COINVARIANTS OF LIE ALGEBRAS OF VECTOR FIELDS ON ALGEBRAIC
VARIETIES
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ABSTRACT. We prove that the space of coinvariants of functions on an affine variety by a Lie algebra
of vector fields whose flow generates finitely many leaves is finite-dimensional. Cases of the theorem
include Poisson (or more generally Jacobi) varieties with finitely many symplectic leaves under
Hamiltonian flow, complete intersections in Calabi-Yau varieties with isolated singularities under
the flow of incompressible vector fields, quotients of Calabi-Yau varieties by finite volume-preserving
groups under the incompressible vector fields, and arbitrary varieties with isolated singularities
under the flow of all vector fields. We compute this quotient explicitly in many of these cases. The
proofs involve constructing a natural D-module representing the invariants under the flow of the
vector fields, which we prove is holonomic if it has finitely many leaves (and whose holonomicity
we study in more detail). We give many counterexamples to naive generalizations of our results.
These examples have been a source of motivation for us.
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1. INTRODUCTION

1.1. Vector fields on affine schemes. Let k be an algebraically closed field of characteristic
zero, and let X = SpecOx be an affine scheme of finite type over k (we will generalize this to
nonaffine schemes in §2.10 below). Our examples will be varieties, so the reader interested only
in these (rather than the general theory, which profits from restriction to nonreduced subschemes)
can freely make this assumption. We will be interested in the vector space Vect(X) of global vector
fields on X, which is by definition the space of derivations Der(Ox), a Lie algebra acting on Ox.

We also remark that our results can be generalized to the analytic setting using the theory of an-
alytic D-modules, except that in these cases, the coinvariants need no longer be finite-dimensional,
since analytic varieties can have infinite-dimensional cohomology in general (e.g., a surface with
infinitely many punctures). But we will not discuss this here.
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When we say € X, we mean a closed point, which is the same as a point of the reduced
subvariety X,oq. Note that (since k has characteristic zero) it is well-known that all vector fields
on X (which by definition means derivations of Ox) are parallel to X,cq (dating to at least [Sei67,
Theorem 1]), i.e., they preserve the ideal of nilpotent elements. Hence, there is a restriction map
Vect(X) — Vect(Xyed), although this is not an isomorphism unless X = X,q. In particular, for all
global vector fields € € Vect(X) and all z € X, £|, € Ty Xyed-

Let v C Vect(X) be a Lie subalgebra of the Lie algebra of vector fields (which is allowed to be
all vector fields). We are interested in the coinvariant space,

(Ox)u = Ox/U(O)().

This is called the coinvariant space because it is, by definition, the coinvariant space of the module
Ox over the Lie algebra v C Vect(X).

Remark 1.1. One could more generally replace v above with an arbitrary set of vector fields that
need not be a Lie algebra or even a vector space, but then the coinvariants coincide with those of
the Lie algebra generated by that set. One could also allow v to contain not merely vector fields
(i.e., derivations of Ox), but differential operators on Ox of order < 1: see Remark 2.17.

Our main results show that, under nice geometric conditions, this coinvariant space is finite-
dimensional, and in fact that the corresponding D-module generated by v is holonomic. This
specializes to the finite-dimensionality theorems [BEG04, Theorem 4] and [ES10, Theorem 3.1] in
the case of Poisson varieties. It also generalizes a standard result about coinvariants under the
action of a reductive algebraic group (see Remarks 2.10 and 2.11 below).

Our first main result can be stated as follows.

Theorem 1.2. Suppose that, for all ¢ > 0, the locus of x € X where the evaluation v|, has
dimension < ¢ has dimension at most ¢. Then the coinvariant space (Ox), is finite-dimensional.

The theorem will be proved in a stronger form in Theorem 2.19 (after its reformulation in
Theorem 2.9), hence we omit an explicit proof. Observe that the hypothesis of Theorem 1.2 implies
that, on an open dense subvariety of X,.q, v generates the tangent bundle; as we will explain below,
the hypothesis is equivalent to the statement that X,.q is stratified by locally closed subvarieties
with this property.

1.2. Goals and outline of the paper. First, in §2, we reformulate Theorem 1.2 geometrically
and prove it, along with more general finite-dimensionality and holonomicity theorems. The
main tool involves the definition of a right D-module, M (X,v), generalizing [ES10], such that
Hom(M (X,v), N) = N" for all D-modules N, i.e., the D-module which represents invariants under
the flow of v. Then the theorem above is proved by studying when this D-module is holonomic.
This leads to Theorem 2.9 (a reformulation of Theorem 2.19), Theorem 2.19 (a D-module general-
ization), 2.28 (a partial converse), and 2.57 (a generalization of all the preceding theorems, although
the language is more technical).

The next goal, in §3, is to study examples related to Cartan’s classification of simple infinite-
dimensional transitive Lie algebras of vector fields on a formal polydisc which are complete with
respect to the jet filtration. Namely, according to Cartan’s classification [Car09, GQS70], there are
four such Lie algebras, as follows. For £ € Vect(X), let L¢ denote the Lie derivative by £. Let A
be the formal neighborhood of the origin in A™, which is a formal polydisc of dimension n. Then,
Cartan’s classification consists of:

(a) The Lie algebra Vect(A™) of all vector fields on A"
(b) The Lie algebra H(A2" w) of all Hamiltonian vector fields on A2", i.e., preserving the

standard symplectic form w = ), dx; A dy;; explicitly, £ such that Lew = 0;
2



(¢) The Lie algebra H(A2" ) of all contact vector fields on an odd-dimensional formal
polydisc, with respect to the standard contact structure a = dt + >, x;dy;, i.e., those
vector fields satisfying Lea € Ox - o

(d) The Lie algebra H (A”, vol) of all volume-preserving vector fields on A" equipped with the
standard volume form vol = dx1 A --- A dx,,, i.e., vector fields { such that Levol = 0.

In §3, we define generalizations of each of these examples to the global (but still affine), singular,
degenerate situation. For example, (a) becomes vector fields on arbitrary schemes of finite type. For
(b)—(d), we define generalizations of the structure on the variety, which in case (b) yields Poisson
varieties. Then, there are essentially two different choices of the Lie algebra of vector fields. In case
(b), these are Hamiltonian vector fields or Poisson vector fields. We recall that Hamiltonian vector
fields are of the form { f, —} for f € Ox, and Poisson vector fields are all vector fields which preserve
the Poisson bracket, i.e., such that &{f,g} = {&(f),g} + {f,&(9)}; this includes all Hamiltonian
vector fields.

In each of the cases (a)—(d), we study the leaves under the flow of v and the condition for
the associated D-module to be holonomic (and hence for (Ox), to be finite-dimensional). In this
section, the examples, remarks, and propositions put together constitute the main content, although
we mention in particular Theorem 3.34 and its corollaries as important results.

In §4 we discuss the globalization of these examples to the nonaffine setting, which turns out to be
straightforward for Hamiltonian vector fields and all vector fields, but quite nontrivial for Poisson
vector fields (and hence their generalizations). We do not need this material for the remainder of
the paper. We mention Theorems 4.1 and 4.45 as important results here.

In the remainder of the paper we study in detail three specific examples for which the D-module
has an interesting and nontrivial structure which reflects the geometry. In these examples, we
explicitly compute the D-module and the coinvariants (Ox)y.

In §5, we consider the case of divergence-free vector fields on complete intersections in Calabi-Yau
varieties. Holonomicity turns out to be equivalent to having isolated singularities, and we restrict
to this case. Then, the structure of the D-module and the coinvariant functions (Ox), is governed
by the Milnor number and link of the isolated singularities. We mention Theorems 5.11 and 5.21
as important results.

In §6, we consider quotients of Calabi-Yau varieties by finite groups of volume-preserving auto-
morphisms. In this case, it turns out that the D-module associated to volume-preserving vector
fields is governed by the most singular points, where the stabilizer is larger than that of any point
in some neighborhood. More generally, rather than working on the quotient X/G where X is
Calabi-Yau and G is a group of volume-preserving automorphisms, we study the Lie algebra of
G-invariant volume-preserving vector fields on X itself (and we generalize this to the setting where
G preserves volume up to scaling). This discussion culminates in Theorem 6.3.

Finally, in §7, we consider symmetric powers (S™X,v) of smooth varieties (X,v) on which v
generates the tangent space everywhere (which we call transitive). This includes the symplectic,
locally conformally symplectic, contact, and Calabi-Yau cases. In these situations, we explicitly
compute the D-module and the coinvariant functions. Dually, the main result says that the in-
variant functionals on Ognx form a polynomial algebra whose generators are the functionals on
diagonal embeddings X’ — S™X obtained by pulling back to X and taking a products of invariant
functionals on each factor of X. For the D-module, this expresses M (S™X,v) as a direct sum of
external tensor products of copies of M (X, v) along each diagonal embedding. The main result here
is Theorem 7.9, which has a companion for symmetric powers of odd-dimensional contact varieties
in Theorem 7.15. These results follow from the more general (but more abstract) Theorems 7.21,
7.24, and 7.29.

Although Theorem 1.2 and its reformulation and generalization in Theorems 2.9 and 2.19 can
be viewed as main results of this paper (along with the example-driven discussion leading to the
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more general Theorem 2.57), more important than this is the study of examples in the subsequent
sections and the main results on these, as mentioned above. We particularly highlight the examples
and constructions of Section 3, as well as Theorems 3.34, 5.11, 6.3, and 7.9, as central to this work.

1.3. Brief history of subject. There are many works which deal with Lie algebras of vector fields
on affine varieties; we survey just a few.

Many of these deal with the study, for each affine variety (or subscheme) X C A", of the Lie
algebra D x of all vector fields on A™ which preserve the ideal Ix of X: this is called the tangent
algebra. We will call vector fields in D x those vector fields parallel to X below (and we will use the
same terminology for any inclusion X C Y of varieties, replacing A™ by Y). In fundamental work
of Seidenberg [Sei67], it is shown that Dx C Dyx,_,, where X;eq € X is the reduced subscheme,
i.e., its ideal Ix,_, = v/Ix is the radical of the ideal Ix of X. Moreover, he shows that Dx,_, is the
intersection of Dy over irreducible components Y of X,eq. A generalization to nonreduced affine
schemes is given in [HR99].

In work of Hauser and Miiller [HM93], it is shown that, for X C A", isomorphism classes of Lie
subalgebras D x correspond to isomorphism classes of embedded subvarieties X C A", and that
the same is true in the local analytic setting, i.e., when X is an analytic germ, provided dim X > 3.
This had been proved in the quasihomogeneous isolated singularity case in [Omo80]. In subsequent
work by Hauser and Risler [HR99], these results were generalized to the real analytic setting.

In this paper, we are rather concerned with Lie subalgebras of the Lie algebra of vector fields on
X, which we denote Vect(X), and which is sometimes denoted ©(X) in the literature. This is the
quotient of Dx by the Lie ideal I'x - Vect(A™). The fact that this Lie algebra uniquely determines
X up to isomorphsim is an old result: in the setting of C'* manifolds, it was proved in [SP54]; this
was generalized to real analytic manifolds and (complex analytic) Stein spaces in [Gra79], and to
normal algebraic varieties in [Sie96]. One of the main ideas in the analytic setting is that points of
X correspond to maximal finite-codimensional subalgebras of Vect(X) (in the C'* setting, these
are in fact ideals). As a consequence, X is smooth if and only if Vect(X) is simple [Jor86], [Sie96].
These results were generalized to the local complex analytic setting in [HM94].

We are particularly interested in sualgebras of Vect(X) such as, when X is a Poisson variety, the
subalgebra of Hamiltonian vector fields. In the case of C**° and real analytic symplectic manifolds,
this Lie algebra has been studied in many places, such as [ALDM74] and [Gra87].

The aim of this paper, in departure from the aforementioned and numerous other works on Lie
algebras of vector fields, is to study the coinvariant space (Ox), := Ox/(v-Ox) of functions under
Lie algebras v C Vect(X) of vector fields, and to interpret this geometrically through a study
of the D-module (denoted M (X,v) below) which represents invariants under the flow of v. We
believe that studying Lie algebras of vector fields via this D-module (and more generally using the
techniques of D-modules) is profitable. Our work generalizes previous work of the authors in the
case where X is a Poisson variety and v is the Lie algebra of Hamiltonian vector fields, in e.g.,
[ES10, ES13].

Some of the most interesting examples include complete intersections: see §5), as well as the
sequel to this work, [ES14]. This builds on [Gre75]; this case has been studied in many other
places, notably [Yau82, MY®82]. The Lie algebra of Hamiltonian vector fields in this case has been
studied in many places, such as [MS96].

1.4. Acknowledgements. The first author’s work was partially supported by the NSF grant
DMS-1000113. The second author was a five-year fellow of the American Institute of Mathematics
during the work on this project, and was also partially supported by the ARRA-funded NSF grant
DMS-0900233. We are grateful to the anonymous referees for useful comments and suggestions.
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2. GENERAL THEORY

Let Q5% := Noy Q}( be the algebraic de Rham complex, where Q}( is the sheaf of Kéahler differ-

entials on X. We will frequently use the de Rham complex modulo torsion, Qk = Q% /torsion.

By polyvector fields of degree m on X, we mean skew-symmetric multiderivations A'Ox — Ox.
Let T¢" be the sheaf of such multiderivations. Equivalently, T¥" = Homop, (%, Ox), where £ € T
is identified with the homomorphism sending dfy A -+ Adfy, to E(fi A+ A fi,). This also coincides
with Homo,, (%, Ox).

When X is smooth, then QB( = Q%, and its hypercohomology (which, for X affine, is the same
as the cohomology of its complex of global sections) is called the algebraic de Rham cohomology
of X. Over k = C, this cohomology coincides with the topological cohomology of X under the
complex topology, by a well-known theorem of Grothendieck. For arbitrary X, we will denote the
cohomology of the space of global sections, I‘(QB(), by H} r(X), and the hypercohomology of the
complex of sheaves Q% by H$,5(X) (very often we will use these when X is smooth and affine,
where they both coincide with topological cohomology).

We caution that, when X is smooth, Qx (without a superscript) will denote the canonical
right Dx-module of volume forms, which as a Ox-module coincides with Q4™ X under the above
definition, when X has pure dimension.

By a local system on a variety, we mean an O-coherent right D-module on the variety. Moreover,
from now on, when we say D-module, we always will mean a right D-module.

2.1. Reformulation of Theorem 1.2 in terms of leaves. Recall that (X, v) is a pair of an affine
scheme X of finite type and a Lie algebra v C Vect(X) of vector fields on X. We will give a more
geometric formulation of Theorem 1.2 in terms of leaves of X under v, followed by a strengthened
version in these terms.

Definition 2.1. An invariant subscheme is a locally closed subscheme Z C X preserved by b;
set-theoretically, this says that, at every point z € Z, the evaluation v|, lies in the tangent space
T.Zeq- A leaf is a connected invariant (reduced) subvariety Z such that, at every point z, in fact
v, = T,Z. A degenerate invariant subscheme is an invariant subscheme Z such that, at every
point z € Z, 0|, C T, Zeq.

=

In the case of closed subschemes Z C X, the above can be rephrased in terms of the ideal Iy
of Z: Z is invariant if v(Iz) C Iz; it is a leaf if Oz/Iz has no nilpotents and the natural map
Oz ® v — Der(Oy) is surjective; and Z is a degenerate invariant subscheme if the cokernel of
Oz., ®0 — Der(Og,,) is fully supported on Zeq (i.e., for every z € Zeq, this cokernel does not
vanish in any neighborhood of z).

The terminology “degenerate invariant subscheme” comes from the equivalent definition: the
rank of v on Z,oq is everywhere less than the dimension of Z; equivalently, in a formal or analytic
neighborhood of every point of Z, there are infinitely many leaves.

When an invariant subscheme is reduced, we call it an invariant subvariety. An invariant sub-
scheme Z C X is degenerate if and only if the invariant subvariety Z,oq is degenerate. Note that
the closure of any degenerate invariant subscheme is also such. Also, leaves are necessarily smooth.
Although the same is clearly not true of degenerate invariant subschemes, we can restrict our at-
tention to those with smooth reduction by first stratifying X,.q by its (set-theoretic) singular loci,
in view of the classical result:

Theorem 2.2. [Sei67, Corollary to Theorem 12] The set-theoretic singular locus of X¢q is pre-
served by all vector fields on X.

We give a proof of a more general assertion in the proof of Proposition 2.6 below.
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Remark 2.3. Note that, for the set-theoretic singular locus to be preserved by all vector fields,
we need to use that the characteristic of k is zero; otherwise the singular locus is not preserved by
all vector fields: e.g., in characteristic p > 0, one has the derivation 9, of k[z,y]/(y* — 2P), which
does not vanish at the singular point at the origin.

On the other hand, in arbitrary characteristic, the scheme-theoretic singular locus of a variety
of pure dimension k > 0 is preserved, where we define this by the Jacobian ideal: for a variety cut
out by equations f; in affine space, this is the ideal generated by determinants of (k x k)-minors
of the Jacobian matrix (ng;_) (this is preserved by [Har74], where it is shown that it coincides with

the smallest nonzero Fitting ideal of the module of Kéhler differentials). In the above example it
would be defined by the ideal (y) when p > 2. This is evidently preserved by all vector fields, which
are all multiples of 0,. Note, however, that we will not make use of the scheme-theoretic singular
locus in this paper (except in §5, where we will explicitly define it), nor will we consider the case
of positive characteristic.

Definition 2.4. Say that (X,v) has finitely many leaves if X,eq is a (disjoint) union of finitely
many leaves.

For example, when X is a Poisson variety and v is the Lie algebra of Hamiltonian vector fields,
then this condition says that X has finitely many symplectic leaves.

We caution that, when (X, ) does not have finitely many leaves, it does not follow that there
are infinitely many algebraic leaves, or any at all:

Example 2.5. Consider the two-dimensional torus X = (A!\ {0})2, and let v = (£) for some
global vector field £ which is not algebraically integrable, e.g., 0, — cyd, where c is irrational.
The analytic leaves of this are the level sets of x¢y, which are not algebraic. There are in fact no
algebraic leaves at all.

However, it is always true that, in the formal neighborhood X, of every point x € X, there exists
a formal leaf of X through z: this is the orbit of the formal group obtained by integrating v. In
the above example, this says that the level sets of x°y do make sense in the formal neighborhood
of every point (z,y) € X.

The condition of having finitely many leaves is well-behaved:

Proposition 2.6. Let X; := {z € X | dimv|; =i} C X;eq. Then X; is an invariant locally closed
subvariety. Moreover, X has finitely many leaves if and only if the connected components of the X;
are all leaves, and X does not have finitely many leaves if and only if some X; contains a degenerate
invariant subvariety.

Proof. First, to see that the X; are locally closed, it suffices to show that Y; := |—|i§j X; is closed
for all j. This statement would be clear if v were finite-dimensional; for general v we can write
v as a union of its finite-dimensional subspaces, and Yj(v) is the intersection of Yj(v’) over all
finite-dimensional subspaces v’ C v.

Next, we claim that, for all i < k, the subvariety X; ; € X of points x € X; at which dim 7T, X =k
is preserved by all vector fields from v.

Let S := Speck[t] and Xg := Spec Ox[t]. For every £ € v, consider the automorphism e
of Oxg. For any point x € X, consider the corresponding S-point rs € Xg, i.e., Og-linear
homomorphism Oy, — Og. Let m = m, be its kernel, i.e., m,[t]. Then, let g = e€xg, another
S-point of Xg, and let m = m, be the kernel of its associated homomorphism Ox, — Og.

Let the cotangent space to Xg at zg be defined as T,  Xs = m/m?, and similarly T;‘,SXS =m/m2.
Since T X is a free Og-module of rank k, the same holds for TgSX 5.

Moreover, we can view v[t] as a space of vector fields on Xg over S, i.e., as a subspace of Og-
derivations Ox, — Ox,. Since e'€ is an automorphism preserving v[t], it follows as for zg € Xg
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that the image of v[t] — Homeg(7;,Xs,Os) is a free Og-module of rank i. We conclude that
Ig € (Xi,k)S = Spec OXi,k [[t]] C Xg.

We conclude from the preceding paragraphs that v is parallel to Xz, i.e., that v|, C T, X, ;, for
all x € X, 1, as desired.

This can also be used to prove Theorem 2.2: setting ¢ = k = dim X + 1, we conclude that the
intersection of the (set-theoretic) singular locus with the union of irreducible components of X of
top dimension is preserved by all vector fields; one can then induct on dimension. Alternatively,
one can apply the above argument, replacing X; ;, by the set-theoretic singular locus of X.

For the final statement of the proposition, first note that, if one of the X; contains a degenerate
invariant subvariety, it cannot be a union of finitely many leaves, since this cannot hold for a
degenerate invariant subvariety. Since X has finitely many leaves if and only if the same is true for
all of the X;, we deduce that this fails precisely when one of the X; contains a degenerate invariant
subvariety. It remains to show that, if X has finitely many leaves, then the connected components
of the X; are leaves. Since they cannot contain degenerate invariant subvarieties by the above, it
follows that, for generic z in each irreducible component of X;, we must have v|, = T, X;. Thus
the dimension of X; is equal to i, and we have dimv|, > dim7,X; for all z € X;. The reverse
inequality is automatic, so v|, = T, X; for all z € X;. This implies that the connected components
of the X; are leaves. O

Remark 2.7. We needed to use the formal power series ring k[¢] in the proof in order to integrate
derivations to automorphisms for general k of characteristic zero. In the case that k = C, on
the other hand, we could prove the proposition by embedding X into C* and locally analytically
integrating the flow of vector fields of v (which individually noncanonically lift to C*), which must
preserve the singular locus and the rank of v.

Corollary 2.8. There can be at most one decomposition of X,¢q into finitely many leaves. The
following are equivalent:

(i) X has finitely many leaves;
(ii) X contains no degenerate invariant subvariety;
(iii) For all 4, the dimension of X; is at most i.

Proof. For the first statement, suppose that X = L;Z; = U;Z] are two decompositions into leaves.
Then each nonempty pairwise intersection Z; N Z} is evidently a leaf. Now, for each i, Z; =
U;i(Z; N Z}) is a decomposition of Z; as a disjoint union of locally closed subvarieties of the same
dimension as Z;. Since Z; is connected, this implies that this decomposition is trivial, i.e., Z;» =7
for some j.

For the equivalence, first we show that (i) implies (ii). Indeed, if X were a union of finitely many
leaves and also X contained a degenerate invariant subvariety Z, we could assume Z is irreducible.
Then there would be some X; such that X; N Z is open and dense in Z. But then the rank of v
along X; N Z would be less than the dimension of Z, and hence less than the dimension of X;, a
contradiction. To show (ii) implies (iii), note that, if dim X; > 4, then any open subset of X; of
pure maximal dimension is degenerate. To show (iii) implies (i), note that the decomposition of
Proposition 2.6 must be into leaves if dim X; < ¢ for all 4 (in fact, in this case, each X; is a (possibly
empty) finite union of leaves of dimension 7). O

In view of Corollary 2.8, Theorem 1.2 above can be restated as:
Theorem 2.9. If (X, v) has finitely many leaves, then (Ox), is finite-dimensional.

In the aforementioned Poisson variety case, the theorem is a special case of [ES10, Theorem 1.1].
Note that the converse to the theorem does not hold: see Remark 2.22. As with Theorem 1.2, we
will generalize Theorem 2.9 in Theorem 2.19 below, and hence we omit its proof here.
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Remark 2.10. Suppose that X is irreducible and that v acts locally finitely and semisimply on Ox,
e.g., if v is the Lie algebra of a reductive algebraic group acting on X. In this situation, Theorem
2.9 is elementary. It is enough to assume that X is irreducible, so that if v acts with finitely many
leaves, then there is a unique open dense leaf. In this case, dim(Ox), = 1. This is because, by
local finiteness and semisimplicity, the canonical map (Ox)® — (Ox), is an isomorphism, and the
former has dimension one since there is a unique open dense leaf, on which the invariant functions
are all constant.

Remark 2.11. One can obtain examples where dim(Ox), > 1 when v is semisimple and has only
a single leaf (in particular, X is smooth), but does not act locally finitely. For example, let X C A?
be any nonempty open affine subvariety such that 0 ¢ X. Let sls act on X by the restriction of
its action on A2, This is the Lie algebra of linear Hamiltonian vector fields with respect to the
usual symplectic structure on A2. Since X is affine symplectic, if H(X) denotes the Hamiltonian
vector fields, (Ox)p(x) = HU™X(X) = H},(X), by the usual isomorphism [f] — f - volx.'
On the other hand, sly C H(X), so dim(Ox)s, > dim H?(X) (in fact this is an equality since
sly - Ox = H(X) - Ox inside the ring of differential operators Dx on X, since sly generates the
tangent space everywhere and is volume-preserving; see Proposition 2.53 below). There are many
examples of such varieties X which have dim H%(X) > 1. For example, if X is the complement
of n + 1 lines through the origin, then dim H?(X) = n: the Betti numbers of X are 1,n + 1,
and n, since the Euler characteristic is zero, each deleted line creates an independent class in first
cohomology, and there can be no cohomology in degrees higher than two as X is a two-dimensional
affine variety. This produces an example as desired for n > 2.

2.2. The D-module defined by v. The proof of the theorems above is based on a stronger result
concerning the D-module whose solutions are invariants under the flow of v. This construction
generalizes M (X) from [ES10] in the case X is Poisson and v is the Lie algebra of Hamiltonian
vector fields. Namely, we prove that this D-module is holonomic when X has finitely many leaves.
We will explain a partial converse in §2.4, and discuss holonomicity in more detail in §2.9 below.

We will need to use right D-modules on X as formulated by Kashiwara. Namely, first suppose
V is a smooth affine variety. Then the category of right D-modules on V is the category of right
modules over the ring Dy of differential operators on Oy with polynomial coefficients (note that
Dy = Symg,, Der(Oy)). In particular, any right D-module on V' is a module over Oy, and we
can therefore define its support just as for Oy-modules. Next, suppose X C V is any closed affine
subvariety. Then we define the category of right D-modules on X to be the full subcategory of
right D-modules on V' which are supported on X, i.e., whose support is contained in X. This
all generalizes to define right D-modules on any variety as follows: for smooth varieties the same
definition applies where Oy and Dy are now sheaves of algebras and modules are quasicoherent
sheaves of modules, and then D-modules on X C V is defined in the same way (where X and
V need not be affine). As proved by Kashiwara, the category of right D-modules on X does not
depend, up to canonical equivalence, on the choice of embedding X C V. Therefore we can refer
to D-modules on X without a choice of embedding, and given any embedding X C V', we can call
the resulting right D-modules on V' the image under Kashiwara’s equivalence (of right D-modules
on X), i.e., under Kashiwara’s equivalence between the category of right D-modules on X and the
category of right D-modules on V supported on X. (We remark that there is another way to define
the category of right D-modules on X, under the name “crystals,” which does not depend on a
choice of embedding X C V at all, and if one uses this definition, Kashiwara’s equivalence is a
theorem.)

