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Abstract In this paper, we propose the notion of continuous-time dynamic spectral
risk measure (DSR). Adopting a Poisson random measure setting, we define this class
of dynamic coherent risk measures in terms of certain backward stochastic differen-
tial equations. By establishing a functional limit theorem, we show that DSRs may
be considered to be (strongly) time-consistent continuous-time extensions of iterated
spectral risk measures, which are obtained by iterating a given spectral risk measure
(such as expected shortfall) along a given time-grid. Specifically, we demonstrate
that any DSR arises in the limit of a sequence of such iterated spectral risk measures
driven by lattice random walks, under suitable scaling and vanishing temporal and
spatial mesh sizes. To illustrate its use in financial optimisation problems, we analyse
a dynamic portfolio optimisation problem under a DSR.

Keywords Spectral risk measure · Dynamic risk measure · g-expectation · Choquet
expectation · Distortion · (Strong) Time-consistency · Limit theorem · Dynamic
portfolio optimisation

Mathematics Subject Classification (2010) 60H10 · 91B30

JEL Classification G32

B M. Pistorius
m.pistorius@imperial.ac.uk

D. Madan
dbm@rhsmith.umd.edu

M. Stadje
mitja.stadje@uni-ulm.de

1 Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA

2 Department of Mathematics, Imperial College London, London SW7 2AZ, UK

3 Faculty of Mathematics and Economics, Universität Ulm, Ulm, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00780-017-0339-1&domain=pdf
mailto:m.pistorius@imperial.ac.uk
mailto:dbm@rhsmith.umd.edu
mailto:mitja.stadje@uni-ulm.de


D. Madan et al.

1 Introduction

Financial analysis and decision making rely on quantification and modelling of future
risk exposures. A systematic approach for the latter was put forward in [2], laying the
foundations of an axiomatic framework for coherent measurement of risk. A sub-
sequent breakthrough was the development and application of the notion of back-
ward stochastic differential equations (BSDEs) in the context of risk analysis, which
gave rise to the (strongly) time-consistent extension of coherent risk measures to
continuous-time dynamic settings [39, 42]. Building on these advances, we consider
in this article a new class of such continuous-time dynamic coherent risk measures,
which we propose to call dynamic spectral risk measures (DSRs).

Quantile-based coherent risk measures, such as expected shortfall, belong to the
most widely used risk measures in risk analysis, and are also known as spectral risk
measures, Choquet expectations (based on probability distortions) and weighted VaR;
see [1, 11, 34, 48]. In order to carry out for instance an analysis of portfolios in-
volving dynamic rebalancing, one is led to consider the (strongly) time-consistent
extension of such coherent risk measures to given time-grids, which are defined by
iterative application of the spectral risk measure along these particular grids. Due to
its continuous-time domain of definition, a DSR is, in contrast, independent of a grid
structure. While the latter holds for any continuous-time risk measure, we show that
DSRs emerge as the limits of such iterated spectral risk measures when the time-step
vanishes and under appropriate scaling of the parameters, by establishing a functional
limit theorem.

To explore its use in financial decision problems, we consider subsequently a dy-
namic portfolio optimisation problem under DSR, which we analyse in terms of its
associated Hamilton–Jacobi–Bellman (HJB) equation. In the case of a long-only in-
vestor (who is allowed neither to borrow nor to short-sell stocks), we identify explic-
itly dynamic optimal allocation strategies.

DSR, like any dynamic risk measure obtained from a BSDE, is (strongly) time-
consistent in the sense that if the value of a random variable X is not larger than
Y under DSR at time t almost surely, then the same relation holds at earlier times
s < t . For dynamic risk measures, the property of strong time-consistency is well
known to be equivalent to recursiveness, a tower-type property which is referred to
as filtration-consistency in [15]. Such concepts have been investigated extensively in
the literature; among others, we mention [3, 10, 14, 16, 25, 30, 31, 40]. For studies
on weaker forms of time-consistency, we refer to [41, 47, 49].

The notion of strong time-consistency in economics goes back at least as far as
[46] and has been standard in the economics literature ever since; see for instance [9,
20, 23, 24, 27, 32, 33].

Due to their recursive structure, financial optimisation problems, such as utility
optimisation under the entropic risk measure and related robust portfolio optimisa-
tion problems, satisfy the dynamic programming principle and admit time-consistent
dynamically optimal strategies (see for instance [5, 36] and references therein). In
Sect. 6, we demonstrate that this also holds for the optimal portfolio allocation prob-
lem phrased in terms of the minimisation under a DSR, and phrase and solve this
problem via the associated HJB equation.
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For a given DSR, the functional limit theorem that we obtain (see Theorem 5.2)
shows how to construct an approximating sequence of iterated spectral risk measures
driven by lattice random walks, suggesting an effective method to evaluate func-
tionals under a given DSR and solutions to associated PIDEs, by recursively apply-
ing (distorted) Choquet expectations. The functional limit theorem involves a certain
non-standard scaling of the parameters of the iterated spectral risk measures, which is
given in Definition 5.1. The advantage of this approximation method is that it avoids
the (typically nontrivial) task of computing Malliavin derivatives. A numerical study
is beyond the scope of the current paper and left for future research.

While one may prove the functional limit theorem directly through duality argu-
ments, we present in the interest of brevity a proof that draws on the convergence
results obtained in [37] for weak approximation of BSDEs. In the literature, various
related convergence results are available, of which we next mention a number (refer
to [37] for additional references). The construction of continuous-time dynamic risk
measures arising as limits of discrete-time ones was studied in [45] in a Brownian set-
ting. In a more general setting including in addition finitely many Poisson processes,
[35] presents a limit theorem for recursive coherent quantile-based risk measures,
which is proved via an associated nonlinear partial differential equation. In [19], a
Donsker-type theorem is established under a G-expectation.

Contents The remainder of the paper is organised as follows. In Sect. 2, we collect
preliminary results concerning dynamic coherent risk measures and related BSDEs,
adopting a pure jump setting driven by a Poisson random measure. In Sect. 3, we are
concerned with the Choquet-type integrals which appear in the definitions of dynamic
and iterated spectral risk measures. With these results in hand, we phrase the defini-
tion of a DSR in Sect. 4 and identify its dual representation. In Sect. 5, we present
the functional limit theorem for iterated spectral risk measures. Finally, in Sect. 6, we
turn to the study of a dynamic portfolio allocation problems under a DSR.

2 Preliminaries

In this section, we collect elements of the theory of time-consistent dynamic coherent
risk measures and associated BSDEs, in both continuous-time and discrete-time set-
tings. To avoid repetition, we state some results and definitions in terms of the index
set I , which is taken to be either I = [0, T ] or

I = π� := {ti = i�, i = 0, . . . ,N}, with � = T/N,

for some N ∈ N and T > 0.

2.1 Time-consistent dynamic coherent risk measures

On some filtered probability space (Ω,F ,F,P) with F = (Ft )t∈I , we consider risks
described by random variables X ∈ Lp = Lp(FT ), p > 0, the set of FT -measurable
X with E[|X|p] = ∫

Ω
|X|p dP < ∞. We denote by Lp

t = Lp(Ft ) and Lp(G) the
elements X in Lp(F) that are measurable with respect to the sigma-algebras Ft and
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G ⊂ F , respectively, and by L∞, L∞
t , L∞(G) the collections of bounded elements

in Lp , Lp
t and Lp(G). Let S2(I) denote the space of F-adapted semimartingales

Y = (Yt )t∈I that are square-integrable in the sense that ‖Y‖2
S2(I)

< ∞, where

‖Y‖2
S2(I)

:= E

[
sup
t∈I

|Yt |2
]
.

For a given measure μ on a measurable space (U,U), we denote by Lp(μ), p > 0,
the set of Borel functions v :U → R with |v|p,μ < ∞, where

|v|p,μ :=
(∫

U

|v(x)|pμ(dx)

)1/p

,

and by Lp
+(μ) the set of nonnegative elements in Lp(μ).

Dynamic coherent risk measures and (strong) time-consistency are defined in an
L2-setting as follows.

Definition 2.1 A dynamic coherent risk measure ρ = (ρt )t∈I is defined to be a map
ρ : L2 → S2(I) that satisfies the following properties:

(i) (cash invariance) for m ∈ L2
t , ρt (X + m) = ρt (X) − m;

(ii) (monotonicity) for X,Y ∈ L2 with X ≥ Y , ρt (X) ≤ ρt (Y );
(iii) (positive homogeneity) for X ∈ L2 and λ ∈ L∞

t , ρt (|λ|X) = |λ|ρt (X);
(iv) (subadditivity) for X,Y ∈ L2, ρt (X + Y) ≤ ρt (X) + ρt (Y ).

Definition 2.2 A dynamic coherent risk measure ρ is called (strongly) time-
consistent if either of the following holds:

(v) (strong time-consistency) for X,Y ∈ L2 and s, t with s ≤ t , ρt (X) ≤ ρt (Y ) im-
plies ρs(X) ≤ ρs(Y );

(vi) (recursiveness) for X ∈ L2 and s, t with s ≤ t , ρs(ρt (X)) = ρs(X).

