(12)

where the second inequality above follows from the subgradient inequality on g,

g(x+
h,k) ≥ g(xh,k+1) +

〈
g̃(xh,k+1), x+

h,k − xh,k+1

〉
.

Since the gradient of fh is Lipschitz continuous the descent lemma [3] yields the
following inequality:

fh(xh,k+1) ≤ fh(x+
h,k) +

〈
∇fh(x+

h,k), xh,k+1 − x+
h,k

〉
+
Lh
2
‖x+

h,k − xh,k+1‖2.

Using the inequality above in (12), we obtain

(13) Fh(xh,k+1) ≤ Fh(x+
h,k) +

(
Lh
2
− Lk

)
‖x+

h,k − xh,k+1‖2.

It follows from [32, Lemma 2.7] that there exists a βH,l, l = 0, . . . ,m such that
the two conditions in (7) are simultaneously satisfied, i.e., after m coarse iterations in
the coarse model we have

FH(xH,m) > FH,0 + κ2〈∇FH,0, xH,m − xH,0〉
= FH,0 − κ2〈∇Fµk

h,k, dh,k〉.

The right-hand side of (7) implies that FH,m − FH , 0 < 0, and therefore −dh,k is a
descent direction for Fµh at xh,k. It follows from standard arguments (see [3]) that
there exists a step size αh,k that satisfies (8) such that

F (x+
h,k) ≤ Fµ(x+

h,k) + β1µ ≤ Fµ(xh,k) + β1µ ≤ F (xh,k) + (β1 + β2)µk,

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S691

where to obtain the last inequality we used Assumption (2). Combining the latter
inequality with (13) we obtain

(14) Fh(xh,k+1) ≤ Fh(xh,k) +
(
Lh
2
− Lk

)
‖x+

h,k − xh,k+1‖2 + βµk.

Summing up all the inequalities in (14) we obtain

Fh(x?h) ≤ Fh(xh,N+1) ≤ Fh(xh,0) +
N∑
k=0

(
Lh
2
− Lk

)
‖x+

h,k − xh,k+1‖2 + β

N∑
k=0

µk

= Fh(xh,0) +
N∑
k=0

(
Lh − 2Lk

L2
k

)
‖Dh(Lk, xh,k)‖2 + β

N∑
k=0

µ,k,

where we used (9) to obtain the last equality. Using our assumption that Lh,k ≥ Lh/2
and the definition of RN we obtain

RN
N

2Lh
≤ Fh(xh,0)− Fh(x?h) + β

N∑
k=0

µk,

as required.

For the particular choice of the smoothing parameter we made in Algorithm 1 we
have the following result.

Corollary 3.2. Suppose that µk ≤ µγk for some µ > 0 and 0 < γ < 1; then

RN ≤
2Lh
N

(
Fh,0 − F ?h + βµ

1− γN+1

1− γ

)
.

Proof. This follows from the fact that the last term in (11) is a geometric
series.

Note that if the algorithm does not perform any coarse correction iterations, then
the rate becomes

RN ≤
2Lh
N

(Fh(xh,0)− Fh(x?h)).

The rate above is the same rate obtained in [24, Theorem 3] for the nonconvex case
of the gradient algorithm with a constant step size strategy. In the multilevel setting,
we get the same rate but with a slightly worse constant. The augmented constant is
due to the smoothing approximation. As shown in Corollary 3.2 when µk = µγk this
constant is small and known in advance. In addition this constant is controllable by
the user, and in most applications of interest it is negligible.

In order to simplify the derivations above we assumed that Lh,k ≥ Lh/2. Of
course in practice we may not know the Lipschitz constant, and this assumption may
seem too restrictive. However, this can be easily addressed by using a backtracking
strategy. To be precise, we start with L0 and set Lj = ηjLj−1 until (10) is satisfied.
It follows from the descent lemma that such a constant exists. The convergence
argument remains the same with ηLh replacing Lh.

The analysis in this section can be extended to more than two levels. When more
than two levels are used the coarse model is smooth, and the analysis is performed
by essentially assuming that there is no nonsmooth component. The analysis is more

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S692 PANOS PARPAS

complicated in the multilevel case, but the proof follows the same steps. In particular,
for Theorem 3.1 to hold true for the multilevel case, we need to ensure that FH,m −
Fh,0 < 0 remains true even if the xH,m is computed from another coarse model. This
is easily established by using the same argument as in Theorem 3.1.