1Dually, in the complex case k = C, the second homology of X as a topological space produces the functionals on
Ox invariant under H(X) (and hence also those invariant under slo) by C' € Ha(X) — ®c, ®c(f) = [, fvolx.
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For every variety X, there is a canonical right D-module on X which we call Dx. When X =V
is smooth, this is just the ring (or sheaf of rings) Dy of differential operators viewed as a right
module over itself. When X C V is an embedding, then Dx = Ix - Dy \ Dy, the quotient of Dy by
the right ideal generated by the functions Ix C Ox vanishing on X. Note that Dx is canonically
equipped with a left action by functions on X, as well as by vector fields on X, i.e., derivations
on Ox (which are the same as derivations of Oy preserving Ix modulo derivations whose image is
entirely in ).

From now on, since we will only deal with right D-modules, we will often suppress the term
“right.” Our main object of study is the following D-module on X:

(2.12) M(X,v) :=v-Dx \ Dx,

where v - Dy is the submodule generated by the action of v on Dyx. (We will also use the same
definition when X is replaced by its completion X, at points x € X, even though X, does not have
finite type.)

Explicitly, if 7 : X — V is an embedding into a smooth affine variety V', let b C Vect(V) be the
subspace of vector fields which are parallel to X and restrict on X to elements of v. Then, the
image of M (X, v) under Kashiwara’s equivalence is

M(X7 v, Z) = (IX + E)DV \ Dy.
Let m : X — Speck be the projection to a point, and 7y the functor of underived direct image

from D-modules on X to those on k, i.e., k-vector spaces. Explicitly, if M is a D-module on a
smooth affine variety V' which is supported on X, then moM := M ®p,, Oy.

Proposition 2.13. moM(X,0) = (Ox).
Proof. Fix an affine embedding X < V. Then,
moM(X,0) = (Ix +0)Dy \ Dy @p, Oy = (Ox)o. O

If Z C X is an invariant closed subscheme, we will repeatedly use the following relationship
between M (X,v) and M(Z,v|z):

Proposition 2.14. If i : 7 — X is the tautological embedding of an invariant closed subscheme,
then there is a canonical surjection M (X,v) — i.M(Z,0|z).

Proof. Since i.M(Z,v|z) = ((v+ Iz) - Dx) \ Dx, where I is the ideal of Z, this is the quotient of
M(X,0) =v-Dx \ Dx by its submodule (v-Dx NIz -Dx)\ (Iz - Dx). d

Remark 2.15. As pointed out in the previous subsection, one could more generally allow v to be
an arbitrary subset of Vect(X). However, it is easy to see that the D-module is the same as for the
Lie algebra generated by this subset. So, no generality is lost by assuming that v be a Lie algebra.

Notation 2.16. By a Lie algebroid in Vect(X ), we mean a Lie subalgebra which is also a coherent
subsheaf.

Remark 2.17. One could more generally (although equivalently in a sense we will explain) allow
v C D)S(l to be a space of differential operators of order < 1. One then sets, as before, M(X,v) =
v-Dx \ Dx. In this case, one obtains the same D-module not merely by passing to the Lie algebra
generated by v, but in fact one can also replace v by v - Ox. Let o : D)S(l — Vect(X) denote the
principal symbol. Then, we conclude that o(b) C Vect(X) is actually a Lie algebroid (cf. Notation
2.16).

T%ﬂs is actually equivalent to using only vector fields, in the following sense: Given any pair
(X,0) with v C D)S(l, one can consider the pair (A! x X, 0) where, for x the coordinate on Al 6

contains the vector field 9, together with, for every differential operator 6 € v, o(6) — (0 — 0o (0))x0s.
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Since (20, + 1) = 9, - x € (0, - Da1), one easily sees that M(A! x X,0) = Qa1 K M(X,0). So,
in this sense, one can reduce the study of pairs (X, v) to the study of affine schemes of finite type
with Lie algebras of vector fields. In particular, our general results extend easily to the setting of
differential operators of order < 1.

Remark 2.18. Similarly, one can reduce the study of pairs (X, v) to the case where X is affine
space. Indeed, if X < A" is any embedding, and Ix is the ideal of X, we can consider the Lie
algebroid

Ix -Dxn+0C Din.

This makes sense by lifting elements of v to vector fields on A", and the result is independent of the
choice. We can then apply the previous remark to reduce everything to Lie algebras of vector fields
on affine space. (This is not really helpful, though: in our examples, v is naturally associated with
X (e.g., Hamiltonian vector fields on X), so it is not natural to replace X with an affine space.)

2.3. Holonomicity and proof of Theorems 1.2 and 2.9. Recall that a nonzero D-module on
X is holonomic if it is finitely generated and its singular support is a Lagrangian subvariety of
T*X (i.e., its dimension equals that of X). We always call the zero module holonomic. (Derived)
pushforwards of holonomic D-modules are well-known to have holonomic cohomology. Since a
holonomic D-module on a point is finite-dimensional, this implies that, if M is holonomic and
m : X — pt is the pushforward to a point, then 7, M (by which we mean the cohomology of the
complex of vector spaces), and in particular moM, is finite-dimensional. Therefore, if we can show
that M (X, v) is holonomic, this implies that (Ox), = moM (X, 0) is finite-dimensional, along with
the full pushforward 7, M (X, v). This reduces Theorem 2.9 and equivalently Theorem 1.2 to the
statement:

Theorem 2.19. If (X,v) has finitely many leaves, then M (X, v) is holonomic. In this case, the
composition factors are intermediate extensions of local systems along the leaves.

The converse does not hold: see, e.g., Example 2.32.

Proof of Theorem 2.19. The equations grv are satisfied by the singular support of M (X,v). These
equations say, at every point z € X, that the restriction of the singular support of M (X, ) to z lies
in (b|;)*. Thus, if Z C X is a leaf, then the restriction of the singular support of M (X, v) to Z lies
in the conormal bundle to Z, which is Lagrangian. If X is a finite union of leaves, it follows that
the singular support of M (X, v) is contained in the union of the conormal bundles to the leaves,
which is Lagrangian. The last statement immediately follows from this description of the singular
support. ]

We will be interested in the condition on v for M (X, v) to be holonomic, which turns out to be
subtle.

Definition 2.20. Call (X,v), or v, holonomic if M(X,v) is.
We will often use the following immediate consequence, whose proof is omitted:
Proposition 2.21. If v is holonomic, then O, is finite-dimensional.

Remark 2.22. The converse to Proposition 2.21 does not hold in general (although we will have
a couple of cases where it does: the Lie algebras of all vector fields (Proposition 3.3) and of
Hamiltonian vector fields preserving a top polyvector field (Corollary 3.37)). A simple example
where this converse does not hold is (X,0) = (A2, (9,)) (where x is one of the coordinates on A?),
where M (X,0) = Qa1 KDy is not holonomic, but O, = 0. This example also has infinitely many
leaves, namely all lines parallel to the z-axis.
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2.4. Incompressibility and a weak converse. We say that a vector field £ preserves a differential
form w if the Lie derivative L¢ annihilates w.

Definition 2.23. Say that v flows incompressibly along an irreducible invariant subvariety Z if
there exists a smooth point z € Z and a volume form on the formal neighborhood of Z at z which
is preserved by v.

There is an alternative definition using divergence functions which does not require formal local-
ization, which we discuss in §3.5; see also Proposition 2.24.(iii). When X is irreducible and v flows
incompressibly on X, we omit the X and merely say that v flows incompressibly. Note that this is
equivalent to flowing generically incompressibly.

In §2.6 we will prove

Proposition 2.24. Let X be an irreducible affine variety. The following conditions are equivalent:
(i) v flows incompressibly;
(ii) M(X,v) is fully supported;
(iii) For all & € v and f; € Ox such that ), fi& = 0, one has >, &(fi) = 0.
Moreover, the equivalence (ii) < (iii) holds when X is an arbitrary affine scheme of finite type, if
one generalizes (ii) to the condition: (ii’) The annihilator of M (X,v) in Ox is zero.

Remark 2.25. We can alternatively state (ii’) and (iii) as follows, in terms of global sections of
v-Dy C Dy (cf. §2.6 below): (ii’) says that (v-Dz)NOz = 0, and (iii) says that (v-Oz)N Oz = 0.

Motivated by this proposition, we will generalize the notion of incompressibility to the case of
nonreduced subschemes in §2.8 below, to be defined by conditions (ii’) or (iii) above.

Example 2.26. In the case that X is a Poisson variety, v is the Lie algebra of Hamiltonian vector
fields, and Z C X is a symplectic leaf (i.e., a leaf of v), then v flows incompressibly on Z, since
it preserves the symplectic volume along Z, and hence also preserves the symplectic volume in a
formal neighborhood of any point z € Z.

Definition 2.27. Say that v has finitely many incompressible leaves if it has no degenerate invariant
subvariety on which v flows incompressibly.

As before, if v does not have finitely many incompressible leaves, one does not necessarily have
infinitely many incompressible leaves, or any at all (see Example 2.5, which does not have finitely
many incompressible leaves, but has no algebraic leaves).

In §2.7 below we will prove

Theorem 2.28. (i) For every incompressible leaf Z C X, letting i : Z < X be the tautological
embedding of its closure, the canonical quotient M (X, ) — i,M(Z,0|;) is an extension of
a nonzero local system on Z to Z.
(ii) If (X, ) is holonomic, then it has finitely many incompressible leaves.

Note that the converse to (i) does not hold: see Example 2.34. We will give a correct converse
statement in §2.9 below. Also, the converse to (ii) does not hold, as we will demonstrate in Example
2.31.

We conclude from the Theorems 2.19 and 2.28 that

(2.29) finitely many leaves = holonomic = finitely many incompressible leaves,

but neither converse direction holds, as mentioned (see Examples 2.32 and 2.31, respectively).
However, we will see below that the second implication is generically a biconditional for irreducible
varieties X, i.e., X generically has finitely many incompressible leaves if and only if X is generically
holonomic.
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Example 2.30. When X is Poisson and v the Lie algebra of Hamiltonian vector fields, then Theo-
rem 2.28 and Example 2.26 imply that v is holonomic if and only if X has finitely many symplectic
leaves. More precisely, if Z C X is any invariant subvariety, then in the formal neighborhood of
a generic point z € Z, we can integrate the Hamiltonian flow and write Z., =V x V' for formal
polydiscs V' and V', where the Hamiltonian flow is along the V direction, and transitive along
fibers of (V x V') — V', Then Hamiltonian flow preserves the volume form wy ® wy/, where wy is
the canonical symplectic volume, and wy- is an arbitrary volume form on V’. Therefore, all Z are
incompressible. (In particular, this includes the case mentioned already in Example 2.26.) Then
(2.29) shows that H(X) is holonomic if and only if there are finitely many leaves.

Example 2.31. We demonstrate that (Ox), need not be finite-dimensional if we only assume
that X has finitely many incompressible leaves. Therefore, v is not holonomic (although non-
holonomicity also follows directly in this example). Let X = A2 x (A '\ {0}) C A3, with A? =
Speck[z,y] and A \ {0} = Speck[z, 27']. Let v = (y?0,,yd, + 20,,9,). Then this has an incom-
pressible open leaf, {y # 0}, preserving the volume form y%dm Ady A dz. The complement consists
of the leaves {z = ¢,y = 0} for all ¢ € k, which are not incompressible since the restriction of v to
each such leaf (or to their union, {y = 0}) includes both 9, and 29,.

We claim that the coinvariants (Ox), are infinite-dimensional, and isomorphic to k[z]-yz~" via
the quotient map Ox — (Ox)p. Indeed, y?0,(Ox) = y*Ox, (yd,+20,)Ox = k[z]-(y'27 | i+j # 0),
and 9,(Ox) = k[z,y] - (2* | i # —1). The sum of these vector subspaces is the space spanned by all
monomials in z,y, z, and 2z~ except for 2'yz~! for all i > 0.

1

Example 2.32. It is easy to give an example where v is holonomic but has infinitely many leaves:
for Y any positive-dimensional variety, consider X = A! x Y, v := (0,,20,), where x is the
coordinate on A'. Then the leaves of (X, ) are of the form A! x {y} for y € Y, but M(X,v) =0,
which is holonomic.

Example 2.33. For a less trivial example, which is a generically nonzero holonomic D-module
without finitely many leaves, let X = A2 with coordinates x, %, and z, and let v be the Lie algebra
of all incompressible vector fields (with respect to the standard volume) which along the plane
x = 0 are parallel to the y-axis. Then we claim that the singular support of M (X,v) is the union
of the zero section of T*X and the conormal bundle of the plane = 0, which is Lagrangian,
even though there are not finitely many leaves. Actually, from the computation below, we see that
M (X, v) is isomorphic to jiQ2a1\ o) K Q242, where j : A\ {0} < A!is the inclusion (which is an
affine open embedding, so j; is an exact functor on holonomic D-modules). This is an extension
of Qas by i.Qa2, where i : A2 = {0} x A? < A3 is the closed embedding, i.e., there is an exact
sequence
0 — Qa2 = M(X,0) = Qps — 0.
Thus, there is a single composition factor on the open leaf and a single composition factor on the
degenerate (but not incompressible) invariant subvariety {x = 0}.
To see this, note first that J, € v. We claim that 14 20, and 0, are in v - Dx:

Oy -y — (y0y — x0z) = 1 + x0y;
(1+20;) -0, — (20,) - Oy = 0.
Thus, (1+x0,,0,,0,) C v-Dx. Conversely, we claim that v C (14 20,0y, 0;) - Dx. Indeed, given
an incompressible vector field of the form § = xf0, + g0y +xh0, € v for f,g,h € Ox, we can write
E=14+20;) - f+0y-g+0.-xh,

where the RHS is a vector field (and not merely a differential operator of order < 1) because £ is
incompressible. Explicitly, the condition for this RHS to be a vector field, and the condition for &

to be incompressible, are both that d,(xf) + 9y(g) + 9.(xh) = 0.
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We conclude that (1 + 20;,0,,0;) - Dx = v - Dx. Therefore, M(X,0) = jiQa1 (o) K Qp2, as
claimed.

Example 2.34. We can slightly modify Example 2.33, so that (again for X := A3 and i : {0} x
A? — A3), i,Q 2 appears as a quotient of M(X,v) rather than as a submodule. More precisely,
we will have M (X,0) = j.Qa1\ [0y X Q42. To do so, let v be the Lie algebra of all incompressible
vector fields preserving the volume form x—lgda; Ady A dz (cf. Example 2.31), which again along the
plane x = 0 are parallel to the y-axis. Note also that, in this example, the subvariety {0} x A2 is
still not incompressible (since d, and yd, are both in v|y A2, and these cannot both preserve the
same volume form), even though this subvariety now supports a quotient i,Q42 of M(X).

To see this, we claim that v - Dx = (1 — 20,, 0y, 0.) - Dx. For the containment O, we show that
1— 20, and 9, are in v - Dx. This follows from

Oy -y — (YOy + x0;) = 1 — x0,;
(1 —20;) 0.+ (20,) - Oy = 0.

Then, as in Example 2.33, if £ = xf0, + g0, + xh0. € v preserves the volume form z%d:n Ndy Ndz,
then

E=—1—20;) - f+0y-g+0, zh.
Therefore, we also have the opposite containment, v-Dx C (1 —x0,,0y,0,) - Dx. As a consequence,
M(X,0) = j.Qa1\ 0y X Qa2. We therefore have a canonical exact sequence

0— Qas = M(X,0) = i, Q42 — 0.

2.5. The transitive case. In this section we consider the simplest, but important, example of v
and the D-module M (X, v), namely when v has maximal rank everywhere:

Definition 2.35. A pair (X,v) is called transitive at x if v|, = T, X. We call the pair (X,v)
transitive if it is so at all z € X.

In other words, the transitive case is the one where every connected component of X is a leaf.
Note that, in particular, X must be a smooth variety. Also, we remark that X is generically
transitive if and only if it is generically not degenerate.

Proposition 2.36. If (X, v) is transitive and connected, then M (X,v) is a rank-one local system
if v flows incompressibly, and M (X, v) = 0 otherwise.

Proof. By taking associated graded of M (X, v), in the transitive connected case, one obtains either
Ox (where X C T*X is the zero section) or zero. So M(X,v) is either a one-dimensional local
system on X, or zero. In the incompressible case, in a formal neighborhood of some x € X, a volume
form is preserved, so there is a surjection ]\4()2},;7 0]&6) — %, and hence in this case M(X,v) is
a one-dimensional local system. Conversely, if M (X, v) is a one-dimensional local system, then in
a formal neighborhood of any point x € X, it is a trivial local system, and hence it preserves a

volume form there. O

Example 2.37. In the case when X is connected and Calabi-Yau and v preserves the global volume
form (which includes the case where X is symplectic and v is the Lie algebra of Hamiltonian
vector fields), then we conclude that M(X,v) = Qx. Thus, for 7 : X — pt the projection
to a point, (Ox)y = mx = HgEX(X), the top de Rham cohomology. Taking the derived
pushforward, we conclude that m, M (X,v) = mQx = H?)ig}X “*(X). In the Poisson case, where
(Ox)y is the zeroth Poisson homology, in [ES10, Remark 2.27] this motivated the term Poisson-
de Rham homology, HPPR(X) = m,M(X,v), for the derived pushforward. More generally, if
v preserves a multivalued volume form, then M (X,v) is a nontrivial rank-one local system and
13



T M(X,0) = H%iEX_*(X, M(X,v)) is the cohomology of X with coefficients in this local system
(identifying M (X, v) with its corresponding local system under the de Rham functor). See the next
example for more details on how to define such v.

Example 2.38. The rank-one local system need not be trivial when v does not preserve a global
volume form. For example, let X = (A!\ {0}) x A! = Speck|[z,z~!,y]. Then we can let v be the
Lie algebra of vector fields preserving the multivalued volume form d(z") A dy for r € k. It is easy
to check that this makes sense and that the resulting Lie algebra v is transitive. Then, M (X, v) is
the rank-one local system whose homomorphisms to {2x correspond to this volume form, which is
nontrivial (but with regular singularities) when r is not an integer. For k = C, the local system
M (X, ) thus has monodromy e~27.

More generally, if X is an arbitrary smooth variety of pure dimension at least two, and V is a flat
connection on 2x, we can think of the flat sections of V as giving multivalued volume forms, and
define a corresponding Lie algebra v so that Homp, (M (X, ), 2x) returns these forms on formal
neighborhoods. Precisely, we can let v be the Lie algebra of vector fields preserving formal flat
sections of V. We need to check that v is transitive, which is where we use the hypothesis that
X has pure dimension at least two: see §3.5.2 and in particular Proposition 3.62 (alternatively, we
could simply impose the condition that v be transitive, which is immediate to check in the example
of the previous paragraph). Then M (X,v) = (Qx, V)*®o, x, via the map sending the canonical
generator 1 € M(X,v) to the identity element of Endp, (2x). Conversely, if (X,v) is transitive
and M (X,v) is nonzero (hence a rank-one local system), then Homp, (M (X,v),Qx) canonically
has the structure of a local system on Qx with formal flat sections given by Homyp, (M (X,v),Qx),
and one has a canonical isomorphism

M(X,U) = HOm()X(M(X,U),Qx)* Rox Qx.

On the other hand, if X is one-dimensional and b is transitive, then M (X, v) cannot be a
nontrivial local system, since there are no vector fields defined in any Zariski open set preserving
a nontrivial local system. More precisely, assuming X is a connected smooth curve, in order to
be incompressible, v must be a one-dimensional vector space. Then, if £ € v is nonzero, then the
inverse ¢! defines the volume form preserved by v.

We can prove a converse generically: if v is incompressible (which as we already stated in
Proposition 2.24, but did not yet prove, is the same as M (X, v) being generically nonzero), then
it is generically transitive if and only if M(X,v) is generically holonomic (hence, if and only if
it is generically a local system of rank one). We actually prove a more general result, about the
dimension of the singular support of M (X,v) generically:

Proposition 2.39. If (X, v) is a variety, then M (X, v) is fully supported on X if and only if v flows
incompressibly on every irreducible component of X. In this case, the dimension of the singular
support of M (X, v) on each irreducible component Y C X is generically dim Y + (dim Y —r), where
r is the generic rank of v on Y.

Before we prove the proposition, we give the converse statement to Proposition 2.36:

Corollary 2.40. If (X, v) is an irreducible variety, then v is generically holonomic if and only if it
is either generically transitive or not incompressible.

Proof of Corollary 2.40. This follows because M (X,v) is generically holonomic if and only if the
singular support generically has dimension equal to that of X, since X is generically transitive if
and only if the generic rank of v is equal to the dimension of X. (|

Proof of Proposition 2.39. It suffices to assume X is irreducible, since the statements can be checked

generically on each irreducible component. For generic z € X, in the formal neighborhood X, we
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can integrate the flow of v and write X, (V x V'), where V and V' are two formal polydiscs
about zero, mapping = € X, to (0,0) € (V x V'), and such that v generates the tangent space in
the V' direction everywhere, i.e., v|(, ) = T,V x {0} at all (v,0') € (V x V).

Since @X,w -0 = Ty X Oy, inside b - (’A)Xﬂc we have, for every £ € Ty, an element of the form
&+ D(§), for some D(§) € @X,x. Namely, this is true because, when £ € v and f € @X@,
E-f=f-E4+&(f) €v-Ox,, and Ty is contained in the span of such f - €.

Now assume that v preserves a volume form w on X,. Recall that this means that, for all £ € v,
one has Lew = 0. Since the right D-module action of vector fields £ € Vect(X) on Qx is by
w - § = —Lew, we conclude that D(§) = Lew/w. Write w = f - wy A wyr where wy and wy are
volume forms on V and V' and f € @X,z is a unit. Then we conclude that M(Xx, U|Xx) = Qy XDy,
the quotient of Dy , by the right ideal generated by wy-preserving vector fields on V.

Conversely, assume that M (X, v) is fully supported. Since z was generic, M (X, | %,) is also
fully supported. Thus, for every ¢ € Ty, there is a unique D(€) such that £ + D(£) € v-Dx . (and
in fact this is in v - (;)Xx)

Let 01,...,0, be the constant vector fields on V x V’. We conclude that v - @va = {{+
D) : £ € Ty ®Oyr} - Sym(dy,...,0,). Since M()A(w,nb(l) is fully supported, this implies that
gr(v - ﬁXm) =Ty - Sym(;)xyz T, and hence that M(X,, 0l%.) = Qv X Dy:. Then, v also preserves

a formal volume form, since Hom(M (X, v| %), Qvxyvr) # 0. (Explicitly, for the unique (up to
scaling) volume form wy on V preserved by vy, these are of the form wy X wy» for arbitrary
volume forms wys on V'.)

For the final statement, the proof shows that, in the incompressible (irreducible) case, the di-
mension of the singular support is generically dim V' + 2dim V', which is the same as the claimed
formula when we note that dimV =r and dimV + dim V' = dim Y. g

2.6. Proof of Proposition 2.24. By Proposition 2.39, conditions (i) and (ii) are equivalent, when
X is an irreducible affine variety. Now let X be an arbitrary affine scheme of finite type. We prove
that (ii’) and (iii) are equivalent.

In view of Remark 2.25, the implication (ii’) = (iii) is immediate. To make Remark 2.25 precise,
we should define v - Ox as a subspace of global sections of Dx. One way to do this is to take an
embedding 7 : X — V into a smooth affine variety V' as in §2.2; in the notation there, the global
sections of i, (v - Dx) then identify as

(2.41) I'(V,i«(v-Dx)) = IxDy \ ((v + Ix) - Dy).
Then, by v - Ox we mean the subspace
(2.42) U-OX:(IvaﬂB-Ov)\E-Ov.

Finally, by Ox itself, we mean the subspace
(2.43) Ox = (IxDy NOy) \ Oy.

Then, it follows that (ii’) is equivalent to (b - Dx) N Ox = 0 and that (iii) is equivalent to (b -
Ox)NOx = 0, as desired. In other words, it is equivalent to ask that (v-Dy) N Oy C Ix and
(B'Ov)ﬂ()v CIx.

We now prove that (iii) implies (ii’). Assume that V' = A™ = Speck|x1,...,z,]. Note that

(E—i—fx) - Dy = (E—I-IX) -OV-Sym<81,...,8n>.

Thus, the fact that ((0+1Ix)-Oy)NOy = Ix, i.e., (iii), implies also that ((0+Ix)-Dy)NOy = Ix,
Le., (i)
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Remark 2.44. For irreducible affine varieties, we can also show that (i) and (iii) are equivalent
directly without using Remark 2.25, and hence by Proposition 2.39, that (ii) and (iii) are equivalent.
Suppose (i). By Proposition 2.39, v flows incompressibly on Z. Let z € Z be a smooth point and
w € Q1 be a formal volume preserved by v. Then, if f; € Oz and §; € v[z satisty 3, fi& = 0, we
have 0 = Ly,¢,w = >, &(fi), which proves (iii).

Conversely, suppose that (iii) is satisfied. Let z € Z be a smooth point where the rank of vz
is maximal. Then, in a neighborhood U C Z of z, Oy - v is a free submodule of T, and hence
has a basis &1,...,&;. In the language of §3.5, one can define a divergence function D : Oy - v —
Ty, D3, fi&) = >, &(fi). Therefore, by Proposition 3.52, v flows incompressibly on U, and hence
on Z.

2.7. Proof of Theorem 2.28. Part (i) is an immediate consequence of Proposition 2.14 and
Proposition 2.39.

For part (ii), suppose that X does not have finitely many incompressible leaves. Then, there is a
degenerate invariant subvariety i : Z < X such that v flows incompressibly on Z. By Proposition
2.14 and Proposition 2.39, there is a nonholonomic quotient of M (X, ) supported on the closure
of Z. So M(X,v) is not holonomic.

2.8. Support and saturation. To proceed, note that in some cases, M (X, v) is actually supported
on a proper subvariety, e.g., in Example 2.32, where it is zero; more generally, by Proposition 2.24,
this happens if and only if v does not flow incompressibly. In this case, it makes sense to replace
X with the support of M(X,v), and define an equivalent system there. More precisely, we define
a scheme-theoretic support of M (X, v):

Definition 2.45. The support of (X, v) is the closed subscheme X, C X defined by the ideal
(t) . Dx) NOx of Ox.

To make sense of this definition, we work in the space of global sections of v-Dx, using (2.42) and
(2.43). Note that here it is essential that we allow X, to be nonreduced (this was our motivation
for working in the nonreduced context).

We immediately conclude (and therefore omit the proof of):

Proposition 2.46. Let i : X, — X be the natural closed embedding. Then, there is a canonical
isomorphism M (X, v) = i, M (X,,0|x,).