More generally, a map ρ : L2 → S2(I) is called a time-consistent dynamic risk
measure if ρ satisfies conditions (i) and (v). For a proof of the equivalence of (v) and
(vi), we refer to Föllmer and Schied [26, Lemma 11.11]; for a discussion of (the un-
conditional version of) the properties (i)–(iv), see [2, 3]. One way to construct a time-
consistent dynamic risk measure is as solution to an associated backward stochastic
differential equation (BSDE) or backward stochastic difference equation (BS�E). To
ensure that such dynamic risk measures satisfy (iii) and (iv), the corresponding driver
functions must be positively homogeneous, subadditive and should not depend on
the value of the risk measure (see [42, Proposition 11] and [15, Lemma 2.1]). Fur-
thermore, a necessary condition to ensure that a comparison principle (and hence the
monotonicity in (ii)) holds is that the driver function in addition satisfies a gradient
condition (see [17, Theorem 3.2.2]). For background on the notion of strong time-
consistency and its relation to g-expectations, we refer to [6, 7, 39, 42]. Specifically,
in our setting, such driver functions are defined as follows.
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Definition 2.3 For a given Borel measure μ on R
k\{0}, k ∈ N, we call a function

g : I × L2(μ) → R a driver function if for any z ∈ L2(μ), the mapping t 	→ g(t, z)

is continuous (in case I = [0, T ]) and the following holds:

(i) (Lipschitz-continuity) for some K ∈ R+\{0} and any t ∈ I and z1, z2 ∈ L2(μ),

|g(t, z1) − g(t, z2)| ≤ K|z1 − z2|2,μ.

A driver function g is called coherent if the following hold:

(ii) (positive homogeneity) for any r ∈R+, t ∈ I and z ∈ L2(μ), we have

g(t, rz) = rg(t, z);

(iii) (subadditivity) for any t ∈ I and z1, z2 ∈ L2(μ), we have

g(t, z1 + z2) ≤ g(t, z1) + g(t, z2).

(iv) (gradient condition) for any t ∈ I and z1, z2 ∈ L2(μ), we have

g(t, z1) − g(t, z2) ≤
∫

Rk\{0}
δz1,z2(t, x)

(
z1(x) − z2(x)

)
μ(dx),

where the mapping δz1,z2 : [0, T ]×R
k\{0} → (−1,∞) is such that the mapping

t 	→ ∫
Rk\{0} |δz1,z2(t, x)|2μ(dx) is bounded, uniformly in (z1, z2).

If a driver function is convex and positively homogeneous, condition (iv) is satisfied
if the subgradients of g are bounded, uniformly in (t, z) ∈ I ×L2(μ).

We describe next the dynamic (coherent) risk measures defined via BSDEs (if
I = [0, T ]) and BS�Es (if I is a finite partition of [0, T ]).

2.2 Discrete-time lattice setting

We turn first to the discrete-time lattice setting, fixing a uniform partition π = π�

of [0, T ] with � = T/N for some N ∈ N. Let L(π) = (L
(π)
t )t∈π denote a square-

integrable zero-mean random walk starting at zero and taking values in (
√

�Z)k , and
let F(π) = (F (π)

t )t∈π denote the filtration generated by L(π). Furthermore, we let g(π)

be a coherent driver function as in Definition 2.3 with I = π and μ(dx) equal to the
scaled law ν(π)(dx) of �L

(π)
t = L

(π)
t+� − L

(π)
t , t ∈ π\{T }, given by

ν(π)(dx) := 1

�
P[�L

(π)
t ∈ dx], x ∈ (

√
�Z)k. (2.1)

In view of [37, Proposition 3.2], the BS�E for (Y (π),Z(π)) corresponding to the
final value −X(π) ∈ L2(F (π)

T ) and the driver function g(π) takes the form, analogous
to the one in the continuous-time case given in (2.6) below,
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Y
(π)
t = −X(π) +

T −�∑

s=t

g(π)(s,Z(π)
s )�

−
T −�∑

s=t

(
Z(π)

s (�L(π)
s )I{�L

(π)
s �=0} −E

[
Z(π)

s (�L(π)
s )I{�L

(π)
s �=0}

∣
∣F (π)

s

])
(2.2)

for t ∈ π\{T } and with Y
(π)
T = −X(π), where IA denotes the indicator of a set A. In

difference notation, the BS�E (2.2) is for t ∈ π\{T } given by

�Y
(π)
t = −g(π)(t,Z

(π)
t )�

+ Z
(π)
t (�L

(π)
t )I{�L

(π)
t �=0} −E

[
Z

(π)
t (�L

(π)
t )I{�L

(π)
t �=0}

∣
∣F (π)

t

]
(2.3)

with Y
(π)
T = −X(π). A pair (Y (π),Z(π)) is a solution of the BS�E if for any t ∈ π , it

satisfies (2.2) with

Y
(π)
t ∈ L2(F (π)

t ), Z
(π)
t ∈ L

2
t := L2

(
ν(π)(dx) × dP,B

(
(
√

�Z)k
) ⊗F (π)

t

)
.

If the Lipschitz constant K = K(π) of the driver function g(π) is strictly smaller than
the reciprocal 1/� of the mesh size, we can use [37, Propositions 3.1 and 3.2] and
the fact that in the notation of [37] F (π) is independent of W(π), to conclude that
there exists a unique solution (Y (π),Z(π)) to the BS�E which satisfies for t ∈ π the
relations

Y
(π)
t = g(π)(t,Z

(π)
t )� +E

[
Y

(π)
t+�

∣
∣F (π)

t

]
, (2.4)

Z
(π)
t (x) = E

[
Y

(π)
t+�

∣
∣F (π)

t ∨ {�L
(π)
t = x}] −E

[
Y

(π)
t+�

∣
∣F (π)

t ∨ {�L
(π)
t = 0}] (2.5)

for x ∈ (
√

�Z)k , where F (π)
t ∨ {�L

(π)
t = x} := F (π)

t ∨ σ({�L
(π)
t = x}) denotes the

smallest sigma-algebra containing F (π)
t as well as the sigma-algebra σ({�L

(π)
t = x})

generated by the set {�L
(π)
t = x}. In analogy with the continuous-time case (re-

viewed below), the dynamic risk measure associated to the solution to the BS�E is
defined as follows.

Definition 2.4 For a driver function g(π) as in Definition 2.3 with I = π and with
μ(dx) = ν(π) and the solution (Y (π),Z(π)) of the corresponding BS�E (2.2), we

denote by ρg(π),(π) = (ρ
g(π),(π)
t )t∈π the time-consistent dynamic risk measure given

by ρ
g(π),(π)
t : L2(F (π)

T ) → L2(F (π)
t ) with

ρ
g(π),(π)
t (X) = Y

(π)
t .

2.3 Continuous-time setting

In the continuous-time case I = [0, T ], we consider risky positions described by
random variables X that are measurable with respect to FT , where F = (Ft )t∈[0,T ]
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denotes the right-continuous and completed filtration generated by a Poisson random
measure N on [0, T ] × R

k\{0} for some k ∈ N. We suppose throughout that the
associated Lévy measure ν satisfies the following condition:

Assumption 2.5 The Lévy measure ν associated to the Poisson random measure N

has no atoms, and for some ε0 > 0, we have ν2+ε0 ∈R+\{0}, where for p ≥ 0,

νp :=
∫

Rk\{0}
|x|pν(dx).

We denote by Ñ(dt × dx) = N(dt × dx) − ν(dx)dt the compensated Poisson
random measure and by L = (Lt )t∈[0,T ] the (column-vector) Lévy process given by

Lt =
∫

[0,t]×Rk\{0}
xÑ(ds × dx).

Under Assumption 2.5, we have E[|Lt |2+ε0 ] < ∞ for any t ∈ [0, T ] (see [44, Theo-
rem 25.3]).

Let H̃2 denote the set of P̃-measurable square-integrable processes where, with
P denoting the predictable sigma-algebra, P̃ = P ⊗B(Rk\{0}), and let U denote the
Borel sigma-algebra induced by the L2(ν(dx))-norm. In particular, U ∈ H̃2 is such
that ‖U‖H̃2 < ∞, where

‖U‖H̃2 := E

[∫ T

0
|Ut |22,ν dt

]

.

Moreover, let M2 denote the set of probability measures Q = Q
ξ on (Ω,FT ) that

are absolutely continuous with respect to P with square-integrable Radon–Nikodým
derivative ξ ∈ L2+(FT ), and write S2 := S2[0, T ].

Let us next consider a coherent driver function g as in Definition 2.3 with μ = ν

and I = [0, T ] and fix a final condition X ∈ L2. The associated BSDE for the pair
(Y,Z) ∈ S2 × H̃2 is given by

Yt = −X +
∫ T

t

g(s,Zs)ds −
∫

(t,T ]×Rk\{0}
Zs(x) Ñ(ds × dx) (2.6)

for t ∈ [0, T ]. This BSDE, as we recall from [4], admits a unique solution. By com-
bining [38, 43, 42], we have that the BSDE (2.6) gives rise to a dynamic coherent risk
measure as follows.