We end this section by establishing the convergence rate for the strongly convex
case. In particular we change Assumptions 1 and 4 as follows.

Assumption 6. The function fh : Rh → R is a smooth strongly convex function
with a Lipschitz continuous gradient. The Lipschitz constant will be denoted by Lh
and the strong convexity constant by γf .

Assumption 7. The functions fH : RH → R and gH : RH → R are smooth
functions with a Lipschitz continuous gradient. In addition the function gH is convex
and fH is strongly convex. The Lipschitz constant for fH + gH will be denoted by
LH , and the strong convexity constant is given by γF .

Theorem 3.3. Suppose that the same assumptions as in Theorem 3.1 hold, ex-
cept that Assumption 1 is replaced by Assumption 6 and Assumption 4 is replaced by
Assumption 7; then the following hold:

(a) If γf/2Lh ≤ 1 and µi ≤ µγi is chosen such with 0 < γ ≤ 1/4, then

Fh(xh,k+1)− Fh(x?) ≤
(

1
2

)k (
Fh(xh,0)− Fh(x?) + 2βµ

(
1− 1

2k

))
.

(b) If γf/2Lh ≥ 1 and µi ≤ µγi is chosen such with 0 < γ < δ, then

Fh(xh,k+1)− Fh(x?) ≤
(

1− γf
4Lh

)k (
Fh(xh,0)− Fh(x?) + βµ

1− δk+1

1− δ

)
,

where δ , (4γfLh)/(4Lh − γf).

Proof. (a) Suppose that at iteration k a coarse correction direction is computed
using steps 8 and 9. Using the descent lemma and the fact that xh,k+1 solves the
quadratic subproblem around x+

h,k, we obtain the following:

Fh(xh,k+1) ≤ f(x+
k) +

〈
∇f(x+

k), xh,k+1 − x+
h,k

〉
+
Lh
2
‖xh,k+1 − x+

h,k‖
2 + gh(xh,k+1)

= min
z
f(x+

k) +
〈
∇f(x+

k), z − x+
h,k

〉
+
Lh
2
‖z − x+

h,k‖
2 + gh(z)

≤ min
z
fh(z) + gh(z) +

Lh
2
‖z − x+

h,k‖
2.

Let z = λx? + (1− λ)x+
h,k for 0 ≤ λ ≤ 1, and use the fact that Fh(x) = fh(x) + gh(x)

is strongly convex to obtain the following estimate:

Fh(xh,k+1) ≤ min
0≤λ≤1

λFh(x?) + (1− λ)Fh(x+
k) +

Lh
2
‖λ(x? − x+

h,k)‖2

≤ min
0≤λ≤1

F (x+
k)− λ

(
1− λLh

γf

)(
Fh(x+

k)− Fh(x?)
)
,

(15)

where to obtain the last inequality we used the fact that for a strongly convex function,
the following holds:

Fh(x+
k)− F (x?) ≥ γf

2
‖x+

k − x
?‖2.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S693

The minimum in (15) is obtained for either λ = 1 or λ = γf/2Lh. If λ = 1 (i.e.,
γf/2Lh ≥ 1), then

Fh(xh,k+1)− Fh(x?) ≤ Lf
γf

(
Fh(x+

h,k)− Fh(x?)
)

≤ 1
2

(
Fh(x+

h,k)− Fh(x?)
)
.

(16)

Using the same arguments used in Theorem 3.1, we obtain

(17) F (x+
h,k) ≤ F (xh,k) + βµk.

Using (17) in (16) we obtain

Fh(xh,k+1)− Fh(x?) ≤ 1
2

(Fh(xh,k)− Fh(x?)) +
1
2
βµk.

If a coarse correction term was not done, then we use the convention that µk is zero
and that xh,k = x+

h,k. Therefore after k iterations and with r coarse correction steps,
we obtain

Fh(xh,k+1)− Fh(x?) ≤
(

1
2

)k (
Fh(xh,0)− Fh(x?)

)
+ βµ

k∑
i=0

1
2k−i

µi

≤
(

1
2

)k (
Fh(xh,0)− Fh(x?) + 2βµ

(
1− 1

2k

))
,

where to obtain the last inequality we used our assumption that µi ≤ µγi and γ ≤ 1
4 .