The above remarks say that, when X is a variety, X = X, if and only if v flows incompressibly.
Moreover, v flows incompressibly on an invariant subvariety Z C X if and only if Z = Z,|,. With
this in mind, we extend the definition of incompressibility to subschemes:

Definition 2.47. We say that v flows incompressibly on an invariant subscheme 7 if Z = Z,,.

With this definition, as promised, the conditions (i), (ii’), and (iii) of Proposition 2.24 are
equivalent for arbitrary affine schemes of finite type.

Proposition 2.48. Let Z C X be an irreducible closed subvariety. Then there exists a quotient
of M(X,v) whose support is Z if and only if Z is invariant and v flows incompressibly on some
infinitesimal thickening of Z. In this case, this quotient factors through the quotient M(X,v) —
i« M (Z',0|z), for some infinitesimal thickening Z’, with inclusion i : Z' < X.

Here, an infinitesimal thickening of a subvariety Z C X is a subscheme Z’ C X such that
Z!.q4 = Z. Note that it can happen that v flows incompressibly on Z’' but not on Z, as in Example
2.34. We caution that, on the other hand, M (X,v) could have a submodule supported on Z even
if v does not flow incompressibly on any infinitesimal thickening of Z: see Example 2.33.
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Proof of Proposition 2.48. M(X,0) =v-Dx \ Dx admits a quotient supported on Z if and only if,
for some N > 1, (0+IY)- Dy is not the unit ideal. This is equivalent to saying that M (Z’,0|z) # 0
for some infinitesimal thickening Z’ of Z. This can only happen if Z is invariant. By definition, such
a restriction is fully supported if and only if b flows incompressibly on Z’. For the final statement,
note that the quotient morphism must factor through a map M(X,v) — (v + IY)Dx \ Dx, and
the latter is M(Z’,v|z/), where we define Z’ by I = I7. O

Next, even if X = X, there can be many choices of v that give rise to the same D-module. This
motivates

Definition 2.49. The saturation v* of v is Vect(X) N (v - Dx). Precisely, in the language of §2.6
for an embedding i : X — V,

v’ = (Vect(V) N ((E-l- [X) . Dv)> ‘X-

It is easy to check that the definition of the saturation does not depend on the choice of embed-
ding. We next define a smaller, but more computable, saturation:

Definition 2.50. The O-saturation v°° of v is Vect(X) N (v - Ox), precisely,
0 :i={)_ fili | i € Ox,& €0, s.t. > &(fi) =0}
i i
Equivalently, for any embedding X C V as above,

0os = (Vect(V) N ((oy + Ix) - ov)) Ix.

Note that, by definition, v°°* C Ox - v; however, the same does not necessarily hold for v*; as in
Examples 2.33 and 2.34. In particular, in those examples, v* has rank two on the locus x = 0,
whereas v°° has rank one.

However, generically on incompressible affine varieties, v°®* = v°. More precisely:

Definition 2.51. If (X, b) is incompressible, then call a vector field £ € Ox - v incompressible if,
writing £ =), fi& for f; € Ox and & € v, one has ), &(fi) = 0.
The meaning of this definition is explained in the following remark:

Remark 2.52. When X is a variety, £ € Ox -v is incompressible if and only if, for every irreducible
component of X, at a smooth point with a formal volume preserved by v, then ¢ also preserves
that volume. Indeed, L¢ =, file, + 3, &(fi), so if L, = 0 for all ¢, then the same is true for L
if and only if >, &(fi) = 0.

Note that we used incompressibility for the definition to make sense; otherwise there could be
multiple expressions ), fi&; for & which yield different values >, &(fi).

Proposition 2.53. If v flows incompressibly, then v°® is the subspace of Ox - v of incompressible
vector fields. If X is additionally a variety, then for some open dense subset U C X, (v|)* = (v]|7)?*
is the subspace of Oy - v of incompressible vector fields.

Proof. For the first statement, if X is incompressible and f; € Ox,§; € v are such that ), &(f;) =0,
then it follows that >, fi - & = >, & - fi.

For the second statement, first note that, by Proposition 2.39, since v is incompressible and X
is a variety, on each irreducible component, v® must generically have the same rank as v. Now let
U C X be the locus of smooth points x € X such that, if Y C X is the irreducible component
containing x, the dimension v|, is maximal along Y. Then Oy -v|y is locally free. It follows that this
also equals Op - (v|¢7)®. Since M (U, (v|y)*) = M (U, v|y) is fully supported, (b|y)® is incompressible.
By the first part, we therefore have (b|y7)® C (v]¢7)°%; the opposite inclusion is true by definition.
Finally, note that, by definition, U is open and dense. U
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Example 2.54. When X = X, is reduced and irreducible, in the formal neighborhood of a generic
point of z € X, one has X, = (V x V') for formal polydiscs V and V', and v® = v°* = Oy - H(V)
where V' is equipped with its standard volume form (this also gives an alternative proof of part of
Proposition 2.53). So, up to isomorphism, this only depends on the dimension of X and the generic
rank of v.

Remark 2.55. There is a close relationship between the saturation and the support ideal. In the
language of Remark 2.17, if we generalize v to the setting of differential operators of order < 1, then
the natural saturation becomes (v-Dx) N D)S(l. In the case v C Vect(X), this saturation contains
both v*® and the ideal of X,; by a computation similar to that of §2.6, in fact, this saturation is
05O X.

Remark 2.56. By Remark 2.55, one obtains an alternative formula for the support ideal, call it
Ix,, of X: thisis Ix, = (v° - Ox) N Ox. This can be viewed as a generalization of the equivalence
of Proposition 2.24, (ii’) < (iii), in the case that v = v* is saturated.

2.9. Holonomicity criteria.

Theorem 2.57. The following conditions are equivalent:
(i) (X,0) is holonomic;
(ii) For every (degenerate closed) invariant subscheme Z’ C X on which v flows incompressibly,
for i: Z:= 7'y — Z' the inclusion, i' M (Z',v|z/) is generically a local system;
(iii) X has only finitely many invariant closed subvarieties Z on which v flows incompressibly in
some infinitesimal thickening ¢ : Z — Z’ C X, and for all of them, in formal neighborhoods
of generic z € Z there is a canonical isomorphism

iI'M(Z'0z0) = Q, @ (1.0 )12,
In this case, M (X, v) admits a filtration
0 C M>qim x(X,0) € M>gim x—1(X,0) C--- C M>o(X,0) = M(X,v),

whose subquotients M>;(X,0)/Ms>;11)(X, ) are direct sums of indecomposable extensions of local
systems on open subvarieties of the dimension j varieties appearing in (iii) by local systems on
subvarieties of their boundaries.

Here (i*QZZ)"'Z’ is the (finite-dimensional) vector space of distributions along Z preserved by

the flow of v|z/. For example, in the case that there exists a product decomposition Z ~ 7, xS
for some zero-dimensional scheme S, for which the inclusion of Z, is the obvious one to Z, x {0},
then 4,82, = (QZZ ®k 0F), where 2, is the space of formal volume forms on Z. and 0% is the
(finite-dimensional) space of algebraic distributions on S.

Proof of Theorem 2.57. Since holonomic D-modules are always of finite length and their composi-
tion factors are intermediate extensions of local systems, and since in our case it is clear that any
local systems must be on invariant subvarieties, it is immediate that (i) = (iii) = (ii); we only need
to explain the formula in (iii). First, note that, by Kashiwara’s equivalence (i.e., via the restriction
functor of D-modules from Z’ to Z), the categories of D-modules on Z' and on Z are canonically
equivalent. Then, the multiplicity space ((i.£2 ZZ)U‘Z’)* is explained by the canonical isomorphism

(i*QZz)DIZ/ =~ HOHLDAX!Z (M(Z;7 U|ZZ)7 Z*QZZ>7

looking at the image of the canonical generator of M (Z, n|?), and viewing D-modules on Z’ as

D-modules on the ambient space X.
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So, we prove that (ii) implies (i). Suppose (ii) holds. We prove holonomicity by induction on
the dimension of X. There is an open dense subset Y C X such that M (X, )]y is a local system
(viewed as a D-module on Yieq). Take Y to be maximal for this property, i.e., the set-theoretic
locus where M (X, v) is a local system in some neighborhood.

Let j : Y < X be the open embedding. Then by adjunction, since j*M(X,v) = M(X,v)|y is
holonomic, we obtain a canonical map H"j M (X, )|y — M(X,v0). The cokernel is supported on
the closed invariant subvariety Z := X \ Y, which has strictly smaller dimension than that of X.
By Proposition 2.48, the quotient factors through M(Z’,v|z) for some infinitesimal thickening Z’
of Z. Then, by induction, M(Z’,v|z) is holonomic. This implies the result.

The final statement follows from the inductive construction of the previous paragraph, if we note
that the image of H'j M (X,v)|y is an extension of the local system M (X, v)|y by local systems
on boundary subvarieties, none of which split off the extension. ]

Note that, by Example 2.33, in general the extensions appearing (iii) can contain composition
factors supported on invariant subvarieties which do not themselves appear in (iii).

We remark that the theorem also gives another proof of Proposition 2.36 (which we don’t use in
the proof of the theorem), since a connected transitive variety (X, v) is a single leaf and therefore
v is holonomic.

Using part (iii) of the Theorem, we immediately conclude

Corollary 2.58. When (X, v) is holonomic, an invariant subscheme Z’ C X is incompressible if
and only if, for generic z € Z := Z/ ,, with i : Z — Z’ the inclusion, (i*QZz)"‘Z’ £ 0.

Note that, when Z’ is a variety, the corollary is tantamount to the definition of incompressibility,
and does not require holonomicity.

In particular, we can weaken the holonomicity criterion of Theorem 2.19, adding in the word
“incompressible”:

(2.59) no incompressible degenerate invariant closed subschemes = holonomic.

For a counterexample to the converse implication, recall Example 2.34.

2.10. Global generalization. Although most of the phenomena discussed in this paper are al-
ready fully visible in the affine case, it is useful to generalize them to the non-affine setting. One
reason for this is that we are interested in the leaves under the flow of v, and even when X is affine,
the maximal leaves of v in general need not be themselves affine (they are only locally closed, and
hence quasi-affine). (In this case, by Example 2.63 below, this poses no problem if we consider
as the Lie algebra of vector fields on each such locally closed Y C X the restriction vly). It is
also interesting, however, to consider examples where X need not be affine, since for example, if X
is a not-necessarily affine symplectic or Calabi-Yau variety and v is the associated Lie algebra of
Hamiltonian or volume-preserving vector fields, then 7, M (X, 0) = H4mX—*(X), by Example 2.37
(in fact, M(X,0) = Qx), which shows that the M (X,v) has geometric meaning.

Suppose that X is not necessarily affine. Since X does not in general admit (enough) global
vector fields, we need to generalize v to a presheaf of vector fields, i.e., a sub-presheaf of k-vector
spaces of the tangent sheaf. As we will see, even for affine X, this is more natural and more
flexible: for example, even in the case of Hamiltonian vector fields, we will see that Zariski-locally
Hamiltonian vector fields need not coincide with Hamiltonian vector fields, so that the natural
presheaf v is not even a sheaf, let alone constant; see Remark 4.5 below.

Nonetheless, all of the main examples and results of this paper are already interesting for affine
varieties and do not require this material, so the reader interested only in the affine case can feel
free to skip this subsection.
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Let X be a not necessarily affine variety and v a presheaf of Lie algebras of vector fields on
X. For any open affine subset U C X, we can define the D-module on U, M (U,v(U)), as above.
Recall that this is defined as a certain quotient of Dyy. Therefore, to show that the M (U, v(U)) glue
together to a D-module on X, it suffices to check that the restriction to U N U’ of the submodules
of Dy and Dy whose quotients are M (U, v(U)) and M (U’,0(U’)), respectively, are the same. This
does not hold in general, but it does hold if one has the following condition:

Definition 2.60. Say that (X, v) is (Zariski) D-localizable if, for every open affine subset U C X
and every open affine U’ C U,

(2.61) U(U/>DU/ = U(U)|U/DU/.

Remark 2.62. If X is already affine, the definition is still meaningful (and this is the case we will
primarily be interested in here). In this case we can restrict to U = X in (2.61).

Example 2.63. If X is irreducible and v is a constant sheaf, then it is immediate that v is D-
localizable. More generally, for reducible X and v C Vect(X), we can consider the associated
presheaf v(U) := v|y, and this is D-localizable. If the irreducible components of X are X, then
the sheafification of this v is v(U) = @j‘X‘ijﬂ o(X;NU).

We will use below the following basic

Lemma 2.64. Let X be an affine scheme of finite type and v C Vect(X) an arbitrary subset of
vector fields. Then for every affine open U C X, one has the equality of sheaves on U,

(U . D)()‘U = U‘U . DU.

In particular, as a sheaf, the sections of v - Dx on U coincide with the global sections of v|y - Dy .
Similarly, for every x € X, we have (v-Dx)|; = 0|5 - Dx.

Proof. We use (2.41). In these terms, for X < V an embedding into a smooth affine variety V,
let U’ C V be an affine open subset such that U’ N X = U. Then (v - Dx)|y identifies with the
D-module restriction of (2.41) to U’, which is then v|y - Dy. We conclude the first assertion. The
final assertion is similar. O

Given a presheaf C, let Sh(C) be its sheafification.

Proposition 2.65. Suppose that (X, v) is D-localizable. Then the following hold:

(i) The M(U,0(U)) glue together to a D-module M (X,v) on X.
(ii) For every open affine U and every open affine U' C U, M (X, 0)|yr = M(U’,0(U")).
(iii) (X,Sh(v)) is also D-localizable, and M (X, Sh(v)) = M (X, v).

Proof of Proposition 2.65. For (i), note that (2.61) applied to U’ := UNV implies that M (U, v(U))
and M (V,0(V)) glue. Then, (ii) is an immediate consequence of (2.61).

It remains to prove (iii). Suppose that U is an affine open, U’ C U is affine open, and & €
Sh(v)(U’). Let w € U’. By definition, there exists a neighborhood U” C U’ of u such that
&y € v(U"). By (2.61), {|y» € o(U)|y» - Dy». Thus, by Lemma 2.64, £ is a section of the D-
module v(U)|y - Dy = (0(U) - Dy )|y on U’'. This proves the first statement. This also proves the
second statement, since U’ C U and & € Sh(v)(U’) were arbitrary. O

Remark 2.66. As in Remark 2.15, we could have allowed v to be an arbitrary presheaf of vector
fields (rather than a sheaf of Lie algebras of vector fields). However, it is easy to see that it is then
D-localizable if and only if the presheaf of Lie algebras generated by it is, and that the resulting
D-module is the same. So, no generality is lost by requiring that v be a presheaf of Lie algebras.

Using the above, in the D-localizable setting, the results of this section extend to nonaffine
schemes of finite type. We omit further details (but we will discuss D-localizability more in §4

below).
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3. GENERALIZATIONS OF CARTAN’S SIMPLE LIE ALGEBRAS

In this section we state and prove general results on Lie algebras of vector fields on affine varieties
which generalize the simple Lie algebras of vector fields on affine space as classified by Cartan.
Namely, we will consider the Lie algebras of all vector fields; of Hamiltonian vector fields on
Poisson varieties; of Hamiltonian vector fields on Jacobi varieties (this generalizes both the previous
example and the setting of contact vector fields on contact varieties); and of Hamiltonian vector
fields on varieties equipped with a top polyvector field, or more generally equipped with a divergence
function. The last example, which seems to not have been studied before, generalizes the volume-
preserving or divergence-free vector fields on A™ or on Calabi-Yau varieties. We also consider
invariants of these Lie algebras under the actions of finite groups (we will continue this study in
%6 and 7).

Namely, in this section we compute the leaves under the flow of these vector fields and determine
when they are holonomic, and hence their coinvariants are finite-dimensional.

We will state all examples in the affine setting; in §4 below we will explain how to generalize them
to the nonaffine setting (which will at least work for the cases of all vector fields and Hamiltonian
vector fields).

3.1. The case of all vector fields. Consider the case where v is the Lie algebra of all vector
fields. In this case we have a basic result:

Proposition 3.1. The support, Z = Xyec(x), of Vect(X) is the locus where all vector fields
vanish, i.e., the scheme of the ideal (Vect(X)(Ox)). Moreover,

M (X, Vect(X)) = Dz := Vect(X)(Ox) - Dx \ Dx,
and (OX)Vect(X) = 0z.

The support is evidently incompressible, and is the union of zero-dimensional leaves at every
point. Therefore, Vect(X) is holonomic if and only if this vanishing locus is finite.

Proof. Given & € Vect(X), the submodule v - Dx contains [£, f] = £(f) for all f € Ox. These
generate the ideal (Vect(X)(Ox)) over Ox, which defines the vanishing scheme of Vect(X). Con-
versely, notice that the principal symbol of any product of vector fields lies in the submodule
(Vect(X)(Ox)) - Dx. Thus, v - Dx = (Vect(X)(Ox)) - Dx. The last statement follows immedi-
ately. O

This motivates the
Definition 3.2. A point x € X is exceptional if all vector fields on X vanish at z.

Clearly, all exceptional points are singular, but not conversely: for example, if X =Y x Z where
Z is smooth and of purely positive dimension, then X will have no exceptional points, regardless
of how singular Y is.

Proposition 3.3. The following are equivalent:
(i) The quotient (Ox )vect(x) is finite-dimensional;
(ii) X has finitely many exceptional points;
(iii) Vect(X) (i.e., M (X, Vect(X))) is holonomic.

Proof. First, (ii) and (iii) are equivalent by Proposition 3.1, since Dz is holonomic if and only if
Z has dimension zero, i.e., set-theoretically Z is finite. By the proposition, with Z the support
of Vect(X), then Z.eq is the locus of exceptional points of X and M (X, Vect(X)) = Dy, so the
equivalence follows. Similarly, these are equivalent to (i), since (Ox)vect(x) = Oz- O
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Remark 3.4. Note that the implication (i) = (iii) above, a converse to Proposition 2.21, is special
to the case v = Vect(X). See, e.g., Remarks 2.22 and 3.20.

Corollary 3.5. If X has a finite exceptional locus Z C X (i.e., v is holonomic), then
M(X,Vect(X)) = P 6. @ (0%, )veet (0.
z2€Z
Proof. This follows immediately by formally localizing at each exceptional point. ([l
Corollary 3.6. Under the same assumptions as in the previous corollary, if 7 : X — pt is the

projection to a point,

m M (X, Vect(X)) = mM (X, Vect(X)) = @(O2..)
z2€Z

Vect((’A)Zyz)'

Proof. This follows since 7,0, = m9d; = k for any point € X. O

Example 3.7. Suppose that X has finitely many exceptional points. Then, the dual space
((Ox)vect(x))" = (0%)VeetX) | of functionals invariant under all vector fields, includes the eval-
uation functionals at every exceptional point. These are linearly independent. However, they need
not span all invariant functionals. In other words, the multiplicity spaces (@Xw)vect(éx ) in the
corollaries need not be one-dimensional. ’

For example, if one takes a curve X C A? of the form P(z,y) + Q(z,y) = 0 in the plane with
P(z,y) and Q(z,y) homogeneous of degrees n and n + 1, then we claim that, if n > 5 and P and
@ are generic, all vector fields on X vanish to degree at least two at the singularity at the origin.
Therefore, the coinvariants (Ox )vect(x) have dimension at least three, even though 0 is the only
singularity of X.

Indeed, up to scaling, any vector field which sends P to a constant multiple of P up to higher
degree terms is of the form a Eu+wv, where a € k and v vanishes up to degree at least two at the
origin. Suppose that such a vector field preserves the ideal (P + @), i.e., that it sends P + @ to
a multiple of P 4+ @. We claim that a = 0. Otherwise, we can assume up to scaling that a = 1.
Then (Eu+v)(P + Q) = f(P + Q) for some polynomial f. By comparing the parts of degree n,
we conclude that f(0) = n. Writing f = n + bz + cy + g, where g vanishes to degree at least
two at the origin, we conclude that @ = (—v + (bx + cy) Eu)P. So there exists a quadratic vector
field w = —v + (bz + cy) Eu which takes P to (). The space of all quadratic vector fields is six-
dimensional, whereas the space of all possible @) is of dimension n + 2. So for n > 5, we obtain a
contradiction, since P and () are assumed to be generic.

Here is an explicit example for the smallest case, n = 5, of such a P and Q: Let P = 2% + ¢°
and Q = z3y3. Then it is clear that the equation Q = —v(P) + (bx + cy)P cannot be satisfied for
any quadratic vector field v and any b, ¢ € k.

Example 3.8. One example of a variety with infinitely many exceptional points, and hence infinite-
dimensional (Ox )vect(x) and non-holonomic Vect(X), is a nontrivial family of affine cones of elliptic
curves: one can take X = Specklz,y, z,t]/(z3+y>+ 23 +tzyz), which is a family over A! = Speck|t]
whose fibers are affine cones of elliptic curves in P2. Then, we claim that all singular points
x =y = z = 0 are exceptional. This is true because, otherwise, there would be a vector field
nonvanishing somewhere along the line x = y = z = 0, and then the family would, formally or
analytically locally along this line, have to be isomorphic to a product of the line and some other
analytic variety or formal scheme; this is impossible in this case since the affine cones at different
values of ¢ are nonisomorphic.

A direct algebraic proof is as follows: Take any vector field on X and lift it to a vector field &
on A? parallel to X. Then &(z3 4+ y3 + 23 + tayz) = f(a® + y3 + 23 4 toyz) for some f € Opu.
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Replacing & by € — (1/3)f - (20, + yOy + 20;), we can assume that f = 0. Restricting to t = t¢, we
obtain

(3.9) Elimto(z° + 4 + 2° + toxyz) = —€(1)]1=1o - 7y2.
Suppose that ¢ did not vanish at (0,0,0,tp). We can assume £ is homogeneous with respect to the

grading |z| = |y| = |z| =1 and [t| = 0. Then |;—, is either constant or linear. By (3.9), &|i=,
annihilates 23 + 1> + 23, but no constant or linear vector field can do that, which is a contradiction.

Example 3.10. As pointed out by the referee, a simpler (although reducible) example where there
are infinitely many singular points is a family of four lines in the plane, all passing through the
origin, one of which rotates. Namely, take X = Speck[z,y, z]/(xy(z + y)(x + zy)). Then, there
cannot be a vector field nonvanishing along the singular line = y = 0, since for different values of
z (not including 0 and 1), the variety of four lines is nonisomorphic. Thus the singular line consists
of exceptional points.

To see this algebraically, first note that any vector field £ preserving the ideal xy(z + y)(z + zy)
must preserve the ideal generated by each linear factor (the vector field must be parallel to each of
the four planes). Write { = f0, + g0y + h0,. Then the conditions for { to preserve (z), (v), (z +y),
and (z + zy) are equivalent to

z|f, ylg, (@+yl(f+g), and (z+2zy)|(f+gz+hy).
Let fo, go, ho € k[z] be such that

f=afo (mod (z,9)*), g=ygo (mod (z,9)*), h=ho (mod (z,y)).
Then the conditions (x +y) | (f + ¢) and (z + zy) | (f + gz + hy), modulo (x + y)?, become

fotg90=0, fo+go+ho/z=0.
This implies that hg = 0, and hence that ¢ vanishes along the line x = y = 0, as claimed.

3.2. The Poisson case. Suppose that X is an affine Poisson scheme of finite type, i.e., Ox is a
Poisson algebra. Let m be the Poisson bivector field on X. Then, we can let v be the Lie algebra
of Hamiltonian vector fields, H(X) = H.(X). In particular, these vector fields are §; := w(df) for
f € Ox. In this case, (Ox), = HP¢(Ox), the zeroth Poisson homology of Ox. As pointed out in
Example 2.30, H(X) is holonomic if and only if X has finitely many symplectic leaves.

There are several natural larger Lie algebras to consider than H(X). Note that H(X) is the
space of vector fields obtained by contracting m with exact one-forms. So, one can consider instead
LH(X) = LH,(X) = n(Q}), the space of vector fields obtained by contracting 7 with closed
one-forms modulo torsion (note that contracting 7 with torsion yields zero, since Ox is torsion-
free). Here we will denote the resulting vector field by 7, := 7(«). Thus, when X is generically
symplectic, LH(U)/H(U) = H},,(U) for all open affine U C X. (Recall from the beginning of §2
that, over k = C, if U is smooth, this coincides with the first topological cohomology of U).

Here, LH stands for “locally Hamiltonian;” in a smooth affine open subset, in the case that
k = C, these are the vector fields which are locally Hamiltonian in the analytic topology. In general,
in a smooth open subset, these are the vector fields which, restricted to a formal neighborhood of
a point, are Hamiltonian. However, as explained in the next example, in formal neighborhoods of
singular points not all locally Hamiltonian vector fields are Hamiltonian:

Example 3.11. In the formal neighborhood of singular points, locally Hamiltonian vector fields
need not be Hamiltonian, since the first de Rham cohomology modulo torsion need not van-
ish in such a neighborhood, and as mentioned above, when X is generically symplectic, then
H(X)/H(X) = H'(Q%).
Here is an example where this cohomology does not vanish. Suppose Z C A™ is a complete
intersection with an isolated singularity at z € Z. By (5.5) below, in this case Q'ZZ is acyclic
23



except in degree k = dim Z, where dim H k(Q'ZZ) = u, — T», where u, and 7, are the Milnor
and Tjurina numbers of z (see §5 below; we will not use the general definition here). In the case
when Z C A? is a reduced curve cut out by Q € k[z,y] with an isolated singularity at the origin,
then all one-forms modulo torsion are closed, but they are not all exact in general. Explicitly,
HY Q%) = (Q,0:Q,0,Q)0/(9:Q,9,Q)o, where (—)g C @A{o is the ideal in the completed local
ring at the origin.

Specifically, take Q = 23 + 2%y + y*, where

(Q,0:Q,0,Q) = (32* + 2zy, 2% + 4y°, 2° + 2%y + y*) = (327 + 22y, 2* + 49>, y*)
# (3952 + 2y, 2%+ 4y3) = (0,Q, 0,Q).

One therefore obtains a nonexact (closed) one-form. Such a form is a := z - dy: one can compute
that

aNdQ = (=323 —22%y) -de Ndy = 2y -de ANdy (mod dk[z, y| AdQ + (Q)dx Ady + (z,y)°dx Ady),

and this is not equivalent to zero modulo dk[z,y] A dQ + (Q)dz A dy + (z,y)>dz A dy.

Then, consider the Poisson variety X = Z x A! with the Poisson structure (9, Ad,)(dQ) A9y, with
t the coordinate on A'. This is generically symplectic, so provides an example where LH (X) #
H(X). Specifically, the vector field 1, = (—3z% — 22%y)d; is locally Hamiltonian on X, but in the
formal neighborhood of the origin it is not Hamiltonian. By the above computation, this spans
LH(Xo)/H (Xo).

