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Abstract: This work reports the refinement of pearlite structure into nanostructure using 

electropulsing. Nanostructured pearlitic steel wires possess nanoscale lamellae or nanoscale 

grain microstructures. Fabrication of nanostructures by severe plastic deformation and 

lamellar to grain transformation have been investigated. It is suggested that an aligned pearlite 

structure is preferred in severe plastic deformation. The lamellar to grain transformation is 

controlled by diffusion of carbon within cementite and also from cementite to ferrite phases. 

Carbon mobility is changed by mechanical, thermal and electrical states. The interface 

between nanoscale sub-grains in the ferrite phase has considerable carbon content. Numerical 

calculations and experimental observations demonstrated these mechanisms.  
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Introduction 

Pearlite steel wires are applied broadly in engineering for their high tensile strength, high 

fatigue resistance, high wear durability and other merit mechanical properties. Fabrication of 

nanostructured pearlite steel wires has attracted significant attention due to the potential good 

performance of nanostructured materials [1-6]. Nanocrystalline metals and alloys increase 

strength and resistance to tribological damage and crack propagation [2-4]. A tensile strength 

of 7 GPa has been achieved in a nanostructured steel wire by severe drawing of a pearlite steel 

in a laboratory [1]. The redistribution of carbon from the cementite phase to the interface 

between ferrite sub-grains has been observed by atom probe tomographic characterization, 

which plays an important role in the fabrication of nanostructures and nano-domains [1, 7]. 

The nanostructured lamellar pearlite can be obtained by controlling chemical and thermal 

processing conditions, where the migration of the ferrite-cementite interface has been 

controlled by addition of aluminium and cobalt to steels [5]. The nanostructured cementite 
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grains have been fabricated by electropulsing treatment of a cold-drawn pearlite steel wire at 

ambient temperature [6]. The formation of nanoscale cementite particles are related to carbon 

diffusion driven by an electric field and thermal state. Control of the carbon diffusion in a 

carbon-supersaturated ferrite phase has also been applied in fabrication of other 

nanostructured steels [8].           

 

This work investigates the problems and possible solutions in fabrication of nanoscale 

lamellae by severe drawing of pearlite wire. It will be shown that severe plastic deformation 

(SPD) does not always help to reduce pearlite interlamellar spacing. Such a problem can be 

overcome by designing an aligned pearlite microstructure. In the fabrication of nanoscale 

grain structures using lamellar to grain transformation (LGT), the mechanisms for carbon 

diffusion within cementite to form nanoscale cementite grains and diffusion from cementite to 

ferrite sub-grain interfaces have been investigated. The influences of mechanical, thermal and 

electrical state on the development of nanostructures have been studied.  

 

Lamellar Nanostructure 

 

 

Figure 1. A pearlite steel microstructure obtained by phase-field calculation and plotted by an 

in-house visualization code package MatVisual. The plates are the cementite phase, and the 

spaces between them are the ferrite phase.   

 

Pearlite steel contains body-centred-cubic ferrite iron and orthorhombic iron carbide 

cementite (Fe3C). In the austenite-pearlite phase transformation, ferrite and cementite bi-
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crystals grow from the parent austenite grain. The orientation between cementite and ferrite 

obeys Pitsch-Petch relationship of 
bccCFe )125//()001(

3
, CFe3

)010(  32 from bcc)311(  and 

CFe3
)100(  32 from bcc)113(  [9]. Figure 1 shows a distribution of cementite plates from our 

computer simulation. The space between cementite plates are ferrite phase. The 

microstructure was generated following a phase-field calculation [10-11] and plotted using a 

visualization code package MatVisual. An arrow representing a vector is placed near to the 

right-top in figure 1. The magnitude of the vector represents the pearlite lamellar spacing (d). 

In homogeneous wire drawing, a vector is changed from u


 to v


 by following transformation 

[12], where s is the equivalent strain.    
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When the vector in Figure 1 is perpendicular to the wire drawing direction, the original 

pearlite lamellar spacing (d) will be reduced to sd / . Severe drawing ( 1s ) can reduce the 

pearlite interlamellar spacing and help to fabricate a lamellar pearlite nanostructure. However, 

when the vector is parallel to the drawing direction, the pearlite lamellar space (d) will be 

increased to sd  . In such cases the severe plastic deformation might change the 

nanostructured lamellar pearlite into a coarsened microstructure. Therefore, the ideal case is 

to have all the cementite and ferrite plates in pearlite aligned in the wire drawing direction.         

