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Abstract

Set differential equations are usually formulated in terms of the
Hukuhara differential. As a consequence, the theory of set differential
equations is perceived as an independent subject, in which all results
are proved within the framework of the Hukuhara calculus.

We propose to reformulate set differential equations as ordinary
differential equations in a Banach space by identifying the convex and
compact subsets of Rd with their support functions. Using this rep-
resentation, standard existence and uniqueness theorems for ordinary
differential equations can be applied to set differential equations. We
provide a geometric interpretation of the main result, and we demon-
strate that our approach overcomes the heavy restrictions the use of
the Hukuhara differential implies for the nature of a solution.
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1 Introduction

A set differential equation is an equation of the form

DHA(t) = f(t, A(t)), A(0) = A0, (1)
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where t 7→ A(t) is a curve in the space Kc(Rd) of nonempty convex and
compact subsets of Rd, the right-hand side is a mapping

f : [0, T ]×Kc(Rd)→ Kc(Rd),

and DHA(t) is the so-called Hukuhara differential of the curve at t ∈ (0, T ).
Set differential equations have been investigated in a considerable number
of papers. For an overview of the literature we refer to [11]. The usage of
the Hukuhara differential in (1) implies heavy restrictions for the nature of
a solution, which can, e.g., only grow in diameter, but not shrink, see [11,
Proposition 1.6.1].

Recently, there have been attempts to modify the underlying Hukuhara
difference with the aim to allow for a more flexible behavior of solution
curves, see [13, 14] and the references therein. The resulting differential
is called the second type Hukuhara differential. In this setting, solution
curves of (1) can shrink, but not grow. There exist, however, curves in
Kc(Rd) with d ≥ 2, which expand in some space directions and contract in
others simultaneously. Both Hukuhara-based approaches fail to capture this
behavior.

The Hukuhara differential is not the only approach to handle set evolu-
tions. In particular, we would like to mention an abstract framework named
Mutational Analysis, which has been presented in [1] and further developed
in [12]. It generalizes evolution equations from vector spaces to metric spaces
and can not only handle evolutions in Kc(Rd), but also in spaces of more
general sets such as the compact subsets of Rd.

The aim of the present paper is to show that a large family of evolutions
in Kc(Rd), containing the problems investigated in [11] and [13, 14], can be
written and treated as ordinary differential equations in a Banach space with
the usual Frechet derivative in time. We do not apply the apparatus from
[1] and [12], but obtain very satisfactory results by exploiting the intrinsic
features of of Kc(Rd).

Identifying convex sets with their support functions yields an embedding
of the space Kc(Rd) into the Banach space C(Sd−1) of continuous real-valued
functions on the sphere, see [9]. As it is well-known that any Hukuhara dif-
ferentiable curve is Frechet differentiable in support function representation,
see [3, Lemma 4.1], it seems natural to consider set differential equations in
support function representation

d
dtσA(t) = f(t, σA(t)), σA(0) = σA0 , (2)
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where t 7→ A(t) is a curve in Kc(Rd), t 7→ σA(t) is a curve in C(Sd−1), and
d
dtσA(t) is the Frechet differential of the curve at t ∈ (0, T ).

There are some technical difficulties when standard results on ordinary
differential equations are applied to equations of type (2). As we have to
guarantee that solutions stay in the manifold Σ ⊂ C(Sd−1) of all support
functions associated with sets from Kc(Rd), we have to understand the struc-
ture of the tangent cone TΣ(σ) to Σ at any σ ∈ Σ. To transfer existence and
uniqueness theorems for ordinary differential equations in Banach spaces
with non-Lipschitz right-hand side to (2), we need compactness properties
of Σ and a characterization of the semi-inner product on (C(Sd−1), ‖ · ‖∞).
Some of these preliminary results can be taken from the literature, others are
developed in the present paper. In particular, we give a geometric interpre-
tation of the one-sided Lipschitz condition in Kc(Rd), which is a surprisingly
mild condition on the behavior of f .

The organization of the paper is as follows. In Section 2, we collect basic
definitions and the preliminary results mentioned above, which we use in
Section 3 to transfer standard existence and uniqueness results to (2). In
Section 4, we briefly show that second-type Hukuhara differentiable curves
are a special case of (2). The example discussed in Section 5 illustrates that
both Hukuhara approaches fail to capture very simple dynamics in Kc(R2),
while the support function calculus is applicable and yields reasonable solu-
tions.

2 Preliminaries

After introducing basic notation in Section 2.1, we will collect some known
results about support functions and tangent cones in Sections 2.2 and 2.3.
Section 2.4 investigates duality concepts, which are ingredients for standard
results on ordinary differential equations in Banach spaces, in the particular
case of set differential equations.