Note that the fact that LH(X) and H(X) are Lie algebras follow from the fact that [LH (X), LH(X)] C
H(X), since {na,n3} = &, p for closed one-forms o and 3.

Next, one can consider P(X) = P.(X), the space of all Poisson vector fields, i.e., those £ such
that L¢(m) = 0. Clearly, we have H(X) C LH(X) C P(X). If X is symplectic (which for us in
particular means X is smooth), then it is well-known that LH(X) = P(X), but this may not be
true in general (even if X has finitely many symplectic leaves: see Example 3.19). However, there is
a certain generalization of this equality to the mildly singular case, as explained in the next remark.

Remark 3.12. In the case that X is normal and generically symplectic, then the following condi-
tions are equivalent:

(i) X is symplectic on its smooth locus;
(ii) On each irreducible component, X is symplectic outside of a codimension two subset.

This is because the degeneracy locus of a Poisson structure is given by a single equation /\[dimY/2] —

0, so on the smooth locus this consists of divisors (if it is generically nondegenerate).

If we assume that either of these conditions is satisfied, then letting X° C X be the smooth
locus (which is not affine unless X = X°) we claim that P(X) = P(X°) = LH(X°), where here
by P(X°) we mean global Poisson vector fields on the nonaffine X°, and by LH(X°) we mean the
collection of vector fields n, for o € T'(X°,Qx0) a closed one-form regular on X°.

Indeed, in this case, all vector fields which are regular on X° extend to all of X. Thus P(X) =
P(X°). Moreover, if £ € P(X) is a global Poisson vector field, then dividing by the Poisson bivector,
we obtain a closed one-form regular on X°, and conversely.

The leaves of X under both H(X) and LH(X) are the symplectic leaves. For H(X), this is
the definition of symplectic leaves; for LH(X), this is true because, since all one-forms (and in
particular all closed one forms) are spanned over Ox by exact one-forms, the evaluations at each
point of the contraction of m with either span the same subspace of the tangent space. That is,
H(X)|y = LH(X)|; for all z € X, as subspaces of T, X. In fact, H(X) and LH(X) define the
same D-module, since they have the same O-saturation, as defined in §2.8:
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Proposition 3.13. The O-saturations are equal: H(X)* = LH(X). Hence, M(X,H(X)) =
M(X,LH(X)).

Proof. Given any closed one-form o := ), fidg; € T%, for f;, g € Ox, we claim that n, =), &, - fi-
This follows because ) .[&4,, fi] = D_;&q:(fi) = 7(da) = 0. Hence LH(X) - Ox C H(X) - Ox. For
the opposite inclusion, note that H(X) C LH(X). O

In the case that X has finitely many symplectic leaves, then P(X) also has these as its leaves,
since in this case every Poisson vector field must be parallel to the symplectic leaves. On the other
hand, it can happen that P(X) has finitely many leaves but not LH(X):

Example 3.14. If 7 = 20, A0, on A2, then there are infinitely many symplectic leaves: the y-axis
is a degenerate invariant subvariety with respect to LH(X). On the other hand, the vector field
0y is Poisson, so the y-axis is a leaf with respect to P(X).

For LH(X), the same argument as for H(X) shows that, in the notation of Proposition 2.6, all
of the X; are incompressible, and hence LH(X) is holonomic if and only if it has finitely many
leaves (the symplectic leaves); or one can use Proposition 3.13. So, again, Theorem 2.19 is the same
as Theorem 2.9.

On the other hand, it can happen that P(X) is holonomic even though it does not have finitely
many leaves:

Example 3.15. If X is a variety equipped with the zero Poisson structure, then P(X) is the Lie
algebra of all vector fields, and as explained in §3.1, this is holonomic if and only if there are finitely
many exceptional points. This can happen without having finitely many leaves, e.g., if one takes a
product X = A! x Y where Y has infinitely many exceptional points (cf. Example 3.8). Moreover,
this is an example where the X; are not incompressible (if  is the coordinate on A!, P(X) contains
both 0, and 29, so cannot be incompressible on any of the X; = A x Y;_1).

Example 3.16. If Y is an n-dimensional Calabi-Yau variety (e.g., Y = A™) and X = Z(f1,..., fan—2) C
Y is a surface which is a complete intersection f; = --- = f,—2 = 0, then there is a standard Ja-
cobian Poisson structure on X, given by i=dfi A --- A df,,—o2, where Z = vol{,1 is the inverse to the
volume form on Y, which we then contract with the exact n — 2-form df; A --- A df,_o. It is then
standard that the result is a Poisson bivector field. Then H(X) is holonomic if and only if X has
only isolated singularities. Already in the case Y = A% and X = Z(f) for f a (quasi)homogeneous
surface with an isolated singularity at zero, this is quite interesting; HPo(Ox) = (Ox)m(x) was
computed in [AL98] (although, as we will explain in §5, it follows from older results of [Gre75]); we
will compute M (X, H(X)) in [ES14]. See Example 3.39 and §5.

Example 3.17. If X and Y are Poisson schemes of finite type, then for any of the three Lie
algebras defined above, the coinvariants are multiplicative in the sense that (Oxxy) H(XxY) =
(Ox)H(x)®(Oy)H(y) and similarly for LH and P. Similarly, the leaves of X x Y are the products
of leaves from X and of leaves from Y. These facts follow from the following formula, which also
holds for LH and P replacing H:

(3.18) HX)eHY)C HX xY) C (Ox RH(Y)) & (H(X) R Oy).

The first inclusion holds because, for f € Ox and g € Oy, {(to1)+1gg9) = §f + & The second
follows because, for f € Ox and g € Oy, &gq(h) = f& + 9&f. To extend (3.18) to the case
of LH(X x YY), it remains only to consider also the action of Hamiltonian vector fields of closed
one-forms modulo torsion generating H},z(X xY) = H}p(X) @ H},»(Y) (assuming for simplicity
that X and Y are connected). So it suffices to consider Hamiltonian vector fields of closed one-
forms modulo torsion on X and Y separately. One concludes that (3.18) holds for LH replacing
H. Finally, for P(X x Y), one also has (3.18) with P replacing H, since mxxy = mx @ my and
Vect(X x Y) = (Vect(X) X Oy) & (Ox K Vect(Y)).
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Example 3.19. Here we give an example of a variety X with finitely many symplectic leaves for
which LH(X) C P(X). Namely, suppose X is a homogeneous cubic hypersurface, Q = 0, in A3
with an isolated singularity at the origin, i.e., the cone over a smooth curve of genus one. Then X
is equipped with the Poisson bivector given by contracting the top polyvector field 9, A 9, A 9, on
A3 with dQ, where z, 7y, and z are the coordinate functions on A3. This has two symplectic leaves:
the origin and its complement.

We claim that the Euler vector field is Poisson but not locally Hamiltonian. This is because
the Poisson bracket preserves total degree, so the Euler vector field is Poisson, but it cannot be
Hamiltonian since the Poisson bivector vanishes to degree two at the origin, i.e., m(df Adg) C m2 for
all f, g € Ox, with mg the maximal ideal of functions vanishing at the origin. Hence all Hamiltonian
vector fields vanish to degree two at the origin as well.

For example, X could be the hypersurface 23 + 3> + 23 = 0, which is the cone over the Fermat
curve. Then {z,y} = 322, {y, 2} = 322, and {2, 2} = 3y?, and it is clear that the Euler vector field
is Poisson but not (locally) Hamiltonian.

Remark 3.20. We note that, unlike for all vector fields, the converse to Proposition 2.21 does not
hold in the Poisson case. Indeed, one can consider A® with the Poisson structure 9, A 0y, which
has infinitely many leaves (hence is not holonomic) but vanishing HPy.

Finally, if X is an affine Poisson scheme of finite type with finitely many symplectic leaves,
and f : X — Y is a finite map, then the argument of [ES10] showed that the Lie algebra of
Hamiltonian vector fields of Hamiltonian functions from f*Oy has finitely many leaves. We recover
the result from op. cit. that Ox/{Ox,Oy} is finite-dimensional. This includes the case, for
example, where X = V is a symplectic vector space, and Y = V/G for G < Sp(V) a finite
subgroup (or even any finite subgroup G < GL(V)). If G < Sp(V') then we obtain the G-invariant
Hamiltonian vector fields, H(X)“. Note that, in this case, if ¢ : X — X /G is the projection, then
M(X,H(X)) =2 M(X/G,H(X/Q)).

3.3. Jacobi schemes. A Jacobi structure [Lic78] is a generalization of a Poisson structure, which
includes both symplectic and contact manifolds (see the examples below), and can be thought of
as a degenerate or singular version of both. By definition, it is a Lie bracket on Ox which need
not satisfy the Leibniz rule, but instead satisfies that {f, —} is a differential operator of order < 1
for all f € Ox. Equivalently, the Lie bracket is given by a pair of a bivector field m and a vector
field u via the formula
{f.g} = n(df Ndg) +u(fdg — gdf).
Here, by a degree k polyvector field, we mean a skew-symmetric multiderivation of Ox of degree
k, i.e., a linear map A*Ox — Ox which is a derivation in each component.
The Jacobi identity is then equivalent to the identities

[u,7] =0, [m, 7 =2uAm,

where [—, —] is the Schouten-Nijenhuis bracket on polyvector fields.

To any affine Jacobi scheme X of finite type, one naturally associates the Lie algebra of Hamil-
tonian vector fields £ for f € Ox, given by the principal symbol of the differential operator {f, —},
ie.,

It is well-known and easy to verify that one has the identity

[gfv Sg] = é{f,g}v

so this indeed forms a Lie algebra. Call it H(X) := Hy,(X).
We can also define a version P(X) := Pr,(X) of vector fields preserving the Jacobi structure,
i.e., vector fields € such that £({f,g}) = {£(f),9} +{f,&£(9)} =0 for all f, g € Ox. However, unlike
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before, it is no longer true that H(X) C P(X). In particular, to have {; € P(X), we require that
[u, €] = Eu(py = 0. So to have H(X) C P(X), we would need to have u = 0, i.e., the structure has
to be Poisson.

Remark 3.21. It seems that we cannot define an analogue of LH (X)) in this setting since there is
no way to obtain Hamiltonian vector fields from closed one-forms. In a neighborhood of a smooth
point, one could consider vector fields that restrict in a formal neighborhood of the point to a
Hamiltonian vector field, but in general this will not coincide with the definition of LH(X) in the
Poisson case, in neighborhoods of singular points where the first de Rham cohomology does not
vanish in the formal neighborhood; see Example 3.11.

Remark 3.22. Unlike the Poisson case, given Jacobi varieties X and Y, there is no natural way to
define a Jacobi structure on the product X x Y: if one set mxxy = nx &7y and uxxy = ux ®uy,
then the identity [m, 7] = 2u A m would no longer be satisfied: 7x A uy and 7y A ux would appear
on the RHS but not the LHS. However, one can still equip X x Y with the Lie algebra of vector
fields vx @ vy; in this general situation (i.e., for any vx and vy ), one always has (Oxxy )oyxav, =
(Ox)ox @ (Oy)oy-

Example 3.23. The analogue of symplectic varieties in this setting is a smooth Jacobi variety for
which H(X) has full rank everywhere, i.e., it has only one leaf (assuming X is connected). This is
called a transitive Jacobi variety.

As pointed out in, e.g., [MS98] (this is in the smooth context, but the result is proved using a
formal neighborhood and works in general), there are two types of connected transitive varieties.
One is called locally conformally symplectic, and is the situation where 7 is nondegenerate (recall
we assumed X was smooth). Therefore, X is even-dimensional. In this case, u is equivalent to the
data of a closed one-form ¢ satisfying dw = ¢ Aw, where w is the inverse of 7, and ¢ = u(w). Then,
in the formal neighborhood of any point x € X, we can write ¢ = df for some function f, and then
H(X) preserves the formal volume form (e=fw)"4mX (cf. Example 3.25 below). This need not be
a global volume form, so M (X, H(X)) is a rank-one local system which need not be trivial.

The other type of transitive Jacobi variety is an odd-dimensional contact variety. In this case,
the Jacobi structure is equivalent to the structure of a contact one-form «, i.e., a one-form such
that voly := a A (da)MdimX=1)/2 is 4 nonvanishing volume form. This determines u and 7 uniquely
by the formulas

u(da) =0,u(a) =1, 7(a,B) =0, 7(BfAda)=—-F+u(f)a,VpB e Tk.

By the next example, in this case v does not flow incompressibly, so by Proposition 2.36, M (X, H(X)) =
0. On the other hand, we will see that P(X) does flow incompressibly and transitively, preserving
the volume form volx, so M (X, P(X)) = Qx and m. M (X, P(X)) = H%lgxf*(X). In particular,
(Ox)px) = HEE X (X).

Example 3.24. The standard example of a contact variety is A2+ with the standard contact
structure, a = dt+) , x;dy;. Also, note that an arbitrary contact variety restricts to one isomorphic
to this in the formal neighborhood of any point. We claim that no volume form is preserved by
H(A%*1) and hence the flow of H(X) on an arbitrary contact variety is not incompressible.
Indeed, let Eu be the weighted Euler vector field on A24+! assigning weights |x;| = 1 = |y;| and

— : _ 0 0 o) _ o) o) 0 _ 0
t] =2, ie, Bu=2tg5 + 3, 2ig + yig, - Then, we have 7 = — 37, 5 A (5 — @ig;) and u = g.
In this case, & = %, §a; = —0%_ + m%, §yi = %, and & = — ), xl£ In particular, the Lie

algebra H(X) does not preserve any volume form (if it did, for this form to be preserved by &1, &z,
and &,,, it would have to preserve the constant vector fields, and hence the form would have to be
the standard volume form, i.e., the one determined by the contact structure; however this form is
not preserved by &.)
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Finally, note that, in the above case, P(A2d+1), the Lie algebra of all vector fields that commute
with both 7 and u, is the subspace of Hamiltonian vector fields £y where f is independent of . So
P(A2d+1) C H(A?*1). This still flows transitively, since it includes the constant vector fields as
above. As a result, for arbitrary odd-dimensional contact varieties, P(X) C H(X). In fact, P(X)
does flow incompressibly, since it preserves the standard volume form (it is clear that it preserves
the inverse top polyvector field, +7/(dimX=1)/2 5 u).

Example 3.25. By the Darboux theorem, every locally conformally symplectic variety X of di-
mension 2d has the form, in a formal neighborhood of a point z € X, w = efwy and ¢ = df,
where wq is the standard symplectic form on A2d ~ X In this case 7 = e 1y where 7 is the
standard Poisson bivector on A?? and u = 7(df) is e~/ times the Hamlltoman vector field of f
under the standard symplectic structure. Thus, H (X}C) is identical with the Lie algebra of Hamil-
tonian vector fields preserving the standard symplectic form wy (in this formal neighborhood), so
it flows incompressibly. However, as noted above, H(X,) € P(X,). In fact, in this case, as in the
case of odd-dimensional contact varieties, P(X,) € H(X,). Indeed, P(X,) consists of £, such that

u(g) =0, ie., {f,g} =0.

We see as a consequence of the above that, in general, the leaves of H(X) consist of odd-
dimensional contact varieties and locally conformally symplectic varieties. The former are not
incompressible (without passing to an infinitesimal neighborhood), whereas the latter are. As a
consequence, we conclude from Proposition 2.39 that

Proposition 3.26. Let X be a Jacobi variety. Then X = Xp(x) if and only if the generic rank of
H(X) is even on each irreducible component.

(Recall from Definition 2.45 that X (x) is the support of M (X, H(X)) on X.)

Example 3.27. Here is an example of a Jacobi variety where there is an odd-dimensional leaf
having an infinitesimal neighborhood which is incompressible. Let X = A? with 7 = —x0, A 0;
and u = J;. Then H(X) has rank two except along = = 0, where it has rank one. Moreover, the
distribution ¢ := 9,(d,—¢) X dt is preserved by H(X): for £,i;; with ¢ > 2 this clearly annihilates
¢; then &, = j2*t7710, and &; = jot/ =10, + t/0; also do (recall that the action of differential
operators on distributions is a right action; the action of vector fields is given by (¢-&)(f) = ¥(&(f))
for ¢ a distribution and f a function). The final vector field, &, can alternatively be rewritten in
H(X) Ox as
& = j(x0y — D49, ¥,
and note that 9, — 1 and 0; annihilate ¢, which implied that £, does.

Question 3.28. Let Xeyen be the closure of the locus where the rank of v is even. Then, is the
set-theoretic support, (X (x))red, of (X, H(X)) equal to Xeven? If the answer is negative, is there
an example where H(X) has everywhere odd rank, but M (X, H(X)) # 07

3.4. Varieties with a top polyvector field. Motivated by the idea that a Poisson structure is
a singular and/or degenerate generalization of a symplectic structure, we define a similar analogue
of Calabi-Yau structures, and their associated Lie algebras of incompressible vector fields. These
are also motivated by the relationship between incompressibility and holonomicity.

In the Poisson case, one replaces a nondegenerate two-form by a possibly degenerate two-bivector,
which in the nondegenerate case is inverse to the symplectic form. Thus, by analogy, we replace
a volume form by a top polyvector field, which is allowed to vanish on some locus. On the non-
degenerate, smooth locus, one recovers a nonvanishing volume form by taking the inverse of the
polyvector field.
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Specifically, let X be an affine variety of dimension n equipped with a global top polyvector
field, i.e., a multiderivation = : A"Ox — Ox. Then, as in the Poisson case, there are three natural
Lie algebras to consider: the Lie algebra H=(X) of vector fields obtained by contracting = with
exact (n — 1)-forms; the Lie algebra LHz=(X) of vector fields obtained by contracting = with closed
(n—1)-forms; and the Lie algebra P=(X) of all incompressible vector fields, i.e., vector fields £ such
that L¢(Z) = 0 (vector fields preserving =). Note that, in this case, when X is irreducible and Z is
nonzero, it is immediate that all three flow incompressibly on X.

As for generically symplectic varieties with their associated (locally) Hamiltonian vector fields,
for arbitrary irreducible (X,E) with Z # 0, one has LH=(U)/H=(U) = H?)ingl(U) for all open
affine U C X. Moreover, when U is additionally smooth, LH=(X) coincides with those vector fields
which, in formal neighborhoods of all x € U, are Hamiltonian.

Remark 3.29. As in the Poisson case (see Example 3.11), in the formal neighborhood of a singular
point z € X, not all locally Hamiltonian vector fields need be Hamiltonian, since H%?X “1(X,)
need not vanish. Indeed, as in Example 3.11, when X = A! x Z where Z is a complete intersection
with an isolated singularity at z € Z, then dim Hggx_l()?(m)) = i, — T, which need not be zero
(already for the case of a hypersurface in A™). Then, equipped with the polyvector field Zp1 K Ey
where E7 is as in Example 3.39 (which in the case Z = {Q = 0} C A" is Za»(dQ)), one concludes
that LH(X(z)/H (X)) = H™ XX, ) # 0,

As in the Poisson case, these are Lie algebras since [LH(X), LH(X)] C H(X), as we explain.
Given a (n — 2)-form (modulo torsion) « € Q}_Z, let &, := Z(da) be its associated Hamiltonian
vector field. Similarly, given a closed (n — 1)-form modulo torsion, v € Q’;{l, let n, := Z(y) be its
associated locally Hamiltonian vector field. Then the fact that [LH(X), LH(X)] C H(X) follows
from the formula, where o and /3 are closed (n — 1)-forms modulo torsion,

(3.30) [M0s 18] = &3y (8

which can be verified in a formal neighborhood of a smooth point of X where = is nonvanishing,
and hence which holds globally.
As in the Poisson case (Proposition 3.13), H(X) and LH(X) define the same D-modules on X:

Proposition 3.31. The O-saturations are equal: H(X)% = LH(X)%. Thus, M(X,H(X)) =
M(X, LH(X)).

Proof. Given a closed n — 1 form « = )", f;dB;, we see that 1o, = > . ng - fi, since Y. ng(fi) =
E(da) = 0. Thus, LH(X)-Ox C H(X)-Ox, and the proposition follows since H(X) C LH(X). O

Next, we compute the leaves of H=(X) and of LHz(X). All non-open leaves turn out to be
points. We will use a general

Definition 3.32. Given a Lie algebra of vector fields v on X, the degenerate locus of v is the locus
of x € X such that v|; # T Xieq-

Note that the degenerate locus includes the singular locus of X,oq (which equals X in this
subsection, although the preceding definition makes sense more generally).

Remark 3.33. If X is irreducible, then we claim that the degenerate locus is the same as the locus
of x such that dimv|, < dim X, i.e., such that v does not have maximal rank. Thus, in terms of
Proposition 2.6, the degenerate locus is the union of X; for i < dim X. To prove the claim, we
only have to show that, along the singular locus, the rank of v is strictly less than dim X. This is
true at generic singular points, where the singular locus is smooth, since v must be parallel to the
singular locus. Then, the result follows for the entire singular locus, by replacing X by its singular
locus and inducting on the dimension of X.
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Now return to our assumption that (X,=) is a variety with a top polyvector field =. For
v = H=(X), LH=(X), or P=(X), it is clear that the degenerate locus is the union of the singular
locus with the vanishing locus of =. We will also call this the degenerate locus of =.

Theorem 3.34. Let (X, =) be a variety equipped with a top polyvector field. If v := H=(X) or
LH=(X), then every degenerate point is a (zero-dimensional) leaf. That is, v|, # T, X implies
vl, =0.

We remark that the theorem is in stark contrast to the previous subsections, where in general
there can exist leaves of positive dimension less than the dimension of X. For surfaces, where = is
the same as a Poisson structure, the theorem reduces to the statement that all symplectic leaves
have dimension zero or two.

Proof of Theorem 3.34. 1t suffices to show that = vanishes on the singular locus of X. Let Z be an
irreducible component of the singular locus. Then dim Z < dim X, and b is parallel to Z. Hence,
(AdmZy)|, = 0 (this holds at smooth points of Z, hence generically on Z, and hence on all of
7). 0

Corollary 3.35. For (X, v) as in the theorem, assuming also that X is purely of positive dimension,
the following are equal:

(i) The degenerate locus of v;
(ii) The set-theoretic support of the ideal generated by v(Ox);
(iii) The set of points = such that (Ox 4)» # 0.

Proof. 1t is easy to see that (ii) and (iii) coincide with the vanishing locus of v since X is positive-
dimensional. The theorem implies that this coincides with (i). O

Corollary 3.36. For (X, v) as in the theorem, X is the union of finitely many open leaves and the
degenerate (set-theoretic) locus of =. There are finitely many leaves if and only if the degenerate
locus is finite.

Proof. The connected components of the open locus where v, = T, X are the open leaves (of which
there are finitely many), and the vanishing locus of v|, is the union of all points which are leaves.
By the theorem, the union of these is all of X. O

Corollary 3.37. Let v := Hz(X) or LH=(X). Then, the following are equivalent:
(i) (Ox)y is finite-dimensional;
(ii) The degenerate locus of = is finite;
(iii) v is holonomic.

Proof. By the corollary, X has finitely many leaves if and only if it has finitely many zero-
dimensional leaves. Since zero-dimensional leaves are automatically incompressible, this shows
that (ii) and (iii) are equivalent. Moreover, since zero-dimensional leaves always support linearly
independent evaluation functionals in ((Ox),)*, (i) implies (ii) and (iii). The implication (iii) =
(i) is immediate. O

Note that, in contrast to Hz(X) and LH=z(X), P=(X) can be holonomic even without having
finitely many leaves (e.g., in the case when = = 0, this happens if and only if X has finitely many
exceptional points).

One example of a variety with a top polyvector field is an even-dimensional (affine) Poisson
variety, with & = 7/ 4mX/2 " for 7 the Poisson bivector field. Note that P=(X) D Pr(X). We
claim that this is a proper containment if and only if dim X > 2. For dim X = 2 it is clear these
are equal. Otherwise, since = # 0 if and only if 7 is generically symplectic, passing to a formal
neighborhood of a point, the statement reduces to the case X = A?" with n > 1 and the usual
symplectic structure, where it is well-known and easy to check.
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Example 3.38. As noted in example 2.37, if X is a symplectic variety, then in particular it is
Calabi-Yau and M (X, H;(X)) = M(X,H=(X)) = Qx, whether we use the Poisson bivector 7
or the top polyvector field & = AM™X/27 However, for general Poisson varieties, again setting
2 = AdmX/2 this does not hold. For example, if the Poisson bivector field 7 has generic rank
two and dim X > 4, then the top exterior power, = = 7NdmX/2) "ig yero, so Hz = LH=z = 0, and
P= = Vect(X), but this is clearly not true of H,, LH,, and P, and the coinvariants will differ in
general.

Example 3.39. Generalizing Example 3.16, we can let (Y, Zy) be any n-dimensional variety with
a top polyvector field, and let X = Z(f1,..., fr) CY be a complete intersection. Then we can set
Ex =iz, (dfi A--- Adfy), which is a top polyvector field on X. (Note that, when Y = A", the Lie
algebra H(X) has been studied in many places, e.g., in [MS96]). Then, by Corollary 3.37, H(X)
is holonomic if and only if X has only isolated singularities, and the degenerate locus of Y meets
X at only finitely many points. In this case, we explicitly compute (Ox)g(x) in §5.

Remark 3.40. Unlike Example 3.17, a product formula does not hold for the above Lie algebras
of vector fields on X x Y, when X and Y are equipped with top polyvector fields =x and =y and
X xY is equipped with the tensor product =x X =y. First of all, for the Lie algebras P, note that,
in general,

P(X xY) ¢ (P(X)ROy) @ (Ox K P(Y)).

For example, when X and Y admit vector fields Euy,Euy such that Lg,,(Ex) = Ex and
Lz, (Ey) = Ey, then Eux —Euy is in the LHS but not the RHS above. (This holds, for ex-
ample, when X and Y are conical with top polyvector fields =x and Zy which are homogeneous
of nonzero weight under the scaling action, replacing the standard Euler vector fields by suitable
nonzero multiples).

Using this, one can see that a product formula does not hold for coinvariants: suppose (Ox) p(x) %
(Ox)vect(x)- Suppose that & € Vect(X) is a vector field such that {(Ox) € P(X)(Ox) and
L¢(Ex) = Ex. Then P(X x X)(Oxxx) contains ({X1—-1KXKE)(Ox X1) = £(Ox), but this is not
contained in (P(X)(Ox) X Ox) + (Ox X P(X)(Ox)). Since also P(X x X) contains horizontal
and vertical vector fields, P(X) X1 and 1X P(X), we conclude that (Oxxx)p(xxx) is quotient of

(O X)%%X) by a nontrivial vector subspace.