 

Table 1. Anisotropic surface energy of Fe3C crystal 

Orientation                     (1 0 0)     (0 1 1)     (0 1 0)      (1 0 1)     (1 1 1)     (1 1 0)      (0 0 1)                  

Surface energy (J/m
2
) 

        Ref [15]                   2.47         2.37         2.26          2.25         2.22        2.19         2.05       

        Eq. (2)                     2.4677     2.2515     2.2742      2.2609     2.2497    2.2554     2.0506 

Relative error (%)           0.09         5.00         0.63          0.49         1.34        2.99         0.03 

    

Given the Pitsch-Petch relationship in pearlite growth, the crystallographic orientations of 

cementite plates are fixed after the nucleation of cementite crystals. It is known that interface 

anisotropy has significant contribution towards crystal morphology [10, 13]. In many cases, 

the crystallographic orientation determines the crystal morphology [10, 14]. The anisotropic 

surface energy of cementite has been calculated using a gradient-corrected pseudopotential-
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based density functional theory [15]. Their results are listed in Table 1. Cementite has an 

orthorhombic crystal structure and Pnma (No.62) space group. Its lattice parameters are a = 

5.06 Å, b = 6.74 Å and c = 4.51 Å and angles α=β=γ= 90° respectively [16]. From symmetry 

analysis, we can represent the anisotropic surface energy of cementite orthorhombic crystal 

using 

  444 15528.00692452.0238931.021537.2ˆ
zyx nnnn          (2) 

where                    222
/ clbkahahnx                   (3) 

     222
/ clbkahbkny          (4) 

     222
/ clbkahclnz           (5) 

h, k and l are Miller indices. The values in several orientations are listed in Table 1. The 

largest relative error is 5% in (011) direction. The polar diagram of anisotropic surface energy 

of cementite is plotted in Figure 2(a). It can be seen that the anisotropy is sufficiently weak. 

Figures 2(b)-(c) illustrate the morphology of cementite crystal grown freely, that is, in 

unrestrictive conditions. The anisotropy-induced crystal morphology is not far from isotropic. 

This shows that the crystallographic relationship has negligible effect on the morphological 

orientation of cementite crystals. Other effects can be implemented to generate the desirable 

cementite microstructure.     

   

 

Figure 2. (a) Polar diagram of cementite surface energy; (b) and (c) the morphology of a 

cementite crystal grown in unrestricted space at x-z plane and x-y plane, respectively 

 

The morphological orientation of pearlite can be controlled by the migration direction of the 

ferrite-cementite interface. Electric current aids the development of this interface along the 

electric current direction. Klinger and Levin have analysed the interface stability under 
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electric field and proved theoretically that the electric current promotes the development of an 

interface along the direction of the electric field [17]. The same suggestion has been made by 

thermodynamic consideration of effect of electric current on microstructure evolution [18]. 

We have observed this tendency experimentally in low carbon steels [19], and are working 

toward the fabrication of aligned fully pearlite high carbon steel wire.                

 

Lamellar to grain nanostructure transformation  

Deformation and recrystallization can induce a lamellar to grain nanostructure transformation, 

where carbon atoms in cementite are transported to ferrite phase by mechanical alloying and 

subsequently precipitate to the interface between nanoscale ferrite sub-grains [1]. Our 

previous work shows that passing electric current at ambient temperature to a cold-drawn 

pearlite steel wire causes the formation of nanostructured cementite, where the mechanism 

was attributed to the deformation and electropulse-promoted low-temperature recrystallization 

[6]. In the present study, an experiment has been designed to identify whether the cold-drawn 

state is a necessary condition for such nanostructure transformations to progress. The electric 

current pulses have been applied to an annealed pearlite steel wire. The cold-drawn effects, 

such as the excess dislocation density and residual stress, have been removed by the 

annealing. The samples were prepared and annealed at TATA Steel Swinden Technology 

Centre, then sent to us for electropulsing treatment. The wire with one end was submerged in 

warm water and another in liquid nitrogen. The wire was electropulsed with 200A peak 

amplitude current, 200s pulse width at 10Hz for 600s. Figure 3 (a)-(b) are the Scanning 

Electron Microscopy (SEM) images of the electropulsing treated samples after 2% Nital 

etching. The as-received microstructure was a conventional pearlite lamellar microstructure 

with lamellar spacing 40d nm. The electric current pulses have caused the lamellar 

cementite to transform into nanoscale grains. The electropulsed microstructure in the annealed 

samples is similar to that of the cold-drawn samples. The latter result, plotted in Figure 3(c)-

(d) was obtained by cold-drawn pearlite steel wires provided by POSCO at South Korea [6]. It 

is proved that the cold-working is unnecessary for the promotion of cementite fragmentation 

and spheroidization. However, electropulsing the cold-drawn pearlite steel wire generate more 

thorough grain nanostructure than that of the annealed wire. For examples, the areas labelled 

A and B are not completely fragmented. It retains the as-received lamellar pearlite 

microstructure. These lamellae are almost parallel to the electric current direction, as labelled 

as an arrow in Figure 3(a). This means that the lamellae perpendicular to the electric current 
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direction are easier to transform into grain structure than that of parallel ones. This is in 

agreement with our previous experimental observations in other steels [18-19].          