2.1 Basic definitions

Let R+
0 be the set of all nonnegative real numbers. Throughout this paper,

Sd−1 ⊂ Rd will denote the sphere w.r.t. the Euclidean norm ‖·‖ : Rd → R+
0 ,

and the modulus will be denoted | · | : R→ R+
0 . Let C(Sd−1) be the space of

continuous real-valued functions on Sd−1 equipped with the maximum norm
‖ · ‖∞ : C(Sd−1)→ R+

0 . If (X, ‖ · ‖X) is a normed space, x ∈ X and r > 0,
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then
Br(x) := {x′ ∈ X : ‖x′ − x‖ ≤ r}

is the closed ball of radius r centered at x.
The nonempty compact subsets ofRd will be denotedK(Rd), andKc(Rd)

will stand for the nonempty convex and compact subsets of Rd. For any
λ ∈ R and A,B ∈ K(Rd), let

A+B := {a+ b : a ∈ A, b ∈ B} and λA := {λa : a ∈ A}

denote Minkowski addition and multiplication. For any A,B ∈ Kc(Rd), let

dist(A,B) := sup
a∈A

inf
b∈B
‖a− b‖,

distH(A,B) := max{dist(A,B),dist(B,A)}

denote the one-sided and the symmetric Hausdorff distance. For a, b ∈ Rd,
we write dist(a,B) and dist(A, b) instead of dist({a}, B) and dist(A, {b}).
The projection of a point a ∈ Rd to a set B ∈ K(Rd) is the nonempty set

projB(a) := {b ∈ B : ‖a− b‖ = dist(a,B)}.

When B ∈ Kc(Rd), then a 7→ projB(a) is a single-valued mapping, see [5,
Lemma 7.3], and it follows from [5, Proposition 7.4] that this mapping is
1-Lipschitz.

We associate convex and compact subsets A ∈ Kc(Rd) with their support
functions

σA : Sd−1 → R, σA(p) := sup
a∈A
〈p, a〉.

Sometimes, it is useful to consider their positive homogeneous extensions

σ̄A : Rd → R, σA(p) := sup
a∈A
〈p, a〉,

which obviously coincide with σA(·) on Sd−1. We define

Σ(Rd) := {σA : A ∈ Kc(Rd)}

to be the set of all support functions of convex and compact subsets of Rd,
and we set

Σ̂(Rd) := Σ(Rd)− Σ(Rd) = {σA − σB : A,B ∈ Kc(Rd)}.
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2.2 Elementary facts about support functions

The following proposition is Corollary 13.2.2 from [15].

Proposition 1. A bounded function σ : Sd−1 → R is a support function
of some A ∈ Kc(Rd) if and only if its positive homogeneous extension σ̄ :
R
d → R is convex.

Recall that every convex function σ̄ : Rd → R is continuous (see [15,
Theorem 10.1]). We may therefore interpret the set Σ(Rd) of all support
functions as a subset of C(Sd−1).

The following facts are well-known (see [9, 10]).

Proposition 2. If A,B ∈ Kc(Rd) and λ ≥ 0, then

a) σA+B = σA + σB and σλA = λσA,

b) dist(A,B) = maxp∈B1(0)

(
σ̄A(p)− σ̄B(p)

)
,

c) distH(A,B) = maxp∈Sd−1 |σA(p)− σB(p)|.

In particular, Σ(Rd) is a convex subcone of C(Sd−1).

The cone Σ(Rd) is locally compact.

Proposition 3. The cone Σ(Rd) is closed as a subset of C(Sd−1), and for
any σ ∈ Σ(Rd) and r > 0, the intersection Σ(Rd) ∩ Br(σ) ⊂ C(Sd−1) is
compact w.r.t. the maximum norm.

Proof. Let σ ∈ C(Sd−1), and let (σn)n∈N ⊂ Σ(Rd) be a sequence of support
functions with ‖σn− σ‖∞ → 0 as n→∞. By Proposition 1, the extensions
σ̄n are convex. Hence, we have for any λ ∈ [0, 1] and x, y ∈ Rd that

σ̄(λx+ (1− λ)y)←σ̄n(λx+ (1− λ)y)

≤λσ̄n(x) + (1− λ)σ̄(y)→ λσ̄(x) + (1− λ)σ̄(y)

as n → ∞, so that σ̄ is convex. Therefore, Prosition 1 implies that σ ∈
Σ(Rd).

