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Abstract

The primary objective of this thesis is to investigate the transmission of 4, 16 and 64 QAM 

data signals at 2.4 kbaud s-1 over a voiceband HF radio link; the data rate respectively being 

4.8, 9.6 and 14.4 kbit s"1. The particular problems associated with the channel medium are 

that it is a multipath channel, thereby giving rise to intersymbol interference (ISI), which can 

be quite severe at times, and also that its characteristic changes significantly with time. Two 

ISI mitigating devices, or equalizers, are examined; namely, the decision feedback equalizer 

(DFE), and the maximum likelihood sequence estimator (MLSE), or an approximation to it 

(near-MLSE). Their performance is compared using computer simulated models of two-path 

and three-path HF channels which have additive gaussian noise. The time-varying nature of 

the channel requires that the receiver be made adaptive, and the performances offered by the 

steepest descent (SD) and recursive least squares (RLS) tracking algorithms, both of which are 

decision-directed, is investigated. An important question that is addressed is, what steps need 

to be taken to produce acceptable system performance at higher data rates?

It is shown that the superiority of the more complex MLSE/near-MLSE over the DFE is not 

too great, and that this advantage is only due to error propagation in the latter. In the 

absence of any special arrangement (e.g. periodic training) by which the receiver can re-align 

itself, 16 QAM appears to be the highest feasible signal constellation size. With the periodic 

insertion of known symbols into the data stream, it is shown that performance can be 

maintained near the level for which decision errors do not affect the tracking algorithm; with 

the facility of a request-for-training (RTS) link to the transmitter, it is shown that 

performance can be significantly improved for all constellation sizes, with only a small loss in 

the useful data rate. The investigations have also produced some interesting by-products. A 

superior way of implementing the adaptive DFE than with the conventional RLS approach is 

presented. The method relies on the process of channel estimation, which is theoretically and 

experimentally analysed for both the SD and RLS algorithms. It is demonstrated that the 

simpler SD algorithm gives a comparable level of accuracy with the more complex RLS
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algorithm. Using this new approach, it is also shown how simple predictions of the 

performance degradation of the DFE due to tracking error can be made. Finally, it is observed 

that a particular form of RLS algorithm is unstable under certain conditions.
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Chapter 1 
INTRODUCTION

The high-frequency (HF) radio portion of the electromagnetic spectrum is broadly defined as 

that range of frequencies running from 2 to 30 MHz. When a beam of electromagnetic 

radiation at a frequency within this range, originating from a point on the ground, strikes the 

Earth’s ionosphere, it undergoes a process of refractive bending from the ionized layers at 

different elevations, the net result of which causes a substantial portion of the original beam to 

be “reflected” back to the ground again. This phenomenon has been exploited for the 

realization of beyond-the-horizon communication, an information signal of finite bandwidth 

being modulated onto an HF carrier wave. Ranges up to 2500 miles and beyond can be 

achieved.

From its inception up to the present time, the greatest interest in HF radio has been for long

distance speech communication as required in military and civilian applications. Analog 

speech (or voiceband) communication requires a nominal bandwidth of around 3 kHz, the 

speech signal being modulated in its analog form directly on to the carrier wave. Generally, 

though, transmission over HF links was considered unreliable because of the fading effects 

introduced by such channels [1], as will be discussed shortly. The conversion from analog to 

digital transmission, however, and the use of powerful adaptive signal processing techniques, 

has offered hope of acceptable network communication quality. In particular, the advent of 

very-large-scale-integration (VLSI) has brought down the cost of implementation of many of 

the signal processing techniques that can be used.

The long history of analog speech communication in HF radio has naturally led to this 

application getting a firm footing in terms of equipment investment and agreements on band 

allocation. There is motivation, therefore, to considering the transmission of digital traffic over 

HF channels, whether it be for speech or just information in general, under condition that the 

bandwidth is ~3 kHz, i.e. the voiceband. Of course larger bandwidths may be used, as in
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“spread spectrum” receivers, offering improved reception and facilities for information security.
£ •

In this thesis, however, we shall restrict our attention to voicband bandwidths.
A

The increasing availability of satellite communication systems has not led to a demise in the 

use of HF; in particular, digital HF links offer economic and security advantages over satellite 

links [1]. Many countries will therefore continue to use HF radio extensively for point-to-point 

information transfer, commercial shipping, aircraft communication, military land-sea-air 

operations, etc. [2]. Whereas the main constraint for satellite links is maintaining an adequate 

signal-to-noise ratio, for HF links it is the dispersion and time-varying characteristics of the 

transmission medium, which we shall now describe.

1.1 Characteristics of the HF Channel

In most cases the transmitted HF radio waves reach the receiver via more than one distinct 

path, with the time taken to traverse each path being different. The result is that the impulse 

response of the channel exhibits a discrete muliipaih structure, with the receiver input, as we 

shall shortly see, consisting of the linear superposition of phase-shifted-and-attenuated delayed 

versions of the transmitter output, in addition to channel noise.

Each distinct path from the transmitter to the receiver, by way of the ionosphere, is often 

termed a skywave. The existence of multiple paths is due to [2]

(t) skywave returns from different ionospheric layers, namely the E layer (90-110 km high) 

and the F layer (150-300 km high).

(it) multiple-hops, e.g. skywave may be reflected off the ground and then off the ionosphere 

again before reaching the receiver.

(tit) high and low angle skywave paths, particularly via the F layer.

(tv) splitting of the magneto-ionic components, ordinary and extraordinary, resulting from the 

effects of the Earth’s magnetic field.
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Although there are several possible routes to the receiver, most of them experience quite a large 

attenuation. The number of “effective” paths is therefore generally small.

Communication via a line-of-sight path, or groundwave, from the transmitter to the receiver is 

much more straightforward than skywave. The groundwave is just an attenuated and 

delayed, but otherwise undistorted, version of the transmitted signal. On the other hand a 

skywave has an attenuation and delay time that can vary with time. In this thesis it will be 

assumed that all paths to the receiver are from skywaves.

Contrast HF radio with another important transmission medium, troposcatter radio (0.3-10 

GHz), which we shall briefly mention. Transmission is brought about by random fluctuations 

in the dielectric constant of the troposphere [1]. This has the effect of diverting a small 

fraction of the energy of an incident radio wave back to the receiver. Scatter returns from 

different points in a “common volume”, defined by the transmitter and receiver antennas, have 

different path delays. Signals scattered from points separated by more than the decorrelation 

distance of the fluctuations in the dielectric constant are not correlated [1]. The impulse 

response of the troposcatter channel therefore has a multipath structure, but, unlike the HF 

channel, the structure is not made up of discrete paths but a continuum of paths. 

Troposcatter systems will not be considered in this thesis.

Consider a single skywave path which has a delay time of r(f) secs. The t variable in r(t) 

expresses the dependence of the quantity on time. In reality a skywave is composed of a 

number of rays, or sub-paths, that traverse slightly different trajectories [2]. The difference in 

delay time between the sub-paths is considered to be very much smaller than the reciprocal of 

the signal bandwidth, so that the receiver is unable to resolve them. Let r(-(<) be the time- 

varying delay time of the ith sub-path with respect to r(<), and also let <*,•(*) be the 

corresponding time-varying attenuation factor for this sub-path. The transmitted signal is a 

modulated carrier wave of frequency /c, and can be expressed in general as

m(i) =  R e { z ( / ) ^ 7r̂ c*} (1.1)
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where x(<) is the information-bearing part of the signal, assumed to have a bandwidth Bw<£.fc' 

Ignoring additive noise, the input to the receiver from the skywave is

c(*) = i

= Re{ ( 1.2)

As far as the receiver is concerned, the delayed versions of x(t) from each sub-path cannot be 

differentiated from one another. Therefore we can assume x(t—rj(f) — r( l) )« i( i- r ( /) ) , giving

where

c(t) «  Re{G(t)x(i—r(t))e'^7r̂ c^

G(t) =
i

9j(0 =  2tr/er;.(()

(1.3)

(1.4)

The quantity G(t) is a complex attenuation factor introduced by the skywave; its magnitude is 

the real attenuation and its argument is a phase shift. The variation in the magnitude of G(i) 

with time is usually termed fading, and it is governed by the time variations of and

{#,•(*)}. The values of {#,•(<)} can at times result in the real positive attenuations {<*,-(<)} 

being added destructively, the value of |G(J)| then being very small or practically zero; at other 

times they can be added constructively, so that |f?(/)| is large. The phase #,-(2) will change by 

27t rad whenever r'(t) changes by 1 / / c. Since l / / c is a very small number, then only small 

changes in the ionosphere, such as variations in the height and refractive index of the 

ionospheric layers [2], are required to produce significant changes in In contrast,

relatively large dynamic changes in the ionosphere are required for ort(f) to change sufficiently 

to cause a significant change in G(i) [3]. Thus the fading rate of \G(t)\ is governed primarily 

by the time variations of {#,•(<)}.

The delays {r((<)} associated with different sub-paths change at different rates and in a 

random manner, which implies that G(i) can be modelled as a random process [3]. Studies 

have shown that the gaussian-scaiter model for (?(<) [4] (to be described in chapter 4) fits
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experimental data rather well. As well as physical length, the delay time of a skywave path is 

also dependent on frequency and time [2]. However, if the signal bandwidth is restricted to say 

10 kHz or less, and if we consider sufficiently short times of say 10 minutes, most paths are 

fairly stationary with regard to delay time. Thus HF multipath channels can be adequately 

represented by models in which the delay time of a path is assumed fixed [2], as it is for 

example in the gaussian-scatter model. Suppose that there are P paths present, and let (?,-(<) 

and r t- be, respectively, the complex attenuation factor and delay time of the ith path with 

respect to the 0tft or earliest path. Neglecting the delay of the earliest path , the received 

signal is

c(i) =  Re{ g ^ fct} (1.5)
1=0

It is apparent from (1.5) that the equivalent low-pass received information signal is the 

expression contained in the square [.] brackets.

Before discussing the design of receiver devices for a fading multipath channel, we will 

introduce some useful terms that define the characteristics of the channel [1], [3]. Let the 

impulse response of the channel be described by the two-dimensional random process h0(r;t), 

with corresponding fourier transform

H(fit) = h0(r;t)e dr ( 1.6)
-oo

We assume that h0(r-,t) is wide-sense-stationary. Then we define the autocorrelation function 

of h0(r;t) as [3]

Oh(r1,r2;A<) =  | E[h*o(T1;t)h0(r2;i+ A i)] (1.7)

where the expectation E[.] is over the fading statistics of the channel. It is usually the case 

that the statistical variations of the paths are independent of one another; this is referred to as 

uncorrelaied scattering. Thus we assume that

$h(T i,r 2'M) = n(r1;£wr1- r2) (1.8)
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With A<=0 the autocorrelation function $ A(r;0) = $ /l(r) is just the average power output of 

the channel as a function of the delay r, and it is thus commonly called the multipath 

intensity profile or delay power spectrum of the channel. The range of values of r  over which 

$ ft(r) is essentially non-zero is called the multipath spread of the channel; it is a measure of 

the time between the arrival of the first and last path. We will denote the multipath spread of 

the channel as Tm.

Since h0{r\t) is a random process in the t variable, it follows that H(fit) also has the same 

statistics. Under the assumption of wide-sense-stationarity, we define the autocorrelation 

function

=  ^ E [ j r ( / i ;W 2;<+A/)] (1-9)

Using (1.7) and (1.8) it is straightforward to show that

oo
(1.10)

-O O

where A /= /2— Thus <&H { f A t )  is the fourier transform of $ h(r;A<). Note that it is the 

assumption of uncorrelated scattering that leads to the autocorrelation function of H(f,t) being 

dependent only on the frequency difference A /= /2— fa. For Ai=0, <&ff(AfiO) = $jj(A j) and 

$^(r;0) = $ /l(r), with the relationship

* h (A f)
_  ( x -j2nAfr , <&h(r)e dr (1.11)

The range of values of A f  over which $jj(Af)  is essentially non-zero is called the coherence 

bandwidth of the channel; it is a measure of the frequency difference required between two 

sinusoids for them to be affected differently by the channel [3]. We will denote the coherence 

bandwidth of the channel as Fc. Because of relationship (1.11) we can assume

Fc «  J -  (1.12)■L m

If the bandwidth of the transmitted signal, Bw, is such that the channel is said to be

frequency-selective [1], [3] (;> means “on the order of or greater than”). In this case the signal
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is severely distorted by the channel, but there is potential for implicit frequency diversity gain, 

because different parts of the frequency band fade independently [1], Thus, while one section 

of the band may be in a deep fade, the remainder can be used for reliable communication. On 

the other hand, when B w ^F c the channel is said to be frequency-nonselective, and the entire 

frequency band fades with no possible implicit diversity gain. A channel that is frequency- 

nonselective is unable to resolve the multiple paths, and so to the receiver the transmission 

appears to have come from only one path.

Consider now the fourier transform

*ff( AJiA) =
CO

$^(A^A<)e"^7rAA<dA/
-oo

For A/=0, SP H(0;\) = '$ jf(X) and $^(0;A*) = <3>̂ (A2), with the relationship

(1.13)

$ U(At)e j2,rAA<<lAl (1.14)
-O O

The quantity ^#(A) is a power spectrum that gives the signal intensity as a function of the 

Doppler frequency A. The range of values of A over which \H#(A) is essentially non-zero is 

called the Doppler spread of the channel; it is a measure of the width of the received spectrum 

when a single sinusoid is transmitted through the channel, or put another way, it is a measure 

of the rate of change with time of the envelope of the sinusoid. It can equally well be 

interpreted as the rate of fading of the channel with time. We will denote the Doppler spread 

of the channel as Fd. The range of values over which $jj(At)  is essentially non-zero is called 

the coherence time of the channel; it is a measure of the minimum difference in time required 

between the transmission of two sinusoids, of the same frequency, for their respective 

attenuations suffered to be uncorrelated. We will denote the coherence time of the channel as 

Tc. The relationship of (1.14) means we can assume

Fd Tc (1.15)

Clearly, for a slow-changing channel, Fd is small, or equivalently, Tc is large.
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For a given HF link the maximum usable frequency (m.u.f.) is that frequency above which 

transmission via the ionosphere is not possible. The m.u.f. is different for different links, 

tending to be smaller for the shorter range ones. For example, in [2] a particular 430 km link 

is shown to have an m.u.f.~3 MHz, whereas a longer 1365 km link is shown to have an 

m.u.f. ~  12 MHz. Also, as the frequency is reduced below the m.u.f. the number of paths, and 

consequently the multipath spread, increases to a maximum. This situation tends to be more 

pronounced with shorter links, where the number of effective paths to the receiver is usually 

greater. For example, a 2500 km link has been shown [5] to have a maximum multipath 

spread of about 3 ms; for 1000 km it increases to 5 ms, and for 200 km it is about 8 ms.

1.2 Receiver Designs

Consider a serial digital HF transmission system in which the signalling rate (or baud rate) is 

T~l Hz. The information signal x{i) transmitted in a particular baud interval takes on any 

one of a finite number of distinct forms, according to the value of a discrete data symbol 

variable which represents a finite number of bits of information. Let the number of bits 

transmitted per baud interval be log2Af, in which case the number of discrete values and forms 

of the data symbol variable and x(t) respectively is M. Also, let B3 denote the available 

bandwidth (in Hz) at our disposal, which is assumed to be an integer multiple (>1) of the 

bandwidth Bw of ar(i). In determining the signalling strategy, by which the information signal 

x{i) in a particular baud interval takes on any one of M distinct forms, it is important to 

consider the efficiency index Ej given by

i _  R_ (bits s ') 
'! ~  B, (Hz) (1.16)

where R is the data rate, in bits s , transmitted through the channel of bandwidth Bs Hz. 

When the data rate is such that Ej<  1, the appropriate strategy is to select each of the M 

waveforms to be orthogonal to one another [3], i.e.
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T

xi{t)xk(t)di — 0 for ^7̂ *
o

^  0 for k= i (1.17)

where xt-(/), l<*<Af, identifies a particular waveform out of the set of M. An example of an 

orthogonal signalling scheme is orthogonal frequency-shift-keying (FSK) [3]. Receiver designs 

that are based on the condition Ej <1 are usually termed low-data rate receivers. When 

Ej^> 1, the appropriate strategy is one which is bandwidth-efficient; that is, for a fixed 

bandwidth the rate R increases logarithmically with an increase in the number of waveforms M 

[3]. Linear modulation schemes like single-sideband-pulse-amplitude-modulation (SSB-PAM), 

quadrature-amplitude-modulation (QAM), and phase-shift-keying (PSK) are bandwidth- 

efficient, and therefore suitable for high speed data transmission. Receiver designs that are 

based on the condition E j^ l  are usually termed high-data rate receivers.

Digital speech requires a data rate of about 2.4 kbits s-1 for acceptable quality [2]; with a 

bandwidth of 3 kHz this would imply an Ej of 0.8. Thus most HF voiceband systems employ 

a bandwidth-efficient linear modulation scheme. In this thesis we will be concerned with data 

rates much greater than 3 kbits s-1; it can be assumed, therefore, that a linear modulation 

scheme is employed, so that the information signal in any baud interval consists of a fixed 

pulse of bandwidth Bw multiplied by a data symbol that takes on any one of M discrete values 

[3]. For QAM and PSK the fixed pulse is real, while for SSB-PAM it is one sideband of a real 

pulse, therefore making it complex. For SSB-PAM the data symbol is real-valued, while for 

QAM and PSK it is in general complex-valued. Unless stated otherwise, it should be assumed 

that the discussion is with reference to QAM and PSK.

We assume that at the transmitter the fixed real pulse in any baud interval does not 

significantly interfere with the pulses in other neighbouring baud intervals, i.e. there is no 

significant intersymbol interference (ISI). It is therefore required that

^  ji (1.18)
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In most voiceband applications bandwidth is a precious commodity, so it is usual to have

By, ~  i  (1.19)

i.e transmit as close to the Nyquist rate as possible without incurring significant ISI. Unless 

stated otherwise, condition (1.19) will be assumed to hold. The data rate R is given by

R -  ~  B3log2M (1.20)

where it is assumed that the bandwidth B3 can be sub-divided into a number of sub-channels 

of bandwidth Bw, each independently transmitting log2M bits per baud interval T. Note that 

for SSB-PAM there needs to be an extra multiplying factor of 2 on the LHS of (1.18) and 

(1.19), and therefore also on the RHS of (1.20), because Bw in this case is only one half of the 

bandwidth of a real pulse.

We will now discuss the design of receivers firstly under condition that there be no ISI at the 

receiver, and secondly with this condition relaxed.

1.2.1 Receivers for Channels with Negligible ISI

Given a fixed amount of received signal energy, for a time-invariant channel it is desirable, 

both in terms of performance and simplicity of receiver design, for the received signal to be just 

a delayed and attenuated, but otherwise undistorted, version of the transmitter output. In the 

case being studied here, this situation can be approximated to by making the baud interval T 

significantly greater than the multipath spread of the channel, i.e.

Tm (1.21)

b w <§: f c (1.22)

Thus each sub-channel is frequency-nonselective, and therefore the receiver effectively sees only 

one skywave path in each sub-channel. As well as by making T large enough, condition (1.21) 

can be realized by judicious choice of the operating frequency with respect to the m.u.f., so as



22

to limit the amount of multipath spread. Another insurance against significant ISI is to 

employ time-guard bands at the end of each baud interval, the duration of which should be 

~ T m.

Consider the data rate of 2.4 kbits s-1 required for digital voice. Substituting B ,=  3 kHz in 

(1.20) we get i2~3000.1og2Af; thus M=2 would provide us with acceptable voice quality. 

Typically, Tm~  1 ms for HF, and so T  should be at least about 10 ms to satisfy (1.21). This 

makes Bw at most about 100 Hz, and therefore calls for a type of parallel sub-channel 

transmission system to be used. One of the earliest such systems was Kineplex [2], [6]. One 

version of this uses 20 sub-channels, spaced 100 Hz apart, each one carrying a serial 75 baud 

s-1 transmission of four-phase signals (equivalent to 2 bits per baud interval); the total band 

occupancy is therefore 2 kHz and the data rate is 3 kbits s-1. The system employs differential- 

phase-shift-keying (DPSK), or to be more precise, the actual information is coded/decoded as 

the phase difference between baud-adjacent four-phase signals. For correct operation, this 

strategy of DPSK requires that the channel state be very slowly changing with respect to the 

signalling rate, i.e.

£  >  Fd (1.23)

therefore ensuring that the phase shift introduced by the time-varying medium is virtually the 

same for signals in adjacent baud intervals. Fortunately, Fd is usually no more than just a few 

Hz on most HF channels, and so (1.23) can be assumed to hold in general for all the receivers 

we discuss. When condition (1.23) holds, the channel is described as being slow-fading. The 

Kineplex is classed as a non-adaptive system, since at no time is compensation made for the 

time-varying effects of the channel.

Another non-adaptive parallel sub-channel system is Andeft [2], [7], the essential difference 

with Kineplex being that the DPSK coding scheme is between simultaneous (in time) signals in 

frequency-adjacent sub-channels. For correct operation, this strategy of DPSK therefore 

requires that



23

Bw <  Fc (1.24)

so that signals in adjacent sub-channels do not experience significantly different phase shifts. 

The Andeft uses 66 sub-channels at a frequency spacing of 40 Hz, which compares favourably 

with Fc which is typically ~1 kHz. Remembering (1.19), condition (1.24) is actually no more 

than what we assumed to begin with in (1.21).

It can be seen that DPSK is inferior to coherent (i.e. phase compensated) detection of PSK, 

since just one error in a string of coherently detected PSK signals gives rise to two errors if the 

differential-phase scheme is adopted. In [3] it is shown that for a frequency-nonselective 

Rayleigh fading channel, the advantage of binary coherent PSK signalling is 3 dB, in terms of 

signal-to-noise ratio or probability of error, over the corresponding DPSK signalling.

However, as is shown in [3], perhaps the most important feature of transmission on frequency- 

nonselective fading channels is that the error rate decreases only inversely with the signal-to- 

noise ratio, in contrast to an exponential decrease that occurs with time-invariant channels. 

This means that the transmitter must transmit a large amount of power in order to obtain a 

low probability of error, which in many cases is not possible either technically or economically. 

This leads us on to a discussion of diversity techniques as a means to improving performance.

System performance is influenced primarily by the deep fades that occur during transmission. 

Diversity techniques are basically schemes in which redundancy is introduced into the system 

in an attempt to lessen the chance of severe signal loss. This takes the form of providing the 

receiver with multiple replicas of the same information signal, each of which have arrived 

under independently fading channel conditions. Thus, for example, if p is the probability that 

any one signal fades below some critical value, then pN is the probability that N independently 

fading replicas of the same signal will fade below the critical value.

An obvious method that comes to mind for achieving diversity is to employ multiple receiving 

antennas. The receiving antennas have to be spaced sufficiently far apart for their respective
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received signals to fade independently o f one another; a  separation  o f a t  least 10 w avelengths 

[3] is u sually  required between any two antennas. T h is m ethod, however, seem s a  b it 

physically  cum bersom e, an d  costly too, for H F channels, since a  frequency o f 30 MHz would 

require an  antenna spac in g  —100 m .

T h e  m ultip le-antenna m ethod ju s t  described is an  exam ple o f w hat is som etim es referred to a s  

explicit diversity [1], because o f the externally visible nature o f the technique. T he a ltern ative  

form  o f d iversity , i.e. implicit diversity, is when the channel itse lf provides the redundancy. 

F o r exam ple, if  the channel is frequency-selective, i.e.

Bs ^  Fc (1 .25)

then there is poten tia l for im plicit frequency d iversity  gain , because different portions o f the 

frequency band fade independently o f one another. T yp ically , F c ~  1 kHz, im plying th at 

voiceband channels have potential for im plicit frequency diversity gain . For paralle l su b 

channel system s, frequency diversity can be realized by tran sm ittin g  the sam e inform ation on 

different sub-channels th a t are sufficiently far a p art  in frequency. T h is  is exactly  w hat is done 

in the K ath ryn  sy stem  [8]. U nfortunately, introducing diversity in th is fashion does decrease 

the overall net in form ation  rate o f the sy stem , since sub-channels th a t could otherw ise be 

carry in g  useful in form ation  are instead carrying redundant inform ation.

A nother type o f d iversity  is implicit time diversity, which is related to  the coherence tim e Tc. 

In fast-fad in g  channel environm ents, where T~1'^Fd, redundant sym bols in a  coding schem e 

can  be used to provide tim e diversity if  the code word span s m ore than  one fade period. In 

slow -fading environm ents, a s  characterized by (1 .23), th is condition o f spanning the fade period 

can be realized by interleaving the code w ords so  a s  to introduce tim e g ap s  J> Tc between 

successive sym bols in a  particu lar code w ord. However, a p art  from  reducing the net 

in form ation  rate  o f the system , th is schem e m ean s th at the signal delay  will be greater than 

Tc. In practice, for such applications a s  transm ission  o f digitized speech, the required tim e 

delay  is un satisfactorily  long for two-way com m unication  [1]. T h u s the interest in providing
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im p licit d iversity tends to  be focussed m ainly in the frequency dom ain.

Before leaving this section, we will digress a  little  to m ention an im p ortan t type o f w ideband 

receiver th at utilizes frequency diversity through the availab ility  o f a  very large bandw idth, 

such th a t

Bw Fc ^  /p  (1.26)

T h is  m ean s th at the sign al pulses are so narrow  th a t the receiver can resolve all the path  

com ponents o f the received signal. T h u s, within each bau d  interval, there are P tim e-displaced 

versions o f the sam e in form ation  signal. A  device com m only em ployed for the optim al 

com bin in g o f the in form ation  signal from  all the independently fad in g  replicas is a  RAKE 

receiver [3], [9]. R A K E  receivers can be m ade  non-coherent through the use o f  D P S K  signals, 

a lth ough  versions using coherent P S K  signals are still superior in perform ance [3], a ssum in g  the 

ph ase  com pensation  is perfect. T he frequency d iversity  present in w ideband sy stem s gives rise 

to  a  sign ificant im provem ent in perform ance over frequency-nonselective channels. However, 

since voiceband bandw idths do not really allow us to realize (1.26), w ideband receivers like the 

R A K E  will not be considered in this thesis.

1 .2 .2  R eceivers for C hannels with ISI

T h e  paralle l sub-channel sy stem s discussed in the la s t section were originally  adopted for 

vo iceband H F because o f  the desire to have T > - T m. Suppose now th a t we relax this 

condition , and consider the serial transm ission  o f d a ta  over the whole o f the voiceband, so that

Bv> — Ba J> Fe (1.27)

T £ T m (1.28)

T herefore there is in tersym bol interference a t  the receiver. Receiver devices th a t are designed 

to  m itig ate  the effect o f ISI are broadly term ed equalizers. A specific requirem ent o f these
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devices is th a t they m ust know the channel im pulse response, or som e q u an tity  re lated  to it, 

an d  so  in a  tim e-varying environm ent it is essential they be m ade ad ap tiv e . An im portan t 

ad v an tag e  o f d ig ital system s is th a t the tran sm itted  source sym bols only have a  fin ite  num ber 

o f  values. G iven a  high likelihood th a t receiver decisions on these sym bols are correct, they 

can  therefore be used a s  a  form  o f  sounding signal to  follow the channel’s  variation s, and 

thereby provide w hat is referred to a s  decision-directed adaptation [1], T h u s no power need be 

used  on the transm ission  o f special pilot or probe sign als for track ing the channel. The 

ad ap ta tio n  process does, however, possess som e inertia, an d  so perform ance o f the equalizer is 

critically  dependent on the degree to which condition (1 .23) holds; the slower the slow -fading 

channel is, the better the ad ap ta tio n . Equalizers, and  the a lgorith m s used to  m ake them 

ad ap tiv e , will be described in detail in later chapters.

I t  will be noted from  (1 .27) th at there is som e degree o f resolution o f the p a th s a t  the receiver, 

or p u t another w ay, there is im plicit frequency d iversity . T he im portan t feature  o f adaptive  

equalizers, under such circum stances, is that when correctly ad ju sted  they can  cope with ISI 

an d  still wind up with a  net d iversity  gain  [1]. A lso, the diversity gain  is achieved w ithout 

h av in g  to  deliberately reduce the net inform ation rate , a s  is done for parallel sub-channel 

sy stem s, essentially  because the constrain t o f (1 .21) no longer applies. It has been shown th at 

seria l tran sm ission  system s with im plicit frequency diversity , a ssum in g  the ad ap ta tio n  o f the 

equalizers is perfect, can offer substan tia lly  better perform ance than paralle l sub-channel 

sy stem s [10], [11]. O ther d isad van tages o f parallel sub-channel system s, relative to  serial 

sy stem s, are the possibility  o f co-channel interference, an d  [12]

(i) inefficient use o f av a ilab le  tran sm itter power. T h e  am plitude o f the tran sm itted  signal 

varies according to the re lative  phases o f the sign als in the sub-channels. T h e  random  nature 

o f  the sign a ls  in each sub-channel causes the com posite  tran sm itted  signal to  have infrequent 

peak s o f m agn itude several tim es the m ean level. Since tran sm itter am plifiers are  peak-power 

lim ited , the average power ou tp u t is likely to be m uch lower than the m axim u m  availab le . In 

[13] it is reported th at for a  16 sub-channel system , the average power ou tpu t w as 100 W from
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a  tran sm itter capable  o f producing 1 kW .

(*'*) the need for tim e-guard bands, which reduces the in form ation  capacity  o f the sy stem . For 

exam ple , the K ath ryn  system  [8] em ploys a  1 m s tim e-guard in a  baud interval o f 13.3 m s; 

thus the in form ation  capacity  is reduced by abo u t 8%. A lternatively , for a  given baud 

in terval, the presence o f guard  bands reduces the num ber o f  sub-channels possible  within an 

a llocated  bandw idth.

1.3 O bjectives and  O utline o f the T h esis

T h is thesis is concerned with the serial transm ission  o f d a ta  over a  voiceband H F  channel. 

Before being m ore specific on this, we will discuss som e notab le papers published prior to , and 

during the early p art of, th is study . These are related to  the work undertaken in th is thesis.

1.3.1 R elated  W ork

In [14] the error rate  perform ance o f bandw idth-efficient m odulation  techniques, like 8-ary P S K  

and 8-ary P A M -P SK , are exam ined for a  serial d a ta  3 kbaud  s -1 H F channel, both  tw o-path 

and three-path. T he receiver uses a  decision feedback equalizer (D F E ). T h e  resu lts show that 

a t  d a ta  ra te s a s  high a s  9 kb its s '”1, and with perfect ad ap ta tio n  o f the D F E , energy-efficient 

con stellation s involving a  com bination  o f PA M  and P S K  yield better perform ance than 

stra igh tforw ard  P S K .

In [15] the perform ance o f an  ad ap tiv e  D F E  is observed for a  tw o-path 3 kb aud  s -1 HF 

channel. T h e  param eters o f the D F E  are directly ad ju sted  by a  track ing a lgorith m , this 

m ethod being the conventional approach  to  im plem enting an ad ap tiv e  D F E . T w o  types of 

decision-directed track ing algorithm  are com pared; the steepest descent (SD ) a lgorith m  and the 

K a lm an  algorith m . W ith correct decisions being fed to the tracking algorith m s, the resu lts are 

stron gly  in favour o f the K a lm an  algorithm ; the SD  algorithm  produces an irreducible error 

ra te  th a t is m any orders o f m agn itude greater than the error rate  for the K a lm an  algorithm . 

W hen actu al receiver decisions are fed to the K alm an  tracking algorithm , it is show n th at a



2 8

request-for-training-sequence (R T S ) schem e is useful in m ain tain in g perform ance, particu larly  

when track ing suffers, a s  happens in a  deep fade or when the channel changes abruptly . T he 

largest num ber o f signal points (i.e. d a ta  sym bol levels) used in [15] is 8, e.g. 8-ary P S K .

Reference [16] contains the derivation for a  square-root form ulation  o f the recursive least 

squ ares (R L S )  track ing algorithm , the R L S  algorithm  being ju s t  a  varian t o f the K alm an  

algorith m . It also  derives a  m odified version o f the algorithm  to  give im proved perform ance. 

M ore will be sa id  concerning ref. [16] later in the thesis. Perform ance resu lts o f  the 

tran sm ission  o f 8-ary P S K  signals over a  2.4 kbaud  s -1 tw o-path  H F channel re-affirm  resu lts 

given in [15]; essentially , th at with correct decisions being fed to  the ad ap tiv e  algorithm , the 

signal-to-noise ra tio  loss with respect to the situation  in which perfect ad ap ta tio n  is assum ed  is 

reason ably  sm all, e .g. 2.0 dB  a t an error rate  o f 10-4  with a  1 Hz fade rate.

W hilst [14]-[16] have investigated  the perform ance o f the D F E , [11], [17] and [18] have 

in vestigated  the perform ance o f another equalizer device, nam ely the m axim u m  likelihood 

sequence e stim ator (M L S E ). A ctually , because o f the com plexity  o f the M L SE , an  

ap p ro x im atio n  to th is device is often used, when it is then referred to  a s  a  n ear-M LSE . T he 

observed perform ances o f the n ear-M L SE ’s in [17] and [18] are prim arily  under condition th at 

the ad ap ta tio n  is perfect. T h e  argum ent for adoptin g  the M L S E /n e ar-M L S E  lies essentially  in 

the fact th at, under condition o f perfect knowledge o f the channel sta te , the M L SE  invariab ly  

outperform s the D F E , although the degree to  which it does so  is highly dependent on the 

channel im pulse response. T h e  argum ent for the D F E  is its  m uch lower cost o f 

im plem entation . Very little  h as appeared  in the literature in which the two devices are

com pared  under the sam e fad in g channel conditions. In th is thesis we will rem edy this to  som e 

exten t, and  in doing so give som e idea o f the m agn itude o f the trade-offs between the D F E  and 

M L S E /n e a r-M L S E .

In [11] and  [17] the d a ta  rate  is set a t  2.4 kb its s ’" 1, the signalling  rate  being 1.2 kbaud s _1 

with 4 Q AM  (equivalent to 4-ary P S K ) signals, over a  tw o-path channel. In [18], 16 QAM
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sign als are tran sm itted  a t  2.4 kbaud s -1 over a  tw o-path  channel, th us giving a  d a ta  ra te  o f 9.6 

k b its s -1 . In th is thesis we shall observe perform ance with 64 Q AM  sign als a t  2.4 kbaud  s ” 1, 

g iv in g a  d a ta  ra te  o f 14.4 kb its s -1 ; th is d a ta  rate  is m uch higher than  anyth ing previously 

looked a t  for voiceband H F channels.

In all the references m entioned in th is section, the H F transm ission  system  is s im ulated  in the 

lab orato ry  using a  s ta tistica l m odel.

1.3.2 O bjectives o f the T h esis

T h e  prim ary  objective o f the research in this thesis is to investigate  the transm ission  o f 4, 16 

an d  64 QAM  d a ta  sign als a t  2.4 kbaud s -1 over a  voiceband H F radio link; the d a ta  rate  

respectively being 4.8, 9.6 and 14.4 kb its s ” 1. T h e  signalling  rate  is such th at ISI is present a t 

the receiver, thus requiring the em ploym ent of, and therefore the focussing o f a tten tion  on, 

ad ap tiv e  equalizers. T w o ISI-m itigatin g devices are exam ined; nam ely , the D F E  an d  the 

M L S E /n e a r-M L S E . T heir perform ance is com pared using a  com puter sim ulated  m odel o f a  

tw o-path  an d  three-path  H F channel, both o f  which have ad d itive  gau ssian  noise. T he 

perform ances offered by two decision-directed tracking a lgorith m s are looked a t , these being 

the SD  and R L S .

T h e  perform ances o f the equalizer devices are observed under three conditions, or modes. T he 

first (m ode I) is where the ad ap tatio n  o f the equalizer is perfect; the second (m ode II) is where 

the d a ta  sym bol values em ployed in the track ing algorithm  are equal to  the values o f the 

tran sm itted  d a ta  sym bols; the third (m ode III) is where the track in g algorith m  uses actu al 

receiver decisions on the tran sm itted  d a ta  sym bols. T he three m odes are  explained in m ore 

d eta il a t  the beginning o f  chapter 5. B y  exam in ing the perform ance in each m ode and 

com parin g, we can ascertain  the degradation  caused by the use o f  a  track ing a lgorith m  and 

a lso  the effect o f  incorrect receiver decisions. T h is will help to  pinpoint the respective 

tolerances o f each receiver device to ad ap ta tio n  error, and  give an  appreciation  o f  w hat steps 

need to be taken in order to produce acceptable perform ance, especially a t  the higher d a ta
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rates. In m ode III the usefulness o f having tra in ing  sequences from  the tran sm itter, a s  a  m eans 

to  m ain tain in g  and even im proving perform ance, is exam ined. In som e cases we have 

em ployed an an aly tical bound for m easuring the error rate  of the D F E ; th is is useful, a s  it 

allow s us to m easure error rates m uch lower than  can be recorded by the com m only used “error 

count”  approach . Further details will be given in chapter 5.

T h e  in vestigation s have produced som e interesting by-products. A  new w ay o f im plem enting 

the ad ap tiv e  D F E , and also  the pre-filter o f a  n ear-M LSE , has been developed. T he m ethod is 

based  on estim atin g  (i.e. track ing) the channel sam pled  im pulse response (channel estimation), 

and  is shown to have ad v an tages over the conventional way o f im plem enting the D F E . T he 

process o f channel estim ation  has been m ath em atically  analysed for both  the SD  and R L S  

algorith m s, and the accuracy o f the algorithm s is com pared for both theory and experim ent. A 

m ethod is shown by which the perform ance o f  the ad ap tiv e  D F E  can be predicted, using the 

new w ay o f im plem enting it. A lso, the m odified version o f the R L S  algorith m  given in [16] is 

shown to be unstable under certain  conditions.

1.3.3 B rie f O utline o f C h apters

C h ap ters 2 - 4  are basically  review m aterial and  groundw ork for the thesis. C h apters 5 -8  

contain  all the resu lts o f our investigations.

C h apter 2 is a  review o f the basic elem ents o f  a  QAM  transm ission  sy stem , and contains 

d e ta ils  o f various receiver devices used to  com b at ISI.

oy* Q o v n o  o ^a c / 'f !  rvfiA n  fKa f t
O i i u ^ / u v i  u  w a u u i u o  u  v i  v u v  v i

f o U n r r  o lrrA flfV > m o u o a /) ir» fV»ie» fV»aa!a fV»o CT̂  ***■*/>! v u ia  u iiv  a n u

R L S , an d  a  discussion  o f their respective m erits.

C h ap ter 4 describes the gau ssian -scatter m odel for an  H F channel, an d  gives details o f the 

ac tu a l sim ulation  m odel, fade rates, tim e-spans etc. used in the thesis.

C h ap ter 5 is essentially  concerned with perform ance in m ode I. It presents com parisons o f the
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D F E  with the ideal m atched filter equalizer, an d  also  the D F E  with the M L S E /n e ar-M L S E , 

revealing som e interesting trade-offs between the devices. C h apter 5 also  contains a  few other 

in teresting deta ils, som e o f which have already been m entioned.

C h apter 6 in vestigates the capabilities o f the SD  and R L S  algorith m s, when used for the task  

o f  channel estim ation  in the H F sy stem s o f th is thesis. A  m ath em atical an aly sis o f the 

perform ances o f the two algorith m s is presented, including a  derivation  for the optim um  

settin g  o f their respective ad ap ta tio n  param eters. O ur theoretical derivations are com pared 

with experim ent.

C h ap ter 7 is concerned with perform ance in m ode II. It describes in detail a  m ethod by which 

the ad ap tiv e  D F E  can be im plem ented v ia  the channel estim ate, and com pares th is new 

approach  with a  conventional R L S  approach . T he m odified form  o f R L S  track ing algorithm  

given in [16] is analysed  and shown to  be unstable under certain  conditions. U sing the new 

w ay o f im plem entation , a  m ethod is given by which sim ple predictions o f the perform ance o f 

the D F E  can be m ade. R esu lts com paring the perform ances o f the M L S E /n e a r-M L S E  and 

D F E  are shown and discussed.

C h apter 8 looks a t  the perform ance o f the D F E  in m ode III. Besides the no-training case, two 

approach es to the em ploym ent o f train ing sequences from  the tran sm itter are a lso  exam ined. 

One tra in ing  approach  in particu lar is shown to provide significant gains.

C h ap ter 9 contains a  sum m ary  o f the findings o f the thesis, with add ition al com m ents, and 

suggestio n s for further work.
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Chapter 2
DETECTION TECHNIQUES IN A 
QAM TRANSMISSION SYSTEM

In th is chapter we will first describe the basic  elem ents o f a  Q A M  transm ission  sy stem . Then, 

assu m in g  IS I is present a t  the receiver, we will give detailed  derivations o f the m ost com m only 

used equalizer devices for m itigatin g  ISI, and  discuss their re lative  m erits. W e begin  by 

assu m in g  a  tim e-invariant channel, for sim plicity , and  later extend the an aly sis to  tim e- 

vary ing  channels.

2.1 T he Q AM  T ran sm ission  System

Lin ear m odu lation  schem es like SSB -P A M  (or its m ore practical version, vestig ial-sideband 

(V S B ) PA M  [19]) an d  QAM  are well su ited  for high-speed d a ta  transm ission  because o f their 

efficient use o f av a ilab le  bandw idth [19], [20]; to  m ake full use o f the bandw idth, however, it is 

necessary for the receiver to em ploy a  coherent linear dem odulation  schem e. Q A M  sign als 

have an ad v an tage  over PA M  sign als in th a t the knowledge o f the carrier phase can be 

acquired in an  easier m anner, a s  we will m ention later. QAM  sign als are a s  efficient in term s 

o f  b its s -1 per Hz o f  bandw idth as SSB -P A M  signals (with V SB -P A M  signals being slightly  

less efficient). A  Q AM  signal is actu ally  a  com bination o f PA M  and P S K , and is generally 

m ore efficient in its  use o f energy than is a  pure P S K  signal with the sam e num ber o f levels.

F ig . 2.1 show s the basic  com ponents o f a  Q A M  transm ission  sy stem . A t the input are two 

d a ta  stream s iT) and £ s i26(<—*T ), where s tl and  si2 can  take any o f  the L integer
i i

values — (L—1), — (L—3), . . .  , (L—3), (L—1) where L is even, an d  T  is the b au d  interval. 

T h e  pulse-shaping low -pass filters (L P F ’s) for each o f the d a ta  stream s are identical, with 

cau sa l im pulse response a(t). T h e  ou tp u ts o f the two filters are each m odulated  by a  carrier of 

frequency / c, w ith a  m utual phase difference o f 90°, and sum m ed to  give the QAM  signal
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m(t) =  i £ s «  a(t— *T )]cos27t/ c< — a(t— *T)]sin27r/c<
* *

=  R e { f c t }  (2-1)
1

where s , = s ti+J5,-2 (com plex). Therefore

m (() =  R ( 2. 2)  

where z(i) =  a ( < - .T )  (2 .3 )
s

T h e  fourier transform  (F T )  o f  a(t) is A(f), and  is such th at

\A(f}\ =  0 for |/1 >  fc (2 .4)

which im plies th at X(f), which is the F T  o f com plex baseband d a ta  sign al x (i), is such th at

\X(f)\ =  0 for 1/1 >  u  (2 .5 )

It will be assum ed in th is thesis th at the two d a ta  stream s are s ta tistica lly  independent, and  

th a t  each s tl and  si2 for an y i is equally likely to  take on any one o f its  allow ed integer values. 

T h e  com plex d a ta  sym bol si has L2 possible values, and the system  is therefore called an L2 

Q A M  transm ission  system . Lettin g E[.] denote the s ta tistica l m ean, we have for any i

E[s,-i] =  E [s i2] =  0

E [ 4 ]  =  E [i?2] =  i ( £ 2- l )

E[|s,|2] =  E[4] +  E[4l =  |(£2—1) (2.6)

It can  be seen th a t the d a ta  signal z(i) has no d .c. com ponent, which m eans th at the Q AM  

sig n a l m(t) is “suppressed-carrier” .

T h e  im pulse response o f the transm ission  m edium  is denoted as h0(t— <i), where is the delay 

in sending a  pulse through the channel (h0(t) is cau sa l). T he signal c(i— tx) a t  the ou tpu t o f 

the m edium  is given by
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c(<— <i) =  m ( t ) » h 0( t — t i ) (• = convolution)

=  R e { [x(()</2’r/‘ ‘ ] . A „ ( / - i l ) }

=  R e { [ * (< ) .( / io(<—i1)e _jr2’r/c<)]

=  R e {  [ * ( < ) . * ( < - < ! ) ]  (2 .7)

where A(<) =  h„(t)e (2 .8)

T h e  sign al a t  the receiver input is

r'(i—̂ i) =  c(t— <x) +  n0(<) (2.9)

where n0(t) is add itive  noise. I f  the in-phase com ponent is represented a s  the real part o f a  

com plex  qu an tity , and the quadrature  com ponent a s  the im aginary  p art, then the com plex 

sign a l u(t—ii ) a t  the ou tpu t o f the com plex L P F  w(t) in fig. 2.1 is given by

=  { r ' i i - i ^ e  3 2̂ lTfct+^}*w(t)

=  — <i)]e 3<̂  +  [x(t)»h(i— ti)]*e-j(4nfci+<f>)
}•*"(<)

+ [ 2 n 0(<)e ^ 2vfei+^]*u(i) (2.10)

"i^Tr/c t
A ssum e w(t) rejects the double-frequency e signal com ponents, giving

u(t—<j) =  —<i)3e 3<̂  +  n{t—< i) |*^ ( < )

=  OnJAr •*v* 'it “"n v v
-j{2irfci+<l))

(2.11)

(2.12)

T h e  q u an tity  <j> is the phase difference between the tran sm itter and  receiver carriers. T he 

filter w(i) a lso  has another function, th at o f noise suppression . T h e  com plex d a ta  sym bols { s ; }  

are  determ ined from  the periodic T-spaced sam ples o f «(<—<i), and in the next section 

op tim u m  ch aracteristics for w(t) will be derived under certain  criteria. However, it is obvious 

th a t  such a  w(i) should a t  least filter out all noise beyond the bandw idth o f x (i), an d  therefore,
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recalling (2 .5 ), the assum ption  th at w(i) rejects the double-frequency com ponents is not 

restrictive.

C om pare  the Q AM  system  of fig. 2.1 with the SSB -P A M  system  o f fig. 2.2. Q AM  tran sm its  a t 

twice the b it ra te  bu t uses twice the bandw idth. It is therefore a s  efficient in b its  s _1 per Hz as 

S SB -P A M . N otice th at to  avoid  a  reduction in signal power for SSB -P A M  (and  also  V SB - 

P A M ), the receiver dem odulating carrier should be in phase synchronism  with the tran sm itter 

m odu latin g  carrier, requiring the transm ission  o f a  p ilot carrier to  achieve th is, a t  the expense 

o f greater equ ipm ent com plexity [21]. In contrast, Q A M  signals do not require the receiver 

carriers to be in any special phase relationship with the tran sm itter carriers. A ny phase 

difference can be com pensated for using data-aided  techniques, a s  will be described in chapter 

4.

Let y(i) =  [a(t)mh{t)]e~j<l> (2.13)

Then u(t— ^ )  =  { £ s i-y(<- - <i " - * I H n( <- <i ) } #u,( 0  (2 -14)
t

I f  the tran sm ission  m edium  characteristic  h(t) changes with tim e, a s  is the case for an  H F radio 

channel, a n d /o r  if  <J) has tim e variation s, then it is necessary for w(t) to be m ade  ad ap tiv e .

Let b(t) =  y(i)»w(t) (2.15)

T h e  sam ple  o f u(t— t )̂ a t  tim e i2 +  kT, where k is an  integer, is

i

— S).b{to)+y  ^ S]c_ib(io- -̂iTi)-\-nu)(to-\~kT) (2.16)

*■ # o

where t0 — <2~ ^ i  an<  ̂ nw(t) =  n(t)»w(t) (2.17)

T h e  q u an tity  t0 is term ed the sam plin g  phase. In the absence o f  noise, in order to  detect the 

{ s , }  both  b(t) and  t0 m u st be known. In the detection o f s fc, the m iddle term  (i.e. the
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su m m ation ) o f (2 .16) is interference from  neighbouring sym bols (IS I), while the last term  is 

interference from  add itive  noise. T he equivalent baseband QAM  m odel based  on (2 .14), (2 .15) 

an d  (2 .16) is shown in fig. 2.3. A ll signals are com plex, and y(t) is causal.

T h e  add itive  noise n(<) in fig. 2.3 shall henceforth be assum ed to be a  sta tio n ary  com plex white 

g au ssian  random  process, w ith zero m ean, the real and im agin ary  p arts  being independent 

sta tio n ary  white gau ssian  random  processes w ith zero m ean and equal variance o f <rn/2. T h is 

is a  com m on assum ption  in the theoretical an aly sis  an d  sim ulation  o f com m unication  system s 

such a s  voiceband [3], m ade not ju s t  for the m ath em atical convenience, bu t also  because it 

generally  gives a  fair representation o f the real perform ance to be expected [21].

2.2 E qualization  S trateg ies a t  the Receiver

E q u atio n  (2.16) can be w ritten as

=^/k +  J 2 sk-ibi +  nwk (2*18)
i^o

where uk =  u(t0 +  kT)

b'i =  b(t0 +  iT) 

nwk =  nui(̂ o*{* kT)

Su ppose  th at the decision device is to detect sk from  uk and th a t it h as a t  its d isposal the 

va lu es o f { s  }. for — — 1, 1 < * < A 2. T hen  the input to  the threshold detector, 3fc, th atfC-1
produces the e stim ate  is given by

AT,
=  uk ~ Y l  Sk—tbi

i =  - N ,
*7̂ 0

T h e  error in sk is

ek — sk ~ sk

-(N} + 1) QQ

=  ! )  +  2  Sk- i (K ~ bi) +  ̂ >2 sk-ib'i +  Y l  sk-ibi +  nwk• _  AT * „  . A T . «t---iv̂  is "^v i=iv 2+1
*7̂ 0

(2.19)

(2.20)
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T h e  m ean square  error (M SE ), denoted a s  N2), is 

N2) =  E [ |ejt|2)

r  N 2  ~ (^ 1  + 1) CO .

= *?{k - ii2+ E  w- m2+ E  m 2+ E  Wi\3}+*™ (2.21)
i =  -Nt i=-00  i=N2+l
i^O

where o» =  E [ |s t |2] =  | ( Z 2 —1)

CTnw =  E [| J2]

T w o popu lar criteria  o f op tim ality  for the selection o f w(t) an d  {& ,}, ( — N1< i< N 2i *7^0), are:

(t) the zero-forcing (Z F ) criterion. T h is  m inim izes N2) sub ject to the condition th a t the 

interference from  d a ta  sym bols, which is the term  in on the R H S o f (2 .21), is zero. T h is 

definition assu m es th at there is no restriction on the realization  o f tu(<). T h e  solution  can be 

expressed in general a s  the cascade o f a  band-lim ited continuous filter and  a  tran sversal filter. 

In practice  the tran sversal filter is im plem ented a s  a  d ig ita l filter, which can only have a  finite 

num ber o f  ta p s , which therefore m eans th at the interference from  d a ta  sym bols cannot in 

general be zero; thus, in th is context, the Z F  criterion requires only a  certain  range o f 

interference term s in (2.21) to  be zero, e.g. see [3]. W henever the Z F  criterion is m entioned in 

th is thesis, it should be assum ed  th a t it refers to the case o f no restriction on w(t), so  th at all 

the interference from  d a ta  sym bols is zero. A ctually , though it is not assum ed  here, the term  

“ zero-forcing” is often app lied  only to  the condition o f having no interference from  d a ta  

sym bols, irrespective o f whether £ is m inim ized.