Definition 2.6 For a given coherent driver function g, the corresponding time-con-
sistent dynamic coherent risk measure ρg = (ρ

g
t )t∈[0,T ] : L2 → S2 is given by

ρ
g
t (X) = Yt ,

where (Y,Z) ∈ S2 × H̃2 solves (2.6).
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Remark 2.7 (i) Let Ld = (Ld
t )t∈[0,T ] be given by Ld

t = dt +Lt for some d ∈R
k . For

random variables X ∈ L2 of the form X = f (Ld
T ) for some function f : Rk → R, the

dynamic coherent risk measure ρg(X) is related to the semilinear PIDE (denoting
v̇ = ∂v

∂t
)

v̇(t, x) + Gv(t, x) + g(t,Dvt,x) = 0, (t, x) ∈ [0, T ) ×R
k, (2.7)

v(T , x) = −f (x), x ∈ R
k, (2.8)

where Dvt,x : Rk → R and Gv(t, x) are given by Dvt,x(y) = v(t, x + y) − v(t, x)

and

Gv(t, x) = dᵀ∇v(t, x) +
∫

Rk\{0}
(
Dvt,x(y) − ∇v(t, x)ᵀy

)
ν(dy),

where ∇v = ( ∂v
∂x1

, . . . , ∂v
∂xk

)ᵀ. Specifically, if v ∈ C1,1([0, T ] × R
k) solves (2.7) and

(2.8) such that ∇v(t, x) is bounded (uniformly in (t, x) ∈ [0, T ] ×R
k), then we have

the stochastic representation

ρ
g
t (X) = E

[

−f (Ld
T ) +

∫ T

t

g(s,Zs)ds

∣
∣
∣
∣Ft

]

= v(t,Ld
t ),

Zt (x) = v(t,Ld
t− + x) − v(t,Ld

t−), x ∈ R
k,

with Ld
0− = Ld

0 . This nonlinear Feynman–Kac result is shown by an application of
Itô’s lemma.

(ii) The risk measure ρg admits a dual representation

ρ
g
t (X) = ess sup

Q∈Sg

E
Q[−X|Ft ] (2.9)

for a certain representing subset Sg of the set M1 of probability measures that are
absolutely continuous with respect to P. The set Sg is convex and closed (see [26,
Theorem 11.22]).

We describe next a representation result for a dynamic risk measure ρg in terms of
the representing processes (Hξ ) of the stochastic logarithms of the Radon–Nikodým
derivatives ξ ∈ L2+(FT ) of the measures Qξ ∈M2, which are given by

ξ = E(Mξ )T , Mξ· =
∫

(0, · ]×Rk\{0}
Hξ

s (x) Ñ(ds × dx),

where E(·) denotes the Doléans-Dade stochastic exponential. A B(Rd) ⊗ U -mea-
surable set family C = (Ct )t∈[0,T ] is called convex or closed if for any t ∈ [0, T ], the
set Ct is convex or closed.

Theorem 2.8 Let g be a coherent driver function. Then for some P ⊗U -measurable
set family Cg that is closed, convex and contains 0, we have for any t ∈ [0, T ] that
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ρ
g
t (X) satisfies (2.9) with

Sg = {Qξ ∈ M1 : Hξ
s ∈ C

g
s for all s ∈ [0, T ]}. (2.10)

Furthermore, the driver function g satisfies for (t, z) ∈ [0, T ] ×L2(ν)

g(t, z) = sup
h∈C

g
t

∫

Rk\{0}
z(x)h(x)ν(dx). (2.11)

The proof follows by an adaptation of the arguments given in [36, Theorem A.25]
and is omitted.

Remark 2.9 (i) Note that two driver functions g1 and g2 are equal if and only if the
corresponding sets Cg1 and Cg2 in the representation (2.11) are equal.

(ii) Let C̄ be a U -measurable subset of L2(ν). If C
g
t = C̄ for all t ∈ [0, T ], then

the corresponding driver function is given by g(t, z) = ḡ(z), where

ḡ(z) = sup
∈C̄

∫

Rk\{0}
z(x)(x)ν(dx), z ∈ L2(ν).

2.4 Convergence

We next turn to the question of convergence of a sequence (ρg(π),(π))π of dynamic
coherent risk measures as in Definition 2.4 when the mesh size � = �π tends to
zero. Let us suppose that (ρg(π),(π))π are driven by the random walks (L(π))π that
are defined as

�L
(π)
t = Jt

√
�, Jt

i.i.d.∼ (p�
j , j ∈ Z

k), t ∈ π\{T }, (2.12)

for some probability distribution (p�
j , j ∈ Z

k) on Z
k that is given, in terms of a

constant c ≥ 1 (to be specified shortly) and a partition (B�
j , j = (j1, . . . , jk) ∈ Z

k) of

(
√

�Z)k into block sets of the form

B�
j =

∏

ji

A�
ji
,

where A�
k = [k√

�,(k + 1)
√

�) if k > 0, A�
k = ((k − 1)

√
�,k

√
�] if k < 0 and

A�
0 = (−√

�,
√

�), by

p�
j = ν(B�

j )�, j ∈ Z
k\C�, (2.13)

p�
j = 0, j ∈ C�\{0}, (2.14)

p�
0 = 1 −

∑

j �=0

p�
j , (2.15)

where

C� = {j ∈ Z
k : |j | ≤ √

c�ν2}, c� = c + (log�)−, (2.16)

where, as before, ν2 = ∫
Rk\{0} |x|2ν(dx).
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When � ↘ 0, we have by the dominated convergence theorem that

E
[
(L

(π),r
T + L

(π),s
T )2] −→ T

∫

Rk\{0}
(xr + xs)

2ν(dx), r, s ∈ {1, . . . , k},

where L
(π),m
T and xm, m ∈ {1, . . . , k}, denote the mth coordinates of L

(π)
T and x ∈R

k .
Moreover, we have by functional weak convergence theory (see e.g. [29, Theo-

rem VII.3.7])

L(π) d−→ L as � ↘ 0,

where
d−→ denotes convergence in law in the Skorokhod J1-topology on the space

D([0, T ],Rk) of Rk-valued RCLL functions.
On a suitably chosen probability space, L

(π)
T converges to LT almost surely as

� ↘ 0. The latter convergence also holds in a stronger sense thanks to moment con-
ditions satisfied by L

(π)
T that we show next. We define the value of c in terms of

ε0 > 0 given in Assumption 2.5 by

c = sup
x,y∈Rk

|x + y|2+ε0 ∨ 1

(|x|2+ε0 ∨ 1)(|y|2+ε0 ∨ 1)
. (2.17)

Lemma 2.10 The collection (L(π))π of random walks defined in (2.12)–(2.15) is
such that for any uniform partition π and t ∈ π\{T }, we have E[|�L

(π)
t |]/√� → 0

as � ↘ 0 and

E[|�L
(π)
t |2+ε0 ] ≤ ν2+ε0 �, P[|�L

(π)
t | = 0] ≥ 1 − 1

c�

, (2.18)

where ε0 > 0 and ν2+ε0 are as in Assumption 2.5 and c� is given in (2.16) and (2.17).
Furthermore, we have

sup
π :�π∈R+\{0}

E[|L(π)
T |2+ε0 ] ∈R+. (2.19)

Remark 2.11 Under the bound on the right-hand side of (2.18), we have numerical
stability of the solutions to a sequence of BS�Es driven by (L(π)) (see [37, Theo-
rem 3.4]).

Proof of Lemma 2.10 Letting π = π� denote the partition with mesh size � ∈ R+\{0}
and ε = ε0, a first observation is that for any t ∈ π\{T }, a ∈ R+\{0} and
p ∈ [2,2 + ε], we have by Chebyshev’s inequality

P[|�L
(π)
t | > a] ≤ ν({z ∈R

k : |z| ≥ a})� (2.20)

≤ νp

ap
�, (2.21)
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where, as before, νp = ∫
Rk\{0} |x|pν(dx). By multiplying (2.20) by p ap−1 and inte-

grating, we have the estimate

E[|�L
(π)
t |p] ≤ νp �, p ∈ [2,2 + ε]. (2.22)

Taking in (2.21) p = 2 and a = b
√

c�ν2� and setting b = 1 shows that

P[|�L
(π)
t | > 0] = P[|�L

(π)
t | > √

c�ν2�] ≤ c−1
� (2.23)

which yields the bound on the right-hand side of (2.18), while integrating over b ≥ 1
shows that E[|�L

(π)
t |]/√� ≤ √

ν2/c�, which tends to zero as � ↘ 0 in view of the
form of c�.

To establish (2.19), the proof next proceeds analogously as that of the moment
result for Lévy processes (see [44, Theorem 25.3]). The key step to transfer the uni-
form estimate of moments of the increments to a uniform estimate of moments of
the random walk at T is the estimate for submultiplicative functions g (a function
g : Rk → R is called submultiplicative if for some bg ∈ R+ and any x, y ∈ R

k , we
have g(x + y) ≤ bg g(x)g(y)) given by

E[g(L
(π)
T )] = E

[

g

( ∑

t∈π\{T }
�L

(π)
t

)]

≤ bN−1
g E[g(�L

(π)
t1

)]N, (2.24)

where we used that the increments �L
(π)
t , t ∈ π\{T }, are independent. For any

a ∈ R+, the function ga(x) := |x|2+ε ∨ a is submultiplicative; see [44, Proposi-
tion 25.4]. From (2.22) and (2.23), we have that E[g1(�L

(π)
t )] is bounded above

by

E[g0(�L
(π)
t )] + P

[|�L
(π)
t | ∈ (0,1]] ≤ ν2+ε� + c−1

� . (2.25)

Combining the bounds (2.24) and (2.25) with the facts that c defined in (2.17) is such
that bg1 = c and c ≤ c�, we have for all N ∈N that

E[g1(L
(π)
T )] ≤ cN−1

(
1

c
+ ν2+ε�

)N

= 1

c

(

1 + c ν2+ε T

N

)N

. (2.26)

As the right-hand side of (2.26) is bounded above by c−1 exp(c ν2+ε T ), we have
(2.19) and the proof is complete. �

The moment conditions in Lemma 2.10 carry over to those of path-functionals as
follows.