If γf/2Lh ≤ 1, then λ = γf/2Lh, and using the same argument as above we obtain

Fh(xh,k+1)− Fh(x?) ≤
(

1− γf
4Lh

)k (
Fh(xh,0)− Fh(x?)

)
+ β

k∑
i=0

(
1− γf

4Lh

)k−i
µi

≤
(

1− γf
4Lh

)k(
Fh(xh,0)− Fh(x?) + βµ

k∑
i=0

(
4Lhγ

4Lh − γf

)i)

=
(

1− γf
4Lh

)k (
Fh(xh,0)− Fh(x?) + βµ

1− δk+1

1− δ

)
,

as required.

4. Numerical experiments. In this section we illustrate the numerical per-
formance of the algorithm on both convex and nonconvex problems. For the convex
problem we chose the image restoration problem, and for the nonconvex case we
chose the problem of finding transition paths in energy landscapes. Both problems
have been used as benchmark problems and are important applications in image pro-
cessing and computational chemistry, respectively. The two problem classes are quite
different. In particular, the image restoration problem is convex and unconstrained
but has more than a million variables, whereas the saddle point problem is nonconvex,
constrained but is lower dimensional. We compare the performance of the proposed
MPGM against the state of the art for image restoration problems (FISTA [1]) and
against the Newton algorithm for the transition path problem. In our implementation
of MPGM we only considered V-cycles. Other possible strategies may yield improved
results, and this is an interesting topic for future work.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S694 PANOS PARPAS

(a) Corrupted image with 0.5% noise (b) Restored image

Fig. 1. (a) Corrupted cameraman image used as the input vector b. (b) Restored image.

4.1. The image restoration problem. The image restoration problem con-
sists of the following composite convex optimization model:

min
xh∈Rh

‖Ahxh − bh‖22 + λh‖W (xh)‖1,

where bh is the vectorized version of the input image, Ah is the blurring operator
based on the point spread function and reflexive boundary conditions, and W (xh) is
the wavelet transform of the image. In our numerical experiments, the image in the
fine model has resolution 1024×1024. The two dimensional version of the input image
and the restored image are denoted by Xh and Bh, respectively. The first term in
the objective function aims to find an image that is as close to the original image as
possible, and the second term enforces a relationship between the pixels and ensures
that the recovered image is neither blurred nor noisy. The regularization parameter
λh is used to balance the two objectives. In our implementation of the fine model
we used λh = 10e − 4. Note that the first term is convex and differentiable, and the
second term is also convex but nonsmooth. The blurring operator Ah is computed by
utilizing an efficient implementation provided in the HNO package [13]. In particular,
we rewrite the expensive matrix computation Ahxh − bh in the reduced form,

AchXh(Arh)> −Bh,

where Ach, A
r
h are the row/column blurring operators and Ah = Arh ⊗ Ach. We il-

lustrate the problem of image restoration using the widely used cameraman image.
Figure 1(a) is the corrupted image, and the restored image is shown in Figure 1(b).
The restored image was computed with MPGM. The image restoration problem fits
exactly the framework of convex composite optimization. In addition, it is easy to
define a hierarchy of models by varying the resolution of the image. We discuss the
issue of coarse model construction next.

4.1.1. The coarse model in the image restoration problem. We described
MGPM as a two-level algorithm, but it is easy to generalize it to many levels. In our
computations we used the fine model described above and two coarse models, one
with resolution 512 × 512 and its coarse version, i.e., a model with 256 × 256. Each
model on the hierarchy has a quarter of the variables of the model above it. We used

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S695

the same algorithm parameters for all levels. We used the smoothing approach to
construct the coarse model (see section 2.4). Following the smoothing approach we
used the following objective function:

min
xH∈ΩH

‖AHxH − bH‖22 + 〈vH , xH〉+ λH
∑
i∈ΩH

√
W (xH)2

i + µ2 − µ,

where µ = 0.2 is the smoothing parameter, vH was defined in (4), and λH is the
regularizing parameter for the coarse model. The coarse model has fewer variables
and is smoother; therefore the regularizing parameter should be reduced. In our
experiments we used λH = λh/2. The parameter µk used in the definition of the vH
term in (6) was chosen as µk = max{0.001, µγr}, where µ = 0.2 and γ = 0.8.

The information transfer between levels is done via a simple linear interpolation
technique to group four fine pixels into one coarse pixel. The prolongation operator is
given by Ihh = R1 ⊗R>1 . The matrix R1 is specified using pencil notation as follows:

R1 =
] 1

2 1 1
2

[
.