( :i)  the minimum MSE (M M SE ) criterion. T h is  sim p ly  m inim izes £(Ni, N2). O bviously 

M M SE  prov ides a  lower £ than  does Z F , though the tw o so lutions will tend to  coincide a s the 

noise power g e ts  sm aller. T h is  thesis will m ain ly  consider M M SE , a s  it seem s to be the m ore 

widely used criterion [3], p robab ly  because it generally lends itse lf m ore easily  to 

im plem entation  by m eans o f recursive tracking a lgorith m s (to  be discussed in chapter 3).
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T h e term  “intersym bol interference” is, strictly  speaking, supposed to m ean the interference 

from  neighbouring sym bols, although when we use it  we shall a lso  m ean it to  include the 

interference from  the current sym bol being detected, a s  represented by the \b'Q —1 |2 term  on the 

R H S o f (2 .21).

T h e  noise power Onw can be w ritten as

oo
tTnw =  E [ |J* n(i0 +  kT— v)w(u) du\2]

-o o

oo oo
E[n(to +  kT—u)n*(i0 +  kT—x)]w(v)w*(x) du dx (2.22)

-o o  -o o

F rom  the definition o f n(i),

E  [n(t0 +  kT—u)n*(t0 +  kT—x)] =  Onb(n-x)

2 _  2 O nw — On
OO oo

t \w ( u ) \ 2 d u  =  On|  \ W ( f ) \ 2 d f  

-OO -OO

(2.23)

(2.24)

where W ( f )  is the F T  o f w ( t ) .  A lso, from  (2.15), b'{ can be w ritten as

b[- = y ( i 0 + 1T —  u )w ( u ) d u Y ( f )  d f (2.25)
-o o  -o o

where Y(f) is the F T  o f y(t). In order to find the optim um  w(t) and {&,•} according to the 

M M SE  criterion, it is necessary to differentiate N2) with respect to w{t), {£>,} an d  set the

resu lt equal to zero. I f  £ (A 1} N2) in (2 .21) is differentiated with respect to one ob tain s

*2

• = - " i
*7̂ 0

(2.26)

O bviously  6 £ = 0  when

b{ =  for —d^i<i<N2 , i^ O (2.27)

£ (7 ^ , N2) now becom es

t Kt . i \ oo
((N,, N2) =  ^ { | 6 J - l | 2 + £  | i ; | 2+ £  |t;-|2) + ^

—  i=W2+li =-00
\ W { f ) \ 2 d f (2.28)

-00
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U sing (2 .25), d ifferentiating (2.28) with respect to  W(J) yields 

oo

=  |  2 a ?  R e { [ - r ( / ) e ' j2 ,r/?° +
—OO

° °
Y (x )W (x )/ i 'xxt° Y J J 2n '-Z~ ^ ' T d z+pW (f)] 6 W ( f ) \  i f  (2 .29)

-O O  ‘ > - ^ 2i =  0
i<-N!

where P — ~ (2 .30)
0 's

For <5£=0 the in tegrand in (2.29) m u st be zero, i.e.

W )  =  r ( f ) e  n n f t o D(f) (2 .31)

where m  =  p i i -

oo
Y(x)W(x)<PltxUY :  ei 2 * {X~ f ) i T ix] (2 .32)

i>N2 
» =  0i<-Nx

N ote th at D(f) is periodic, with period T " 1, so th at W(j) in (2 .31) can be thought o f a s  the

-fin ft
cascade o f a  continuous filter Y*(f)e J J 0 and  a  T-spaced transversal filter (i.e. periodic in

-fin ft
frequency, with period T -1) D(f). Y*(f)e J J 0 is actu ally  a  filter “m atch ed” to the im pulse 

response y(t), w ith a  delay t0. In fact the optim um  linear receiving filter under various criteria 

can be expressed a s  the cascade o f a  m atched filter and a  tran sversal filter [22], [23]. Since D(f) 

is a  tran sversal filter, W(f) followed by a  sam pler is equivalent to  Y*(f)e J 0 followed by a  

sam pler follow ed by D(f). Forney [23] has shown th at the T-spaced sam ples (obtained  a t  the 

correct sam p lin g  phase) o f the ou tpu t o f a  m atched filter is  a  set o f sufficient sta tis t ic s  for 

estim ation  o f the tran sm itted  d a ta  sym bols. An explanation  o f th is is given in A ppendix  A .

S u b stitu tin g  (2 .31 ) in to (2.32) yields

( *+ i  )/T
m  =  }> i1 ■ - £  i n*)i2 e^’r(l_y),r&]

* t/T
«•<- ATX
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=  \  [ l - E  '~fiXfiTT [  S *t)JK x )J
i2xxiT dx] (2 .33)

i > N 2 
i =  0 

i<-Ni

where s,U ) = (2 .34 )

Sy(f) is real an d  periodic, with period T~l. S im ilarly , su b stitu tin g  (2 .31) into (2 .24) and  (2 .25) 

yields
T-1

o l„  =  oI t \ S„(f)\D(f)fdf (2 .35)

r 1

K =  i j  Sy(j)D(f)<?ll!f'T i f (2 .36)

Since Sy{f)D{f) h as a  period o f T ” 1, it can be expressed as

S M D U )  =  X > t r ;̂ T (2 .37)

where S y i m f i J 2*1*1' df

=> « = Of

(2 .38)

(2 .39)

T h e op tim um  value o f £, denoted a s  ^m jn (-^u N 2), can expressed a s

T~J
«minM , **)  =  *? {l-«o -«o  +  E  I«(|2+ P r  Ss(/)|fl(/)|2<i/} (2.40)

OH 2  J0
i =  0

with D(f) given by (2 .33) and at- given by (2 .38). T he quan tities D(f) an d  €m\n(Nu -^2) 

now be evalu ated  for com binations o f and N2•

2.2.1 L inear Equalizer (L E ) [3], [21], [24], [25]

T h is  is characterized by ^  =  ̂ = 0 .  T he decision device then becom es a  sim ple  threshold 

detector. P rom  (2 .33) and  (2 .38),
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m  =  J i i - E ' - * ' * 1’* ]
i

= 1[1 ~Sy(f)D(f))

*  m  =  (7+^W ) (real)
(2 .41)

T h u s W(f> =  ^
-finft o

iP +  Sy{f)) (2.42)

T~l

W ° -  °) =  ^ { i - » o - « ; + E i a.i2+^r }  s y{ j ) \ m ? i } }
* o

/Jt“ l JT-1

= <rj{l-2<i0 + r[ Sl(f)D2(J)df+pT\ S,(f)D\f) if]

T~l
=  <7?{1 —a0} =  (t2s T

(p + s m )df (2 .43)

2 .2 .2  D ecision Feedback  Equalizer (D F E ) [3], [21], [24], [25]—[29]

T h is  is characterized by 7 ^ = 0  and N2 =  oo. T h e  decision device therefore su b tracts  the ISI 

contributions from  all previous d a ta  sym bols before providing an input to the threshold 

detector. F ro m  (2 .33) and  (2.38),

m  = i s U - E  =  hi-isvwwn (2-44)
i = —00

where [Sy(f)D(f)]~ =  ^  ake~^T^ T (2 .45)
k=-00

T h e im pulse response o f Filter D(f) is

i(i) =  6(i-nT)  (2.46)
n

*  m  =  I > e ~ jM n T  (2.47)
n
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It is apparen t from  (2 .44) th at with p ^ 0,

dn =  0 for n >  0 (2 .48)

Therefore (2.44) can be written as

vj>+s m )w \~ =  i

Since p and Sy(f) are real, and  with period T ~ one can factorize p +  Sy(f) a s

(P +  Sy(f)) =  M(f)AT(f)

oo
where M{f) =

-j2xfkT
k = 0

OO

Define q m (z) =  k
k— 0

I f  M*(f) 1 is to be expressable in the form

0 -fl'nfkT1 _= E  h
Bt. finite as k —* —oo

(2.49)

(2 .50)

(2 .51)

(2 .52)

(2 .53)

then 2-polynom ial Q^(z)  m ust be such th at its  roots lie on or inside the unit circle. T h e  

factorization  o f (2 .50) can a lw ays be done so a s  to  achieve this. N ote th a t f t ^ ( z )  is the z- 

tran sform  o f the inverse F T  o f M(f), and =  ). N ote also  th a t for p > 0 ,  &m (z)

h as no roots on the unit circle, by virtue o f (2 .50) and the fact th at Sy(f)>0. Su b stitu tin g  

(2 .50 ) into (2.49)

[M(f)M*(f)D(f))~ =  1 (2 .54)

T h e  solution  to (2 .54) th a t satisfie s (2 .48) is

so  th a t W(f) =
r u ) e - j2Tfto

m0M*{f)

(2 .55)

(2.56)
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N ote th a t with p = 0 there is no unique solution to  D(f). F rom  (2.40),

«min(°. °°) =  <T={l-Bo-aS+rj |[5s,(/)B(/)n2‘i/+pr
0 0

T h e  q u an tity  a0 is the d.c. value o f Sy(f)D(f), and is given by

S M W f t f }  (2-57)

_ i H
lmol

U sing (2 .44 ), eq. (2 .57) becom es

W ° -  =  ^ { i - 2 ( i - - ^ p ) + i - - ^ p + / > r |  (p+SM)\D(f)\*df}
T~i

_ tTap
mr

F ro m  (2 .50),

WP + Sy{f)) =  \nM(f)+\nM*(f)

Since has all zeros on or inside the unit circle, InM(f) is o f the form

In M(f) =  \nm0 +  f ^ e t e-fl,rfkT

T h u s

ln |m 0|2 =  T ln [p + £ * ( / ) ]  df

giving

{ _ Tf  in[e ± M l m  

W 0' °°) =  <T* e °

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

2.2 .3  M atched F ilter E qualizer (M F E ) [25]

T h e  M F E  is characterized by Nx= o o  and N2 =  oo. T h e  decision device is  ab le  to  su btract ISI 

from  both  fu ture  and p a st d a ta  sym bols before providing an input to the threshold detector. 

F ro m  (2 .33),
T~

W  =  £ [ i - r Sy(x)D(x)dx] (2.64)

U sing the form  for D(f) given in (2 .47), one can see th at
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m  =  d0 (2.65)

Su b stitu tin g  (2 .65) in (2 .64),

T~i

do — ( P+ T 5y(x)rfa:J = (p + En)
( 2.66)

where

T~l oo oo

£ »  =  r [  s , V ) i f =  J  W / ) l 2 < t f = j  l » ( O I :
0 -o o  -o o

dt (2 .67)

T h e  quan tity  En is the “ energy” o f the received im pulse response y(t). T h e  filter W(f) is given 

by

W(f) yc/)«
-fl'nftc

(p +  Fn) (2.68)

F ro m  (2 .40),

°°) -  <r’ { 1 (p2+ k )  +  ( p + E „ f + (p P+ E „ f }  ~  (p +  1 )  (2'69)

It can be seen th at £ . (0, 0 ) > £  (0, o o ) > £  • (oo, oo). Before ta lk in g  m ore ab o u t the

relative  m erits o f the three M M SE  equalizers ju s t  described, the optim um  detector (in the sense 

o f  m in im um  probab ility  o f error) and the m axim u m  likelihood sequence e stim ator (M L SE ) will 

be d iscussed.

2.3 O ptim um  Detection and the M L SE

F ro m  the Q AM  baseband  m odel o f fig. 2.3, the received signal, r(<), is given by

K 0  =  (2-70)
t

Suppose  th at the receiver observes the signal r(<) over the tim e interval 3, corresponding to the 

tran sm itted  d a ta  sequence s0, S j, . . . ,  S j, which we represent as { s , } o .  T h e  receiver would like 

to  m ake an estim ate  o f { s , } ^  denoted as {§ ,-}q, with the m inim um  p rob ab ility  o f error. T h is 

can  be achieved by choosing { s J q out o f the L2̂ I+1  ̂ possible sequences to  be such th at

Pr[{*,}{ / < 0 .« e 3] is maximized (2.71)
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T h is  is known a s  the m axim u m  a-posteriori (M A P ) criterion. I f  { s ,}o  is equally  likely to take 

any one o f its possible form s, then the criterion o f selecting the estim ate  { s , }q to  be

such th at

Pr[r(<),<G3 / { 5 t-}o} is m axim ized  (2.72)

also  ach ieves m in im um  probab ility  o f  error. T h is  is known as the m ax im u m  likelihood (M L) 

criterion, and is only equivalent to  M A P  under the assum ption  o f equally likely d a ta  sequences. 

O f course, equally  likely d a ta  sequences is assured  if  the d a ta  sym bols are independent and 

equally  likely to take any one o f their 1? possib le  values. In term s o f the probability  

d istribu tion  function, the M L criterion can be expressed as selecting {§,•}q such th at

p[r(<),<e3 / { S j o ]  is m axim ized  (2.73)

Now using (B .2 8 ), (B .29 ) and  (B .30 ) o f A ppendix B , and rem em bering th at n(t) is a  station ary  

com plex zero m ean white gau ssian  random  process, w ith independent real an d  im agin ary  parts 

each hav ing the sta tistica l autocorrelation  function cr2S(r)/2,  one can write

/ M l }  =  pW*).<63 / {s,}ol

H ,K < ) f d t / v l }
=  p[n(*),<63] ~  e  (2.74)

S u b stitu tin g  for n (t) from  (2 .70), with the sum m ation  going from  0 to /, an d  collecting only 

term s th at depend on { s j ,  gives

{ E 2 R e [ s > , J - i ;  E  
p M < ) ,< € 3 / { 5i} J l  ~  e  <=° i=0  ">=° (2.75)

where vi =  [ r(i)y*(t—iT)dt 
J 3

(2.76)

h-m =  [ y{t-mT)y*(t-iT)di  =  / ^ _ t- for /> ( : ' ,  m )> 0 (2.77)
* J

R em em bering th a t y(t) is causal, and assum in g th at the period o f observation  3 a t  least covers
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0 to (IT+  tim e spread  o f y(t)), then (2 .76) and  (2.77) can be rewritten as

oo

V, =  f i{t )y'(t-iT)dt  (2 .78)

-O O

oo

h-m =  f y { t -m T )y \ i - iT )d t  =  rm_, for 7 > ( i ,  m ) > 0 (2 .79)
-OO

{« ,•} is recognizable a s  the sam ples o f the ou tpu t o f a  m atched filter, w hilst {/,•} are the sam ples 

o f the im pulse response o f the cascade o f the Channel y(i) and  m atched filter y*(-t), or, in other 

w ords, the autocorrelation  function o f y(i). Let an infinite sequence o f sym bols { T , }  be such 

th at

T t- =  a  non-zero d a ta  sym bol value for 0 < t < 7 ,  and  0 otherw ise (2.80)

I f  { T t} ^  denotes the sequence from  — oo to N, then define the m etric for th is sequence a s

w , - } " )  =  £  2R e[T > ,.]~£ ; £ ;  r ;/ i_ mT ro
1 = 0 0  » = —OO m = —OO

=  f Y 2 R e [ T > , . ] - £ ; T r ; , . _ mT m)  (2 '81)1=0' m=0 '

T hen  from  (2 .75), for the estim ate  { s , ) o  o f {^-}o  satisfy  the M L criterion, {$,-}o m u st be 

such th a t over a ll X2^ +1  ̂ possible sequences { T , } ^  the m etric 7 ( {0 } “ 1{ s i }o )  is m ax im u m , 

where { 0 } -1 denotes a  sem i-infinite sequence o f zeros from  — oo to  — 1. In view o f the length 

and num ber o f possible sequences, the brute-force approach  o f calcu latin g J(.) for a ll sequences 

and selecting th at which yields a  m ax im u m  value is im practical. However, com pu tation al 

effort can be greatly  reduced, while still achieving M L detection, through the use o f  a  recursive 

a lgorith m  based  on the principles o f dynam ic program m ing an d  known a s  the V iterbi 

A lgorithm  (V A ). A  m odified version o f the V A  [30] will now be described.

2.3.1 Im plem en tation  o f the M L SE  by the VA

It is possible to  write 7 (.) recursively a s



50

W r,}*)  =
N-i

) + R e[T  *N (2 vN — T n l0—2 ̂  T  f lN_ .)]
«=o

L et integer g be such th at

fa  0 <  t , < (g + l )T  

=> y(il)  =  0 for i < 0 ,  i>g  

/,• =  0 for |*| >  <7

(2 .82)

(2 .83)

(2 .84)

(2 .85)

T hen  (2 .82) becom es

J ( { T J " )  =  J ( { T j } JV- 1) + E e [ T ^ r(2 % - T Ar/0 - 2 X ; T „ _ i (j )] (2 .86)
* = 1

It can be seen th at in the evaluation  o f m etric . / ( { T , } ^ ) ,  the second term  on the R H S o f (2 .86) 

involves the la st g sym bols o f { Y , } ^ -1 . Suppose  th at the sym bols T ^ _  +1, . . . »

are  known, then from  (2 .86) the sequence { T J 7 with the m axim u m  m etric also h as the sub

sequence { Y , } ^ -1 , N<I,  w ith the m axim um  m etric. O f course the la s t g sym bols o f { T , } ^ -1 

are  not known to the receiver, but they do, a t  m ost, take on 1? 9 different form s. T h u s the 

receiver needs to store, a t  m ost, only I?9 sequences a t  any one tim e. T h e  algorithm  can be 

broad ly  sta ted  a s follow s.

A ssum e I>g, and note th a t for a  sequence { Y , } ^ ,  0 < A < 7 ,  the receiver need only store  the 

non-zero part, i.e. { Y t } ^ .  A t tim e OT, but before the receipt o f sam ple  v0) the receiver holds 

no sequences. On receipt o f vQ the receiver stores the L2 sequences { Y , } ° ,  which is ju s t  a ll the 

different possible d a ta  sym bols, together with their respective m etrics a s  given by (2 .81 ). A t 

tim e  NT, 0 <N<g,  b u t before the receipt o f sam ple  vN , the receiver holds in store the L2N 

different possible sequences { Y , } ^ -1 together w ith their respective m etrics. On receipt o f vN 

each  stored sequence { Y , } ^ -1 is expanded into L2 sequences { Y f } ^ ,  the la st sym bol o f each 

expan ded  sequence tak in g  exclusively one o f its  L2 possible values. T h e  m etrics o f the new 

expanded sequences are  evaluated  according to (2 .86). T h e  receiver now has L sequences 

{ Y , } ^  with their respective m etrics. A t tim e NT, g<N<I,  but before the receipt o f sam ple  

vN , the receiver holds in store L2g sequences { Y , } ^ -1 together with their re a c t iv e  m etrics.
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E ach  o f the sequences differs from  the other a t  least in its  last g sym bols. On receipt o f Vpj 

each stored sequence is expanded and the m etric updated , according to  (2 .86), a s  previously. 

T h e  receiver now has i 2̂ 9+1  ̂ sequences { T , } ^  with their respective m etrics, and for all 

sequences with the sam e la st g sym bols the receiver proceeds to ex trac t th a t with the largest 

m etric  and discard the rest. T h u s the receiver finishes up with L*9 sequences {T{}N (called 

surv ivors) and their respective m etrics. A fter the receipt o f sam ple Vj the M L estim ate  { s ,  } q is 

given by the non-zero p art o f th at sequence { T , } ^  with the largest m etric. T o  prevent the 

m etrics from  grow ing excessively large with tim e, it is a  good idea to  periodically  su b tract the 

sm a lle st m etric from  all the m etrics.

T h e  m odified form  o f the V A  ju s t  described differs from  the original in th at it operates on 

sam p les  o f the ou tpu t o f a  m atched filter, where the noise sam ples are in general correlated. 

T h e  original V A  [3], [21], [23], [31] requires noise sam ples that are sta tistica lly  independent. 

T h e  form  o f the original V A  can be derived from  (2 .81) a s  follows.

T h e  q uan tities v{ (2 .78) and  /i-m  (2.79) can be w ritten in term s o f F T ’s  a s

oo

V,, =  |  R(f)Y'(f)J2,tf,T df
-O O

oo . . . .  T-1
= j \Y (f)\2d’2 * A ' ~ m ) T <‘f =  T \  Sy(f,)

-OO 0
df

where R(f) is the F T  o f r(f). It is apparent form  (2 .88) and (2.85) th at

-ftirfiT
S M  =  E  /,«

i = - g

Since Sy(f) is real and  periodic, it can factorized a s

S M  =  M W M

where Af(f) =  J 2 mie
, -flirfiT

(2 .87)

(2.88)

(2 .89)

(2 .90)

(2 .91)
»=o

F ro m  (2 .81)
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OO r
W i ) ' )  =  2Re[J -

T"  I
r  E t ^ ( / )

i  *=o
- f i r f iT \2df

(2 .92)

N ote th a t the ratio  y * ( / ) / i n  the above expression is well defined a s  Af*(/), by definition, 

is  such th a t

£ w + l o i 2
t  m t + i ) \ 2

=  T (2 .93)

Now

where

1=0 *=0 

Z’i =

(2 .94)

(2.95)

Let * , = r  W ‘ s " r #
-O O

(2 .96)

T h u s
I+g

■ /({ T,-}7) =
»=0

(2 .97)

T h e  q u an tity  Zi is recognizable a s  the sam ple  a t  iT o f r(t) passed  through the filter 

Y*{f)/M1 * ( / ) , while Z\ is a  possib le  value o f the d a ta  portion o f the sam p le  Z{. N ote th at the 

sam p led  im pulse response o f | Y*(f)\2/  Af*(f) is causal with F T  given by A f(/) . I f  hk and hi 

are  sam p les a t  tim es kT an d  iT  respectively o f the noise n(i) p assed  through the filter 

Y*(f) f  it is quite easy  to  show that

r~J
E lM il =  a l

y-v IY{f+ j- ) !2 j27rJ{k—i)T 2

?im fiW e d f - an8ki
(2 .98)

where 8ki is the Kronecker d e lta  function,

6ki =  1 for k=i

=  0 for k=^i ( 2 .9 9 )
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T h u s the noise sam ples are uncorrelated, or equivalently, sta tistica lly  independent since the 

noise process is gau ssian . T he filter Y*(f) / i s  identical to the “whitened m atch ed filter” 

o f [23], [32], so-called because the noise sam ples a t  its  ou tput are sta tistica lly  independent. 

Define for the sequence { T f} ^  the m etric

I - H T J " )  =  (2.100)
i = 0

N ote th a t ./({T ,- }7) =  r ( { T , . } /+ 5 ) (2.101)

so  th a t the M L estim ate  { s , } o  o f i si)o is such th at over all possible sequences { T t } 7+tf

the m etric r ( { 0 } - 1 { s t } o { 0 } / + i )  Is m axim u m . T (.)  can be w ritten recursively a s

r a x , .} * )  =  r ({T i}JV“1) + R e [ ^ * ( 2 ^ - ^ ) ]  (2.102)

From  (2 .95) it can be seen th at Z'N involves the last g sym bols o f { T t } ^ -1 so th at, a s  before, 

the receiver need only store a t  m ost I?9 sequences a t  any one tim e. T he original V A , up to 

the receipt o f  sam ple  Zj a t  tim e IT, proceeds exactly  a s  in the m odified V A  described 

previously except th at now we are talk in g about sam ples {£ ,•} and referring to the m etric T (.). 

A fter the receipt o f Zj the receiver holds I?9 sequences { T , } 7 with their respective m etrics, but 

the M L estim ate  is not now given by the non-zero p art o f  th at sequence with the largest 

m etric. A t tim e NT, I<N<I+g,  but before the receipt o f sam ple  the receiver holds 

L2(g+I+1 ^  sequences { T , } 7 with their m etrics. Each  o f the sequences differs from  the other 

a t  least in its  la s t  g+I+1 — N sym bols. On receipt o f  the m etric for each sequence is 

u pdated  according to (2 .102), w ith no expansion being perform ed, and then for a ll sequences 

with the sam e la st g+I—N sym bols the receiver extracts th at with the largest m etric and 

d iscard s the rest. T h u s the receiver finishes up with L2 9̂+I ^  sequences { T t} 7 with their 

m etrics. A t tim e (I+g)T,  b u t before the receipt o f  sam ple  the receiver holds L2

sequences { T t }^  w ith their m etrics. On receipt o f ZI+9 the m etrics are updated , and  now the 

M L estim ate  { s , ) o  is given by the non-zero part o f th at sequence { T f }^  with the largest

m etric.
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T h is  com pletes the description o f the V A . T he original form  tends to be the m ore widely used 

version. Sym bol errors in the V A  tend to occur in bu rsts, the lengths, for a  given channel 

response, being variab le  a s  they depend on the noise sam ples and d a ta  sym bols th at are present 

a t  the tim e. B oun ds on the V A ’s probab ility  o f error perform ance can be found in [3], [23], 

[30], [33]. Error bounds for the original VA in the presence o f correlated noise sam ples are 

developed in [34].

T h e  m odified  version o f the V A  can be ad ap ted  to  deal w ith the case o f non-white gau ssian  

noise a s  shown in [30]. T he V A  perform s ab o u t ( f c + l ) £ 2^ +1  ̂ m etric com pu tation s in the 

detection o f k+1 tran sm itted  sym bols, com pared with L needed for the brute-force

m ethod. A problem , however, is th a t the stored sequences grow linearly with tim e. For a  

large k th is can lead to storage  problem s, and so in practice the sequences are truncated to 

som e length q (q̂ $>g). Then, say , a t  tim e NT on processing the Nth received sam ple , the 

receiver selects a s  the detected sym bol sN_q th at T ^_q belonging to the sequence with the 

largest m etric, and  finishes with L29 stored sequences { T f}jy  +1. T h u s there is a  delay in 

detection o f  qT. T h e  loss in perform ance resulting from  th is truncation  strategy  is negligible if 

q>bg [3], a s  m ost stored sequences will by then have a  com m on sub-sequence For

large  con stellation s a n d /o r  a  large value o f g, storage  can aga in  be a  problem  as  well as 

num ber o f com pu tation s. In such cases one strategy  is to  use a  tran sversal pre-filter to reduce 

the value o f g seen by the VA  to som e desired settin g [24], [34]-[37], although th is enhances the 

noise an d  m ak es the sam ples, if  uncorrelated, correlated. A nother stra tegy  is to reduce the 

num ber o f sequences stored by the detector [37]-[43], since m any sequences are so unlikely to  be 

the m ax im u m  likelihood sequence th at they can effectively be ignored. T hese reduced state 

detectors are  u sually  referred to a s  near-MLSEPs, and  in the literature a lm ost in variab ly  take 

the form  o f som e sub-optim um  version o f the original V A . T here is u sually  an  increase in the 

num ber o f com pu tation s per stored sequence for the n ear-M LSE . For best perform ance, the 

n ear-M L SE  usually  requires th at the im pulse response seen by the algorithm , i.e.

h=0
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have its “energy” concentrated tow ards the beginning o f the response, i.e. be minimum phase. 

T h is  is because if, for exam ple, the first com ponent m'0 in the im pulse response is sm all relative 

to  the rest, then on processing o f sam ple Z{ a t  tim e iT, the tran sm itted  sym bol s,- p lays a  less 

effective role in the selection o f which sequences to  keep, and therefore a lso  which possible 

values it will be detected as, and which sequences to discard. T h e  m inim um  phase condition 

can be achieved if  the ^-polynom ial

(2 .103)
h=0

i.e. the z-transform  o f the im pulse response seen by the near-M LSE  a lgorith m , h as its roots on 

or inside the unit circle. T hen the resulting receiver filter Y*(f)/ A f * ( / )  becom es identical 

(except for a  scalin g  factor) to the optim um  filter for the Z F D F E , a  result first shown in [44]. 

C o m pare  M(f) for the M M SE  D F E  (2.50) with (2 .90); it is apparen t th at

=  ^ ( y ) ^ * ( y )  +  p (2.104)

It can be seen th at for sm all p, the receiver filter (2 .56) for the M M SE  D F E  ap p rox im ates to 

th a t for the Z F D F E .

2 .3 .2  Lower Bound to  Perform ance

A ny receiver can perform  no better than if  it were able  to detect each tran sm itted  d a ta  sym bol 

in to ta l isolation , so  th at there would be no ISI. For a  white gau ssian  noise channel, settin g 

7 = 0  in (2 .75) gives

p[r(t),t6$ / s Q] {2Re[s0Uo] —|s0 |2f ( ) } / { - f o l ( vo / f o ) “- so |2} / an (2 .105)

T h u s  s 0 is given by th a t sym bol T 0 th at m inim izes |(t>o/fo)“ T 0 | over a U ^ 2 possible d a ta  

sym bols. T h is  is equ ivalent to threshold detecting from  sam ple v0/ / 0. T h e  receiver filter is 

Y*(f)JEn, where En is given by (2.67) (2?n =  /o)- T h is  is ju s t  the Z F  m atched filter equalizer.
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2.4 Comparison

Table 2.1 gives a summary of the receiver designs discussed so far, with reference to the 

transmission model of fig. 2.3.

Design Filter W(f) Decision Device

MMSE LE {P + Sy(f)) Threshold detector

MMSE DFE

&m {z) has its 

roots on or inside 

the unit circle.

Threshold detector, with 

ISI cancellation for 

previous symbols.

MMSE MFE (p + En) Threshold detector, with 

total ISI cancellation.

ZF MFE En Threshold detector, with 

total ISI cancellation.

MLSE/near-MLSE M"(f)
For near-MLSE, 

jyt(z) has its 

roots on or inside 

the unit circle.

VA (original), or some 

reduced-state version.

Table 2.1 Receiver designs for different equalizers.

If the channel spectrum T(_/) has nulls or points of very low amplitude, then, depending on the 

function Sy(f), the corresponding receiver filter W(f) for the LE may have points of very high
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amplitude, leading to excessive noise enhancement [24]. This is not so for the DFE, which in 

general, therefore, has a significantly superior error rate performance [3]. For a time-varying 

channel such as HF, there are bound to be many instances where nulls or near nulls appear in 

the spectrum characteristic, and so the LE is not recommended. Furthermore, the DFE is 

much more insensitive than the LE to errors in the receiver’s knowledge of the carrier phase <f> 

and the sampling phase t0 [24], [45], [46]. It has not been mentioned yet but, as the name 

suggests, the DFE uses previous decisions for the ISI cancellation. Obviously if decisions are 

incorrect then error propagative effects arise. These effects are difficult to analyse quantitively 

without resorting to Monte Carlo simulation on a computer. Some analytical results on the 

probability of error of the DFE in the presence of decision errors can be found in [29], [47].

The MFE can be implemented in practice, when it is then sometimes referred to as a decision- 

aided ISI canceller [24], by using tentative decisions regarding future data symbols. A receiver 

with a two-step decision process such as this was first proposed in [48]. Like the DFE, this 

receiver will suffer from propagative effects due to incorrect decisions. We are interested in the 

MFE only as an indicator of the lower bound to performance, the ZF MFE in the absence of 

decision errors achieving this. Comparison of the ZF MFE with the MMSE MFE illustrates 

the fact that minimization of MSE does not necessarily mean minimization of probability of 

error. A DFE based on the minimization of probability of error has been designed (see [29] 

and the references therein) and can be shown to be equivalent to the MMSE DFE for high 

signal-to-noise ratios. Also, at high signal-to-noise ratios the MLSE approaches the lower 

bound to performance for all channels except those with extremely severe ISI [23]. For <7=0 

(no ISI) the MMSE DFE becomes equivalent to the MMSE MFE while the MLSE and ZF DFE 

become equivalent to the ZF MFE.

In making a decision on a transmitted data symbol, the MLSE processes all the energy in the 

sampled impulse response of the channel in cascade with the receiver filter, i.e. Y(f)W(f), 

whereas the DFE cancels out those terms of the impulse response that give rise to ISI 

(assuming past decisions are correct). For this reason the MLSE usually outperforms, in terms
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of probability of error, the DFE, e.g. [3], [21], [27], [29], [45], the trade-off being complexity. 

Note that it is assumed the receiver knows perfectly the channel response y ( t )  and sampling 

phase t0. In [49] it is shown that the DFE can outperform the MLSE, implemented by the 

VA, in the presence of phase jitter.

2.5 Fractionally-Spaced Transversal Filters

Table 2.1 shows that the receiver filter W(f) for all the designs can be expressed as the cascade
-f27T ftof a matched filter Y*(f)e~J J 0 and a T-spaced transversal filter, denoted as D{f). Linearity

- f i n  ftpermits us to replace W(f) followed by a sampler by Y*(f)e J J 0 followed by a sampler 

followed by D(f). Then D(f) can be implemented as a digital non-recursive filter as shown in
'59'rrfi

fig. 2.4a. The continuous filter J ^ 0 is dependent on the sampling phase t 0 , which

according to [3] should be known to within ±5% of T  for most applications. Techniques for

sampling with t 0 at some desired setting (usually zero), termed s y n c h r o n i z a t i o n , can be found

in [3], [50]-[55]. QAM has an advantage over PAM systems in that timing with significantly

less jitter can be obtained [3], [50]. The penalty suffered, in terms of MSE, for inaccuracies in

the knowledge of t0 for LE’s and DFE’s is demonstrated in [24]. Also, as indicated in [24], the

relative insensitivity of the DFE over the LE for inaccuracies in t 0 may be offset by an

increased severity in error propagation when a decision error occurs. The problem with

continuous filters is that it is difficult to make them adaptive to change, whereas, as we shall

see later, digital filters can be made adaptive relatively easily as they only require a finite

number of coefficients (or taps) to be updated. Thus a receiver filter with a fixed continuous
- i 2 n f tfilter, which ideally should be Y*(f)e J J 0 at all times, is going to suffer not just because of 

inaccuracies in t 0 but also, and more seriously, if the channel is time-varying. What is desired 

is a receiver filter that is equivalent to W(f) but which consists of continuous filters that can 

remain fixed and transversal filters that can be made adaptive.

Let the bandwidth of Y(f) be denoted as /y, so that

W  =  0 for |/1 >  f (2.106)
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input sample train,

K delay units
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K delay units -----------------------
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___  ̂ rate is read every T secs.

Fig. 2.4 Digital implementation of (a) T —spaced  transversal 
filter D(f)y (b) KT/M fractionally-spaced filter
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The bandwidth of W(f) will also by fy. Let filter *36(/) have bandwidth 7  1 and be such that

%f) *  o for 1/1 < ± (2.107)

Assume 7  1>/y, and let the 7-spaced transversal filter <W(f) be given by

W{f) ~  4^S(/+t/T ) (2.108)

Then the filter *36(/) followed by <V(/) is equivalent to W(f). To implement V(j) as a digital 

filter we sample the output of the continuous filter *36(f) at rate M /T (M is an integer >1), the 

samples being shifted into a digital shift register memory. Then every Kth sample (K> 1) in 

the shift register is multiplied by a successive filter coefficient (or tap) and all the products 

summed to give an output that is read at rate jT-1. Thus —KTj M, where if, M are relative 

prime integers. If /y ^T -1 then K=M=1 is sufficient, and if /y>71-1, as often happens in 

practice, we need K<M. The filter tW'(/) is termed a fractionally-spaced transversal filter 

because 7  is generally required to be less than T. The digital implementation of W(f) is 

illustrated in fig. 2.4b. The filter *3B(f) can be any fixed continuous filter satisfying (2.107), the 

obvious one coming to mind having a rectangular spectrum with cut-off at ±0.5/7. For more 

details on fractionally-spaced transversal filters see [24] and the references therein.

In this thesis it will henceforth be assumed that /y ^ T -1, a condition guaranteed if the 

bandwidth of the pulse shaping filter a(f) is ^ T -1 (recall (2.13)). For a voiceband HF channel 

we would want the bandwidth of a(f) to be as close to T-1 as possible. Thus we shall assume 

that effectively 7 =  T, and the receiver filter consists of a fixed filter *36(/), which will be 

assumed to be rectangular with amplitude -JT and cut-off at ±0.5/T, followed by a T-spaced 

transversal filter Vf{f) implemented as a digital non-recursive filter. The receiver arrangement 

is shown in fig. 2.5. The noise samples at the output of *36(f) will be uncorrelated. The 

transversal filter for the MLSE is a pure phase filter, i.e. constant amplitude spectrum, because 

|tW'(./)|2 =  l, as is also that for the MMSE DFE at high signal-to-noise ratios. Note that for a 

MLSE, as opposed to a near-MLSE, the transversal filter can be omitted as we are free to
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Fig. 2.5 Receiver arrangem ent for fy (c.f. fig. 2.3).



r— . _—  ̂ • j2Tr(f+%)t0
choose Af/(/) =  -jT y(/+^)e T so that tW(j) = l.

The sample at time <0 + £Tof the output rx(<) of filter *3B(./), which has impulse response ^(Z), 

is

r ^ U  +  k T )  =  { f y ^ j s i y ( t o + ( k — i ) T ) + n 1( i 0 +  k T )
i

(2.109)

where n i (*) =  »(<)*fti(0 (2.110)

Replacing i 0 by E T + A , where H  is an integer and 0<A <T, gives

r M k + H ) T +  A) =  4 r ^ s iy((t+fl'-i)T+A ) + n1((*+fl)r+A )
t

(2.111)

Define rf =  r^zT+A) (2.112)

y { =  { f  y(zT+A) (2.113)

n,- =  n^zT-f A) (2.114)

From (2.83), y,=0 for z<0, i > g .  Therefore (2.111) becomes

9

rk+H =  ^L,sk+H-iVi +  nk+H 
»=o

(2.115)

Note that E [n,-nj] =  c r l 6 ik (2.116)

The noise samples at the input to <W ( f )  are therefore statistically independent, i.e. white noise

samples. The 2-transform of the sampled waveform of ^ T y ( i - \ - A ) ,  with zero sampling phase, 

is

9

=  ]C !u z ~ l 
1=0

(2.117)

Also,

a * ? ’ ” )  - (2.118)

Note that ■1) = V (  z)0,*M ,{z~l). From (2.108), W(f) is given by
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Using (2.118), the 2-transform representing filter Wif) is

— z *) (2.120)

where qd(2) = ^L,diz~'i
(2.121)

n o ( Z ^ )  =  m (2.122)

Depending on whether H is positive or negative, z~H represents a delay or advance of \H\T 

seconds. Replacing the z~H term in (2.120) by unity simply means that at any particular 

sampling instant the receiver has detected symbol si+H instead of s{. This presents no 

problem as long as the receiver knows which symbol it has detected. Thus the z~H term can 

be neglected. Setting H— 0 in (2.115) and (2.120) gives

rk =  ^ 2 sk-iVi + nk (2 .m )i=0

^ ( 2) =  (2.124)

The sampled impulse response seen at the output of the sampler, but before *W(/), in fig. 2.5 

has ^-transform Dj/(z). Notice that for a near-MLSE, since Djrj(^)=(D^/(2-1))-1, 

Q.M,{z)Q,*Mi(z~l ) = Q,y(z)Q,*Y(z~l) and t l ^ z )  has its roots on or inside the unit circle, then 

Q^.(z) has poles which are the roots of fi^(z) lying outside the unit circle, and zeros which are 

the reciprocals of the complex conjugates of these roots.

2.6 Effect of Time-Varying Channel

The derivations so far in this chapter are, strictly speaking, based on the assumption that the 

transmission channel’s impulse response is time-invariant. Basing the derivations on a general 

time-varying h(i) serves to unecessarily complicate the analysis. This is because the rate of 

variation of the channel can, for all practical purposes, be assumed to be very much less than 

the baud rate, otherwise a decision-directed tracking device could never “learn” quickly enough 

about the changing medium. For HF channels the rate of variation is typically a few Hz or
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less, compared with a baud rate of 2400. Because of the time variation of h ( i ), the bandwidth 

of y ( t )  (the cascade of a ( t) and h ( i ) )  is now not strictly limited to the bandwidth of a(*), but 

since variations are considered very small c.f. T~l we can reasonably assume that it is still 

approximately so. Thus our assumption in section 2.5 that /y ^ T -1, enabling us to define *36(f) 

as a rectangular filter, can still be considered effectively valid for a ( t )  bandlimited to around 

T -1 Hz.

We shall now re-examine the DFE and MFE, and include in the notation the time variation of 

the channel, and also the limitation of having a finite number of feedforward taps in the DFE.

2.6.1 MMSE DFE with Finite Number of Taps

For the MMSE DFE,

ClD(z) = 1
moQ^iz'1)

(2.125)

where QM(z) was defined in (2.52). The coefficients {d,} for t>0 in (2.121) are zero, because 

m (z) has its roots on or inside the unit circle. Thus we can write

oo
QW ( Z) =  Y , wiz't=0

(2.126)

The output of W (/) is

oo oo 9 oo
uk =  X / i+iu/t. =  sk+iJ2yhwh+i+Y,nk+iwi (2.127)

*'=0 i= —9 h—0 i=0

It can be seen that in detecting sk from uk, the DFE need only subtract the ISI contributions 

from the previous g symbols. Eq. (2.126) assumes that fi^ (z) consists of an infinite number 

of terms, so that a digital filter implementation of W(/) would consist of an infinite number of 

taps. In practice this cannot be so. We shall restrict the number of taps to N. Fig. 2.6 shows 

the form of the DFE, consisting of an JV-tap linear feedforward section and a £-tap feedback 

section that subtracts the ISI from previous symbols, assuming past decisions are correct. This 

DFE will in future be referred to as DFE(N,g). Unfortunately the optimum MMSE DFE tap- 

weights change with the value of N, and so it will be necessary to re-do the minimization
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process for their determination.

The possibility that Y(f) can vary with time has been mentioned, but up till now has not been 

explicitly represented in the mathematics. Let us characterize the sampled impulse response 

y0» •••» Vg in (2.123) by a subscript k to denote its time dependence. Thus

r* =  S sk-iVki + nk (2.128)
»=o

Define the following column vectors, where superscript “t” denotes the transpose, as

yL =  ••• Vk+p.p-i ••• yk+N -i,N -i-i]  (2-129)

w\ =  [wk0 ... (2.130)

— njfc+iV—il (2.131)

Note that w*. also has a subscript to denote time dependence. Assuming past decisions are 

correct, the error in sk is (see fig. 2 J<>)

N- 1 9
*k = sk- s k = sk+iyki+nk] - J 2 s k-it>ki-sk (2.132)

i=—g i=l

We know that in order to minimize the MSE,

h i  =  for !<*<</ (2.133)

Substituting (2.133) into (2.132) and denoting the MSE as £k we get

Zk =  E(le*l2] =  ^2{ w f c [ £ y fclyfcHp%]fc-2lyjbo-(5?fcyfcor+1}  (2-134)
v t=0

I is the NxN  identity matrix. Let us define the Ax A matrix Y k as

Y* =  ^ y tiyl\+Pl (2.135)
«=0

Note that Y k is Hermetian, i.e. YJfc=YJt . Differentiating £k with respect to wfc we obtain

=  2±t,e[cr“{w|Yfc—yfc5)ow ]̂ (2.136)
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Hence 6£* =  0 is given by

Et =  YJ-Vlo (2-137)

where superscript “- 1” denotes the inverse of a matrix. Substituting (2.137) into (2.134) yields

ĵfc.min =  cr̂ (^~SfcYt wJ) =  c? (l— Y*kô k Vjfco) =  (2.138)

We can express m|n in another useful form by first substituting for Y* in Y l ^ k —Yko an<̂  

then comparing the first coefficient to get

Thus C _  -2 MfcO
f̂c.min 3py*kQ

0*•*£II (2.139)

_  _2 ^k0 — &n—i—
Vko

(2.140)

As N  increases, the tap weight vector w* approaches the first N taps in W(jf) for the MMSE 

DFE(oo,<7) solution. Thus if N is large enough, and p is small, w* can be used as an 

approximation to the first N taps in CW(/) for the near-MLSE, the feedback section of the 

MMSE DFE(JV,0) plus 6*0 =  1 representing the (<7+ l)-length sampled impulse response seen by 

the near-MLSE.

2.6.2 MMSE MFE and ZF MFE

For the MMSE MFE, QD(z) = (2.141)

Then from (2.124), ft<^(z) =  (2.142)

fl^ z )  and fl^(z) for the ZF MFE can be obtained from (2.141) and (2.142) by setting p=0. 

£lcyy{z) can be written as

*V (*) =  J 2 wiz' (2-143)i=o

The MFE is depicted in fig. 2.7, and will sometimes be referred to as MFE(0+ 1) because it has 

0+1 taps in the digital filter <W(/). Using equations (2.128)—(2.131) but with N replaced by 

0+ 1, and assuming correct decisions for past and future symbols, we get for the error in s*



Fig. 2.7 Matched Filter Equalizer: MFE(^+1)
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sf y
ek =  5Jfc — sk — Sifc+«yfc«+ S ifc]“ 2  Sk - ih i~ sk

* = - 0 » = - 5

For the MMSE or ZF criterion we need

(2.144)

so that

h i  =  2?lyjt,-i l<i<</ (2.145)

(2.146)

For the MMSE criterion it is straightforward to show that

y*o
5n  = (MMSE) (2.147)

(p+|yfco02)

where |yjbofl2= y]feoyjfco *s the magnitude (or norm) of the vector yk0. Setting p= 0 in (2.147) 

gives us the result for the ZF criterion

_  y*o— Jb — 2
f c o f

(ZF)

The final MSE takes the form

Sk = , (MMSE)
(p+0y*ofi)

(2.148)

(2.149)

Sk =  (zf)
|yjbo|

(2.150)

Notice that in introducing a time subscript h, fiy(^) and En in (2.142) have been replaced by
9

]>Zvk+i.i2"' and flyjbol2 respectively.
»=o

2.7 Other Detection Devices

We will briefly mention a few less commonly used detection devices.

The probabilistic symbol-by-symbol equalization algorithm [3] is based on computation of a- 

posteriori probabilities, and is optimum in the sense of minimizing the probability of symbol 

error, in contrast to the MLSE which minimizes the probability of sequence error. There is 

also a delay in detection. It requires knowledge of the channel sampled impulse response, and 

involves a large number of computations per received sample. In particular, it involves
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summations of exponential factors. Therefore the major shortcoming of this device is its heavy 

computational burden. Monte Carlo simulations have shown it to be superior in performance 

to the DFE, and comparable to the MLSE [3].

The linear feedback equalizer [3] is similar to the DFE except that the feedback filter contains 

the pre-threshold estimates {3*}. Drawbacks with this device are that it is only marginally 

superior to the linear equalizer, and adaptive versions of it are prone to instability [3].

Another device is the so-called message estimator [56], which is based on the Kalman filter. It 

requires knowledge of the channel sampled impulse reponse, and in an adaptive 

implementation it has a faster start-up convergence than do the conventional adaptive 

implementations of the LE and DFE. However, simulations have shown that it is only 

marginally superior in performance to the LE, and significantly inferior to the DFE [56].
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Chapter 3

TRACKING  ALGORITHMS

We shall now describe two algorithms that are often used to provide adaptation of receiver 

filters under time-varying channel conditions. Let us first define the following.

Zi — [**1 xk2 ••• xkM] (3.1)

cl =  h i  ci2 ... ciM] (3.2)

*ki =  **-2*S,- (3.3)

The Af-length vectors xk and ci are termed the input vector and estimated vector respectively. 

The quantities zk and cki, both scalars, are termed the desired value and error respectively. In 

the context of adaptive equalization, xk and zk can, in general, be regarded as linear functions 

of the transmitted data symbols {s,}, the noise samples {nt} and the channel sampled impulse 

response. Assume that at time kT we know x{ and zi for \<k.

3.1 The Steepest Descent (SD) Algorithm

This is also known as the MSE algorithm [3], or the least-mean-squares (LMS) algorithm [24]. 

At time kT we wish to determine c, such that the mean square error ^  =  E[|eJfc, |2] is 

minimized, the expectation being over the data symbol and noise sequences.

6(k =  — 2Re{(5c*tE[x^eJtl]} =  2Re{<c;t (E|sIsl]£i-E [xJZt])} (3.4)

Clearly, £k is minimized when

S, =  S*,opt =  (E & jdr'E fe:**] (3.5)

£k can be viewed as a quadratic surface in Af-dimensional space, a particular vector cf 

corresponding to a particular point on that surface. We could find ck Qp̂  iteratively by 

observing the gradient d^k/dc( and adjusting by a small amount in the direction of steepest 

descent. From (3.4) it can be seen that the direction of steepest descent is the same as that of
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vector E[xjefci]. An updated vector cl+1 is thus given by

£i+i =  S i + ^ E K f u l (3.6)

where fj, is a small positive real number. Subtracting Qp̂  from both sides of (3.6) we get

-*+i -i.opt — Sjb.opt)

where Rt =  E[x;x'] =  Vt AkVtr*t

(3.7)

(3.8)

V k is the matrix of eigenvectors and Ak the diagonal matrix of positive real eigenvalues {Afct}, 

l<t<Af, of the covariance matrix Rk (VfcV t̂ =I). Define the error vector dH as

Then from (3.7),

dki — Qi £jti0pt

dk,i+i — (I—fiRk)dki

(3.9)

(3.10)

From (3.10) we can see that |dJkt|2= d ^ d A.f converges to a steady-state value (0 in this case) as 

t—>oo if

|dll(+,|J < |<Jk P (3-11)

where

Eq. (3.11) is thus satisfied if

d*,i+i |2 =  < £ v t ( i—M *)2v r d t ,.

(1 — /iA*,)2 <  1 for

0 < H <
vJb, max

(3.12)

(3.13)

(3.14)

where Xk max is the largest eigenvalue of Rk. In practice the gradient quantity E[xjeif] is 

unknown, so it is replaced in (3.6) by the unbiased estimate jclcki. Further, if we carry out the 

iterative process recursively in time, (3.6) becomes

Sjb =  Zk-i + VxUk (3.15)

€k ~  €k,k- 1 — Zk ~ ^ k ^ k -1where (3.16)



Eq. (3.15) is the basic form of the SD algorithm that is commonly used for adaptation 

purposes. The vector ck_1 is computed at time (k— 1)T and is used at time kT as an estimate 

of ck j.. The update ck is an improved estimate of cfc Qpt . Let the error vector dfc be given 

by

dfc — -i £i+i,opt (3.17)

Then from (3.15),

dt =  (I- / 'Z is l)d l - i+ M ic Jfc,opt-fet+i,opt-Si ,opt) (3.18)

where 6Jb,Opt =  -fc-Jb,Opt (3.19)

At time kT, for E[ IdjJ2] to be able to reach a steady-state condition it is required that the 

first term on the RHS of (3.18) be such that

E[ < E[ |d t . , I 2] (3.20)

If we make the common assumption [24] that the input vectors are statistically independent, 

i.e.

E[x*Xm] =  0 for i-fim (3.21)

then, since dfc-1 depends on x,- for i<k— 1, (3.20) becomes

M
E(d;t. 1(I-2 /,R l + /I2£ A HRt )di . 1) <  E[ Idt_xl2]

* = 1

where it has been assumed that

E[(xjxfc)2]
M

E[sb;]R* =
i=1

Eq. (3.22) is satisfied if

M
(1 - 2/^*m + //2S A*»A*m) < 1 for 1 <™<M

(3.22)

(3.23)

(3.24)
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Contrast the permissible range for in (3.25) with that for the deterministic case (i.e. E[x£ej.] 

known) in (3.14). With equal eigenvalues, the range in (3.25) is reduced c.f. (3.14) by the 

factor M. A more detailed derivation of (3.25) can be found in [57], where it first appeared. 