By Blaschke’s selection theorem, see [8, Chapter 4], the set Σ(Rd) ∩
B‖σ‖∞+r(0) is compact. As Σ(Rd) ∩ Br(σ) is the intersection of two closed

sets, it is a closed subset of the compact set Σ(Rd)∩B‖σ‖∞+r(0), and hence
compact.
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2.3 Tangent cones

We are interested in C(Sd−1)-valued solutions of differential equations that
do not leave Σ(Rd). The concept of tangency is central for existence theo-
rems under state constraints.

Definition 4. Let X be a normed space, K ⊂ X a set and x ∈ K. Then
the tangent cone to K at x is given by

TK(x) := {v ∈ X : lim inf
h↘0

h−1 dist(x+ hv,K) = 0}.

The following proposition is Lemma 4.2.5 in [2]. It will later be used to
characterize tangency to the convex cone Σ(Rd).

Proposition 5. If X is a normed space and K ⊂ X is a convex cone, then
TK(x) = K +Rx for all x ∈ K.

2.4 The semi-inner product for support functions

In Section 3, we will apply a uniqueness theorem for ordinary differential
equations in Banach spaces to set differential equations in support function
representation. Its main ingredient is a one-sided Lipschitz condition, which
is given in terms of a so-called semi-inner product. Therefore, we investigate
in the present paragraph how this product acts on Σ̂(Rd) ⊂ C(Sd−1) and
what this action means for the corresponding elements of Kc(Rd).

Definition 6. For any Banach space X with dual space X∗, the duality map
J : X ⇒ X∗ is given by

J(x) = {x∗ ∈ X∗ : x∗(x) = ‖x‖2X = ‖x∗‖2X∗}.

The mapping 〈·, ·〉− : X ×X → R defined by

〈x, y〉− = inf{y∗(x) : y∗ ∈ J(y)}

is called a semi-inner product.

Consider the Banach space X = C(M), where M is a compact metric
space and C(M) denotes the space of all continuous real-valued functions
on M equipped with the maximum norm. Let B(M) denote space of all
signed Borel measures on M , and let B(M)+ denote space of all positive
Borel measures on M .
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Proposition 7 (Jordan decomposition). For any µ ∈ B(M), there exists a
unique pair (µP , µN ) ∈ B+(M)×B+(M) supported on Borel sets P,N ⊂M
such that µ = µP − µN and M is the disjoint union of P and N .

For a proof, see Theorem 10 and Corollary 11 in Section III.4 of [7].
As a consequence, the total variation of a signed Borel measure is well-

defined.

Definition 8. The total variation of a Borel measure µ ∈ B(Rd) with Jor-
dan decomposition µP + µN = µ with associated Borel sets P ∪ N = M is
defined by

|||µ||| := µP (P ) + µN (N).

It is well-known that the dual space of (C(M), ‖ · ‖∞) is (B(M), |||·|||),
which follows from the Riesz representation theorem, see Theorem IV.6.3 in
[7].

We will now characterize the duality map on C(M). For a given function
f ∈ C(M), we define the sets

EPf = {x ∈M : f(x) = ‖f‖∞}, ENf = {x ∈M : f(x) = −‖f‖∞}

on which f attains its maximal modulus. Clearly, EPf ∪ENf 6= ∅. Note that

either EPf ∩ENf = ∅ or EPf ∩ENf = M , which happens if and only if f ≡ 0.

Proposition 9. Let M be a compact metric space, let f ∈ C(M) and let
µ ∈ B(M). Then µ ∈ J(f) if and only if

|||µ||| = ‖f‖∞ (3)

and the Jordan decomposition of µ satisfies

µP (M \ EPf ) = 0 = µN (M \ ENf ). (4)

Proof. Let µ ∈ J(f). Then, clearly, (3) holds. Moreover, if

µP (M \ EPf ) + µN (M \ ENf ) > 0,

then

µ(f) =

∫
P
fdµP −

∫
N
fdµN

<
(
µP (EPf ) + µP (M \ EPf ) + µN (ENf ) + µN (M \ ENf )

)
‖f‖∞

= |||µ|||‖f‖∞ = ‖f‖2∞,
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which contradicts µ(f) = ‖f‖2∞. Hence (4) holds.
On the other hand, if (3) and (4) hold, then

µ(f) =

∫
EPf

fdµP −
∫
ENf

fdµN

=
(
µP (EPf ) + µN (ENf )

)
‖f‖∞ = |||µ|||‖f‖∞ = ‖f‖2∞,

so that µ ∈ J(f).

The following proposition provides an explicit formula for the semi-inner
product on C(M).