Corollary 2.12 Assume that F :D([0, T ],Rk) → R satisfies, for some c ∈R+,

|F(ω)| ≤ c‖ω‖∞ for all ω ∈ D([0, T ],Rk), (2.27)

where ‖ω‖∞ = supt∈[0,T ] |ω(t)|. Then, uniformly over partitions π = π�,

sup
�∈R+\{0}

E[|F(L(π))|2+ε0 ] ∈R+.
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Proof For any partition π , an application of Doob’s inequality to the centred random
walk L̄

(π)
t = L

(π)
t − tE[L(π)

1 ] shows that

E

[
sup
t∈π

|L̄(π)
t |2+ε0

]
≤ constE[|L̄(π)

T |2+ε0 ]. (2.28)

The assertion follows by combining the estimate (2.28) with (2.27), the triangle in-
equality, the convexity of x 	→ |x|2+ε0 and (2.19) in Lemma 2.10. �

To guarantee that the convergence of the random walks (L(π))π carries over to
the convergence of the corresponding BS�Es, we impose the following condition on
the sequence of coherent driver functions (g(π))π and their piecewise constant RCLL
interpolations (g̃(π))π .

Condition 2.13 (i) The collection of functions (g(π))π is uniformly Lipschitz-
continuous with Lipschitz constants K(π) such that supπ K(π) ∈R+.

(ii) For any continuous function h for which supx∈Rk\{0} |h(x)|/|x| is bounded and
any t ∈ [0, T ], we have

lim
�→0

g̃(π)(t, h) = g(t, h).

The convergence result for BS�Es [37, Theorem 4.1] is phrased as follows in the
current setting.

Theorem 2.14 Let g be a coherent driver function, let (L(π))π be as in (2.12)–(2.15)
and suppose that the sequence of coherent driver functions (g(π))π satisfies Condi-
tion 2.13. If X(π) ∈ L2(F (π)

T ) and X ∈ L2 are such that X(π) → X in distribution

and the collection ((X(π))2)π is uniformly integrable, then we have (with ρ̃g(π),(π)

the piecewise constant RCLL interpolation of ρg(π),(π))

ρ̃g(π),(π)(X(π))
d−→ ρg(X) as � ↘ 0.

3 Choquet-type integrals and iterated versions

3.1 Choquet-type integrals

We describe next the Choquet-type integrals that feature in the definition of dynamic
spectral risk measures given in the next section. We refer to [18] for a treatment of
the theory of nonlinear integration. The Choquet-type integrals we consider are given
in terms of measure distortions that we define next.

Definition 3.1 Let (U,U ,μ) be a measure space.

(i) Γ : [0,μ(U)] → [0,∞] is called a measure distortion if Γ is continuous and
increasing with Γ (0) = 0. If Γ (1) = 1, then Γ is called a probability distortion.
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(ii) Γ ◦ μ : U → [0,∞] denotes the set function given by (Γ ◦ μ)(A) := Γ (μ(A))

for A ∈ U .

On a given measure space (U,U ,μ), a set A ∈ U with μ(A) > 0 is called an
atom if C ⊆ A implies μ(C) ∈ {0,μ(A)}. We assume throughout that the measure
distortions and associated measure spaces are of the following type:

Assumption 3.2 The measure μ on (U,U) is sigma-finite and has no atoms, and the
measure distortion Γ : [0,μ(U)) → R+ is bounded and such that

KΓ :=
∫

(0,μ(U))

Γ (y)

2y
√

y
dy ∈ R+. (3.1)

The Choquet-type integrals that we consider are defined as follows.

Definition 3.3 Let (U,U ,μ) be a measure space and Γ+ and Γ− associated measure
distortions which satisfy Assumption 3.2.

(i) The Choquet-type integral CΓ+◦μ
+ : L2+(U,U ,μ) →R+ is given by

CΓ+◦μ
+ (f ) :=

∫

[0,∞)

(Γ+ ◦ μ) (f > x) dx, f ∈ L2+(U,U ,μ),

where {f > x} = {z ∈ U : f (z) > x}.
(ii) The Choquet-type integral CΓ+◦μ,Γ−◦μ : L2(U,U ,μ) →R is given by

CΓ+◦μ,Γ−◦μ(f ) = CΓ+◦μ
+ (f +) − CΓ−◦μ

+ (f −). (3.2)

Remark 3.4 (i) To see that CΓ ◦μ
+ (f ) ∈ R+ for f ∈ L2+(μ) and μ and Γ satisfying

Assumption 3.2, we note that by Chebyshev’s inequality, monotonicity of Γ and a
change of variables, we have

CΓ ◦μ
+ (f ) =

∫ ∞

0
Γ

(
μ(f > x)

)
dx ≤

∫ ∞

0
Γ (|f |22,μ/x2)dx = KΓ |f |2,μ

if μ(U) = ∞. If μ(U) < ∞, a similar line of reasoning gives CΓ ◦μ
+ (f ) ≤ K ′

Γ ‖f ‖2,μ

with K ′
Γ = KΓ + Γ (μ(U))/

√
μ(U).

(ii) Taking in Definition 3.3 (U,U ,μ) = (Ω,FT ,P), and taking the measure dis-
tortions Γ+ and Γ− equal to a continuous probability distortion Ψ and the function
Ψ̂ given by Ψ̂ (x) = 1 − Ψ (1 − x) for x ∈ [0,1], it is straightforward to check that
Ψ ◦ P is a capacity and the Choquet-type integral of X ∈ L2 in (3.2) coincides with
the classical Choquet expectation corresponding to Ψ ◦ P, i.e.,

CΨ ◦P,Ψ̂ ◦P(X) =
∫ ∞

0
(Ψ ◦ P)(X > x)dx −

∫ 0

−∞
(
1 − (Ψ ◦ P)(X > x)

)
dx.

Moreover, as we have Ψ̂ (x) ≤ x ≤ Ψ (x) for x ∈ [0,1], it follows that

CΨ ◦P,Ψ̂ ◦P(X) ≥ E[X], (3.3)
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and we have equality in (3.3) for all X ∈ L2 if and only if Ψ (x) = Ψ̂ (x) = x for
x ∈ [0,1].

We record next a robust representation result for Choquet-type integrals that plays
an important role in the sequel. Let Mp,μ, p ≥ 1, denote the set of measures m on
(U,U) that are absolutely continuous with respect to a given measure μ on this space
with Radon–Nikodým derivatives such that dm

dμ
∈ Lp

+(μ).

Proposition 3.5 For a given concave measure distortion Γ and measure μ on (U,U)

satisfying Assumption 3.2, define

MΓ
1,μ := {

m ∈Mac
1,μ : m(A) ≤ Γ

(
μ(A)

)
for all A ∈ U with μ(A) < ∞}

.

Then CΓ ◦μ
+ : L2+(μ) →R+ is KΓ -Lipschitz-continuous and

CΓ ◦μ
+ (f ) = sup{m(f ) : m ∈ MΓ

1,μ} for f ∈ L2+(μ). (3.4)

Furthermore, the subgradients of CΓ ◦μ
+ (i.e., the elements of the dual set MΓ

1,μ) are

uniformly bounded in L2(μ), meaning that supm∈MΓ
1,μ

| dm
dμ

|2,μ < ∞, and CΓ ◦μ
+ is

positively homogeneous and subadditive, that is, for any λ ∈ R+ and f,g ∈ L2+(μ),

CΓ ◦μ
+ (λf ) = λCΓ ◦μ

+ (f ), CΓ ◦μ
+ (f + g) ≤ CΓ ◦μ

+ (f ) + CΓ ◦μ
+ (g). (3.5)

Proof The representation in (3.4) is known to hold true when (a) Γ (1) = 1 and (b) μ

has unit mass and (c) MΓ
1,μ is replaced by the set of m ∈ MΓ

1,μ with m(U) = 1
(see [8] and [26, Corollary 4.80]). We note that by positive homogeneity and (a) and
(b), (c) is not needed for the representation in (3.4) to hold true. Let ε > 0, let
μ be as given, let m ∈ MΓ

1,μ, and denote by Oε , ε > 0, a collection of sets with
0 < μ(Oε) < ∞ and such that Oε ↗ U. Denoting

cε := μ(Oε), Γε( · ) := Γ (cε · ),
mε(dx) := IOε (|x|)m(dx), με(dx) := c−1

ε IOε (|x|)μ(dx),

we thus have for any f ∈ L2+(μ) that

1

Γε(1)
CΓε◦με+ (f ) = sup

{
m(f ) : m ∈ MΓε/Γε(1)

1,με

}

= sup

{
1

Γε(1)
mε(f ) : m ∈MΓ

1,μ

}

. (3.6)

Since one can readily verify by an application of the monotone convergence theorem
that CΓε◦με+ (f ) ↗ CΓ ◦μ

+ (f ) and mε(f ) ↗ m(f ) as ε ↘ 0, and since Γε(1) ∈ R+\{0},
we obtain (3.4) by taking ε ↘ 0 in (3.6).