Note that the steady-state value of E[ |dj.|2] varies with time integer k if ck Qp̂  does. Even for 

-fc,opt invariant with respect to k, E[ jjdi.j ] is never going to reach zero if E[|c^ .opt!2] «  not 

zero [3], [57], because then we will always be using a “noisy” estimate xkck of the gradient 

term E[zUki

lt is shown in [57], for a time-invariant c^p^, that the speed of convergence of the algorithm 

from any initial starting point of the estimated vector ck is dependent on the vector length M 

and, to a lesser degree, on the eigenvalue spread of R*, characterized by the ratio 

AJfe,max/\imin- A larger M and/or ^k,max/^kim{n produces slower convergence, which 

therefore means that the algorithm is less able to track time variations in cfcQpj.. To remove 

the effect, should the need be, of eigenvalue spread, consider the transformed input vector xk 

given by

s i  =  A ^ M s* (3.26)

and the estimated vector cjj. given recursively as

where

e* =  Cfc_i+/ixjfc*ejb

4  =  zk ~ ^ k - \

(3.27)

(3.28)

The eigenvaules of E[xl|.*x||.t ]=I are all equal to unity, so that the spread is minimized. The 

optimum value Qp ^  (3.5) is related to c'k Qpj. by

E&'z*] =  4 ,0pt =  A ^ V i 'c ^ p t  (3.29)

—1 /2Thus if we multiply c* by VfcAfc we get an approximation to ck Qp .̂ Denoting this, as 

before, by ck and assuming

v A-1/2,.' V A”1/ 2#*' — ce*-i — e*_ijy (3.30)
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— 1/2then if we multiply both sides of (3.27) by V̂ A*. we get the algorithm

cjt =  ek-i + PKk'Zk'k (3-31)

with ek given again by (3.16). This algorithm is called an orthogonal SD algorithm [24], 

because the input vector xj. has uncorrelated elements. Its speed of convergence is independent 

of the eigenvalue spread in Rfc, and so it will be much faster than the algorithm of (3.15) for a 

large max/Afc mjn ratio. The problem with its implementation, of course, lies in having 

knowledge of R*. The range of fi for stable convergence is

0 <  A‘ <  j |  (3-32)

Further details on the SD algorithm can be found in [3], [24], [57]-[60]. The SD algorithm of 

(3.15) is just about the simplest adaptive process around. At each iteration it requires 10M 

equivalent real multiplications and 8M real additions.

3.2 Recursive Least Squares (RLS) Algorithms

In the SD algorithm we strive to minimize a statistical average of the squared error |£*|2. In 

the least squares approach we strive to minimize a time average of the squared error, as 

defined below.

ik  =  e ^ i^ i2 =  (3-33)i=0 1=0

where w is a weighting coefficient, 0<u;<l. Eq. (3.33) assumes an average over k+1 error 

values, the weighting for each value getting exponentially smaller as we go “into the past”. 

We wish to determine c* such that f  * is minimized.

6 lk =  2Re{6clt [J2“k~i(xUUk-Xizi))} (3*34)
»=o

Thus for minimum £ fc,

»=o i= 0

(3.35)

Notice the similarity between the solution here and that of (3.5); the statistical averages have
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been replaced by weighted time averages. With a little effort it is possible to show, for k>0, 

that

Qk =  Qk-i + i Y ^ ^ ^ i ^ k ^ k - ^ U k - i )  (3.36)
»=o

We can derive a recursive formula for the evaluation of the inverted matrix in (3.36) as 

follows. Suppose we have an MxM matrix P* which is related to by

P i1 =  wPr-1 +  j j iU l  (3.37)

where 77 is a positive real constant. Then

PJ1 =  w‘+1p :1 +  (3-38)
i=0

As u><1, for k large enough we can neglect the first term in comparison to the second on the 

RHS of (3.38). Thus
k

PJT1 «  ^ ( ^ w fc“‘x*x^) for k large (3.39)
7 t = 0

Note that Pi} cannot be a zero matrix because then Pq 1 has no inverse. It is usual, therefore, 

to set P_x to the identity matrix, which then ensures that the first few iterations of P^1 are 

not ill-conditioned. Ill-conditioning of P^1 means that small deviations in the elements of the 

matrix can lead to large changes in the inverse P*. Large errors and instability can then arise 

because of computer round-off errors, the degree depending on the numerical precision 

available.

Consider now the recursive formula

Qk = £fc-i+^P*4(*fc-2Ujb-i) (3.40)

If at some high enough k} Pk is approximated by (3.39) and is the least squares solution 

at time (k— 1)T, then ck will, from (3.36), be the least squares solution at time kT. We need 

to show that from any initial starting vector c_x, c* does converge to the least squares solution. 

With a little rearranging of (3.40) and substituting for jĉ x* from (3.37), it is possible to show
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that

pr's* = «Pii, Si-i+Ws:** = “1+ip:1 s - .+ |E « ‘- f e (3.41)
i=0

For P_j and c_j fixed at some initial value, the first term on the RHS of (3.41) becomes 

negligible in comparison to the second for k large enough, and thus ck tends to the solution in 

(3.35). It is usual to set £_!=(), so the first term in (3.41) is zero anyway. The algorithm can 

now be stated. At time kT the necessary ordered computations for updating to c* are:

(>) 'k =

(io k* =  (ij+s£pl_ is j r ipl _1z i (= ^ p tsi)

(Hi) pt =  i(P»_1-k lslPt. 1)

(if) S k = Sjt.j+k t e k

-  ( .H i  f) (3.42)

The parameter r) controls the initial convergence of the algorithm from start. A large T) means 

that we need to wait longer before (3.39) becomes valid, and too small a tj means that the first 

few iterations of Pj"1 will become ill-conditioned. The weighting coefficient u> also influences 

the initial convergence, but is primarily viewed as the parameter that controls adaptability to 

time-varying conditions. The faster the change of cfc Qpj. (3.5) with k, the smaller must to be in 

order to keep track. However, the smaller the value of w the greater the influence of noise, and 

too small a w also leads to ill-conditioning of P*1. For cJbopt time-invariant, u can be set 

close to unity.

The RLS algorithm described here is often referred to as the RLS Kalman (RLSK), because it 

is a variant of the Kalman filter algorithm [61]. It is recognised as the fastest known adaptive 

process [24], [62]. The vector kj. in (3.42) is frequently called the Kalman gain vector. The use 

of the Kalman filter algorithm for adaptive equalization was first demonstrated in [61]. For a 

time-invariant ĉ  opt, it is demonstrated in [61] that the speed of convergence (with w =l) is 

fairly insensitive to rj, provided rj is reasonably small but not zero (we will demonstrate its 

influence later on in chapters 6 and 7). Further, the convergence time can be shown to be of 

the order of M iterations, which is usually about 3-10 times faster than the SD algorithm [63].
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Comparison of the RLSK (3.40) with the orthogonal SD (3.31) suggests that the high speed is 

achieved because we are performing a kind of self-orthogonalization with the matrix Pfc, so 

that insensitivity to the eigenvalue spread of R* is obtained. This is true, in that the RLSK 

algorithm is insensitive to eigenvalue spread [3], but still its convergence can be considerably 

faster than the orthogonal SD algorithm [63]. As to why this might be so, consider the 

situation in which we have the M input vectors and desired values xf, z,-, 0<i<M— 1. Then, 

assuming ciQpj. does not vary much over 0<i<.A/—1, to determine the M elements of we 

have the M unique equations (assuming the {x,} are linearly independent of each other)

-i-Af-i =  zi 0<i<M— 1 (3.43)

Weighting the ith equation with and multiplying both sides by x* we can solve (3.43)

to get

-Af-l
M —l M — 1

=  ( T ,  k" - 1-'***,) (3.44)
1=0 »=o

Thus, if the influence of P_x in the RLSK algorithm is negligible by about M iterations we will 

have obtained an estimated vector that is quite close to its steady-state value. A more detailed 

explanation of the fast convergence of RLS algorithms can be found in [63].

A problem with the RLSK algorithm is that it can become numerically unstable [3], [16], [64]. 

The main reason for this is that Pfc is computed as the difference of two positive semi-definite 

matrices. Computer round-off errors mean that with each iteration the numerical accuracy in 

Pfc is reduced. This may result in a P* matrix which is indefinite, i.e. having both positive and 

negative eigenvalues. To alleviate the problem, algorithms have been developed which avoid 

the computation of P* according to (3.42). These are based on the decomposition of Pk in the 

form

Pt =  U;Dt Ui (3.45)

where U* is an upper triangular matrix (with unit diagonal elements) and D*. is a diagonal 

matrix with real positive elements. Such a decomposition is called a U-D factorization or
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square-root factorization, although the computation of square roots is not required. The U-D 

factorization procedure guarantees non-negativity of the P* covariance matrix. The time 

updating is performed on Ufc and D*. In this thesis we shall employ the basic RLSK algorithm 

described here but with U-D factorization of Pfc, and shall refer to it as the Sqaure-Root- 

Kalman (SRK) algorithm. It is identical to the algorithm referred to as the Square-Root- 

Kalman in [16]. Appendix C lists the computational steps needed to realize the algorithm on a 

computer, the extensive mathematical manipulations needed to prove them being in [16]. At 

start-up, the matrices D_: and U_x are each equal to the unit identity matrix, and c_x is an 

all-zero vector.

From Appendix C we see that the number of computations per iteration is proportional to M2. 

As observed in the next section, the input vector xt+1 contains a number of elements of the 

previous vector xk “shifted” along. Algorithms that take advantage of this shifting property 

are the Fast Kalman algorithm [3], [65] and the Fast Transversal Filter (FTF) algorithms [93], 

these schemes having the number of computations per iteration now only proportional to M. 

They are found, however, to be more numerically unstable than the RLSK algorithm of (3.42) 

[16], [24]. Another algorithm based on minimization of the least square error, and which also 

takes advantage of the shifting property, is the RLS adaptive lattice algorithm [3], [24], [62], 

[64], [71], which uses lattice filters to implement the equalizer instead of digital transversal 

ones. It has the advantage of being order recursive, i.e. an additional new stage to the lattice 

filter does not alter the state of the other stages, unlike digital transversal filters whose 

coefficients all change with a different number of taps. It is also more numerically stable than 

the RLSK algorithm of (3.42). Like the Fast Kalman and FTF algorithms, its complexity is 

proportional to M, which in this case is the number of lattice stages, but with a significantly 

larger proportionality factor. For this reason, as pointed out in [16] for the DFE, the SRK 

algorithm may be more efficient in terms of computations than the RLS adaptive lattice 

algorithm for typical HF channels. “Normalized” versions [24], [93] of FTF and RLS adaptive 

lattice algorithms have improved numerical stability, but require the computation of square
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roots, the RLS adaptive lattice needing more. Where digital precision is limited, special 

“restart” or “rescue” schemes are required to mitigate the effect of numerical errors, these 

being most needed in the Fast Kalman and FTF algorithms [93], [95], [96]. It is stated in [95], 

[96] that the SRK algorithm of [16] produces the most numerically stable version of the RLS 

adaptive transversal filter. In terms of performance, neglecting numerical errors, the RLSK, 

Fast Kalman and RLS adaptive lattice algorithms are all similar and equally fast converging 

[62], as one would expect since they minimize the same cost function.

3.3 Application to Equalizer Adaptation

The vectors x*, ck and scalar zk take the following forms for the DFE and MLSE equalizer 

structures.

3.3.1 The DFE(iy,<?)

The conventional approach is to have

si =  [Tk rk+1 rk+N- 1 Sk- 1 *1-2 ••• n - j ]  (3-46)

(3-47)

where M=N+g. It can be verified by taking expectations in (3.5) that

“Jk.Opt =  K o  wkl ••• wk,N-l ~bkl ~bk2 ••• ~bkg) (3-48)

where {bki} and {tu*,} are as given in (2.133) and (2.137) of chapter 2. The vector ck is a 

better estimate of cfc than cJfc_1 is, but it is cfc-1 that has to be used as the estimate of 

~jfc,opt in detectinS Sk-

3.3.2 Channel Estimation

For the MLSE (using the original VA) we need to know the sampled impulse response of the 

resultant channel as seen by the decision device in fig. 2.5; i.c. the vector
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yl =  (Vko Vki ••• Vkg] (3.49)

(Note: do not confuse the (#+l)-component vector yk with the TV-component vector y -̂ in 

(2.129)). The adaptation problem is therefore one of channel estimation, requiring

k—q ^k—q—1 ••• Ĵb—q — <?] (3.50)

1II (3.51)

Vector 0p t=:yjfc-9J and Qk-i *s >̂es*' available estimate of y* for use by the MLSE when 

processing the received sample r*. Obviously the longer the delay q is, the more inaccurate is 

the estimate of yk for a time-varying channel. Predictive methods have been investigated in 

[66] as a means for improving the channel estimate over significant delays. Another strategy is 

to use “soft” decisions for sk_iy 0<i<g, enabling us to set <7=0 in (3.50) and (3.51). This can 

take the form of obtaining a “soft” sk according to some cost function criterion in the MLSE, 

or, at the expense of greater complexity, having a DFE produce it. For a near-MLSE we 

effectively already have a DFE anyway, because the digital pre-filter W(f) required by it is 

approximated (at low noise and large enough TV) by the feedforward section, the feedback 

section plus bk0 = l representing the (<7+l)-length sampled impulse response seen by the near- 

MLSE.

3.3.3 Training/Decision-Directed Mode

It will be noticed that z k depends on the data symbols, in which case the adaptation algorithm 

can be called data-aided. In the start-up of the adaptation process the receiver knows the 

transmitted data symbols (receiver is in training mode), normal transmission only beginning 

when convergence has been achieved to the extent that receiver decisions are reliable enough to 

be used (receiver now in decision-directed mode). Notice that in decision-directed mode for a 

rectangular QAM constellation there are four possible solutions to cfcQp ,̂ these corresponding 

to our detecting sk as

sk
jfti/2e i=0, 1, 2 or 3 (3.52)
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For z=0 the training mode solution is obtained. If it ever arises that z^O in (3.52), there is no 

problem as long as the information on which quadrant (in the complex plane) the kth data 

symbol is in is encoded as the quadrant change between the sJt_1 and sk transmitted symbols, 

and not the actual quadrant in which sk is in (e.g. see [42]).
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Chapter 4

THE HF CHANNEL M ODEL

In this thesis we shall adopt the guassian-scatter model, described in [4], to represent a 

voiceband HF ionospheric channel. As stated in [4], the model can accurately represent a 

major portion of typical HF ionospheric links, exceptions being those channels that have a 

specular (non-fading) path present. Experimental verification of the model is given in [67]. 

For a detailed description of the characteristics of the HF medium, see [2].

In this chapter we shall describe the gaussian-scatter model referred to above, and explain how 

it has been applied and implemented in this thesis. The discussion will deal with the basic 

assumptions regarding the models of the two-path and three-path channels tested, and the 

length of time over which readings are taken. We shall also discuss the problem of carrier 

phase recovery.

4.1 The Gaussian-Scatter Model

Suppose there are P paths present, and that a path t has associated with it a fixed delay ir

relative to the first or earliest path. Fig. 4.1 depicts the model of the ith path. For a signal

at the input (as in fig. 2.1), the signal at the output is given by 
^7r/c(<-rl-)1

Re{Gt(<)x(<— r,)e }. The complex function (?,-(<) is given by

m  =  Gi M ^ J + Gib{ t ) ^ (4.1)

where the “a” and “ft” subscripts identify the two magnetoionic components (whose difference 

in delay is negligible) that are generally present in each path. The quantities Gia(t) and 

Gib(t) are independent complex gaussian ergodic random processes, each with zero mean and 

independent real and imaginary components with equal variances. The statistical variation of 

Gi(i) is independent with respect to each path. The amplitudes of Gia(t) and Gih(t) have 

Rayleigh probability distribution functions, to give rise to what is commonly called Rayleigh 

fading. The quantities via and v ih represent the Doppler frequency shifts for the two



input signal

Re{ <?.-(<)}

Fig. 4.1 Model of i th path of HF channel.
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magnetoionic components. The power spectrums of random processes Gia(i) and Gib(t) are 

gaussian functions centred on zer<5, It will be assumed here that

uia — uih = u^ and that the variances of the gaussian power spectrums of the two magnetoionic 

components are equal. Then we can write for (?,(<)

G M  = (4.2)

Fa U) =  =  FT of EIG K ^G ^+f)] (4.3)
f r

where FG{f) is the power spectrum of £?,-(<) and At the attenuation. The quantity 2fr is the 

Doppler (or frequency) spread of G^t), which we have assumed to be approximately the same 

for each path; it represents the rate with which G,(<) changes with time, and will often be 

referred to as the fade rate. From [4], it is quite valid to describe (?,•(<) by (4.2) and (4.3) for 

some low path rays, and often also for high rays where the two magnetoionic components have 

such large differences in delay that they can effectively be treated as distinct paths.

A method for estimating HF channel parameters like Doppler spread, multipath spread, 

Doppler shift and signal-to-noise ratio, in real-time, is given in [68]. The estimated parameters 

can then be used in numerous ways in adaptive HF communication setups, including real-time 

channel quality evaluation for link or equipment adaptation [68].

In chapter 2, fig. 2.1, the transmission medium’s causal impulse response was denoted as /t0(r), 

which does not imply any time variation in the transmission characteristic. Let us now denote 

it as A0(r;<), the t variable expressing its time variation property. From fig. 4.1 we can write 

h0(r]t) =  ^Re{G,(<) [ ^ ( r - r j  -  } (4.4)

where it is assumed r o=0. From (2.8) and (2.13),

y(r;t) =  [a(r)*(/io(r;<)e
-j2?r/e(r +  <1) #(<)

(4.5)

Notice that we have modified ^ to be a possibly time-varying phase difference <f>(t). The FT of 

[6{T)-l/(jnT)} is a step function of height 2 starting at the origin. Then since the FT of real
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waveform a(i) is zero beyond the carrier frequency f c,

P - i
E»=o

/  .x /  \r  -i27r/c(r »+^i)y{r]i) =  e 2 ^ a(r - r «)Gi(<)e (4.6)

For simplicity we assume u{ — u for all paths, to give

r i m  p-̂ a ( r - r t.)G,(*)
«=o

where =  <j>{t) — 2TTVt

- j2Wc(t,- +  <i)

(4.7)

(4.8)

the complex constant e ' '1/ being incorporated into G,(<) without any loss of

generality (time delays r t- and ^  are taken to be fixed). The z-transform of the sampled 

waveform of impulse response y(r;<), which we defined in (2.113) and (2.117), but without 

a subscript k to denote time dependence, is

SW M  =  ^  E  E  ^  -(■'I,+  A - r m)Gitmz-i (4.9)
»=0 m=0

9

zi=0

where <f)'k and Gkm are the values of and Gm(<) respectively at the kth sampling instant, 

and 0<A <T. We will now digress a little to talk about the phase term

4.2 Carrier Phase Recovery

In adaptive equalization we need to keep up with the time variations of and G,•(<). The 

phase difference <j){t) between the receiver and transmitter carriers can vary with time because 

of instabilities in the local oscillators. The frequency shift (or offset) u can sometimes, under 

disturbed ionospheric conditions, be as high as 10 Hz, while on “good” or “quiet” days it is 

typically 0.01-1 Hz [2]. Apart from ^'(/), each individual path t is subject to an additional 

phase change given by the time-varying argument of G,(<). The fade rate of &,•(*) is typically 

~1 Hz or less [2], [64], but can be as high as 10 Hz on some transauroral and transequatorial 

paths [64]. If the term e ^  ^  varies much faster than G ,•(<), it is better to have a separate 

adaptive process for the purpose of tracking <f>r(t). This is because an adaptive digital filter 

(this includes a channel estimator as well) is mainly meant to compensate for, and therefore
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track, the distortion introduced by the channel’s frequency spectrum characteristic (which leads 

to ISI), as governed by the {£?,(!)} terms in (4.7). The extra burden of tracking e ^  

particularly if varying at a much faster rate, can seriously degrade performance [69]. The 

quantity is a phase change that is common to all paths, and can therefore be thought of 

as an “effective” phase difference between the transmitter and receiver carriers. Thus the task 

of following <j>'(t) is commonly referred to as carrier phase recovery or tracking. The linear 

nature of QAM permits the tracking of <f>'(t) using quite accurate data-aided techniques, 

without needing to send an auxiliary transmitted pilot tone.

Let our estimate of <p'k in (4.9) be denoted as (j>'k. Then in the case of the DFE(N,g) [46] the
j(f> J, ,

output of the feedforward section is multiplied by e , which is equivalent to multiplying 

the samples rk+ii 0<i<N— 1, in the feedforward section by e fc_1, so that xk in (3.46) is 

modified as

zl = ... i .
rk+N -le Sk-1 ’*-1 (4.10)

The update <f>k is given by an SD algorithm that seeks to adjust <p'k so that the E[|efc|2] is 

minimized, i.e.

<t>'k =  fo -l  + Vlm{Ck[ê k~lY ^ rk+i-lCk-l>i}*} (4-U )i=1

4>'k is a better estimate of <p'k than is, but we have to use <j>'k-i 35 t l̂e best available

estimate of <f>'k+i, 0<i<N— 1, in the detection of sk.

It can be seen that the update c* involves whilst <j>k involves ck_v  so that we have a kind 

of joint adaptation of c* and $'k going on. Note that for minimization of E[|eA.|2] the joint 

optimum choice of the feedforward tap coefficients and phase <j>k at the ktb instant is not 

unique, and can theoretically take on an infinite number of combinations. For example, if 

4>'k Q̂ —<f)'k-\-\p, where rp is any real value, then the optimum feedforward tap weights are given
M M 1 *|A

by those optimum tap weights for <f>'k0pt=<f>k multiplied by e . Therefore, this means that 

<j)'k is not necessarily a literal estimate of <f>lk, but should be looked on rather as a quantity that 

follows (with /x in (4.11) sufficiently high) the same rapid changes in <pk that the slower
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tracking digital filters cannot accommodate. Note that in [46] carrier demodulation is also 

carried out along with the carrier phase compensation. This is merely for convenience, and 

should make no difference. Hence in [46] one has what is termed a “passband” DFE, as 

opposed to the baseband one considered here, because demodulation of the carrier frequency is 

performed after the feedforward section.

In channel estimation for the MLSE we multiply each received sample rk_q 

(3.51) becomes

so that

zk (4.12)

and the update <j>k is given by

i t  =  i ’k - i v , n (4.13)

_j<h’
The MLSE at the kth instant operates directly on rk using e J k~1ck_1 as an estimate of yyjb*

For further details and analysis of carrier phase recovery, see [46], [52], [53], [69], [70].

4.3 Channel Configurations Tested

This thesis is concerned with the adaptation of the digital receiver filter, the desired function of 

which is to mitigate the distortion caused by the {£,•(<)} terms in y(r;t) (4.7). Therefore, as 

most other contributions on the subject also do (e.g. [11], [14]—[18], [64], [66], [71]), we shall 

exclude the variation of e from our investigations; this is equivalent to assuming e

has a negligible time variation, so that it can effectively be incorporated as a constant in G^t), 

or that it is perfectly compensated for by a carrier phase recovery scheme. The CCIR [72] also 

recommend that for general qualitative testing of a system of data transmission on simulated 

HF circuits, under good/moderate/poor conditions, a two-path channel model be used with 

equal mean attenuation, equal fade rates, and no Doppler shifts for each path; assuming stable 

carrier oscillators, this then means that e is time-invariant.

With <0'(<)=O the resultant channel impulse response seen by the receiver is
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y{T-,t) = J 2 a(r ~ TiS>Gi(t)
i-Q

(4.14)

and the sampled impulse response (4.9) is

fW W  =  = E E ^  a i i T + A - r m t f ^ z - 1
1 = 0  m=0

(4.15)

Each component yki is a complex gaussian random process with fade rate 2/r, the real and 

imaginary parts being statistically independent of each other with zero means and equal 

variances. The correlation between components is

nykivU) =  E E  rE [G tmG L M ir+ A —r mK (/» r+ A —r„)
m=0 n=0

P-1
4̂,=  - ^ a ( i T + A - r m ) a * ( h T + A - T m ) (4.16)

m=0

It can be seen that the correlation is dependent on the shape of the data pulse a(<) and time 

delays {rt}. A simplification frequently made is to assume that yki, if of non-zero variance, is 

statistically independent of ykh, (true if o(l)«0 for <<0, t>T , i.e. no interference between 

adjacent pulses) and of equal variance; see, for example, [14]—[16], [64], [71]. This 

simplification will also be made here. Each non-zero yki then represents the contribution from 

a distinct transmission path, all the paths contributing equally in terms of average attenuation 

and fade rate.

It was mentioned in chapter 1 that the number of “effective” paths present in an HF channel is 

generally small. In [12], for example, a 1000 km HF link is shown to have 2-4 paths present 

in general; the channel can effectively be modelled as a three-path channel [55]. The 

investigations to be reported in this thesis are based on two configurations for f2jby(^), denoted 

as Channel A and Channel B, and depicted in fig. 4.2. Channel A is representative of a two- 

path channel with a time delay between paths of about T  secs., and is similar to the two-path 

channels used in [14]—[16], [64]. Channel B is representative of a three-path channel with a 

multipath spread of about 2T secs., and is similar to the three-path channels used in [14], [64], 

[71]. In terms of multipath spread, the channels can be classed as being “good”, in the sense
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Channel A

E[l^ .-|2] =  \  for i'= l, 2

1
2

<-----------------►
T

1
2

Channel B

E[|yfci|2] =  |  for i = l ,  2, 3

1
3

1
3

T T

Fig. 4.2 Channel configurations.
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that the spread is kept to a minimum for the given number of resolvable paths.

For midlatitude paths the fade rate is typically between 0.1 and 1.0 Hz [64], with more 

extreme fading in the range 1.0 to 10.0 Hz being encountered on certain transauroral and 

transequatorial paths. Most simulation studies concerning transmission over HF channels have 

assumed fade rates of 2.0 Hz or less, the most commonly used being 1.0 Hz. In this thesis we 

shall examine performance primarily at the highest fade rate for midlatitude paths, namely 1.0 

Hz, and to a lesser extent we will also look at performance at a fade rate of 2.0 Hz. 

Furthermore, the performance in mode I, where adaptation is assumed perfect, can 

equivalently be viewed as performance at a very low fade rate, since the tracking algorithm is 

then able to follow the channel’s variations with negligible error. Thus, altogether, three 

different fade rates will be examined. In future the abbreviation f.r. will sometimes be used for 

“fade rate”, and should not be confused with / r; the relationship is f.r.=2f r.

Note that although it is assumed T“1=2400, the results of our investigations could equally 

well be interpreted as being for T_1 =  1200, with the fade rates of 1.0 Hz and 2.0 Hz then 

becoming 0.5 Hz and 1.0 Hz respectively. The multipath spreads would also be twice as large.

4.4 Notes on Implementation

4.4.1 Model of the Transmission System

The basic model of the transmission system, as implemented on the computer, is shown in fig. 

4.3. An outline of the simulation process is as follows. At each new time instant kT the data 

symbols are shifted along in the shift register shown in fig. 4.3, and a new symbol sk generated 

at the input. The channel vector yk and noise sample nk are generated, in a manner to be 

described shortly, and the multiplication and addition process carried out to produce the 

received sample rk. The contents of the transversal receiver filter are shifted along, and the 

new sample rk accepted at the input. The output of the transversal filter (which is simply rk if 

the MLSE is being used) is fed to the decision device, whereupon an estimate sk_j^+1_q of the



transmitted

noise sample
N.B. all quantities are complex

CO

Decision K - n + i-9■>: __ --------►Device

feedback section of DFE
plus threshold detector (g= 0),
or MLSE/near-MLSE algorithm (g>0)

Fig. 4.3 Model of the Transmission System.
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symbol sk_N+1_q is produced. The tracking algorithm (not indicated in fig. 4.3) then adjusts 

the appropriate parameters in the receiver, ready for the next time instant (fc-fl)T.

The simulation programs, given in Appendix I, are written in Fortran-77 and were run on a 

Cyber 170-720 mainframe computer, which uses 60 bit words with 48 bits (equivalent to 

approximately 14 decimal digits) for the mantissa.

4.4.2 Signal-to-Noise Ratio

The kth sample at the input to the transversal receiver filter is

9
rk =  J 2 Sk-iyki + n* (4'17)* = 0

and the signal-to-noise ratio is therefore

SNRk =  4  E lJ /ii l2 (4-18)
a'n i=0

The average signal-to-noise ratio is

SNR =  E [SNRk] =  4  =  \  (4-19)
G n

where, as shown in fig. 4.2., the variance of the {yj.,}, 0<i<y, are normalized so that their sum 

is unity, i.e

E[|y*i|2] =  (^T) for (4-20)

In practice the receiver employs an automatic-gain-control (AGC) amplifier to bring the level 

of the received signal into its dynamic range, e.g. see [16].

For convenience of layout of the graphs in this thesis, the definition of signal-to-noise ratio as 

given in (4.19) is adopted. For comparing different data constellation sizes it is more fair, 

however, to divide SNR by the number of bits per symbol. Hence it should be remembered 

that for obtaining the signal-to-noise ratio per bit from SNR (dB) the values should be 

adjusted as follows:
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(i) 64 QAM = 6 bits per symbol; therefore subtract approximately 8 dB.

(ii) 16 QAM = 4 bits per symbol; therefore subtract approximately 6 dB.

(in) 4 QAM = 2 bits per symbol; therefore subtract approximately 3 dB.

4.4.3 Generation of {yH}, {nfc} and {sfc}

The series of values ... yJk_l t- , yki , yfc+li ... are samples of a complex gaussian ergodic

random process with zero mean and independent real and imaginary components with equal

variances. The power spectrum of the random process is gaussian with variance fi. The
_ i 2 O f f  7r

FT of (-J27T /r)_1e J n  r) is e  ̂ r '  ; hence the correlation between samples isinverse

EfV 1 -  ^ _ e-2 (/r* (* -* m 2
-  (5+ l ) e (4.21)

Consider the T-spaced samples given by

Vki =  J 2 nmifikT- mTl) (4.22)

where {nmi} are rate Tf1 samples of a complex gaussian ergodic random process with zero 

mean and independent real and imaginary components with equal variances. The power 

spectrum of the random process is constant (process is therefore white) with value , so that

E[nmi«Ii] =  *1 Smh (4.23)

The quantity f(i) is a real function. Since the {yfct} as defined by (4.22) are linear functions of 

{nm»)> ft follows that they too are samples of a complex gaussian ergodic random process with 

zero mean and independent real and imaginary components with equal variances. Denoting 

the FT of f{i) as F{f), the correlation between samples is

E f o n J i , ]  =  fikT-mT,) n h T -m T J
m

=  f  F(u)J2^ kT- mTl)r (w )e-i2^ hT- mT' ) iu dw
- 0 0 - 0 0
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oo oo
=  O 1 „  . fl,K(uk—wh)Ty-^ ?27r(to—u)mT, . ,F(u)F(w)e v '  2 j e J  v ’ 1 du dw

-00-00

Using the relation

E j27r(w—u)mT1 j
"  * ? « — !!>

wc obtain
oo

! ! [ ,„ * ]  =  $  (  F ( C f ( « + ^ )  e-f i *kmT/T' k~ h)Tiu
-oo m

Assume Tx is such that

Then

F(u)F*(u+Ifr) ~  0 for m^O
J i

oo
l^(u) r  e-

2 j2Tru(k—h)T du
-oo

Clearly (£r2/7 11)|F(/)|2 is the power spectrum of the random process of which 

samples. In order to satisfy (4.21) we then require that

-/7(2j?)
f t ™ *  =

Choosing o-2= r m e a n s  we can have

F(f) =
Tx

 ̂ ^  fr

Therefore /(*) =  ^2^2^~T\fr e Tx -<2/(2Tf)
T2

where T  =  1
2 2-|2  fr 7T

In order to satisfy (4.27) we need

r (2/rT\r2 = - lA T j/T t f  1

If we select 7\ =  0.4 T2

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

{ft.-}

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

then (4.33) becomes
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e 12.5?r2 «  2.64 x 10~54 <  1 (4.35)

and f[i) is

Kt) =_  i -<2/(2 Tg) (4.36)
-J 2.5-sf7T

To sum up, the rate T-1 samples representing the time variation of the ith component of 

the channel sampled impulse response can be generated by passing white gaussian samples 

at rate 2Y1, through a filter f(t) of impulse response given by (4.36) (with T’2=2.5T1).

In practice we shall approximate f[i) by the waveform depicted in fig. 4.4, this waveform 

agreeing with (4.36) at the 13 sample points shown. Linear interpolation is used between the 

sample points. The relationship between Tlj T  and fr is (from (4.32) and (4.34))

S  =  1
T  542 5T/r r

(4.37)

If we select to be a multiple of T, then the clocking period of the {«*,} samples is a 

multiple of the baud period, which provides for easier program implementation. With 

r _1 =  2400, Tj/7^216 => / r «0.5001757 Hz and 7 \/r= 108  => /r «1.000351 Hz, which

clearly shows that accurate fade rates of 1.0 Hz and 2.0 Hz can be achieved.

The method of generating the {y*,} that has been described here is a more refined version of 

the one described in [73], where the accuracy of the method is demonstrated using {n*.,-} that 

are simple binary sequences and approximations to f(t) that are much cruder than that in fig. 

4.4.

Each of the elements in the channel impulse response vector yfc has its own independent 

generating sequence {n*,-}, 0<t<£. It will be noticed that, apart from a multiplying constant, 

the random sequence {nfcl} is statistically equivalent to the noise sample sequence {n^} in 

(4.17). Thus the method of producing the noise samples {«*} and the {n*,-} samples for the 

{2/jfc*}» ^  the same, and is described in Appendix D. It employs the computer’s own

random generating function which, for any initial starting “seed”, produces a sequence of real
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Fig. 4.4 Approximation to Gaussian Function (^2.5-ĵF -<2/(27 |)
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numbers varying between 0 and 1 with a uniform probability distribution. Each number in a 

sequence is statistically independent from any other, and different starting seeds produce 

independent sequences.

The method of generating a sequence of statistically independent data symbols {sfc} is also 

based on the computer’s random generating function. The range 0 to 1 is divided into L2 

equal sub-intervals, so that a random real number falling into any particular sub-interval 

designates a particular data symbol to be transmitted.

4.5 Time Span Observed

To gauge performance of the different detection techniques using tracking algorithms, it is 

necessary, for practical reasons, to make measurements from some limited observation time of 

the received signal. Figs. 4.5 and 4.6 depict a typical variation with time of the norm gy*])2 of 

the channel impulse response vector yfc, for Channel A and Channel B respectively. The time 

span is 25 fade periods. The graphs are indicative of the fading pattern of the instantaneous 

signal-to-noise ratio SNRk (4.18). The norm |yjt[2 for Channel B is |  times that for Channel 

A, plus the contribution from an extra component, \yk2\2'

In this thesis all measurements conducted over Channel A and Channel B are based on the 

respective fading patterns in figs. 4.5 and 4.6. For a fade rate of 1.0 Hz and 2.0 Hz, the 25 

fade period time span corresponds to the transmission of 60,000 and 30,000 data symbols 

respectively. In the next chapter the effects on performance measure of using a limited 

observation time will be discussed briefly. The sequences of 60,000 and 30,000 data symbols 

and noise samples are the same for all measurements, unless specifically stated otherwise, with 

the 30,000-sequences being the first 30,000 of the 60,000-sequences.
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Chapter 5

M O DE I PERFORM ANCE

In this thesis we will examine three modes of detection at the receiver. These are:

mode I: receiver always knows channel state perfectly, i.e. perfect tracking assumed. This is 

equivalent to having a very slow fading channel, such that the error in adaptation is negligible.

mode II: tracking algorithm uses correct data symbols at all times, i.e. receiver decisions not 

allowed to affect adaptation.

mode III: tracking algorithm uses receiver decisions on data symbols. This, of course, 

represents the situation to be encountered in practice.

In addition, mention of modes I and II may sometimes bear a subscript of “1” or “2” that has 

relevance to the DFE only. Subscript “1” refers to the situation where the feedback process 

uses correct data symbols, thus eliminating any propagative error effect in receiver decisions. 

Subscript “2” refers to the situation where the feedback process uses previous receiver decisions. 

Comparison of performance in situation “1” with that in situation “2” will reveal the effect of 

error propagation in the DFE. As the number of decision errors in situation “1” gets smaller, 

the performance in situation “2” should tend to that in situation “1”. In mode III the 

feedback process of the DFE uses receiver decisions always. Frequently we will use an 

abbreviation like say DFE-I^ which denotes operation of the DFE in mode Ix.

Mode I tells us the “ideal” performance one can expect from a particular decision device, and 

this chapter is going to look at this aspect. We shall look at the performance of the ZF MFE, 

and compare this with the DFE(N,g)t with N taking on various values. This will reveal how 

far the finite-tap DFE is from the very best that can be expected. The DFE is also compared 

with the MLSE/near-MLSE and merits discussed. To begin with, however, we will talk a little 

about the performance criteria that will be used in this and subsequent chapters.
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5.1 Performance Criteria

5.1.1 Probability of Error

5.1.1.1 Threshold Detection, as used in the DFE and MFE

The two most popular criteria for performance evaluation in the detection of data are the mean 

square error and the probability of error, the latter by far being the more informative. In the 

presence of gaussian noise and no ISI the probability of error in the detection of a data symbol 

can be calculated quite straightforwardly.

A difficulty arises when ISI is present due to the fact that a closed form expression for the 

probability distribution function (p.d.f.) of the ISI is almost impossible to obtain. This is 

further compounded in a time-varying environment because the p.d.f. of the ISI is then 

constantly changing. More problems arise in the feedback process of a DFE because it can lead 

to propagative effects should a decision error occur. Consequently virtually all error rate 

performance evaluations over HF links (and some time-invariant channels too) in the literature 

use the brute force approach of actually counting the number of errors that have occurred and 

dividing by the total number of symbols transmitted. A drawback with this method is that 

to obtain error estimates below ~1 in 104 usually entails the transmission of quite long 

sequences of symbols, and so rarely is the observed error probability below 10-4.

The probability of error in modes I2, II2 and III, because of the difficulty in analysing the 

effect of propagation, will be examined using the error-count approach. Modes Ix and 11̂  

however, can be handled using an analytical method that estimates the error probability using 

the statistics of the noise and ISI. Such a procedure enables us in theory to measure the error 

rate up to 1 in 104 and beyond. We will now mention a few of the methods available for 

measuring the probability of error in modes Ix and IIj.

It is possible to get an exact expression for the probability of error in the presence of ISI using 

a series expansion technique [74], but the method can be rather involved. The hard effort in
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obtaining an exact answer has naturally led to the development of more easily calculable 

bounds on the error rate. Perhaps the simplest of these is the upper bound formulated by 

Saltzberg [75], which is based on the Chernoff bound. The Saltzberg bound suffers from being 

too loose in the region of most practical interest [78], [79], a fact confirmed in our own tests 

(the Saltzberg bound is used in [80] to measure the probability of error on a two-path 

microwave channel that assumes perfect knowledge of the channel and no propagation in the 

DFE). Other bounds by Milewski [76] and McLane [77] are tighter but require that the peak 

distortion, or eye-opening, (defined in Appendix E) be less than 1. This is not always the case 

in our situation, especially during a deep fade (when tracking will be suffering) and with 64 

QAM. The “sharp” upper and lower Chebyshev bounds of [78] were found by us to be very 

tight when using 4 QAM but extremely loose with 64 QAM. This was most likely due to the 

increased peak distortion that was present at the higher constellation size.

An attractive set of bounds has been formulated by Jenq, Liu and Thomas [79]. Here a simple 

lower bound, an upper bound, and a simple approximation to the upper bound which is twice 

the lower bound, are derived. Thus either the lower bound or the approximation to the upper 

bound can be taken as a good approximation to the actual probability of error. We have 

derived the bounds in Appendix E, slightly diffrently from [79], and show that one can obtain 

a tighter lower bound than that given in [79]. More precisely, the approximation to the upper 

bound is now only at most twice the lower bound, and we show in Appendix E that the two 

bounds tend to coincide as the peak distortion decreases, whereas in [79] they always remain 3 

dB apart. In this thesis we adopt the upper bound, as given in Appendix E, as our measure for 

the probability of error. It is evaluated at each time instant kT to take into account the time 

variation of the transmission medium, and then averaged with previous values.

In future we shall denote the probability of error at any instant kT, relevant only when we 

employ the analytical method, by Pefc. The average (over time) probability of error will be 

denoted as Pe, even when we use the error-count approach, although wc shall identify that 

situation with the abbreviation “E.C.”. Besides modes Ix and IIl5 the analytical Pe estimate
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will prove useful in mode III under certain conditions, as will be seen later in chapter 8.

It is important to mention the distinction between probability of symbol error, as we use in 

this thesis, and the probability of a bit error, or bit error rate as it is usually called. It is 

common practice, e.g. [42], to have the original data in the form of binary, and then to code 

sets of 21og2L bits into the Z2-level data symbols that are to be transmitted. Thus, although 

we can say that the bit error rate will be lower than the symbol error rate, its precise value is 

dependent on the coding scheme used.

5.1.1.2 MLSE/near-MLSE

The probability of error for an MLSE, as implemented by the VA, is also very difficult to 

evaluate exactly, perhaps more so than the DFE. Bounds on the error rate, which can be fairly 

tight, have been developed [3], [23], [30], [33] assuming perfect knowledge of the channel 

impulse response, which implies the only error in the cost evaluation process of the true 

survivor comes from gaussian noise. The evaluation of these bounds can still be quite involved, 

relying on the determination of a “minimum distance” quantity that also changes as the 

channel medium does. When there is imperfect knowledge of the channel impulse response, the 

error in the cost evaluation process of the true survivor now also involves contributions from 

data symbols. In [34] an attempt to upper bound performance with this added degradation is 

made by application of the Chernoff bound.

The storage and computational requirements of implementing an MLSE using 16 and 64 QAM 

force us to adopt a sub-optimum near-MLSE scheme, which uses an adaptive pre-filter. The 

prospect of estimating the probability of error by analysis now becomes even more daunting. 

In view of all the difficulties mentioned, we shall therefore measure error rate performance by 

the error-count approach for the MLSE and near-MLSE.

5.1.2 Mean Square Error

In modes Ij and IIx there are two ways of calculating the average (over time) mean square
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error in detection in the DFE. The first, which is more costly, is that knowing the true 

channel state and the DFE taps we can calculate what the coefficients of the interference terms 

from data symbols are. Adding together the squared magnitude of each coefficient and 

multiplying by a? gives us the mean square interference from data symbols, and then adding 

this to the variance of the noise (equal to the sum of the squared magnitudes of each 

feedforward tap multiplied by an) gives us the mean square error at any instant, £k. 

Averaging £k over time gives us the average mean square error. The second way is to simply 

subtract the true symbol at the kth instant, s*, from the pre-threshold estimate s*, and then 

average the squared magnitude of this error over time. Over a long enough time interval the 

two methods should produce the same result, since the data symbols, noise and channel state 

all vary independently, and over the 25 fade period time spans used here this was found to be 

virtually so, the difference being negligible. In this thesis we have used the first method, at no 

great cost, since the calculation of the interference terms is already required in the evaluation 

of the analytical estimate Pek.

In future we shall denote the average mean square error as f. However, we will not use this 

criterion as much as the more interesting probability of error, restricting its use to the DFE in 

modes Ix and IIj. In the MLSE there is no directly comparable performance measure to f, 

since there is no analagous quantitiy to a pre-threshold estimate of a data symbol.

5.2 ZFMFE(g-t-l)

In chapter 2 it was shown that the best performance, in terms of probability of error, is 

achieved with a ZF MFE, in which the interference from data symbols is zero. From (2.150) 

and Appendix E we can write the probability of error at instant kT as

P'k ~  2 (l-i)e rfc (!= H ) (5.1)

where yfc0 is given by

ylo — [ V k o  Vk+1,1 • • •  Vk+g,g] (5.2)
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Vector y^g should not be confused with vector yfc, which is given by

y* =  [yto I'm ••• vtg] (5.3)

although for a slowly fading channel c.f. baud rate it would not be unsafe to assume y^o^Y*- 

Notice that the argument of the erfc(.) term in (5.1) is the reciprocal of the square root of £t,

the mean square error in detection at time kT.

The average probability of error, Pe, and the average mean square error, £, are formed by 

averaging samples of Pejfc and £* respectively over the fading patterns. Figs. 5.1-5.4 show Pe 

and £ for a ZF MFE averaged over 30,000 uniformly spaced samples on Channel A and 

Channel B. Pt is the lowest obtainable error rate, since it is for a ZF MFE with perfect 

knowledge of the channel state and with correct decisions on past and future data symbols. £ 

for a ZF MFE is not the minimum achievable error, but as the noise power decreases it does 

tend toward the average MSE obtained from an MMSE MFE (2.149) as shown in the figures.

It is possible to derive Pe and £ for a ZF MFE from the assumed statistics of the fading 

channel. This is done in Appendix F, from which we get (using (F.14) and (F.15))

(5.4)

{ =  2 <r?p (5.5)

for Channel A, and

(5.6)

(  =  1.5o-?p (5.7)

for Channel B, where

A =  (p(s+i y > ) 1 (5.8)

The theoretical expressions of (5.4)-(5.7) are also plotted in figs. 5.1-5.4, from which we can
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see the effect of using 25 fade periods as opposed to an infinite number. The difference is 

negligible in the £’s, but quite substantial in the Pe’s, particularly at the lower error rates. To 

confirm that the difference is due to the low number of fade periods covered, and not a 

statistically inaccurate channel model, we also made measurements (shown in figs. 5.1-5.4) 

using 60,000 uniformly spaced samples over a time span of 5400 fade periods (which is 

equivalent to a fade rate of 216 Hz with 7>_1=2400). It can be seen that the agreement with 

the theoretical Pe curves is much better, although the lower error rate values are still sensitive 

to the time span used. This was confirmed by observing that measurements using only the 

first 30,000 samples, which are over a time span of 2700 fade periods, tended to fall below the 

theoretical Pe curves at the lower error rates rather than above them as in the 5400 fade period 

case.

The reason why the lower error rates are increasingly sensitive to the number of fade periods 

covered is that as the level of noise drops, Pe is governed by the more deeper fades. Since the 

deeper the fade the less frequent its occurrance, we need to have a larger time span containing 

a sufficient number of them so as to form a good average estimate. The fact that £ exhibits a 

much closer fit to theory than Pe for the same time span is due to the performance measure 

itself; the Pc measure places a much greater weight to the deep fade occurrences.

A perhaps more economical technique to obtaining good long-term estimates of the error rate, 

rather than observing long continuous cycles of fading, is to measure the error rate at various 

“snapshot” instants of the random variation of the channel [64]. Each instant should be 

chosen independently of any other, the average of all of them providing the long-term estimate, 

and the larger the number of instants the more statistically accurate the estimate. This 

technique is fine as long as we are assuming perfect knowledge of the channel at each instant. 

In this thesis we want to observe the performance when decision-directed adaptation is 

employed, which makes it necessary for us to use a long un-interrupted sequence of received 

samples. Therefore the “snapshot” technique is unsuitable, and to enable comparison of 

“ideal” performance with “adaptation” performance is why we are thus making observations
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over a continuous fading pattern for the former situation.

It will be noticed that Channel B yields a superior performance to Channel A. This is due to 

the extra path component in Channel B, which makes a deep fade less likely to occur (as can 

be seen in the fading patterns in figs. 4.5 and 4.6) and consequently a high PCjfc and £k less 

probable. This may also explain why Channel B exhibits a better fit to the theoretical Pe 

curves than Channel A, because the fade pattern for B is less deviant from the mean. An 

interesting point from eqs. (5.4)-(5.7) is that for a given />, the value of f  for Channel B is 

always approx. 1.25 dB lower than the value for Channel A, whereas the difference between the 

Pc’s varies and can be as high as 10 dB or more, as can be seen from figs. 5.1 and 5.3. This 

suggests that the diversity advantage of Channel B is not expressed in the first-order statistic

of £*•

5.3 MMSE DFE(A,g)-Ii

Figs. 5.5-5.8 show Pc and £ for an MMSE DFE(N,g) in mode Ir for various numbers of 

feedforward taps N. The averages again use 30,000 uniformly spaced samples. The change in 

Pc and f as N varies is more marked for the higher constellation size. This is because the 

residual mean square ISI in detection is proportional to L2, and so for a given N and p the ISI 

is more influential the higher the value of L. Increasing N reduces the mean square ISI. The 

increased coincidence of the curves as N increases suggests that performance close to that with 

N= oo can be achieved with a modest number of feedforward taps.

Figs. 5.5 and 5.7 also show the advantage of a ZF MFE over an MMSE DFE. This advantage, 

in terms of SAP, is given in Table 5.1 for Pe =  10-3 and 10-6 with N at its largest value. 

Bearing in mind that the Pc curves for the DFE have a lower bound at most 3 dB less, the 

advantage of the ZF MFE, and therefore also the MLSE, over the MMSE DFE does not appear 

to be spectacular. A similar observation, using 4 QAM, was made recently in [81] from 

measurements on real HF channels and using a different performance measure (that of 

“minimum distance”) which also, as here, ignores the effect of propagation in the DFE.
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SNR loss (dB) 

of MMSE DFE 

c.f. ZF MFE

Channel A Channel B

Pc =  10~3 Pe =  10"6 Pe = 10"3 Pe =  10"6

4 QAM 1.3 2.0 1.4 1.0

16 QAM 1.9 2.6 1.8 1.1

64 QAM 2.1 3.0 1.8 1.3

Table 5.1 Advantage of ZF MFE over MMSE DFE.

Notice that the advantage of the MFE over the DFE is slightly higher for the larger 

constellation size, which is due to the increased residual mean square ISI in detection in the 

DFE. An interesting feature in figs. 5.5-5.8 is that for the same £ level, at a given A, the 

corresponding Pe level is higher for Channel A than for Channel B. This suggests that for the 

same £, the time variance of £* is greater for Channel A than Channel B, thus producing a 

larger error rate. Also, in terms of £, the difference between Channel A and Channel B for the 

DFE(A,<7) curves with N> 6 is quite small, in contrast to the more substantial difference in 

terms of Pe. This indicates that the £ criterion does not demonstrate the diversity advantage 

of Channel B.

Notice from figs. 5.5 and 5.7 the significant advantage in SNR an extra path component has on 

the Pe performance. Roughly speaking, for a Pt of 10-3 and 10“6 there is a power saving on 

Channel B of about 4 dB and 6 dB respectively, relative to Channel A.

One might expect that the DFE performance be closer to the MFE performance on Channel A 

than on Channel B, because of the reduced ISI on average present on A. This is borne out by 

the £ curves and the higher error rate part of the Pt curves. The difference (in terms of SNR) 

between the MFE and DFE appears slightly larger for Channel A than Channel B on the low 

error rate portion of the Pe curves. This is most likely due to the reasons given in the last 

section, where the lower Pe measurements, unlike the £ measurements, are more dependent on 

the actual limited fading pattern covered. This could therefore make them less representative
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of a truly long-term average value, this likelihood being greater for Channel A.

We shall in future be using a DFE with A=6 on both Channel A and Channel B, this value of 

N appearing to give a performance that would be reasonably close to that with N=  oo for all 

constellation sizes without also being unduly large. It should be noted, however, that for a 

given accuracy we can get away with fewer feedforward taps to approximate to the DFE(oo,^) 

when using a smaller constellation size.