Proposition 10. Let M be a compact metric space and let f, g ∈ C(M).
Then

〈f, g〉− = ‖g‖∞min{min
x∈EPg

f(x), min
x∈ENg

−f(x)}

with the convention min ∅ =∞.

Note that EPg = ∅ = ENg is impossible, and that therefore the right-hand
side is finite.

Proof. Since g is continuous, the sets EPg and ENg are nonempty and com-

pact. Since f is continuous, it attains its minimum over EPg at some xPg ∈ EPg
and its maximum over ENg at some xNg ∈ ENg . As the Dirac measures δxPg
and δxNg satisfy δxPg ∈ B(M)+ and δxNg ∈ B(M)+, and because of

δxPg (M \ EPg ) = 0 = δxNg (M \ ENg )

and ‖δxPg ‖ = ‖δxNg ‖ = 1, Proposition 9 implies ‖g‖∞δxPg ∈ J(g) and−‖g‖∞δxNg ∈
J(g). Therefore, Proposition 9 yields

〈f, g〉− = inf{µ(f) : µ ∈ J(g)} ≤ ‖g‖∞min{δxPg (f),−δxNg (f)}

= ‖g‖∞min{f(xPg ),−f(xNg )} = ‖g‖∞min{min
x∈EPg

f(x),− max
x∈ENg

f(x)}.

It is easy to see that no µ ∈ J(g) yields a lower value.

When X = C(Sd−1) and A,B ∈ Kc(Rd), explicit expressions for the sets
EPσA−σB and ENσA−σB can be obtained using the following proposition about
variational inequalities.
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Proposition 11. Let A ∈ Kc(Rd), a∗ ∈ A and x ∈ Rd. Then

‖x− a∗‖ = dist(x,A) ⇔ 〈x− a∗, a− a∗〉 ≤ 0 for all a ∈ A, (5)

‖a∗ − x‖ = dist(A, x) ⇔ 〈x− a∗, a− a∗〉 ≥ 0 for all a ∈ A. (6)

Proof. Inequality (5) is standard (see e.g. [5, Proposition 7.4]), and (6) can
be obtained by an analogous proof.

We are now in the position to characterize the sets EPσA−σB and ENσA−σB .

Proposition 12. Let A,B ∈ Kc(Rd), and let σA, σB ∈ Σ(Rd) be the corre-
sponding support functions.

a) If A = B, then EPσA−σB = Sd−1.

b) If A ( B, then EPσA−σB = ∅.

c) Let A 6⊂ B. Then for any p ∈ Sd−1, we have p ∈ EPσA−σB if and only
if there exist a∗ ∈ A and b∗ ∈ B such that p = (a∗− b∗)/‖a∗− b∗‖ and

‖a∗ − b∗‖ = dist(a∗, B) = dist(A,B) = distH(A,B). (7)

An analogous statement holds for the set ENσA−σB .

Proof. If A = B, then σA = σB, and hence

EPσA−σB = {p ∈ Sd−1 : σA(p)− σB(p) = ‖σA − σB‖∞} = Sd−1,

which proves a). If A ( B, then ‖σA − σB‖∞ > 0 and σA − σB ≤ 0, so that

EPσA−σB = {p ∈ Sd−1 : σA(p)− σB(p) = ‖σA − σB‖∞} = ∅,

which is b).

Let us show the equivalence c). Let p ∈ EPσA−σB . Using Proposition 2,
we find

distH(A,B) = ‖σA − σB‖∞ = σA(p)− σB(p) = sup
a∈A
〈p, a〉 − sup

b∈B
〈p, b〉

= sup
a∈A

inf
b∈B
〈p, a− b〉 = sup

a∈A
inf
b∈B

cos∠(p, a− b)‖a− b‖

≤ sup
a∈A

cos∠(p, a− projB(a))‖a− projB(a)‖.
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By compactness of A and continuity of the above expression, there exists
a∗ ∈ A such that

distH(A,B) ≤ sup
a∈A

cos∠(p, a− projB(a))‖a− projB(a)‖

= cos∠(p, a∗ − projB(a∗))‖a∗ − projB(a∗)‖
= cos∠(p, a∗ − projB(a∗)) dist(a∗, B)

≤ cos∠(p, a∗ − projB(a∗)) dist(A,B) ≤ dist(A,B).

Hence the above inequalities are, in fact, equalities, which enforces

cos∠(p, a∗ − projB(a∗)) = 1,

0 < distH(A,B) = dist(A,B) = dist(a∗, B).

Therefore, a∗ and b∗ := projB(a∗) ∈ B satisfy (7) and p = (a∗−b∗)/‖a∗−b∗‖.