As usual we have IHh = c(IhH)> with c = 1/4. This is a standard way to construct the
restriction and prolongation operators, and we refer the reader to [7] for the details.
The input image and the current iterate are restricted to the coarse scale as follows:

xH,0 = IHh xh,k, bH = IHh bh.

The standard matrix restriction AH = IHh Ah(IHh)> is not performed explicitly as we
never need to store the large matrix Ah. Instead, only column and row operators
Ach, A

r
h are stored in memory. The coarse blurring matrix is given by

AH = ArH ⊗AcH ,

where AcH = R1A
c
hR
>
1 and ArH = R1A

r
hR
>
1 .

The condition to use the coarse model in MGPM is specified in (5), and we used
the parameters κ = 0.5 and η = 1 in our implementation.

4.1.2. Performance comparison. We compare the performance of our meth-
ods with FISTA and ISTA using a representative set of corrupted images (blurred
with 0.5% additive noise). FISTA is considered to be a state of the art method for
the image restoration problem [1] and has a theoretically better convergence rate than
the proposed algorithm. ISTA has the same convergence rate as the proposed algo-
rithm. We compare the CPU time required to achieve convergence of MPGM against
ISTA and FISTA. The solution tolerance is eh = 2% for all algorithms. We chose to
report CPU times since the computational complexity of MPGM per iteration can be
larger than ISTA or FISTA. We tested the algorithm on several images, and below we
report results on a representative set of six images. All our test images have the same
size, 1024×1024. At this resolution, the optimization model at the fine scale has more
than 106 variables (1,048,576, to be precise). We implemented the ISTA and FISTA
algorithms with the same parameter settings as [1]. For the fine model we used the
standard backtracking line strategy for ISTA as in [1]. All algorithms were imple-
mented in MATLAB and run on a standard desktop PC. Due to space limitations,
we only report detailed convergence results from the widely used cameraman image.
The images we used, the source code for MGPM, and further numerical experiments
can be obtained from the web page of the author https://www.doc.ic.ac.uk/∼pp500.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://www.doc.ic.ac.uk/~pp500

S696 PANOS PARPAS

(a) Function value comparison

(b) Images blurred with 0.48% noise (c) Images blurred with 1% noise

Fig. 2. (a) Comparison of the three algorithms in terms of function value. MPGM clearly
outperforms the other algorithms and converges in essentially 5 iterations, while others have not
converged even after 100 iterations. CPU time required to find a solution within 2% of the optimum
for the three algorithms. (b) Results for blurred images with 0.5% noise. (c) Results for blurred
images with 1% noise. Higher levels of noise lead to more ill conditioned problems. The figures in
(b) and (c) compare CPU times and suggest that MPGM is on average ten times faster than ISTA
and three/four times than FISTA.

In Figure 2(a) we compare the three algorithms in terms of the progress they
make in function value reduction. In this case we see that MPGM clearly outperforms
ISTA. This result is not surprising since MPGM is a more specialized algorithm with
the same convergence properties. However, what is surprising is that MPGM still
outperforms the theoretically superior FISTA. Clearly, MPGM outperforms FISTA
in early iterations and is comparable in latter iterations.

Figure 2 gives some idea of the performance of the algorithm, but of course
what matters most is the CPU time required to compute a solution. This is because

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S697

an iteration of MPGM requires many iterations in a coarse model, and therefore
comparing the algorithms in terms of the number of iterations is not fair. In order
to level the playing field, we compare the performance of the algorithms in terms of
CPU time required to find a solution that satisfies the optimality conditions within 2%.
Two experiments were performed on a set of six images. The first experiment takes as
input a blurred image with 0.5% additive Gaussian noise, and the second experiment
uses 1% additive noise. We expect the problems with the 1% additive noise to be more
difficult to solve than the one with 0.5% noise. This is because the corrupted image
is more ill conditioned. Figure 2(b) shows the performance of the three algorithms on
blurred images with 0.5% noise. We can see that MPGM outperforms both ISTA and
FISTA by some margin. On average MPGM is four times faster than FISTA and ten
times faster than ISTA. In Figure 2(c), we see an even greater improvement of MPGM
over ISTA/FISTA. This is expected since the problem is more ill conditioned (with
1% noise as opposed to 0.5% noise in Figure 2(c)), and so the fine model requires more
iterations to converge. Since ISTA/FISTA perform all their computation with the ill
conditioned model, CPU time increases as the amount of noise in the image increases.
On the other hand, the convergence of MPGM depends less on how ill conditioned
the model is since one of the effects of averaging is to decrease ill conditioning.