The positive homogeneity and convexity of CΓ ◦μ
+ (f ) as stated in (3.5) follow as

direct consequences of the robust representation in (3.4).
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Next we turn to the proof of Lipschitz-continuity. We observe that the robust rep-
resentation (3.4) of CΓ ◦μ

+ implies that for u,v ∈ L2+(μ),

|CΓ ◦μ
+ (u) − CΓ ◦μ

+ (v)| ≤ |CΓ ◦μ
+ (v − u)| ∨ |CΓ ◦μ

+ (u − v)|. (3.7)

Using a similar estimate as in Remark 3.4(i), we note that for m ∈ MΓ
1,μ and some

c ∈ R+,

∣
∣
∣
∣
dm

dμ

∣
∣
∣
∣

2

2,μ

=
∫ (

dm

dμ

)2

dμ =
∫

dm

dμ
dm =

∫ ∞

0
m

(
dm

dμ
> x

)

dx

≤
∫ ∞

0
Γ

(

μ
(dm

dμ
> x

))

dx ≤ c

∣
∣
∣
∣
dm

dμ

∣
∣
∣
∣
2,μ

,

which implies supm∈MΓ
1,μ

| dm
dμ

|2,μ ≤ c, and hence we obtain for u ∈ L2+(μ) that

|CΓ ◦μ
+ (u)| ≤ c|u|2,μ by (3.4). The latter bound together with (3.7) yields the stated

Lipschitz-continuity. �

3.2 Conditional and iterated Choquet integrals

Analogously, we define Ft -conditional Choquet-type integrals as follows.

Definition 3.6 For any t ∈ [0, T ] and probability distortions Ψ and Ψ̄ satisfying
Assumption 3.2 (relative to the measure P restricted to (Ω,Ft )), the conditional
Choquet-type integral CΨ ◦P,Ψ̄ ◦P( · |Ft ) : L2 → L2

t is given by, for X ∈ L2,

CΨ ◦P,Ψ̄ ◦P(X|Ft ) :=
∫

R+
Ψ (P[X+ > x|Ft ])dx −

∫

R+
Ψ̄ (P[X− > x|Ft ])dx.

Remark 3.7 (i) Reasoning similarly as in Remark 3.4 (i) and as in the proof of
Lemma 3.5, we have that for any X ∈ L2, CΨ ◦P,Ψ̄ ◦P(X|Ft ) is square-integrable,
and the map CΨ ◦P,Ψ̄ ◦P( · |Ft ) is Lipschitz-continuous on L2 with Lipschitz constant
KΨ + KΨ̄ (which are given by the constant KΓ in (3.1) with μ(U) = 1 and Γ equal
to Ψ and Ψ̄ , respectively).

(ii) The conditional Choquet expectation in (3.2) of X ∈ L2 with Ψ̄ = Ψ̂ may
equivalently be expressed as weighted integral of the conditional expected shortfall
of X at different levels. Specifically, associated to any concave probability distortion
Ψ is a unique Borel measure μ on [0,1] defined by μ({0}) = 0 and μ(ds) = sF (ds)

for s ∈ (0,1], where F is the locally finite positive measure given in terms of the right
derivative Ψ ′+ of Ψ by F((s,1]) = Ψ ′+(s) (see [26, Theorem 4.70]). It is straightfor-
ward to check that Ψ satisfies Assumption 3.2 if and only if

∫

(0,1]
1√
s
μ(ds) ∈ R+\{0}.
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The conditional Choquet expectation in Definition 3.6 can then be expressed in terms
of the measure μ and the Ft -conditional expected shortfall as

CΨ ◦P,Ψ̂ ◦P(X|Ft ) =
∫

(0,1]
ESλ(−X|Ft )μ(dλ), X ∈ L2, (3.8)

where the Ft -conditional expected shortfall ESλ(X|Ft ) of X ∈ L2 at level λ ∈ (0,1]
is given in terms of the Ft -conditional value-at-risk

VaRλ(X|Ft ) = inf{z ∈ R : P[X < −z|Ft ] < λ}
at level λ by

ESλ(X|Ft ) = 1

λ

∫ λ

0
VaRu(X|Ft )du, λ ∈ (0,1].

The proof of (3.8) follows by a straightforward adaptation to the conditional setting
of the proof for the static setting given in Föllmer and Schied [26, Corollary 4.77].

(iii) It follows from the representation in (3.8) that the collection of conditional
Choquet expectations X 	→ CΨ ◦P,Ψ̄ ◦P(−X|Ft ), t ∈ [0, T ], X ∈ L2, is a dynamic co-
herent risk measure in the sense of Definition 2.1 (with I = [0, T ]).

One way to define a sequence of conditional spectral risk measures adapted to the
filtration F(π) = (F (π)

t )t∈π is recursive in terms of conditional Choquet-integrals, as
follows.

Definition 3.8 Given a concave probability distortion Ψ satisfying Assumption 3.2
and a filtration F(π) = (F (π)

t )t∈π , the corresponding iterated spectral risk measure
S = (St )t∈π , St : L2(F (π)

T ) → L2(F (π)
t ), is defined recursively on the grid π = π�

by

St (X) =
{

CΨ ◦P,Ψ̂ ◦P(St+1(X)|F (π)
t ), t ∈ π\{T },

−X, t = T .

The class of iterated spectral risk measures defined above contains in particular
the iterated tail conditional expectation proposed in [28] and is closely related to the
dynamic weighted V@R defined in [12] for adapted processes via its robust repre-
sentation. As already noted in the proof of Proposition 3.5, in the static case such a
representation was derived in [8] for bounded random variables; see also [26, Theo-
rems 4.79 and 4.94], and see [11] for the extension to the set of measurable random
variables (we refer to [22] for families of dynamic risk measures defined via stochas-
tic distortion probabilities in a binomial tree setting; see [13] for a general theory of
finite-state BSDEs).

We show next that iterated spectral risk measures are discrete-time time-consistent
dynamic coherent risk measures, and we identify the driver function of the associated
BS�E.
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Proposition 3.9 The iterated spectral risk measure S = (St )t∈π in Definition 3.8 is
a discrete-time coherent risk measure ρḡ�,π with driver function ḡ� given by

ḡ�(t, h) = 1

�

(

CΨ ◦(ν(π)�),Ψ̂ ◦(ν(π)�)
(
h(f )I{f �=0}

) − �

∫

Rk\{0}
h(x)ν(π)(dx)

)

, (3.9)

where ν(π) is defined in (2.1).

Proof It follows from Proposition 3.5 that the function ḡ� defined in (3.9) is a co-
herent driver function in the sense of Definition 2.3 with I = π and μ = ν(π). Let
X ∈ L2(F (π)) be arbitrary and denote by (Y (π),Z(π)) the solution of the BS�E with
driver function ḡ�. To show that the dynamic coherent risk measure corresponding
to ḡ� coincides with the spectral risk measure S = (St )t∈π , it suffices to verify that

ḡ�(t,Z
(π)
t )� = St (X) −E[St+1(X)|F (π)

t ]. (3.10)

Letting t ∈ π\{T } and denoting �L = �L
(π)
t , we note from Definition 3.8 and (2.3)

that St (X) −E[St+1 (X)|F (π)
t ] is equal to

CΨ ◦P,Ψ̂ ◦P(
St+1 (X)

∣
∣F (π)

t

) −E[St+1 (X)|F (π)
t ]

= CΨ ◦P,Ψ̂ ◦P(
Z

(π)
t (�L)I{�L�=0}

∣
∣F (π)

t

)

−E[Z(π)
t (�L)I{�L�=0}|F (π)

t ]

=
(

CΨ ◦(ν(π)�),Ψ̂ ◦(ν(π)�)
(
h(f )I{f �=0}

) − �

∫

Rk\{0}
h(x)ν(π)(dx)

)∣
∣
∣
∣
h=Z

(π)
t

,

where we used that due to stationarity of the increments of L(π), �L
(π)
t (which has

law ν(π)�) is independent of t . Thus we have (3.10) and the proof is complete. �

4 Dynamic spectral risk measures

With the previous results in hand, we move to the definition of dynamic spectral risk
measures in continuous time. Let us fix in the sequel a pair of concave measure dis-
tortion functions Γ+ and Γ− that satisfy Assumption 3.2 and are such that Γ−(x) ≤ x

for x ∈R+. We define dynamic spectral risk measures to be those time-consistent dy-
namic coherent risk measures ρg for which the driver functions g are given in terms
of Choquet integrals, as follows.

Definition 4.1 The spectral driver function ḡ : L2(ν) → R+ is given by

ḡ(u) := CΓ+◦ν
+ (u+) + CΓ−◦ν

+ (u−)

for u ∈ L2(ν).



D. Madan et al.

By Lemma 3.5, we have that ḡ is Lipschitz-continuous, positively homogeneous
and convex, so that ḡ is a coherent driver function in the sense of Definition 2.3.
The corresponding time-consistent dynamic coherent risk measure ρḡ is the object of
study for the remainder of the paper.

Definition 4.2 The dynamic coherent risk measure ρḡ with spectral driver function ḡ

given in Definition 4.1 is called the (continuous-time) dynamic spectral risk measure
corresponding to the measure distortions Γ+ and Γ−.

We next show that a dynamic spectral risk measure admits a dual representation of
the form (2.9) and (2.10) with a representing set that is explicitly expressed in terms
of the measure distortions Γ+ and Γ−, as follows.

Theorem 4.3 Let X ∈ L2, t ∈ [0, T ] and let ḡ be a spectral driver function. The
dynamic spectral risk measure ρḡ satisfies the dual representation in (2.9) and (2.10)
with representing set Cḡ given by

Cḡ =
{

H ∈ L2(ν) : for any A ∈ B(Rk\{0}) with ν(A) < ∞,

−Γ−(ν(A)) ≤ ∫
A

H dν ≤ Γ+(ν(A))

}

, (4.1)

where
∫
A

H dν = ∫
A

H(x)ν(dx).