To show the opposite implication, let a∗ ∈ A and b∗ ∈ B satisfy (7)
and set p = (a∗ − b∗)/‖a∗ − b∗‖. Note that (7) and the assumption A 6⊂ B
guarantee a∗ 6= b∗. Using (6) and (5), we obtain

〈a∗ − b∗, a〉 ≤ 〈a∗ − b∗, a∗〉 for all a ∈ A,
〈a∗ − b∗, b〉 ≤ 〈a∗ − b∗, b∗〉 for all b ∈ B,

so that

sup
a∈A
〈a∗ − b∗, a〉 = 〈a∗ − b∗, a∗〉,

sup
b∈B
〈a∗ − b∗, b〉 = 〈a∗ − b∗, b∗〉.

Hence, using Proposition 2, we find

σA(p)− σB(p) = sup
a∈A
〈p, a〉 − sup

b∈B
〈p, b〉

= 1
‖a∗−b∗‖

(
sup
a∈A
〈a∗ − b∗, a〉 − sup

b∈B
〈a∗ − b∗, b〉

)
= 1
‖a∗−b∗‖

(
〈a∗ − b∗, a∗〉 − 〈a∗ − b∗, b∗〉

)
= ‖a∗ − b∗‖ = distH(A,B) = ‖σA − σB‖∞,

so that p ∈ EPσA−σB .
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3 Existence and uniqueness of solutions

In this section we apply standard existence and uniqueness results for the
initial value problem

x′(t) = f(t, x(t)), x(0) = x0, (8)

on a real Banach space X to the particular case of set differential equations
in support function representation (2). We first collect the necessary termi-
nology and state a standard existence and uniqueness result for differential
equations in Banach spaces from [6].

Definition 13. Let X be a Banach space, and let D(X) be the family of
all bounded subsets of X. The Kuratowski measure of non-compactness α :
D(X)→ R is defined by

α(A) = inf{d > 0 : A admits a finite covering by sets of diameter ≤ d}.

Definition 14 introduces standard classes of growth functions from [6].
The symbol D− denotes the Dini derivative

D−ρ(t) = lim inf
h↘0

h−1(ρ(t+ h)− ρ(t))

of functions ρ : R→ R.

Definition 14. We distinguish the following classes of growth functions.

(U0) A continuous function ω : R+
0 → R

+
0 is said to be of class U0 if the

initial value problem

ρ′ = ω(ρ), ρ(0) = 0

possesses only the trivial solution.

(U1) Let b > 0. A function ω : (0, b] × R+
0 → R is said to be of class U1 if

for each ε > 0 there is a δ > 0, a sequence ti → 0+ and a sequence of
continuous functions ρi : [ti, b]→ R+

0 such that

a) ρi(ti) ≥ δti for all i ∈ N,

b) 0 < ρi(t) ≤ ε for all i ∈ N and t ∈ (ti, b],

c) there exists a sequence (δi)i∈N with δi > 0 such that D−ρi(t) ≥
ω(t, ρi(t)) + δi for all i ∈ N and t ∈ (ti, b].
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The following existence and uniqueness theorem is an excerpt of [6, The-
orem 4.1] applied in the present context.

Theorem 15. Let (X, ‖ · ‖X) be a Banach space, and let D ⊂ X, x0 ∈ D
and r > 0 be such that Dr := D ∩ Br(x0) is closed and convex. Let c > 0,
let f : [0, T ]×Dr → X be a continuous function satisfying

‖f(t, x)‖X ≤ c for all t ∈ [0, T ], x ∈ Dr,

and let b := min{T, r/c}. Suppose that the subtangent condition

f(t, x) ∈ TD(x) for all t ∈ [0, b], x ∈ ∂D ∩Br(x0)

holds. Then the initial value problem (8) has a solution ϕ : [0, b] → Dr

provided one of the following additional conditions is satisfied:

a) There exists a function ω : R+
0 → R

+
0 of class U0 such that

α(f([0, b]×A)) ≤ ω(α(A)) for all A ⊂ Dr.

b) There exists a function ω : (0, b]×R+ → R+ of class U1 such that

〈f(t, x)− f(t, y), x− y〉− ≤ ω(t, ‖x− y‖X)‖x− y‖X

for all t ∈ [0, b] and x, y ∈ Dr.

In case b), the solution is unique.

When adapting Theorem 15 to set differential equations, we will fre-
quently use the version

f(t, σ) ∈ Σ(Rd)−R+
0 σ for all t ∈ [0, T ], σ ∈ Σ(Rd), (9)

of the subtangent condition to ensure that solutions do not leave the cone
Σ(Rd) associated with Kc(Rd).

Our first result is a Peano type theorem.