For an explicit example, we could let X be the cuspidal curve 22 = 43 in the plane A?. Then,
P(X) = (229, + 3y°d,) and hence (Ox)p(x) surjects (in fact isomorphically by a special case
of Corollary 5.23; cf. Remark 5.24) to (Ox)/(2x,3y?), which is two-dimensional; on the other
hand, since Vect(X) contains the Euler vector field 320, + 2y0y, (Ox)vect(x) = (Ox)/(z,y) is
one dimensional. In particular, in this case, (Ox2)p(x2) is two-dimensional, whereas (OX)?;%X) is
four-dimensional.

For the Lie algebras of Hamiltonian and locally Hamiltonian vector fields, let (Y,Zy) be any
(affine) variety with (Oy)g(y) = 0 (by Corollary 3.35 and Example 2.37, this is equivalent to Y’
being Calabi-Yau with H4mY(Y) = 0), and (X,Zx) be a positive-dimensional (affine) variety.
Then, we claim that (Oxxy)m(xxy) = (Ox)/(H(X) - Ox) K Oy, where now (H(X) - Ox) is the
ideal generated by H(X) - Ox. That is, we claim that the vector space H(X X Y) - Oxxy is
(H(X) Ox)XOy.

To see this, note that the ideal (H(X) - Ox) is identified with the image of the contraction of
Ex with top differential forms on X. Now, on the product variety X x Y, top differential forms
are spanned by exterior products of top differential forms on X with top differential forms on Y.
The same is true for top polyvector fields: a derivation of Ox ® Oy is uniquely determined by

its restriction to Ox ® 1 and 1 ® Oy, by the formula D(f ® g) = D(f) ® g + f ® D(g). Thus,
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skew-symmetric multiderivations of degree dim X +dim Y are of the form Zx X =y for Zx and Zy
top polyvector fields on X and Y, respectively.

Therefore, the contraction of top polyvector fields on X x Y with top differential forms lies in
the ideal (H(X)-Ox)® Oy (in fact, they are equal, in view of the assumption that (Oy)g(y) = 0,
or by the next argument). Thus we get the inclusion of H(X X Y)-Oxxy in (H(X)-Ox) ® Oy.

Conversely, for any element f € (H(X) - Ox) C Ox, suppose that f = Zx(«) for some top
differential form «. For any g € Oy, write ¢ = Zy(df) for some (dimY — 2)-form . Then,
(f®g) = (Ex ANEy)(a AdB). Therefore, (f ® g) € H(X xXY)-Oxxy. This gives the opposite
inclusion.

Note that the ideal (H(X) - Ox) is supported at the zero-dimensional leaves of X, which by
Theorem 3.34 is the degenerate locus of Zx. More generally, for arbitrary X and Y, the leaves of
H(X xY) and LH(X xY) consist of the open leaves obtained as products of open leaves in X
with open leaves in Y, and zero-dimensional leaves at every point of the degenerate locus.

Finally, as in the Poisson case, one can also consider, for every map f : X — Y, the smaller Lie
algebra of vector fields obtained by contracting = with exact (or closed) (n — 1)-forms pulled back
from Y. The leaves of the resulting Lie algebra consist of open leaves, which are the restriction of
the open leaves in X to the noncritical locus, together with zero-dimensional leaves at the critical
points of f together with the degenerate locus of =. This example includes, for every subgroup
G < SL(n) (or even GL(n)), the map X = A" — A"/G =Y. The coinvariants of Oan» under
the resulting Lie algebra is finite-dimensional if and only if the critical locus of f is finite, i.e., no
nontrivial element of G has one as an eigenvalue; equivalently, this says that G acts freely on the
2n — 1-sphere of unit vectors in C™. More generally, we can take a quotient of an arbitrary pair
(X,Z) by a finite group of automorphisms preserving Z, and the coinvariants of the resulting Lie
algebra are finite-dimensional if and only if the degenerate locus of X is finite and all elements of
the group have only isolated fixed points.

One can alternatively consider, for a finite group quotient X — X /G, the Lie algebras H(X)¢,
LH(X)%, and P(X)“. We can do this slightly more generally, where G only preserves = up to
scaling (then G still acts on H(X), LH(X), and P(X)).

Proposition 3.41. Suppose dim X > 2 and let G be a finite group of automorphisms of X which
acts on = by rescaling. Let v be H(X) or LH(X). Then the leaves of v“ consist of the points of
the degenerate locus of X, together with the connected components of the subvarieties of the open
leaf whose stabilizers are fixed subgroups of G.

If the degenerate locus of X is finite, then v” has finitely many leaves, and the same result holds
for v = P(X).

Call a subgroup K < G parabolic if it occurs as the stabilizer of a point in X, i.e., it is the
stabilizer of one of the leaves of v&.

Proof. Tt is clear that v“ must flow parallel to the given subvarieties. Therefore, since H (X) C
LH(X), we only have to show that H(X)% flows transitively along each of the given subvarieties.
Also, the last statement is immediate from this, the fact that P(X) preserves the given subvarieties
(since the degenerate locus is finite, it cannot flow along it), and H(X) C P(X).

Here we will make use of the fact that H(X) is D-localizable (which we will prove in Theorem
4.1 independently of the results in this section), and hence so is v = H(X)“ as G is a finite group;
therefore, by Proposition 2.65.(ii), for any open affine subset U C X, we have M (U) = M(X)|y.
It therefore suffices to prove the result for every open affine subset U of the nondegenerate locus of
X, which is therefore Calabi-Yau.

Let K < G be parabolic and let Z be a connected component of {z € U | Stabg(z) = K}, as
mentioned in the proposition. We have to show that, for z € Z, H(U)% spans T, Z.
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Fix z € Z and w € T,Z. We will find ¢ € H(U)Y such that ¢|, = w. Since U is Calabi-Yau,
there exists £ € H(U) such that &|, = w. Let ¢ € Q?}m U=2 he such that & = £ Let f € Oy be
such that f(z) =1 and f(y) =0 for all y € G- z \ {z}, and moreover such that df|g.. = 0.

Now, consider 7 := |K|~! > gec 960 € H(U)Y. Then (&)], = w, as desired. O

Using Theorem 2.9, we immediately conclude:

Corollary 3.42. In the situation of Proposition 3.41, the coinvariants (O(X))y(x)c are finite-
dimensional.

Note that, when X is normal and G acts by automorphisms on (X,Z) (preserving =) with
critical locus of codimension at least two, then P(X)¥ = P(X/G). This is because, by Hartogs’
theorem, vector fields on X/G are the same as G-invariant vector fields on X, and such vector
fields preserve Zx if and only if they preserve Zx/g. In particular, we conclude in this case that
(Ox/a)pix/a) = (O(X))g(x)c, and that this, as well as (Ox)p(x)c itself, are finite-dimensional if

and only if the degenerate locus of X is finite. Moreover, M (X /G, P(X/G)) = ¢. M (X, P(X)%)¢,
where ¢ : X — X/G is the projection. We caution, however, that H(X/G) and LH(X/G) are in
general much smaller than P(X/G) (even for X Calabi-Yau), owing to the fact that G-invariant
k-forms on X do not in general descend to k-forms on X/G when k > 1. In fact, by Theorem 3.34,
(OX/G)H(X/G) and (OX/G)LH(X/G)7 as well as (OX)H(X/G) and (OX)LH(X/G)u are finite-dimensional
if and only if the critical locus of G is finite and X has a finite degenerate locus.

3.5. Divergence functions and incompressibility. The preceding example can be generalized
to the setting of degenerate versions of multivalued volume forms (i.e., Calabi-Yau structures) rather
than of ordinary volume forms. We formulate this in terms of divergence functions, which also yield
an alternative definition of incompressibility (Proposition 3.52).

We assume throughout that X is irreducible and reduced. Recall the definitions of polyvector
fields 7% and differential forms Q5 and QB( from §2.

Definition 3.43. Let N C T'x be an Ox-submodule. A divergence function D on N is a morphism
of sheaves of vector spaces D : N — Ox satisfying D(f§) = fD(§)+&(f) for all{ € N and f € Ox.
When N = Tx, we call this a divergence function on X.

As we will explain, divergence functions should be viewed as a degenerate, multivalued version
of Calabi-Yau structures: they simultaneously generalize flat sections of flat connections on the
canonical bundle (which includes volume forms), discussed in Example 2.38, and top polyvector
fields on possibly singular schemes of finite type, discussed in §3.4.

For the latter, given (X,Z), we let N C Tx be the submodule of § € Tx such that L¢(2) is
a multiple of =. This is a submodule in view of the identity Ls¢(Z) = fL¢(ZE) — £(f) - Z, which
can be checked in local formal coordinates where = is nondegenerate (where we can take = to be
the inverse to the standard volume form on the formal neighborhood of the origin in affine space).
Next, define D by the formula D(§)-Z = —L¢(Z). Note that, on the nondegenerate locus of =, call
it X° C X, we have N|xo = T'xo, since X° is Calabi-Yau.

Next, we explain how divergence functions generalize multivalued volume forms:

Proposition 3.44. If X is normal and of pure dimension n, then the following are in natural
bijection:
(i) Divergence functions D on N C Tx;
(ii) Connections N x % — Q% on Q% along N.
(ili) Connections N x T¢ — T% on T% along N.
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The equivalence between (i) and (ii) is given by the correspondences, for £ € N and w € Q},

(3.45) D VP, VP(w) = Le(w) — D(E) - w;

(3.46) Vi Dy, Dg(§) = L¢ — V¢ € Endo, (%) = Ox.

The equivalence between (i) and (iii) is given by the formulas, for £ € N and = € T%,
(3.47) D~ VP, VP(E) =L(E)+ D) - 5

(3.48) V= Dy, Dy(§) =V¢— L¢ € Endo, (Ty) = Ox.

Finally, the constructions D — VP are valid even when X is not normal.
We will need the elementary

Lemma 3.49. Suppose that X is normal and that F' is a torsion-free coherent sheaf on X which
is a line bundle outside of codimension two. Then End(F) = Ox.

Proof. For any a € End(F'), on some open subset U C X where F is a line bundle and X \ U
has codimension two, a|y € End(F|y) = I'(Oy) (the isomorphism holds because endomorphisms
of any line bundle L are canonically identified with functions, via the map sending a function
to the endomorphism of multiplication by that function). By normality, the resulting function
extends (uniquely) to a function f, € Ox on all of X. Since Ox C End(F'), we conclude that
fa —a € End(F) has zero restriction to U, and hence is zero since F' is torsion-free. O

Proof of Proposition 3.44. Suppose that D is a divergence function. Then VED(f ‘w) = fVED (w) +
&(f)-w. Similarly, V?g(w) = fVP(w)+£(f)—€(f) = FVP(w). We deduce that VéD is a connection.
Similarly, if V is a connection on Qx, then first of all L¢(fw) — Ve(fw) = f(Le(w) = Ve(w)), so
Dy (§) is indeed a well-defined O x-module endomorphism of Q. By Lemma 3.49, this is the same
as an element of Ox. Then, Dy (f§) = fDv (&) + &(f), so Dy is a divergence function. One
immediately checks that Dgp = D and VPV = V.

The proof of the equivalence between (i) and (iii) is similar, so we omit the details. For the final
statement, note that well-definition of V did not require normality. O

Remark 3.50. In fact, in Proposition 3.44, we can replace 7% and Qg‘( by any torsion-free coherent
sheaves which coincide with T% and Q% respectively, outside of codimension two; the proof then
goes through unchanged.

Remark 3.51. For not necessarily normal X, but still of pure dimension n, Proposition 3.44
generalizes to give an equivalence between divergence functions of the form D : N — Endp, (Q’)‘() D)
Ox and connections N x Q} — Q”X Similarly, we obtain an equivalence between divergence
functions valued in Endp, (T%) 2 Ox and connections on 7% along N.

Divergence functions yield the following alternative formulation of the incompressibility condi-
tion. Let Ox -v denote the O x-linear span of v and similarly for Oy, where X' is an open subvariety
of X (we will also use this notation for formal neighborhoods, etc.).

Proposition 3.52. Let X be an arbitrary affine variety and v a Lie algebra of vector fields v on
X. Then, the flow of v along X is incompressible if and only if there exists an open dense subset
X° C X and a divergence function on Oxo - v|xo annihilating v|xo. In this case, in the formal
neighborhood of every point of X°, there exists a volume form preserved by b.

The proof is given in Section 3.5.3 below, after we develop some needed material. We can restate
the proposition in terms of connections using the following basic result:
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Proposition 3.53. In terms of Proposition 3.44, when X is normal and of pure dimension, a
divergence function D on N annihilates v C N if and only if V2 = L¢ for all § € v.

The proof of Proposition 3.53 is immediate from the definition of V* and Dy, and hence omit-
ted. Using it, Proposition 3.52 becomes the following statement: when X is normal and of pure
dimension, the flow of v along X is incompressible if and only if there exists an open dense subset
X° and a divergence function D on Oxo - v|yo such that VP = L¢ for all £ € v xo.

3.5.1. Flat divergence functions. In terms of Proposition 3.44, we can describe what it means for a
divergence function to be flat. As before, assume that X is a variety of pure dimension n. Assume
that N C Tx is a Lie subalgebroid.

Consider the extension of D to an operator D : NoyN — /\EQ_XIN given by

(3.54) & A - A{kHZ DM D&)A NG A Ny

~

+Z D e GINEG N NG A NE A A&

Note that, since we take the exterior algebra over Oy, one must check that the formula is well-
defined, i.e., that one obtains the same result if we multiply & by f as if we multiply &; by f, for
all i < j and all f € Ox. This is easy to check.

Definition 3.55. Call a divergence function D flat if the associated operator (3.54) has square
zero: D? = 0.

Example 3.56. Suppose that N = Tx and X is smooth. Then we can replace (3.54) with
(3.57) QimX= 20, T%,

equipped with the derivation dp = d ® Id +Id ®V?, where VP : % — Q}( ®oy T% is the usual
k-linear operator associated to the connection V. This is isomorphic to (3.54) by contracting Q®
with T%. Thus, d2, = 0 if and only if D is flat.

Example 3.58. More generally than Example (3.56), suppose that X is smooth and N is locally
free of rank n — k and the vanishing locus of a collection of (linearly independent) one-forms
dfi,...,dfy. Then, we can consider the k-form a = dfy A - A dfy, and replace (3.54) by

(3.59) (QIMX=F= A o) R0, TR

This is equipped with the derivation dp defined as before, and with this derivation, the contraction
map produces an isomorphism of (3.59) with (3.54). Thus, it remains true that d%, = 0 if and only
if D is flat. Moreover, by Frobenius’s theorem, in a formal neighborhood of a smooth point x € X,
such fi,..., fr always exist since N is integrable.

Proposition 3.60. Let D : N — Ox be a divergence function with N C Tx a Lie subalgebroid,
and let v :={{ € N | D(£) = 0}. Suppose moreover that N = Ox - v. Then D is generically flat if
and only if v is a Lie algebra.

By generically flat, we mean that, restricted to an open dense subset of X, D is flat. Note that
the condition N = Ox - v is automatic if we replace X with a formal neighborhood X, for generic
x € X and define v C T’y as above, since N is integrable, so we can write X, 2V x V' for formal
polydiscs V, V' such that "N identifies with the subsheaf of Tg in the V direction.
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Proof. First, if D is generically flat, then on some open dense subset of X, given any £,n € v, we
have D?(£ A1) = 0 (since D(¢) = 0 = D(n)), which implies that [£,7] € v as well.

Consider now the reverse implication. It suffices to restrict to a formal neighborhood of a smooth
point x € X (on each connected component of X). Then, as noted in Example 3.58, we can assume
N is the vanishing locus of k nonvanishing one-forms df1, . .., df%. Set a = dfi A-- - Adfy, and replace
(3.54) by (3.59). By Proposition 3.53, v consists of those £ € N such that V? = L¢ on Q;l(z, or

equivalently on (Q&flg Aa).
Assume that v is a Lie algebra. Then, for £,n € b,

[V?, VUD] = [Le, Ly) = Lig ) = v[lg,n}'

Note that this also implies that [VD , V,]D | = V[lg . forall &,n € &) X,z - IV, since this equality remains
true when replacing & by f - € for f € @ny, and it is biadditive in ¢ and 7. Since N = Ox - v, and

hence Nl = (’A)X@-U]Xw, the equality holds for all £,7 € (’A)ny. Now, the identity [V 2, V,YD] = V[Igm]

on Q} implies in the standard way that the derivation dp on (Q(;A(imX kA a) @0 x T has square

zero. Namely, one can verify that d% is given by contraction with the two-form « given by
& An) = [VE, V] = VE 1 € End(T} ) = Ox. O

3.5.2. Hamiltonian vector fields on varieties with flat divergence functions. Now we define, anal-
ogously to §3.4, Hamiltonian and incompressible vector fields preserving flat divergence functions
(i.e., preserving the formal volumes associated to them).

Let X be a variety of pure dimension n and N C Tx an Ox-submodule, and D : N — Ox be
a flat divergence function. Then first we have the Lie algebra P(X, D) C N of all incompressible
vector fields in N. Note that the Ox-linear span of P(X, D) need not be all of N.

Next, given any element 7 € /\?QXN , consider the image 6, := D(7) € N. By construction,
D(0;) = 0. We call 6 the Hamiltonian vector field of 7. Since [0, 0-/] = 01, (), these form a Lie
subalgebra of P(X, D),

H(X,D) := (0,) C P(X,D).

Example 3.61. If X is Calabi-Yau and D is the associated divergence function, we again recover
H(X,D)= P(X,D)= H(X), the Lie algebra of volume-preserving vector fields.

As long as N has rank at least two, then H(X, D) has enough vector fields, in the sense that
Ox - H(X, D) = N; more precisely:

Proposition 3.62. Suppose that the image of N at the tangent fiber 7, X has dimension at least
two. Then H(X,D)|, = N|,, i.e., H(X,D) C N spans the same tangent space at = as N. In
particular, if N = T’x and X has pure dimension at least two, then H (X, D) is transitive.

As a consequence, the same result holds for P(X, D) D H(X, D).

Proof. Let x € X be a point, and §,n € N two vector fields linearly independent at z. Let f € Ox
be a function such that £(df)(z) = 1 and n(df)(z) = 0. Then (D(féAn) — fFD(EAN)) |z =nlz. O

On the other hand, if N has rank one, then P(X, D) can be zero, e.g., when X is a smooth curve
and D is a divergence function preserving a multivalued volume form which is not single valued
(cf. Example 2.38).

Example 3.63. Consider the case of Example 3.58, i.e., where N is locally free of rank n — k and
the zero locus of (linearly independent) exact one-forms dfy, ..., dfg. Set o :=dfy A --- Adfy and
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replace (3.54) by (3.59). Given any element § € (Q}_k_2 Na) @ T, we can define the Hamiltonian
vector field
& = ctr(V7(8)),

where ctr is the operator
ctr: Q% @0y Th — T ® ctr(w @ 7) = ir(w).

These vector fields coincide with H (X, D) as defined above, since (3.59) is isomorphic to (3.54) via
the contraction operation.

Next, call an element of (Q”X_k_' A @) ®oy TR VP-closed if it is in the kernel of VP. Then, if
v e (Q?{kil Aa) @ TR is VP-closed, we can define the locally Hamiltonian vector field

1y = ctr(y).
These vector fields coincide with P(X, D) as defined above, since via the contraction isomorphism

of complexes (3.59) and (3.54), the vector fields 7, are precisely those elements of N with zero
divergence.

Example 3.64. Suppose (X,E) is a variety of pure dimension n equipped with a generically
nonvanishing top polyvector field = as in §3.4, and define N and D as at the beginning of §3.5.
Then we see immediately that P(X) = P(X, D), consisting of the vector fields £ such that L= = 0.

3.5.3. Proof of Proposition 3.52. We can assume that X = X° is smooth and that v has constant
(i.e., maximal) rank. Therefore Qy = Qy, and we omit the tilde from now on. We show that v
flows incompressibly on X if and only if there exists a connection V on Qx along N := Ox - v such
that V¢ = L¢ for all £ € v.

First, suppose that v flows incompressibly on X. Let x € X be a point and w € %, a formal
volume form preserved by v. Let V be the unique flat connection whose flat sections are multiples
of w. Then Vew = 0 = L¢w for all § € v. Therefore, the restriction of V to IV is as desired.

Conversely, suppose that V is a connection on {1y along N such that V¢ = L¢ for all £ € v.
Since v is a Lie algebra, Proposition 3.60 implies that V is generically flat. Thus, at a generic
point ¢ € X, N, is free over OX z, and we can write Ty = = N, ® L for some complementary free

(’)X s-Submodule L. Then the connection V can be extended to a flat connection on TXI. Let
w € Q¢ be a nonzero flat formal section of V. Then V¢(w) = 0 for all £ € Tx. Hence L¢(w) = 0
for all f € v. Therefore, w is preserved by v.

3.6. Smooth curves. Let X be a smooth connected curve. In this section we explicitly compute
M(X,0). We may assume that v is nonzero. Let Z C X be the vanishing locus of v, which is
zero-dimensional. Let X° := (X \ Z) C X be the complement.

Lemma 3.65. If v is one-dimensional, then M (X, 0)|x. = Qxo. Otherwise, M (X, 0)|x. = 0.

Proof. By our assumptions, b|xe is transitive. Moreover, if v is one-dimensional, then any nonzero
element £ € v is a top polyvector field on X vanishing on Z, so £ ! defines a nondegenerate volume
form on X° preserved by v. Therefore we conclude that M (X°, v) = Qxo. by Proposition 2.36. On
the other hand, if v is at least two-dimensional, then if £, € v are linearly independent, then
on some open subset U C X°, & Land &y ! both define nondegenerate volume forms which are not
scalar multiples of each other. Then there can be no volume form on U preserved by both, even
restricted to U, for every x € U. O

Proposition 3.66. If dimv > 2, then M (X,v) =, ,0.® (Ox ). Moreover, dim(Ox ), is the
minimum order of vanishing of vector fields of v at z.

Note in particular that each dim(@ X,z)v 1S positive.
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Proof. By the lemma, we immediately conclude that M (X,v) is a direct sum of copies of delta-
function D-modules at points of Z, which is finite. Then, the result follows from the fact that

(3.67) Hom(M (X, v),8,) = Hom(Dx, d,)" = (Ox..)*)". O

Now, assume that v = (£), so that M (X,v) = ¢ -Dx \ Dx for £ € Vect(X). Then, by the lemma
and the argument of the proposition, we have an exact sequence

(3.68) 0 — 51Qxo :QX—>M(X,U)—>@52®(@X7Z)U—>0.

z€Z
It turns out that this sequence is maximally nonsplit. Namely, at each z € Z, Ext(d,,Qx) = k,
since X is a smooth curve.

Proposition 3.69. When v is one-dimensional, then M(X,0) = N® P, ;0. ® (Ox..)v/k, where
N is an indecomposable D-module fitting into an exact sequence

(3.70) O—>j!QXo:QX—>N—>@6z—>O.
z2€Z

As before, dim(O X,z)v 1S the minimum order of vanishing of vector fields of v at z.

Proof. By formally localizing at z € Z, it is enough to assume that v = (z¥9,) for A! = Speck|[z]
and k£ > 1. In this case, it suffices to prove that

Hom(Dp1 /270, - Dar, Q1) = 0.

But, no volume form on A is annihilated by L,y (even in a formal neighborhood of zero): the
rational volume form annihilated by L kg _is x~%dz. The last statement follows as in the previous
proof. ]

3.7. Finite maps. Let f: X — Y be a finite surjective map of affine varieties. In this section we
explain how to construct more examples using finite maps, which generalizes the aforementioned
Lie algebras of Hamiltonian vector fields of Hamiltonians pulled back from Y. We will not need
the material of this section for the remainder of the paper.

Definition 3.71. Let Vectx(Y) C Vect(Y') be the subspace of vector fields £ on Y such that there
exists a vector field f*§ on X such that fi(f*§|:) = &|f@) for all x € X.

Algebraically, Vectx (Y) consists of the derivations of Oy which extend to derivations of Ox.
Since f is finite and X and Y are reduced, it is generically a covering map. Therefore, when f*¢
exists, it is unique.

Example 3.72. If X is a normal variety and the critical locus of f has codimension at least two,
then by Hartogs’ theorem, vector fields on X outside the singular and critical locus extend to all of
X. Therefore, Vectx (Y) = Vect(Y'), since f is a covering map when restricted to this latter locus.

Suppose that X and Y are varieties and vy C Vectx(Y). Let vx := f*voy.

Proposition 3.73. (i) (X,vx) has finitely many leaves if and only if (Y, vy) does.
(ii) (X,vx) has finitely many incompressible leaves of and only if (Y, vy) does.
(iii) (X,vx) has finitely many zero-dimensional leaves if and only if (Y, vy ) does.

Proof. Restricted to any invariant subvariety Z C X, f is still finite and therefore generically a

covering map. This reduced the statement to the case where f is a covering map of smooth varieties.

Then, the statements (i)—(ii) follow from the basic facts that (i) X is generically transitive if and

only if YV is; (ii) X is incompressible if and only if Y is. Statement (iii) follows from the fact that

f restricts to a finite map from the vanishing locus of v x onto the vanishing locus of vy O
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Example 3.74. In the situation of Example 3.72, X has finitely many leaves under the flow of all
vector fields if and only if the same is true of Y, and X has finitely many exceptional points if and
only if Y does. Thus, (Ox )vect(x) is finite-dimensional if and only if (Oy )vect(v) is.

Example 3.75. If f : X — Y is a finite Poisson map of varieties with finitely many symplectic
leaves and X is normal, one recovers the observation at the end of §3.2 in the setting of Poisson
maps (note that the critical locus of f is automatically of codimension at least two, since f is
nondegenerate over the open leaves of Y). Thus, one recovers [ES10, Theorem 3.1] in this setting,
i.e., that f*H(Y) is holonomic (similarly one obtains that f*LH(Y) and f*P(Y) are holonomic).
Here, we only used the conditions that X is normal and Y has finitely many symplectic leaves to
assure that H(Y") C Vecty (X); to drop these assumptions, one can observe that H(Y') C Vecty (X),
since f*&, = &g+ (which also allows one to drop the condition that Y is Poisson altogether);
similarly we can conclude in this setting that LH(Y") C Vecty (X).

Example 3.76. Suppose f : X — Y is a finite map of varieties equipped with top polyvector fields
Ex and Zy such that fi(Ex|s) = Ey|f(y) for all 2 € X (an “incompressible” finite map). If X is
normal, Zy has a finite degenerate locus, and the dimension of X is at least two, one concludes
that f*H(Y') is holonomic (as well as f*LH(Y') and f*P(Y')), and hence that (Ox) ¢« (v is finite-
dimensional; this recovers an observation at the end of §3.4 in a special case. As in the previous
remark, we can drop the assumptions that X is normal and =y has a finite degenerate locus, since
those were only used to show that H(Y) C Vecty (X), but this is automatic since we can pull back
closed (n — 1)-forms from Y to X (this also applies to LH(Y'), but not necessarily to P(Y")).