Example 4.4 The risk of a positive or negative jump arriving with a size larger
than a, as quantified by the dynamic spectral risk measure ρḡ , may be explic-
itly expressed in terms of ν, Γ+ and Γ−, as we show next. For any a ∈ R+\{0},
let I (a) = I{supt∈[0,T ] |�Lt |≤a} = {Na

T = 0}, Na
T = #{t ∈ [0, T ] : |�Lt | > a} and

ν̄(a) = ν({y : |y| > a}). While E[I (a)] = exp(−ν̄(a)T ) (since NT has a Poisson dis-
tribution with parameter T ν̄(a)), the values of I (a) and −I (a) under ρḡ are given
by

ρ
ḡ

0

(
I (a)

) = − exp

(

− T
(
ν̄(a) + Γ+

(
ν̄(a)

))
)

,

ρ
ḡ

0

( − I (a)
) = exp

(

− T
(
ν̄(a) − Γ−

(
ν̄(a)

))
)

.

These expressions follow by using the dual representation in Theorem 4.3 and Gir-
sanov’s theorem (see [29, Theorems III.3.24 and III.5.19]); indeed, we have that
ρ

ḡ

0 (I (a)) is equal to

sup
Qξ ∈Sg

E
Q

ξ [−I (a)] = sup
Qξ ∈Sg

E

[

− exp

(

−
∫ T

0

∫

{|y|>a}
(
1 + H

ξ
t (y)

)
ν(dy)dt

)]

= − exp
( − T ν(a)

)
exp

(
− T Γ+

(
ν(a)

))
,

while the expression for ρ
ḡ

0 (−I (a)) follows in a similar manner.
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Proof of Theorem 4.3 In view of Theorem 2.8 and Remark 2.9, it suffices to verify
that for any h ∈ L2(ν), we have

sup
∈Cḡ

∫
hdν = CΓ+◦ν

+ (h+) + CΓ−◦ν
+ (h−), (4.2)

where
∫

hdν = ∫
Rk\{0} h(x)(x)ν(dx). Our next observation is that the set Cḡ in

(4.1) admits the equivalent representation

Cḡ =
{

U ∈ L2(ν) : for any A ∈ B(R\{0}) with ν(A) < ∞,
∫
A

U+ dν ≤ Γ+(ν(A)),
∫
A

U− dν ≤ Γ−(ν(A))

}

. (4.3)

To see that this is the case, we note that for any U ∈ L2(ν), we have −U− ≤ U ≤ U+,
while U+ = U1 and −U− = U2 for U1 = UI{U≥0} and U2 = UI{U<0}.

To see that (4.2) holds, we note from (4.3), Proposition 3.5 and the identity

h∗ = h+ +
1 + h− −

2 , ∗ = +
1 I{h>0} − −

2 I{h<0},

for any h, 1, 2 ∈ L2(ν) that ḡ(h) = sup∈Cḡ

∫
hdν is bounded below by

sup
1,2∈Cḡ

∫
h∗ dν = sup

∈Cḡ

∫
h+ + dν + sup

∈Cḡ

∫
h− − dν,

which is by Proposition 3.5 equal to CΓ+◦ν
+ (h+)+CΓ−◦ν

+ (h−). Given this lower bound
and the fact that ḡ(h) is bounded above by

sup
∈Cḡ

∫
h+ dν + sup

∈Cḡ

∫
h− (−)dν ≤ sup

∈Cḡ

∫
h+ + dν + sup

∈Cḡ

∫
h− − dν,

we conclude that (4.2) holds true. �

5 Limit theorem

We next turn to the functional limit theorem which shows that dynamic spectral risk
measures arise as a limit of iterated spectral risk measures, under a suitable scaling
of the corresponding probability distortions. We suppose that uniformly in p ∈ [0,1],
Ψ�(p) − p scales in the mesh size � and the measure distortions Γ+ and Γ− as

Ψ�(p) = p + �
(
Γ+(p/�)I[0, 1

2 ](p) + Γ−
(
(1 − p)/�

)
I
( 1

2 ,1](p)
)

+ o(�) (� ↘ 0).

Specifically, the condition that we require is phrased as follows.

Definition 5.1 We denote by (Ψ�)�∈(0,1] a sequence of probability distortions that
is such that Ψ� and Ψ̂� given by Ψ̂�(p) = 1 − Ψ�(1 − p) satisfy Assumption 3.2
with respect to the measure μ(dx) := P[�L

(π)
t1

∈ dx], and we have

lim
�↘0

Υ� = 0, Υ� = sup
x∈(0,1)

∣
∣
∣
∣
Ψ�(x) − x

Γ�(x)�
− 1

∣
∣
∣
∣ , (5.1)
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where for � ∈ (0,1] and x ∈ [0,1],
Γ�(x) = Γ+(x/�)I[0, 1

2 ](x) + Γ−
(
(1 − x)/�

)
I
( 1

2 ,1](x).

Here we recall that Γ+ and Γ− denote the given concave measure distortions which
are such that Γ−(x) ≤ x for x ∈ R+ and Assumption 3.2 holds with μ(dx) := ν(dx)

and Γ := Γ+ or Γ−.

The functional limit result is phrased in terms of the sequence of piecewise con-
stant RCLL extensions (L̃(π))π of the random walks (L(π))π given by

L̃
(π)
t := L

(π)

�−1[t�], t ∈ [0, T ],

where [r] = sup{n ∈ N∪ {0} : n ≤ r} for r ∈ R+.

Theorem 5.2 Given a sequence of probability distortions (Ψ�)�∈(0,1] as in Defini-

tion 5.1 and given filtrations F(π) = (F (π)
t )t∈π , let S� = (S�

t )t∈π , � ∈ (0,1], denote
the corresponding iterated spectral risk measures as in Definition 3.8 and let ḡ de-
note the spectral driver function from Definition 4.1. Let the set of ω ∈ D([0, T ],Rk)

at which F : D([0, T ],Rk) → R is discontinuous in the Skorokhod J1-topology be a
nullset under the law of L and assume that for some c ∈R+,

|F(ω)| ≤ c‖ω‖∞ for all ω ∈D([0, T ],Rk). (5.2)

Then we have

S̃�
(
F(L̃(π))

) d−→ ρḡ
(
F(L)

)
, � ↘ 0,

where S̃�
t = S�

�−1[t�], t ∈ [0, T ].

Remark 5.3 (i) Given two concave probability distortions Ψ+ and Ψ− satisfying the
integrability condition (3.1) (with μ(U) = 1), one may explicitly construct a sequence
(Ψ�)�∈(0,1] satisfying Definition 5.1 via

Ψ�(p) = p +
(
Γ+(p/�)I[0, 1

2 ](p) + Γ−
(
(1 − p)/�

)
I
( 1

2 ,1](p)
)

�, p ∈ [0,1],

where inspired by [21], we suppose that the functions Γ+,Γ− : R+ → R+ are given
by

Γ+(x) = a Ψ+(1 − e−cx), Γ−(x) = b

d
Ψ−(1 − e−dx), x ∈R+,

for some a, b, c and d ∈R+\{0} satisfying the restrictions

Γ+
(
1/(2�)

) = Γ−
(
1/(2�)

)
< 1/(2�), bΨ ′−(0+) ∈ (0,1), (5.3)

where f ′(0+) denotes the right derivative of a function f at x = 0. It is straight-
forward to check that for any � ∈ (0,1], Ψ� is a concave probability distortion (the
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first condition in (5.3) guarantees continuity at p = 1/2 and Ψ�(1/2) < 1) and that
Γ−(x) ≤ x for any x ∈ R+ (as consequence of the second condition in (5.3)). Fur-
thermore, we have that the limit in (5.1) holds.

(ii) Examples of functionals F that satisfy condition (5.2) include a European call
option payoff with strike K ∈ R+, where F(ω) = (ω(T ) − K)+, the time-average
F(ω) = 1

T

∫ T

0 ω(s)ds, and the running maximum F(ω) = sups∈[0,T ] ω(s).
(iii) We note that Υ� may be equivalently expressed in terms of Ψ� and Ψ̂� as

Υ� = sup
x∈(0, 1

2 ]

∣
∣
∣
∣
Ψ�(x) − x

Γ+(x/�)�
− 1

∣
∣
∣
∣ ∨ sup

x∈(0, 1
2 )

∣
∣
∣
∣
x − Ψ̂�(x)

Γ−(x/�)�
− 1

∣
∣
∣
∣ .

(iv) We next provide an example to show the necessity of scaling the probability
distortions. For a given uniform partition π = π� of [0, T ] with mesh �, a probability
distortion Ψ and a+, a− ∈ R+\{0}, let us consider the risk charge under the iterated
spectral risk measure S corresponding to Ψ of the following statistic X(π) of the
jump-sizes of L(π) = (L(π),1, . . . ,L(π),k):

X(π) := N+
π − N−

π , N±
π = #

{

t ∈ π\{T } :
k∑

i=1

(�L
(π),i
t )± > a±

}

.

From the form (2.4), (2.5) of the solution of the BS�E associated to the iterated
spectral risk measure S, we have that Z(π) is given by

Z
(π)
t (x) = z

(π)
+ (x) − z

(π)
− (x), z

(π)
± (x) = IA±(x),

A± =
{

z ∈ R
k\{0} :

k∑

i=1

(zi)
± > a±

}

.

As a consequence, we have from (3.9) in Proposition 3.9 that the driver function takes
the form

ḡ�(t,Z
(π)
t )� = CΨ ◦(ν(π)�),Ψ̂ ◦(ν(π)�)

(
z
(π)
+ (f ) − z

(π)
− (f )

)

− �

∫

Rk\{0}
(
z
(π)
+ (x) − z

(π)
− (x)

)
ν(π)(dx)

= Ψ (P[�L
(π)
t1

∈ A+]) − P[�L
(π)
t1

∈ A+]
+ P[�L

(π)
t1

∈ A−] − Ψ̂ (P[�L
(π)
t1

∈ A−]).