Fig. 5.9 shows a plot of the ratio of the average mean square noise to the average mean square 

ISI, these two quantities being the constituents of the average mean square error in detection 

for the DFE. It is straightforward to show, using eqs. (2.35), (2.55) and (2.59), that for the 

time-invariant MMSE DFE(oo,^) this ratio is monotonically increasing with decreasing p. In 

the case being studied here we have a finite number of feedforward taps, which means, unlike 

for the infinite-tap case, that the mean square ISI can never be zero when more than one 

feedforward tap is non-zero. In this thesis the feedforward section of the DFE(6,^) will be used 

as an approximation to the feedforward section of the ZF DFE(oo,^) (whose mean square error 

in detection consists entirely of gaussian noise), as is ideally required by a reduced-state near- 

MLSE. The graph of fig. 5.9 indicates that for the MMSE DFE(6,^) the gaussian noise 

dominates the ISI on average; above SNR= 10 dB the noise:ISI ratio is greater than 2.5:1, 

above 20 dB it is greater than 7:1, and above 27.5 dB it is greater than 10:1.

5.4 MLSE/near-MLSE and MMSE DFE(6,g)

Implementing an MLSE by means of the VA requires that we always hold in store I?9 

survivor-sequences, and at each new time instant carry out £2̂ 9+1̂  cost evaluations and 

comparisons, as detailed in chapter 2. Using 4 QAM, implementation of the VA is not a great 

problem, but with 16 and 64 QAM it becomes rather expensive. We have therefore decided to 

implement a near-MLSE when using these larger constellations. The sub-optimum scheme 

chosen, w hich is a type of reduced-state VA, is one that has been dev eloped m [42j for high 

data rate transmission using 64 and 256 QAM over telephone circuits, and is referred to as
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“Detector 2” in [42]. If the detector can operate satisfactorily with 64 QAM, its performance 

should be good with 16 QAM as this is just a subset of the former. The detection process is 

described in Appendix G. We have constrained it to operate with 16 survivors that are 

“expanded” into a maximum of 64 sequences during the selection process, these constraints 

being chosen (from consideration of the results in [42]) to provide a reasonable balance between 

storage/computational complexity and performance. For details on how performance varies 

with different constraints over differing quality time-invariant channels, see [42]. Since this 

detection process is a type of reduced-state VA, we need an adaptive phase filter ahead of it to 

make the resultant channel response be in a condition of minimum phase. This filter will be 

approximated by the feedforward section of the MMSE DFE(6,^), with the resultant response 

at its output assumed (by the detection algorithm) to consist of a unit first component 

followed by the feedback taps of the DFE.

The delay in detection of the MLSE/near-MLSE is set to 15 symbol intervals for both Channel 

A and Channel B, this setting being greater than 5g.

Figs. 5.10 and 5.11 depict the Pe vs. SNR performance of the MLSE/near-MLSE and DFE in 

mode I. The E.C. curves consist of straight lines between the data points. Tables 5.2 and 5.3 

give the number of errors occurring in the E.C. measurement runs, which were done using a 1 

Hz fade rate and 60,000 transmitted symbols. As expected the E.C. curves for the DFE-^ are 

quite close to the analytical upper bound estimate, the E.C. values beyond about 1 in 104 

tending to deviate from the bound. This is because of the inaccuracy of using only a few errors 

to produce a Pe estimate, a value of 10-4 being given by only 6 errors.

The errors occurring in mode Ij are potential pitfalls for error propagation in the DFE in mode 

I2. With 4 QAM the difference between modes Ix and I2 is fairly small. For example, from 

figs. 5.10 and 5.11 at the SNR for Pe =  10-3 in mode Ix, the effect of propagation increases the 

error rate by a factor of approximately 1.3 and 1.8 for Channel A and Channel B respectively. 

As the number of errors in mode Ix decreases, the number in mode I2 will approach it. With
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SNR (dB) No. of errors in 60,000
DFE(6,1) MLSE/

near-MLSE4 QAM Mode Ii Mode I2
7.5 4,657 5,730 4,788
10.0 2,139 2,768 2,219
12.5 912 1,186 931
15.0 400 548 416
20.0 92 136 78
24.0 20 21 18
27.5 4 5 6
30.0 1 1 2

16 QAM
15.0 6,905 10,379 8,998

20.0 1,429 2,649 1,880
25.0 264 458 405
30.0 61 160 89
32.5 22 51 24

35.0 8 16 10
37.5 2 7 7
64 QAM
25.0 2,711 7,017 5,485
30.0 507 1,245 921

35.0 120 311 249

37.5 54 220 157

40.0 18 77 27

42.5 9 76 17
45.0 1 9 0

Table 5.2 Error counts for mode I on Channel A.
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SNR (dB) No. of errors in 60,000

DFE(6,2) MLSE/

4 QAM Mode Ij Mode I2 near-MLSE

7.5 4,647 6,609 5,154

12.5 800 1,316 748

16.5 109 208 107

20.0 22 34 16

22.5 5 8 3

16 QAM

17.5 3,558 8,340 6,097

22.5 420 1,486 908

26.5 44 101 59

30.0 6 16 3

31.0 3 3 0

64 QAM

25.0 3,113 13,872 9,250

30.0 338 3,812 1,222

32.5 76 736 160

35.0 22 77 45

37.5 2 74 0

Table 5.3 Error counts for mode I on Channel B.
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the higher constellation sizes the degradation caused by propagation is more severe. For 

example, from figs. 5.10 and 5.11 with 16 QAM, at the SNR for Pe =  10“3 in mode Ix, the 

effect of propagation increases the error rate by a factor of approximately 2.7 and 2.4 for 

Channel A and Channel B respectively, and with 64 QAM the corresponding factors are 

approximately 3.8 and 7.3. This is due to the fact that there are more levels in the data 

symbols, for if supposing we were in an error propagation situation then, at worst, if we 

guessed each symbol at random we would be 25% of the time right for 4 QAM and 6.3% and 

1.6% right for 16 and 64 QAM respectively, which suggests it would be less easier to recover 

out of a propagation run with a higher constellation size. As another example, observe in 

Table 5.3 that with 4 QAM at SNR=22.5 dB, 5 errors in mode Ij lead to only 8 errors in 

mode I2, whereas with 64 QAM at SNR=37.5 dB just 2 errors in mode Ix lead to a staggering 

74 errors in mode I2. Also, note that not all propagation bursts are equally severe, since the 

lower SNR of 35.0 dB with 64 QAM gives 22 errors in mode ^  (20 more than at 37.5 dB) 

leading to 77 errors in mode I2 (just 3 more than at 37.5 dB). This is not surprising since the 

length of a propagation burst depends on the amount of ISI subtracted out by the feedback 

taps, and this in turn depends on the random fading of the channel. In general, whenever 

there are errors in the feedback decisions of the DFE, the noise margin in the detection of the 

current symbol is significantly reduced. We could therefore expect that the length of a 

particular propagation burst is also dependent on the noise samples and data symbols that are 

present at the time. Because propagation bursts have an uncertain duration, when there are a 

small number of errors for the DFE-^ the corresponding errors for the DFE-I2 may not change 

in proportion to a change in the number of errors for the DFE-I^ particularly for a high 

constellation size, which explains the erratic behaviour around Pc^10“3 of the DFE-I2 curves 

for 64 QAM. Notice that the effect of propagation is generally more severe on Channel B than 

on Channel A. This is because Channel B is, on average, more dispersive than Channel A, 

which leads to a larger number of previous symbol decisions being used in the feedback process.

One might expect the MLSE to perform at least as well as, if not better than, the DFE-Ij.
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The results for 4 QAM more or less bear this out, with the difference between the two 

detection devices being very slight. The data given in Tables 5.2 and 5.3 show that for 4 QAM 

the DFE-IX sometimes produces less errors than the MLSE over the fading patterns. The 

results for 16 QAM, however, show that the near-MLSE is performing overall slightly worse 

than the DFE-I^ and for 64 QAM the degradation is more apparent. Thus the MFE 

advantage detailed in the last section seems to be a poor indicator of the near-MLSE “gain” 

over the DFE-I^

On the other hand, the near-MLSE does perform better than the DFE-I2. For example, from 

fig. 5.10 at the SNR for Pe =  10“3 with the MLSE/near-MLSE on Channel A, the relative 

factors of increase in the error rate given by the DFE-I2 are approximately 1.6, 1.9 and 2.1 for 

4, 16 and 64 QAM respectively, and from fig. 5.11 the corresponding factors for Channel B are 

approximately 2.0, 1.7 and 2.1. It appears, in fact, that the advantage of the MLSE/near- 

MLSE over the DFE only arises because of the latter’s proneness to error propagation bursts. 

As pointed out in chapter 2, the MLSE/near-MLSE will also produce errors in bursts, but these 

are usually much shorter than the propagation bursts of the DFE, as is shown, for example, in 

[37]. Whether having a near-MLSE, because of its advantage over the DFE-I2, is worth the 

considerable amount of extra processing involved is another question.

We shall discuss the MLSE/near-MLSE and DFE devices further in chapter 7, when we look at 

performance in mode II.
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Chapter 6

CHANNEL EST IM AT IO N

T o  im plem ent the M L SE  by the V A  the receiver needs to know, and therefore track , the 

resu ltan t channel im pulse response vector y * .  I f  a  reduced-state V A  is used, it is u sual to  have 

an  ad ap tiv e  linear filter ahead  o f the detection device to  provide phase equalization , the 

resu ltan t im pulse  response now being o f  m inim um  phase. T h is filter is ideally  the feedforw ard 

section  o f a  Z F D F E (o o ,g ) which in practice can be approx im ated , with low noise an d  N large 

enough, by the feedforw ard section o f an  M M SE  D FE (iV ,0). T h u s the im pulse response vector 

seen by the detection device is assum ed  to  be [1 bkl . . .

For a  n ear-M L SE  (requiring a  pre-filter) or a  D F E , the conventional approach  to providing 

ad ap ta tio n  is to ad ju st the filter ta p s  (both feedforw ard and feedback) directly, a s  explained in 

section 3 .3 .1 . T h is procedure can be viewed as  an  indirect w ay o f track ing the channel 

response vector y fc, since it is theoretically possible (though perhaps ted ious) to  derive the 

channel vector from  the correctly ad ju sted  filter tap s. A ctually , a  receiver using an y detection 

process need only really track the channel vector yk in order to  be ad ap tiv e , since knowledge o f 

th is along  w ith the d a ta  sym bols allow s us to fully describe the inform ation  bearing p art o f the 

received sam p le  rfc, and  so therefore all necessary in form ation  on the transm ission  m edium  is 

av a ilab le  in y fc. It is shown in the next chapter th a t the perform ance o f the D F E  can be 

im proved  by using an a ltern ative  ad ap ta tio n  procedure to  the conventional S R K  one, basically  

th a t o f  track in g the channel vector directly and then com puting the M M SE  filter ta p s  from  it. 

T h is  ch apter is therefore devoted to  the problem  o f channel estim ation , com paring the 

perform ance o f the S R K  and S D  algorithm s. W e will a lso  a ttem p t to derive theoretical 

expressions for perform ance an d  com pare with experim ent.

6.1 C hannel E stim ation  using the R L S  (S R K ) A lgorithm

T o  ju d g e  the worth o f the S R K  algorith m  a t  various SNR’s, fade rates etc., we should observe 

the perform ance with the w eighting coefficient u optim ized  a t  each point. R ath er than go
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through the laborious process o f optim izing u> by m easurem ent, it  would be nice if  one could 

derive the op tim um  value by an alysis. T h e  criterion o f o p tim ality  we choose is the 

m in im ization  o f the average m ean square error, e, given by

t =  E[|e*|2] =  E[|rt —x^cfc_x|2] (6.1)

where the expectation  is over the d a ta  sym bols, noise and fad in g sta tistic s . R ecall from  section 

3 .2 .2  th at Xj., with detection delay q = 0, is

* *  =  I5*  • ••  (6 -2)

where it will be assum ed  th at the decisions {S j.}  are correct. S u b stitu tin g  rk=x*jcyk +  nk, and 

neglecting the dependence between xk and c jS._ 1,

e =  H(yk- c k_iy h U l ( y k-Qk-i)} +  ̂  =  flr? E [ | y * - £ Jb_ 1| 2]+<rR (6 .3)

where we have used l nJb] — 0

E K s t )  =  v 2’1 (6 .4 )

M in im ization  o f e is achieved by m inim izing, with respect to w, the quan tity  e' which we 

define a s the error in the channel estim ate , i.e.

e ' =  E [[Jyfc— c jb _ il2 ] ( 6 .5 )

In [82], m in im ization  o f e' for an R L S  algorithm  is done for a  sim ple  channel m odel (not H F) 

th a t obeys a  first order M arkov process, th a t is, y *  is a  function o f only. T h e  n ature  o f 

the H F channel su ggests th at yk m ay  effectively be a  function o f  previous vectors a s  high a s 

five in tervals aw ay  [66], i.e. obey a  fifth  order M arkov process.

R ecall from  ch apter 3 th a t
fc-i

Cjb-l =  R * o ( X X ~ 1~ *X ir ,)  
»=0

R *0 =  X X " 1- i XiS<
»=0

(6.6)

where (6 .7)
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Let f '(p )  =  E [ |y p £Jt_ 1| 2] for p>h (6.8)

Su b stitu tin g  (6 .6) into (6.8),

II / k~l . «. J 2
e '(p ) =  E[ ]

II i=o I

=  E (T r(R ;j{ (2  E w‘‘ , " i“ ‘ ' 1' ' ‘sis5E[(yp- y i)(yP- y h), t ]x;x‘ )
* = 0  h - 0

+ o 5 g u , 2( ‘ - 1- i> x -x ')R ;„1)  ] (6 .9)
<=0

where T r ( .)  m ean s the trace o f a  m atrix . From  the assum ed  fad in g  s ta tistic s  o f Channel A  and 

Channel B  (recall (4 .21)), and rem em bering th at E[ypf-y£m] = 0  for i ^ m ,

E lC y p -y iX y p -y /,)*1] =  E ly p y ^ - y .- y ^ - y p t f+ y .- y ? ]

_ ! ~(3{p-i)2/2 -P(p-hf/2 -P{i-h?/2
- u n f - 6 " e + e  } I

where 13 =  (2fr*T)'

(6. 10)

(6.11)

W e shall assum e in the exponential sum m ation  o f (6 .9) th at the optim um  settin g  o f w will be 

sm all enough so  th at effectively p(p—h)2, P(p—i)2 and /? ( i— A)2<^1 a t  all tim es. T h u s we see 

th at (6 . 10 ) is effectively

E K y p - y .- X y p - y * ) * 1! «  ^ j - ^ ( i - i + p { p - i y / 2 - \ + p { p - h ) 2/ 2 + \ - p ( i - h j l j2)i

_  _P_ 
(g+1) (p- i ) (p -h ) l (6.12)

an d  su b stitu tin g  th is in (6 .9) gives

t'{p) «  E [T r^ R “ o { ^ ^ j - ^ R r 1 + o rn ^ w 2(fc_1 ’" ,)x J x ; } R “ o^]

=  £ ( p - * > fc" 1_ ,x-x5where

(6.13)

(6.14)

with the expectation  in (6 .13) now being only over the { x , } .  Since we are interested in the 

error over the long-term , k shall be assum ed to be very large. We will now m ake an
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assu m p tion , com m only used in the an alysis o f R L S  a lgorith m s (e.g. [82]) to greatly  sim plify 

m atters, th a t R x0 can be effectively approxim ated  a s

k—i
R *o  =  £ w

*=0
= A t

»=0 v '
(6 .15)

and also  th a t

£
i = 0

w EiSi (6 .16)

T h u s R xl becom es

R,i =  ‘+1R* oj

(6 .17)

T h e  app ro x im atio n s o f (6 .15) and (6 .16) should be m ore accurate the closer tv is to  1, since 

they then becom e m ore like long-term  tim e averages. U sing (6 .1 5 )—(6.17) in (6 .13) we hence 

ob tain

=  n £ ^ ( 1 + ( ? - i ) ( 1 - “ ) ) 2 + ( » + 1 )/’ [ l ^ ]  ( 6-18)

and e'(k) P
( 1 - c v )2

+  (<7+l)/>
( 1 - ^ )
( 1 -fw )

(6.19)

€  =  cr?(e# +  p) (6.20)

T h e  first term  on the R H S o f (6 .19) is due to  the tim e variation  o f the channel, and a s  such a  

q u an tity  o f th is nature is u sually  referred to a s  the “ lag ”  since it is the error caused by the 

a lg o rith m ’s  lim itation  in coping with tim e variation s. T h e  second term  on the R H S o f (6.19) 

is due to  the add itive  gau ssian  noise, and is proportional to  the length o f the channel vector. 

E q . (6 .19) te lls us, not surprisingly , th a t a s  u decreases, the am ount o f lag-error reduces but 

the noise-error increases. An optim um  setting o f u > = l  is achieved when / ? = 0 ,  i.e. no tim e 

varia tion s, so th at the lag-error is not infinite but zero.

T h e  essential difference o f (6 .19) with the expression for a  first-order M arkov channel [82], is
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th a t the denom inator o f the lag  term  in the latter is only proportional to (1  —w).

D ifferentiating c1 with respect to w,

del __ 2/? _  2 ( g + l ) p
du ( 1 - w )3 (1  +  w)2

an d  settin g  it to  zero gives the optim um  a? a s  the solution to

SNR = 1 _  ( g + l ) ( l ~ M )3 
P ~  0 (l + w)2

(6.21)

(6.22)

SNR is p lo tted  aga in st optim um  w in fig. 6.1 for 2 /r =  l  and 2 Hz. T h e  curves predict th at 

above a  certain  SNR a  positive optim um  value o f u> is not possible, indeed it will actu ally  be 

n egative. T h is  result arises because o f the approx im atio n s o f (6 .15) and (6 .16), which were 

in itially  m ade  under the assum ption  th a t w > 0  (and preferably close to 1 ), bu t defini tely not 

u ;< 0 .  N ote a lso  th a t as then R ^ q theoretically h as no unique inverse, a  situ atio n  which 

again  (6 .15) and  (6 .16) do not appear affected by. W e should thus not be surprised if  the low- 

u) behaviour predicted by our theoretical derivations is som ew hat inconsistent with experim ent. 

S u b stitu tin g  (6 .22) into (6.19) gives

/ . =  q V + v )
m m  P( \ - uj)2 (6.23)

where u> is a t  its  op tim um  value. F ig s. 6.2 and 6.3 show the m easured values o f c /a2 and e' 

(tim e averages o f \€k\2/(r2 and  |y fc— cJb_ 1 |2 respectively) from  using the S R K  algorith m , with 

known d a ta  sym bols and  optim um  u from  fig. 6.1, over the fad ing p attern s for Channel A  and 

Channel B  respectively . Before actu ally  com m encing its  run over the 25 fade period pattern s, 

the S R K  algorith m  has been running for 1.67 fade periods already (equivalent to 4000 and 

2000 sym bol in tervals for f.r. =  1.0 Hz and 2.0 Hz respectively), ensuring th a t any start-u p  

tran sien t effects have died aw ay. T he param eter rj only influences the start-u p  convergence o f 

the a lgorith m , a s  w as discussed in chapter 3, an d  later on we will show how. For the m om ent, 

however, it  will suffice to say  th at within the range 0.001 to  10 .0, rj has no influence because o f 

the m ore than  sufficient w arm -up tim e o f 1.67 fade periods.



132

A lso  shown in figs. 6.2 and 6.3 are the theoretical values obtained from  (6 .19) and (6 .20). T he 

theoretical expressions indicate th at e/cr2 and c' should be independent o f the constellation size 

L2. T h is  w as found to be virtually  so, the m ax im u m  deviation observed between 4, 16 and 64 

Q A M  over all readings being about 0.1 dB . T h u s the experim ental curves in figs. 6.2 an d  6.3 

are  effectively valid  for 4, 16 and 64 Q AM .

T h e  agreem ent between theory and experim ent over the range o f SNR considered is reasonably  

good, the agreem ent worsening a s  the SNR increases, or rather a s  the “ op tim um ” w settin g  

decreases. T h is, a s  a lready  m entioned, is due to the approxim ation s o f (6 .15) and (6 .16) which 

we should expect to  becom e less accurate as tu decreases. A lso, the agreem ent for Channel A is 

sligh tly  better than  for Channel B . T h is can aga in  be pu t down to the approx im atio n s o f 

(6 .15 ) and  (6 .16), since for larger g there is greater chance o f  there being som e non-zero 

elem ents not on the m ain  d iagon al in the LH S o f these equations, th us m ak in g  them  less like a  

d iagon al m atrix . A  supposedly  m ore accurate approx im ation  to (6 .15) is offered, w ithout the 

derivation , in [82], puttin g

Jfc-i

5>
t = 0 ( l - w ) l  + ^ |( l  +  u>)7 J

(6 .24)

where
_  V a r [ lr , |2] =  E [ k n - ( E [ | s , | 2])2 2 ( ^ - 4 )

7  (V ar[r ,.])2 (E [ |s ,.|2])2 b(L2- l )
(6 .25)

A  m ethod o f com pu tation  o f E [ |s f |4] can be found in the appendix  o f  [92]. For L2= 4, 16 and 

64 we have 7 = 0, 0 .32 an d  0.381 respectively, an d  7  is a lw ays less th an  0.4. T h e  m odified 

ap p rox im atio n  o f (6 .24) is identical to (6 .15) for 7 = 0, an d  close to  it  for 7 ^ 0  and u close to 

1. O ur experim ental m easurem ents show th at the dependence on 7  is v irtually  negligible, so 

using (6 .24), which com plicates m atters anyw ay, in place o f (6 .15) w ould not appear to help.

A s the noise gets very low the lag-error is expected to  dom inate the channel error, and for no 

noise there should be an  irreducible lower level representing the track in g a lgorith m ’s  lim it in 

coping with tim e varia tion s. W ith 10 set to its  op tim um  value, the theoretical derivations give 

the ratio  o f  lag-error to  noise-error a s  ( 1 -f w)_1, im plying th at for positive u the noise is a lw ays
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bigger; we know already th at a t  low u this theoretical e stim ate  o f the ratio  m ay  be unreliable. 

T h e  experim ental curves in figs. 6.2 and 6.3 are actu ally  startin g  to show a  very slight 

inclination to  “ level ou t” a t SNR=45.0 dB . W e have m easured the lag-to-noise error ratio  at 

SNR=45.0 d B , 2.0 Hz fade rate , to be approx im ate ly  1.18 and 1.58 on Channel A  and 

C hannel B  repectively, the corresponding theoretical predictions being 0.71 and 0.68 

respectively . M ore will be sa id  abo u t the a lgorith m ’s lim itation  in coping w ith tim e variation s 

later on.

A t a  given SNR, the channel error is lower on Channel A  than on Channel B , which is due to 

the latter  being represented by a  longer channel vector.

F ig . 6.4 show s, for both theory and experim ent, the variation  o f the channel error e' with u> a t 

SNR=24.0 d B  and 45.0 dB  on Channel A , and SNR=22.h d B  and 45.0 d B  on Channel B , a t  a  

fade  rate  o f 2.0 Hz. It can be seen th at the agreem ent with theory is better for the lower SNR 

(w ith its  higher range for u>) than for the higher SNR. N evertheless, even a t  SNR=45.0 dB  the 

m easured  c' yielded by w set to its theoretically optim um  value (0.403 and 0.463 for Channel 

A  and Channel B  respectively) is very close to the m easured . T h e  rate  o f change o f e' 

w ith respect to w is sm aller for the higher SNR, which is to  be expected since for low noise e' 

now depends to a  greater degree on the com paratively  less erratic tim e v aria tion s o f the 

channel. O bserve in Fig. 6.4 th at the difference in m easured between 4 Q AM  and 64

Q A M  a t  SNR=45.Q d B  is no m ore than  0.1 d B , 4 Q AM  giving the lower value. In general the 

difference in c' between the constellation  sizes dim inishes a s  u> increases, which we expect since 

the ap p rox im atio n s o f (6 .15) and  (6 .16), which are independent o f 7 , becom e m ore accurate.

W e will d iscu ss the question o f  convergence from  start-u p  after we have looked a t  the SD  

algorith m .

6.2 Channel E stim ation  using the SD  A lgorithm

It is well known th at the SD  algorithm  perform s a  great deal worse than  the R L S  when used in
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the conventional track ing approach  to the D F E , e.g. see [15], [64], [71]. T h is is because the 

covariance m atrix  R *  is highly dependent on the channel reponse, an d  its  eigenvalue spread  is 

th us constantly  changing. It was pointed out in chapter 3 th at a  large eigenvalue spread  leads 

to  slower convergence and a  m ore restricted range for stab ility  on the param eter /x. Im proving 

the perform ance by orthogonalization  cannot be done because R-. is unknown.

T h e  SD  algorith m  should ideally  be used when Rj. is known, so th a t orthogonalization  can be 

achieved. T h is is au to m atica lly  done in channel estim ation  because

Rjt =  <rh (6 .26)

R *  now being the covariance m atrix  o f d a ta  sym bols. Before com parin g  the perform ance of

S D  channel estim ation  with th at o f S R K , we will derive the optim um  settin g  for the param eter

fi. R ecalling  (3.15),

cjb =  ck^  +  ftzUk

=  ( I - ' / i x J x ^ c ^ j  +  ̂ ^ y f c  +  njfc)

=  + I I  ( I - ^ X m X m ) } ^ ( x 5y,. +  n,-) (6.27)
i =  l i =  1 m =  t +  l

A ssum in g fi is within the range 0<fi<2/((g-bl)crs)  required for stab le  convergence, the first 

term  in (6 .27) goes to zero as k-+oo. A ctually  th is range, given in (3 .25) o f chapter 3, w as 

derived by ignoring the fourth-order sta tistic s  o f  x,-. Since is a  vector o f d a ta  sym bols we 

m ay  easily  re-write (3 .23) for this case m ore precisely a s

E [ ( x J x J ) a] =  E [(x £x £ ) 4 x £] =  < 7 ? ( 0 + 1 + t )I  (6-28)

where 7  w as defined in (6 .25 ). T he range for stab le  convergence then becom es

0 <  p < 2
*r?(9+1 + 7 )

(6.29)

Since 7  < 0 .4  its effect m ay  not m ake m uch difference. In any case, assum ing stab le  

convergence, we get for k large
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jfc-i „ fc-i
cjfc_i »  Y ,{  I I  ( I“ /«mSm)}AixJ(x5yi +  ni )

t =  l m =i + l

— 'y ( I—/JXmXm )}y. “ £ {  n  (I-/iXmXm)}yi
* =  1 m =  i + 1  » =  1 m = i

+ / • £ {  n  ( I — /^XmXrn)^Xj n{
t= l m = i+ l

W e shall m ake the follow ing sim plifying assum ption s.

E[x-Xm] =  0 for i^ m

=  <r*I for i= m

E[x-xJxm Xm ] =  <7*1 for i^ m

=  (<7+ l - f  7 )cr*I for i=m

Let Pi =  l - f i a t

H2 =  1 — 2[ial + (g + l+ y ) f i2a? >  0

where the stab ility  requirem ent o f (6.29) ensures |^ix | an d  /i2 are < 1 .  T hen 

€'(p) =  E [ ly p - e jb - i i2]

=  l - 2 ( l - / < 1) ^ ^ f " 1" ‘ e " /?(p 0  ^2 +  X +  (<7+l)o‘n<7*/i2^ / / 5 “ 1"*

where

_  fc-i-m ax{»,/>} |>+i - a | fc - i-m a x { i,h - i}
X  —  2 ^ i  /  , \ P i  P 2 ~ L P 1 P 2

»= i/i= i

|t-h | Jfc-maX{i,h}',l —/?(*—/»)2/2
+  /*1 P2

fc“ 1& \  fc- i-m ax {i,h } -fi{i-h)2f 2
,/*l P2 e

—' | «—/>| fc—l —max{»,/»} —/?(»’—A—l) / 2  
22L,2_^Pi P2 e
isslhssO k— 2 k— 2  l

+ £ £ / 4 " W
|«-/»| Jb-i-m ax{*,/i} -0( i-hy /2  “ e

_  v ^ v ~ >  |*—*i fc- i-m ax {t,/j} , 0 -(3(i-h) / 2  - / ? ( * - /» - 1) /2  -fl(h-i-i)  / 2 .
X — /  y /  , ^ 1  P2 V̂ e e e )

i=lh=l

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)
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. X f/ i f ' 1- *  e- ^ t * - ‘ - 0 2/ 2  _  j _ j _ *  e- ^ (» - i - k > V 2

*=0 h= 1

* - *  M - I  - /3 ( ‘ - f / 2  , -/? < 2/2
+ 2 E ^ *

»=1

fc- 1

+  { £ > S / » r ‘ - , «
»=0

A=1 *=1

T h e la s t  term  on the R H S o f (6 .36), in | .  j  brackets, is zero for k large. A s in the

_ Q . 2
an aly sis  we m ake the approxim ation  e « 1  —/?i2, to  get, for k large,

»= i/i= i >=i

T h e  first term  on the R H S o f (6 .37) is sim plified as

fc—lfc—l i. .1 . , fc—l , i—i fc—l x

E E " !  ^i=lh=l »=1 h=l

Jfc- 1 k-i- i  ^ i ( 1 e l A£l ^ 4_
^2 +A*1

Jb — 1 „ i ..Jb—1—»
_  a /  fli_________ v / M i

^ H l - P i ) ( l - ^ 2) f e f  <* (1  —A î)
+ })

w ith the first term  in the being zero,

=  q ( _____ a _____ + _____I____/ — l_____ ( j h l t i l X )

_  W  +  fti)
( l - / i i ) ( l - ^ 2)

T h e  second term  on the R H S o f (6 .37) is sim plified by app ly in g (6 .17), to g ive us

2 0 \ ^ ( k - i - h u k- 1- i -  2/?__________2 —  _  P^ +  Vi)
2 ^  -  ( 1 - ^ ) 2  ( 1 - ^ )  "

T h u s v  —  W  +  ft i )  _  f t ( l - f / i i )  , 1 

( l - / i i ) ( l - / i 2) (1 — a*i ) 2

(6.36) 

previous

(6.37)

(6.38)

(6.39)

(6.40)

C onsider the second term  on the R H S of (6.35),
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«=1 «=1

Now
fc-i

»=1 » = i k

U sing (6 .17),

i 1 * =  7 7 ^ — ^ [ i  +  Cp—^)(3. —A î)]
»= i ( 1 - ^ i V

jfc- 1 Jfc—1
2 ( p - i ) ( p - : - l ) / i 1p" 2" ’ =  ^ ( ^ ( p - o ^ r 1" ’ )
*= i

(1  —/^i)

Therefore, (6 .42) becom es

£ ( ? - « ■ )  V - * - 1 =  r r = ^ + r f e r ^ f 2 + ( ! ’ - t ) ( 1 - /‘ i)1( i - / i i )  ( i - n i y

C ollecting together (6 .41), (6 .45) and (6 .40), we finally ob tain  from  (6.35) th at

€ '(p ) =  - i + / ? £ ^ + / M i ^ [ 2 + ( p - * ) ( i - < 0 ] + r- ^ -(-1± a -)—(1  —/Zj)2 ( l - ^ i )1 ( l - / i l ) ( l - / i 2)

_ ^ I l ± i f l i + 1 + ( s + 1 )p ( l = £ i I 2
( i - ^ )

S u b stitu tin g  for an d  fi2 from  (6 .33) and (6 .34), and letting / i '= ^ c r ? ,  we ob tain  

channel e stim ate  error e'

=  f ' ( * )  =  E tly jt—cA._1| 2]

=  (2 - / i , ( ^ + l  +  7 ))  1 { / ? ^ 7 T ^ + ( < 7 + 1 ) z> / }

(6 .41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46) 

for the

(6.47)

an d  from  (6 .3) the average algorith m  error c = E [ |c i. |2] is,
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€ =  o-,(e' + p) (6 .48)

T h e first term  on the expanded R H S o f (6 .47) is the lag-error, an d  the second term  the noise- 

error (which is proportional to the length o f the channel vector). E q . (6 .19) for the R L S  

algorithm  an d  eq. (6 .47) for the SD  algorith m  becom e identical when <7= 0, 7 = 0  and 

p' =  1 —w. In [82] it is shown th at for a  first-order M arkov channel, the channel error for the 

R L S  algorith m  is identical to th at for the S D  algorithm . Settin g  d€f/dp' = 0 gives us the 

op tim um  p' a s  the solution o f

SNR = 1 _  ( l + l ) ________  /*/3____________
P ~  (3 [4—p ' —/i'(3  —/i ')G 7 + H - 7 )]

(6.49)

SNR is p lo tted  aga in st optim um  p' in figs. 6.5 and 6.6 for 7 = 0  an d  7 = 0 .3 8 1 ,  corresponding 

to  4 QAM  an d  64 Q AM  respectively. T he curve for 7 = 0 .3 2 ,  corresponding to  16 Q A M,  would 

lie in between the curves for 7 = 0  and  7 = 0 .3 8 1 ,  being closer to 7 = 0 .3 8 1 .  T he influence o f 7  

ap p ears to increase with increasing SNR. N otice th at the optim um  p1 is upper bounded by the 

sm aller o f the two positive roots o f the q u ad ratic  expression in p1 in the denom inator o f  (6 .49), 

i.e. ________________

^ o p t <  1.5
( 0+ f  +  7 - N( 0 + 7 ) ( 0 + 7 + | )  )

( 0 + 1  +  7 )
(6.50)

T h e upper bound o f (6 .50) is tighter than the stab ility  bound o f (6 .29), a  fact th at can be 

verified by su b stitu tin g  p'=2(g+ 1  +  7 ) - 1  in the denom inator o f (6 .49 ), which gives a  negative 

value, thus im plyin g th at th is value o f p' lies in between the two roots o f the qu adratic . For 

Channel A  the upper bound o f (6 .50) is approxim ately  0.719 an d  0.595 for 4 an d  64 QAM  

respectively, while for Channel B  it is approxim ately  0.465 an d  0.410 for 4 an d  64 QAM  

respectively. A s the fade rate  increases, with a  given constellation  size, the op tim um  p ' needs 

to  be larger, the am oun t by which becom ing insignificant a t  very high SNR when for a ll fade 

ra te s the op tim um  p' is close to the upper lim it o f  (6 .50).

In figs. 6.7 an d  6.8 we have p lo tted  the channel error e' aga in st SNR, with p' set a t  its 

theoretically  op tim um  value. T he continuous dark curves are for the theoretical values o f e'



139

(6 .47) while the plo t-po in ts are for the m easured e' over the fad in g pattern s using the SD  

algorith m  with known d a ta  sym bols (and also  a  w arm -up tim e o f 1.67 fade periods to  rem ove 

start-u p  tran sien ts). T h e  agreem ent between theory and experim ent is quite good, being better 

th an  th at for the S R K  algorithm  a t high SNR. T he theoretical prediction o f the lag-to-noise 

error ratio , with p! set a t  its  optim um  value, is

_lag_ (3(2 —p') __________ ( 2 - V ) __________  , 6 5 n
noise p'3(g+l)p [ 4 - p ' - p ' ( Z - p ' ) ( g + l  +  y))  ̂ ’

F o r p' close to  zero the ratio  is about 0.5, indicating th a t the noise is tw ice a s  great a s  the lag  

(a s  it is for the S R K  algorithm  a s  well, with u close to 1), and for p' close to the upper bound 

o f  (6 .50) the ratio  becom es infinite, indicating th at the lag  is dom inant. T h e  theoretical curves 

in figs. 6.7 and  6.8 show the channel error gently startin g  to level-out, a s  confirm ed by the 

experim ental m easurem ents. T he theoretical lower lim it o f the channel error can be found by 

su b stitu tin g  the upper bound o f (6 .50) into the lag-error term  o f (6 .47). W e observe th at the 

theoretical predictions o f the SD  algorith m ’s behaviour are far m ore consistent with w hat we 

expect, a t  high SNR, than  are those derived for the S R K  algorithm , probably  because the 

assu m p tio n s m ade in the an alysis for the sim pler SD  are less drastic.

A lso  shown in figs. 6.7 and 6.8 are the experim ental e' curves for the S R K  algorith m , a s  shown 

previously in figs. 6.2 and 6.3. It can be seen th a t the SD  algorithm  perform s a t  a  com parab le  

level to the S R K  over v irtually  all o f the range o f SNR shown, the SD  being sligh tly  worse a t  

the high SNR end, with this degradation  being m ore for 64 Q AM  th an  for 4 QAM.  A t 

SNR=45.0 d B  the difference between the m easured e' for the SD  an d  S R K  a lgorith m s is a t  

m o st ab o u t 1.5 d B , th is being on Channel B  a t  a  2.0 Hz fade rate  w ith 64 QA M.  It is a lso  a t  

th is “settin g” th a t the m axim u m  difference in m easured c' occurs between 4 and 64 Q AM  for 

the SD  a lgorith m , th is being approxim ately  0.75 d B , com pared with 0.1 dB  for the S R K  

a lgorith m . It would ap p ear th at with increasing SNR, the constellation  size, a s  characterized 

by  the value o f 7 , is m ore influential in the S D  than in the S R K  a lgorith m , though the effect 

o f  th is influence m ay  still be considered negligible even a t  £/V72=45.0 d B .
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In fig. 6.9 we have p lo tted , for both theory an d  experim ent, the varia tion  o f e' with respect to 

a t  SNR=24.0 d B  and 45.0 dB  on Channel A , and SNR=22.5 d B  and 45.0 dB  on Channel 

B , a t  a  fade rate  o f 2.0 Hz. T he agreem ent w ith theory is generally better a t  the lower SNR, 

an d , a s  for the S R K  algorithm , the rate  o f change o f c' with respect to  the ad ap ta tio n  

param eter, in th is case /i', is sm aller a t  the higher SNR. T he prediction  o f the optim um  

settin g  for \i’ is excellent.

6.3 S tart-u p  Convergence o f S R K  and SD  A lgorithm s

F ig s . 6.10 and 6.11 show the start-u p  convergence o f the error in the channel estim ate, 

||y*“- * - i | 2> when the S R K  and SD  algorith m s are used assum in g  known d a ta  sym bols. A t 

tim e 0 the e stim ated  vector c_ j has all zero elem ents, the input vector Xq consists o f d a ta  

sym bol values, and  the startin g  conditions in the S R K  algorithm  are a s  given in A ppendix  C . 

E ach  o f the curves in figs. 6.10 and 6.11 are the average o f 30 sep arate  runs, each run h aving a  

d ifferent sequence o f gau ssian  noise sam ples an d  d a ta  sym bols, b u t with the sam e channel 

v aria tion  over the 60 baud  interval tim e span . For Channel A the channel vector varies from  

( _ 0 .6 4 1 - j0 .2 2 3  , - 0 .3 9 6 + j '0 .3 5 4 )  to ( - 0 .6 6 6 - j0 .2 4 2  , - 0 .3 2 2 + j0 .5 0 2 )  over the 60 baud 

in tervals, while on Channel B  the variation  is from  ( —0 .5 2 4 —j'0.182 , — 0 .3 2 4 + j 0 . 289 , 

- 0 .6 3 5 - j0 .0 6 4 )  to ( - 0 .5 4 4 - j0 .1 9 7  , - 0 .2 6 3 - f  j0 .410  , - 0 .6 2 8 - j0 .0 9 8 ) .

F o r  the S R K  algorith m  the param eter w is set to its theoretically op tim um  value a s  given in 

fig. 6 .1 , while the param eter rj is allow ed to  vary from  10“ 3a f  to  10.O af. It can be seen from  

the figures th a t the curves for all the different t/ ’s , for a  given constellation  size, do eventually 

com e together an d  becom e indistinguishable from  one another, verifying th a t the influence o f rj 

does decrease with tim e. A  value o f 77 =  10“ 2a f  appears to give a  convergence rate  close to 

op tim u m .

T h e  convergence curves for the SD  algorithm  are  obtained under exactly  the sam e conditions 

a s  the S R K  algorith m , with the param eter \i' set to its  theoretically op tim um  value as given in 

figs. 6.5 and 6.6 . T ab le  6.1 com pares the convergence rates o f the tw o algorithm s, the values
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listed  being those num ber o f whole baud in tervals needed for a  curve to reach within 1.0 dB  o f 

its  ap p rox im ate  “stead y -sta te” value. For the S R K  algorithm , the values in the tab le  refer to 

the curves with 77 =  lO- 2 ^ , .

Channel conditions T im e, in baud  in tervals, to reach specified d B

(C on stellation  size, value o f channel error from  start-up .

channel, SNR (d B )) S R K  algorithm SD  algorith m

4, A , 24.0 7 for - 3 0  dB 42 for —30 dB

64, A , 45.0 4 for —41 dB 16 for —40 dB

4, A , 45.0 5 for —41 dB 10 for —41 dB

4, B , 22.5 9 for —27 dB 38 for - 2 6  dB

64, B , 45.0 4 for —40 dB 30 for - 3 9  d B

4, B , 45.0 5 for —40 dB 22 for - 4 0  d B

T a b le  6.1 C om parison  o f convergence tim es for S R K  and SD  algorith m s.

T a b le  6.1 clearly h ighlights the superiority o f the S R K  algorithm  In reaching steady -state  m ore 

rap id ly , being about 2 - 6  tim es faster than the SD  algorithm . T h e  convergence o f the SD  

a lgorith m  can be im proved, though perhaps not spectacularly  so , by using a  kind o f “gear 

sh iftin g” schem e in which the value o f / /  is high a t  the beginning to provide rapid in itial 

convergence, and  then progressively reduced in size when the error is down to a  certain level, 

e .g . see [57]. A  m uch better m ethod, though, is to  use special periodic tra in ing  sequences th at 

enab le  a  sim ple an d  close-to-steady-state calculation  o f the estim ated  vector to be m ade in 

b au d  in tervals equal to  the period (assum ing the period is greater than  the vector length), after 

which a  track ing a lgorith m  can take over. Convergence can thus be achieved in a s  fa st a  tim e 

a s  the R L S  algorith m , an d  the training schem e is such th at no sym bol-synchronization is 

required a t  the receiver. In other words, the receiver does not need to know w hat the actu al 

d a ta  sym bols are a t  any particu lar in stant, b u t only the cyclically ordered sequence in which 

they are  tran sm itted . For further details on the use o f periodic train ing sequences see [83], and
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in particu lar  [84], which deals specifically with channel estim ation .

O bserve in T ab le  6.1 th at a t  SNR=45.0 d B , the convergence o f the SD  algorith m  is noticeably 

quicker with 4 QAM  than  with 64 QAM.  T h is  is due to  the influence o f 7 , and not the 

different / / ' ’s used, since a  run with 64 QAM  using the optim um  n' for 4 QAM,  which is not 

show n, yielded little difference from  the original. C o n trast this behaviour with th at o f the 

S R K  algorith m , which show s little  difference between the constellation sizes.

One final interesting point is the slower convergence exhibited by the a lgorith m s a t  the lower 

SNR values. We have m entioned how the long-term  channel error is com posed o f two parts, 

n am ely  the lag-error, which arises because o f tim e variation s o f the channel, and  the noise- 

error, which is due to add itive  gaussian  noise. In order for the channel error to reach a  steady- 

s ta te  both  these com ponents have to individually reach their respective stead y -sta te s. U sually 

a t  the s ta r t  it is the lag-error which dom inates the transient behaviour, b u t because the 

g au ssian  noise is, in the short-term , m uch m ore random  in nature than  the tim e variation s o f 

the channel, it is m ore likely the noise-error th at takes longer to reach a  stead y -sta te , and this 

w ould be m ore so if  the effective “ window” size o f  the algorithm  is larger. (A  larger “window” 

m ean s th at the estim ated  vector a t  any in stant depends to a  greater extent in both  degree and 

num ber on its p ast values, and  this condition is brought about by a  larger u in the S R K  

a lgorith m  or sm aller /j ' in the SD  algorithm ). O bviously for a  lower SNR, the transient 

beh aviour o f the noise-error becom es more influential [93]. In particu lar, observe in figs. 6.10 

an d  6.11 the convergence curves for the S R K  algorith m  a t  the lower SNR w ith rj set a t its 

lower values. T he curves have a  sharp in itial fa ll, b u t then decrease in slope considerably 

aroun d  a  channel error value  and it is th is change th a t m akes convergence take longer 

th an  w hat it does a t  the higher SNR. In chapter 3 we discussed how the R L S  algorithm  

ach ieves convergence in bau d  in tervals o f the order o f the length o f the estim ated  vector, this 

being independent o f w. T h a t  discussion can now be seen to be with relevance, strictly  

speak in g , to  the convergence o f the lag-error, whose transient behaviour is responsible for the 

sh arp  in itial fall in the convergence curves. F o r the SD  algorithm , a  sm aller / /  a lso  brings
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ab o u t slower convergence o f the lag-error as well a s  the noise-error.

6.4 Im proving the Perform ance a t  High SNR

T h e curves in figs. 6.7 and 6.8 indicate a  very sligh t tendency for the channel error to  sta rt 

levelling out a t  high SNR, th is being m ore apparen t a t the higher fade rate  o f  2.0 Hz. T h is is 

due to the lag-error startin g  to  approach  an irreducible level, th is level representing the 

fu ndam ental lower lim it (in the absence o f noise) o f the a lgorith m ’s ab ility  to track  the 

channel’s tim e variation s.

T h e  e stim ate  o f the channel vector a t  any in stan t is derived from  previous received sam ples 

and d a ta  sym bols, these being appropriate ly  weighted according to their d istance in the past. 

T h is can be m ost clearly seen in the R L S  algorithm , where c fc is chosen such th at it m inim izes 

a  w eighted sum  o f tim e-spaced squared  errors (3 .33). T h e  channel e stim ate  is therefore a  kind 

o f “average  vector” produced from  previous sam ples and sym bols, the effective tim e-span  or 

window over which the average is form ed being determ ined by the w eighting. A t low SNR the 

window h as to  be m ade large to  lim it the effect o f noise. A s the SNR increases the window can 

be m ade  sm aller, thereby reducing the lag-error because the channel estim ate  is now form ed 

from  a  proportionally  higher am oun t o f more recent in form ation . For any window setting, 

however, the estim ation  process does not take into account the variation  in tim e o f the channel 

vector over the p a st  sam ples, and this is the fundam ental lim itation  in the a lgo rith m ’s tracking 

ab ility . T h e  effect o f th is inadequacy is too sm all to m ake m uch difference when the noise 

level is sufficiently high, the effect becom ing apparen t only when the noise level h as dropped 

enough to  expose it. Hence the levelling-out o f  the channel error a t  high SNR. T o  im prove 

m atte rs  beyond this point, then, it would seem  necessary th a t the channel vector be estim ated  

a s  a  first or higher order function o f tim e, ideally m atch in g the short-term  tim e variation  o f 

the channel. T h is  would n aturally  entail an increase in the num ber o f com pu tation s per 

update  o f the tracking process.

T h e  expected value o f the squared  difference between tw o tim e separated  values o f the ith
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elem ent o f the channel vector is , recalling (4 .21),

E[|siii-!'ftil2] =  E[|jfH |J- y 4fySj-SkiSflj+ltfikil2]

- 0 ( k - h f /  2 ,

“ ( 9 + l ) (1  6
) (6 .52)

In the short-term  we m ay  assum e 0(k—h)2<gi 1. Therefore

jE [ |y t , - f e |2]
U « + 1 ) U  1 +  2 >

(6 .53)

E q . (6 .53) su ggests  th at, in the short-term , the channel variation  is approx im ate ly  linear with 

tim e. Therefore, e stim atin g  the channel vector as a  linear function o f tim e could be m ost 

appropriate . F o r exam ple, we could determ ine a t  tim e kT the vectors ck and Ack th at 

m inim ize the w eighted tim e average

? *  =  X ^ w* ~ , lr i ” £Hcjfc +  A c jfcO' - * ) } | 2 (6-54)
«=o

V ector Ack is akin  to  a  gradient vector, so th at ck + Ack(i—k) is a  kind o f least squares linear 

estim ate  o f the channel vector. T he estim ate  o f the channel vector y fc for use a t  tim e kT would 

therefore be c ^ j  +  A c k_v  D ifferentiating (6 .54) with respect to  ck and  settin g  the resu lt to 

zero gives us

s* =  (6.55)
«=0 »=0 t=0

W ith A c fc =  0, (6 .55) is identical to w hat we originally had in (6.6). D ifferentiating (6 .54) with 

respect to  A c *  and  settin g  the result to  zero gives us

»=o »=o

U nfortunately  the im plem entation  o f (6 .55) and  (6.56) a s  a  recursive algorithm  is considerably 

m ore com plicated  th an  th a t for A c fc= 0 .  Therefore m ore sim pler schem es, still based  on the 

notion o f a  channel estim ate  th a t is a  linear function o f tim e, are desired, and one such is given 

in [66]. T h is  is based  on an SD  algorithm , though there is no reason to  suggest th is could not
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be replaced by an S R K  algorithm  if  desired, th a t utilizes a  weighted least squares linear fit o f 

previous channel estim ates. T h e  prim ary objective o f [66], however, w as to see if  a  good 

estim ate  o f the channel vector could be produced v ia  the decisions o f an  M L SE , th is device 

h av in g  a  sign ificant delay in detection. T h e  estim ation  o f the channel vector a s  a  linear 

function o f tim e allow s us to  predict, by extrapo lation , w hat the vector could be in say  10 -2 0  

sym bol in tervals tim e. T h is is w hat is done in [66], and  the resu lts given suggest th a t th is 

process o f linear extrapo lation  can be quite effective in com battin g  the detection delay  o f an 

M L SE .

T h e  form  o f the channel error curves in figs. 6.7 and  6.8 does not suggest any great 

degradation  (up to SNR=45.0 dB ) caused by an  irreducible lag-error yet, although th is could 

be different for longer channel vectors a n d /o r  higher fade rates. Furtherm ore, in our 

in vestigation s we shall be ignoring, for purposes o f channel estim ation , the delay in detection o f 

the M L S E /n e ar-M L S E , the reason for which will be given in chapter 7. Therefore we shall not 

be im plem enting any m odified versions o f the S R K  or SD  algorith m s th a t estim ate  the channel 

vector a s  a  linear function o f tim e.

On a  passin g  note we m ention a  m ore different estim ation  algorithm  developed in [85], which 

u ses SD -type u p d atin g  (therefore not too com plex in com putation s) an d  which gives good 

perform ance by assu m in g  knowledge o f the ac tu al configuration o f the transm ission  m edium , 

i.e . the num ber o f p a th s present together with their relative strengths and  tim e delays.
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Chapter 7
MODE II PERFORMANCE

In this chapter the performance of receiver devices is observed when the channel variations 

have to be followed by a tracking algorithm, subject to the condition that receiver decisions it 

uses are always correct.

We will first describe how the DFE taps can be computed from the channel estimate at a cost 

less than the conventional SRK approach to the DFE, and then show that this alternative 

tracking procedure gives a superior performance as well. A modified form of the SRK 

algorithm by Hsu [16] is also shown to be prone to instability under certain conditions. It is 

demonstrated that the SD algorithm competes favourably with the SRK when used to 

implement the DFE by way of the channel estimate, and from the results in chapter 6 it is 

shown how simple theoretical predictions can be made of the performance of the DFE-II^ 

Finally, Pc(E.C.) results are presented for the DFE and MLSE/near-MLSE and merits 

discussed.