In the case Y = X/G where G is a finite group acting on (X, Zx), one similarly recovers the
observation from the end of §3.4, that (Ox,q)px/a) = (OX)?*P(X/G) = ((’)X)g(x)g, as well as
(Ox)p(x)c, are finite-dimensional if and only if Zx has a finite degenerate locus, i.e., if and only
if (Ox)p(x) is finite-dimensional.

4. GLOBALIZATION AND POISSON VECTOR FIELDS

4.1. Hamiltonian vector fields are D-localizable. In order to prove that our main examples
are D-localizable (for all vector fields and Hamiltonian vector fields), we prove the following more
general result, which roughly states that a Lie algebra of vector fields generated by a coherent sheaf
E of “potentials” is D-localizable (in the Poisson case with v = H (X)), or in the case v = Vect(X),
E = Ox, as we will explain):

Theorem 4.1. Let E be a coherent sheaf on an affine variety X equipped with a mapv: EF — Tx
of k-linear sheaves, such that, for all e € E, the bilinear map

me(f,9) = v(f-e)(g) = f-v(e)(g)

defines a skew-symmetric biderivation O%? — Ox. Then (the Lie algebra generated by) v(E) is
D-localizable.

The condition of the theorem can alternatively be stated as: v : E — T is a differential operator
of order < 1 whose principal symbol o(v) : E — Tx ® Tx is skew-symmetric.

Proof. Let X C A" be an embedding into affine space, and let x1, ..., x, be the coordinate functions
on A", Let U C X be an open affine subset. We need to show that, for every g € Oy and e € E(X),
then v(g - e) € v(E(X)) - Dy. Let V.C A™ be an open affine subset such that VN X = U. We
claim that, in Dy, for all f € Oy,

91
Gxi ’

(4.2) o(fe)=vle) - f+ Y (viwi-e)—v(e)- )
=1

39



which immediately implies the statement. To prove (4.2), we first rewrite it (putting vector fields
on the left-hand side and functions on the right hand side)

(v(f-e) Za% )—z;v(e)) +Z 8$Z )—i—(v(xz-.e)—xiv(e))(gi)).

So the statement is equivalent to showing that both sades of the above desired equality are zero.
For the LHS, this follows from the fact that, for fixed e € E, the map f — v(f-e) — f-v(e) is a
derivation of f; in more detail, this implies that thls is obtained from a linear map Q! — T, df —
v(f-e)— f-v(e), and then we write df = ZZ D L dz;. For the RHS, the fact that v(e) € Tx is a

derivation implies that v(e)(f) + > 1, a

2-v(e)(zi) = 0, just as before. It remains to show that

0
;(v(xl ce)—x;-v(e ))(3:{1) 0.
Using the definition of m., we can rewrite the LHS of this expression as

0
Zwe(azi,ax{).

%

Now, viewing 7. as a bivector field (i.e., a skew-symmetric biderivation), this can be rewritten as

> we(dwi A d(ﬁ)) = Ted(df) = 0. O
Corollary 4.3. (X, Vect(X)) is D-localizable. More generally, if £ C Vect(X) is a coherent
subsheaf, then (the Lie algebra generated by) E is D-localizable.

Proof. Take v =1d in the theorem. O

Corollary 4.4. Let X be either Poisson, Jacobi, or equipped with a top polyvector field. Then
the presheaf H(X) of Hamiltonian vector fields is D-localizable. Moreover, in the Poisson and top
polyvector field cases, the presheaf LH(X) of locally Hamiltonian vector fields is also D-localizable,
and defines the same D-module.

Similarly, when X is equipped with a coherent subsheaf N C Tx and a divergence function
D : N — Oy, then the presheaf H(X, D) is D-localizable, setting E := /\%XN.

Proof. In the Poisson and Jacobi cases, we can take £ = Ox and v(f) = ;. Then it is easy
to check that m. is a skew-symmetric biderivation for all e € E, so the theorem implies that
Hx is D-localizable. In the case of a top polyvector field =, we take F = Q}_Q and again let
v(a) =& = E(da).

For the second statement, it suffices to recall from Propositions 3.13 and 3.31 that, in the Poisson
and top polyvector field cases, H(X) - Ox = LH(X) - Ox for all affine X.

The final statement follows in the same manner. O

On the other hand, P(X) need not be D-localizable: see §4.2 for a detailed discussion.

Remark 4.5. We note that, in general, Hx is not a sheaf, and neither is LH x.

For an example where Hx and LHx are not sheaves, let X be the complement in A3 of the
zy

plane z + y = 0, equipped with the Poisson structure given by the potential f(z,y,z) = rrh ie.,
2 2
Y x
z,y} =04y, 2} = —,{7,2} = —.
{z,y} = 0,{y, 2} @ty {z, 2} @ty

Consider the vector field ¢ := (x + y)~20,. This is regular, and on the open set where x # 0, it is
the Hamiltonian vector field of 7!, and on the open set where y # 0, it is the Hamiltonian vector
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field of —y~!. But it is not globally Hamiltonian, since if £ = ¢ ¢ for some f € Ox, then we would
have f = 271 4+ C for some Casimir function C regular on the locus z # 0 (recall that a Casimir
function means a function that is Poisson central). Then, on the locus y # 0, we would obtain
that g := 27! 4+ C 4+ y~! is a Casimir function. But then, if h is any regular function such that
{y,h} does not vanish along y = 0, we would conclude that {g, h} has a pole along y = 0, which is
impossible since it must be zero.

The same argument shows that £ is not given by a global one-form: in this case, writing the
global one-form as d(z~!) + 3 for ng = 0, we would again conclude that, for any regular h such that
{y, h} does not vanish along y = 0, the function ny,-1y1g(h) = —{y~1,h} has no pole at y = 0, a
contradiction.

On the other hand, in the case that X is generically symplectic, it follows that Hx and LHx
are sheaves, since in this case any vector field which is Hamiltonian in some neighborhood must be
given by a unique Hamiltonian function up to locally constant functions, and this is then defined
and Hamiltonian on the regular locus of that function (and similarly in the locally Hamiltonian
case).

Note similarly that, in the case of a variety with a top polyvector field =, Hx and LHx are
sheaves, since if = is nonzero, then on its nonvanishing locus a Hamiltonian vector field is once
again given by a unique Hamiltonian.

Remark 4.6. In the examples above, the presheaves also are equipped naturally with spaces of
sections on formal neighborhoods X, of every point x € X the presheaf condition requires only
that these contain the restrictions of sections on open subsets containing x. Thus it makes sense
to define the notion of formal D-localizability, i.e., that, for every open affine U and z € U,

(4.7) o(X.)Dy, = o(U)|x, Dy,

Formal localizability implies usual localizability: indeed, if v is formally localizable, and ¢ € v(U”)
for some U’ C U, then at every x € U’, it follows that £|Xz € v(U) Dy, and hence § € o(U) - Dy,
by Lemma 2.64.

Theorem 4.1 extends to show that, under the assumptions there, v is formally D-localizable,
by formally localizing the embedding X — A" to X, — Ag Then, the same proof applies.
We conclude as before that the presheaves of (locally) Hamiltonian vector fields are formally D-
localizable, as well as Vect(X) and all coherent subsheaves thereof.

4.2. D-localizability of Poisson vector fields. An interesting question raised in the previous
subsection is whether P(X) is D-localizable. This turns out to have an interesting answer, which
we discuss here. The material of this subsection will not be needed for the rest of the paper, and
our motivation is partly to illustrate the nontriviality of D-localizability. We will first give the
statements and examples, and postpone the proofs of the propositions to the end of the subsection,
for the purpose of emphasizing the statements and counterexamples to their generalization.

Proposition 4.8. Let X be an irreducible affine Poisson variety on which P(X) flows incompress-
ibly. If P(X) is D-localizable, then the generic rank of P(X) must equal that of P(U) for every
open subset U C X.

Conversely, suppose that X is a smooth affine Poisson variety on which the rank of P(U) equals
that of H(U) everywhere, for all affine open U C X, and that this rank is constant on X. Then,
for all affine open U C X, one has an equality of O-saturations P(U)%* = H(U)?. Hence, P(X) is
D-localizable.

The assertion of the second paragraph follows from the more general
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Lemma 4.9. Suppose v C tv is an inclusion of Lie algebras of vector fields on a smooth affine
variety X. Suppose that the rank of v is constant and equals that of tv everywhere, and moreover
that w flows incompressibly. Then v°* = tv°®. In particular, M (X,v) = M (X, w).

Proof. Since the ranks of v and v are constant and equal, we conclude that, for every x € X, there
exists an open subset U C X such that Op - v|y = Op - w, and hence in fact Ox - v = Ox - w.
Now, if to flows incompressibly, and hence also v, then v°° = 1° = the subspace of Ox -t of
incompressible vector fields, by Proposition 2.53. [l

Remark 4.10. Lemma 4.9 generalizes to affine schemes of finite type, if we replace the rank
condition by the condition that Ox - v = Ox - to.

We also give a localizability result that does not require X to be smooth, in the situation of
Remark 3.12, where P(X) = LH(X°®) for X° the smooth locus of X.

Notation 4.11. Given any not necessarily affine scheme Y, we will let H},(Y) := H*(['(Qy))
denote the cohomology of the complex of global sections of de Rham differential forms modulo
torsion.

For all x € X, Let Ox ; be the uncompleted local ring of X at x.

Proposition 4.12. Suppose X is Poisson, normal, and symplectic on its smooth locus. Let S be
its singular locus.
(i) For every s € S, let E5 C S be the union of all irreducible components of S containing s.
Suppose that, for all s € S, the natural map

(4.13) HLp(X \ Es) ® Hpp(Spec Ox ) — Hpg(Spec Ox s \ Es)
is surjective. Then, P(X) is D-localizable. Moreover, for all s € S,
(4.14) P(Spec OX,s) = P(X)|5pecox7s -Oxs + LH (Spec OX,s)-

(ii) Now suppose that S is finite and k = C. Then the hypothesis of (i) is satisfied if, for all
s € S and all affine Zariski open neighborhoods U of s, the natural map on topological
cohomology,

(4.15) Hiop (X \ {5}) @ Hiop(U) = Hiop (U \ {s})
is surjective. In particular, in this case, P(X) is D-localizable, and (4.14) holds.

Example 4.16. When X has a contracting G, action (where this is the multiplicative group), i.e.,
Ox is nonnegatively graded with k in degree zero, then H*(X) = k, and in particular H?(X) = 0.
Therefore, in this case, when X also is normal, generically symplectic, and has an isolated singularity
at the fixed point for the contracting action, the conditions of the proposition are satisfied, so P(X)
is D-localizable. Also, in this case, P(U) = P(X)|y + LH(U) for all open sets (and for those U
which don’t contain the singularity we have P(U) = H(U), since then U is symplectic).

For such an example where P(U)/LH(U) is nonzero, let X be the locus 23 + 4% + 23 = 0 (or a
more general elliptic singularity); then P(U)/LH (U) is generated by the Euler vector field in P(X)
for all open affine U.

Example 4.17. Here is a simple example of a non-normal X for which P(X) is not D-localizable:
Suppose X = Speck[z?,23,y, xy] and {z,y} = y. This is generically symplectic but not normal.
Then we claim that every global Poisson vector field vanishes at y = 0. Indeed, £ = f0, + g0, is
Poisson if and only if % + % =
a vector field on X, f vanishes at the origin, and hence y | f. This proves the claim. On the other
hand, in the complement U of any hyperplane through the origin, 0, is a Poisson vector field; but
this can only be in P(X) - Dy when the hyperplane was y = 0. Thus P(X) is not D-localizable.
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Remark 4.18. In the case X is smooth, if it has finitely many symplectic leaves, it is in fact
symplectic. However, there are many cases where X is smooth and generically symplectic, and P(X)
has finitely many leaves even though X has infinitely many symplectic leaves; e.g., 1 = 0, A 0y
on A2, as mentioned in §3.2.

We give an example where X is smooth but P(X) is not D-localizable:

Example 4.19. Let g be the Lie algebra g := sl and let X = g*, equipped with the induced
Poisson bracket on Ox = Symg. Then, all global Poisson vector fields are Hamiltonian, since
H'(g,Sym g) = 0 (this implies that all derivations g — Sym g are inner, and hence all derivations of
Sym g, i.e., vector fields on g*, are Hamiltonian). It is clear that the Poisson bivector has rank two,
except at the origin, where the rank is zero; hence this is the rank of P(X). However, we claim that
the rank of the space of generic Poisson vector fields is three. Indeed, write g = (e, h, f) with the
standard bracket [e, f] = h, [h,e] = 2e,[h, f] = —2f. So e,h, f € Ox are linear coordinates. Let
C =2ef + %h2 € Ox be the Casimir function, so {C, g} = 0 for all g € Ox. Then, if we localize
where e # 0, we can consider the coordinate system (e, h,C) and take the directional derivative
in the C direction, which in the original coordinates (e, h, f) is £ := 2—168f. Since the Poisson
bivector field is tangent to the planes where C' is constant, this vector field is Poisson, which is also
immediate from explicit computation (it is enough to check that {£(z),y} + {z,&(y)} = {{z,y} for
z,y € Ox, which clearly reduces to the case z = f,y = h, where {£(f),h} = L = £(2f) = £{f,h}.)

e

Proof of Proposition 4.8. By incompressibility and Proposition 2.39, the generic rank of P(X)
equals 2dim X minus the dimension of the singular support of M (U’, P(X)|y) for small enough
open subsets U’ (viewing P(X )|y as a vector space). Thus D-localizability implies that this must
also equal the generic rank of P(U) for every open subset U C X.

The second statement follows from Lemma 4.9, provided we can show that P(X) flows incom-
pressibly. By assumption, P(X) flows parallel to the symplectic leaves. But, to be Poisson, such
vector fields must preserve the symplectic form along the leaves, and hence they are incompress-
ible along the leaves. Thus, as for H(X) (see Example 2.30), one concludes that P(X) flows
incompressibly on X. O

Proof of Proposition 4.12. (i) Suppose that { € P(SpecOx ). As explained in Remark 3.12, this
means that £ = 7, where « is a closed one-form on Spec Ox s \ Es. By the hypothesis (4.13), we
can write

(420) o = aSpec OX’S + aX\Es + df,

where QSpecOx , 1S 2 closed one-form modulo torsion on SpecOx s, X\E, 18 a closed one-form
modulo torsion on X \ Ej, and f € I'(SpecOx s \ Es). By normality, f € Ox,. Thus & €
H(SpecOx ;). Note that Naspec oy, € LH(SpecOx ), by definition. As in Remark 3.12, we obtain
that nx\g, € P(X). Therefore, abplying the operation  — 7g to both sides of (4.20), we obtain
(4.14), since & was arbitrary.

As a consequence, we deduce that P(SpecOx ) € P(X)[specoy, - Ox,s- Now, s € X was an
arbitrary singular point. At smooth points z € X, we have P(SpecOx,) = H(SpecOx,) C
H(X)‘Specox,x : OX,{Z"

Now, for arbitrary open affine U C X, P(X)|y - Dy is a sheaf on U, by Lemma 2.64. By the
above, P(U)lspecox, S P(X)|specoy., - Dx.z; Where the latter is the Zariski localization of Dx
at x. By Lemma 2.64, P(X)|specoy, " Pxo = (P(X)|v - Du)lspecoy - We conclude that, for all
xzeU,

P(U)’SpecOXVZ. - P(X)|U : IDU)‘SpecOXW
and since P(X) - Dy is a sheaf, this implies that P(U) C P(X)|y - Dy. As U was arbitrary, we
conclude the D-localizability of P(X).
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(ii) In order to prove (4.13), it suffices to prove the statement when Spec Ox s is replaced by
sufficiently small Zariski open neighborhoods U of s. This is because every closed one-form modulo
torsion in Spec Ox 5 \ Es is actually regular on U \ E; for some Zariski open neighborhood U of s,
and we are free to shrink it.

Now, assuming that S is finite, Fy = {s} for all s € S. By the preceding paragraph, it suffices
to show that (4.15) implies that the map

(4.21) Hpr(X \ {s}) ® Hpp(U) = Hpp(U \ {s})
is surjective. To see this, we first note that, for Y smooth but not necessarily affine, we have an
isomorphism by Grothendieck’s theorem,

pr(Y) = He,

(Y),

where Hf, (YY) denotes the hypercohomology of the complex of sheaves Q3 = Q;,
Next, there is a natural map Hp,p(U) — H{,,(U), obtained by integrating along cycles; one can
slightly perturb a closed path in U to miss the isolated singularities of U, and integrating against
a one-form on U which is closed mod torsion (hence closed when restricted to the smooth locus of
U) produces a well-defined answer, which depends only on the homology class in U of the closed
path.

Then, the restriction map Hp»(U) = HLp(U) — HL 1 (U\ {s}) = H{,,(U\ {s}) factors through
the map H})x(U) — Htlop(U ), which is surjective by the main result of [BH69].

Then, (4.15) implies that we have a surjection

(4.22) Hpr(X \ {s}) @ Hpr(U) — Hpg(U \ {s}),

where here we note that H},,(U) = H},,(U) since U is affine.
Since X = (X \ {s}) UU, we have an exact Mayer-Vietoris sequence on hypercohomology of the
triple (X, X \ {s}),U), which in part takes the form

(423)  Hpr(X\{s}) ® Hpp(U) = Hpr(U\ {s}) = Hpr(X) = Hphr(X \ {s}) & Hp(U).

By (4.22), the first map is surjective, and hence the last map is injective.
We also have a Mayer-Vietoris sequence for ordinary H7, p, associated to the exact sequence of
complexes of global sections,

0= Q% = D(Q%\ o) @ Q = T( Q) = 0.
This has the form
(4.24)  Hpr(X\{s}) @ Hpr(U) = Hpr(U\ {s}) = Hpr(X) = Hpp(X \ {s}) & Hp(U).

Now, the final map in (4.23) factors through the final map in (4.24) (since X is affine). Therefore
the last map in (4.24) must also be injective. We conclude that the first map of (4.24), which is
the same as (4.21), is surjective. This completes the proof. O

4.3. Formal D-localizability of Poisson vector fields. It turns out that formal D-localizability
of Poisson vector fields is a stronger condition, which implies (in the incompressible case) that X
is generically symplectic.

Proposition 4.25. If X is irreducible affine Poisson and P(X) flows incompressibly, then if P(X)
is formally D-localizable, then X must be generically symplectic.

Note that this in particular implies that the condition of Proposition 4.8 is satisfied: P(U) has
generic rank equal to dim X for all U.
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Proof of Proposition 4.25. Suppose that X is not generically symplectic. Then, in the neighborhood
of some sufficiently generic smooth point, X, 2V x V' as a formal Poisson scheme, where V is a
symplectic formal polydisc and V' is a positive-dimensional formal polydisc with the zero Poisson
bracket. So P(X,) = P(V)® Oy @ Vect(V’). This is evidently not incompressible since V" is
positive-dimensional. Thus M (X,, P(X,)) = 0. However, if we assume P(X) flows incompressibly,
then M (X, P(X))|g, # 0 for sufficiently generic z (with P(X) here the constant sheaf). Thus
P(X) is not formally D-localizable. O

We can also give a positive result parallel to Proposition 4.12:

Proposition 4.26. Suppose X is affine Poisson, normal, and symplectic on its smooth locus. Let
S be its singular locus.
(i) For every s € S, let E5 C S be the union of all irreducible components of S containing s.
Suppose that, for all s € S, the natural map

(4.27) Hpp(X \ E) ® Hpp(SpecOx s) = Hpr(Spec Ox s \ E)
is surjective. Then, P(X) is formally D-localizable. Moreover, for all s € S,
(4.28) P(SpecOx,5) = P(X)lspec 0, . - Ox.s + LH(Spec Oxs).

(ii) Suppose that S is finite and k = C. Then the hypothesis of (i) is satisfied if, for sufficiently
small neighborhoods U of s in the complex topology, Hi, (X \ {s}) = HL (U \ {s}), is
surjective. In particular, in this case, P(X) is formally D-localizable, and (4.28) holds.

Remark 4.29. The condition of (ii) is equivalent to asking that Hl (X \{s}) — H{, (U \{s}) be
surjective for any fixed contractible neighborhood U of s (whose existence was proved in [Gil64]).
Thus, the condition of (ii) is the same as that of (4.15), except replacing Zariski open subsets by
analytic neighborhoods, and using holomorphic functions rather than algebraic functions.

Proof of Proposition 4.26. The proof of part (i) of the proposition is the same as in Proposition 4.12,
except replacing U by X,. We omit the details. Note that, when z ¢ S, one has P(X,) = H(X,),
since then X, is symplectic.

For part (ii), we use holomorphic functions and analytic neighborhoods and various results about
them, contained in §4.4 below. As in Proposition 4.12, for every analytic neighborhood U of s, the
assumption of (ii) together with Grothendieck’s theorem implies that the map on hypercohomology,

Hp (X \ {s}) = HpR (U \ {s}),
is surjective. Using the Mayer-Vietoris sequence for the exact sequence of complexes of sheaves
((4.38) below for Y = X, Z = {s}, and V = U), we conclude that the map

Hpp(X) = Hpp(X \ {s}) ® H**(U)
is injective. This map factors through the map from ordinary cohomology to hypercohomology, so
we conclude that the map

Hpp(X) = Hpp(X \ {s}) & H>*(U)
is also injective. Using the Mayer-Vietoris sequence for ordinary cohomology (using the global
sections of (4.38), which is an exact sequence of complexes since X is affine), we conclude that

(4.30) Hpr(X \ {s}) ® Hpy (U) = Hp (U\ {s})
is surjective. Then, by Theorem 4.45 below, we conclude that
(4.31) Hpp(X \ {s}) ® Hpr(Xs) = Hpa(Xs\ {s})

is also surjective, as desired. ([l
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Remark 4.32. In fact, we did not need the full strength of Theorem 4.45 below, but only the
fact that the maps H},o(U) — Hpp(Xs) and Hp5(U \ {s}) = Hhp(Xs \ {s}) are surjective. At
least the first fact can be proved in an elementary way by lifting closed formal differential forms
to closed analytic differential forms, and does not require resolution of singularities as used in the
proof of Theorem 4.45.

Example 4.33. Here is an example of a surface with an isolated singularity, which is normal and
symplectic away from the singularity, for which P(X) D-localizable (in fact satisfying (4.15)) but
not formally D-localizable (so in particular not satisfying (4.27)). This example was pointed out
to us by J. McKernan.

Let E C P2 be a smooth cubic curve. Then, under the intersection pairing on P?, E - E = 9.
Now, blow up P? at twelve generic points of E. Let Y be the resulting projective surface, and let
E’ CY be the proper transform of E. Then E' - E' = 9 — 12 = —3, so we can blow down E’ to
obtain a new surface, call it Z, where the image of E’ is a singular point, call it s, whose formal
neighborhood Z, is isomorphic to the cone over an elliptic curve.

Note that H, (Z\ {s}) = HL (Y \ E') = H] (P?\ E) = 0, since E C P? has a nontrivial
normal bundle.

Next, embed Z into projective space PV of some dimension N > 2. Let C C Z be the intersection
of Z with a generic hyperplane, and let X := Z \ C be the resulting affine surface. Since O(C) is
(very) ample, C' has a nontrivial normal bundle. Hence, the restriction map induces isomorphisms
Htlop(Z) = Htlop(X) and Htlop(Z \ {s}) > Htlop(X \ {s}). In particular, these are zero as well.

Thus, HL (X \ {s}) = 0. We claim that H},5(X \ {s}) = 0 as well. More generally, this follows
from the following statement:

Lemma 4.34. Let V be a scheme or complex analytic space. Then the map H}, (V) — H} (V)
is injective.

We remark that, in the case V' is a smooth variety (as with V' = X'\ {s} above), by Grothendieck’s
theorem we can replace H}) (V) by the topological first cohomology of V', and then the statement

follows because, if an algebraic or analytic one-form is the differential of a smooth (C'*°) function,
then the function must actually be algebraic (or analytic).

Proof of Lemma 4.3/4. Consider the spectral sequence H'(R'T'(Qy)) = Hg}%(V). In total degrees
< 2, the second page has the form

Hpp(V) = Hpp(V) ® HY(R'T(Qv)) = Hpr(V) @ H' (R'T(Qv)) @ H(R°T(Qy)).

The first map above is zero, and the restriction of the second map above to Hh (V) is zero.
Therefore the summand of H7, (V) maps injectively to a summand of the third page of the spectral
sequence. The same argument shows that, at every page, Hllj r(V) maps injectively to the next
page, so the map H}, (V) — H} ,(V) is injective. O

Now, since X \ {s} is symplectic, all global Poisson vector fields are locally Hamiltonian given
by a global closed one-form. By the above, H},z(X \ {s}) = 0, so that locally Hamiltonian vector
fields are Hamiltonian. Therefore, all global Poisson vector fields are Hamiltonian.

On the other hand, not all Poisson vector fields on X, are Hamiltonian, since X, is isomorphic to
the formal neighborhood of the vertex in the cone over an elliptic curve, and there one has the Euler
vector field which is not Hamiltonian. Hence, P(X) is not formally D-localizable. (In fact, P(X)
is not étale-locally D-localizable either, since the Euler vector field exists in an étale neighborhood
of z, or equivalently in the strict Henselization of the local ring at z.)

On the other hand, we claim that P(X) is D-localizable, and in fact that (4.15) holds. Let
U C X be any affine open subset containing s. Since Z is rational (as Y, and hence Z, is birational
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to P?), so is U. Now, we claim that the map H}(U) — H)x(U \ {s}) is surjective. Consider the
sequence (4.39) for the pair (U, {z}): this yields the exact sequence

Hbp(U) = Hpp(U\ {s}) ® Hpp(Us) = Hpp(Us \ {s}).

It suffices to show that the map H},,(U\ {s}) — H})R(ﬁs \{s}) is zero. By Lemma 4.34 above, this
is equivalent to showing that the map H} (U \ {s}) — H}DR((A]S \ {s}) is zero. This map factors
through the hypercohomology of any punctured neighborhood of s contained in U \ {s}, which by
Grothendieck’s theorem is the same as the topological cohomology of that punctured neighborhood.
Such punctured neighborhoods, for sufficiently small contractible U, are homotopic to nontrivial
S1-bundles over an elliptic curve, and their fundamental group is isomorphic to that of the elliptic
curve. If the map HL,(U \ {s}) — HBR(US \ {s}) were nonzero, then a nontrivial period of the
elliptic curve would be computable as integrals of closed algebraic one-forms on U \ {s}. However,
as remarked, U is rational. Thus this would imply that a nontrivial period of the elliptic curve were
computable as the integral of a rational closed one-form along a contour in C2. This is well-known
to be impossible, since these periods are given by transcendental hypergeometric functions with
infinite monodromy. Thus, P(X) is D-localizable. (Note that this paragraph also gives another
proof that P(X) is not formally D-localizable, and in fact that P(U) is not formally D-localizable
for every open affine neighborhood U of s: these periods are computable in a formal neighborhood
of s, but by the above, they are not computable using global closed one-forms. Passing from closed
one-forms to Poisson vector fields via the symplectic form on U \ {s}, this yields that P(U) is not
formally D-localizable.)