4.2. The transition path problem. The computational of transition paths
is a fundamental problem in computational chemistry, material science, and biology.
Most methods for computing fall into two broad classes: chain of state methods and
surface walking methods. For a recent review and a description of several methods in
the latter category we refer the interested reader to [33]. We approach the problem
using a chain of state method. In these methods we are given two initial points xa and
xb that are stable points on a potential energy surface. Usually these two points are
local minima. The transition path problem in this case is to find how the geometry
and the energy changes from one stable state to the next.

The mathematical formulation of the transition path problem using an optimiza-
tion problem was established in [20] through the mountain pass theorem. We will
adopt the formulation from [20]. We will review the formulation of the optimization
problem below, but for the precise properties of the model we refer the reader to
[20]. The method (also known as the “elastic string algorithm”) is derived from the
solution of the following infinite dimensional saddle point problem:

(18) inf
p∈Γ

max
t∈[0,1]

f(p(t)),

where f is the nonconvex potential energy function, and Γ is the set of all paths
connecting xa and xb. We also impose the initial and final conditions p(0) = xa and
p(1) = xb. By only considering piecewise linear paths with m breakpoints, the elastic
string algorithm (described in detail in [20]) reduces the infinite dimensional problem
in (18) to the following finite dimensional problem:

(19) min{v(x)|‖xk+1 − xk‖1 ≤ hk, 0 ≤ k ≤ m, x0 = xa, xm = xb},

where v(x) = max(f(x0), . . . , f(xm)). In order to place (19) in the same format as the
optimization models we consider in this paper we use entropic smoothing for the max
function [28] and replace the constraints with an indicator function. The entropic
smoothing function is given by

φλ(x) =
1
λ

log

(
m∑
k=0

exp(λfk(x)

)
.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S698 PANOS PARPAS

This is a frequently used function to smooth the max function appearing in minimax
problems; for its properties see [28, 31]. We note that the proximal operator associated
with the constraints of the problem in (19) can be computed in closed form. However
to define the coarse model we need to smooth the indicator function. To smooth
the indicator function we used the Moreau–Yosida regularization approach [14]. To
be precise, letting g(x) denote the indicator function of the problem in (19), the
Moreau–Yosida regularization of g (also referred to as the Moreau envelope) is given
by

gµ(x) = inf
w

{
g(w) +

1
2µ
‖w − x‖2

}
.

Let x̂ denote the unique minimizer of the problem above, and then the gradient of
gµ(x) is Lipschitz continuous and is given by

∇gµ(x) =
1
µ

[x− x̂].

We used the following smoothing parameters λ = µ = 0.01. For the fine model we
used 2h breakpoints with h = 10. This means that for a potential energy function
in n dimensions the optimization problem has n × 210 variables and 210 constraints.
We solved the fine model using the same method as in [20], i.e., the Newton’s method
with an Armijo line search. Before we compare the Newton method with the proposed
algorithm we describe the construction of the coarse model.

4.2.1. The coarse model in the transition path problem. As for the image
restoration problem, the coarse model for the transition path problem is very easy to
construct. We used eight levels, with 22, 23, . . . , 29 breakpoints. For the prolongation
and restriction operators we used the same simple linear interpolation technique as
in the image restoration problem. Finally, we used κ = 0.5 and η = 1 for the coarse
correction criteria. (These are the same parameters we used in the image restoration
problem.) We used the same strategy to select µk as the one described in section 4.1.1.

4.2.2. Performance comparison. We tested the performance of MPGM against
the Newton algorithm on seven widely used benchmark problems. We used the three
test problems from [20]. For these three potentials we used the same parameters and
functional form described in [20], and for the interest of space we omit the details
here. We also used four test problems from [33]. For later reference we tabulate the
name of the problem and the appropriate reference in Table 1. As in the previous
case study, comparing the performance of the proposed algorithm in terms of CPU
time is the fairest metric. In Figure 3 we plot the results. It can be seen from this
figure that on all but two problems the proposed algorithm is far superior than the
Newton algorithm.