7.1 Computation of DFE Taps from Channel Estimate

Recall from section 2.6.1 that the DFE taps at time kT are given as

= t =  Y T 'rio  (7-1)

**.- =  Sklk.-i f° r 1 < '< J  (7-2)

with Y k given as

Y„ =  f j i M H  +  Pl (7.3)
1 =0

and yki as defined in (2.129). Let p be a positive real quantity, about which we will discuss 

later, but for the moment can be assumed, like p, to be small. Let us now form an 

approximation to Y k from the elements of the channel estimate vector c ^ ,  defining it as

i=0
(7.4)
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where £*_M =  [ck_hl_i cfc_12_,. ... cfc_l Ar_,.] (7.5)

the elements ck_1 ,= 0  for :<1 and i><7+ l. Using Y k, an estimate of the MMSE DFE taps is 

given as

a* =  Y r ’sU .o (7.6)

akb-i,-<  for !< '< » (7.7)

At first sight it might appear that to calculate w* we have to invert the matrix Y£. Using the 

fact that Y k is a positive definite Hermetian matrix, this can be accomplished with 

multiplications proportional to N3 [86]. However, by exploiting certain properties of Y k we 

show it is possible to calculate wfc with multiplications proportional to N2. Observe that Y k 

can be expressed as

v; = LIL'+pI (7.8)

where Lfc is a lower triangular matrix given by

kfc  =  f a b - 1 , 0  £ f c _ i , i  • • •  - J f c - l , . / V - l ]  ( 7 * 9 )

Assuming ck_l 1t̂ 0, Lfc possesses a unique inverse LjjT1. It is easy to show that

L r 1sU ,o =  (1 0 ...0 ]t (7.10)

Then to get wk we need to solve the equation

( 4  +  p L r 1)* i =  |1 0 ...0 ] t (7.11)

The matrix L*. is Toeplitz, i.e. the elements along any northwest-southeast diagonal are equal. 

It is shown in Appendix H that Lj£-1 is also Toeplitz. Thus the matrix (L^-fpLJ_1) is 

Toeplitz. This fact enables us to solve (7.11) by applying the method of the Levinson-Durbin 

algorithm [3], [87] for solving Yule-Walker systems. Appendix H gives full details of the 

procedure and of an algorithm to solve for the DFE taps.
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Note that the parameter p cannot be set to zero, because then we would be solving

Liwfc =  II 0 ... 0]1 (7.12)

which yields, with TV finite and ck_x ^ 0, the trivial solution

Ht =  (7-13)

With N infinite there is more than one solution to (7.12), the ZF DFE(oo,<7) case being one of 

them, because it is now possible to have wk ^

Table 7.1 gives a comparison of the computational and storage requirements that arise when 

the implementation of the adaptive DFE is by way of the channel estimate (in future to be 

referred to as the channel estimate (CE) method) and by way of the conventional method with 

the SRK algorithm. Note that in addition to the computations involved in solving for the 

DFE taps (as given in Appendix H) we also, for the CE method, have to include the 

computations needed to produce the channel estimate, which is assumed to be via the SRK 

algorithm. The storage requirement for the CE method is the sum of that for producing the 

channel estimate from the SRK algorithm and that for the computation of the DFE taps, less 

2(<7+ l)  because the elements {/,}, I<i<(<7+ 1), in Appendix H are also the components of the 

channel estimate, which are the elements {c,} in Appendix C. Actually the storage 

requirement for the CE method can be even less, because some of the “working” variables used 

in the SRK algorithm can be used again in the computation of the DFE taps. The exact 

requirements may vary slightly from those in Table 7.1 for different signal processors.

Table 7.1 shows that, except for 2 extra real reciprocals, the CE method is more economic than 

the conventional method, and the numerical advantage increases with increasing A, g. The CE 

method does, however, require more organisation than the conventional method, but this

should not be a restrictive factor.
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Requirement CE Method Conventional Method

Equivalent Real 6(JV+«)2+ n ( f f+ s) 6(tf+s)2+ll(JV+j)

Multiplications -2g(2N+g-3)

per Iteration. - N + 11

e.g. DFE(6,1): 356 e.g. DFE(6,1): 371

DFE(6,2): 433 DFE(6,2): 472

Equivalent Real B(N+g)2+4(N+g) B(N+g)2+4(N+g)

Additions per —2g(2N+g—3)

Iteration. - 8A+12

e.g. DFE(6,1): 266 e.g. DFE(6,1): 322

DFE(6,2): 336 DFE(6,2): 416

Equivalent Real N+g+2 N+g

Reciprocals

per Iteration. e.g. DFE(6,1): 9 e.g. DFE(6,1): 7

DFE(6,2): 10 DFE(6,2): 8

Equivalent Real < (N+g)2+$(N+g) (N+g)2+9(N+g)

Variable Storage + U-N(N+2g+Z) + 14

Locations. +4g+17

e.g. DFE(6,1): <81 e.g. DFE(6,1): 126

DFE(6,2): <97 DFE(6,2): 150

Table 7.1 Comparison of requirements for implementing adaptive DFE by way of CE method

and conventional method.
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7.2 Performance Comparison of CE and Conventional Methods

Start-up convergence will be discussed first. This is an important consideration when periodic 

training is employed, as convergence is required in the shortest number of baud intervals.

The parameter p in the CE method should be small, and ideally we expect it should equal the 

quantity p. In the lower halves of figs. 7.1-7.4 are plotted the start-up convergences of the 

MSE in detection, £*, for the DFE(6,^), produced by the CE method for SNR=22.5 dB and 

40.0 dB with 4 QAM and 64 QAM respectively, and with p set at various values. The 

parameter rj is set to the value lO-2*?2, which we saw in chapter 6 gives a convergence rate 

close to optimum. The fade rate in all cases is 1.0 Hz, and in the time period of 60 baud 

intervals the channel response vector has changed from (—0.638— jO.220 , — 0.409-FjO.327) to 

(—0.648—jO.229 , -0.373+j0.404) for Channel A, and from (-0.521-j0.180 , 

—0.334-h/0.267 , -0.636-j0.059) to (-0.529-j0.187 , -0.305+;0.330 , -0.633-j0.074) for 

Channel B. Initially the DFE taps (both feedforward and feedback) are zero, as is also the 

initial channel estimate vector c_v  The starting conditions in the SRK algorithm are as given 

in Appendix C, and the input vector x0 consists of data symbol values. Each convergence 

curve is the average of 30 separate runs, each run involving a different sequence of noise 

samples and data symbols. The parameter w is set to the theoretically optimum value from 

fig. 6.1 that minimizes the long-term error in the channel estimate.

The convergence curves for the different values of p all appear to level out at the same time, 

and the ones for p = p always reach the lowest steady-state level. From theory we know that 

the smaller p is, the closer the MMSE DFE(oo,#) is to the ZF DFE(oo,#). Therefore, as long 

as p is just a small enough number, there should be little change in performance for variation 

in p, as the convergence curves bear out. The curves support the expectation that p — p is 

ideal, and also suggest that if p ^ p  then it is better to have p<p than p>p. In the rest of 

this thesis employment of the CE method is made with the setting p—p.

The upper halves of figs. 7.1-7.4 depict the convergence curves for the conventional method
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under the same conditions as the lower halves for the CE method, with r)/cr1 varying between 

10“4 and 10.0. The DFE taps, which form the elements of the estimated vector, are initially 

zero. The starting conditions in the SRK algorithm are as given in Appendix C, and the input 

vector Xq consists of N received samples and g data symbols (recall (3.46) of chapter 3). The 

curves are again formed by averaging over 30 different sequences of noise samples and data 

symbols. The curves indicate that 77/crf ~  10- 3—10“2 gives a convergence rate close to

optimum. The optimum value of rj must depend to some extent on the channel response 

vector, because of the latter’s influence on the input vector; note that this is not the case for 

channel estimation. The values of u> used in the SRK algorithm have been optimized for long

term performance, about which more will be said later.

Table 7.2 gives a comparison of the convergence times of the CE and conventional methods, 

the information being obtained form figs. 7.1-7.4. The convergence time is taken as the 

number of whole baud intervals required by a curve to reach within 2.0 dB of its approximate 

steady-state value. The values given in the table are for the p —p curves in the CE method 

and the “fastest” curves in the conventional method.

Channel conditions Time, in baud intervals, to reach specified dB

(constellation size, value of from start-up.

channel, SNR (dB)) CE method Conventional method

4, A, 22.5 5 for —14 dB 11 for -13  dB

64, A, 40.0 4 for —17 dB 9 for —14 dB

4, B, 22.5 5 for —13 dB 12 for -12.7 dB

64, B, 40.0 4 for —14 dB 11 for -13  dB

Table 7.2 Comparison of convergence times for CE and conventional methods.

Table 7.2 indicates that the CE method is about 2-3 times faster than the conventional 

method. The reason for this will be discussed later, after we have looked at the long-term 

performances over the 25 fade period patterns.
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In the CE method, the parameter uj of the SRK algorithm is set to that value which 

theoretically minimizes the error in the channel estimate. With the conventional method, the 

calculation of the optimum u setting that minimizes, say, the average mean square error f  is 

not easy. We resort, therefore, to determining it by measurement. Fig. 7.5 gives the optimum 

u>, for the conventional method, that effectively minimizes £ and Pe in mode IIx at a fade rate 

of 1.0 Hz. Each plot point involved minimizing £ with respect to cj, a “minimization curve” 

being formed by measuring £ at different settings of w at a particular SNR, each measurement 

involving a run of 60,000 data symbols over the fading patterns, with a warm-up time of 1.67 

fade periods to eliminate start-up transients. It was found that the optimum w at a particular 

SNR is virtually independent of the constellation size, so fig. 7.5 is valid for 4, 16 and 64 

QAM. It was also noticed that the optimum u virtually minimizes the analytical Pe estimate 

too, this being almost exact for error rates above 10-4, and for the lower error rates observed 

the difference between the minimum Pe and that with ^-optimized u> is negligible.

Figs. 7.6-7.9 compare the performances of the two adaptive methods in mode II1} both 

methods having a warm-up time of 1.67 fade periods to eliminate start-up transients. The 

graphs show that the CE method yields a useful improvement over the conventional method, 

this being larger for increasing constellation size. For example, on Channel A at Pc =  10-3 , the 

advantage in SNR is about 0.9, 1.4 and 3.4 dB respectively for 4, 16 and 64 QAM, whilst at 

P<. =  10“5 it is about 1.5 and 3.2 dB for 4 and 16 QAM respectively. Also, on Channel B at 

Pe =  10“3, the advantage is about 0.5, 1.0 and 1.6 dB respectively for 4, 16 and 64 QAM, 

whilst at Pc =  10-5 it is about 0.9 and 1.6 dB for 4 and 16 QAM respectively. The advantage 

of the CE method appears quite significant for 64 QAM, being greater than 3.0 dB beyond 

Pc=0.5xl0-4. Both the Pe and £ criteria indicate that the advantage of the CE method 

increases with increasing SNR. In fact, with 16 QAM on Channel A, and with 64 QAM on 

both Channel A and Channel B, the Pc and £ curves for the conventional method show a 

distinct tendency to start levelling out to an irreducible level, indicating that the effect of ISI is 

becoming quite influential.
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Observe in Table 7.3 the SNR advantage of the CE method, i.e. the additional amount of SNR 

needed to enable the conventional method to perform at the same level as the CE method at a 

given SNR, for both the Pe and £ performance criteria, the information being taken from figs. 

7.6-7.9.

Channel A Channel B

SNR 4 QAM 16 QAM 64 QAM 4 QAM 16 QAM 64 QAM

(dB) Pe £ Pe £ Pe £ Pe £ Pe £ Pe £

10.0 0.6 0.5 0.4 0.4

15.0 0.7 0.6 0.4 0.5

20.0 0.8 0.7 0.6 0.7 0.5 0.7 0.5 0.7

25.0 1.1 1.1 0.9 1.0 0.9 1.0 0.7 1.0

30.0 1.4 1.6 1.2 1.5 1.4 1.5 1.1 1.5 1.0 1.5

35.0 1.8 2.5 2.3 2.5 1.9 2.4 1.5 2.4

40.0 3.3 4.3 3.6 4.5 3.0 4.3

Table 7.3 SNR advantage (dB) of CE method over conventional method, using Pt and £ 

criteria.

From the values in Table 7.3, the £ criterion, on the whole, appears to indicate a larger 

advantage for the CE method than does the Pe criterion. The difference between the criteria is 

slight for low SNR, getting larger, but not excessively so, as the SNR increases. The fact that 

there is sometimes a difference between the two criteria, errors in measurement not 

withstanding, implies that we can have a situation where the two adaptation methods, 

operating under appropriate SNR’s, can yield the same Pc but different £’s and vice-versa. 

This is not altogether unexpected, because Pe is a quantity that is also influenced by the 

variance (over time) of the instantaneous mean square error £fc, as well as by its time-average 

£. For the reason that Pe is a more informative indicator of performance, the advantage 

expressed by this criterion is to be preferred. A point to remember, however, in favour of the £



165

criterion is from the results of chapter 5, where it was demonstrated (for a ZF MFE in mode 

I J  that £, measured over the limited fading patterns, is more representative of its 

corresponding theoretical long-term value than is Pe.

It was noted in the last section that we need cJb_11 ̂ 0 for L* to possess a unique inverse L*1; 

the reciprocal of x is used in the CE method. In practice, therefore, cfc-1 x should never be 

zero, and there should be a lower bound set for |cJfc_11| that is the smallest “safe” number 

allowable with the numerical precision available. For the simulations conducted in this thesis, 

however, the only constraint applied was that if ck_! 1=0 the DFE taps are not updated; this 

is not to say that the constraint ever came into play. Several simulations were run with (7.6) 

solved by a more standard routine, such as the one in [86] (based on Cholesky decomposition), 

and compared with the simulations from the CE method. The computer uses floating point 

arithmetic with 14 decimal digits for the mantissa; using a measurement accuracy of 8 

significant digits, the agreement between the method using the process of [86], which is more 

costly in terms of computations, and the CE method, was exact. If more limited precision 

processors are employed, another strategy to use if |cfc_1(1| becomes too small is to simply set 

the first tap of the feedforward filter to zero, and compute the rest of the taps assuming cJfc_1 2 

as the first component in the channel vector.

The method of implementing the MMSE DFE via the channel estimate could perhaps be made 

even more computationally efficient, especially when N, g are large. This is because the 

channel estimate is not expected to change too much in successive baud intervals. Therefore, 

some cost-reducing iteration scheme could perhaps be devised to compute the new MMSE tap 

settings from the new channel estimate and old tap settings and channel estimate.

We have demonstrated that the CE method is superior to the conventional SRK method in 

both computational economy and performance. A pertinent question to ask is why does it 

perform better. The faster convergence can be easily explained. In the conventional method 

the length of the estimated vector in the RLS algorithm is N+g, whereas for channel
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estimation the length is p+l. It was discussed in chapter 3 how the speed of convergence of 

the RLS algorithm is dependent on the length of the estimated vector, the longer the vector the 

slower the convergence. Thus since the speed of convergence of the CE method is determined 

solely by how fast the channel estimate can be formed, the CE method will be faster than the 

conventional method. As to why the CE method has a better long-term performance, recall 

first that the estimated vector c* in the RLS algorithm is given by

st =  (7-i4)
»=0  i=0

where for the conventional method x,- and zi are

Si =  [>V ri+1 ... ri+jv_j »(_, S,_, ... s , . , ]  (7.15)

2i =  s, (7.16)

while for the CE method, which uses channel estimation, they are

x- =  [s{ s ,•_! ... Si_g] (7.17)

z( =  rf (7.18)

Rearranging (7.14) we obtain

£ y - ' z ; ( s k t -* i) =  o (7.i9)
»=0

Assuming there are no decision errors in the {s,}, it can be seen from (7.19) that in order to 

have a unique value for c*., the value of k needs to be >M— 1, where M is the length of the 

estimated vector, with at least M linearly independent x,’s which, for good adaptation, should 

be the most recent. Consequently, the conventional method needs at least 2N+g— 1 noise- 

contaminated received samples r,- (these being in the N+g successive input vectors xt), whereas 

the CE method needs only g+\  (these being in the g+ 1 desired values zf), and in a time- 

varying environment the accuracy of the conventional method will further suffer because of it’s 

need for a larger span of received samples. Thus it is not surprising that the conventional 

method is inferior to the CE method. Furthermore, if the P J1 matrix in the RLS algorithm is 

ill-conditioned (more likely if u is smaller), then small errors in the elements of P*1, as can be
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produced by noise in the {x,}, lead to larger errors in the inverse Pfc.

The CE method is a more determined attempt at implementing the MMSE DFE, taking 

advantage of the special relationship between the optimum DFE tap settings and the channel 

response, and the accuracy of the channel estimate is thus the crucial issue; the conventional 

method simply determines the DFE tap settings that minimize a weighted time average of the 

squared error at the input to the threshold detector.

To conclude this section we mention a recent development in [88]. In this paper it is described 

how roots of the z-transform of the sampled channel impulse response, which are outside the 

unit circle, can be calculated in an iterative manner. These roots are then used to evaluate the 

leading N taps of the feedforward section of the ZF DFE, which is the pre-filter for the near- 

MLSE, the feedforward filter having a z-transform which has poles that are the roots in 

question, and zeros that are the reciprocals of the complex conjugates of these roots (recall end 

of section 2.5). Because N is finite-valued, there will be some anti-causal ISI present at the 

output of the feedforward filter; therefore N has to be made sufficiently large to limit this. 

Roots that are close to the unit circle require a large value of N in order for them to be 

accurately accommodated by the filter [88]. At the same time, however, the closer to the unit 

circle the roots are, the less urgent the need for them to be accommodated. It is suggested in 

[88] that the scheme be adopted for use on time-varying channels, by employing an estimate of 

the channel response. The fundamental difference between an approach based on the scheme in 

[88] and the CE method, is that the former aims to produce a truncated-tap version of the ZF 

DFE(oo,<7) from the channel estimate, whereas the latter produces a finite-tap MMSE 

DFE{N}g), which is optimum for the given value of N. With A large enough, and p small, and 

ignoring any differences concerning the degree of numerical precision required, in theory one 

would expect there to be little difference between the levels of performance offered by the two 

approaches, the possible advantage of one approach over the other being in terms of economy 

of computations and ease of implementation. In general, the computational requirements of 

the scheme in [88] depend significantly on the number of roots outside the unit circle, and the
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number of iterations needed to locate them to within a given accuracy.

7.3 Revised SRK Algorithm of Hsu [16]

It has been observed how the parameter tj in the SRK algorithm controls convergence; a large 

value produces a slow rate. In [16] it is pointed out that a small value for this parameter 

(identified as in [16]) produces a large magnitude disparity in the start-up computations of 

the diagonal matrix D*. To be more specific, it states for example how the first component of 

this matrix drops from 1.0 to about 10-3 in the first iteration, the other components staying at 

about 1.0, this example being for the conventional implementation of a DFE with 77~10-3 and 

to close to 1. For a processor of limited word size, this large magnitude disparity can 

significantly disturb the equalization process during start-up, and also if a periodic resetting 

scheme is used (the resetting is for preventing the cumulation of round-off errors). To 

overcome this situation a modified version of the SRK algorithm is presented in [16], and is 

such that it is “stable” for various values of rj without sacrificing the rate of convergence. The 

essential difference lies in the replacement of the step

P* =  ik l-k sD P * -!  (7.20)

as was in (3.42iii) of chapter 3, with

P* =  (Gl-!£*2s!i)P*-i (7-21)

What this means to the algorithm in Appendix C is that we replace those computational stages 

marked on the left-hand side with “A”, namely

(0 ,  _  J,
K — a l

(») dj =  d^huTjK

(Hi) 00 =  <*i-l (7.22)

( iv) ,  -  X
K — a t-

(v) e =  ekK
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with, in respective order,

(0 K “  (« i+ M
(«) dfj =  d^u^ + h^K

(Hi) /?0 =

(tv) k  =  — ] ~ r r

(v) e =  €knhu

(7.23)

where At =  aM(ho>—1) (7.24)

The mathematical proof of the steps in (7.23) can be found in [16]. For u> close to 1, there is 

little difference between the revised and original SRK algorithms. In [16] the revised SRK 

algorithm is observed to be superior, though only very marginally so, to the original SRK, and 

this is put down to the improvement of stability of the revised SRK. We have found, however, 

that for u> below a certain value the revised SRK algorithm becomes unstable, and that the 

threshold for this is dependent on the length of the estimated vector. Observe in Table 7.4 

some error count performance figures for the conventional implementation of the adaptive DFE 

by means of the revised SRK algorithm. The figures were obtained over a time period that 

covers only part of the 25 fade period pattern of Channel B, after an initial warm-up time of 

2000 baud intervals to remove transient effects.

It was found that the sudden large jump in the error count, that occurs on reaching a 

particular setting of l/w, is caused by the real positive elements of Dfc increasing at each 

iteration, until they approach the upper limit for a positive number on the computer, which is 

~10322. In general, if any number exceeds the upper limit the program aborts. This did not 

happen here, because before the elements {d,}, or the elements {g j and {a,} as well (see 

Appendix C), could reach the upper limit, the quantity k reached zero, it being the reciprocal 

of a very large number. This then caused the {df} to become zero, and thence on the next 

update the elements {g,} all became zero and {a,} all became equal to rj. Thus tracking 

ceased altogether, the estimated vector becoming “frozen” at a constant value.
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1U)

No. of errors in 20,000 data symbols (64 QAM)

DFE(15,2), SNR= 100.0 dB DFE(10,2), SNR=100.0 dB DFE(6,2) 

f.r. =  1.0 Hz 

SNR=40.0 dB

f.r.=0.5 Hz 

(over 40,000)

f.r. =  1.0 Hz f.r. =  1.5 Hz f.r.=2.0 Hz

1.050 9 204

1.075 0 84 47

1.100 0 43 72 25

1.125 1 28 43 134 15

1.150 7,862 26 35 101 12

1.175 23,363 6,703 27 79 10

1.200 10,436 1,622 1,232 10

1.225 10,535 9,417 12

1.250 13,600 12

1.275 7,437

N

No. of errors in 20,000 data 

symbols (64 QAM). 

DFE(A,2), f.r.=2.0 Hz, 

SNR=40.0 dB, i  =  1.237.

4 63

5 39

6 39

7 70

8 7,252

Table 7.4 Error count performance 

figures for revised SRK algorithm 

of [16] on Channel B with 64 QAM.
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We can derive an approximate lower bound to co below which instability arises. Recall from 

Appendix C and (7.23) that the ith element of Dk is updated at each iteration as

dl = dlh“la^X) (7'25)

d- = dihvPaK =  for 2<i<M (7.26)

If the multiplying coefficient of d{ on the RHS of (7.25), (7.26) is always going to be >1, then

di will keep on increasing, and therefore we have a situation of instability. If all the dt,

l<i<M, are infinitely large, we could expect all the or,-, l<t<Af, also to be infinitely large,

and thus the multiplying coefficient to be hu (>1) for all i, ensuring a condition of instability.

Suppose that at any particular instant we have the element dm infinitely large, where

l<m<M , and the rest of the elements diy i^m,  all finite. Then it may be assumed that all

a i> 1, are finite, and that all a,-, are approximately equal and infinitely

large. This would then make the multiplying coefficient in (7.25), (7.26) approximately hw — 1

for i=m, and hu for Further supposing that stability will be assured if the determinant
M

of Dj., i.e. [7 d{, keeps on decreasing, we then require for stability that
»=i

h % - \h u , - 1) <  1 =$► M <  (7-27)

A graph of l/u> vs. M is plotted in fig. 7.10. For stability the combination of 1/w and M must 

produce a co-ordinate below the curve in fig. 7.10. When the adaptive DFE is implemented in 

the conventional manner, M=N+g. The predicted upper bounds to 1/w that give the 

threshold for instability compare reasonably well with the results in Table 7.4. For example, 

for DFE(10,2) the upper bound to 1/w from fig. 7.10 is approximately 1.173, and in Table 7.4 

there is a large change in error count going from l/u;=1.175 to 1.200. The state of instability 

may actually already exist even though a low error count has been recorded, since the detection 

process only fails when any of the {d,} reach the maximum positive number capable of being 

stored on the computer. This can be seen in the results for DFE(15,2), the first column listing 

counts taken from 40,000 symbols and suggesting a threshold for instability between
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l/u> =  1.125 and 1.150, while the second column lists counts taken from half the number of 

symbols (therefore detection process has not been running for so long) and suggests a threshold 

for instability between 1/ cj =  1.150 and 1.175; the predicted threshold for 1/w is approximately 

1.134.

It was observed for the DFE(6,2) with 64 QAM on Channel B, at a 2.0 Hz fade rate, that the 

probability of error can barely be reduced below 10“3 without causing instability by further 

reduction in u>. Apart from producing the results in this section, the revised SRK algorithm of 

[16] is not used further in this thesis.

7.4 Performance of DFE(6,^)-II1

Unless stated otherwise, in the rest of this thesis the DFE should be assumed to be 

implemented by way of the CE method.

Figs. 7.11-7.14 depict the long-term performance of the DFE(6,^)-II1. Except for the mode Ix 

curves, which are shown for ease of comparison with mode II1} the continuous curves represent 

the performance offered by the SRK algorithm while the plot symbols represent that from the 

SD algorithm, both algorithms having w and fi' respectively set to their optimum theoretical 

values as detailed in chapter 6. As usual, in measuring long-term performance there is a 

warm-up time of 1.67 fade periods prior to transmission over the fading patterns, to remove 

transient start-up effects.

Figs. 7.11 and 7.12, which refer to Channel A, indicate that there is very little difference 

between the SRK and SD algorithms, up to a fade rate of 2.0 Hz. In figs. 7.13 and 7.14, which 

refer to Channel B, there is a more noticeable degradation of the SD algorithm with respect to 

the SRK algorithm, this being apparent at the high SNR end of the curves for 16 and 64 QAM.

The number of computations needed by the SD algorithm is 10(g-fl) real multiplications and 

8(<7-f 1) real additions, and its use in the CE method thus brings about a reduction in both 

multiplications and additions of approximately 6-7% for DFE(6,1) and 13% for DFE(6,2).
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Clearly, in view of the performance offered by the SD algorithm, its use is worth considering if 

computational complexity is critical. However, since the SRK algorithm generally has an 

advantage (albeit small at times) over the SD algorithm, both in terms of long-term 

performance and start-up convergence, its use will be more predominant than the latter’s for 

the remaining work in this thesis. The discussion in the rest of this section is centred on 

results from the SRK algorithm.

The curves for 4 QAM in figs. 7.11-7.14 indicate that there is little degradation in going from 

mode Ix to mode 11̂  at Pc =  10‘“6 the degradation, in terms of SNR, is about 1.0 dB and 1.5 

dB on Channel A and Channel B respectively. The difference between 1.0 Hz and 2.0 Hz fade 

rates for 4 QAM appears to be very small in the Pe curves, the difference being slightly more 

marked in the f  curves. Overall the results for 4 QAM suggest that fade rates higher than 2.0 

Hz can be coped with quite easily. The degradation from mode Ix to mode IIX is larger for 16 

QAM, and more so for 64 QAM, this being a consequence of having to operate at increasingly 

higher values of SNR. For example, observe the figures in Table 7.5 for the SNR degradation 

from mode Ij to mode IIj, the information being taken from figs. 7.11 and 7.13. For 64 QAM, 

it looks as though the required SNR would have to be in excess of 50.0 dB in mode IIx in order 

to achieve a Pe of 10“6 on Channel A, and on Channel B at f.r.=2.0 Hz.

f.r. =  1.0 Hz f.r.=2.0 Hz

pe=io-3 Pc =  10"6 II i—* o 1 CO Pc =  10"6

Channel A 16 QAM 1.1 2.0 1.5 3.3

64 QAM 1.5 — 2.7 —

Channel B 16 QAM 1.2 2.6 1.9 3.8

64 QAM 2.1 4.6 3.8 —

Table 7.5 SNR degradation (dB) from mode Ix to mode IIj.

The degradation from mode Ix to mode IIX is generally greater on Channel B than on Channel 

A, because B’s longer channel response vector can be known less accurately. The extra path
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component of Channel B, however, ensures that its mode IIX Pe performance is usually still 

much better than Channel A’s, in contrast to its £ performance, which is worse than Channel 

A’s. We saw in chapter 5 that the SNR difference between Channel A and Channel B is much 

smaller for the £ criterion than for the Pe criterion, indicating that the £ criterion does not 

highlight the diversity advantage of Channel B.

At time kT the receiver assumes the channel vector is equal to the estimated vector cfc_1. To 

the receiver, the tracking algorithm error €k — rk—x\ck_i is the sole corrupting influence on the 

information bearing part of the received sample rk. The mean square value of ck, where the 

expectation is over the gaussian noise and data symbols, varies with k because of the time 

variation of the channel. Thus we may think of the interference in rk as being from a zero 

mean noise quantity, not necessarily gaussian, that has a time-varying variance. The ratio of 

o', to the mean square value of ek can therefore be regarded as an effective signal-to-noise ratio 

at time kT. Averaging the mean square value of ek over the fading statistics of the channel 

gives us e (6.1), and the ratio a2/c is thus a kind of average signal-to-noise ratio that relates to 

long-term performance over the channel. The quantity lOlogjoJe/C/^crf)] represents the dB loss 

with respect to the signal-to-noise ratio 1/p. As SNR increases, then ef(pa2) gets larger, as 

can be seen in figs. 6.2 and 6.3 of chapter 6, and thus we may expect the dB loss from mode I2 

to mode IIX to get larger as well.

Assuming that the estimated vector ck_v  in the absence of decision errors, follows the same 

basic time variation as does the channel vector, consider now a scheme in which the 

performance level in mode IIlt at a given value of SNR, is predicted as being the performance 

level in mode Ix at an SNR value of <r2/(, where e is obtained from mode IIj. Using figs. 6.2 

and 6.3 and the mode Ix performance curves we thus form the dashed curves in figs. 7.11-7.14. 

The prediction of the £ performance is extremely good for both channels. The prediction of the 

Pe performance tends to become worse at the lower values of Pe, this appearing to be more so 

for Channel A than Channel B. This could be due to the fact that the Pe measurement 

depends to some extent on the fourth order statistics of ek, and also that for low values it
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tends to be less indicative of truely long-term behaviour, a condition that is worse for Channel 

A, as was discussed in chapter 5.

Note that the feedforward section of the DFE(N,g) at time kT contains N received samples 

rk+i, 0<t<JV—1. If the DFE taps are determined from the estimated vector then each 

received sample in the feedforward section can be imagined as having an effective “noise” given 

by rk+i—x^+1cfc_1, this quantity having an expected square value (over gaussian noise, data 

symbols and fading channel statistics) that increases with i. In the prediction scheme described 

above we are effectively ignoring the variation in “noise” variance over the received samples in 

the DFE.

On the whole the prediction of the Pe and f performance in mode 11̂  based on the 

performance in mode I1} appears reasonably good given the simplistic nature of the method. In 

a similar fashion the performance by way of the SD algorithm can be predicted too. Given 

that we have mode Ix performance curves, it is much easier to produce curves of e/cr? vs. SNR 

than it is to simulate a DFE-I^ and measure Pe, £• One could alternatively use the theoretical 

expressions for € derived in chapter 6 for both the SRK and SD algorithms, thereby reducing 

further the need for simulations, though the prediction accuracy for the SRK algorithm, unlike 

for the SD, is likely to suffer at high SNR where the theoretical estimate of e is not so good.

7.5 MLSE/near-MLSE and DFE(6,g)

Figs. 7.15 and 7.16 depict the long-term Pe(E.C.) vs. SNR perfomance of the MLSE/near- 

MLSE and DFE(6,#) in mode II, at a fade rate of 1.0 Hz. The E.C. curves consist of straight 

lines between the data points. Tables 7.6 and 7.7 give the number of errors occurring in the 

E.C. measurement runs. The tap values of the DFE, and therefore also the pre-filter taps for 

the near-MLSE, are determined according to the CE method with the channel estimate being 

produced by the SRK algorithm. The warm-up time is 1.67 fade periods prior to 

measurement. The channel estimate used by the MLSE/near-MLSE is the same as that for the 

DFE, so in effect we are ignoring any limitation due to the delay in detection of the
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SNR
(dB)

Errors in 60,000, f.r. =  1.0 Hz Errors in 30,000, f.r.=2.0 Hz

DFE(6,1) MLSE/
near-MLSE

DFE(6,1) MLSE/
near-MLSE4 QAM Mode IIj Mode II2 Mode Hi Mode II2

7.5 4,843 (4 ,6 5 7 ) 5,986 (5 ,730 ) 5,119 (4 ,7 8 8 ) 2,507 3,127 2,742
10.0 2,345 (2 ,1 3 9 ) 3,028 (2 ,768 ) 2,411 (2 ,2 1 9 ) 1,170 1,514 1,200
12.5 1,028 (9 1 2 ) 1,316 (1 ,1 8 6 ) 998 (931 ) 538 726 533
15.0 457 (40 0 ) 603 (548) 468 (416 ) 223 280 219
20.0 101 (9 2 ) 154 (136) 93 (78 ) 59 76 46
24.0 26 (20) 29 (21) 25 (18 ) 10 9 9
27.5 6 (4 ) 6 (5 ) 6 (6 ) 2 5 3
30.0 1 (1) 3 (l) 2 (2 ) 0 0 0

16 QAM
15.0 7,588 (6 ,9 0 5 ) 11,276 (10 ,379 ) 9,912 (8 ,9 9 8 ) 4,010 5,958 5,323
20.0 1,641 (1 ,4 2 9 ) 2,993 (2 ,6 4 9 ) 2,286 (1 ,8 8 0 ) 902 1,567 1,242
25.0 343 (2 6 4 ) 615 (458) 464 (405) 184 329 262

30.0 88 (61 ) 175 (160) 127 (89 ) 40 71 51
32.5 36 (22) 77 (51) 54 (24 ) 16 30 15
35.0 8 (8 ) 16 (16) 12 (io) 7 22 10
37.5 7 (2) 13 (7) 7 (7 ) 3 19 8

40.0 1 (0) 6 (0 ) 6 (0 ) 0 0 0
64 QAM

25.0 3,374 (2 ,7 1 1 ) 7,964 (7 ,017 ) 6,385 (5 ,4 8 5 ) 1,893 4,668 3,865

30.0 695 (507 ) 1,804 (1 ,2 4 5 ) 1,211 (921 ) 426 1,077 669
35.0 180 (120) 472 (311) 345 (249 ) 104 260 199
37.5 85 (5 4 ) 284 (220) 189 (157) 52 146 113
40.0 42 (18 ) 176 (77 ) 120 (27 ) 29 109 74
42.5 19 (9 ) 128 (76 ) 72 (17 ) 15 79 40
45.0 11 (1) 100 (9 ) 59 (0) 7 43 38

Table 7.6 Error counts for mode II on Channel A, using SRK algorithm. Figures in (.) 

indicate values obtained for mode I (chapter 5).
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SNR Errors in 60,000, f.r. =  1.0 Hz Errors in 30,000, f.r.=2.0 Hz

(dB) DFE(6,2) MLSE/ DFE(6,2) MLSE/

4 QAM Mode IIj Mode II2 near-MLSE Mode II x Mode II2 near-MLSE

7.5 5,060 (4 ,6 4 7 ) 7,164 (6 ,6 0 9 ) 5,600 (5 ,1 5 4 ) 2,577 3,674 2,806

12.5 919 (800 ) 1,497 (1 ,3 1 6 ) 890 (748) 483 795 487

16.5 146 (109 ) 274 (20 8 ) 133 (107) 76 153 53

20 .0 24 (22) 35 (3 4 ) 20 (1 6 ) 18 34 13

22.5 9 (5 ) 12 (8 ) 4 (3 ) 4 10 2

16 QAM

17.5 4,199 (3 ,5 5 8 ) 9,422 (8 ,3 4 0 ) 7,365 (6 ,0 9 7 ) 2,292 4,933 3,964

22.5 610 (420 ) 2,061 (1 ,4 8 6 ) 1,222 (908 ) 366 1,208 754

26.5 85 (44 ) 369 (101) 126 (59 ) 65 204 127

30.0 13 (6) 57 (16 ) 40 (3) 11 48 31

31.0 5 (3 ) 32 (3 ) 6 (0) 7 39 13

32.5 0 (0 ) 0 (0 ) 0 (o ) 2 13 13

64 QAM

25.0 4,267 (3 ,1 1 3 ) 16,602 (13 ,872 ) 11,619 (9 ,2 5 0 ) 2,518 8,977 6,857

30.0 673 (338 ) 6,444 (3 ,8 1 2 ) 2,255 (1,222) 450 3,598 1,514

32.5 194 (76 ) 1,863 (736 ) 427 (160) 185 2,270 538

35.0 57 (22) 505 (77 ) 130 (45 ) 72 910 138

37.5 13 (2) 103 (74 ) 69 (0) 29 840 64

40.0 2 (0 ) 22 (0) 8 (0 ) 11 61 39

Table 7.7 Error counts for mode II on Channel B, using SRK algorithm. Figures in (.) 

indicate values obtained for mode I (chapter 5).
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MLSE/near-MLSE. In this way the two detection devices are on an equal footing when it 

comes to accuracy in channel estimation. Figs. 7.15, 7.16 and Tables 7.6, 7.7 also show the 

performance in mode I for ease of comparison with mode II. Also shown in Tables 7.6 and 7.7 

are mode II error counts for runs at a 2.0 Hz fade rate, the counts now being over only 30,000 

transmitted symbols, these symbols being the first 30,000 of the 60,000 symbols used at the 

fade rate of 1.0 Hz. The error counts for 2.0 Hz when doubled are, as expected, generally 

greater than the corresponding counts for 1.0 Hz. The data for 2.0 Hz is not plotted in figs. 

7.15 and 7.16 so as not to over-complicate the graphs, and in any case, the essential message 

the data conveys, which will be discussed shortly, can easily be seen from the tables. The 

performance with the SD algorithm is not very different from that with the SRK algorithm, 

and so is not shown.

As we saw in the last section, the DFE-Ij and DFE-IIj produce lower error rates, at a given 

SNR, on Channel B than on Channel A. With 16 and 64 QAM in particular, however, the 

near-MLSE and DFE-I2,Il2 produce lower E.C. error rates on Channel A than on Channel B 

above about Pe =  10""2. This is probably because of the more dispersive nature of Channel B, 

producing longer bursts of errors. The extra path, or order of diversity, in Channel B ensures 

that when Pe(E.C.)^10“2, the iVs produced by the near-MLSE and DFE-I2,Il2 on this 

channel are lower, at a given SNR, than on Channel A.

The results for mode II reaffirm most of the observations made previously in chapter 5 for 

mode I. For 4 QAM the degradation caused by propagation in the DFE is fairly small, and 

the MLSE is quite close in performance to the DFE-IIi. As the constellation size increases to 

16 and 64, the effect of propagation gets progressively worse, and is particularly severe for 64 

QAM, as can be seen from the figures in Tables 7.6 and 7.7. Though the MLSE performs as 

well as the DFE-IIj for 4 QAM, the near-MLSE performs noticeably worse than the DFE-IIj 

for 16 QAM, with the gap even wider for 64 QAM. It is interesting to note that for both 

channels the gap in performance between the near-MLSE and DFE in mode IIx generally 

appears larger than the coresponding gap in mode Ix. For example, observe in fig. 7.16 for
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Channel B that in mode Ix the near-MLSE can, at high enough SNR, produce a slightly lower 

error count than the DFE for both 16 and 64 QAM, but definately not so when in mode Hi. 

This would suggest that the near-MLSE degrades more than the DFE (in the absence of 

feedback errors) when both devices are subject to the same error in the channel estimate. On 

the other hand, the near-MLSE does perform better than the DFE-II2, which leads us to 

conclude that in the situations studied here the MLSE/near-MLSE is superior to the DFE only 

because of the latter device’s inclination to propagate errors. From figs. 7.15 and 7.16 at the 

SNR for which Pe =  10-3 for the MLSE/near-MLSE in mode II, the corresponding Pe for the 

DFE-II2 is, at most, just slightly less than 2xl0-3.

As far as computational complexity is concerned, with the values of g used here the MLSE for 

4 QAM is only marginally more complex than the DFE. With the near-MLSE, however, the 

difference lies in that the DFE uses a feedback filter and a simple threshold detector at the 

output of the feedforward section, whereas the near-MLSE, with the feedforward section now 

acting as its pre-filter, uses the detection algorithm detailed in Appendix G (and given as a 

Fortran program in Appendix I). The additional cost over the DFE of the near-MLSE is thus 

considerable. As a practical example of the additional cost involved, a complete simulation 

run of 60,000 symbols on the computer (includes everything from generation of data symbols, 

fading channel, etc. to update of SRK algorithm, receiver devices and the measurement 

processes themselves, but excluding the analytical Pt estimate) takes approximately 4-5 times 

longer with the near-MLSE than it does with the DFE. The performance of the near-MLSE 

could be improved if it were allowed to operate with more than 16 and 64 survivors and 

expanded sequences respectively [42], but probably not without a significant increase in 

complexity.

Although the MLSE/near-MLSE has used exactly the same channel estimate as the DFE in 

producing the results of this section, in practice unless some type of early detection, such as for 

example a DFE operating in parallel, or some type of extrapolation technique on the channel 

estimate (see section 6.4) is employed, the delay in detection of the MLSE/near-MLSE can lead
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to a significant deterioration in the accuracy of the channel estimate. Another point to bear in 

mind is from the work in [49], which shows that in the presence of phase jitter, on an otherwise 

time-invariant channel, the performance of the VA can degrade to a greater extent than that of 

the DFE. This therefore means there has to be greater emphasis on accuracy in any carrier 

phase recovery scheme if an MLSE/near-MLSE is employed. Assuming the carrier phase 

recovery scheme is data-aided, as was described in chapter 4, it must therefore also confront 

the problem of the delay in detection of the MLSE/near-MLSE. One could view the presence 

of phase jitter as simply being a source of error in the receiver’s knowledge of the channel 

response vector, and thus the results of [49] may offer some support to our earlier remark about 

the near-MLSE degrading more than the DFE when there is error in the channel estimate. We 

can reasonably conclude that the performance of the MLSE/near-MLSE depicted so far is the 

best that can be expected with respect to the DFE.

On a final note we mention a near-MLSE developed in [18] for 16 QAM, which operates 

without any digital pre-filter, requiring only an estimate of the channel vector. The channel 

estimate must be examined regularly to determine the most “significant” component. The 

scheme is quite different from any near-MLSE based on the concept of a reduced-state VA [18]. 

The motive behind the strategy adopted in [18] lies in the assertion that the adaptive pre-filter 

is difficult to hold correctly adjusted, compared to estimation of the channel vector which can 

be achieved more rapidly and accurately. This claim is probably made under the assumption 

that the pre-filter is implemented by way of the conventional method, using the SD algorithm. 

For time-varying channels like the HF, the conventional RLS implementation of the adaptive 

DFE is vastly superior in performance to the conventional implementation using the SD 

algorithm [15], [64]. We have shown that the CE method of implementing the adaptive DFE 

is superior in performance to the conventional RLS method. In operating without a pre-filter, 

the near-MLSE scheme of [18] is more complex [97] than similar-performing near-MLSE 

schemes that use a pre-filter (assuming it is correctly adjusted), such as the ones in [42].
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Chapter 8
MODE III PERFORMANCE

The performance of the receiver up to now has been observed under condition that the tracking 

algorithm function independently of the receiver’s decisions, employing at all times the actual 

transmitted data symbol values. In normal transmission, however, it is intended that the 

tracking algorithm employ the receiver’s decisions. The investigations to be reported in this 

chapter assume this to be the case, unless the receiver is being “trained”, in which case the 

transmitted symbols are already known.

The results of the previous chapter showed us that around Pe<, 10“3 the MLSE/near-MLSE is 

only slightly better than the DFE-II2, when both devices use the same channel estimate. 

Assuming adequate provision is made in the channel estimation process to compensate for the 

delay in detection of the MLSE/near-MLSE, it is reasonable to assume that its behaviour in 

mode III will not be too dissimilar to that of the DFE. We shall therefore confine our 

attention to the DFE only in this chapter. An interesting result of the previous chapter is that 

the MLSE is only as good as, and the near-MLSE is inferior to, the DFE-IIj. In chapter 5 it 

was shown that around Pe<, 10-3 the possible advantage of any device over the DFE-Ii is only 

~ l-3  dB (in terms of SNR) anyway. It therefore seems highly desirable, and more cost- 

effective than employing a near-MLSE, to employ a DFE in which serious error propagation is 

prevented by some arrangement, such as use of a training sequence from the transmitter. In 

any case, as we shall shortly see, the effect of bursts of errors such as occur for 16 and 64 QAM 

can prove very trying for the tracking algorithm, and so recourse to training from the 

transmitter is likely to be needed anyway.

In this chapter two approaches to use of training sequences from the transmitter will be 

examined; one is where a sequence of known symbols is inserted periodically into the data 

stream, the other where a training sequence is requested by the receiver.

In all measurements the fade rate is set at 1.0 Hz, and the warm-up time for the tracking
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algorithm is 1.67 fade periods, or 4000 known symbols, prior to transmission over the fading 

patterns.

8.1 Performance of DFE(6,ff)-III

Recall from section 3.3.3 what was said about a receiver operating in decision directed mode. 

The experience of deep fades at the receiver, when the instantaneous error rate is high, or 

where the channel undergoes rapid changes in time, can sometimes perturb the detection and 

tracking process in such a way that, on “recovery” out of the difficult period, the detected data 

symbols are shifted by a phase angle *7r /2, where i= l, 2 or 3, with respect to the transmitted 

symbols, e.g. see [15] or [64]. The estimate of the channel vector likewise has all its 

components shifted by a phase angle — *7r/2 with respect to the true channel vector. This state 

of affairs causes no problem to the reception of data if the information on which quadrant (in 

the complex plane) the kth data symbol is in (that is, the symbol that is intended for the 

customer as opposed to the one that is actually transmitted) is encoded as the quadrant change 

between the and sk transmitted data symbols. For example, the receiver passes on to the 

customer the kih data symbol given as

Customer’s data symbol =  ske (8.1)

where Qu(.) is an integer function taking on the values

Qu(sjb) =  o for 0 <  arg(sjfc) <  |

=  1 for |  <  arg(s*) <  *

=  2 for 7T < arg(s*) <  ^

=  3 for Y  <  arg(5*) < 2?r

It can be seen from (8.1) that any fixed quadrangular phase shift between the detected and 

transmitted symbols does not alter the symbol passed on to the customer. The strategy of 

coding data as the phase difference between two adjacent (in time) symbols is termed 

differential coding. We shall in future distinguish the symbols and symbol errors detected by
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way of differential coding with the descriptor “differential”, as opposed to the ones arising out 

of actual threshold detection, which have hitherto been referred to simply as “detected”. Given 

the scheme of (8.1), it can be seen that the number of differential symbol errors is > (only > 

for 4 QAM) the number of detected symbol errors, by at most a factor of 2, assuming there is 

no phase shift between the detected and transmitted symbols. The difference is usually greater 

for small constellation sizes, since an erroneous detected symbol that is a “nearest neighbour” 

to the transmitted symbol is more likely to be in a different quadrant, this always being the 

case for 4 QAM.

Figs. 8.1 and 8.2 depict the Pe(E.C.) vs. SNR performance of the DFE(6,^)-III, with the error 

rates being derived from the differential error counts that occurred from use of the scheme in 

(8.1). Also shown in figs. 8.1 and 8.2 are the curves of Pe(E.c.) vs. SNR based on the 

differential error counts of the DFE-II2. Tables 8.1 and 8.2 list the differential error counts of 

the DFE, using the SRK algorithm, for both mode II2 and mode III, and also lists the actual 

detected error counts too. Comparing the counts for the detected errors and the differential 

errors, where the former is significantly greater than the latter tells us that a quadrangular 

phase shift in the detected symbols, with respect to the transmitted symbols, occurred at some 

time during the measurement run.

The performance of the DFE-III using the SD algorithm is not radically different from that 

with the SRK algorithm. The distinct “random” variations in the curves for each algorithm 

may be different, as shown in figs. 8.1 and 8.2, but essentially they both portray the same 

behaviour. For the rest of this chapter the discussion is centred on the SRK algorithm. Fig. 

8.1 shows that the degradation of mode III with respect to mode II2 is very slight with 4 QAM 

on Channel A. The difference between the two modes steadily narrows as the SNR 

increases/error rate decreases. With 4 QAM on Channel B (fig. 8.2), the degradation of mode 

III with respect to mode II2 is larger than for Channel A, particularly above Pe =  10“3, but 

this narrows sharply as the SNR increases. At Pe =  10-3 for 4 QAM, the degradation of mode 

III with respect to mode II2 is ~0.5 dB in terms of SNR, for both channels.
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No. of errors in 60,000 for DFE(6,1)

SNR (dB) Mode II2 Mode III

Threshold Differential Threshold Differential
4 QAM Detected Detected Detected Detected

7.5 5,986 8,773 43,068 11,250

10.0 3,028 4,357 42,477 6,474

12.5 1,316 1,902 29,659 3,708

15.0 603 859 59,587 973
20.0 154 214 17,384 230
24.0 29 47 17,304 62
27.5 6 10 6 10

30.0 3 4 3 4
16 QAM

15.0 11,276 12,652 53,475 38,829
20.0 2,993 3,267 55,995 22,811
25.0 615 667 59,587 4,810
30.0 175 195 17,344 1,687
32.5 77 86 17,264 1,611
35.0 16 19 48 52

37.5 13 15 1,397 1,449

40.0 6 7 6 7
64 QAM
25.0 7,964 8,187 58,231 49,677
30.0 1,804 1,850 56,254 38,829
35.0 472 485 59,724 14,560
37.5 284 288 19,149 5,274

40.0 176 177 37,597 6,779
42.5 128 128 1,787 1,795
45.0 100 10! 17,225 9,229

Table 8.1 E rror counts for D F E (6 ,1 ) on Channel A, using SRK algorithm .
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No. of errors in 60,000 for DFE(6,2)

SNR (dB) Mode II2 Mode III

Threshold Differential Threshold Differential

4 QAM Detected Detected Detected Detected

7.5 7,164 10,523 52,863 18,930

12.5 1,497 2,129 54,094 5,083

16.5 274 372 16,871 1,449

20.0 35 55 41 68

22.5 12 21 12 21

16 QAM

17.5 9,422 10,596 56,774 44,376

22.5 2,061 2,271 42,477 29,319

26.5 369 406 59,450 7,837

30.0 57 58 1,549 1,622

31.0 32 32 16,794 2,356

64 QAM

25.0 16,602 17,146 59,177 53,598

30.0 6,444 6,594 58,950 57,609

32.5 1,863 1,893 44,787 31,634

35.0 505 518 58,905 57,564

37.5 103 108 58,769 56,124

40.0 22 22 17,028 9,642

Table 8.2 Error counts for DFE(6,2) on Channel B, using SRK algorithm.
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For 16 QAM, the gap between mode II2 and mode III is significantly larger than that for 4 

QAM, since the effect of error propagation is generally more severe. The mode III curves do 

show an inclination to converge towards the mode II2 curves, but in quite an erratic fashion. 

Note, for example, the sudden rise in error rate at SNR=37.5 dB on Channel A, and 

SNR=31.0 dB on Channel B. Measurements were conducted at these two SNR’s with different 

values of w and noise sample sequences. The results are shown in Table 8.3. Observe in Table

8.3 the marked difference that occurs for 16 QAM in mode III at SNR=37.5 dB on Channel A, 

when the tracking parameter u is increased slightly, or when the noise sequence is changed. At 

SNR=31.0 dB on Channel B, changing the noise sequence has had little effect in mode III on 

the number of differential errors that occur, while a slight increase in u> has brought about a 

substantial reduction. One might expect that a change in the random noise sequence or the 

random variation of the channel estimate (caused by a slight change in u>) tends to be more 

influential as the error count for the DFE-IIj gets lower. The figures in Table 8.3 show that 

the error count for the DFE-III, in contrast to that for the DFE-II, is much more sensitive to 

any short-term random variations. One can imagine that at a particularly sensitive time 

instant, and assuming the detection and tracking process is unaffected by decision errors up to 

that point, the occurrence of just one error in the DFE-III can lead to a large enough burst of 

errors that perturbs the detection and tracking process to an alarming degree.