Theorem 16. Let f : [0, T ]×Σ(Rd)→ Σ̂(Rd) be a continuous function, let
A0 ∈ Kc(Rd), and let r > 0. Then there exists c > 0 such that

‖f(t, σ)‖∞ ≤ c for all t ∈ [0, T ], σ ∈ Dr = Σ(Rd) ∩Br(σA0). (10)

Let b := min{T, r/c}. If, in addition, the subtangent condition (9) holds,
then there exists a solution σ : [0, b] → Dr of the set differential equation
(2) in support function representation.

12



Proof. Since balls defined in the maximum norm are always convex and
Σ(Rd) is a convex cone, the intersection Dr is convex. By Proposition 3,
the set Dr is compact, and the existence of some c > 0 such that (10) holds
is implied by the continuity of f . By Proposition 5, condition (9) implies

f(t, σ) ∈ TΣ(Rd)(σ) for all t ∈ [0, b], σ ∈ Dr.

By compactness of Dr and continuity of f , the image f([0, T ] × Dr) is
compact, and hence we have

α(f([0, T ]×A)) = 0 = α(A) for all A ⊂ Dr,

so that the compactness assumptions of Theorem 15a) are trivially satisfied
with ω(ρ) = ρ of class U0.

The next result is a Picard-Lindelöf type statement.

Theorem 17. Let A0 ∈ Kc(Rd), and let f : [0, T ] × Σ(Rd) → Σ̂(Rd) be
continuous and Lipschitz continuous in its second argument, i.e. we assume
that there exists L > 0 such that

‖f(t, σA)− f(t, σB)‖∞ ≤ L‖σA − σB‖∞ = LdistH(A,B)

for all A,B ∈ Kc(Rd). If, in addition, f satisfies condition (9), then there
exists a unique solution σ : [0, T ]→ Σ(Rd) of (2).

Proof. As f is continuous and [0, T ] is compact, we have

κ := sup
t∈[0,T ]

‖f(t, σA0)‖∞ <∞,

and Lipschitz continuity of f yields

cr := sup
t∈[0,T ], σ∈Br(σA0

)∩Σ(Rd)

‖f(t, σ)‖∞ ≤ Lr + κ.

Because of

〈f(t, σ)− f(t, σ̃), σ − σ̃〉− = inf
µ∈J(σ−σ̃)

µ(f(t, σ)− f(t, σ̃))

≤ inf
µ∈J(σ−σ̃)

|||µ|||‖f(t, σ)− f(t, σ̃)‖∞ ≤ L‖σ − σ̃‖2∞

for all t ∈ [0, T ] and σ, σ̃ ∈ Σ(Rd), and by the arguments in the preceding
proof, all assumptions of Theorem 15b) are verified with r = 1, c = c1 and
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ω(t, s) = Ls, so there exists a unique solution σ0(·) : [0, b0] → Σ(Rd) ∩
B1(σA0) of (2) with b0 := min{T, 1/(L + κ)}. If 1/(L + κ) < T , the same
argument yields a unique solution σ1(·) : [b0, b0 + b1]→ Σ(Rd) ∩B1(σ0(b0))
of the set differential equation with b1 := min{T − b0, 1/(2L+ κ)}.

Assume that b0 + b1 < T and that this construction can be repeated
indefinitely with

∑N
k=0 bk < T for all N ∈ N. But then

T ≥
∞∑
k=0

bk =
∞∑
k=0

1
kL+κ =∞,

which is a contradiction. Hence there exists a smallest index N ∈ N such
that bN = T . Concatenating the unique solutions σ0, . . . , σN yields a unique
solution σ : [0, T ]→ Σ(Rd) of (8) on the entire interval [0, T ].

In contrast to the Picard-Lindelöf type result above, the following state-
ment fully exploits Theorem 15b) and the considerations from Section 2.4.
Roughly speaking, it states that uniqueness of the solution can be guar-
anteed by controlling the relative velocity f(t, σA) − f(t, σB) for two sets
A,B ∈ Kc(Rd) in only one critical direction that is given by a pair (a, b) ∈
A×B which realizes the Hausdorff distance of A and B.