Example 4.35. We give an example where X is smooth and P(X) is D-localizable but not formally
D-localizable. By Propositions 4.8 and 4.25, one way this happens is if the rank of P(U) equals that
of H(U) and is constant but less than the dimension of X (which in particular is not generically
symplectic).

Let X = (AX)3 = Speck[z®!, y*! »*1] with the Poisson bracket {z,y} = zyz and {z,z} =
{y,z} = 0. Then H(U) has rank two everywhere, for every open affine subset U C X. We claim
that any rational Poisson vector field on X annihilates z. Therefore, the rank of every vector field
in P(U) is also everywhere two, for every open subset U C X, as desired.

To prove that every rational Poisson vector field annihilates z, it is enough to assume that k = C.
Let £ be a rational Poisson vector field and let ¢ € C be such that it does not have a pole at z = c.
Then the irregular locus of ¢ in {z = ¢} is an algebraic curve in A?. One can show that such a
curve must avoid a real two-torus 7' = {|z| = 7, |y| = s}, and then fTX{c} 7~ is a nonzero constant

multiple of % Since & preserves 7, one concludes that it must be parallel to the level sets of z, i.e.,
it annihilates z.

Remark 4.36. We can also give an elementary algebraic proof that, in the above example, every
rational Poisson vector field annihilates z. Any rational Poisson vector field must send z to a
rational function of z, since these are all the rational Casimirs. Moreover, any such vector field is
still Poisson after multiplying by an arbitrary rational function of z. Hence, if such a vector field
exists which does not annihilate z, then there must be one of the form 0, + f0, + g0, for some
rational functions f,g on X.

On the other hand, we can explicitly write one such non-rational vector field, 0, + mlozﬁ@m.
This vector field is best understood by writing the Poisson bracket in coordinates (u,v,z) =
(logz,logy, 2), as {u,v} = z, and the vector field as 9, + £0,.

Thus, given a rational vector field 9, + f0, + g9y, taking the difference, we would obtain a
non-rational Poisson vector field of the form —xlo%@m + f0: + g0y. But no such vector field can
be Poisson, since a vector field parallel to the symplectic leaf is Poisson if and only if its symplectic
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divergence vanishes, which here is 10, (f — zlogx) + 9,(g), and this cannot vanish for f and g

z
rational.

4.4. Analytic-to-formal comparison for de Rham cohomology.

4.4.1. Preliminaries on analytic forms and Mayer-Vietoris sequences. We will need to use holo-
morphic differential forms, on an algebraic variety Y which need not be affine.

Definition 4.37. Let Y be an algebraic variety over k = C. Let Q3™ denote the complex
of sheaves of holomorphic Kéahler differential forms, and Q;/’an its quotient modulo torsion. Let

H7% (Y) denote the hypercohomology of this complex, and Hp;»'(Y) denote the cohomology of
e an

the complex of global sections I'(Q2y™").

e an

Grothendieck’s theorem also extends to the holomorphic setting, where we obtain that H7 5 (U)
HE,,(U) if U is smooth.

For Z C Y a subvariety and V' an analytic neighborhood of Z, we will make use of the Mayer-
Vietoris sequence associated to the exact sequence of complexes,

(4.38) 0— Q) — Q;\Z oy — Q;f\“é — 0.

~

Similarly, we will need the corresponding exact sequence when V is replaced by a formal neighbor-
hood of Z:

(4.39) 00y =05\, & Q;,Z — Q}Z\Z — 0.

Note that there is a natural map by restriction from the sequence (4.38) to (4.39). This forms the
commutative diagram with exact rows,
(4.40)

= HOHY) —=HLAY\ Z2) s HO Y™ (V) —=Hp ™ (V\ Z) ——= Hi o (V) —— - -

| |

= HpR(Y) —=Hp(Y\ 2) © Hpp(Vz) —= Hpp(Yz \ Z) ——= Hpp(Y) — -+

Finally, note that, when Y is affine, we can also consider the same diagram for ordinary rather
than hypercohomology, since the sequences (4.38) and (4.39) remain exact on the level of global
sections.

4.4.2. Comparison isomorphisms for smooth varieties. Now consider the case that Y is smooth.
Then, we will need the result that a small enough tubular neighborhood V' of Z retracts onto Z.
By Grothendieck’s theorem, this implies

(4.41) HpR (V) = Hyy(2),

where as before H denotes hypercohomology (which is necessary since we do not require Y to be
affine).
Hartshorne’s theorem [Har72, Har75] gives an algebraic analogue of the above statement:

(4.42) br(Yz) = Hiyp(Z).

Moreover, the isomorphism (4.42) composed with the restriction H3R (V) — H3,,(Yz) is the
natural isomorphism (4.41). Put together, we deduce that the restriction map is an isomorphism,
(4.43) H33 (V) = Hpr(Yz).
Therefore, the five-lemma implies that the vertical arrows in (4.40) are all isomorphisms. In par-
ticular, this yields also
(4.44) HY (V) 2) = Hy (V7 \ 2).
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Note that, when Y is affine, we can also replace hypercohomology with ordinary cohomology (in
the second isomorphism), by using (4.40) for ordinary cohomology.

4.4.3. Comparison theorem for isolated singularities.

Theorem 4.45. Suppose that X is a complex algebraic variety with an isolated singularity at « €
X. Then, for sufficiently small contractible neighborhoods U of x, there are canonical isomorphisms

(4.46) Hy2(U) = Hpp(Xe), HpR (U\ {z}) = Hpp(Xs\ {2}).
If in addition U is Stein, then we have canonical isomorphisms on cohomology of global sections,
(4.47) Hyp'(U) = Hhp(Xa), Hpp'(U\{e}) = Hhp(Xe\ {z}).

Remark 4.48. The theorem also extends to the case where X is an analytic variety with an
isolated singularity at z, with the same proof as below, since Hironaka’s theorem on resolution of
singularities also applies to analytic varieties. (This is a strict generalization of the theorem, since
every algebraic variety is also analytic, and the objects above are the same.)

Proof. Let Y — X be a resolution of singularities, and let Z C Y be the fiber over z. Let V be a
tubular neighborhood of Z which retracts to Z and U its image under the resolution, which therefore
retracts to . Then the resolution maps restrict to isomorphisms Y\ Z = X\ {z}, V\Z = U\ {z},
and Yz \ Z = X, \ {z}. By (4.44), we conclude the second isomorphism in (4.46).

Now, the above was for specific neighborhoods U, namely those obtainable from tubular neigh-
borhoods V of Z C Y. For any smaller contractible neighborhood U’ C U of z, the restriction
map He, (U \ {z}) — H,,(U"\ {x}) is an isomorphism by Grothendieck’s theorem, and hence the
second isomorphism of (4.46) holds for sufficiently small contractible neighborhoods of z.

Consider now (4.40) for the pair (X, {z}), with U such that the second isomorphism of (4.46)
holds. The five-lemma then implies that the vertical arrows are all isomorphisms, which implies
the first isomorphism of (4.46).

Next, the first isomorphism of (4.47) follows immediately, since U is Stein, so hypercohomology
of U and X, coincides with the cohomology of global sections. Finally, since X is affine, we can
consider (4.40) for the pair (X, {x}) using ordinary rather than hypercohomology. The five-lemma
now implies that the vertical arrows are once again isomorphisms, yielding the second isomorphism
of (4.47). O

5. COMPLETE INTERSECTIONS WITH ISOLATED SINGULARITIES

In this section, we explicitly compute (Ox )y, M(X,0), and 7, M (X, ), in the case that X C Y
is a locally complete intersection of positive dimension, Y is affine Calabi-Yau, and X has only
isolated singularities; cf. Example 3.39. For M (X, v) itself, the assumption that ¥ (and hence X)
is affine is not necessary, using §4.

We set v = H(X) (one could equivalently use LH (X)), in view of Proposition 3.31.) Note that,
in the case X is two-dimensional, then X is a Poisson variety and H(X) is the Lie algebra of
Hamiltonian vector fields.

5.1. Complete intersections: Greuel’s formulas. Here we recall from [Gre75] an explicit for-
mula for the de Rham cohomology of an analytic neighborhood of z.

Embed X, C A" cut out by equations fi, ..., fr such that (f1,..., fi) has only isolated singu-
larities for all . Then define the ideals

(5'1) T i = (Fr o fimr, 6(a:j1, e 737ji)
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O(f1,-5f1)

O(jy 5o Tj;)

the Milnor number, ., of the singularity of X at x is given by
k

(5.2) Mz = Z(_l)k_i COdim@An . IX -
=1

Here is the determinant of the matrix of partial derivatives 8% (f¢),1 <p,q <'i. Then,

Definition 5.3. Let X and z be as above. Define the singularity ring, Cx ,, of X at x to be
Cxa = Oana/(xam fr),

and define the Tjurina number, 7, to be the dimension of Cx ;.

Note that the ring Cx , does not depend on the embedding Xx - A;f and is also definable
intrinsically as the quotient of O x.z by the m-th Fitting ideal of QL | cf. [Har74] and Remark 2.3).

Theorem 5.4. [Gre75, Proposition 5.7.(iii)] If = is an isolated singularity which is locally a complete
intersection in the analytic topology, then

(5.5) H* QYY) =2 kHe ™ [~ dim X].

)

Here, V[— dim X] is the graded vector space concentrated in degree dim X with underlying vector
space V.

5.2. General structure. Since H(X) has finitely many leaves, M (X, H(X)) is holonomic. Let
i:Z < X be the (finite) singular locus of X.

Note that i, H%*M (X, ) is the maximal quotient of M (X,v) supported on Z. Let N be its
kernel. Let X° := X \ Z and let IC(X) = 5.Qx0 be the intersection cohomology D-module of
X, i.e., the intermediate extension of Qxo.. Since j!M(X, v) = Qxo, this is a composition factor
of M(X,v), and all other composition factors are delta function D-modules of points in Z. Since
N has no quotient supported on Z, it must be an indecomposable extension given by an exact
sequence of the form

(5.6) 0—-K—N-—=IC(X)—0,

where K is supported at Z. Then, the structure of M (X, v) reduces to computing i, H%* M (X, v),
the extension (5.6), and how these two are extended. The first question has a nice general answer:

Theorem 5.7. For every z € Z, with i, : {z} — X the embedding, there is a canonical exact
sequence

(5.8) 0— HIRX(X,) - HY%M(X,0) = Cx. — 0,

By Theorem 4.45, there is a canonical isomorphism H4mX Q3™ & gdimX (X.). By Theorem
5.4, the former has dimension p, — 7,. On the other hand, dimCx , = 7.. We conclude

Corollary 5.9. i, HYi*M(X,0) =, , 64",

The following basic result will be useful in the theorem and later on. For an arbitrary scheme X
and point z € X, let (Ox ;)" be the continuous dual of Ox , with respect to the adic topology.
Lemma 5.10. Let (X,v) and € X be arbitrary. Then Hom(M (X, v),d,) = ((Ox..)*)".

Proof. Note that Hom(Dx, d,) = (Ox .)*, since the latter are exactly the delta function distribu-
tions at z. By definition of M (X,v), each ¢ € Hom(M (X,v),d;) is uniquely determined by ¢(1),
which can be any element of §, which is invariant under v. g

The theorem can therefore be restated as
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Theorem 5.11. For all z € Z, there is a canonical exact sequence
(5.12) 0— HENX(X,) = (Ox.)o — Cx.. — 0.
In particular, dim(@x,z)n = ;.

In the case that Y = A% and X is a quasihomogeneous hypersurface, the consequence that
(Ox,2)o = p = T, was discovered in [AL98] without using the earlier results of [Gre75].

Proof. Let n:=dimY, m :=dim X, and k :=n —m. Let Ix := (f1,..., fx) be the ideal defining
X. Consider the map

Q% = QI - QU as aAdfi A Adfy,

which induces also a map taking the completion at z, which we also denote by ®. Note that,
in this formula, we have to lift a to a form on Y, but the map is independent of the choice of
lift. Furthermore, ® is injective, since X \ Z is locally transversely cut out by fi,..., fr. Let

H(X) C H(Y) be the Lie algebra of vector fields obtained from the (n — 2)-forms ®(Q%~?). Then
we have an identification

(5.13) (Ox,2)o = Q’;Z/(P/I(\f)(@xz) +Ix) - voly,,

—_—

obtained by multiplying by voly. . In turn, H(X )(Oy,:) -voly identifies with d@(le_l). Therefore,
(5.14) (Ox.)o = QF /(dcp(fzgz—l) + IxQ} ).

We now compute the RHS. Recall that ® is an injection of complexes. The image of H m(ﬁ;{ ) is
a subspace of (5.14). Moreover, the quotient of Q;ﬂ by this image is

(5.15) Cx.c = O /(Ix S0, +B(Q)).

We obtain the desired canonical exact sequence (5.12). O

We can be more specific about the meaning of K in (5.6) and use this to describe the derived
pushforward 7, M (X, v), where 7 : X — pt is the projection to a point. Let m; := H'm,. If we
apply 7, to (5.6), we obtain isomorphisms m; N = 7; IC(X) for ¢ > 1, and an exact sequence

(5.16) 0 — mN — IHIX LX) & 70K — 19N — THH™X(X) — 0.

Here IH*(X') denotes the intersection cohomology of X, IH*(X) := mgim x—« IC(X).
Similarly, from the exact sequence 0 — N — M(X,0) — i, H%*M(X,0) — 0, we obtain
isomorphisms m;(N) = m;M(X,v), i > 1, and a split exact sequence

0 — 1N — (Ox)p — H%*M(X,0) = 0.
Put together, we obtain

Corollary 5.17. For i > 2, m;M(X,v0) = TH'™X~(X). For some decomposition K = K’ & K",
one has a split exact sequence

(5.18) 0 — mM(X,0) = IHIMX-1(X) & 1o K’ — 0,

and an isomorphism

(5.19) (Ox)o = TH™X(X) © @P(Ox.2)p ® mK”.
z2€Z
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Remark 5.20. We will show in [ES14] that N = H"5Q Xx\{0}» SO one obtains an exact sequence
0—-K—N-—=ICX)—0.

Moreover, K = K' = (Ext(IC(X),d0)* ® &). Finally, will then conclude that meM(X,0) =

HEM X (X) @ kM=

5.3. The quasihomogeneous case. Now suppose that X C A" where A™ = Speck|z1,...,z,],
each of the z; is assigned a weight m; > 1, and X is cut out by k£ := n — dim X weighted-
homogeneous polynomials in the z;. In this case, HPy(Ox) is a nonnegatively graded vector space
by weight. Moreover, M (X, H(X)) is a weakly G,,-equivariant D-module which decomposes into
weight submodules. Hence, H%*M (X, H(X)) is weight-graded. Then, the proofs of the preceding
results generalize to this context (considering also [Gre75] and references therein). Moreover, by
[Fer70] (cf. [Gre75, Korollar 5.8]), in this case H},p(X) = 0 and (5.5) implies that p, = 7., which
is the dimension of the singularity ring (see Definition 5.3). By using the weight-graded versions of
the arguments of [Gre75] one deduces, for Xgne the scheme-theoretic singular locus of X, defined
by the ideal (JX,O,ka fx),

Theorem 5.21. The graded vector space Hi*M (X, H(X)) has Poincaré polynomial

(5.22)
k

P(H'*M (X, H(X));t) = P(Ox,,,;1) = P(Oar/(Ix 0k fi): ) = > (1) T P(Oan/Jx041).
i=1

Since Oy is nonnegatively graded and X is connected, H(X) is spanned by homogeneous vector

fields, and (Ox ) (x) is finite-dimensional, we conclude that (@X) H(x) = (Ox)m(x)- Therefore,
Lemma 5.10 implies

Corollary 5.23. P((Ox)p(x);t) = P(Oan/(Jx,0k; fr)it)-
In particular, in this case, IH¥™X(X) = 0 and K" = 0 (i.e., K = K').

Remark 5.24. In the case that k = 1, i.e., X is a quasihomogeneous hypersurface Z(f), the ideal

of the singular locus of X is also known as the Jacobi ideal Jx = (9;f) = (0if, f). For the last

equality, let m; be the weight of z; for all ¢ as above, and set m := ). m;. Then f = % > mixiOif.
In this case, one can prove the theorem in an elementary way. Namely, we need to show that

H(X)(Ox) = Jx/(f)
Equivalently, we have to show that
(5.25) QY P Adf + Ix - Qxn = dQ% 2 Adf + Ix - Qg

For this, let Eu := Y. m;z;0; be the Euler vector field on A™. Set EuY := igy(volan) € ngl.
Then, for all g € Oan, we have the identities

Eu” Adg = Eu(g) - volan, d(gEu") = (Eu(g) +m - g) - volan.

Therefore, we conclude that, for all quasihomogeneous « € Q}fl, letting | - | denote the weighted
degree function,
a:=a— (|a] + m)~!(da/volan) Eu¥ € dy.2.
Moreover,
aNdf =aAndf (mod Ix - Q).
We conclude (5.25), and hence the theorem in this case.
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6. FINITE QUOTIENTS OF CALABI-YAU VARIETIES

Let X be an affine connected Calabi-Yau variety and = the top polyvector field inverse to the
volume form; for instance, we could have X = A™ with the inverse to the standard volume form. In
this case, H(X) = LH(X) = P(X). Let G be a finite group acting by automorphisms on X, such
that the action on = is by multiplication by a character G — k*. In this section we will compute
the D-module M (X, H(X)%). Everything generalizes without change to the case where X is not
affine, using §4.

As noticed at the end of §3.4, in the case that G actually preserves =, using the induced top
polyvector field on X/G, H(X)% = P(X/G). So we also deduce M (X/G,P(X/G)) = ¢.M (X, H(X)%)%
where ¢ : X — X/G is the projection, and hence also its underived pushforward to a point,
(Ox/a)px/c)- We note that, by Proposition 3.41, when dim X > 2, H(X)% has finitely many
leaves and hence is holonomic, so P(X/G) is as well; however, in general, H(X/G) and LH(X/G)
are not holonomic (by Corollary 3.35, they are holonomic if and only if X /G has only finitely many
singular points, i.e., only finitely many points of X have nontrivial stabilizers in G).

More generally, the statements of the preceding paragraph generalize to the setting that G acts
by multiplication by a character on E, if we consider X/G to be equipped with the multivalued
volume form obtained from X. More precisely, the flat connection on the canonical bundle of X
is G-invariant and therefore descends to X/G, so as in §3.5, X/G is equipped with a divergence
function.

We will restrict our attention to the case where dim X > 2. Note that, in the case X = Al =
Speck|[z], then if G < GL(1) is nontrivial, then there are no G-invariant volume preserving vector
fields on X. Thus more generally, if X is one-dimensional and G acts nonfreely, then there are no
G-invariant volume-preserving vector fields on X. Therefore, there is nothing to compute for the
case of dimension less than two.

Recall from §3.4 that we call a subgroup K < G parabolic if there exists a point x € X such
that Stabg(z) = K. Let Par(G) be the set of parabolic subgroups of G. For K € Par(G), the
connected components of X are called parabolic subvarieties of X. By Proposition 3.41, these are
exactly the closures of the leaves of v, which are the connected components of (X%)° = {z € X |
Stabg(z) = K}.

Let X° C X be the inclusion of the open locus where G acts freely. Clearly, M (X, H(X)%)|xo =
Qxo. Therefore, by adjunction, we have a map H%jQxo = Qx — M(X, H(V)%), and the cokernel
of this map is supported on a union of proper parabolic subvarieties of V. Suppose that U C VK
is a maximal such subvariety for K € Par(G). We claim that U is zero-dimensional, i.e., a finite
union of points. By formally localizing in the neighborhood of a generic point of U, it suffices to
assume that K = G. This reduces the claim to:

Lemma 6.1. Suppose that U and W are positive-dimensional vector spaces and G < GL(W) is
finite. Then M(U x W, H(U x W)%) = Quyw.

Proof. Let W° C W be the open subset where G acts freely. Then H(U x W°)% is transitive, so
MU x We,H(U x W°)) = Quywe. Let j: (U x W°) — U x W be the inclusion. Therefore
one obtains a map HOjM (U x W°, H({U x W°)&) = Quyw — MU x W, H(U x W)%), which is
obviously injective. To prove the lemma, therefore, we have to show that M (U x W, H(U x W)%)
has no quotients supported on a proper subvariety of U x W, i.e., one of the form U x W
for some parabolic subgroup K < G (in terms of Proposition 2.48, we have to show that there
is no infinitesimal thickening of such a subvariety which is incompressible; we will not use this
interpretation).

Let X :=U x W and v := H(U x W)G. Suppose there were a quotient of M (X, v) supported
on U x WX for some parabolic subgroup K < G. By formally localizing in a neighborhood of a
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generic point of U x WX, we can reduce to the case that K = G; let us assume this. So we have
to show that there is no quotient supported at U x {0}.

Since v includes constant vector fields in the U direction, the defining quotient Dx — M (X, v)
factors through Dx — Qu X Dy. Moreover, given a vector field € € v, write £ = & + & where
&1 € Ow ® Vect(U) and & € Oy @ Vect(W)C. Let D : Vect(X) — Ox be the standard divergence
function, i.e., D(§) = L¢w/w, where w is the standard volume form on X. Then, since v includes
constant vector fields in the U direction, £ +D(&;1) € v-Dx. Thus, & —D(&1) = o+ D(&2) € v-Dx
as well. Conversely, the constant vector fields in the U direction together with elements & + D(&2)
span v - Dx. We conclude that M(X,0) = v-Dx \ Dx is of the form

M(X,0)=QuXN, N=(+D(E)]|Ee Vect(W)Y) - Dy \ Dyy.

Therefore, the lemma reduces to showing that N admits no quotient supported at 0 € W. First of
all, let Euyy € Vect(W) be the Euler vector field on U. Then Euy +D(Euwy ) = (Euw +dim(W)) €
v - Dx. On the other hand, since dim(W) > 0, Euy + dim(W) acts by an automorphism on every
quotient supported at zero (note that sections of the delta function D-module are in nonpositive
polynomial degree, and homogeneous sections in degree m < 0 are annihilated by Eu+m (since we
are using right D-modules)). Thus, N admits no such quotient. O

We conclude that the cokernel of the inclusion Qx < M (X, v) is supported at finitely many
points, i.e., it is a direct sum of delta-function D-modules at these points. Since we assumed that
dim X > 2, Ext(Qx,6) = 0 when ¢ is such a delta-function D-module (this follows because it is
true in the case X = A" and the point is the origin). Therefore, M (X, v) is semisimple, and we
can explicitly conclude its structure, as follows.

Definition 6.2. Let Parpt(X,G) be the collection of points which are parabolic subvarieties; call
them parabolic points.

Equivalently, the parabolic points x € X are those such that, for some open neighborhood U
containing x, Stabg(z) is strictly larger than the stabilizer of any point in U \ {z}.

Theorem 6.3. M(X,v) = QX@@zeParpt(X,G) 5x®(@X,x)n, and each ((’A)Xw)n is finite-dimensional.

Proof. By the preceding material, it remains only to compute the multiplicity of §,. Note that
this must be finite-dimensional since M (X, v) is holonomic. The result thus follows from Lemma
5.10. 0

7. SYMMETRIC POWERS OF VARIETIES

Given (X, v), note that v also acts naturally on the symmetric powers S"X := X"/S,,. Then, the
diagonal embedding of X into S™X is invariant, and more generally, arbitrary diagonal embeddings
are invariant.

In this section, we compute the coinvariants (Ognx), as well as the D-module M (S"X,v) for
all n > 1 in the transitive (affine) cases of §3 (the “global” versions of the simple Lie algebras of
vector fields). In the symplectic case this specializes to the main result of [ES13]. Our main result
says that, in the Calabi-Yau and symplectic cases, this is a direct sum of the pushforwards under
X™ — S™X of the canonical D-modules A as A ranges over the diagonal subvarieties A C X"
up to the action of S,,. In other words, these are the intersection cohomology D-modules of the
diagonal subvarieties of S”X. In the locally conformally symplectic case, and in a more general
transitive setting that includes all of these cases, we prove the same result, except replacing Qa
by the diagonal embedding of M (X, v). Moreover, when X is a contact variety and v = H(X), or
X is smooth and v = Vect(X), we show that M(S™"X,0) = 0, and extend these cases to a more
general transitive setting where v does not flow incompressibly.
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More generally, we will prove general structure theorems on M (S™X,v) in the case that v is
transitive and satisfies a certain condition we call quasi-locality, which essentially says that its
restriction to the m-th infinitesimal neighborhood of every finite set is equal to the sum of its
restrictions to the m-th infinitesimal neighborhood of each point in the set. For convenience, we
will also generally assume that X is connected; it is easy to remove this assumption.

7.1. Relation to Lie algebras for S"X. The study of S™X under v is closely related to the
study of S™ X under its own associated Lie algebras of vector fields. Note that Ognx = Sym™ Oy is
spanned by elements f®" for f € Ox. Let symm : (’);8}” — Sym™ Ox be the symmetrization map,

symm(f1 @ - ® fn) = % S Fr) @ ® formy.
" oES,

Note that, if X is Poisson with bivector field m, then so is S™ X, using the unique Poisson bracket
on Sym™ Ox obtained from the Leibniz rule; in other words, one can consider the bivector field
S 7w on X7 = Spec OF", where 7¢ = 1d®0~V @ @ 1d®("9) € (Ao, Tx)®" denotes 7 acting on
the i-th component. This then restricts to symmetric functions Ognx = Sym™ Ox.

If X is even-dimensional and equipped with a top polyvector field =, then S™X is equipped with
the top polyvector field A"=.

As discussed in Remark 3.22, when X is Jacobi, there is no natural Jacobi structure induced on
X™ and hence neither on S™X.

We then have the following elementary proposition (the first part was essentially used in [ES13]):

Proposition 7.1. (i) If X is Poisson, then M(S"X, H(X)) = M(S"X, H(S"X));

(ii) For X even-dimensional and equipped with a top polyvector field, P(X) C P(S"X);

(iii) For X equipped with a divergence function D on a coherent subsheaf N C Tx, one has
P(X,D) C P(S"X, D), where S™ is equipped with a divergence function on Ognx - N, using
the natural embedding of vector spaces N C Tx — Tsny (via extending derivations from
OX to OS"X = Symﬁ O)();

(iv) For general X, Vect(X) C Vect(S™X).