For given t ∈ π\{T }, the iterated spectral risk measure St (X
(π)) may therefore

be expressed in terms of the functions D+
� and D−

� : [0,�−1] → R+, given by
D+

�(x) = Ψ (x �) − x and D−
�(x) = x − Ψ̂ (x �), as
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St (X
(π)) −E[X(π)|F (π)

t ] = E

[ ∑

s≥t,s∈π\{T }
ḡ�(s,Z(π)

s )�

∣
∣
∣
∣F

(π)
t

]

= (T − t)

(
1

�
D+

�(�−1
P[�L

(π)
t1

∈ A+])

+ 1

�
D−

�(�−1
P[�L

(π)
t1

∈ A−])
)

.

Note that as � ↘ 0, �−1
P[�L

(π)
t1

∈ A±] → ν(A±) and

E[X(π)|F (π)
t ] −→ (T − t)

(
ν(A+) − ν(A−)

) + N+
t − N−

t ,

where N±
t = #{s ∈ (0, t] : Ls −Ls− ∈ A±}. Hence, this suggests that for the sequence

of iterated spectral risk measures to converge, �−1 D+
�(x) and �−1 D−

�(x) are to
admit limits as � ↘ 0.

Proof of Theorem 5.2 We note first that as L(π) d→ L when � ↘ 0, F(L(π)) con-
verges in distribution to F(L), which is an element of L2. Furthermore, by Corol-
lary 2.12, the collection (F (L(π))2)π is uniformly integrable. Thus, in view of Theo-
rem 2.14, it suffices to verify that the sequence of driver functions (ḡ�)�∈(0,1] of the
iterated spectral risk measures S� given in Proposition 3.9 satisfies Condition 2.13,
which we proceed to do.

Let t ∈ [0, T ]. Our first observation is that by subadditivity and nonnegativity of
ḡ�, we have for any h,  ∈ L2(ν(π)) that

|ḡ�(t, h) − ḡ�(t, )| ≤ ḡ�(t, h − ) ∨ ḡ�(t,  − h), (5.4)

so that to verify Condition 2.13(i), it suffices to show that ḡ�(t, h)/|h|2,π is uniformly
bounded. We have for any � ∈ (0,1] and h ∈ L2(ν(π)) that

ḡ�(t, h) = 1

�

(

CΨ�◦(ν(π)�),Ψ̂�◦(ν(π)�)(h) − �

∫
hdν(π)

)

= 1

�

(

CΨ�◦(ν(π)�)
+ (h+) − �

∫
h+ dν(π)

)

+ 1

�

(

�

∫
h− dν(π) − CΨ̂�◦(ν(π)�)

+ (h−)

)

= CΓ+◦ν(π)

+ (h+) + R�(h+) + CΓ−◦ν(π)

+ (h−) + R̂�(h−), (5.5)

where the remainder terms R�(h+) and R̂�(h−) are given in terms of the identity
function I : [0,1] → [0,1], I (x) = x, as

R�(h+) = 1

�

∫ ∞

0

(
(Ψ� − I )

(
ν(π)(h+ > x)�

) − Γ+
(
ν(π)(h+ > x)

)
�

)
dx,

R̂�(h−) = 1

�

∫ ∞

0

(
(I − Ψ̂�)

(
ν(π)(h− > x)�

) − Γ−
(
ν(π)(h− > x)

)
�

)
dx.



On dynamic spectral risk measures

Since ν(π)(h± > x) ≤ |h±|2
2,ν(π)/x

2 for x ∈ R+\{0} by Chebyshev’s inequality, it
follows that for

x ≥ H± := |h±|2,ν(π)

√
2�,

the mass of �ν(π)(h± > x) is bounded above by 1/2. Recalling the form of Υ� (see
Remark 5.3 (iii)) and that Γ+ + Γ− is bounded (by Γ∞, say), we have

|R�(h+)| ≤ Υ� CΓ+◦ν(π)

+ (h+)

+
∫ H+

0

(
Γ+

(
ν(π)(h+ > x)

) + Γ−
(
ν(π)(h− ≤ x)

))
dx

≤ Υ� CΓ+◦ν(π)

+ (h+) + H+ Γ∞, (5.6)

|R̂�(h−)| ≤ Υ� CΓ−◦ν(π)

+ (h−) + H− Γ∞. (5.7)

Combining (5.4)–(5.7) and the KΓ+ - and KΓ− -Lipschitz-continuity of CΓ+◦ν(π)

+ and

CΓ−◦ν(π)

− (Proposition 3.5) and the fact that the values CΓ+◦ν(π)

+ (0) and CΓ−◦ν(π)

+ (0)

are equal to 0, we find

|ḡ�(h)| ≤ C̃ |h|2,ν(π) ,

where C̃ = (KΓ+ + KΓ− + 2
√

2Γ∞)(1 + sup�∈(0,1] Υ�) is finite by the limit (5.1) in
Definition 5.1. This completes the proof of Condition 2.13(i).

We next turn to Condition 2.13(ii). Let h be a continuous function with the
property that ch := sup |h(x)/x| ∈ R+. Since ν(π) converges weakly to ν, we have
ν(π)(h > x) → ν(h > x) at x ∈ R+\{0} that are points of continuity. Hence, as Γ±
are continuous, it follows that Γ±(ν(π)(h > x)) → Γ±(ν(h > x)) at such x. Next we
show that the latter functions are dominated by an integrable function. By Cheby-
shev’s inequality, Γ±(ν(π)(h > x)) ≤ Γ±(|h|2

2,ν(π)/x
2), while it follows from the in-

equality (2.22) that ν
(π)
2 ≤ ν2, where ν

(π)
2 = ∫

Rk\{0} |x|2ν(π)(dx). Hence we have the
bound

|h|2,ν(π) ≤ ch

√
ν

(π)
2 ≤ ch

√
ν2.

Also, for any d ∈ R+, Γ±(d2/x2) is integrable since

∫ ∞

d/
√

ν0

Γ±(d2/x2)dx = KΓ± d,

where ν0 = ν(Rk\{0}) and KΓ± is given in (3.1). As a consequence, the dominated

convergence theorem gives that CΓ±◦ν(π)

+ (h±) → CΓ±◦ν
+ (h±) as � ↘ 0. Further, in

view of (5.1), R�(h+) and R̂�(h−) tend to zero as � ↘ 0. This establishes Condi-
tion 2.13(ii), and the proof is complete. �
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6 Dynamically optimal portfolio allocation

We next consider dynamic portfolio problems concerning balancing gain and risk as
quantified by the dynamic spectral risk measure (DSR). We suppose the investment
horizon is T > 0 and consider the DSR associated to the spectral driver function ḡ.
In this section, we impose the following restriction on the Lévy measure ν.

Assumption 6.1 The support of ν is included in (−1,∞)k .

We suppose that the financial market consists of a risk-free bond and n risky stocks
with discounted prices Ŝ = (Ŝ1, . . . , Ŝn) evolving according to the system of SDEs

dŜi
t

Ŝi
t−

= bi dt +
∫

Rk\{0}
Ri x Ñ(dt × dx), i = 1, . . . , n, t ∈ (0, T ],

Ŝ0 = s0 ∈ (R+\{0})k,

where bi ∈ R is the excess log-return and Ri ∈ R
k is the (row) vector of jump co-

efficients with nonnegative coordinates that are such that (Ri)ᵀ1 ≤ 1 (where 1 ∈ R
k

denotes the k-column vector of ones and vᵀ the transpose of a vector v). Given the
form of the model, we have Ŝi

t ∈ L2
t and Ŝi

t > 0 for any i = 1, . . . , k and t ∈ [0, T ].
Let us consider the case of a small investor whose trades have a negligible im-

pact on prices and let us adopt the classical frictionless and self-financing setting (no
transaction costs, infinitely divisible assets, continuous-time trading, no funds are in-
fused into or withdrawn from the portfolio at intermediate times, etc.). At any time
t ∈ [0, T ], the investor decides to allocate the fraction θi

t of the current wealth for in-
vestment into the stock Ŝi , i = 1, . . . , n, so that if Xθ

t− denotes the discounted wealth
just before time t , we have that θi

t X
θ
t−/Ŝi

t− is the number of stocks i held in the
portfolio at time t . We suppose that certain limits are placed on the leverage ratio of
the portfolio and on the size of the short holdings in the various stocks, and that this
restriction is phrased in terms of a bounded and closed set B ⊂ R

n as the requirement
that

θt (ω) ∈ B for any (t,ω) ∈ [0, T ] × Ω. (6.1)

Example 6.2 To impose constraints on the fractions of the current wealth invested in
the bond account and the stock accounts, we take

B =
{

x ∈R
n+ : xi ≥ −Li,

n∑

i=1

xi ≤ 1 + L0

}

for some L0, . . . ,Ln ∈ R+. In particular, by taking Li > 0, we impose a limit on the
borrowing (i = 0) or the number of stock i that may be shorted (i �= 0). The case of
a “long-only” investor that has no short sales and only invests his own wealth (no
borrowing) corresponds to taking L0 = L1 = · · · = Ln = 0.
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We call an allocation strategy θ = (θt )t∈[0,T ] admissible if θ is predictable and
(6.1) holds. We denote by A the collection of admissible allocation strategies. De-
noting by R = (Ri)i=1,...,k the R

n×k-matrix with ith row equal to Ri , we have that
the discounted value Xθ = (Xθ

t )t∈[0,T ] of a portfolio corresponding to θ ∈A evolves
according to the SDE

dXθ
t

Xθ
t−

= θ
ᵀ
t b dt +

∫

Rk\{0}
θ
ᵀ
t R x Ñ(dt × dx), t ∈ (0, τ θ ∧ T ],

Xθ
0 = x ∈ R+\{0}, Xθ

t = Xθ
τθ∧T

, t ∈ (τ θ ∧ T ,T ],

where τ θ = inf{t ∈ [0, T ] : Xθ
t < 0} (with inf∅ = +∞) is the first time that the value

of the portfolio becomes negative, when the investor has to stop trading.