In general, having a lower value of w in the SRK algorithm means that the tracking process is 

more susceptible to short-term decision errors, because the window size is smaller. Thus when 

a low value of u> is required to achieve the necessary tracking accuracy; as it would be for a 

large constellation size, the effect of decision errors is also more likely to cause error in the 

channel estimate. This problem is then greatly compounded for large constellation sizes by the 

fact that propagative error bursts tend to be much more severe. For 64 QAM the effect of 

error bursts is, as expected, more severe than it is for 16 QAM, as can be seen from figs. 8.1 

and 8.2; the error rate can barely be reduced below 10-1. Increasing u>, or having a different 

noise sequence, does not appear to relieve matters much, as Table 8.3 shows.
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u>

No. of errors in 60,000 for DFE(6,</)

Mode II x 

Threshold 

Detected

Mode II2 

Differential 

Detected

Mode III

16 QAM, Ch. A 

SNR=37.5 dB

Threshold

Detected

Differential

Detected

0.754 (opt.) 7 15 1,397 1,449

0.754 f 1 7 16 16

0.794 7 15 14 16

16 QAM, Ch. B, (f indicates different noise sequence) 

SNR=31.0 dB

0.864 (opt.) 5 32 16,794 2,356

0.864 f 5 46 2,467 2,378

0.874 5 32 99 105

64 QAM, Ch. A, 

SNR=45.0 dB

0.591 (opt.) 11 101 17,225 9,229

0.591 f 7 77 17,344 2,859

0.791 10 84 2,925 2,912

0.791 f 9 82 2,859 2,832

0.950 455 1,767 58,097 34,368

64 QAM, Ch. B, 

SNR=40.0 dB

0.741 (opt.) 2 22 17,028 9,642

0.741 f 3 86 59,862 3,237

0.841 4 63 17,146 2,787

0.841 f 9 101 59,724 8,936

0.950 336 5,002 58,499 51,541

Table 8.3 Error counts for 16 and 64 QAM with variations in v  and noise sequences.
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It would appear that with 16 QAM, performance in mode III with Pe^10-3 is only possible 

when the errors from the DFE-IIj are very small to begin with; with 64 QAM they probably 

have to be zero. Referring back to chapter 7, the curves in figs. 7.11 and 7.13 inform us that 

for the DFE-IIj on Channel A, an SNR of about 50.0 dB or more is needed to produce a Pe of 

10-6 for 64 QAM at a 1.0 Hz fade rate, while on Channel B the corresponding value is about 

45.0 dB. For a 2.0 Hz fade rate the required SNR*s will naturally be greater. Clearly then, 

relatively large transmitter powers are needed if the DFE-IIi is to produce very low error rates 

with 64 QAM. Even then, one error may be enough to cause a significantly harmful error 

burst. Lower fade rates than 1.0 Hz would perhaps yield more acceptable performance with 64 

QAM, because then u> can be set to a high value, say J>0.95. However, for w=0.95 to be 

optimum, in the sense of minimizing the error in the channel estimate, a fade rate of about 

0.03 Hz is required at SNR=4h.O dB on Channel A, and a fade rate of about 0.08 Hz is 

required at SNR=40.0 dB on Channel B; thus it can be seen that the fade rate would have to 

be substantially lower than 1.0 Hz.

The effect of error bursts on the tracking algorithm is so severe with 64 QAM that, on many 

occassions, the measurement runs for this constellation size finished with the receiver in a 

“nonaligned” state, i.e. the tracking algorithm was widely “off the mark” and the detector was 

producing errors. The fading patterns used in the measurement runs (figs. 4.5 and 4.6 of 

chapter 4) ensure that the instantaneous signal-to-noise ratio SNRk (4.18) finishes on a high 

value. The measurement runs for 4 and 16 QAM always managed to finish with the receiver in 

an “aligned” state.

Overall, the results for the DFE-III suggest that if the receiver is to operate at fade rates as 

high as 1.0 Hz, without any arrangement by which the tracking can re-align itself, then 16 

QAM may perhaps be the largest rectangular constellation size that can feasibly be used, 

providing a data rate of 9.6 kbits s-1, and only then with an SNR that gives a sufficiently low 

error rate for the DFE-IIi-
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One might think that the closeness of the mode II2 and mode III curves for 4 QAM is due to 

the relatively short propagation bursts that occur with this constellation size, ensuring that the 

tracking algorithm is not perturbed by decision errors for too long. This may be only one 

reason. Another reason may come from the highly desirable property of phase constellations, 

as 4 QAM is, of enabling “self-recovery” of a tracking algorithm. What this means is that the 

receiver is able to self-adapt to channel conditions without needing to know what the 

transmitted symbols are, i.e. no training is required. The reality of self-recovery has been 

demonstrated for the start-up convergence of adaptive linear equalizers on time-invariant 

channels [83], [89] -[91], using the SD algorithm, and mathematical analyses have been put 

forward to explain it [90], [91]. For the fading channels used in this thesis, it has been 

observed with 4 QAM that for both the DFE (via the CE method) and MLSE, using either the 

SD or SRK algorithm, the receiver is able to self-align from start-up in at most ~100 symbol 

intervals (with a possible quadrangular phase shift). In general, the time taken to self-align is 

dependent on the initial value of the estimated vector, the number of levels in the data signal, 

and the amount of ISI introduced by the channel. Unlike for adaptive linear equalizers, it 

seems difficult to prove that self-recovery can take place for an adaptive DFE or MLSE, and 

more so if the SRK algorithm is used, because of the more complex inter-dependency between 

adjacent (in time) symbol decisions. Nevertheless, assuming that it can occur, transmission 

with 4 QAM is thus desirable because it does not need to rely on training sequences, unlike 64 

QAM does, in order to recover out of a difficult period like a deep fade. Self-recovery perhaps 

also plays a limited role in transmission with 16 QAM, since this constellation can be crudely 

thought of as a phase constellation 75% of the time (consider outer points only). It is possible 

to devise a self-recovery scheme for combined PAM-PSK type constellations, as is detailed for 

example in [90]—[92], by approximating the non-phase constellation by a phase constellation. 

This has been successfully demonstrated for linear equalization in [90], [91] on time-invariant 

channels, using an SD-type algorithm. However, approximating a non-phase constellation by a 

phase constellation naturally introduces a certain amount of self-noise, this being larger the 

greater the degree of PAM is present. The effect of this self-noise would be compounded in a
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DFE through the feedback taps. It is not evident whether a self-recovery scheme on HF 

channels could be devised for 64 QAM using a DFE, remembering that there is also the 

question of convergence time. The convergence times shown in [90], [91] for 16-point and 32- 

point constellations are in the region of 103- 104 symbol intervals, which is probably too long 

for the time-varying channels looked at here. For further information on the interesting area 

of self-recovery, see [89]-[92].

To round-off this section we will mention what happened when the DFE-III was implemented 

by way of the conventional method, using the SRK algorithm and with the same SNR values 

as was used for the CE method of implementation. Not surprisingly, performance was fouund 

to be poorer, but in a more dramatic way than expected. All the measurement runs, for 4, 16 

and 64 QAM on Channel A and Channel B, produced a Pe(E.C.)>10-1, the one exception 

being at SNR=22.5 dB on Channel B with 4 QAM, which produced 27 differential errors and 

19 detected errors. At the end of all the runs, bar the one exception, the receiver was in a non- 

aligned state, and in a majority of these it was noticed that the tracking algorithm was in a 

state of instability, i.e. one or more elements of the Dfc matrix continuing to increase at each 

update. In fact, one of the measurement runs did not complete the full 60,000 symbol 

transmission, because the computer’s upper limit for a real number had been exceeded, thus 

causing the program to abort. We ascertained that the cause of instability was from the 

estimated vector reaching a constant setting, in which the feedforward taps of the DFE were all 

zero, and the feedback taps were such that the detected symbols were cyclically repeating 

themselves in a manner which ensured the algorithm error €*=0 always. For example, the 

measurement run which aborted was with 16 QAM at SNR=26.5 dB on Channel B. The 

value of the last element of the diagonal matrix D*, i.e. d8, had exceeded the upper limit on 

the computer, all the other elements being between 0.1 and 0.5. The estimated vector at the 

time of abortion was (with the feedback tap values accurate to 3 d.p.),

c\ = [0 , 0 , 0 , 0 , 0 , 0 , -(0.527+j4.304) , —(5.304—j0.527)] (8.3)
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and the detected symbols, which repeated themselves every 4 baud intervals, were in the 

sequence (1— j), ( —1—j), (—1+j), (1+j), going from sk to sk_3. It can be seen that 

ek = sk — x^cfc_j=0 always, so that the estimated vector remains fixed at the value in (8.3). 

Since the feedforward taps are all zero, the received samples {r,} are not used, thus permitting 

ck to take on a constant value. The estimated vector can be viewed as having reached a 

steady-state solution to the least squares criterion of (3.33), given that the symbol values used 

in the input vector xk are not restricted to being the actual transmitted symbols, but free to 

take on any values they like. It is easy to see that given the sequence of detected values (1—;), 

( — 1— j), ( — 1+i), (1+j), the RLS solution for c* that satisfies efc=0, with the feedforward 

taps all zero, is not unique, and the P^1 matrix under such circumstances is singular; this 

therefore makes the determinant of D* infinite.

When implemented by way of the conventional method, the DFE-III may go through a long 

period of say 10,000 symbols or more, before it encounters a sufficiently abrupt change or deep 

fade that causes the whole detection and tracking process to assume something like the 

undesirable state we have just described. The possibility of this situation arising does not 

appear to have been mentioned much in the literature, maybe because the time spans observed 

are too short. To stop the situation arising, it would probably be necessary to have a 

constraint preventing some or all of the feedforward taps from settling to a zero value. We 

note that a similar state of affairs cannot arise in channel estimation; the estimated vector 

could never settle to a fixed value, with ck= 0, because the “random” received samples are 

never prevented from influencing the proceedings.

8.2 DFE-III with Periodic Training Sequence (PTS)

Consider a scheme in which a finite sequence of symbols, known to the receiver, is inserted 

periodically into the transmitted sequence of data symbols. If the gap between the finish and 

start of two successive training sequences is x symbols, and if the length of a training sequence 

is y symbols, then the scheme is described as being a 100y/(x+y)% PTS scheme. It is assumed
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that the receiver knows the start and finish of the training sequence.

In this section we shall observe the performance of the DFE-III when a 10% PTS scheme is 

employed (:r=90, y=10). At the start of each training sequence the channel estimate vector is 

set to zero, and the Vk and D* matrices in the SRK algorithm are set to the unit identity 

matrix. A sequence of 10 known symbols is an adequate time to allow for the DFE, 

implemented by way of the CE method with 77= 10—2cr̂ , to align itself, as was shown in 

chapter 7. The training sequence we use for Channel A is made up of a 2-symbol repeating 

sequence, while for Channel B it is made up of a 3-symbol repeating sequence, these given 

respectively as

mi (!+ i) > } (8-4)

m{ (1+j) , ( - 1+j) , ( l “ i) } (8-5)

where we set m = l, 3 and 5 for 4, 16 and 64 QAM respectively to ensure a signal power 

The two sequences in (8.4) and (8.5) are desirable because each one is linearly independent of 

any cyclically-shifted version of itself. Thus, for both channels, the <7+1 successive input 

vectors xk, ..., xk_ff to the SRK algorithm are linearly independent. The sequence in (8.4) also 

happens to be self-orthogonal, i.e. the scalar product of two different cyclically-shifted sequence 

vectors is zero, which makes it suitable for the start-up channel estimation process described in 

[84], although this is not utilized here.

Figs. 8.3 and 8.4 depict the Pc(E.C.) performance of the DFE-II2 and DFE-III with a 10% 

PTS scheme. Table 8.4 lists the error counts that occurred during the measurement runs, 

which are only for the periods during which no training symbols were being received. The 

error counts are based on straightforward threshold detection of the symbols, because these 

were found to be always lower than the differentially detected errors. This indicates that the 

receiver never had time, between training sequences, to become aligned with a quadrangular 

phase shift of i7r/2. The curves for 4 QAM show that the performance of the DFE-III is very 

close to that of the DFE-II2. On Channel A with 16 QAM, the curves for the DFE-III and
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SNR (dB) 
(Channel B)

No. of errors in 60,000 
for DFE(6,2)

4 QAM Mode II2 Mode III
7.5 7,164 7,659
12.5 1,497 1,664

16.5 274 252

20.0 35 35

22.5 12 10

16 QAM
17.5 9,422 11,224
22.5 2,061 3,077
26.5 369 460

30.0 57 55

31.0 32 24

64 QAM
25.0 16,602 20,191
30.0 6,444 7,819
32.5 1,863 3,252

35.0 505 773

37.5 103 292

40.0 22 52

SNR (dB) 
(Channel A)

No. of errors in 60,000 

for DFE(6,1)
4 QAM Mode II2 Mode III
7.5 5,986 6,182
10.0 3,028 3,000
12.5 1,316 1,439
15.0 603 631

20.0 154 156
24.0 29 29
27.5 6 7
30.0 3 1

16 QAM
15.0 11,276 11,672

20.0 2,993 3,297

25.0 615 589
30.0 175 191
32.5 77 67
35.0 16 19

37.5 13 8

40.0 6 1

64 QAM

25.0 7,964 10,284

30.0 1,804 2,389
35.0 472 550
37.5 284 278

40.0 176 240
42.5 128 187
45.0 100 95

Table 8.4 Error counts for DFE(6,</)-II2, and DFE(6,y)-III with 10% PTS scheme.
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DFE-II2 are quite close together in the high Pt region, but then start to differ, though not 

drastically so, around SNR=32.b dB to 37.5 dB. As we saw in the last section, the error rate 

of the DFE-III in this region is highly sensitive to the short-term random variations of the 

channel estimate and noise samples. With 64 QAM on Channel A, the DFE-III curve looks 

like a slightly offset version of the DFE-II2 curve. On Channel B the difference between the 

DFE-III and DFE-II2 is reasonably small for both 16 and 64 QAM.

On the whole, then, we can say that a PTS scheme is effective in allowing performance close 

to, or occassionally even better than, the DFE-II2 to be achieved. The difference between the 

DFE-III-with-PTS and DFE-II2 tends to be larger for the larger constellation size.

It was found that the periodic re-setting of the channel estimate vector and the U* and Dfc 

matrices of the SRK algorithm did not make much difference from the situation whereby they 

are just left alone. If a Fast Kalman algorithm is used, and/or if limited precision processing is 

employed, then re-setting is particularly desirable to avoid the cumulation of numerical round

off errors.

8.3 DFE-III with Request for Training Sequence (RTS)

Consider a scheme whereby the receiver, deciding that data is not being detected reliably 

enough, initiates the transmission of a training sequence from the transmitter. When the 

receiver subsequently decides that data is being detected reliably enough, another signal is sent 

to the transmitter requesting the resumption of normal data transmission. In theory, therefore, 

the likelihood of serious error propagation can be reduced, and performance close to that of the 

DFE-IIj achieved. This scheme assumes that a feedback link exists from the receiver to the 

transmitter, though it does not need to be very sophisticated, as it only needs to carry a simple 

ON/OFF type signal.

In order to decide what the current level of performance is, the receiver needs to monitor some 

performance index. An obvious one that comes to mind is the error at the output of the
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equalizer [64], [71]. Consider the quantity

Ht =  (l-A )tf l _1 +  A|SJl- 3 i |2 (8.6)

where A is in the range 0<A<1, and governs how far back into the past the “averaging” of Hk 

extends (window size ~1/A). The quantity sk is the pre-threshold estimate of sk. Whenever 

Hk, computed at the kth time instant, is above a threshold level Ht , the receiver sends a signal 

to the transmitter and thereby initiates the transmission of a training sequence. The training 

sequence sent by the transmitter, for Channel A and Channel B respectively, is the 2-symbol 

and 3-symbol repeating sequence of (8.4) and (8.5). While training symbols are being received, 

the receiver continues to compute Hk, and when Hk<Ht a signal is sent to the transmitter 

requesting that normal data transmission be resumed. It is assumed that the receiver knows 

the start of the training sequence, although this is not absolutely necessary for convergence to 

be achieved [84].

Figs. 8.5 and 8.6 depict the performance of the DFE-Il! and DFE-III with an RTS scheme, the 

Pe being measured by means of the analytical bound mentioned in chapter 5. The threshold 

Ht is set at values of 0.1 and 0.2, and A is set at values of 0.03 and 0.09. The figures next to 

each plot-point in figs. 8.5 and 8.6 refer to the percentage of the 60,000 baud time for which 

training sequences were transmitted. After having produced the detected symbol sk) if Hk>Ht 

(Hk_l <Ht ) then the rk+̂  received sample contains the first training symbol; if, on the other 

hand, Hk<Et (Hk_1>Hi ) then rk+N contains the first non-training symbol. After Hk is first 

monitored to be >J7t (RrJfc_1< F t), we stop monitoring Hk (but continue to evaluate it) until 

the first training symbol arrives for “detection”, and then when Hk is found to be <Ht we stop 

monitoring Hk (but continue to evaluate it) until the first non-training symbol arrives. We 

shall define the “training period” as that period from when Hk>Ht (Hk_l <Ht) to when the 

first non-training symbol arrives; the Pe measure excludes the training periods. The training 

period of course neglects the time taken for the feedback signal to reach the transmitter, and 

the delay of the signal from transmitter to receiver. It was found that very few detected errors
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from the DFE-III-with-RTS occur during the non-training periods, and consequently this is 

why the analytical bound is employed, proving to be very useful. The bound assumes, of 

course, that the feedback symbols in the DFE are correct. Detected errors occurred only with 

Ht = 0.2, and the counts are listed in Table 8.5 along with those for the DFE-II2, for ease of 

comparison.

The curves of figs. 8.5 and 8.6 show that an RTS scheme offers substantial improvements in 

performance. For example, in fig. 8.5 we see that with 4 QAM at SNR=20.0 dB on Channel 

A, a Pe of 10”6 can be achieved at a power saving of about 13 dB (with respect to the DFE- 

IIJ  with 10% training; with 16 QAM at SNR=30.0 dB, a Pe below 10“6 can be achieved at a 

power saving of about 13 dB with approximately 5% training; with 64 QAM at SNR=40.0 dB, 

a Pe of nearly 10-6 is possible with only 2.5% training. On Channel B (fig. 8.6) the power 

saving is generally lower than that for Channel A, but still significant. For example, with 4 

QAM at SNR=22.5 dB on Channel B, a Pe of about 3xl0“7 can be achieved at a power 

saving of 5 dB with 4.4% training; with 16 QAM at SNR=30.0 dB, a P6 below 10-6 can be 

achieved at a power saving of 6 dB with 7.6% training; with 64 QAM at SNR=37.5 dB, a Pe 

of approximately 2xl0-6 is possible at a power saving of 6 dB with 8.6% training. Note that 

all the above quoted figures are for iTt =0.1 and A=0.03. It appears from figs. 8.5 and 8.6 

that it is better, in general, to have A small rather than large, as can be seen by comparing the 

two curves for A=0.03 and 0.09 with

The performance with RTS on Channel A often yields lower error rates with lower training 

times, at a given SNR, compared to those for Channel B. This may not be a totally fair 

comparison to make, however, as it should be remembered (from chapter 5) that for a ZF 

MFE, a longer observation time than 25 fade periods can increase the SNR required to achieve 

a Pe below 10-5 (recall figs. 5.1 and 5.3), this being more so for Channel A than Channel B. 

Another point to consider, though, is that the RTS scheme would be expected to eliminate the 

deeper fade periods from the useful transmission time. Thus, given that the total average 

energy is the same for both channels, the comparison between them when an RTS scheme is
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SNR (dB) No. of errors in 60,000

(Channel A) for DFE(6,1)

4 QAM Mode II2 Mode III

10.0 3,028 18

15.0 603 6

20.0 154 0

24.0 29 1

16 QAM

20.0 2,993 19

25.0 615 14

30.0 175 1

35.0 16 0

64 QAM

30.0 1,804 6

35.0 472 3

40.0 176 0

45.0 100 2

SNR (dB) No. of errors in 60,000

(Channel B) for DFE(6,2)

4 QAM Mode II2 Mode III

12.5 1,497 24

16.5 274 10

20.0 35 1

22.5 12 0

16 QAM

17.5 9,422 4

22.5 2,061 10

26.5 369 17

30.0 57 3

64 QAM

25.0 16,602 6

30.0 6,444 12

35.0 505 3

37.5 103 6

Table 8.5 Error counts for DFE(6,<7)-II2, and DFE(6,<7)-III with RTS scheme (Ht = 0.2, 

A =  0.03).
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used is to a greater degree on the basis of the less dispersive (i.e. less ISI) Channel A against 

the more dispersive Channel B, and to a lesser degree on the basis of the extra diversity path of 

Channel B.

The use of an RTS scheme appears particularly attractive for 16 and 64 QAM, in light of the 

performances observed previously. Performance over an HF channel is governed largely by the 

deep fades that occur, relatively large transmitter powers therefore being needed to provide 

acceptable error rates. An important difference between HF channels and “bad” time-invariant 

channels, however, is that the former is not “bad” all of the time. The results in this section 

demonstrate that the time-varying channel is bad for only a modest proportion of the total 

transmission time, enabling substantial reductions in transmitter power when an RTS scheme 

is employed.

An important point to consider, depending on whether the particular application requires it, is 

the size of buffer needed by the transmitter for it to hold those data symbols whose 

transmission is delayed because the receiver is being trained. One way of enabling continuous 

throughput of data, thereby reducing the buffer size and increasing the overall useful 

information rate, is to transmit information using a smaller constellation size in place of the 

training symbols. For example, observe in fig. 8.5 that at SNR=35.0 dB the Pe for the DFE- 

IIj with 4 QAM is less than 10-6; thus with 16 QAM at SNR=35.0 dB, tft =0.1 and A=0.03, 

the training sequence could be reliably replaced with 4 QAM data signals, since there is little 

chance that these will be detected erroneously. Observe again, also in fig. 8.5, that with 64 

QAM at SNR=45.0 dB, Ht = 0.1 and A=0.03, the training sequence could be reliably replaced 

with both 16 QAM and 4 QAM data signals. One could describe such a scheme as a variable 

data rate (VDR) scheme.

There are other designs for an RTS scheme that are possible. For example, another one, which 

is suitable for the MLSE too, is to monitor the squared magnitude of the error ck in the 

tracking algorithm, and also the squared magnitude of the received sample rfc, and thence
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produce a kind of signal-to-noise ratio estimate; when this drops below a threshold, a request- 

for-training signal is sent to the transmitter. Such a design was tested by us, and found to be 

not substantially different in performance from the one described earlier. One area for research 

is to investigate more efficient ways of forseeing performance deterioration, for it should be 

remembered that it only takes a few symbol errors arising in the DFE-IIj for there to be very 

severe consequences, in the absence of training, for the DFE-III.
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Chapter 9 
CONCLUSIONS

In this chapter we summarise the main points of the thesis, with some additional comments, 

and later give suggestions for further work.

In chapter 5 the performance of the receiver was observed for when adaptation is perfect. It 

was shown that the difference between the MMSE DFE and ZF MFE is ~ l-3  dB in terms of 

SNR, this being achieved with a modest number of feedforward taps in the DFE. With a 

smaller constellation size, fewer feedforward taps are needed in the DFE for the performance to 

approach that when there are an infinite number. With 4 QAM, the effect of error 

propagation in the DFE was seen to be relatively small, unlike with 16 and 64 QAM, for which 

it appeard increasingly severe. With 4 QAM the MLSE performed at a level close to that of 

the DFE-Ij, while with 16 and 64 QAM the near-MLSE was, on the whole, worse than the 

DFE-Ij and better than the DFE-I2.

In chapter 6 the task of channel estimation was looked at for two decision-directed tracking 

algorithms, the SRK and the SD. Assuming correct decisions on data symbols, mathematical 

analyses of the performances of the two algorithms were presented, with optimum settings for 

the adaptation parameters derived, and comparison with experiment was generally found to be 

good. It was shown that the simpler SD algorithm gave a comparable level of accuracy with 

the more complex SRK algorithm, though its start-up convergence was slower. It is 

appropriate to mention here a recent paper [94], published near the end of these investigations, 

which shows measurements of the channel error produced when modified forms of SD and 

Kalman-type tracking algorithms are used to provide channel estimation (assuming known 

data symbols) for a simulated 16 QAM two-path HF transmission link. As in chapter 6, the 

results of [94] show that there is little difference between the two algorithms. Of interest from 

[94] is the improvement in performance offered at very high SNR when the scheme of [66] is 

adopted to produce a channel estimator that estimates the channel response vector as a linear
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function of time (recall section 6.4). However, when optimized for steady-state (i.e. long-term) 

operation, the modified estimators of [94] do exhibit a very much longer start-up convergence 

time. Finally, it is also worth mentioning here ref. [95], which is basically a more detailed 

account of the work in [82], some of which was discussed in chapter 6, and therefore may be of 

interest to the reader.

In chapter 7 the performance of the receiver was observed for when a decision-directed tracking 

algorithm, assuming correct decisions, is used to provide adaptation. A new method was 

presented (the CE method) which calculates the MMSE DFE taps from the channel estimate 

at a computational cost less than the conventional SRK method of implementing the DFE (as 

given in [16]). Furthermore, the CE method was shown to be superior in both long-term 

performance and start-up convergence than the conventional method. The revised SRK 

algorithm of [16], when used to implement the DFE by way of the conventional method, was 

shown to be unstable when the adaptation parameter u  is set below a certain threshold, this 

threshold being dependent on the number of taps in the DFE. The performance of the DFE- 

IIlt implemented by way of the CE method, was shown for the two cases where the channel 

estimate is produced by the SRK and SD tracking algorithms; the difference was small, with 

the SD being on the whole inferior to the SRK. In general, the SNR degradation of the DFE 

from mode I: to mode IIj was lower for the smaller constellation size, higher Pe/£ and lower 

fade rate; at f.r. =  1.0 Hz, Pe =  10“3, the degradation ranged from 0.5-2.0 dB for 4-64 QAM. 

It was also shown how, with the CE method, simple predictions of the performance loss of the 

DFE-IIi with respect to the DFE-Ij can be made. It was observed that in going from mode I 

to mode II the near-MLSE generally suffered slightly more than the DFE, when both devices 

used the same channel estimate. Apart from that, the relative performances of the 

MLSE/near-MLSE and DFE in mode II were more or less similar to those obtained in mode I. 

The closeness of the near-MLSE to the DFE-II2 around Pc^10“3 suggests that employment of 

the near-MLSE be considered carefully in light of its much greater complexity, and probable 

higher requirement for accuracy in carrier phase recovery.
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In chapter 8 it was shown how the DFE (implemented via the CE method) suffers when 

receiver decisions are used in the tracking algorithm. The degradation from mode II2 to mode 

III for Pe^10“3 was small (~0.5 dB) with 4 QAM. With 16 QAM, however, the effect of 

error bursts was much more severe, and it appeared that the errors in the DFE-IIj would have 

to be very low for there to be no significant deterioration in mode III. With 64 QAM, the 

effect of error bursts made performance virtually useless, the error rate barely being below 

10”1. Furthermore, with 64 QAM the receiver very often failed to re-align itself following a 

difficult period, unlike for 4 and 16 QAM. Therefore it was suggested that 16 is the highest 

constellation size (out of 4, 16 and 64) that can feasibly be used, assuming there is no special 

arrangement by which the receiver can re-align itself. It was described how the conventional 

method of implementing the DFE suffered from some instability problems in mode III due to 

its basic design. When a 10% PTS scheme was used, the performance of the DFE-III was seen 

to be close to that of the DFE-II2 for all constellation sizes. When an RTS scheme was used, 

it was shown that very substantial improvements in performance could be achieved for only a 

small loss in the useful data rate. The use of an RTS scheme appeared particularly attractive 

with 16 and 64 QAM, in view of the performances obtained previously. It was also shown how 

the training periods of an RTS scheme could effectively be replaced by useful data transmission 

with a smaller constellation size, thus allowing continuous throughput of data, and therefore an 

increase in the useful data rate (referred to as a VDR scheme).

Of the two- and three-path channels used in this thesis, both of which have equal average 

energy, the extra diversity path of Channel B ensured that in modes I and II the SNR 

necessary to achieve a given Pe^10“3 on this channel was lower than that on Channel A. In 

chapter 8, however, it was noted that an RTS scheme may be effective in reducing this 

diversity advantage, as it often gave rise to a slightly better performance of the DFE on 

Channel A.

To end this section we will just briefly mention three recent papers related to the area covered 

in this thesis, these being published while this thesis was being written. In [96] the
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transmission of 4 QAM signals over a voiceband HF channel is looked at using the 

conventional implementation of the adaptive DFE, comparing the performances obtained with 

the FRLS (i.e. Fast-RLS, or Fast-Kalman) algorithm and the LMS (i.e. least mean square, or 

steepest descent) algorithm. As expected, the FRLS implementation yields a superior 

performance to that of the LMS, although resetting schemes are necessary with the FRLS to 

ensure numerical stability. The channels used in [96] have much longer multipath spreads 

than those used here, and also the DFE is of a fractional-tap type (see section 2.5), employing 

a T/2-spaced feedforward section. It was found necessary in [96] to employ periodic training to 

ensure receiver recovery from the effects of severe fading. Reference [97] looks at the 

performance of different forms of near-MLSE, all of which use a pre-filter, on voiceband 

telephone and HF channels. It is shown that there are more cost-effective ways of selecting 

which sequences to keep, and which to discard, relative to methods such as those used in [42]. 

These are based on the notion of selecting proportionally more sequences from those surviviors 

with lower costs. An interesting result in [97] is that for the transmission of 16 QAM signals 

over a simulated three-path HF channel, which has a much longer multipath spread than the 

three-path channel used in this thesis, the advantage of a near-MLSE over a ZF DFE, 

operating under conditions equivalent to mode I2, is still not too large, being about 3 dB in 

terms of signal-to-noise ratio. Finally, in [98] the performances of a finite-tap MMSE DFE and 

infinite-tap ZF DFE are compared on various time-invariant telephone channels with 16 QAM 

signals. It is shown that in general there is no significant difference between the MMSE and 

ZF DFE’s, although when severe amplitude distortion is present the MMSE equalizer does 

perform noticeably better than the ZF equalizer.

Suggestions for further work

It has been observed that transmission with 4 QAM signals is quite robust, the effect of error 

bursts not perturbing the detection and tracking process to any large degree. The employment 

of an RTS/VDR scheme offers hope of reliable transmission with 16 and 64 QAM signals, and 

maybe larger signal sizes too, as well as improved performance with 4 QAM signals, entailing
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only a small loss in the useful data rate. An interesting area for further work would be to look 

for more efficient ways of determining performance deterioration. Ideally, an RTS scheme 

should be able to detect the occurrance of decision errors; the occurrance of error bursts may 

therefore be advantageous in this respect, since they enhance the detectability of errors.

It would be interesting to observe how much the performance deteriorates when there is also a 

Doppler shift present, necessitating the employment of a carrier phase recovery scheme. The 

channels used in this thesis are “good”, in the sense that the multipath spread is kept to a 

minimum for the given number of resolvable paths. Longer channel vectors generally imply 

less accurate channel estimates, and more taps in the DFE. It would be interesting to see what 

performance advantage could be obtained with an RTS/VDR scheme when carrier phase 

recovery is involved, and more larger multipath spreads are present.

Referring back to chapter 2, it was assumed in this thesis that the bandwidth of the data pulse 

a(t) is ^ T -1, such that the receiver filter W(f) can effectively be implemented as a fixed low- 

pass filter, with cut-off at ±0.5/T, followed by a T-spaced transversal filter (see section 2.5). 

A lot of useful data pulses, however, have excess bandwidths lying between 1/T and 2/T  [96], 

and in some circumstances, therefore, an appropriate implementation of W{f) would then be as 

a fixed low-pass filter with cut-off at ±1/T, followed by a T/2-spaced transversal filter. The 

DFE in [96] is implemented with a TJ2-spaced feedforward filter section. In such instances, 

the MMSE tap settings of the fractional-tap DFE are related in a more complicated way to the 

channel vector, or rather vectors, since two are now appropriate, these being shifted in time by 

T/2 secs, with respect to each other. It would be interesting to see what advantage could be 

achieved over the conventional RLS implementation of the fractional-tap DFE, as employed in 

[96], by deriving the MMSE taps from the two channel estimates, and what the relative cost of 

doing so might be. One can also consider a more simplified sub-optimum implementation, in 

which every second tap in the T/2-spaced feedforward section forms the T-spaced feedforward 

section of the MMSE DFE derived from one channel estimate, the other taps similarly forming 

the MMSE DFE derived from the other channel estimate, so that in effect we have two MMSE
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DFE’s, each having a T-spaced feedforward section, operating in a kind of parallel 

configuration.

We have not considered the question of redundant coding in this thesis. The potential for 

coding gain, particularly where the redundancy is in the form of more levels in the signal 

constellation size, is a topic for further work.

Finally, the results and ideas expressed in this thesis could also have relevance to other time- 

varying channels, when there is ISI at the receiver. Troposcatter systems [1], [3], [64], [80], 

[99]—[101] (see section 1.1) are widely used by the military for beyond-the-horizon 

communications up to 600 miles [1]. Typical multipath spreads are ~1 /xs or less, and fade 

rates ~10 Hz or less. With a typical baud rate of 10 MHz, troposcatter systems therefore do 

not experience as large a channel variation in one baud interval as do HF systems, and 

consequently less powerful tracking algorithms can be used [64]. In fact, the adaptive DFE in 

a troposcatter system is usually implemented via the conventional method using the SD 

algorithm. There is considerable interest at the moment in UHF mobile radio (~900 MHz) 

[102]—[108], for providing digital communication within urban and suburban areas of cities. 

The mobile radio channel has a discrete multipath structure, the different paths arising 

primarily from the reflection and scattering of the radio waves by buildings and other 

obstructions. A typical multipath spread is in the range 1-5 jis [106], [107], and fade rates can 

be as high as 160 Hz, depending on vehicle speed and direction [105].
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Suppose, in the absence of noise, the signal at the receiver is

r(i) = £ Siy(i-iT) =  (A.l)
i t

where y(t) is the resultant impulse response seen by the receiver find {s,} are the transmitted 

data symbols (see fig. 2.3 of chapter 2). The FT of r(i) is

Appendix A

m  = [ £ s , r ^ T ] yu)
i

(A.2)

If r(i) is passed through a filter e(<), of FT E(f), the output re(t) and its FT are

re(t) =  [^s,-5(<-:'T)]*y(<)*e(<)
t

(A.3)

R'U) =
i

(A.4)

If re(t) is sampled at i0 + kT, the resulting signal rel(i) and its FT are

rel(0  = to kT) = rf )J 2 ^ M i ~ U)k/T 
k k

(A.5)

R A f)  =  £ l > ( / + f O e y2’r a / : r
k

=  i x >i
SW (A.6)

where s(f> =  j E n z + f W + f o ^ * 77’* h x
(A.7)

If the sample train signal rel(t) is a set of sufficient statistics for the estimation of the {s,}, 

then this means it should be possible to reconstruct the original signal r(t) by passing rel(t) 

through a linear filter. The sampling process can then be deemed “information lossless”. 

Clearly, from consideration of (A.6), we require that

S(f) ^ 0 when Y(f) ^ 0 (A.8)

otherwise it would be impossible to reproduce all the non-zero parts of the spectrum Y(J) by
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linear filtering. If

m  =  v t / i r ^ (A.9)

then SU) = e- ^ l p n /+  i )|2 (A.10)

and (A.8) holds. Note that (A.9) is not necessarily the only solution for E{f) such that (A.8) 

holds.
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Consider the jV-component complex vector random variable z,

z =  x+jy =  [xj x2 ... y2 ••• (B.l)

Appendix B

where each of the y,., l< t<  A, is a real random variable. Vector z can alternatively be 

represented by the 2iV-component real vector random variable c,

c‘ = [xs yl] = [xI x2 ... XN  y i  y 2 . . .  y N ] (B.2)

If z is a zero mean complex gaussian vector random variable, then the probability distribution 

function is
- N , i 1/2 {-^Q xc}

Pz(*i, •••> xN, yi, •••, Vn ) =  (27r) (detQ) e (B.3)

where Q =  E[c cl ] (B.4)

The characteristic function is

4 Z(!-) =  E[ / -  S]

where V =  l1'*! ••• vsN vy 1 vy2 ■ ■ ■  v , n )

(B.5)

(B.6)

For a zero mean complex gaussian vector random variable this becomes

„ , , { -k ‘Qd (B.7)

The quantity c*Q *c can be written as

N N
C*Q *C — c^q =  'y  ̂TmQxm~\~'y  ̂ymQym 

m=l m=l

where q =  [qxl ... qxN qyl ... qyNf  =  Q_1c

From (B.4) and (B.9) one gets 

N
]P{E[xmXi ]gJ.l +E[xro3fjl)«!,i} =  xm for 1 <m<N
k=1

(B.8)

(B.9)

(B.10)
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N
5 ^{E[yma:A]ga.i.+E[ymyjfc]gyjb} =  y m  for l<m<7V
Jk=l

(B.ll)

Suppose now that under consideration is a stationary complex zero mean gaussian random

process z(t) =x(t)+jy{i)i where x(i) and y(i) are stationary real zero mean gaussian random

processes. Imagine that z(t) consists of an infinite number of samples over a period of

observation 3. Then (B.10) and (B.ll) can be written in equivalent form for a random process

oo

{rx(i—u)qx(u) + rxy(i—u)qy(u)} du — x(f) for *G3 
J 3

(B.12)

{ryx(i—u)qx(u) + ry(i—u)qy(u)} du =  y(i) for tG3 
J 3

(B.13)

where rx(r) =  E[x(<+r)x(f)] (B.14)

rxy(r) =  E[x(f+r)y(i)) (B.15)

ry(r) = E[y(i+r)y(i)] (B.16)

ryx(r) = E[y(i+r)z(i)] (B.17)

The equivalent form of the RHS of (B.8) is

f  {x(<)g*(0 +y(0 «»(0 } di
J 3

(B. 18)

Thus for the probability distribution function and characteristic function of z(i) one can write

. . . . .  a. di) 
PzW),  3 / ( 0 ;  <es) -  c J (B. 19)

{ - |J 3[^^(0 ^ ( 0 +^y(0 «y(0 ] dt}vy{t)\ <G3) ~  e (B.20)

where ux(i) =  {rx(t— u)vx(u) + rxy(t— u)i/y(u)} du 
J 3

(B.21)

«y(<) =  {ryx(*-ti)i/r(tx)+ry(<-u)i/y(ti)} du (B.22)
J 3

If the period of observation 3 is long enough so that boundary conditions are insignificant, then 

taking FT’s of both sides of (B.12) and (B.13) yields

Rx CO Qx {f) +  Rxy (f) Qy if) — X(f) (B.23)
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Ryx(f)Qx(J)-\- Ry(f)Qy(f) — Y(f)

Solving for Qx(f) and Qy(f),

n X{f)Ry{f)~Y{f)RXy{f)
Rx if)R y if) — Rx y (f)R y x (f)

n m _  Y(f)Rx(f)-X(f)Ryx(f)
y Rx(f)Ry(f) — Rxy{f)Ryx(f)

Further, if x(t) and y(i) are statistically independent random processes, i.e.

rxy(r) = ry*(T) =  0

then
{ - l ! 5! 5[x(t)rx\t-u)x(u) + y(t)ri;\t-v)y(u)] du di} 

PzW),  2/(0; <€3) ~  e J

where rx(r)«rx1(r) =  6(r)

ry(r )*ry 1(r ) =  S(T)

and ^z{ux{t)i ^y(0 ; ^€3) ~

{—2 — u)ux{u) + Vy(t)ry{t— u)i/y(u)] du dt}
e

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)



234

At time kT we have the input vector x*., the desired value zk, and want to update the 

estimated vector ck_1 to ck. The SRK algorithm [16] proceeds as follows, with {x,}, {c,}, {rf,} 

and {/in,} representing the elements of xfc, ck_v  diagonal of and upper triangular portion 

(excluding diagonal) of UJb_1 respectively. The number of equivalent real computations 

involved for a particular stage are given on the right hand side of the page, and the “A” 

markings on the left hand side have relevance to the discussion in section 7.3 of chapter 7. The 

computational steps given here differ only very slightly from those given in [16], the end result, 

of course, being the same.

Note; A multiplication of two complex numbers is assumed to require 4 real multiplications 

and 2 real additions. An addition of two complex numbers is assumed to require 2 real 

additions.

M

Appendix C

£k=zk - J 2 xici
i=i

4 Afx, 4 M+

/i= * i

gi=<*i/i 2x

<*l =  7? +  gl/l 2x, 2+

For z=2, M
i—i

/;= X X « -r" +x<n=l
4(z—l)x, 4(i—1) +

gi djfj 2x

&i ®i—1 "kg ifi 2x, 2+

Next i

A K = i  I t

A d1 = dlhwr)K (where hw=£j) 3x

For j=2, M

A p Q = a i_1

X=fiK 2x
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d ^ d i h u f i o K  

For n = l, *—l 

Pl = Vni 

Pni—Pl-  

gn=gn+g{/?J

Next n

Next i

A e—€kK

For 2= 1, M

c; =  c,+ g ,e

Next i

1 + 

3x

8(2—l)x, 8(2- 1) +

2x

4 Afx, 4M+

All quantities are complex except w, 77, /iw, k, /?0, {d,} (l<i<M) and {a,} (1 < t< ikf). As far 

as storage is concerned, the algorithm requires Af2 +  9M+14 equivalent real variable locations, 

a complex variable being assumed to take the storage of two real variables. Note that the 

lower triangular portion and diagonal elements of U* are not used (the diagonal elements of U* 

are unity). The initial start-up values of {</,•} and {/int} are

d{ =  1.0 for 2=  1, 2, ... , M

Hni =  0.0+;0.0 for n= l, 2, ... , M— 1 and 2= n + l, n+2, ... , M

Totals:

Equivalent real multiplications: GM2 + 11M 

Equivalent real additions: QM2+AM 

Real reciprocals: M

Exact computational requirements for the algorithm may be slightly different from those listed 

above for various signal processors.
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Appendix D

Consider the complex variable

x+jy 3 7 3  / anx +y e
- l (y/z) (D.l)

where x and y are statistically independent zero mean gaussian random variables of unit 

variance. The joint probability distribution function (p.d.f.) of (r, 6) is obtained by comparing 

it with the joint p.d.f. of (x, y) as below, remembering that dxdy=rdrdd.

i - (a2 + B2)/2
px>y(a , /?) ice =  P  "  da i/3

1 — 7  2/ 2
=  ^7re 7 d7 d<f> =  ^ ( 7 , 0) <*7 ^ (D.2)

where 72 = ot2 + /32. Hence

Pr?0(T, <£) -  27T
-7 2/2 (D.3)

Eq. (D.3) clearly shows that r and 6 are statistically independent. Therefore

-•y2/2
Vr{l) =  7 e ' for 7>0  (D.4)

Vq(<t>) =  ^  for 0<<?i<27r (D.5)

The function pr(7) is a Rayleigh distribution. Eqs. (D.4) and (D.5) imply that the complex 

gaussian variable (x+jy) can be obtained from a Rayleigh distributed random variable and a 

uniformly distributed random variable.

Consider now the independent real random variables z1 and z2, each having a uniform p.d.f. 

between 0 and 1 and a zero p.d.f. elsewhere. Then the variable defined as

r' =  2 ln ^ )  (D.6)

can easily be shown to have the Rayleigh p.d.f.

^ , ( 7 ) =  je  ^ ^  for 7>0  (D.7)
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If we define the variable 6' as

$ •  =  2 ttz2 (D.8)

=> Ve,{4>) ~  2 ^ for 0< ^< 2 tt (D.9)

then rV  gives us the complex gaussian random variable we are seeking. The variance is 2, 

but can be changed to any desired value by simply multiplying by an appropriate constant.
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Consider the general case of threshold detecting data symbol sk from sk, which is given as

5Jb =  sk + Y ^ sk-ibi + n (E.l)
*

where the second term on the RHS of (E.l) is interference from both past and future data 

symbols, and also the present. The quantity n is a random gaussian noise variable of variance 

a 2. The quantities sk} and n are in general complex, and we split them into their 

component real and imaginary parts as below.

Appendix E

sk =  sA:l+isJb2 (E.2)

bi = bil+Jbi2 (E.3)

n =  Tii+j^ (E.4)

Each of the symbols s^and sk2 are equally likely to take on any one of the L integer values

ai — 2i—L—l for 1 <i<L (E.5)

where L is an even integer, and they do so independent of each other. Successive data symbols 

sk are also independent of each other. The noise variables nx and n2 are statistically 

independent zero mean gaussian random variables of variance <t2/2. Splitting (E.l) into its 

component real and imaginary parts,

M s k) = ski + J 2 ^ - i A bn - sk-i,2bi2) + ni (E.6)
*

MS*] =  Sk2 + J2^Sk-i,lbi2 + Sk-i,2bil)+n2 (E.7)
t

The real and imaginary components of the detected symbol sk = skl-\-jsk2 are determined from 

threshold detection of (E.6) and (E.7) respectively. Define

zi 1 =  Sk-i,lbil uil ~  sk-i,2bil )

zi2 — Sk-i,lbi2 ui2 ~  sk-i,2bi2
(E.8)
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Therefore Re[sk) = skl + sklbQl + ̂  zil~ Y j ui2 + ni (E-9)
i^O *

Im  [sk] =  sk2 +  sk2bQl +  Y^zi2 +  Y ^ uii +  n 2 (E -10)
* i^=0

The ISI in both (E.9) and (E.10) has a maximum value of

PDk =  ( i - l ^ M j l  +  Hnl) (E.ll)
i

The quantity PDk is sometimes referred to as the “peak distortion” or the “eye-opening”. If 

PDk is greater than 1 (“eye” is closed) then no matter how small the noise the error in 

detection can never be zero.

The p.d.f. for is

Pni( t)
2 /2

=  - J _  r 1 ,rra (E.12)

and the p.d.f. for n2 is identical. The p.d.f. for za and un is

Pzn (y) = Pu^il) =  l
m= l

and the p.d.f.’s for zi2 and ui2 are identical but with 6tl replaced by bi2. Let

(E.13)

*7̂ 0
»2

The probability of error, Pel, in the detection of real symbol is 

L-i
Pe\ =  L ^ ^ Pr^ + n i > 1~ a ‘,6oi]+Pr[5 + ni < - 1- Q;iioi]}

i=2

(E.14)

+ 1 Pr[B-f % < —1 —(Z—l) 601]-f ̂  P r lB + n ^ l +  t l - l ) ^ ]

> 1 — a{ 601] + Pr[5+ > 1 + or,- 601

+ |  Pr[B+n,>l +  ( I - l ) i 01] (E.15)

where we have used the fact that the p.d.f. of J9-f nx is symmetrical; that is, 

P r[5+n1>x]=Pr[5+n1< —x]. The probability of error, Pe2, in the detection of real symbol
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5*2 is equal to Pel because the interference term s in (E .9 ) and  (E .10) are sta tis tic a lly  identical. 

T h e  overall probability  o f error, Ptk, in the detection o f com plex d a ta  sym bol sk is

Pek =  P r[(E rror in s itl)U (E rro r in sk2)] < Pel +  Pe2 =  2 Pel (E .16)

N ote : F o r no interference from  d a ta  sym bols, the detection o f skl is independent from  the 

detection  o f sk2, so th at Pek can be written exactly  a s  Pek =  l —(l — Pel)(l — Pe2)&2Pel for 

Pel sm all.

W e will now bound Pel by bounding P r [ j5 + n 1 > z ]  along the lines suggested  in [79]. Let us 

first write B in a  slightly different form  as

B =  £ > , * , ■  (E .17)
1 =  1

where the 1 <i<J,  are sta tistica lly  independent b inary random  variab les, equally  likely to 

take on one o f the two values ± 1 .  T he arf , l < i <  7, are positive m ultip ly ing coefficients. It is 

a lw ays possible  to write B in th is w ay if  log2Z is an  integer (which it is for L 2 = 4 ,  16 and 64) 

because then an L-level random  variab le  s Jk_ i l can be interpreted a s  being com posed o f log2L 

independent binary variab les having the respective ranges ± 2 ’ , » = 0, 1 , . . .  , ( lo g 2X —1 ).

A  receiver, which sees a  (<7-fl)- len g th  sam pled  channel im pulse response and em ploys a  

D F E (A ,<7), is unlikely to get a  perfect estim ate o f the true feedback tap  coefficients (necessary 

for ISI can cellation) from  its  track ing algorithm . Therefore from  (2.132) we can see th at

J < {2(N+g)-l} \og2L for D F E (A ^ )  (E .18)

L et the { x , }  in (E .17 ) be arranged  in non-increasing order, i.e. r l+ 1 < x f-. D enoting a s  PB(j )  the 

p .d .f. o f B, and  noting th at the p .d .f. o f 5 + 7̂  is the convolution o f p n^(7 ) and  pB(j),

00 00

P r f t f + n ^ x ]  =  | |  Pni(^-7)PB(l)  dj du (E .19)
x -0 0

Define the sequence a m, — l < m <  J ,  as

a_ 1 =  — (aj+8)  with 0 < 5 < a j (E .20)
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an =  0

Clm
in

=  for l< m < 7
i=l

where it will be noticed that —aj<B<aj.  Define the probability Pr[i? : am] as

Pr[5 : am] =  Pr[5>om] +  iP r[5=am]

Now, for 0<m<J,
m .

Pr[5 : am] = ... ^^Pr[/?1? ... , p m] Pr[^^/?,xt-f Wm ' om / Pi, ... , Pm]
Pi Pm ’=1

where

Now Pr[/?lf

wm = * £  p tx{
»=m+1

.. , Pm] = 2-m, SO

Pr[5 : am] = 2"m(Pr[PFm : 0] + em)

where
m m m

' »  =  £ * [  Wm : 2 z f] +  i ^ ^ P r [ ^ m : 2x,. +  2 x p ]+  . . .  + P r [W m : 2 a m]
» = 1 'i = lp =l

p^ i
(eo = €j=0)

Since Pr[Wm : 0] =  ̂  we have

Pr[jB : am] =  2 2-mem for 0<m<J

Subtracting Pr[5 : am+1] from Pr[i? : am] gives us 

Pr[am+i : B : am] = - iP r f5 = a m+1]+Pr[am+1>B >am]+ |P r[5 = a m]

_  g (m+2)_j_2 (m+1)(2£m — fm+i) for 0<m<7— 1

Now from (E.12) and (E.19),

oo
Pr[5+n!>x] =  |  pB(j) 

-o o

oo
1

a
- ( u- 7)2/<t2e du dj

x

(E.21)

(E.22)

(E.23)

(E.24)

(E.25)

(E.26)

(E.27)

(E.28)

(E.29)
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00

=  |  PB(7)l<*W o1) d7
-0 0

j  ai
=  f  PB(T)|erfc( a-7) d7

i=° V 1

(E.30)

where
00

erfc(x) =  -p  J  e“* dt
X

(E.31)

Pr[a,- : B : a{_x] can be written in terms of ps (7) as

ai
Pr[°t : B : a ^ ]  =  <*7 + J  PB(l) dl  + \pB{“i-i) dl

a.-i
(E.32)

the range in Xthe integrand being <!,■_!< 7 <af. Using (E.32), and the fact that erfc(- cr7 ) 1S a

non-decreasing function of 7 , we can bound (E.30) as

D P r l  a< ;*=o
: B : + ?;Pr[.B= a,j]qj < P r ^ + n ^ x ]

J
< : B : a.--l]?i +  2Pr^ = a * ^  *=0

(E.33)

where 1 _ ,x—ais 
<U =  | erfc( cr ) (E.34)

Substituting P r[5= aj]= 2“ ^, Pr[a0 : B : a—1]=^ and (E.29) we get

y~l(2  ̂ ^+2 *(2c<—1 — f<)l 9i-i + 2?-i+2   ̂ \ j  < Pr[5+n1>x]
1 = 1

» = 1
(E.35)

Looking at the lower bound (LB) and upper bound (UB) of (E.35), and using the fact that

eo — €j —

LB =  (,+2)+2_(,+l)(2€i—c,-+I)) ?, +  15_1+ 2 -(J+ 1){j
»=0

=  |(P + 2 “^5j  +  ?_i + A l ) (E.36)

where p  =  E 2- (i+l),
i=o

(E.37)

a l =  £ 2"’(2e, - c.+i)?f =  X X ‘f.-+i(?;+i-?,-) ^  0 (E.38)
i=0 i=0
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UB =  P + 2- ^ + A y (E.39)

where Au =  ^ 2- i(2£(.- i-**)?,• =  £ 2”^ +1̂ <+1(ffi+2- g i+1) > 0 (E.40)
i=l «=0

It is demonstrated in [79] that we can assume Aj_, A |j< P . Hence we can approximate (E.35) 

to

\(P+2~] qJ + q_1) < Pr[S+ni> i] < P + 2-J qj (E.41)

Note that the lower bound is a true lower bound, whereas the upper one is an approximation 

(which is less) because of our assumption about Ay.