 

Figure 3. SEM images of (a)-(b) annealed steel after electropulsing treatment; (c)-(d) the 

cold-drawn steel after electropulsing treatment   

 

To study the influence of the physical environment around cementite plates during 

electropulsing treatment, numerical calculation has been performed on a disk cementite plate 

submerged in ferrite matrix. The theory and discretization method has been described in other 

papers [20]. The parameters for electrical resistivity of ferrite and cementite are 9.17×10
6
 Sm

-

1
 and 1.22×10

6
 Sm

-1
, and for magnetic permeability of ferrite and cementite 3000 and 300, 

respectively, where 26

0 1026.1   AN  is the vacuum permeability [21-24]. Figure 4(a) and 

4(b) show the temperature distribution around a thin cementite disk which is parallel and 

perpendicular to the electric current direction, respectively. Figure 4(c) and 4(d) show electric 

current density distributions around a cementite disk. It can be seen clearly that electric 

current increases the temperature of cementite more than that of the ferrite, as illustrated in 

figure 4(a) and 4(b). It is reasonable to suggest that a sudden higher temperature rise in 

cementite than that of ferrite causes more volume expansion of cementite and hence a higher 

local stress in cementite. Carbon atoms are pushed away from the area of high local stress, 

similar to the graphite squeezed out of austempered ductile cast iron [25]. The high local 
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temperature in cementite also provides a high carbon mobility to facilitate diffusion and 

spheroidization. Furthermore, it is seen that the cementite in Figure 4(a) experiences a much 

higher temperature rise than Figure 4(b). The cementite plate in Figure 4(a) is perpendicular 

to the current direction and in Figure 4(b) is parallel to the current direction. This provides an 

explanation for the un-fragmented cementite lamellae when they are parallel to the current 

direction. The lamellae perpendicular to the current direction cause more severe mechanical 

and thermal elavations than that of the parallel ones when electric current passes the pearlite 

steel wire. Figure 4(c) and 4(d) demonstrate the electric current density distributions. It can be 

seen that Figure 4(c) has higher electric current passing through the cementite disk than that 

of Figure 4(d). The effect of electromigration on the carbon diffusion is stronger when 

cementite plate is perpendicular to the current flow than that of the parallel ones. The high 

mechanical, thermal and electric effects promote carbon diffusion, which leads to the 

spheroidization of cementite and also of carbon into ferrite phase. The breakup of cementite 

plates has also been promoted by the electric current. A thermodynamic calculation of the 

current-induced breakup has been published in another journal recently [26]. 

 

 

Figure 4. Joule heating-caused temperature rising when a cementite disk is (a) perpendicular 

to, and (b) parallel to the electric current direction; The electric current density distribution in 

pearlite when a cementite disk is (c) perpendicular to, and (d) parallel to the electric current 

direction. The arrows represent the electric current direction.     

 



8 
 

However, the microstructural information on ferrite has not been revealed in Figure 3. The 

reason is that 2% Nital etching liquid etched away ferrite phase in the nanostructured pearlite. 

In order to investigate this, we acquired some pearlitic rail steel samples from TATA Steel 

Teesside Technology Centre. The samples were cut from an ingot and then cold rolled to thin 

plates before treatment with electropulses. The pearlite interlamellar spacing is around 400 

nm. The electropulsed samples were etched by Marshall’s reagent for SEM characterization. 

The results are demonstrated in Figure 5(a)-(b). The ferrite lamellae have been fragmented 

into finer ferrite grains. Figure 5(c) shows the carbon distribution across the ferrite lamellae 

by atom probe tomographic characterization. It can be seen that the interface between ferrite 

grains contains high carbon composition. So far, we are not sure whether the lamellar to grain 

transformation in ferrite is caused by cold rolling or electropulsing treatment of the samples, 

because some grain ferrite were also noticed in the cold-rolled samples before electropulsing. 

However, the diffusion of carbon from cementite to the interface has been surely promoted by 

the electropulsing treatment.       

              

 

Figure 5. (a)-(b) SEM images for the electropulsed pearlite steel. (c) Atom probe 

tomographic image shows the carbon distribution between ferrite grains.    

 

Similar microstructures to figure 5(b) have been reported in literature by other treatment 

methods. One of the cases is by equal channel angular pressing of a fully pearlitic Fe–0.8C 

steel at 923K [27]. Another example is after laser shock processing of high carbon pearlitic 

steel [28].   

 

Conclusions  

In the present work, the fabrication of nanostructured pearlite wire using electropulsing has 

been discussed. In nanoscale lamellar pearlite processing, severe plastic drawing is not always 

helpful for reducing the pearlite lamellar spacing. An aligned pearlite microstructure with 
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cementite and ferrite plates along the wire’s axial direction is preferred. Due to the low 

anisotropy of cementite surface energy, fabrication of aligned pearlite is possible by control 

the external field gradient. In fabrication of nanostructured grain pearlite steel wire, carbon 

diffusion within cementite during spheroidization and from cementite to the interface of 

ferrite grains plays an important role in nanoscale lamellar to grain transformation. The 

diffusion is affected by mechanical, thermal and electrical heterogeneities.        
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