5. Conclusions. We developed an MPGM for composite optimization models.
The key idea behind MPGM is, for some iterations, to replace the quadratic approx-
imation with a coarse approximation. The coarse model is used to compute search
directions that are often superior to the search directions obtained using just gra-
dient information. We showed how to construct coarse models in the case where
the objective function is nondifferentiable. For the convex case, our initial numer-
ical experiments show that the proposed MISTA algorithm is on average ten times
faster than ISTA and three-four times faster (on average) than the theoretically su-
perior FISTA algorithm. For the nonconvex case, we tested the performance of the

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S699

Table 1
Test problems in numerical experiments.

Problem # Name Reference

1 Camel Function [20]
2 LEPS potential [20]
3 LEPS/Gaussian potential [20]
4 2-d energy function [33]
5 Minyaev–Quapp surface [33]
6 Stingray function [33]
7 Eckhardt surface [33]

Test Problem

C
P
U

T
im

e
(s

ec
s)
#

10
0

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Newton
MPGM

Fig. 3. Comparison of MPGM with the Newton algorithm in terms of CPU time.

algorithm on a problem arising in computational chemistry, and we showed that the
proposed method is significantly faster than the Newton algorithm.

The initial numerical results are promising, but still the algorithm can be im-
proved in a number of ways. For example, we only considered the most basic prolon-
gation and restriction operators in approximating the coarse model. The literature
on the construction of these operators is quite large, and there exist more advanced
operators that adapt to the problem data and current solution (e.g., bootstrap AMG
[6]). We expect that the numerical performance of the algorithm can be improved if
these advanced techniques are used instead of the naive approach proposed here. In
the last few years several algorithmic frameworks for large scale composite convex op-
timization have been proposed. Examples include active set methods [18], stochastic
methods [16], Newton type methods [17], and block coordinate descent methods [29].
In principle, all these algorithmic frameworks could be combined with the multilevel
framework developed in this paper. Based on the theoretical and numerical results
obtained from the multilevel version of the proximal gradient method, we are hopeful
that the multilevel framework can improve the numerical performance of many of the
recent algorithmic developments in large scale composite optimization.

Acknowledgments. The author acknowledges the help of Ryan Duy Luong with
the numerical experiments in section 4. We also thank the editors and anonymous

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

S700 PANOS PARPAS

referees for their helpful comments on earlier versions of the paper. The author was
partially supported by EPSRC grants EP/M028240.

REFERENCES

[1] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[2] A. Beck and M. Teboulle, Smoothing and first order methods: A unified framework, SIAM
J. Optim., 22 (2012), pp. 557–580.

[3] D.P. Bertsekas, Nonlinear Programming, Optim. Comput. Ser., Athena Scientific, Belmont,
MA, 1999.

[4] A. Borz̀ı, On the convergence of the MG/OPT method, Proc. Appl. Math. Mech., 5 (2005),
pp. 735–736.

[5] A. Borz̀ı and V. Schulz, Multigrid methods for PDE optimization, SIAM Rev., 51 (2009),
pp. 361–395.

[6] A. Brandt, J. Brannick, K. Kahl, and I. Livshits, Bootstrap AMG, SIAM J. Sci. Comput.,
33 (2011), pp. 612–632.

[7] W.L. Briggs, V.E. Henson, and S.F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM,
Philadelphia, 2000.

[8] C. Gräser and R. Kornhuber, Multigrid methods for obstacle problems, J. Comput. Math.,
27 (2009), pp. 1–44.

[9] C. Gräser, U. Sack, and O. Sander, Truncated nonsmooth Newton multigrid methods for
convex minimization problems, in Domain Decomposition Methods in Science and Engi-
neering XVIII, Springer, New York, 2009, pp. 129–136.

[10] S. Gratton, M. Mouffe, A. Sartenaer, P.L. Toint, and D. Tomanos, Numerical ex-
perience with a recursive trust-region method for multilevel nonlinear bound-constrained
optimization, Optim. Methods Softw., 25 (2010), pp. 359–386.

[11] S. Gratton, M. Mouffe, P.L. Toint, and M. Weber-Mendonça, A recursive-trust-region
method for bound-constrained nonlinear optimization, IMA J. Numer. Anal., 28 (2008),
pp. 827–861.