Proof. (i) Given f € Oy, it is evident that (up to normalization) nfsymm( FR18M-1)) identifies with
£ € H(X). Hence H(X) C H(S"X) (this is also a special case of part (ii)). Next, H(S"X) is
spanned by the vector fields & en = symm({; ® =) for f € Ox. Note the identities £r(f)=0
and £ = z’fi_lff. Thus, for all ¢ > 1,

(7.2) symm(§i ® 1®(n71)) . Symm(f@)(nfifl) ® 1®(i+1))
= isymm(gﬂ ® f®(n—i—1) ® 1®i)
n

n—1

+ Symm(ffiﬂ & f®(n7i72) ® 1®(i+1)).

n

The LHS is in H(X) - Dx, and the RHS terms, taken over all 7 > 1, generate symm(&r ® fem=1),
as desired.

(ii) It is evident that, if a vector field preserves a top polyvector field = on X, then it also
preserves A"Z on S™X.

(iii) Similarly, if a vector field £ preserves a divergence function D, i.e., D(§) = 0, then also it
preserves the induced divergence function on S™X), i.e., the induced divergence function on S™X
by definition also kills £, viewed as a vector field on S™X.

(iv) Similarly, given a vector field £ € Vect(X), we can take the sum Y, &' € Vect(X™) which
descends to Vect(S"X). O
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Remark 7.3. Note that the isomorphism of (i) does not extend, in general, to the cases of top
polyvector fields. For instance, when X is symplectic, then by part (i), viewed as a Poisson variety,
H(S"X) and H(X) determine the same D-module, which is holonomic since S™ X has finitely many
symplectic leaves (the images of the diagonal embeddings). However, since the singular locus of
S™X is infinite for n > 2, by Corollary 3.36, H(S"X, /\”vol)_(l) does not have finitely many leaves,
and by Corollary 3.37 the associated D-module is not holonomic.

7.2. Diagonal embeddings. Let A; : X — X be the standard diagonal embeddings for all 7 > 1.
Let pr,, : X™ — S™X be the projection. Recall that a partition A of n, which we denote by A F n,
is a tuple (A,...,Ax) with \y > Ao > -+ > A\ > 1 and A; + -+ + A\ = n. In this case the length,
[A|, of A is defined by |\| := k. Given a partition A I n, define the product of diagonal embeddings

A)\ = A/\l X e X A/\W |>\‘ — X"

Now, composing with pr,,, we obtain a map X Al - §7X. On the complement of diagonals in X,
this is a covering onto its image whose covering group is the subgroup S\ < S5 preserving the
partition A\. Explicitly, Sy = S, x --- x S, where, for all 7,

Arpetry > Arpgodr b1 = Arp g 42 = 00 = Apy gy -

7.3. A morphism of graded algebras. Consider the canonical morphism of graded algebras

(7.4)  : Sym(t- ((0x)")°[t]) = @ ((Os0x)")",

given by the formula

k

(D(trlfz)l Q- trk¢k)(f1 Q- ® fr1+'“+7‘k) = H ¢i(fr1+~~+7"1'71+1 e f?“1+~~~+7‘i)'
i=1
Let us explain the graded algebra structures in (7.4). First, the grading is by degree in ¢ on the
left-hand side and by degree in n on the right-hand side. The algebra structure on the left-hand

side is as in a symmetric algebra. The algebra structure on the right-hand side is obtained from
the natural inclusions

Osn+m(X) — OSn(X) X OSm(X).

In other words, the above maps are the symmetrization maps,

(1@ fin) > e S f® fre,

(m +n)! IC{1,....m+n}

where fr := [[;c; fi, and I¢ is the complement of I.

This induces a coproduct on €p,,~, Os»x and hence an algebra structure on @, ~, O%ny. The
p-invariants form a subalgebra. a ;

Moreover, replacing (Ognx )y, by the derived pushforward me M (S™X, ) for m : S"X — pt the
projection to a point, we obtain a bigraded algebra €,,~,meM (S™X,0)*, in de Rham and homo-
logical degrees. Then (7.4) becomes -

(7.5) O Sym(t - me M (X ) — @ﬂ', M(S"X,0)*
n>0

Here, o is the homological degree, and the symmetric algebra is supersymmetric where the parity
is given by the homological degree (note that this differs from the de Rham parity in the case
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that dim X is odd). By Proposition 2.36 and Example 2.37, in the case that X is symplectic or
Calabi-Yau, (7.5) can be restated as

(7.6) Sym(t - H4mX~* ) — @ TeM(S"X,0)"
n>0

7.4. Quotients of M(S"X) supported on diagonals. For arbitrary (X,v), since each A) is a
closed embedding, one has a natural epimorphism

M(X™ 0) = (Ay) M (X ),

Next, note that M(X™ v) is an S,-equivariant D-module, and one has (pr,).M (X" v)% =
M(S™X,v). The morphism above descends to a natural map

M(S"X,0) = (pry)s(Ax) M (X, 0)*

Summing over A\, we obtain a natural map

(7.7) M(S"X,0) = @Dpra) (). M (X, 0)) ™

AFn
In the case that X is symplectic or Calabi-Yau, by Proposition 2.36 and Example 2.37 (7.7) can
be restated as

(7.8) M(S"X,0) = @D(pr,)s (M) 23 ™
AFn

7.5. Main result.

Theorem 7.9. (i) If X has pure dimension at least two and is locally conformally symplectic
or Calabi-Yau, then with v = H(X), (7.7) and (7.5) are isomorphisms.
(ii) If (X,v) is an (odd-dimensional) contact variety with v = H(X), or (X, ) is connected,
smooth, and positive-dimensional with v = Vect(X), then M (S™X,v) = 0.

For the case where X is a Calabi-Yau curve, v is one-dimensional, and M (S™X,v) is not holo-
nomic for n > 1.

Remark 7.10. In the symplectic and Calabi-Yau cases, one can alternatively consider H(S"X),
LH(S"X), and P(S™X), where now S"X is viewed as either a Poisson variety (when X is symplec-
tic) or as a variety equipped with a top polyvector field (when X is even-dimensional Calabi-Yau)
or more generally one can consider H(S"X, D) and P(S"X, D) when X is odd-dimensional and
equipped with a divergence function on Tgnx = T 5?’,3 obtained from the Calabi-Yau divergence
function on X™. It is easy to see that the image of the map in (7.6) is invariant under all of these,
since on each leaf, i.e., the complement in a diagonal pr,, oA (X A1) of smaller diagonals, the image
of the corresponding functionals on the left-hand side are supported on this diagonal and invariant
under all vector fields that preserve the given structure. Moreover, in the symplectic case, using
H(S™X) (and hence LH (S™X)) must give the same result by Proposition 7.1.(i) (as already noticed
in [ES13]). This recovers the main result of [ES13] (where this observation was also used in the
proof).

In the Calabi-Yau case, one can replace v on the RHS of (7.6) by P(S™X), since here one also has
P(X) C P(S™X), so the isomorphism factors through the same expression with P(S™X)-invariants.

However, in the Calabi-Yau case, one cannot replace the RHS with H(S"X) or LH(S"X)-
invariants, since H(X) is not contained in these in general. In fact, for n > 2, these invari-
ants are infinite-dimensional: already when X = A? equipped with the standard volume form,
S2A% = (A%/(Z/2))x A2, so the coinvariants (Os242)m,,_(52a2) = (Os2a2)LH ,_(5242) are infinite-
dimensional by Remark 3.40. - -
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Remark 7.11. Theorem 7.9 may generalize in some form to the case where X is not necessarily
transitive, but has a finite degenerate locus. As a first step, in [ES12], the authors prove that, when
X C A3 is a quasihomogeneous isolated surface singularity and v = H(X), then abstractly one
still has an isomorphism

(7.12) Sym(t - ((0x)*)°[t]) = EP(0s2x)")",

n>0

but only as algebras graded by symmetric power degree, not by the weight degree in Ox. (To
correct this, one can assign t weight degree —d, where the hypersurface cutting out X has weight
d (note that here Ox has nonnegative weight and (Ox)* has nonpositive weight). Then one does
obtain an isomorphism of graded algebras.)

Question 7.13. Does the abstract algebra isomorphism (7.12), graded only by symmetric power
degree, extend to the case where X C A" is an arbitrary quasihomogeneous complete intersection
with an isolated singularity, equipped with its top polyvector field from Example 3.397 Can it be
corrected to an abstract bigraded isomorphism by assigning ¢ the appropriate weight?

Question 7.14. Does the abstract algebra isomorphism (7.12) extend to the case of arbitrary (not
necessarily quasihomogeneous) complete intersections with isolated singularities? What about if
the complete intersection condition is dropped?

Finally, we remark that, even as nonequivariant D-modules, the two sides of (7.7) are not in
general isomorphic, because M (S™X, ) is not in general semisimple.

In the case of the du Val singularities, the two sides of (7.7) are only abstractly isomorphic as
non-Gy,-equivariant D-modules, by [ES13, §1.3]. One can introduce a correction analogous to the
above one to the RHS which makes the two sides isomorphic as G,,-equivariant D-modules, but
we do not know of any natural isomorphism between the two.

7.6. Smooth and contact varieties. By Theorem 7.9, in the case that (X, v) is either (X, Vect(X))
for smooth X, or (X, H(X)) for X an odd-dimensional contact variety, then M (S™X,v) = 0 for all
n > 0. However, it turns out that M (X™, v) itself is nonzero when n > dim X. Moreover, this can
be explicitly computed as an S,-equivariant D-module.

We first construct some canonical quotients M (X™, Vect(X)) — (A,)«Qx. Let d := dim X. We
can identify global sections of (A;,).Qx with O, (x)-linear polydifferential operators o X7, An(X)
A, (x)- Then, we consider the operator

(1@ ® fa) = vz fu >

UESd+1

1 .
[CE] sign(0) foydfo@) A+ A dfo(as1)-
We can see that this is Op, (x)-linear (to ensure this, we had to skew-symmetrize over Sy, rather

than Sy). Moreover, the k[S,]-orbit is actually spanned by k[S,+1], and as a representation of
STL+1, is

Indg,xs, , ,(signXk).

n—1

Thus, it has dimension ( 4 ) Let L, be the S,-equivariant local system supported on A, (X) of
n—1

rank (”;1) corresponding to this quotient (as a nonequivariant local system, it is ((A;,). X)@( d ))
More generally, given a decomposition {1,...,n} = P, U---U P, into cells, let Lp K --- X Lp_
denote the corresponding tensor product of local systems L|p,| in the components P; (i.e., these are
all obtained by permutation of components from the local system Lp X ---X L p,|). Note that
this is nonzero if and only if |P;| > d for all 7.
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Theorem 7.15. Suppose that (X, v) is either (X, Vect(X)) for smooth X, or (X, H(X)) for X an
odd-dimensional contact variety. Then, we have an isomorphism

(7.16) M(X",0) = ar Lp®---RLp .
m>1,P U UPy,={1,....,n}

7.7. Quasi-locality and a generalization of Theorem 7.9.

Definition 7.17. Say that (X, v) is quasi-local if, for every n-tuple of distinct points z1,...,z, € X,
and every choice of positive integers myq, ..., m,_1 > 1, the subspace of v of vector fields vanishing
to orders m; at x; for all

Equivalently, as stated in the beginning of the section, the evaluation of v at every subscheme
supported at a finite subset .S C X is the direct sum of its evaluations at each connected component
of S (i.e., at each subscheme of S supported on a point of Sieq).

Proposition 7.18. If (X, v) is quasi-local, then the leaves of (S™ X, v) are the images of the products
of leaves of X under pr,. In particular, if (X, v) has finitely many leaves, so does (S™X,v), and
the latter is holonomic.

Proof. At each point pr,, oAx(z1,...,)y)),

(7.19) o|r o O

prp oAy (xq,..., I‘M)zlsnX A)\(zl,...,xm);mX"'

Therefore, along each diagonal, the flow of v is transitive along the images of the products of leaves
of X. O

Proposition 7.20. If X is Jacobi or equipped with a top polyvector field, then (X, H(X)) is
quasi-local. Similarly, (X, Vect(X)) is quasi-local.

Proof. We first consider the Jacobi case. Given points x1,...,z, € X, and any orders my,...,m,_1 >
1, we can consider functions which vanish up to order m; at x; for 1 <i <n — 1. Since the z; are
distinct, these functions topologically span o X,z,,- Therefore, the Hamiltonian vector fields of such
functions topologically span all Hamiltonian vector fields in the formal neighborhood Xxn

Next consider the Calabi-Yau case. This is similar: we replace functions which vanish up to
order m; at x; for 1 <i <n—1 by (dim X — 2)-forms with this vanishing property. Again, these
topologically span Q¢ , and we conclude the result.

For the case of all vector fields, this is immediate. O

Theorem 7.21. Suppose that (X, v) is transitive and quasi-local and that X has pure dimension
at least 2.

(i) If v flows incompressibly, then (7.7) is an isomorphism if and only if:
(*) For all n, and any (or every) « € X, the space of v-invariant polydifferential operators
Sym” ) Xz — O X,z is spanned by the multiplication operator.
(ii) If v does not flow incompressibly, then M (S"X,v) = 0 for all n > 1 if and only if, for all
n > 1, there are no v-invariant polydifferential operators Sym™ @) Xz — 2 <.

We will prove this theorem as a consequence of a further generalization (Theorem 7.24) which
relaxes condition (*) below (and this result will be further generalized from Sym™ X to X" in
Theorem 7.29). But, first, we explain why this theorem implies Theorem 7.9:

Proposition 7.22. (i) Let (X, H(X)) be locally conformally symplectic or Calabi-Yau of pure
dimension at least two. Then (*) of Theorem 7.21 is satisfied.
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(ii) In the case where (X,v) is either an odd-dimensional contact variety with v = H(X), or
smooth with v = Vect(X), then for all z € X, all v-invariant polydifferential operators
O?}Z — Q¢ . are spanned over k[S,] by the operator

(fi®- @ fu) = f1- fa—dim XAfn—dim x+1 A -+ A dfp.

In particular there are no symmetric such operators.

Proof. (i) This relies on the Darboux theorem, following [ES13, Lemma 2.1.8]. In a formal neigh-
borhood X, we can reduce to the case of the standard symplectic or Calabi-Yau structure, since in
the locally conformally symplectic case, H (X ») equals H (Xx, wp), where wy is a standard symplectic
structure, as explained in Example 3.25.

Now, given a polydifferential operator ¢ : Sym™ O Xz — O X, View it as a polynomial function
o : @X@ — (’A)X@ on the pro-vector space @X@. Then ¢ is uniquely determined by its restriction
to functions with nonvanishing first derivative, since the complement has codimension at least two.
Let f € @XJ be such a function. Let Gx, be the formal group obtained by integrating H(X),
which acts on O x - By the Darboux theorem, there is a coordinate change by G'x, that takes f
to a coordinate function z; of X. Now, if a polydifferential operator is invariant under H(X), it
must take 1 to a function invariant under the formal subgroup of G'x, preserving x1, i.e., to a
polynomial in x;. Now, to be invariant under automorphisms in G'x, sending z1 to Az, ¢ must
have the form z; +— ¢ - 27 for some c € k. It remains to note that, if f,g € @X@ are two functions
with nonvanishing first derivative, again by the Darboux theorem there is an automorphism of G x
sending f to g so the constant ¢ must be independent of the choice of f. Therefore, ¢(g) = cg™ for
all g. We can easily see that this is v-invariant.

(ii) Restricting to Xz, suppose first that v is arbitrary such that, in some coordinate system, it
contains the constant vector fields and an Euler vector Eu = ), m;0; for m; > 0. Let m := ). m;.
Let vol be the standard volume form in this coordinate system. The polydifferential operators
@?}”x — (1% invariant under the aforementioned vector fields are spanned by

(Fi®--®F,) vol, |Fi|+--+|F,|=-m,

where each Fj is a constant-coefficient monomial in the 0;, and here |- | denotes the weighted degree
with respect to Eu. This is a finite-dimensional vector space.

Now, in the case where v = Vect(X), in order to be invariant under all possible Euler vector
fields, the operator must be a linear combination of terms such that F}--- F, is linear in each
coordinate. Moreover, to be invariant under volume-preserving linear changes of basis, i.e., under
SL(T,X), we conclude that the operator is spanned by images under S,, of (vol =1 @ 1®—dimX)y.yo|
as desired.

In the case v = H(X) and X is odd-dimensional contact variety, then we can take Eu as in
Example 3.24, so that F}--- F,, must have total degree —(dim X + 1) (since |z;| = |y;| = 1 and
|t| = 2, and the partial derivatives have negative this degree). Also, the polydifferential operator
must be preserved by all linear changes of basis preserving 0;. In particular, since it is preserved
by GL((0x,,0y,)), the operator must be in the k[S,]-span of

(AmX=1D,,8y,) @ 0y @ 19— Am )y o,

Since it is preserved by transformations x; — x; + At for A € k, we conclude in fact that it is in the
k[S,]-span of (vol~! @ 1®8(n=dimX)y . yo| as desired. O

7.8. General decomposition statement. First, we generalize Theorem 7.21 by replacing (*)
by a general decomposition statement about M (S™X,v). Then (*) becomes a multiplicity-one
condition.
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Definition 7.23. Given a smooth affine variety X and an integer m > 1, let PDiff(Ox, Qx,m+1)
be the space of polydifferential operators O?}m — Qx of degree m, i.e., linear maps which are
differential operators in each component.

Note that there there is a natural action of Sy,+; on PDiff(Ox,Qx,m + 1) given by viewing
these operators as distributions on the diagonal in X™*!, i.e., as sections of the Dym+1-module
(Apt1)«Qx, which has its natural S,,;1-action. The S, action is just by permutation of compo-
nents, and the extension to Sy,+1 is explicitly given by the integration by parts rule. For example,
when X = A! with the standard volume, this action restricted to the span of partial derivatives
01, . ..,0n is the reflection representation of S,, 11 (viewed as a type A,, Weyl group); explicitly this
can be viewed as the usual permutation action on 01, ..., 941 where we set Opp1 = — > 1 Oi.

For all m > 1, let L,, be the maximal quotient of M(S™X,v) supported on the diagonal,
ie, Ly = (pr,, oAm)«(pr,, oAn)*M(S™X,v) (which at least makes sense when M (S™X, v) is
holonomic, as in the quasi-local transitive case).

Theorem 7.24. Suppose that (X, v) is quasi-local and transitive and has pure dimension at least
two. Then, there is a canonical isomorphism

(7.25) M(S"X,0) = @ (pr,)« (AL, Ly:=Ly K---KLy,,.
AFn

Moreover, the rank of L,, is equal to the dimension of (PDiff(Ox ., Xz,m)")sm.

The canonical isomorphism is given by the direct sum of the morphisms
(7.26) M(S"X,0) = (pr,,)«(Ay). L3,

obtained by adjunction from the canonical quotients (pr, oA))*M(S"X,0) — L.
The theorem implies that composition factors from distinct leaves do not appear in nontrivial
extensions:

Corollary 7.27. In the situation of the theorem, M (S™X, v) is a direct sum of intermediate
extensions of local systems on the leaves (locally closed diagonals).

Proof. For each diagonal Xy := pr,, oAy (X, let jy : X5 — X\ be the open embedding of the

complement of smaller diagonals, i.e., such that X7 is a leaf of S™X. Let Ir )~(§ — A)(X)C X"
be the preimage of X§. Then, for each factor in (7.25),

T D)« (AN L5 2 (pry)a 5 (Ax)L L5

Since pr,, is a covering of Yy onto its image (with covering group Sy ), the above is a local system
on X3. It now suffices to prove that

(7.28) (DT )x (An) L5 22 1™ (pry)u(An) L L3>,

This follows because, since pr,, is finite, the singular support of (pr,,).(A )\)*LfA is the closure of
the conormal bundle of the leaf pr, oAy ((X*)°), where (X*)° is the complement in X of the
images of all diagonal embeddings of X" for all r < |A|. g

We can make a similar statement about M (X", v) itself: Let Ly, = (Ap) A% M(X™, v) be the
maximal quotient of M (X™, v) supported on the diagonal. This is S,,-equivariant, and (L)%™ =
Ly,.

Theorem 7.29. Let (X, v) be as in Theorem 7.24. Then, there is a canonical isomorphism

(7.30) M(X",0) % @ Su(Ly), Ly:=LyR---KLy,.

AFn
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Here, Sn(lf‘;\) is the Sp-equivariant local system on the Sp-orbit of Ay(X) whose restriction to
A(X) is the Ng, (S))/Sx-equivariant local system Ly,.
Moreover, the rank of Ly, is the dimension of PDiff(Ox ,, Q2 Xx,m)".

As in Corollary 7.27, it follows from this that the entire pushforward (pr,,).M (X", v) on S"X is a
direct sum of intermediate extensions of Sy-equivariant local systems on the diagonals corresponding
to partitions A F n.

7.9. Proof of Theorems 7.24 and 7.29. We will work with M(X™ v). Since this is S,-
equivariant and M (S™X,v) = (pr,,)« M (X", 0)%, this will also compute the latter.

By transitivity and quasi-locality, the closures of the leaves of M(X™ bv) are the diagonals
A\ (XM together with the diagonals obtained from these by the action of S,,. Hence, M (X™,v) is
holonomic and its composition factors are intermediate extensions of local systems on these leaves.
Similarly to (7.26), one has canonical surjections

(7.31) M(X™,b) = (Ay)«Ly,

and similarly for the orbits of these under S,, (there is one of these for each coset in S, /(Ng,, (S)),
and each is a local system on the image of Ay(X™) under the element of S,, which is equivariant
under the corresponding conjugate of the subgroup Ng, (Sy) < Sy,). It suffices to prove the following:
(i) The quotient (7.31) is the maximal quotient supported on Ay (X)), i.e., it is (Ax)«(Ax)*M(X™, v);
(ii) For distinct A or distinct orbits for a fixed A, that the above factors have no nontrivial
extensions (i.e., the Ext group of the two is zero).

For (i), by restricting to a formal neighborhood of a generic point y = Ay (z) of Ax(X M), it suffices
to find an isomorphism
Al X
Homp, ,, (M(X™0)|g (A5 ) = ® PDIff (Ox 2, Q5 , Ai)°.
i=1
By quasi-locality, it suffices to restrict to the case |A\| = 1 (for all n). For this, note that there is a
canonical isomorphism

(An) Q= = PDiff(Ox 4, ).

Moreover, for any Dxn-module N, we have a canonical isomorphism Hom(M (X" v), N) = N°, by
considering the image of the canonical generator of M(X™, v). Putting these together, we deduce
part (i).

For (ii), note that the factors (Ay).Ly, as well as their images under the action of S,,, are local
systems on smooth closed subvarieties of X™. Moreover, the intersection of two of these subvarieties
has codimension a multiple of dim X in each, which in particular is codimension at least 2. Thus,
the result follows from the following basic lemma:

Lemma 7.32. [ES13, Lemma 2.1.1] Suppose that Z is a smooth variety, and Z1, Zy C Z as well
as Z1 N Zs are smooth closed subvarieties, all of pure dimension. Let L1, L9 be local systems on Z;
and Zs, respectively, and let i1 : Z1 — Z and 19 : Zo — Z be the inclusions. Then,

(7.33)  Ext?((i1)L1, (i) L2) = 0, for j < (dim Z; — dim Z1 N Z3) + (dim Z — dim Z1 N Za).

7.10. Proof of Theorem 7.21. (i) If v flows incompressibly, then we have an isomorphism of
modules over the Lie algebra v, (’A)XJ; = Q P obtained from the formal volume at z preserved
by v. Therefore, in the theorem, we can replace the polydifferential operators described by
(PDiff(@X@,QXz,n 4 1)°)%». Then, the result is almost immediate from Theorem 7.24, except
Theorem 7.21 deals with S,-invariant polydifferential operators, whereas the multiplicity spaces of
Theorem 7.24 are more symmetric: they are (PDiff(Ox,, Qg ,n+ 1)°)Sn+,
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Thus, it suffices to show that, if such v-invariant S, yi-invariant polydifferential operators of
degree n are spanned by the multiplication operator for all n, then the same is true requiring only
Sp,-invariance.

For this, note that, given a v-invariant polydifferential operator ¢ on @) x,z of degree n, then the

space of v-invariant polydifferential operators of degree n + 1 includes the space Indgzysl (¢ X k)

spanned over Sy by the operator f X g ¢(f)-g for all f € (’A)?}r; and g € (’A)X,x.
To proceed, we will need the following technical combinatorial result, which we prove below:

Lemma 7.34. Suppose that ¢ generates a S,,41-representation V, and that ¢ is S,-invariant but
not Sy, 11-invariant. Then the S, 1-representation Indfz:;lsl(wgn X k) extends to a unique Sy4o-

representation, up to isomorphism, and this has a nonzero S, 4o-invariant vector.

Let us use the lemma, to finish the proof of the first statement. We conclude from the lemma that
there exists a S, o-invariant, v-invariant polydifferential operator ¢ on @ x,z of degree n + 1. We
claim that this is not the multiplication operator (up to scaling). Indeed, we could have assumed
that ¢ were homogeneous of positive order (since v preserves the grading by order of differential
operators), so the latter S, 9-operator can be assumed to have positive order. This contradicts
our hypothesis. Hence, (*) of Theorem 7.21 is indeed satisfied.

(ii) If v does not flow incompressibly, M(X,v) = 0, by Proposition 2.36. Next, suppose
that there existed an S,-invariant, v-invariant polydifferential operator ¢ : @?}Z — QXI but
not a Spij-invariant one. Again, we can form the polydifferential operator (¢ X 1), sending
1@ fry1 0 ¢(f1®-+-® fr) fat1. So as before, we would obtain that, as S, i-representations,

PDiff(Ox Qg ,n+2)°2 Indgjfxlsl (k"X k). By the same argument as above, this would contain
an S,o-invariant operator. Thus, M(S"*2X,v) # 0. So, if M(S"X,v) = 0 for all n > 1, then
there are no Sy,-invariant, v-invariant polydifferential operators ¢ : (’)?g; — Qg , for all n. The

converse is clear from Theorem 7.24.

Proof of Lemma 7.34. Under the assumption, V' must include a summand isomorphic to the reflec-
tion representation k™ (V is either this or k™ with a trivial representation). As a representation of
Sn, K™ is the standard representation.

Thus, we can assume that V = k™. As an S,-representation, V = k"' @ k. Then, for n > 3,
one computes the decomposition into irreducible S, 1-representations:

Indg s Vs, Bk 2 p1 1ypnrt] © pe)prn) K" © k" @k,
where, given a partition A - n 4+ 1, the representation p) is the irreducible representation with
Young diagram \. Moreover, given X - m, we let X'[n + 1] denotes the diagram obtained from \’
by adding a new row on top with n + 1 —m boxes. Now, if the S, 11-structure above extends to a
Speo-structure, then the decomposition into irreducible S, o-representations (up to isomorphism)
must be
P n+2] D P@)n+2) B K.

We conclude that Indg’;;g1 (¢ X k) must contain a S, 4o-fixed vector.

In the case that n = 2, the second decomposition (as S, 12 = Sj-representations) above is still

valid, so we still obtain the S, 4o-fixed vector. O
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