For 7=0 (no ISI) we have P = 0 and q^ — q^ and the lower and upper bounds become equal 

and give the exact value for the probability; since £>ol=0 and z= l, the RHS of (E.16) becomes 

2(1 —^)erfc(i). For 7>0, as aj increases then q_i~>0 and the lower bound tends to half the 

value of the upper bound.

We have adopted the upper bound, P + 2“^ 5j , of (E.41) in this thesis, and evaluate it for each 

term in (E.15) to provide an estimate of the probability of error (E.16) for a DFE(N,g).

The bounds derived in [79] differ from (E.41) in that the term in the lower bound is 

absent. This is because in [79] they have defined £!_! =  — oo, which means g_1=0. The lower 

bound in (E.41) is therefore tighter than that in [79], the difference being greater the smaller 

the peak distortion aj is.
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Appendix F

We wish to find the expectation of erfc(4af), where x is the sum of the squares of 2(^+1) real 

independent zero mean gaussian random variables, each of variance A/2. Since the p.d.f. of the 

sum of two independent random variables is the convolution of their respective p.d.f.’s, it can 

be shown that the p.d.f. of x is

s -7/A
M T )  =  T . g+i for 7 > 0  (F.l)

A* gl

Let A denote the quantity we seek, i.e.

A = E[erfc(-\[x)] =
oo

erfc(^7 )
o

7 e 
A9+1ff!

dj (F.2)

Now it can be shown that

oo
e-x^erfc(^) dt =  

o

Denoting the LHS of (F.3) by Q,

dTQ
dxn

oo
( - l ) nfne-x<erfc(^) dt 

o

(F.3)

(F.4)

from which it can be seen that

A = 1 /_i d Q
a ' +y  ; dxg x= A 1

(F.5)

Now
tr(x - 1) n! ( - l ) n

dxn ~  xn+1 (F.6)

and using the formula

<T(pq) _  (Tp
dxn “  dxnq+'C, d^~xp dq 

dxn~1 dx + +Pdxn for n> 1 (F.7)

we obtain, using p= l/xand  q= l/^Jl+x,

< r ( x j r r x ) 1 
for

S ^ n r  (n-k)l 
A j k n—fc+1 Jfc=0 x

2( - i r ‘( i + « r ‘-* n o - i )
»=o

(F.8)
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Thus <PQ _  n! ( - 1)”/ ,  1 v V  x \ k
dxn xn+1 \  ^l +  x £r'(S 1+x'

It can be shown that

r ( i+ i )  =  ^  ( - 2) n (, - l )
i = 0

where T(.) is the gamma function, defined as

oo
T(u) =  J xtt~1e~x dx 

o

which converges for u> 0. T (l)= l and =  and from integration by parts i 

shown that

T (u ) =
r(«+i)

u

leading to the more general expression

Jt-i
T ( u + k )  =  r ( u ) ] J ( u + i )  for * = 1 ,2 ,3 ...

»=o

Hence

A ~  1 fJN
A Y ' r (*+ l)

1 +  A U (1 +  A)fc

Consider the expectation of | .

oo a-1 -7 /A7 e
Eli) =  } 7 /+i ■ ■ d-t = j-g for ?>0

n y *

(F.9)

(F.10)

(F.ll)

can be

(F.12)

(F.13)

(F.14)

(F.15)
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The following is a description of the near-MLSE scheme referred to as “Detector 2” in [42].

On receipt at time kT of the sample uk, which is from the output of the feedforward section of 

a DFE (ideally ZF), the detector holds m survivor-sequences, each of length q, denoted as

= a k-qy <Xk-q+i, ••• i <*k-i (G.l)

where a,- is a possible data symbol value. Each survivor has associated with it a cost i r ^ l 2. 

The detector now expands each survivor into L (g-fl)-length sequences {<*,}*_?, the last 

component ak taking on the L real values 2*—X— 1, l<t<Z . Note that otk is not as yet a 

possible data symbol value. Thus the detector now holds Lin sequences of length g+1. Let us 

define dk as

Appendix G

9

dk = uk - J 2 Qk-ibi = vk-<*k 
i - 0

9

(G.2)

where uk =  « * - ! > * - ,A- 
*=1

(G.3)

60 =  1 (G.4)

and {6,}, l<*<g, are the feedback taps of the DFE. The detector now selects n (n<L) 

sequences that have originated from a particular survivor, discarding the other L— n, such that 

the absolute values of the real part of dk are minimum. In other words, the detector selects the 

n sequences originating from a particular survivor for which the given possible values of ak are 

closest to the real part of uk (G.3), this being achieved by simple threshold comparison and 

not by the evaluation of any costs.

This process is then repeated for each ^-length survivor being expanded into L (g-f l)-length 

sequences for which the last compnent ak this time takes on the L values j(2i— L—1), 1 <i<L, 

the n selected sequences originating from a particular survivior being chosen such that ak is 

now closest to the imaginary part of i/k.



247

The detector now has m sets of 2n (g-f-l)-length sequences, each set originating from a 

particular survivor. The detector now forms a set of n2 sequences from each set of 2n 

sequences by letting the last component ock take on all possible combinations of the real and 

imaginary values of ak in the latter set, thereby making it a possible data symbol value. Thus 

the detector now has m sets of n2 (g+l)-length sequences. For each sequence the detector 

evaluates the cost

|r* |2 =  | r t _ilJ+ K |J (G.5)

using the real and imaginary parts of dk already evaluated.

Out of the n2m sequences it holds, the detector selects that with the smallest cost and takes the 

value of the first component &k- q of this sequence as the detected value sk_q of the 

transmitted data symbol sk_q. All sequences for which ^ k - q ^ sk-q are now discarded, and the 

first component of each of the remaining sequences (including that with the smallest cost) is 

omitted to give a set of 5-length sequences {a,-}jb_g+i* The detector now has to select m 

sequences from the remaining sequences it holds. The first of the selected sequences is that 

with the smallest cost. If the remaining sequences contain any originating from the smallest- 

cost survivor, the detector selects from this group the sequence with the smallest cost and then 

from all the rest of the sequences (which excludes the two just selected) the m—2 sequences 

with the smallest costs. If the remaining sequences do not include any originating from the 

smallest-cost survivor, the detector simply selects the m—1 sequences with the smallest costs. 

These m selected sequences now form the new set of 5-length survivors They are

stored in the detector, along with their costs ir^j2, ready for the next sample uk+l at time 

(*+l)T.

In our investigations we set n=2 and m=16 whenever we use this near-MLSE scheme.

Points of Note from [42]

(1) In the practical implementation of the detection scheme it is not really necessary to
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perform the expansion processes described, these being presented to explain what is done by the 

detector rather than how it precisely does it.

(2) The selection, where possible, of at least one sequence originating from the smallest-cost 

survivor is done because it has been found to reduce significantly the average length of error 

bursts, when the channel introduces severe amplitude distortion into the received data signal.

(3) The discarding of sequences for which ^k-q^^k-q  prevents the merging (i.e. becoming 

the same) of the survivors, since it ensures that if these are all different at the start of 

transmission then no two or more of them can subsequently become the same.
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Given the NxN  lower triangular Toeplitz matrix L, we wish to solve for the A-length vector w 

from the equation

(Lt +  £L*"1)w =  [1 0 ...O]1 (H.l)

where p is a real positive scalar. Toeplitz matrices belong to the larger class of persymmetric 

matrices, which have the property that they are symmetric about their main northeast- 

southwest diagonal [87]. This is equivalent to requiring

A =  I'A1! ' (H.2)

where A is an NxN  persymmetric matrix and I' is an NxN  matrix which is all zero except for 

unit elements on its main northeast-southwest diagonal (I'I'=I, the identity matrix).

The inverse of a persymmetric matrix is also persymmetric. The inverse of a Toeplitz matrix 

is not in general Toeplitz. The inverse of a lower triangular Toeplitz matrix is, however, 

Toeplitz. Let us denote the inverse of L* as Q, and the first column of L, which characterizes 

the matrix, by the vector

Appendix H

J* =  ['i«2 - W  (H.3)

We have L*Q =  I (H.4)

Equating corresponding elements in (H.4), with {<?,•/,} representing the elements of Q,

i 2 ri-k+^kh =  6ih ^  1 < ( i ,  h)<N
jfc=i

Qih = (H.5)
*=1

Given 1, (H.5) enables us to calculate the elements of Q column by column. We can see that 

qih=0 for h>i, which means Q is also a lower triangular matrix. We can therefore rewrite 

(H.5) as
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«,/, =  for 1 <h<i<N (H.6)
k  =  h

For h<i<N— 1, element g,+1 A+1 is given by

i i—1
Q i + l , h + l  =  (^»+l,/i+l — ̂ 2  ^-Jfc+2?Jb,ft+l)/^l — (H-7)

k = h + l  k — h

Comparing (H.7) with (H.6) one can see that Q is also a Toeplitz matrix, because each 

successive column is a down-shifted version of the previous one. Since L* is an upper 

triangular Toeplitz matrix,

A =  ( t f  + pQ) (H.8)

is an Nx N Toeplitz matrix. The structure of A may be drawn as

ao a-l • a_(N-l)

A =
ai °o • a- (N- 2) (H.9)

aN-i aN-2 a0

Let the vectors a^ and a_k be defined, for l<k<N— 1, as

s* =  K  a2 ••• a*] (H.10)

a! k =  (a-i a-2 •• • a-k } (H.ll)

and let the matrix Ak be the kxk top left-hand corner of > > II > Suppose now that we

have the solutions Uj. and vfc to the equations

AjtUjt =  a* (H.12)

A*Y* =  a_jt (H.13)

which are easy to solve for k— 1. Eqs. (H.12) and (H.13) bear some similarity to the kth order 

complex Yule-Walker systems [3], [87], the difference being that the latter assumes matrix A is 

Hermetian as well, so that a.k=a.*_k. The method to be described here for finding w  is a simple 

extension of the Levinson-Durbin algorithm [3], [87] for solving Yule-Walker systems.
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First we need to find the vectors uJfc+1 and vfc+1 from uk and v*. Vector uJb+1 is obtained by 

solving

A-Jfc 2* a fc

1

*r
r+ O o

1 __
__ a k a Jfc+i

where I* is the kxk top left-hand corner of I', and

Hfc+i =  [2*<**1

Equating corresponding terms in (H.14) leads to

(H.14)

(H.15)

■A.t3t+Ifc§-jt<*i — St (H.16)

+  =  fljfc+i (H.17)

Using the relations AJfc1Ij|.=Ij|.(A^) 1 and = 1̂ ., where Ifc is the kxk identity matrix, we 

solve (H.16) and (H.17) to get

2* =  Uk- a kIkvk (H.18)

H + i-* ll 'kUk)/(ao -* U  k) (H.19)

In a similar manner yfc+1 is obtained by solving

’  A* 11^ Sjfc a_ib
t T t

£ - k h  a 0 f i t °-(Jfc+i)
(H.20)

where id+i =  [it/3*] (H.21)

We thus obtain for Tk and 0 k,

= X*-/M*B*

Pk =  («-(jfc+i)-at-jfcl!bYjfc)/(ao-aijtUJfc) 

From (H.12) and (H.13) it is easy to show that

alfcU * =  ajvfc

(H.22)

(H.23)

(H.24)
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which implies that the denominators in (H.19) and (H.23) are equal. Denoting this 

denominator as we note that its computation can be expressed recursively as

Pk =  flo-ahjfc =  flo-[al_ifljk]
—jfc—1— Pk-il 'k-i*k-i

Pk-i

—  ao ~ § i —l^jb— P k ~ i a k

=  P k - i + P k - i ( — a k - i P k - i )

— (1 — ̂ Jb —l/̂ Jb —l) Pk-1

To obtain the vector wt =  [ty0w't ], observe that

ao &-(N-1)
SAT-1 A Ar- l

w0
w'

Equating corresponding elements in (H.26) gives us the equations

u>o&/v_i+A;v-i^' =  2

which we solve to get

w' =  - W o ^ N - i

w -  1 _  _ ! _  
W° -t Pat.!ao-§_(Ar_i)Syy_i

(H.25)

(H.26)

(H.27)

(H.28)

(H.29)

(H.30)

Thus the vector wt =[wo??,t] can be obtained directly from and p^-i* (Note that the

elements of w run from w0 to Wyy_i)-

If we are determining the taps of a DFE, as described in section 7.1, then, in the notation of 

chapter 7, vector 1 is c ^  0 and w is w*.. The quantities {6,}, !<*<</, given by

9 - t

bi = J 2 Wh1h+i+1
h=0

(H.31)
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are, in the notation of chapter 7, the feedback taps {6*,}, 1 < * < < 7 .  We will now present an 

algorithm for the determination of the DFE taps, given the vector 1 and real scalar p. Note 

that since the vector a_ ^_ ^  is just the last (TV— 1) elements of 1, to save storage we can use 

the latter in those computational steps that involve the former. Also, we can use the storage 

elements {u>t} in those computational steps that involve the elements of Uj.. The last N—g—1 

elements (assuming N> g) of 1 are zero. The number of equivalent real computations involved 

for a particular stage are given on the right-hand side of the page.

Note: A complex reciprocal is assumed to require 4 real multiplications, 1 real addition and 1 

real reciprocal. (See also the note in Appendix C).

(*) Determination of aQ and

A = l/*i

a0 = pX

For z=l, N—l

a,=  0.0+ ;0.0

For £=max{0, z— <7}, z— 1

î — k + 1 ®k

Next k 

ai =  ai A 

Next z 

°o =  ao“b̂ i

4x, 1 + , 14- 

2x

4 min{z, $r}x, 4 min{z, <7} +

4x, 2 +

2 +

(zz) Determination of w and {6,}

A =  l /a 0

tw1 =  axA 

=  /2A 

p=a0

4x, 1 + , 1-f 

4x, 2 + 

4x, 2+



254

a = wl 

P = vi

For Jb=l, N -  2 

p=(l-a(3)p

a==ak+1 

For :=1, k

C‘ — a ~ aiwk-i+l

Next i 

A =  l/j> 

a = a \

P — h+2

For j= l, min{fc, g}

P = 0 -  h+\vk-i+i

Next i

0= 0*

For :=1, k

X = vk_i+l-pWi 

wi = wi - a v k_i+l 

Vk-i+l — ̂

Next i 

wk+1 = a

vk+i = 0

Next k

p = ( l-a p )p  

w0 = l/p  

For *=1, N- 1

V)i — —WQV}i

8x, 5 +

AkXj 4k+

4x, 1 + , 1-r 

4x, 2 +

4 min {A;, $}x, 4 min{fc, #} + 

4x, 2 +

-  8kx, 8k+

8x, 5 + 

4x, 1 + , 1 -r

4 (N - l)x ,  2(N—1)+

Next i



For z=l, g
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6t.=0.0+j0.0

For /i=0, mm{N— 1, g—i} 

bi = bi + whlh+i+1

Next h 

Next i

4(9— *'+l)x, 4(</—i+ l)+  

(assuming N>g)

All quantities are complex except p. The quantities involved are A, p, p, a, /?, {a,} 

(0< j<A—1), {/,} (1<:'<<H*1), K )  (l< t< W -l), {u;,-} (0<i<N-l)  and {&,} (1 <i<g). 

Therefore the number of equivalent real variable storage locations required is 6iV-f 4p+9.

Totals:

Equivalent real multiplications: 6N2+8gN— 2g2 + 10N— 6g—6 

Equivalent real additions: 6N2+8gN— 2g2—AN— 6y+2 

Equivalent real reciprocals: N+1
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Appendix I

This appendix contains listings of the simulation programs used to produce the results of this 

thesis. The language is Fortran-77, and the programs were run on a Cyber mainframe. Any 

variable whose first letter is from I-N should be assumed to be an integer, and a variable with 

one or two argument(s) is a vector or matrix respectively.

Consider the main program MAIN (given on p. 264). The subroutine VALUES (not detailed) 

is a routine to provide values to the following variables, which may be in an “interactive” 

manner or by reading from a separate file containing the values of the variables.

NT: the value of g+l (NT >2).

SPEC(I): (complex) the value of the specular component of the I</l path in the channel

model (assumed zero in this thesis).

STAND(I): the standard deviation of the real (and imaginary) component of the Ith fading

path component in the channel response (assumed to be 1/-J2(<7+ 1) in this thesis). 

DOPPS: the Doppler shift x.2w/T (assumed to be zero in this thesis).

the value of l/(5^2nfrT). With T'“1=2400, IFADR=216 and 108 implies / r « 0.5 

and 1.0 Hz respectively, 

the value of L (NSL=2, 4 or 8). 

the value of SNR (dB). 

the value of 77/ erf in the SRK algorithm.

HQUEP: the value of 1/w in the SRK algorithm.

DELTA: the value of fi' in the SD algorithm.

LANT: the number of feedforward taps in the DFE.

LEMM, MUE: the values of m and n respectively in the near-MLSE scheme of Appendix G. 

IDID: the value of the delay in detection, <7, of the MLSE/near-MLSE (IDID>NT—1).

KADEL: the number of baud intervals between the finish and start of a training burst, for

IFADR:

NSL:

SNRO:

EPSIL:

the PTS scheme of chapter 8. In this thesis KADEL=90.
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DELTO: the threshold level Ht for the RTS scheme of chapter 8.

DAMSE: the weighting parameter A for evaluating Hk (for the RTS scheme of chapter 8).

NDURE: the number of baud intervals of transmission simulated.

ITRIT: the warm-up period, in baud intervals.

ISED1, ISED2: starting seeds for the random variation of the data symbol and noise sample

REVISE:

sequences respectively.

logical variable, enabling operation of the revised SRK algorithm of [16].

TRAIN: logical variable, enabling operation in modes I and II when .TRUE., and mode III 

when .FALSE..

MLDON: logical variable, enabling operation of the MLSE/near-MLSE when .TRUE..

KALON: logical variable, used to switch between the SRK and SD algorithms.

PROBE: logical variable, used to turn ON/OFF the evaluation of the analytical Pe 

estimate.

The following variables are derived from the inputted variables, in the subroutine INITY.

SVAR, PIFF: the value of cr2 and cr, respectively.

NINQ, NSPA: the value of £2/4 and Lj2 respectively.

SIGM: the value of p j2.

QUE: the value of (1/w) —1, used in the SRK algorithm routine SRKALG.

IL, IL1: used in the routine MLSE for the operation of the MLSE/near-MLSE.

The remaining variables of significance are:

ITIME: the current number of baud intervals simulated during a program run.

IECNT(I): holds the error counts (both threshold detected and differential detected) for the

KINP(I):

MLSE/near-MLSE and DFE.

holds the detected symbols of the DFE, with detected symbols being used in the 

feedback process.

KINPl(I): holds the detected symbols of the DFE, with transmitted symbols being used in
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the feedback process.

IDECS(I): holds the detected symbols of the MLSE/near-MLSE.

INP(I): holds the transmitted symbols.

Note: KINP, KINP1, IDECS and INP store the data symbol as an integer in the range

0-(Z2- l ) .

ERRID: (complex) holds the error (sk — sk)/a, of the DFE.

SQERR: holds the error |s*—Sjt|2.

AVSQER: the time average of SQERR

SQISI: at any particular instant, holds the mean square ISI in detection of the DFE.

AVISI: the time average of SQISI.

SQNOI: at any particular instant, holds the mean square noise in detection of the DFE.

Note: SQISI+ SQNOI is the mean square error in detection of the DFE.

AVNOI: the time average of SQNOI.

PEULB(I): holds the values of the probability of error as obtained from the analytical bounds

derived in Appendix E.

SIRCH(I): holds the elements of the channel estimate.

SIRER: (complex) holds the algorithm error €k/crs

AVSIRE: the time average of |SIRER|2.

SQCER: the error in the channel estimate, fy*—cJk_1|2.

AVCER: the time average of SQCER.

SHUK(K, I): (complex) holds the value of the I1* component of the channel response vector

as a function of the time index K.

EST(I): (complex) the feedback taps of the DFE.

RALF(K): (complex) holds successive input samples rk.

ALF(I): (complex) the feedforward taps of the DFE.

RVEC(I): (complex) successive outputs of the feedforward section of the DFE.

UUU(I): (complex) holds the elements of the upper triangular portion (excluding diagonal)

of matrix Vk in the SRK algorithm.



259

DDD(I): holds the elements of diagonal matrix Dfc in the SRK algorithm.

MAPX(K, I): holds the survivor sequences of the MLSE/near-MLSE.

COST(K): holds the costs of the survivor sequences in MAPX(K, I).

COPPS: a variable used for generating the Doppler shift effect in the channel response (not

used in this thesis).

IREED(I): holds the seed for the random variation of the ItA path in the channel response. 

RBV(I, K): (complex) holds the sequence {nm,} for producing the random variation in the I<A 

path of the channel response (see section 4.4.3).

GFV(I), DVFG(I): these define the approximate gaussian function in fig. 4.4.

IPETRA(I): hold the training symbol values for the PTS and RTS schemes of chapter 8.

IPETCO: used to increment the argument of IPETRA(I).

SAVSQE: the quantity Hk used in the RTS scheme of chapter 8.

TRANE, FREEZE: logical variables used in the PTS and RTS schemes.

KNOT, KNOT1: variables used in the PTS and RTS schemes. KNOT1 counts the number of 

baud intervals spent on training.

ICCP: used, in conjunction with IF ADR, to determine when the sequence {nmi} is shifted

along.

THOLD: logical variable that holds the value of TRAIN while the warm-up period is

underway (ITIME<ITRIT) as TRAIN must always be .TRUE, during this period.

Subroutines and Functions

RINIT: this routine initialises IREED(.) and sets the values for GFV(.) and DVFG(.).

INITY: this routine initialises all other variables.

CHAN: this routine generates the current value of the fading channel response.

GEN: produces the data symbols, gaussian noise, received samples and outputs of the

feedforward filter.

MLSE: implements the MLSE/near-MLSE detection algorithm,

produces the detected symbols of the DFE.QUANT:
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EVAL:

SRKALG:

SDALG:

DTAPS:

IDECOD:

CGAUSS:

CONSIG:

MDECON:

produces the analytical Pe estimate, and the mean square ISI and mean square 

noise values for the DFE. 

implements the SRK algorithm, 

implements the SD algorithm.

computes the DFE taps from the channel estimate, as described in Appendix H. 

produces the differential detected symbol (IX, IY) from two given symbol values 

IREO and IRE1 (which are in integer form, i.e. 0-(L2 — 1)).

(complex function) produces a complex gaussian noise sample of variance 2, as 

described in Appendix D.

(complex function) converts an integer in the range 0-(L2 — 1) into a complex data 

symbol value, divided by <rs.

(function) converts a complex data symbol value into an integer in the range 

0- ( I 2- l ) .

RESULT: this routine (not detailed) is for outputting the results, which can be to a VDU

screen, or to the File containing the input values, or to a separate file altogether. 

In our case the results were written in to the file containing the input values, and 

simulations were run during a batch processing session because of the length of 

time taken.

How the results are produced.

We will mention what routines are needed to produce the simulation results of this thesis. It 

may well be that not all of the variables will be required during a particular simulation run. 

When the fade rate is 1.0 Hz we set NDURE=64000 and ITRIT=4000, and when the fade 

rate is 2.0 Hz we set NDURE=32000 and ITRIT=2000.

The results for the DFE and MLSE/near-MLSE in modes II and III are produced from the 

program MAIN. For mode II the value of TRAIN is .TRUE., whereas for mode III it is 

.FALSE.. PEULB(l) and PEULB(2), evaluated in EVAL, are the lower and upper Pe bounds



261

as described in Appendix E; PEULB(3) and PEULB(4) are the respective time averages of 

these bounds. The variables TRANE and FREEZE are only used in the PTS and RTS 

schemes, and are otherwise always .FALSE.. When the PTS and RTS schemes are used, the 

subroutine SRKALG must be modified slightly by the insertion of extra program lines, as is 

indicated in the subroutine listing. In the PTS scheme the value of KNOT, which is 10, 

specifies the length of the training burst. Furthermore, in the PTS scheme the logical variable 

FREEZE is not really needed.

When the DFE is implemented by the conventional SRK method, the subroutine DTAPS is 

not needed, and SRKALG is replaced by the subroutine SRKAL1, whose “call” statement in 

MAIN is CALL SRKAL1(RVEC(IDID+1),REVISE,TRAIN).

The results of chapter 6 (excluding the convergence curves of figs. 6.10 and 6.11) are also 

produced from the program MAIN, but the subroutines MLSE, QUANT, EVAL and DTAPS 

are not needed. The convergence curves of figs. 6.10, 6.11, 7.1-7.4 are produced by setting 

NDURE =  81 and ITRIT=20, and including an outer DO loop in program MAIN just before 

the one going from 1 to NDURE, this outer loop going from 1 to 30. Also, the subroutine 

CONVER(VERG,ENCE) must be included in a “call” statement just before CALL DTAPS for 

the DFE-via-CE-method, and just after CALL GEN for the conventional SRK method. 

Subroutines MLSE and QUANT are not needed, and PROBE is .FALSE., and also the 

routines EVAL and DTAPS are not needed for figs. 6.10 and 6.11. The vectors VERG and 

ENCE should be appropriately dimensioned in MAIN and initialised to zero, and they hold, 

respectively, the successive (in time) values of the channel error and mean square error in 

detection. The “call” statement for subroutine CONVER is

IF (ITIME.GE.ITRIT) CALL CONVER(VERG,ENCE)

To produce the E.C. results for the MLSE/near-MLSE and DFE(6,^) in mode I, the program 

MAIN1 is used, which is identical to MAIN until just after the line “ITIME=0” in MAIN; the 

remaining lines in MAIN1 are
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PROGRAM MAIN1

TRAIN =  .'TRUE.
DO 1 J =  1,NDURE 

ICCP=ICCP + 1 
ICCP=MOD(ICCP,IFADR)

CALL CHAN(ICCP,IFADR)

CALL GEN 
CALL DTAPS1
CALL MLSE(RVEC(IDID+ 1),RALF(IDID+1)) 
CALL QUANT(RVEC(IDID+1),TRANE)

1 CONTINUE
CALL RESULT

STOP
END

The subroutine DTAPS1 evaluates the DFE taps according to eqs. (2.137) and (2.133), using a 

complex version of the process given in [86] to solve (2.137). This is based on decomposing the 

positive definite Hermetian matrix Y*k as YJ =  LDL*t , where L is a lower triangular matrix 

with unit diagonal elements and D is a diagonal matrix with real positive elements. Vector w* 

is obtained by first solving y= L - 1y£0, the elements {v,} of v being evaluated in the order i= l  

to N. Then the equation wA. =  (L*t )"1D“1v is solved, with the elements of vrk being

evaluated in the order i=N— 1 to 0.

To produce the results for the DFE(A,^)-I1} simultaneously for JD2=4, 16 and 64, the routines 

GEN, MLSE and QUANT are not required in MAIN1, and the routine EVAL1 should be 

included in the statement CALL EVAL1 immediately after CALL DTAPS1. The two 

quantities SQISI and SQNOI, evaluated in EVAL1, respectively denote the mean square ISI 

and mean square noise, divided by cr2. PEULB(1)-PEULB(4) contain the analytical Pe values 

for L2= 4, while PEULB(5)-PEULB(8) and PEULB(9)-PEULB(12) are for Z2 =  16 and 64 

respectively. In our case we set IFADR to 108, with NDURE=32000 and ITIME=2000.
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The results for the ZF MFE and MMSE MFE of chapter 5 are produced from MAIN1, but 

with routines GEN, DTAPS1, MLSE and QUANT absent. The routine EVAL2 should be 

included in the “call” statement CALL EVAL2 immediately after CALL 

CHAN(ICCP,IFADR). SQERR and SQISI, evaluated in EVAL2, denote the mean square 

error of the ZF MFE and MMSE MFE respectively. PEULB(l), PEULB(3) and PEULB(5) 

contain the instantaneous error probability values for the ZF MFE for L2= 4, 16 and 64 

respectively, with PEULB(2), PEULB(4) and PEULB(6) being the respective time averages. 

In our case we set IF ADR to 108, with NDURE=32000 and ITIME=2000.
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PROGRAM MAIN

COMPLEX ERRID,SIRCH,SIRER,SHUK,EST,RALF,ALF,RVEC,UUU,SPEC,RBV
LOGICAL TRAIN,KALON.MLDON,REVISE,THOLD,TRANE,FREEZE,PROBE
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR
COMMON/DATSYM/IECNT(5),KINP(22),KINP1(21),IDECS(10),INP(50)
COMMON/PICO/ERRID,SQERR,AVSQER,SQISI,AVISI,SQNOI,AVNOI,PEULB(12)

COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/DFEFIL/RALF(40),ALF(20),RVEC(21)
COMMON/KALSRK/UUU(410),DDD(30),EPSIL,QUE,HQUEP
COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA 
COMMON/MLD/LEMM,MUE,MAPX(16,20),COST(16) 

COMMON/VARI/SPEC(10),STAND(10),DOPPS,COPPS 
COMMON/RAYL/IREED(10),RBV(10,13),GFV(6),DVFG(6)
COMMON/CONSIY/NINQ,NSPA

COMMON/PETRAN/IPETCO,IPETRA(3),SAVSQE,TRANE,FREEZE,KNOT,KNOT1 
CALL VALUES(NDURE,IFADR,TRAIN,KALON,MLDON,REVISE,PROBE)
CALL RINIT 

ICCP=-1
CALL INITY(ICCP,IFADR)
ITIME=0
THOLD=TRAIN
TRAIN=.TRUE.
DO 1 J=1,NDURE 

ICCP=ICCP+1 
ICCP=MOD(ICCP,IFADR)

CALL CHAN(ICCP,IFADR)

CALL GEN

IF (MLDON) CALL MLSE(RVEC(IDID+1),RALF(IDID+1))

CALL QUANT(RVEC(IDID+1),TRANE)
CALL EVAL(PROBE)

IF (KALON) THEN

CALL SRKALG(RVEC(IDID+1),RALF(IDID+1),REVISE,TRAIN)
ELSE

CALL SDALG(RVEC(IDID+1),RALF(IDID+1),TRAIN)
ENDIF

CALL DTAPS

IF (ITIME.EQ.ITRIT) TRAIN=THOLD

1 CONTINUE



CALL RESULT

STOP
END
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SUBROUTINE RINIT 
COMPLEX RBV,CGAUSS
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR 
COMMON/RAYL/IREED(10),RBV(10,13),GFV(6),DVFG(6) 
IREED(1)=864095000 
IREED(2)=468381000 
IREED(3)=946715000 
IREED(4)=622081000 
IREED(5)=713574000 
IREED(6)=579432000 
IREED(7)=105242000 
IREED(8)=333333000 
IREED(9)=212525000 
IREED(10)=55533000 
DO 1 1=1,NT 

DO 2 J=2,13
RBV(I,J)=CGAUSS(IREED(I))

2 CONTINUE 
1 CONTINUE

TPI=2.5*SQRT(3.141592654)
TPI=1./SQRT(TPI)
X=2.2 

DO 3 1=1,6
GFV(I)=TPI*EXP(—X*X/2.)
X=X—0.4

3 CONTINUE 

DO 4 1=1,5
DVFG(I)=GFV(I+1)—GFV(I)

4 CONTINUE 

DVFG(6)=TPI—GFV(6)
RETURN

END
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SUBROUTINE INITYflCCP.IFADR^
COMPLEX ERRID,SIRCH,SIRER,SHUK,EST,RALF,ALF,RVEC,UUU,SPEC, 

+CONSIG,ROCK 
LOGICAL TRANE,FREEZE

COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR

COMMON/DATSYM/IECNT(5),KINP(22),KINP1(21),IDECS(10),INP(50)
COMMON/PICO/ERRID,SQERR,AVSQER,SQISI,AVISI,SQNOI,AVNOI,PEULB(12)
COMMON/GLUM/SIRCH(I0),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/DFEFIL/RALF(40),ALF(20),RVEC(21)
COMMON/KALSRK/UUU(410),DDD(30),EPSIL,QUE,HQUEP
COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA 
COMMON/MLD/LEMM,MUE,MAPX(16,20),COST(16) 
COMMON/VARI/SPEC(10),STAND(10),DOPPS,COPPS 
COMMON/CONSIY/NINQ,NSPA
COMMON/PETRAN/IPETCO,IPETRA(3),SAVSQE,TRANE,FREEZE,KNOT,KNOT1 

SVAR=2.*FLOAT(NSL*NSL—1)/3.
PIFF=SQRT(SVAR)

NSPA=NSL/2 
NINQ=NSL*NSL/4 
SIGM=0.5/(10.**(SNRO/10.))
QUE=HQUEP —1.
COPPS=0.
IF (NSL.EQ.2) THEN 
IL=NSL**(2*(NT—1))
IL1=NSL**(2*(NT—2))
ELSE

IL=LEMM*MUE*MUE
IL1=MUE*MUE

ENDIF

J=0
IF (NSL.EQ.4) THEN 
J=3

ELSE IF (NSL.EQ.8) THEN

J=10
ENDIF

IPETRA(1)=J
IPETRA(2)=J+(NSL*NSL)/4

IPETRA(3)=J+(3*NSL*NSL)/4
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IPETCO=0

DO 6 I=1,(IDID+LANT+NT-1)
INP(I)=IPETRA(IPETCO+l)

IPETCO=MOD((IPETCO+l),NT)
6 CONTINUE 

LUN=LEMM 
IF (NSL.EQ.2) LUN=IL 
DO 1 1=1,LUN 

J=I —1

DO 2 K=1,(NT—1)
MAPX(I,K)=MOD(J,(NSL*NSL))
J=J/(NSL*NSL)

2 CONTINUE
DO 3 M=NT,IDID 

MAPX(I,M)=0
3 CONTINUE 

COST(I)=l.E3
I CONTINUE

DO 10 I=1,LANT 
ALF(I)=(0.,0.)
DO 17 J= 1,NT

SHUK(I,J)=(0.,0.)
17 CONTINUE
10 CONTINUE 

ITIME=0
DO 11 I=1,(IDID+LANT)

ICCP=MOD((ICCP+l),IFADR)

CALL CHAN(ICCP,IFADR)
ROCK=(0.,0.)
DO 5 J=1,NT

ROCK=ROCK+CONSIG(INP(I+NT-J))*SHUK(LANT,J) 
5 CONTINUE

RALF(I)=ROCK
II CONTINUE

DO 7 I=1,(IDID+1)

RVEC(I)=(0.,0.)

KINP(I)=INP(I+NT— 1)

KINP1(I)=KINP(I)
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7 CONTINUE 

DO 12 1=1,NT

IDECS(I)=INP(I)
12 CONTINUE

J=(LANT+NT—1)*(LANT+NT—2) 
DO 13 1=1, (J/2)

UUU(I)=(0.,0.)
13 CONTINUE

DO 14 I=1,(LANT+NT—1) 
DDD(I)=1.

14 CONTINUE 
DO 15 1=1,5

IECNT(I)=0

15 CONTINUE 
DO 8 1=1,12 

PEULB(I)=0.
8 CONTINUE 

EST(1)=(1.,0.)
SIRCH(1)=(0.,0.)
DO 9 1=2,NT

EST(I)=(0.,0.)
SIRCH(I)=(0.,0.)

9 CONTINUE 
ERRID=(0.,0.)
SQERR=0.
AVSQER=0.

SQISI=0.

AVISI=0.
SQNOI=0.
AVNOI=0.
SIRER=(0.,0.)
AVSIRE=0.
SQCER=0.

AVCER=0.
SAVSQE=0.
IPETCO=0

KNOT=0

KNOT1=0
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TRANE=.FALSE. 
FREEZE=.FALSE. 
RETURN 
END

SUBROUTINE CHANDCCP.IFADR'i
COMPLEX s ir c h ,s ir e r ,sh u k ,e s t ,s p e c ,r b v ,cg a u ss ,sumn

COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR 
COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10) 
COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA 
COMMON/VARI/SPEC(10),STAND(10),DOPPS,COPPS 
COMMON/RAYL/IREED(10),RBV(10,13),GFV(6),DVFG(6)
ITIME=ITIME+1 
DO 7 I=1,(LANT—1)

DO 8 J=1,NT
SHUK(I,J)=SHUK(I+1,J)

8 CONTINUE
7 CONTINUE

COPPS=AMOD((COPPS+DOPPS),6.283185308)
IF (ICCP.NE.O) GOTO 3 
DO 1 1=1,NT 

DO 2 J=l,12
RBV(I,J)=RBV(I,J-f 1)

2 CONTINUE

RBV(1,13)=CGAUSS(IREED(I))
1 CONTINUE

3 PATL=FLOAT(ICCP)/FLOAT(IFADR)
DO 4 1=1,NT

SUMN=(0.,0.)

DO 5 J=l,5
SUMN=SUMN+(GFV(J)+PATL*DVFG(J))*RBV(I,13-J)

5 CONTINUE 
DO 6 J=6,2, — 1

SUMN=SUMN+(GFV(J)-PATL*DVFG(J-1))*RBV(I,J)
6 CONTINUE

SUMN=SUMN+PATL*GFV(1)*RBV(I,13)+

+ (1.—PATL)*GFV(1)*RBV(I,1)
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X=PATL

IF (PATL.GT.0.5) X=1.-PATL 
SUMN=SUMN+(GFV(6)+2.*X*DVFG(6))*RBV(I,7)

SHUK(LANT,I)=(SPEC(I)-fSUMN*STAND(I))*CMPLX(COS(COPPS),SIN(COPPS)) 
4 CONTINUE 

RETURN 
END

SUBROUTINE GEN
COMPLEX SIRCH,SIRER,SHUK,EST,RALF,ALF,RVEC,CGAUSS,CONSIG,RECD 
LOGICAL TRANE,FREEZE
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR
COMMON/DATSYM/IECNT(5),KINP(22),KINP1(21),IDECS(10),INP(50)
COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/DFEFIL/RALF(40),ALF(20),RVEC(21)

COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA 

COMMON/PETRAN/IPETCO,IPETRA(3),SAVSQE,TRANE,FREEZE,KNOT,KNOT1 
CALL RANSET(ISEDl)

7 UNIF=RANF()
IF ((UNIF.LE.O.).OR.(UNIF.GE.l.)) GOTO 7 
IX=IFIX(FLOAT(NSL*NSL)*UNIF)
CALL RANGET(ISEDl)

DO 1 I=l,(IDID+LANT+NT-2)
INP(I)=INP(I+1)

1 CONTINUE

IF (FREEZE) THEN 
IX=IPETRA(IPETCO+l)
IPETCO=MOD((IPETCO+l),NT)

ENDIF
INP(IDID+LANT+NT— 1)=IX 

RECD=(0.,0.)
DO 2 1=1,NT

RECD=RECD+SHUK(LANT,I)*CONSIG(INP(IDID-fLANT-fNT—I))

2 CONTINUE

RECD=RECD+SQRT(SIGM)*CGAUSS(ISED2)

DO 3 I=1,(IDID+LANT—1)

RALF(I)=RALF(I+1)
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3 CONTINUE

RALF(IDID+LANT)=RECD

RECD=(0.,0.)
DO 5 I=1,LANT

RECD=RECD+ALF(I)*RALF(IDID+I)
5 CONTINUE 

DO 6 I=1,IDID

RVEC(I)=RVEC(I+1)
6 CONTINUE 

RVEC(IDID+1)=RECD 
RETURN
END

SUBROUTINE MLSEfRECD.RECDD
COMPLEX RECD,RECDl,SIRCH,SIRER,SHUK,EST,CONSIG,DEKAY
DIMENSION IMAPX(16,20),IMAPXO(64),IMAPX1(64),COSVAO(64),COSVA1(64)
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR
COMMON/DATSYM/IECNT(5),KINP(22),KINP1(21),IDECS(10),INP(50)
COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA

COMMON/MLD/LEMM,MUE,MAPX(16,20),COST(16)
IF (ITIME.LT.ITRIT) RETURN 
IF (ITIME.EQ.ITRIT) THEN 
J=1

IF (NSL.EQ.2) THEN 
DO 3 K=1,(NT—1)

J=J+INP(IDID+NT+1 —K)*(NSL**(2*(K—1)))
3 CONTINUE 

ELSE
DO 4 K=1,(NT—1)

MAPX(l,K)=INP(IDID+NT-fl-K)
4 CONTINUE 

ENDIF

DO 5 K=NT,IDID

MAPX(J,K)=INP(IDID+NT+1-K )

5 CONTINUE 

IDECS(NT)=INP(NT)
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COST(J)=0.
RETURN

ENDIF

TLIM=1.E30
IF (NSL.EQ.2) GOTO 38

C With reference to the near-MLSE algorithm of Appendix G, IL and IL1 are equivalent to 
C mn2 and n2 respectively, and DEKAYR and DEKAYI are equivalent to Refi/*] and Imfz/j.] 
C respectively.

DO 1 I=1,LEMM 
IQ=(I —1)*IL1 
DEKAY=RECD 
DO 2 J=2,NT

LLL=MAPX(I,J — 1)

DEKAY=DEKAY—EST(J)*CONSIG(LLL)

2 CONTINUE

DEKAYR=PIFF*REAL(DEKAY)
DEKAYI=PIFF*AIMAG(DEKAY)
M1=IQ+MUE
M2=M1+MUE
CPRR=ABS(DEKAYR)
J=IFIX(CPRR)

C Select first sequence from Re[z/fc].
IF (J.GT.(NSL-l)) THEN
J=NSL —1
ELSE
J=J+MOD((J+l),2)

ENDIF

C Select second sequence from Re[^fc].

CPRR=CPRR—FLOAT(J)
IF (CPRR.GE.0.) THEN
K=J+2
ELSE
K=J—2
ENDIF

IF (K.GT.(NSL-l)) K=K—4 
IF (DEKAYR.LT.O.) THEN 

J = - J  
K=—K
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ENDIF

COSVAO(IQ+1)=ABS(CPRR)
COSVAO(IQ+2)=ABS(DEKAYR—FLOAT(K))
IMAPX0(IQ+1)=J
IMAPX0(IQ+2)=K
CPRI=ABS(DEKAYI)

J=IFIX(CPRI)
IF (J.GT.(NSL-l)) THEN
J=NSL —1
ELSE
J=J+MOD((J+l),2)
ENDIF
CPRI=CPRI—FLO AT( J)

IF (CPRI.GE.O.) THEN
K=J+2
ELSE
K=J—2
ENDIF
IF (K.GT.(NSL-l)) K=K—4

IF (DEKAYI.LT.O.) THEN
J = - J
K=—K
ENDIF

COSVAO(M1+1)=ABS(CPRI) 
COSVAO(Ml-f2)=ABS(DEKAYI—FLOAT(K)) 

IMAPX0(M1+1)=J 
IMAPX0(M1+2)=K

C Evaluate the costs of the sequences and find the one with the lowest. 
DO 11 J=1,MUE

DO 12 K=1,MUE

CPR=COST(I)+COSVAO(IQ+J)**2+COSVAO(M1+K)**2
LLL=IQ+(J -  1)*MUE+K

COSVAl(LLL)=CPR
IMAPX1(LLL)=MDECON(IMAPXO(IQ+J),IMAPXO(M1+K))
IF (CPR.GT.TLIM) GOTO 12

TLIM=CPR

12

IACF=LLL

CONTINUE
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11 CONTINUE 
1 CONTINUE
C Address of lowest-cost sequence, and detected symbol.

IDENT=(IACF-1)/IL1+1
LIMT=MAPX(IDENT,IDID)
DO 13 1=1,(N T -1)

IDECS(I)=IDECS(I+1)
13 CONTINUE 

IDECS(NT)=LIMT 
DO 14 I=2,IDID

IMAPX(1,I)=MAPX(IDENT,I—1)
14 CONTINUE 

IMAPX(1,1)=IMAPX1(IACF)

C Lowesr-cost sequence effectively removed from rest by putting high cost value. 

COSVA1(IACF)=1.E60
C Sequences for which ak_g^ s k_q are removed.

DO 15 I=1,LEMM 
IQ=(I-1)*IL1

IF (MAPX(I,IDID).EQ.LIMT) GOTO 15 
DO 16 J=1,IL1

COSVA1(IQ+J)=1.E60
16 CONTINUE
15 CONTINUE 

IREST=1

C Any sequences originating from lowest-cost survivor? If so, find the lowest-cost one, store 
C it and its cost, and then effectively remove it from the rest.

IF (MAPX(1,IDID).EQ.LIMT) THEN

TLIM0=1.E30
DO 17 1=1,IL1

CPR=COSVAl(I)

IF (CPR.GT.TLIMO) GOTO 17
TLIM0=CPR
IACF=I

17 CONTINUE 
COST(2)=TLIMO —TLIM 

DO 18 I=2,IDID

IMAPX(2,I)=MAPX(1,I—1)

18 CONTINUE
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IMAPX(2,1)=IMAPX1(IACF)

COSVA1(IACF)=1.E60
IREST=2
ENDIF

C Select rest of sequences.

DO 19 I=(IREST+1),LEMM 
CPR=1.E30 
DO 20 J= 1,IL

IF (COSVAl(J).GE.CPR) GOTO 20 
CPR=COSVAl(J)
IACF=J 

20 CONTINUE
COST(I)=CPR 

COSVA1(IACF)=1.E60 
IMAPX0(I)=IACF 

19 CONTINUE
C Sort sequences for start of next sampling instant.

DO 24 I=(IREST+1),LEMM
IDENT=(IM APXO(I) -1 ) /IL1+1 
DO 25 J=2,IDID

IMAPX(I,J)=MAPX(IDENT,J -1 )
25 CONTINUE

IMAPX(I,1)=IMAPX1(IMAPX0(I))
24 CONTINUE

DO 22 I= 1,LEMM 
DO 23 J=1,IDID

MAPX(I,J)=IMAPX(I,J)
23 CONTINUE

22 CONTINUE 

RETURN

C Start of MLSE for 4 QAM. IL and IL1 are respectively equal to L23 and L2̂ 3~‘1\  
38 DO 30 I=0,(IL1 —1)

DO 31 K=0,(NSL*NSL—1)
JK=I—IL1+1 

CT=1.E30
DO 32 J=0,(NSL*NSL —1)

JK=JK+IL1

DEKAY=RECD1—CONSIG(K)*SIRCH(l)
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33

32

34

31
30

36

35

37

DO 33 M=1,(NT—1) 

LLL=MAPX(JK,M)
DEKAY=DEKAY—CONSIG(LLL)*SIRCH(M+l) 

CONTINUE
CPR=COST(JK)+CABS(DEKAY)**2 
IF (CPR.GT.CT) GOTO 32 

CT=CPR 
IACF=JK 

CONTINUE
KADD=I*NSL*NSL+K+1 
COSVAO(KADD)=CT 
DO 34 L=(NT—1),(IDID —1)

IMAPX(KADD,L)=MAPX(IACF,L)

CONTINUE

IF (TLIM.LE.CT) GOTO 31 
TLIM=CT
LIMT=MAPX(IACF,IDID)

CONTINUE 
CONTINUE 

DO 35 1=1,IL
DO 36 L=NT,IDID

MAPX(I,L)=IMAPX(I,L—1)
CONTINUE

COST(I)=COSVAO(I) —TLIM 
CONTINUE 

DO 37 1=1,(NT-1)

IDECS(I)=IDECS(I+1)

CONTINUE
IDECS(NT)=LIMT
RETURN
END

SUBROUTINE QUANT(ARR,TRANE)

COMPLEX ARR,SIRCH,SIRER,SHUK,EST,CONSIG,RISI,XY 

LOGICAL TRANE
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR

COMMON/DATSYM/IECNT(5),KINP(22),KINP1(21),IDECS(10),INP(50)
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COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10) 
COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA 
KINP(22)=KINP(1)
DO 1 I=1,IDID

KINP(I)=KINP(I+1)
KINP1(I)=KINP1(I+1)

1 CONTINUE

IF ((ITIME.LE.ITRIT).OR.TRANE) THEN 
KINP(IDID+1)=INP(IDID+NT)

KINP1(IDID+1)=INP(IDID+NT)
RETURN
ENDIF

RISI=(0.,0.)
DO 2 1=2,NT

RISI=RISI+CONSIG(KINP(IDID+2-I))*EST(I)
2 CONTINUE

RISI=( ARR—RISI)*PIFF 
RX=REAL(RISI)
RY=AIMAG(RISI)
IX=IFIX(ABS(RX))
IY=IFIX(ABS(RY))

IF (MOD(IX,2).EQ.O) IX=IX+1 
IF (MOD(IY,2).EQ.O) IY=IY+1 
I=NSL—1 

IF (IX.GT.I) IX=I 

IF (IY.GT.I) IY=I 

IF (SIGN(l.,RX).LT.O.) IX =-IX  
IF (SIGN(l.,RY).LT.O.) IY =-IY  
KINP(IDID+l)=MDECON(IX,IY)

RISI=(0.,0.)
DO 5 1=2,NT

RISI=RISI+CONSIG(INP(IDID+NT+l-I))*EST(I)

5 CONTINUE

RISI=( ARR—RISI)*PIFF 

RX=REAL(RISI)

RY=AIMAG(RISI)
IX=IFIX(ABS(RX))

IY=IFIX(ABS(RY))
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IF (MOD(IX,2).EQ.O) IX=IX+1 
IF (MOD(IY,2).EQ.O) IY=IY+1 
I=NSL —1 

IF (IX.GT.I) IX=I 
IF (IY.GT.I) IY=I 

IF (SIGN(l.,RX).LT.O.) IX =-IX  
IF (SIGN(l.,RY).LT.O.) IY =-IY  
KINP1(IDID+1)=MDEC0N(IX,IY)
CALL IDECOD(INP(NT),INP(NT—1),IIX,IIY)
CALL IDECOD(IDECS(NT),IDECS(NT—1),IDX,IDY) 
I=IABS(IIX—IDX)+IABS(IIY—IDY)

IF (I.EQ.O) GOTO 8 

IECNT(1)=IECNT(1)+1
8 IF (IDECS(NT).NE.INP(NT)) IECNT(2)=IECNT(2)+1 

CALL IDECOD(KINP(l),KINP(22),IDX,IDY) 
I=IABS(IIX-IDX)+IABS(IIY-IDY)

IF (I.EQ.0) GOTO 9 
IECNT(3)=IECNT(3)+1

9 IF (KINP(l).NE.INP(NT)) IECNT(4)=IECNT(4)+1 

IF (KINPl(l).NE.INP(NT)) IECNT(5)=IECNT(5)+1 
RETURN
END

SUBROUTINE EVALfPROBE^
COMPLEX ERRID,SIRCH,SIRER,SHUK,EST,RALF,ALF,RVEC,CONSIG,XY 

DIMENSION CLASS(180)
LOGICAL TRANE,FREEZE,PROBE
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR

COMMON/PICO/ERRID,SQERR,AVSQER,SQISI,AVISI,SQNOI,AVNOI,PEULB(12)

COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/DFEFIL/RALF(40),ALF(20),RVEC(21)

COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA 
COMMON/PETRAN/IPETCO,IPETRA(3),SAVSQE,TRANE,FREEZE,KNOT,KNOT1 

IF (ITIME.LE.ITRIT) RETURN 
IF (TRANE.OR.FREEZE) RETURN 

IIX=IFIX(0.5+LOG10(FLOAT(NSL))/LOG10(2.))