Theorem 18. Let f : [0, T ] × Σ(Rd) → Σ̂(Rd) be continuous, let A0 ∈
Kc(Rd), and let r > 0. Let b, c > 0 and Dr be as in Theorem 16, let

D′r := {A ∈ Kc(Rd) : distH(A,A0) ≤ r},

let ω : (0, T ] × R+ → R be of class U1, and assume that the subtangent
condition (9) holds. If, in addiditon, for any t ∈ [0, b] and A,B ∈ D′r with
A 6= B, there exist a ∈ A and b ∈ B such that p := (a − b)/‖a − b‖ is
well-defined and one of the conditions

‖a− b‖ = dist(a,B) = dist(A,B) = distH(A,B),

f(t, σA)(p)− f(t, σB)(p) ≤ ω(t,distH(A,B))
(11)

and

‖a− b‖ = dist(b, A) = dist(B,A) = distH(A,B),

f(t, σB)(−p)− f(t, σA)(−p) ≤ ω(t,distH(A,B))
(12)

is satisfied, then there exists a unique solution σ : [0, b]→ Dr of (2).

The geometric principle behind conditions (11) and (12) is depicted in
Figure 1 for the case when f(t, σA), f(t, σB) ∈ Σ.
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f(A)(p)

f(B)(p)

v
B

A

f(A)

f(B)

Figure 1: Illustration of the geometric condition in Theorem 18 in an impor-
tant special case. Let t ∈ (0, T ) and assume that there exist Ã, B̃ ∈ Kc(Rd)
such that σÃ = f(t, σA) and σB̃ = f(t, σB). Then the illustration depicts
the relative velocity vr(p) = f(t, σA)(p)−f(t, σB)(p) in the critical direction
p = (a− b)/‖a− b‖.

Proof. By Theorem 16, we know that the desired solution exists. According
to Theorem 15b), to ensure uniqueness, we need to verify that

〈f(t, σA)− f(t, σB), σA − σB〉− ≤ ω(t, ‖σA − σB‖∞)‖σA − σB‖∞

for any t ∈ (0, b] and σA, σB ∈ Dr. By Proposition 10 this is true if and only
if for any t ∈ (0, b] and σA, σB ∈ Dr, at least one of the inequalities

min
p∈EPσA−σB

(f(t, σA)(p)− f(t, σB)(p)) ≤ ω(t,distH(A,B)),

min
p∈EPσB−σA

(f(t, σB)(p)− f(t, σA)(p)) ≤ ω(t,distH(A,B))

is satisfied. If σA 6= σB, this is, according to Proposition 12, ensured by
conditions (11) and (12), which can be checked by addressing all possible
relations A ( B, B ( A and A 6⊂ B ∧ B 6⊂ A between the sets A and B
separately. If σA = σB, both inequalities are obviously valid.
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4 Hukuhara-type differentials

In this section, we clarify that curves A : [0, T ] → Kc(Rd), which are sec-
ond type Hukuhara differentiable, are time-reversed Hukuhara differentiable
curves with the same derivative up to sign change. This insight has some
important consequences.

i) As Hukuhara differentiable curves can only grow in diameter, see [11,
Proposition 1.6.1], second type Hukuhara differentiable curves can only
shrink in diameter, as claimed in the introduction.

ii) As the support function representation of Hukuhara differentiable curves
is Frechet differentiable, see [3, Lemma 4.1], this also holds for sec-
ond type Hukuhara differentiable curves. Furthermore, by the same
lemma, the Hukuhara and the second type Hukuhara differentials of
a curve coincide with its Frechet differential (up to a sign change),
whenever the Hukuhara type differentials exist. Therefore, set dif-
ferential equations based on both types of Hukuhara derivatives are
special cases of the support function approach we presented.

The notions of Hukuhara difference and Hukuhara differential are stan-
dard. The concept of generalized or second type Hukuhara differentials
goes back to [4]. Their use for set differential equations was investigated in
[13, 14].

Definition 19. (Hukuhara differences and differentials)

a) Let A,B ∈ Kc(Rd). If there exists C ∈ Kc(Rd) such that A = B + C,
then C is called the Hukuhara difference between A and B, and we
denote C = A	H B.

b) A curve A : [0, T ] → Kc(Rd) is called Hukuhara differentiable at t ∈
(0, T ) with Hukuhara differential DHA(t) ∈ Kc(Rd) if the limits

lim
h↘0

h−1
(
A(t+ h)	H A(t)

)
, lim

h↘0
h−1

(
A(t)	H A(t− h)

)
w.r.t. Hausdorff distance exist and equal DHA(t).

c) A curve A : [0, T ] → Kc(Rd) is called second type Hukuhara differen-
tiable at t ∈ (0, T ) with differential D∗HA(t) ∈ Kc(Rd) if the limits

lim
h↘0

(−h)−1
(
A(t)	H A(t+ h)

)
, lim

h↘0
(−h)−1

(
A(t− h)	H A(t)

)
w.r.t. Hausdorff distance exist and equal D∗HA(t).
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The following proposition shows that second type Hukuhara differen-
tiable curves are precisely those curves that are Hukuhara differentiable in
the ordinary sense after time reversal.