[12] S. Gratton, A. Sartenae, and P.L. Toint, Recursive trust-region methods for multiscale
nonlinear optimization, SIAM J. Optim., 19 (2008), pp. 414–444.

[13] P.C. Hansen, J.G. Nagy, and D.P. O’Leary, Deblurring Images: Matrices, Spectra, and
Filtering, Vol. 3, SIAM, Philadelphia, 2006.

[14] J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I:
Fundamentals, Vol. 305, Springer, New York, 2013.

[15] V. Hovhannisyan, P. Parpas, and S. Zafeiriou, MAGMA: Multilevel accelerated gradient
mirror descent algorithm for large-scale convex composite minimization, SIAM J. Imaging
Sci., 9 (2016), pp. 1829–1857.

[16] G. Lan, An optimal method for stochastic composite optimization, Math. Program., 133 (2012),
pp. 365–397.

[17] J.D. Lee, Y. Sun, and M.A. Saunders, Proximal Newton-type Methods for Minimizing Com-
posite Functions, SIAM J. Optim., 24 (2014), pp. 1420–1443.

[18] A.S. Lewis and S.J. Wright, A Proximal Method for Composite Minimization, Math. Pro-
gram., 158 (2016), pp. 501–546.

[19] R.M. Lewis and S.G. Nash, Model problems for the multigrid optimization of systems governed
by differential equations, SIAM J. Sci. Comput., 26 (2005), pp. 1811–1837.

[20] J.J. Moré and T.S. Munson, Computing mountain passes and transition states, Math. Pro-
gram., 100 (2004), pp. 151–182.

[21] S.G. Nash, A multigrid approach to discretized optimization problems, Optim. Methods Softw.,
14 (2000), pp. 99–116.

[22] S.G. Nash, Properties of a class of multilevel optimization algorithms for equality-constrained
problems, Optim. Methods Softw., 29 (2014), pp. 137–159.

[23] S.G. Nash and R.M. Lewis, Assessing the performance of an optimization-based multilevel
method, Optim. Methods Softw., 26 (2011), pp. 693–717.

[24] Y. Nesterov, Gradient methods for minimizing composite objective function, Math. Program.,
140 (2013), pp. 125–161.

[25] S. Oh, A.B. Milstein, C.A. Bouman, and K.J. Webb, A general framework for nonlinear
multigrid inversion, IEEE Trans. Image Process., 14 (2005), pp. 125–140.

[26] N. Parikh and S. Boyd, Proximal algorithms, Found. Trends Optim., 1 (2014), pp. 127–239.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A MULTILEVEL PROXIMAL GRADIENT ALGORITHM S701

[27] P. Parpas and M. Webster, A stochastic multiscale model for electricity generation capacity
expansion, European J. Oper. Res., 232 (2014), pp. 359–374.

[28] E. Polak, R.S. Womersley, and H.X. Yin, An algorithm based on active sets and smooth-
ing for discretized semi-infinite minimax problems, J. Optim. Theory Appl., 138 (2008),
pp. 311–328.

[29] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function, Math. Program., 144 (2014), pp. 1–38.

[30] J.J. Thiagarajan, K.N. Ramamurthy, and A. Spanias, Learning stable multilevel dictionar-
ies for sparse representation of images, IEEE Trans. Neural Netw. Learn. Syst., under
review, 2013.

[31] A. Tsoukalas, P. Parpas, and B. Rustem, A smoothing algorithm for finite min–max–min
problems, Optim. Lett., 3 (2009), pp. 49–62.

[32] Z. Wen and D. Goldfarb, A line search multigrid method for large-scale nonlinear optimiza-
tion, SIAM J. Optim., 20 (2009), pp. 1478–1503.

[33] Z. Lei, Q. Du, and Z. Zheng, Optimization-based shrinking dimer method for finding transi-
tion states, SIAM J. Sci. Comput., 38 (2016), pp. A528–A544.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

12
/1

1/
17

 to
 1

55
.1

98
.1

2.
14

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

	Introduction
	Problem formulation and algorithm description
	Optimization model and assumptions
	Quadratic approximations and the proximal gradient method
	Information transfer between levels
	Coarse model construction
	Multilevel proximal gradient method (MPGM)

	Global convergence rate analysis
	Numerical experiments
	The image restoration problem
	The coarse model in the image restoration problem
	Performance comparison

	The transition path problem
	The coarse model in the transition path problem
	Performance comparison

	Conclusions
	References