6.1 Portfolio optimisation under dynamic spectral risk measures

We consider next the stochastic optimisation problem given in terms of DSR by the
criterion to minimise, for t ∈ [0, T ], the quantity

J̃ θ
t = ρ

ḡ
t (Xθ

T ∧τ θ ).

The investor’s problem is to identify a stochastic process J̃ ∗ = (J̃ ∗
t )t∈[0,T ] and an

allocation strategy θ∗ ∈ A such that

J̃ ∗
t = ess inf

θ∈A
J̃ θ

t = J̃ θ∗
t , t ∈ [0, T ]. (6.2)

While the problem in (6.2) may be solved via a BSDE approach (as used for instance
in [5, 36] to analyse utility optimisation and robust portfolio choice problems), due
to its Markovian nature, it may also be approached via classical methods based on an
associated Hamilton–Jacobi–Bellman equation; this is the method we present here.
One class of allocation strategies are those of feedback type, defined as follows.

Definition 6.3 Denote by Θ̃ the set of functions θ̄ : [0, T ] × R+ → B that are such
that there exists a unique solution Xθ̄ = (Xθ̄

t )t∈[0,T ] to the SDE

dXθ̄
t

Xθ̄
t−

= θ̄ (t,Xθ̄
t−)ᵀb dt + θ̄ (t,Xθ̄

t−)ᵀ R x Ñ(dt × dx), t ∈ (0, τ θ̄ ], (6.3)

Xθ̄
0 = x, Xθ̄

t = Xθ̄

τ θ̄∧T
, t ∈ (τ θ̄ ∧ T ,T ], (6.4)

where τ θ̄ = inf{t ∈ [0, T ] : Xθ̄
t < 0}. A strategy θ ∈A is called a feedback allocation

strategy if there exists a feedback function θ̄ ∈ Θ̄ such that

θt = θ̄
(
τ θ̄ ∧ t,Xθ̄

τ θ̄∧(t−)

)
, t ∈ [0, T ],

where Xθ̄
0− = Xθ̄

0 and Xθ̄ solves the SDE in (6.3) and (6.4).
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Associated to a given allocation strategy θ̄ ∈ Θ̄ of feedback type, there exists a
value function V θ̄ satisfying J ∗

t = V θ̄ (t,Xθ̄
t ) for t ∈ [0, T ] (as a consequence of the

Markov property). If sufficiently regular, the function V θ̄ satisfies a semilinear PIDE
that is given in terms of certain operators Dθ and Gθ indexed by θ ∈ B. For any
function f ∈ C1,1([0, T ] × R), these operators yield the functions Dθ

t,xf : Rk → R

and Gθf : [0, T ] ×R+\{0} →R given in terms of

bθ = θᵀb, Rθ = θᵀR, θ ∈ B, (6.5)

by (denoting f ′ = ∂f
∂x

)

(Dθ
t,xf )(y) = f (t, x + x Rθ y) − f (t, x),

Gθf (t, x) = bθf
′(t, x) +

∫

Rk\{0}
(
(Dθ

t,xf )(y) − f ′(t, x) x Rθ y
)
ν(dy).

The nonlinear Feynman–Kac formula (see Remark 2.7) implies that if the following
semilinear PIDE has a sufficiently regular solution, it is equal to V θ̄ :

v̇(t, x) + G θ̄ (t,x)v(t, x) + ḡ(Dθ̄ (t,x)
t,x v) = 0, (t, x) ∈ [0, T ) ×R+\{0},
v(t, x) = −x, (t, x) ∈ [0, T ) ×R−,

v(T , x) = −x, x ∈R.

Standard arguments suggest that if the optimal allocation strategy θ∗ is of feedback
type and the corresponding value function V is sufficiently regular, then V satisfies
the Hamilton–Jacobi–Bellman (HJB) equation

V̇ (t, x) + inf
θ∈B

(
GθV (t, x) + ḡ(Dθ

t,xV )
) = 0, (t, x) ∈ [0, T ) ×R+\{0}, (6.6)

V (t, x) = −x, t ∈ [0, T ) ×R−, (6.7)

V (T , x) = −x, x ∈ R. (6.8)

Next we verify that a sufficiently smooth solution of the HJB equation gives rise to a
solution of the optimisation problem in (6.2). Let C

1,1
b ([0, T ] ×R) denote the set of

C1,1-functions f : [0, T ] ×R →R with bounded first order derivatives.

Theorem 6.4 Let w ∈ C
1,1
b ([0, T ]×R) be a solution of the HJB equation (6.6)–(6.8)

and let the function θ̃ : [0, T ] ×R+ → B, (t, x) 	→ θ̃ (t, x), given by

θ̃ (t, x) ∈ arg sup
θ∈B

(
Gθw(t, x) + ḡ(Dθ

t,xw)
)

be such that θ̃ ∈ Θ̄ . Then the feedback strategy θ̃∗ = (θ̃∗
t )t∈[0,T ] with feedback func-

tion θ̃ is optimal for (6.2) and we have J̃ ∗
t = J̃ θ̃∗

t = w(t,Xθ̃

t∧τ θ̃
), where Xθ̃ solves

the SDE in (6.3) and (6.4) with θ̄ replaced by θ̃ .
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Proof Letting θ ∈ A be an arbitrary admissible strategy, t < τθ ∧ T and w as in the
theorem, we find by an application of Itô’s lemma that

w(T ∧ τ θ ,Xθ
T ∧τ θ ) − w(t,Xθ

t ) +
∫ T ∧τ θ

t

ḡ(Dθs ws,Xθ
s
)ds

=
∫ T ∧τ θ

t

(
(ẇ + Gθs w)(s,Xθ

s ) + ḡ(Dθs ws,Xθ
s
)
)

ds + Mθ
T ∧τ θ − Mθ

t , (6.9)

where Mθ is the square-integrable martingale given by

Mθ
t =

∫ t

0
w′(s,Xθ

s−)(dXθ
s − bθs X

θ
s ds)

+
∫ t

0

∫

Rk\{0}
(
Dθs ws,Xθ

s
(y) − w′(s,Xθ

s ) x Rθs y
)
Ñ(ds × dy).

Note that by the HJB equation (6.6), the first term on the right-hand side of (6.9) is
nonpositive. Hence by taking conditional expectations in (6.9) and using (6.7) and
(6.8), we have that

w(t,Xθ
t ) ≤ E

[

− Xθ
T ∧τ θ +

∫ T ∧τ θ

t

ḡ(Dθs ws,Xθ
s
)ds

∣
∣
∣
∣Ft

]

= J θ
t . (6.10)

Since θ ∈A is arbitrary, we have that

w(t,Xθ̄
t ) ≤ ess inf

θ∈A
J θ

t = J ∗
t . (6.11)

If we choose θ = θ̃∗, we note that the first term on the right-hand side of (6.9) van-
ishes and the inequalities in (6.10), (6.11) become equalities, so that J ∗

t = w(t,Xθ̃∗
t ).

As the process Xθ̃∗
coincides with the process Xθ̃ solving the SDE in (6.3) and (6.4),

the proof is complete. �

6.1.1 Case of a “long-only” investor

We next restrict to the case of a “long-only” investor (see Example 6.2). In this case,
we note that for any admissible allocation strategy θ ∈ A, the solvency constraint
Xθ

t ∈ R+ is satisfied for all t ∈ [0, T ] so that τ θ = ∞ a.s. We identify the optimal
strategy as follows.

Theorem 6.5 Let θ∗ ∈ B satisfy

θ∗ ∈ arg sup
θ∈B

(
bθ − ḡ(−RθI)

)
, (6.12)

where bθ and Rθ are given in (6.5) and I : Rk → R
k is given by I (y) = y. Then

θ̃∗ = (θ̃∗
t )t∈[0,T ] given by θ̃∗

t ≡ θ∗ is an optimal strategy and

J ∗
t = −Xθ∗

t exp
(
(T − t)

(
bθ∗ − ḡ(−Rθ∗ I )

))
.
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Proof The assertions follow by an application of the verification theorem (Theo-
rem 6.4). We note first that as the function θ 	→ bθ − ḡ(−Rθ I) is concave, it attains
its maximum on the compact set B. Thus, the set in (6.12) is not empty and θ∗ is
well defined. Moreover, given the positive homogeneity of g, it is straightforward to
verify that the function C : [0, T ] → R given by

C(t) = − exp
(
(T − t)

(
bθ∗ − ḡ(−Rθ∗I )

))

satisfies the ODE

Ċ(t) + inf
θ∈B

(
bθC(t) + ḡ

(
C(t)Rθ I

)) = 0, t ∈ [0, T ),

C(T ) = −1.

As a consequence, we have that the candidate value function V : [0, T ] ×R+ → R+
given by V (t, x) = C(t)x satisfies the HJB equation (6.6)–(6.8) (here we used again
the positive homogeneity of ḡ). The assertions follow now by an application of The-
orem 6.4. �
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