Proposition 20. Let A : [0, T ]→ Kc(Rd) be a curve, and let B : [−T, 0]→
Kc(Rd) be given by B(t) = A(−t). Then A is second type Hukuhara differ-
entiable at t ∈ (0, T ) if and only if B is Hukuhara differentiable at −t in the
usual sense. In that case, the respective differentials satisfy

D∗HA(t) = −DHB(−t).

Proof. The statement follows immediately from the identities

lim
h↘0

(−h)−1
(
A(t)	H A(t+ h)

)
= − lim

h↘0
h−1

(
B(−t)	H (B(−t− h))

)
,

lim
h↘0

(−h)−1
(
A(t− h)	H A(t)

)
= − lim

h↘0
h−1

(
B(−t+ h)	H B(−t)

)
for the Hausdorff limits.

5 Example

We conclude our paper with a simple, but instructive example, which il-
lustrates that the usefulness of both types of Hukuhara derivative depends
not only on the equation, but even on the initial value. Consider the set
differential equation

d
dtσA(t) = σQ − σA(t), σA(0) = σA0 (13)

in Kc(R2) with Q = [−1, 1]2 and A0 = [a1, b1]× [a2, b2] ⊂ R2. The curve

A(t) = e−tA0 + (1− e−t)Q (14)

is a solution of (13), because

d
dtσA(t) = e−t(σQ − σA0) = σQ − σA(t).

By Theorem 17, the solution is unique. Clearly, the set Q is a globally
asymptotically stable fixed point.

By [3, Lemma 4.1], any Hukuhara differentiable solution of the reformu-
lation

DHA(t) = Q	H A(t), A(0) = A0 (15)
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Figure 2: Solutions to set differential equation (13) with three different
initial values. The rectangles in the frames on the left are the values A(t),
t = 0, 1

4 ,
1
2 ,

3
4 , . . ., of the solutions. The rectangles in the top right frame are

the Hukuhara differentials DHA(t), and the rectangles in the second frame
on the right are the second type Hukuhara differentials D∗HA(t) at the same
time points. The bottom right frame is empty, because the third solution
curve is neither Hukuhara nor second type Hukuhara differentible.
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Figure 3: Solutions from Figure 2 and the corresponding differentials in
support function representation. The differentials of the third curve cannot
be interpreted as sets, but are well-defined as elements of Σ̂(Rd).
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of (13) in set notation must coincide with this curve. Note that for many
A ∈ Kc(R2), the right-hand side Q 	H A of (15) is not well-defined. Since
σQ − σA0 ∈ Σ(Rd) if and only if

max{b1 − a1, b2 − a2} ≤ 2, (16)

there does not exist a Hukuhara differentiable solution if this condition is
violated. A computation shows that (16) is sufficient for (14) being a solution
of first Hukuhara type.

Proposition 20, however, shows that the curve (14) can only be a second
type Hukuhara solution, if σQ − σA0 ∈ −Σ(Rd), which is equivalent with

min{b1 − a1, b2 − a2} ≥ 2, (17)

and condition (17) is sufficient for (14) being a solution of second Hukuhara
type.

Figures 2 and 3 display solutions of (13) with three different initial values
A1

0 = [2, 3]× [1, 2], A2
0 = [0, 3.5]× [−1.5, 2.5] and A3

0 = [−1.5, 3.5]× [−0.5, 0].
Figure 2 depicts the sets as such on the left. It is clearly visible that

distH(A(t), Q)→ 0 as t→∞. The first curve is Hukuhara, but not second
type Hukuhara differentiable, and the Hukuhara differentials are plotted
in the top right subplot. The second curve is second type Hukuhara, but
not Hukuhara differentiable, and the second type Hukuhara differentials are
plotted in the middle of the right column. In both cases, the differentials
converge to {0} when the state approaches Q. The third curve is neither
Hukuhara nor second type Hukuhara differentiable, because it shrinks in the
direction of the first and grows in the direction of the second axis.

Figure 3 depicts the same three curves in support function representa-
tion. The left column shows the evolution of the support functions, while
the right column shows the Frechet differentials along that curve. In this
representation, the third curve can be treated as any other. The fact, that its
differentials are elements of Σ̂(Rd) \Σ(Rd) causes no problems. In all three
cases, the derivatives converge to the zero function as the state approaches
the equilibrium.

We conclude that both types of Hukuhara differentiability only yield
solutions for very special initial conditions, while the support function ap-
proach yields a solution that exhibits the expected behavior for any initial
condition without any technical complications.
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