IIY=IIX*(2*(LANT+NT-1) -1 )
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C Evaluate the ISI terms.
XX=0.
B1=0.
MM=0

DO 2 I=1,(LANT—1)
XY=(0.,0.)
DO 3 J=(I+1),MIN0(LANT,(NT+I)) 

XY=XY+ALF(J)*SHUK(J,J - I )
3 CONTINUE 

C1=ABS(REAL(XY)) 
C2=ABS(AIMAG(XY))

DO 18 J=1,IIX
B2=FLOAT(NSL/(2**J))
CLASS(MM+1)=C1*B2
CLASS(MM+2)=C2*B2

MM=MM+2
18 CONTINUE 

XX=XX+CABS(XY)**2 
B1=B1+CABS(ALF(I))**2

2 CONTINUE 
SQISI=XX
B1=B1+CABS(ALF(LANT))**2
SQNOI=2.*SIGM*SVAR*Bl

XY=(0.,0.)
DO 4 I=1,MIN0(LANT,NT) 

XY=XY+ALF(I)*SHUK(I,I)
4 CONTINUE 

XY=XY — 1.

A1=REAL(XY)

C2=ABS(AIMAG(XY))

DO 19 J=1,IIX
B2=FLOAT(NSL/(2**J))
CLASS(MM+1)=C2*B2
MM=MM+1

19 CONTINUE
SQISI=SQISI+CABS(XY)**2

XX=0.

DO 5 1=1,(NT-1)
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XY=(0.,0.)
DO 6 J=1,MIN0(LANT,(NT—I))

XY=XY+ALF(J)*SHUK(J,J+I)

CONTINUE
XY=XY-EST(I+1)
C1=ABS(REAL(XY))
C2=ABS(AIMAG(XY))
DO 20 J=1,IIX

B2=FLOAT(NSL/(2**J))

CLASS(MM+1)=C1*B2
CLASS(MM+2)=C2*B2
MM=MM+2

CONTINUE
XX=XX+CABS(XY)**2

CONTINUE
SQISI=SVAR*(SQISI+XX)
PERRI=FLOAT(ITIME—ITRIT—KNOT1)

A VISI=A VISI+(SQISI -  AVISI)/PERRI 
AVNOI=AVNOI+(SQNOI —AVNOI)/PERRI 
IF (PROBE) RETURN
Sort the ISI terms, and evaluate the upper (F2) and lower (FI) error bounds according to 
the method given in Appendix E.
DO 21 I==1,(IIY—1)

B1=0.
DO 22 J=I,IIY

IF (Bl.GT.CLASS(J)) GOTO 22 

B1=CLASS(J)
MM=J 

CONTINUE 
IF (B1.EQ.0.) THEN 
IIY=I—1 

GOTO 23 
ENDIF

CLASS(MM)=CLASS(I)

CLASS(I)=B1
CONTINUE

IF (CLASS(IIY).EQ.O.) IIY=IIY-1 

Cl=l./SQRT(SQNOI)



281

F1=0.
F2=0.
DO 12 I=2,(NSL/2)

K=2*I—NSL —1 
D l=l. —FL0AT(K)*A1 
D2=1.+FL0AT(K)*A1 
E1=0.
E2=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 
B2=D2*C1
IF (B2.LE.25.) E2=ERFC(B2)
IF (IIY.EQ.O) THEN

F2=F2+E1+E2

GOTO 12
ENDIF

C2=0.5
F2=F2+C2*(E1+E2)
DO 13 J=1,(IIY —1)

D1=D1—CLASS(J)
D2=D2 —CLASS(J)
E1=0.
E2=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 

B2=D2*C1

IF (B2.LE.25.) E2=ERFC(B2) 
C2=C2/2.

F2=F2+C2*(E1+E2)
13 CONTINUE

D1=D1—CLASS(IIY)
D2=D2—CLASS(IIY)

E1=0.

E2=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 

B2=D2*C1

IF (B2.LE.25.) E2=ERFC(B2)
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F2=F2+C2*(E1+E2)

Dl=2.*(l.—FL0AT(K)*A1) — D1 
D2=2.*(1.+FL0AT(K)*A1)-D2 

E1=0.
E2=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 
B2=D2*C1
IF (B2.LE.25.) E2=ERFC(B2) 
F1=F1+E1+E2 

12 CONTINUE

Dl=l.+FLOAT(NSL-l)*Al
E1=0.

B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)
IF (IIY.EQ.O) THEN
F2=F2+E1

GOTO 24
ENDIF
C2=0.5
F2=F2+C2*E1 
DO 14 J=1,(IIY—1)

D1=D1—CLASS(J)

E1=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 
C2=C2/2.
F2=F2+C2*E1 

14 CONTINUE
D1=D1—CLASS (IIY)

E1=0.

B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 

F2=F2+C2*E1

D1=2.*(1.+FL0AT(NSL-1)*A1)-D1
E1=0.

B2=D1*C1

IF (B2.LE.25.) E1=ERFC(B2)
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F1=F1+E1+F2
24 PEULB(1)=F1 /FLOAT(NSL) 

PEULB(2)=2.*F2/FLOAT(NSL) 

PEULB(3)=PEULB(3)+(PEULB(1)-PEULB(3))/PERRI 

PEULB(4)=PEULB(4)+(PEULB(2)-PEULB(4))/PERRI 
RETURN 
END

SUBROUTINE SRKALGf AR1.AR2.REVISE.TRAIN1 
COMPLEX AR1,AR2,ERRID,SIRCH,SIRER,SHUK,EST,UUU,RDASH, 

+CONSIG,FFF(30),GGG(30),HLAMDA,BETA1,XY 
DIMENSION AAA(30)
LOGICAL REVISE,TRAIN,TRANE,FREEZE

COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR
COMMON/DATSYM/IECNT(5),KINP(22),KINP1(21),IDECS(10),INP(50)

COMMON/PICO/ERRID,SQERR,AVSQER,SQISI,AVISI,SQNOI,AVNOI,PEULB(12)
COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/KALSRK/UUU(410),DDD(30),EPSIL,QUE,HQUEP
COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA
COMMON/PETRAN/IPETCO,IPETRA(3),SAVSQE,TRANE,FREEZE,KNOT,KNOT1
SIRER=(0.,0.)
RDASH=(0.,0.)
IF (.NOT.TRAIN) THEN 

DO 11 1=1,NT
XY=CONSIG(KINP(IDID+2—I))
SIRER=SIRER+XY*SIRCH(I)
RDASH=RDASH+XY*EST(I)

11 CONTINUE 
ELSE

DO 12 1=1,NT
XY=CONSIG(INP(IDID+NT+l -I))
SIRER=SIRER-f-XY*SIRCH(I)
RDASH=RDASH+XY*EST(I)

12 CONTINUE
ENDIF

ERRID=AR1 — RD ASH 

SIRER=AR2—SIRER
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SQERR=SVAR*(CABS(ERRID)**2)

SAVSQE=DAMSE*SQERR+(1.-DAMSE)*SAVSQE

SQCER=0.
DO 3 1=1,NT

SQCER=SQCER+CABS(SIRCH(I)—SHUK(1,I))**2 
3 CONTINUE

IF (ITIME.LE.ITRIT) GOTO 4

INSERT point for extra lines for PTS and RTS schemes (see end of this routine)

PERRI=FLOAT(ITIME—ITRIT) 
AVSQER=AVSQER+(SQERR-AVSQER)/PERRI 
AVSIRE=AVSIRE+(CABS(SIRER)**2—AVSIRE)/PERRI 
AVCER=AVCER+(SQCER—AVCER)/PERRI 

4 IF (.NOT.TRAIN) THEN 

XY=CONSIG(KINP(IDID+l))
ELSE

XY=CONSIG(INP(IDID+NT))
ENDIF
FFF(l)=CONJG(XY)
GGG(1)=DDD(1)*FFF(1)
XY=GGG(l)*CONJG(FFF(l))

AAA(1)=EPSIL+REAL(XY)
MM=0
DO 1 J=2,NT

IF (.NOT.TRAIN) THEN 
XY=CONSIG(KINP(IDID+2—J))
ELSE
XY=CONSIG(INP(IDID+NT+l -  J))
ENDIF

FFF(J)=CONJG(XY)
DO 2 1=1,(J — l)

MM=MM+1

IF (.NOT.TRAIN) THEN 

XY=CONSIG(KINP(IDID+2—I))
ELSE

XY=CONSIG(INP(IDID+NT+l-I))
ENDIF
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FFF(J)=FFF(J)+UUU(MM)*CONJG(XY)

2 CONTINUE

GGG(J)=DDD(J)*FFF(J)
XY=GGG(J)*CONJG(FFF(J))
AAA(J)=AAA(J -  1)+REAL(XY)

1 CONTINUE
IF (REVISE) THEN 
HHTT=QUE*AAA(NT)
ELSE
HHTT=0.
ENDIF

CAPPA=1./(AAA(1)+HHTT)
DDD(1)=DDD(1)*HQUEP*(EPSIL+HHTT)*CAPPA

MM=0
DO 6 J=2,NT

BETA=AAA(J -  1)+HHTT 

HLAMDA=FFF(J)*CAPPA 
CAPPA=1./(AAA(J)+HHTT) 
DDD(J)=DDD(J)*HQUEP*BETA*CAPPA 
DO 7 1=1,( J - l )

MM=MM+1
BETA1=UUU(MM)
UUU(MM)=BETA1—CONJG(GGG(I))*HLAMDA 
GGG(I)=GGG(I)+GGG(J)*CONJG(BETAl)

7 CONTINUE 

6 CONTINUE

BETA1=SIRER/AAA(NT)

DO 8 J=1,NT
SIRCH(J)=SIRCH(J)+GGG(J)*BETA1

8 CONTINUE 
RETURN 
END

C INSERT lines for PTS scheme.
IF (FREEZE) THEN 
KNOTl=KNOTl+l 

IF (KNOT.GT.O) KNOT=KNOT—1 

IF (KNOT.EQ.O) THEN
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TRANE=.FALSE.

FREEZE=.FALSE.
ENDIF
ELSE IF ((.NOT.TRAIN).AND.(.NOT.TRANE)) THEN 

IF (MOD(ITIME,(KADEL+10)).EQ.O) THEN 
FREEZE=.TRUE.

TRANE=.TRUE.

KNOT=10
SIRCH(1)=(0.,0.)
DO 5 1=2,NT 

EST(I)=(0.,0.)
SIRCH(I)=(0.,0.)

5 CONTINUE

J=(L ANT+NT—1 >(L ANT+NT—2)
DO 9 1=1,J/2

UUU(I)=(0.,0.)
9 CONTINUE

DO 10 I=1,(LANT+NT—1)

DDD(I)=1.
10 CONTINUE 

ENDIF 
ENDIF

C End of INSERT lines for PTS scheme.

C INSERT lines for RTS scheme.
IF (FREEZE) THEN 

KNOTl=KNOTl+l 
IF (KNOT.GT.O) KNOT=KNOT—1 
IF (KNOT.EQ.l) TRANE=.TRUE.

IF (KNOT.EQ.O) THEN
IF (SAVSQE.LT.DELTO) THEN
FREEZE=.FALSE.

KNOT=LANT

IF (KNOT.EQ.l) TRANE=.FALSE.
ENDIF

ENDIF

ELSE IF ((.NOT.TRAIN).AND.(.NOT.TRANE)) THEN 

IF (SAVSQE.GE.DELTO) THEN
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FREEZE=.TRUE.
KNOT=LANT
IF (KNOT.EQ.l) TRANE=.TRUE. 
ENDIF
ELSE IF (KNOT.GT.l) THEN 
KNOTl=KNOTl+l 
KNOT=KNOT—1 
IF (KNOT.EQ.l) TRANE=.FALSE. 
ENDIF

C End of INSERT lines for RTS scheme.

SUBROUTINE SDALGfARl.AR2.TRAIN>)

COMPLEX ARl,AR2,ERRID,SIRCH,SIRER,SHUK,EST,RDASH,CONSIG,XY 
LOGICAL TRAIN

COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR
COMMON/DATSYM/IECNT(5),KINP(22),KINP1(21),IDECS(10),INP(50)
COMMON/PICO/ERRID,SQERR,AVSQER,SQISI,AVISI,SQNOI,AVNOI,PEULB(12)

COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA
SIRER=(0.,0.)
RDASH=(0.,0.)
IF (.NOT.TRAIN) THEN 
DO 11 1=1,NT

XY=CONSIG(KINP(IDID+2—I))
SIRER=SIRER+XY*SIRCH(I)

RDASH=RDASH+XY*EST(I)
11 CONTINUE 

ELSE
DO 12 1=1,NT

XY=CONSIG(INP(IDID+NT+l -I))

SIRER=SIRER+XY*SIRCH(I)
RDASH=RDASH+XYtEST(I)

12 CONTINUE 
ENDIF

ERRID=AR1 — RD ASH 

SIRER=AR2—SIRER 

SQERR=SVAR*(CABS(ERRID)**2)



2 8 8

SQCER=0.
DO 1 1=1, NT

SQCER=SQCER+CABS(SIRCH(I)-SHUK(1,I))**2
1 CONTINUE

IF (ITIME.LE.ITRIT) GOTO 3 
PERRI=FLOAT(ITIME—ITRIT) 
AVSQER=AVSQER+(SQERR-AVSQER)/PERRI 
AVSIRE=AVSIRE+(CABS(SIRER)**2—AVSIRE)/PERRI 
AVCER=AVCER+(SQCER-AVCER)/PERRI 

3 DO 2 1=1,NT

IF (.NOT.TRAIN) THEN 
XY=CONSIG(KINP(IDID+2—I))
ELSE
XY=CONSIG(INP(IDID+NT+l —I))
ENDIF

SIRCH(I)=SIRCH(I)+DELTA*SIRER*CONJG(XY)
2 CONTINUE 

RETURN 
END

SUBROUTINE DTAPS

COMPLEX SIRCH,SIRER,SHUK,EST,RALF,ALF,RVEC, 
+A(20),W(20),V(20),HLAM,A1,B1,D0
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR
COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/DFEFIL/RALF(40),ALF(20),RVEC(21)

COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELT0,DAMSE,DELTA

IF (SIRCH(1).EQ.(0.,0.)) RETURN
HLAM=l./CONJG(SIRCH(l))
A(1)=2.*SIGM*HLAM 
DO 1 I=1,(LANT—1)

A(I+1)=(0.,0.)

DO 2 K=MAX0(0,I—NT+1),I—1

A(I+l)=A(I+l)-C O N JG (SIR C H (I-K +l))*A (K +l)

2 CONTINUE

A(I+1)=A(I+1)*HLAM 
1 CONTINUE
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A(1)=A(1)+SIRCH(1)

HLAM=1./A(1)
W(1)=A(2)*HLAM
V(1)=SIRCH(2)*HLAM
D0=A(1)
A1=W(1)
B1=V(1)

DO 3 K=1,LANT—2 

D0=(1.-A1*B1)*D0 
Al=A(K+2)
DO 4 1=1,K

A1=A1—A(I+1)*W(K—1+1)

4 CONTINUE 

HLAM=1./D0 
A1=A1*HLAM 

B1=(0.,0.)
IF (K.LE.NT—2) Bl=SIRCH(K+2)
DO 5 I=1,MIN0(K,NT—1)

B1=B1 -SIRCH(I+1)*V(K-I+1)
5 CONTINUE 

B1=B1*HLAM 
DO 6 1=1,K

HLAM=V(K-I+1)-B1*W(I) 

W(I)=W(I)—A1*V(K—I+l) 
V(K-I+1)=HLAM

6 CONTINUE 

W(K+1)=A1 
V(K+1)=B1

3 CONTINUE

D0=(1.—A1*B1)*D0 

ALF(1)=1./D0 
DO 7 I=1,LANT—1

ALF(I+1)=-ALF(1)*W(I)
7 CONTINUE 

DO 8 1=2,NT

EST(I)=(0.,0.)
DO 9 K=1,MIN0(LANT,NT—I-f 1)

EST(I)=EST(I)+ALF(K)*SIRCH(K+I—1)
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9 CONTINUE
8 CONTINUE 

RETURN 
END

SUBROUTINE IDECODQREliREOiX.m
COMMON/CONSIY /NINQ,NSPA
IQUA1=IRE1/NINQ
IQUA0=IRE0/NINQ
IQUAD=MOD((4+IQUAl —IQUA0),4)
LOK=MOD(IREl,NINQ)
IY=2*(LOK/NSPA)+l

IX=2*MOD(LOK,NSPA)+l
IF (IQUAD.EQ.l) THEN
I=IX
IX=—IY
IY=I

ELSE IF (IQUAD.EQ.2) THEN
IX =-IX

IY=—IY

ELSE IF (IQUAD.EQ.3) THEN
I=IX
IX=IY
IY=—I
ENDIF
RETURN
END

COMPLEX FUNCTION CGAUSSflSEEDI 

CALL RANSET(ISEED)

THETE=6.283185308*RANF()

1 UNIF=RANF()

IF (UNIF.LE.0.0) GOTO 1 
CALL RANGET(ISEED)

RADIUS=SQRT(—2.0*LOG(UNIF)) 

CGAUSS=RADIUS*CMPLX(COS(THETE),SIN(THETE))
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RETURN

END

COMPLEX FUNCTION CONSIGfNl
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR 
COMMON /  CONSIY /NINQ,NSPA 
IF (N .NE.-l) GOTO 1 

CONSIG=(0.,0.)
RETURN

1 LOK=MOD(N,NINQ)

LOKI=2*(LOK/NSPA)+l
LOKR=2*MOD(LOK,NSPA)+l
IQUAD=N/NINQ
X=FLOAT(LOKR)
Y=FLOAT(LOKI)
IF (IQUAD.EQ.l) THEN
R=X
X=—Y
Y=R
ELSE IF (IQUAD.EQ.2) THEN
X = -X
Y =—Y

ELSE IF (IQUAD.EQ.3) THEN

R=X
X=Y

Y= —R
ENDIF
CONSIG=CMPLX(X,Y)/PIFF
RETURN

END

FUNCTION MDECONflX.IYl

COMMON/CONSIY/NINQ,NSPA
IQUAD=1

IF (ISIGN(1,IX).EQ.ISIGN(1,-IY)) IQUAD=2 
IQUAD=IQUAD—ISIGN(1,IY)
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IDX=IX

IDY=IY
IF (IQUAD.EQ.l) THEN

I=IDX

IDX=IDY

IDY=—I
ELSE IF (IQUAD.EQ.2) THEN 
IDX=—IDX 
IDY=—IDY

ELSE IF (IQUAD.EQ.3) THEN
I=IDX

IDX=—IDY
IDY=I
ENDIF
MDECON=IQUAD*NINQ+NSPA*(IDY—l)/2+(IDX —1)/2
RETURN
END

SUBROUTINE SRKALl(ARl.REVISE.TRAIN)

COMPLEX AR1,ERRID,SIRCH,SIRER,SHUK,EST,RALF,ALF,RVEC,UUU, 
-fRDASH,CONSIG,FFF(30),GGG(30),HLAMDA,BETAl,XY 

DIMENSION AAA(30)
LOGICAL REVISE,TRAIN
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR

COMMON/DATSYM/IECNT(5),KINP(22),KINP1(21),IDECS(10),INP(50)

COMMON/PICO/ERRID,SQERR,AVSQER,SQISI,AVISI,SQNOI,AVNOI,PEULB(12)

COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/DFEFIL/RALF(40),ALF(20),RVEC(21)

COMMON/KALSRK/UUU(410),DDD(30),EPSIL,QUE,HQUEP

COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA
RDASH=(0.,0.)
IF (.NOT.TRAIN) THEN 

DO 11 1=1,NT
XY=CONSIG(KINP(IDID+2—I))

RDASH=RDASH+XY*EST(I)

11 CONTINUE 

ELSE
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DO 12 1=1,NT
RDASH=RDASH+CONSIG(INP(IDID+NT+l-I))*EST(I)

12 CONTINUE 
ENDIF
ERRID=AR1 — RD ASH 
SQERR=SVAR*(CABS(ERRID)**2)
IF (ITIME.LE.ITRIT) GOTO 10
AVSQER=AVSQER+(SQERR—AVSQER)/FLOAT(ITIME—ITRIT) 

10 FFF(l)=CONJG(RALF(IDID+l))

GGG(1)=DDD(1)*FFF(1)
XY=GGG(l)*CONJG(FFF(l))
AAA(1)=EPSIL+REAL(XY)
MM=0
DO 1 J=2,LANT

FFF(J)=CONJG(RALF(IDID+J))

DO 2 1=1,( J - l )

MM=MM+1
FFF(J)=FFF(J)+UUU(MM)*CONJG(RALF(IDID+I))

2 CONTINUE
GGG(J)=DDD(J)*FFF(J)
XY=GGG(J)*CONJG(FFF(J))

AAA(J)=AAA(J -  1)+REAL(XY)

1 CONTINUE
DO 3 J=(LANT+1),(LANT+NT— 1)

LL=J—LANT—1 
IF (.NOT.TRAIN) THEN 
XY=CONSIG(KINP(IDID—LL))

ELSE
XY=CONSIG(INP(IDID+NT—1—LL))

ENDIF
FFF(J)=CONJG(XY)

DO 4 1=1,LANT 
MM=MM+1
FFF(J)=FFF(J)+UUU(MM)*CONJG(RALF(IDID+I))

4 CONTINUE

LL= —1

DO 5 I=(LANT+1),(J —1)

MM=MM+1



294

LL=LL+1
IF (.NOT.TRAIN) THEN 
XY=CONSIG(KINP(IDID-LL))
ELSE
XY=CONSIG(INP(IDID+NT—1—LL))

ENDIF

FFF(J)=FFF(J)-fUUU(MM)*CONJG(XY)
5 CONTINUE 

GGG(J)=DDD(J)*FFF(J) 
XY=GGG(J)*CONJG(FFF(J))
AAA(J)=AAA(J -  1)+REAL(XY)

3 CONTINUE
IF (REVISE) THEN 

HHTT=QUE* AAA(LANT+NT—1)
ELSE
HHTT=0.
ENDIF

CAPPA=1./(AAA(1)+HHTT)
DDD(1)=DDD(1)*HQUEP*(EPSIL+HHTT)*CAPPA
MM=0
DO 6 J=2,(LANT+NT—1)

BETA=AAA(J -  1)+HHTT 
HLAMDA=FFF(J)*CAPPA 

CAPPA=1./(AAA(J)+HHTT) 
DDD(J)=DDD(J)*HQUEP*BETA*CAPPA 
DO 7 1=1,( J - l )

MM=MM+1
BETA1=UUU(MM)

UUU(MM)=BETA1 —CONJG(GGG(I))*HLAMDA 
GGG(I)=GGG(I)+GGG(J)*CONJG(BETAl)

7 CONTINUE

6 CONTINUE

BETA1=—ERRID/AAA(LANT+NT—1)
DO 8 J=1,LANT

ALF(J)=ALF(J)+GGG(J)*BETA1
8 CONTINUE 

DO 9 J=2,NT

EST(J)=EST(J)-GGG(LANT+J-1)*BETA1
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RETURN 
END
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SUBROUTINE CONVERfVERG.ENCEl

COMPLEX ERRID,SIRCH,SIRER,SHUK,EST,RALF,ALF,RVEC,UUU 
DIMENSION VERG(61),ENCE(61)
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR 
COMMON/PICO/ERRID,SQERR,AVSQER,SQISI,AVISI,SQNOI,AVNOI,PEULB(12) 

COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10) 
COMMON/DFEFIL/RALF(40),ALF(20),RVEC(21) 

COMMON/KALSRK/UUU(410),DDD(30),EPSIL,QUE,HQUEP 

COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA 
IF (ITIME.EQ.ITRIT) THEN 
DO 1 I=1,LANT 

ALF(I)=(0.,0.)
1 CONTINUE 

SIRCH(1)=(0.,0.)
DO 2 1=2,NT

EST(I)=(0.,0.)
SIRCH(I)=(0.,0.)

2 CONTINUE
J=(LANT+NT- 1)*(LANT+NT—2)

DO 3 1=1,J/2

UUU(I)=(0.,0.)
3 CONTINUE

DO 4 I=1,(LANT+NT-1)
DDD(I)=1.

4 CONTINUE 
RETURN 
ENDIF

I=ITIM E—ITRIT 

Bl=LOG10(SQCER-f 1.1E—100)

B2=LOG10(SQISI+SQNOI-f 1.1E—100)

VERG(I)=VERG(I)+(1./30.)*B1

ENCE(I)=ENCE(I)+(1./30.)*B2
RETURN
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END

SUBROUTINE DTAPS1
COMPLEX SIRCH,SIRER,SHUK,EST,RALF,ALF,RVEC,A(20,20),V(20),B2

DIMENSION D(20)
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR
COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/DFEFIL/RALF(40),ALF(20),RVEC(21)
COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA 

DO 16 I=1,LANT 
DO 17 J=1,I

A(J,I)=(0.,0.)
17 CONTINUE
16 CONTINUE 

DO 3 M=1,LANT

A(M,M)=A(M,M)-f2.*SIGM
DO 4 I=M,MIN0((M+NT-1),LANT)

DO 5 J=M,I
A(J,I)=A(J,I)-fCONJG(SHUK(I,(I—M-fl)))*SHUK(J,(J —M+l))

5 CONTINUE
4 CONTINUE
3 CONTINUE

D(1)=REAL(A(1,1))

DO 6 I=2,LANT
B1=REAL(A(I,I))

DO 7 J=1,(I-1)

B2=A(J,I)
DO 8 K=1,(J —1)

B2=B2—V(K)*CONJG(A(J,K))

8 CONTINUE

V(J)=B2 
A(I,J)=B2/D(J)
B1=B1 — (CABS(B2)**2)/D(J)

7 CONTINUE

D(I)=B1

IF (D(I).EQ.O.) RETURN

6 CONTINUE



297

DO 14 I=1,LANT

IF (I.LE.NT) THEN 
B2=CONJG(SHUK(I,I))
ELSE

B2=(0.,0.)
ENDIF
DO 15 K=1,(I —1)

B2=B2—A(I,K)*V(K)
15 CONTINUE

V(I)=B2 
14 CONTINUE

DO 19 I=LANT,1,-1 
B2=V(I)/D(I)
DO 20 K=(I+1),LANT

B2=B2 —CONJG(A(K,I))*ALF(K)
20 CONTINUE

ALF(I)=B2 
19 CONTINUE

SIRCH(1)=SHUK(1,1)
DO 9 1=2,NT 

EST(I)=(0.,0.)
DO 13 J=l,MINO(LANT,(NT-I-fl))

EST(I)=EST(I)+ALF(J)*SHUK(J,(J+I-1)) 
13 CONTINUE

SIRCH(I)=SHUK(1,I)
9 CONTINUE 

RETURN 
END

SUBROUTINE EVAL1

COMPLEX ERRID,SIRCH,SIRER,SHUK,EST,RALF,ALF,RVEC,XY

DIMENSION CLASS1(50),CLASS2(100),CLASS3(150)
COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR

COMMON/DATSYM/IECNT(5),KINP(22),KINP1(21),IDECS(10),INP(50)

COMMON/PICO/ERRID,SQERR,AVSQER,SQISI,AVISI,SQNOI,AVNOI,PEULB(12)

COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
COMMON/DFEFIL/RALF(40),ALF(20),RVEC(21)
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COMMON/MISC1/ITIME,ITRIT,LANT,ISED1,ISED2,KADEL,DELTO,DAMSE,DELTA 
SQERR=2.*SIGM*CABS(ALF(1))/CABS(SHUK(1,1))

IF (ITIME.LE.ITRIT) RETURN 
PERRI=FLOAT(ITIME—ITRIT)
AVSQER=AVSQER+(SQERR—AVSQER)/PERRI
IIY=2*LANT—1
IIX=IIY
XX=0.

B1=0.
MM=0
DO 2 I=1,(LANT—1)

XY=(0.,0.)
DO 3 J=(I+1),MIN0(LANT,(NT+I))

XY=XY+ALF(J)*SHUK(J,(J - I ))

3 CONTINUE
C1=ABS(REAL(XY))
C2=ABS(AIMAG(XY))
CLASS l(MM-fl)=Cl 
CLASS1(MM+2)=C2 
DO 12 J=l,2

B2=4./(2.**J)
CLASS2(2*MM+2*J-1)=C1*B2
CLASS2(2*MM+2*J)=C2*B2

12 CONTINUE 

DO 13 J=l,3

B2=8./(2.**J)
CLASS3(3*MM+2*J —1)=C1*B2 
CLASS3(3*MM+2*J)=C2*B2

13 CONTINUE 
MM=MM+2 
XX=XX+CABS(XY)**2 
B1=B1+CABS(ALF(I))**2

2 CONTINUE 
SQISI=XX

Bl=Bl-fCABS(ALF(LANT))**2

SQNOI=2.*SIGM*Bl

XY=(0.,0.)

DO 4 I=1,MIN0(LANT,NT)
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XY=XY+ALF(I)*SHUK(I,I)

4 CONTINUE 
XY=XY—1.

A1=REAL(XY)
C2=ABS(AIMAG(XY))
CLASS1(MM+1)=C2 

DO 14 J=l,2
B2=4./(2.**J)
CLASS2(2*MM+J)=C2*B2

14 CONTINUE 
DO 15 J=l,3

B2=8./(2.**J)
CLASS3(3*MM-fJ)=C2*B2

15 CONTINUE 
SQISI=SQISI+CABS(XY)**2 
AVISI=AVISI+(SQISI—AVISI)/PERRI 
AVNOI=AVNOI+(SQNOI—AVNOI)/PERRI 

DO 5 I=1,(IIY—1)

B1=0.
DO 6 J=I,IIY

IF (Bl.GT.CLASSl(J)) GOTO 6 
B1=CLASS1(J)
MM=J

6 CONTINUE
IF (B1.EQ.0.) THEN 
IIX=I—1 

GOTO 34 
ENDIF

CLASS1(MM)=CLASS1(I)
CLASS1(I)=B1

5 CONTINUE
IF (CLASSl(IIY).EQ.O.) IIX=IIY-1 

34 DO 16 I=1,(2*IIY—1)

B1=0.
DO 17 J=I,2*IIY

IF (B1.GT.CLASS2(J)) GOTO 17 

B1=CLASS2(J)

MM=J
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17 CONTINUE 
CLASS2(MM)=CLASS2(I) 
CLASS2(I)=B1

16 CONTINUE

DO 18 I=1,(3*IIY—1)

B1=0.
DO 19 J=I,3*IIY

IF (B1.GT.CLASS3(J)) GOTO 19 
B1=CLASS3(J)
MM=J

19 CONTINUE
CLASS3(MM)=CLASS3(I)
CLASS3(I)=B1

18 CONTINUE 
IIY=IIX

Cl=l./SQRT(2.*SQNOI)

F1=0.
F2=0.

D1=1.+A1

E1=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)
IF (IIY.EQ.O) THEN
F2=F2+E1

GOTO 35
ENDIF

C2=0.5
F2=F2+C2*E1 

DO 21 J=1,(IIY—1)

D1=D1—CLASSl(J)

E1=0.

B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 
C2=C2/2.
F2=F2+C2*E1 

21 CONTINUE

D1=D 1—CLASS 1 (IIY)

E1=0.



B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)
F2=F2+C2*E1
D1=2.*(1.+A1)-D1

E1=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)
F1=F1+E1+F2 

35 PEULB(l)=Fl/2.
PEULB(2)=F2
PEULB(3)=PEULB(3)+(PEULB(1)-PEULB(3))/PERRI
PEULB(4)=PEULB(4)+(PEULB(2)-PEULB(4))/PERRI

C1=1./SQRT(10.*SQNOI)

F1=0.
F2=0.
DO 22 1=2,2 

K=2*I—5
Dl=l.-FLOAT(K)*Al
D2=l.+FLOAT(K)*Al
E1=0.
E2=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)

B2=D2*C1
IF (B2.LE.25.) E2=ERFC(B2)

IF (IIY.EQ.O) THEN
F2=F2+E1+E2

GOTO 22
ENDIF

C2=0.5
F2=F2-fC2*(El+E2)
DO 23 J=1,(2*IIY-1)

D1=D1—CLASS2(J)

D2=D2—CLASS2(J)

E1=0.
E2=0.

B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)
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B2=D2*C1

IF (B2.LE.25.) E2=ERFC(B2) 
C2=C2/2.
F2=F2+C2*(E1+E2)

23 CONTINUE
D1=D1—CLASS2(2*IIY)
D2=D2—CLASS2(2*IIY)

E1=0.
E2=0.

B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 
B2=D2*C1
IF (B2.LE.25.) E2=ERFC(B2) 

F2=F2+C2*(E1+E2)

Dl=2.*(l. —FLOAT(K)*Al)—D1 

D2=2.*(1.+FL0AT(K)*A1)-D2 

E1=0.
E2=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 

B2=D2*C1
IF (B2.LE.25.) E2=ERFC(B2) 
F1=F1+E1+E2 

22 CONTINUE 
D1=1.+3.*A1 

E1=0.

B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)

IF (IIY.EQ.O) THEN
F2=F2+E1
GOTO 36
ENDIF

C2=0.5
F2=F2+C2*E1 
DO 24 J=1,(2*IIY—1)

D1=D1 —CLASS2(J)

E1=0.

B2=D1*C1
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IF (B2.LE.25.) E1=ERFC(B2)

C2=C2/2.
F2=F2+C2*E1 

24 CONTINUE
D1=D1 — CLASS2(2*IIY)

E1=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)
F2=F2+C2*E1
D1=2.*(1.+3.*A1)-D1
E1=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)
F1=F1+E1+F2 

36 PEULB(5)=Fl/4.
PEULB(6)=F2/2.

PEULB(7)=PEULB(7)+(PEULB(5)-PEULB(7))/PERRI
PEULB(8)=PEULB(8)+(PEULB(6)-PEULB(8))/PERRI

Cl=l./SQRT(42.*SQNOI)
F1=0.
F2=0.

DO 28 1=2,4 
K=2*I —9
D l=l. —FLOAT(K)*Al 

D2=l.+FLOAT(K)*Al 
E1=0.
E2=0.

B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)

B2=D2*C1
IF (B2.LE.25.) E2=ERFC(B2)

IF (IIY.EQ.O) THEN

F2=F2+E1+E2

GOTO 28
ENDIF

C2=0.5
F2=F2+C2*(E1+E2)

DO 29 J=1,(3*IIY—1)
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D1=D1 —CLASS3(J)
D2=D2—CLASS3(J)

E1=0.
E2=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 
B2=D2*C1
IF (B2.LE.25.) E2=ERFC(B2) 
C2=C2/2.
F2=F2+C2*(E1+E2)

29 CONTINUE
D1=D1—CLASS3(3*IIY)

D2=D2 —CLASS3(3*IIY)

E1=0.
E2=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 

B2=D2*C1
IF (B2.LE.25.) E2=ERFC(B2)
F2=F2+C2*(E1+E2)

D1=2.*(1.-FL0AT(K)*A1)-D1
D2=2.*(1.+FL0AT(K)*A1)-D2
E1=0.
E2=0.

B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2) 

B2=D2*Cl
IF (B2.LE.25.) E2=ERFC(B2) 
F1=F1+E1+E2 

28 CONTINUE 

D1=1.+7.*A1 

E1=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)

IF (IIY.EQ.O) THEN 
F2=F2+E1 

GOTO 37 

ENDIF
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C2=0.5
F2=F2-fC2*El 
DO 30 J=1,(3*IIY—1)

D1=D1 —CLASS3(J)

E1=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)
C2=C2/2.
F2=F2+C2*E1 

30 CONTINUE
D1=D1—CLASS3(3*IIY)
E1=0.
B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)
F2=F2+C2*E1
D1=2.*(1.+7.*A1)-D1

E1=0.

B2=D1*C1
IF (B2.LE.25.) E1=ERFC(B2)

F1=F1+E1+F2 
37 PEULB(9)=Fl/8.

PEULB(10)=F2/4.
PEULB(11)=PEULB(11)+(PEULB(9)-PEULB(11))/PERRI
PEULB(12)=PEULB(12)+(PEULB(10)-PEULB(12))/PERRI
RETURN
END

SUBROUTINE EVAL2

COMPLEX ERRID,SIRCH,SIRER,SHUK,EST

DIMENSION CLASS1(50),CLASS2(100),CLASS3(150)

COMMON/MISC/NT,NSL,IDID,IL,IL1,SNRO,SIGM,PIFF,SVAR

COMMON/PICO/ERRID,SQERR,AVSQER,SQISI,AVISI,SQNOI,AVNOI,PEULB(12)
COMMON/GLUM/SIRCH(10),SIRER,AVSIRE,SQCER,AVCER,SHUK(20,10),EST(10)
CHEN=0.

DO 1 1=1,NT
CHEN=CHEN+CABS(SHUK(1,I))**2

1 CONTINUE



3 0 6

SQERR=2.*SIGM/CHEN
SQISI=2.*SIGM/(CHEN+2.*SIGM)

IF (ITIME.LE.ITRIT) RETURN 
PERRI=FLOAT(ITIME—ITRIT) 
AVSQER=AVSQER+(SQERR-AVSQER)/PERRI 
A VISI=AVISI+(SQISI—AVISI)/PERRI 
P1=1./(2.*SQERR)
P1=SQRT(P1)

E1=0.

IF (P1.LE.25.) E1=ERFC(P1)
PERRI=FLOAT(ITIME—ITRIT)
PEULB(1)=E1
PEULB(2)=PEULB(2)+(PEULB(1)-PEULB(2))/PERRI
P1=1./(10.*SQERR)
P1=SQRT(P1)

E1=0.
IF (P1.LE.25.) E1=ERFC(P1)
PEULB(3)=1.5*E1
PEULB(4)=PEULB(4)+(PEULB(3)-PEULB(4))/PERRI
P1=1./(42.*SQERR)
P1=SQRT(P1)

E1=0.
IF (P1.LE.25.) E1=ERFC(P1)

PEULB(5)=1.75*E1
PEULB(6)=PEULB(6)+(PEULB(5) -  PEULB(6))/PERRI
RETURN
END



307

REFERENCES

[1] Monsen, P.. “Fading Channel Communications”, IEEE Communications Magazine, p. 

16-25, January 1980.

[2] Maslin, N. M.. “High data rate transmissions over h.f. links”, The Radio and Electronic 

Engineer, vol. 52, No. 2, p. 75-87, February 1982.

[3] Proakis, J. G.. “Digital Communications”, International Student Edition, McGraw-Hill, 

1983.

[4] “HF Ionospheric Channel Simulators”, CCIR (Comite Consultatif International des 

Radio Communications, or International Radio Consultative Committee) Report 549-1 

(1974-78), 1982.

[5] Davies, K.. “Ionospheric Radio Propagation”, Dover, New York 1966.

[6] Mosier, R. R.; Calbaugh, R. G.. “Kineplex, a bandwidth-efficient binary transmission 

system”, AIEE Transactions on Communications and Electronics, Part 1, vol. 76, p. 723-728, 

1958.

[7] Porter, G. C.. “Error Distribution and Diversity Performance of a Frequency-Differential 

PSK HF Modem”, IEEE Transactions on Communication Technology, vol. COM-16, No. 4, p. 

567-575, August 1968.

[8] Zimmerman, M. S.; Kirsch, A. L.. “The AN/GSC-10 (KATHRYN) Variable Rate Data 

Modem for HF Radio”, IEEE Transactions on Communication Technology, vol. COM-15, No. 

2, p. 197-204, April 1967.

[9] Price, R.; Green, P. E.. “A Communication Technique for Multipath Channels”, 

Proceedings of the IRE, vol. 46, p. 555-570, March 1958.



3 0 8

[10] Di Toro, M. J.. “Communication in time-frequency spread media using adaptive 

equalization”, Proceedings of the IEEE, vol. 56, p.1653-1679, 1968.

[11] Clark, A. P.; McVerry, F.. “Performance of 2400 bits/s serial and parallel modems over 

an HF channel simulator”, IERE Conference on Digital Processing of Signals in 

Communication, Proceedings No. 49, Loughborough, England, p. 167-179, April 1981.

[12] Hodgkiss, W.; Turner, L. F.; Pennington, J.. “Serial data transmission over HF radio 

links”, IEE Proceedings, vol. 131, Pt. F, No. 2, p. 107-116, April 1984.

[13] Darnell, M.. “Medium-speed digital data transmission over HF channels”, 

IEEE/IEE/IERE Conference on Signal Processing, Loughborough, England, 1977.

[14] de Pedro, H.; Hsu, F.; Giordano, A.; Proakis, J.. “Signal Design for High-Speed Serial 

Transmission on Fading Dispersive Channels”, NTC ’78, Conference Record of the IEEE 1978 

National Telecommunications Conference, Pt. II, Birmingham, AL, USA, 3-6 December 1978 

(New York, USA: IEEE 1978), p. 27.4/1-4.

[15] Hsu, F. M.; Giordano, A. A.; de Pedro, H. E.; Proakis, J. G.. “Adaptive Equalization 

Techniques for High-Speed Transmission on Fading Dispersive HF Channels”, NTC ’80, IEEE 

1980 National Telecommunications Conference, Houston, TX, USA, 30 Nov.-4 Dec. 1980 (New 

York, USA: IEEE 1980), p. 58.1/1-7.

[16] Hsu, F. M.. “Square Root Kalman Filtering for High-Speed Data Received over Fading 

Dispersive HF Channels”, IEEE Transactions on Information Theory, vol. IT-28, No. 5, p. 

753-763, September 1982.

[17] Clark, A. P.; Asghar, S. M.. “Detection of digital signals transmitted over a known time- 

varying channel”, IEE Proceedings, vol. 128, Pt. F, No. 3, p. 167-174, June 1981.

[18] Clark, A. P.; Najdi, H. Y.. “Detection process of a 9600 bit/s serial modem for HF radio 

links”, IEE Proceedings, vol. 130, Pt. F, No. 5, p. 368-376, August 1983.



309

[19] Lucky; Salz; Weldon. “Principles of Data Communication”, McGraw-Hill, 1968.

[20] Sharpe, J. T. L.. “Techniques for High-Speed Data Transmission over Voice Channels”, 

Electrical Communication, vol. 46, No. 1, p. 24-31, 1971.

[21] Clark, A. P.. “Advanced Data-Transmission Systems”, Pentech Press, 1977.

[22] Ericson, T.. “Structure of optimum receiving filters in data transmission systems”, IEEE 

Transactions on Information Theory (Correspondence), vol. IT-17, p. 352-353, May 1971.

[23] Forney, G. D.. “Maximum-Likelihood Sequence Estimation of Digital Sequences in the 

Presence of Intersymbol Interference”, IEEE Transactions on Information Theory, vol. IT-18, 

No. 3, p. 363-378, May 1972.

[24] Qureshi, S. U. H.. “Adaptive Equalization”, Proceedings of the IEEE, vol. 73, No. 9, p. 

1349-1387, September 1985.

[25] Mueller, M. S.; Salz, J.. “A Unified Theory of Data-Aided Equalization”, Bell System 

Technical Journal, vol. 60, No. 9, p. 2023-2038, November 1981.

[26] Salz, J.. “Optimum Mean-Square Decision Feedback Equalization”, Bell System 

Technical Journal, vol. 52, No. 8, p. 1341-1373, October 1973.

[27] Messerschmitt, D. G.. “A Geometric Theory of Intersymbol Interference”, Bell System 

Technical Journal, vol. 52, No. 9, Part I: p. 1483-1519; Part II: p. 1521-1539, November 1973.

[28] Monsen, P.. “Feedback Equalization for Fading Dispersive Channels”, IEEE 

Transactions on Information Theory, vol. IT-17, p. 56-64, January 1971.

[29] Belifore, C. A.; Park, J. H.. “Decision Feedback Equalization”, Proceedings of the IEEE, 

vol. 67, No. 8, p. 1143-1156, August 1979.



310

[30] Ungerboeck, G.. “Adaptive Maximum-Likelihood Receiver for Carrier-Modulated Data- 

Transmission Systems”, IEEE Transactions on Communications, vol. COM-22, No. 5, p. 

624-636, May 1974.

[31] Forney, G. D.. “The Viterbi Algorithm”, Proceedings of the IEEE, vol. 61, No. 3, p. 

268-278, March 1973.

[32] Anderson, lb N.. “Sample-Whitened Matched Filters”, IEEE Transactions on 

Information Theory, vol. IT-19, No. 5, p. 653-660, September 1973.

[33] Foschini, G. J.. “Performance bound for maximum likelihood reception of digital data”, 

IEEE Transactions on Information Theory, vol. IT-21, p. 47-50, January 1975.

[34] Qureshi, S. U. H; Newhall, E. E.. “An Adaptive Receiver for Data Transmission over 

Time-Dispersive Channels”, IEEE Transactions on Information Theory, vol. IT-19, No. 4, p. 

448-457, July 1973.

[35] Beare, C. T.. “The Choice of the Desired Impulse Response in Combined Linear-Viterbi 

Algorithm Equalizers”, IEEE Transactions on Communications, vol. COM-26, No. 8, p. 

1301-1307, August 1978.

[36] Falconer, D. D.; Magee, F. R.. “Adaptive Channel Memory Truncation for Maximum 

Likelihood Sequence Estimation”, Bell System Technical Journal, vol. 52, No. 9, p. 1541-1562, 

November 1973.

[37] Fagan, A. D.; O’Keane, F. D.. “Performance comparison of detection methods derived 

from maximum-likelihood sequence estimation”, IEE Proceedings, vol. 133, Pt. F, No. 6, p. 

535-542, October 1986.

[38] Foschini, G. J.. “A Reduced State Variant of Maximum Likelihood Sequence Detection 

Attaining Optimum Performance for High Signal-to-Noise Ratios”, IEEE Transactions on 

Information Theory, vol. IT-23, No. 5, p. 605-609, September 1977.



311

[39] Clark, A. P.; Harvey, J. D.; Driscoll, J. P.. “Near-maximum-likelihood detection 

processes for distorted digital signals”, Radio and Electronic Engineer, vol. 48, No. 6, p. 

301-309, June 1978.

[40] Clark, A. P.; Kwong, C. P.; Harvey, J. D.. “Detection processes for severely distorted 

digital signals”, Electronic Circuits and Systems, vol. 3, No. 1, p. 27-37, January 1979.

[41] Clark, A. P.; Fairfield, M. J.. “Detection processes for a 9600 bit/s modem”, Radio and 

Electronic Engineer, vol. 51, No. 9, p. 455-465, September 1981.

[42] Clark, A. P.; Najdi, H. Y.; Fairfield, M. J.. “Data transmission at 19.2 kbit/s over 

telephone circuits”, Radio and Electronic Engineer, vol. 53, No. 4, p. 157-166, April 1983.

[43] Clark, A. P.; Clayden, M.. “Pseudobinary Viterbi detector”, IEE Proceedings, vol. 131, 

Pt. F, No. 2, p. 208-218, April 1984.

[44] Price, R.. “Nonlinearly feedback-equalized PAM vs. capacity for noisy filter channels”, 

Proceedings of the 1972 IEEE International Conference on Communications, ICC ’72 

(Philadelphia, PA), p. 22-12 to 22-17, June 1972.

[45] Magee, F. R.. “A Comparison of Compromise Viterbi Algorithm and Standard 

Equalization Techniques Over Band-Limited Channels”, IEEE Transactions on 

Communications, vol. COM-23, No. 3, p. 361-367, March 1975.

[46] Falconer, D. D.. “Application of Passband Decision Feedback Equalization in Two- 

Dimensional Data Communication Systems”, IEEE Transactions on Communications, vol. 

COM-24, No. 10, p. 1159-1165, October 1976.

[47] Duttweiler, D. L.; Mazo, J. E.; Messerschmitt, D. G.. “An Upper Bound on the Error 

Probability in Decision Feedback Equalization”, IEEE Transactions on Information Theory, 

vol. IT-20, No. 4, p. 490-497, July 1974.



312

[48] Proakis, J. G.. “Adaptive non-linear filtering techniques for data transmission”, IEEE 

Symposium on Adaptive Processes, Decision and Control, p. XV.2.1-5, 1970.

[49] Falconer, D. D.; Magee, F. R.. “Evaluation of decision feedback equalization and Viterbi 

algorithm detection for voiceband data transmission”, IEEE Transactions on Communications, 

vol. COM-24, Part I: p. 1130-1139 (October); Part II: p. 1238-1245 (November), 1976.

[50] Lyon, D. L.. “Envelope-Derived Timing Recovery in QAM and SQAM Systems”, IEEE 

Transactions on Communications, vol. COM-23, p. 1327-1331, November 1975.

[51] Mengali, U.. “Synchronization of QAM signals in the presence of ISI”, IEEE 

Transactions on Aerospace and Electronic Systems, vol. AES-12, p. 556-560, September 1976.

[52] Franks, L. E.. “Carrier and Bit Synchronization in Data Communication—A Tutorial 

Review”, IEEE Transactions on Communications, vol. COM-28, No. 8, p. 1107-1121, August 

1980.

[53] Meyers, M. H.; Franks, L. E.. “Joint Carrier Phase and Symbol Timing Recovery for 

PAM Systems”, IEEE Transactions on Communications, vol. COM-28, No. 8, p. 1121-1129, 

August 1980.

[54] Moeneclaey, M.. “Synchronization problems in PAM Systems”, IEEE Transactions on 

Communications, vol. COM-28, No. 8, p. 1130-1136, August 1980.

[55] Hodgkiss, W.; Turner, L. F.. “Practical equalization and synchronization strategies for 

use in serial data transmission over h.f. channels”, The Radio and Electronic Engineer, vol. 53, 

No. 4, p. 141-146, April 1983.

[56] Nicholson, G.; Norton, J. P.. “Kalman Filter Equalization for a Time-Varying 

Communication Channel”, Australian Telecommunication Research, vol. 13, No. 1, p. 3-12,

1979.



313

[57] Ungerboeck, G.. “Theory on the Speed of Convergence in Adaptive Equalizers for Digital 

Communication”, IBM Journal of Research and Development, vol. 16, p. 546-555, November 

1972.

[58] Widrow, B.; McCool, J. M.; Larimore, M. G.; Johnson, C. R.. “Stationary and 

Nonstationary Learning Characteristics of the LMS Adaptive Filter”, Proceedings of the IEEE, 

vol. 64, No. 8, p. 1151-1162, August 1976.

[59] Widrow, B.; Walach, E.. “On the Statistical Efficiency of the LMS Algorithm with 

Nonstationary Inputs”, IEEE Transactions on Information Theory, vol. IT-30, No. 2, p. 

211-221, March 1984.

[60] Proakis, J. G.; Miller, J. H.. “An Adaptive Receiver for Digital Signaling Through 

Channels With Intersymbol Interference”, IEEE Transactions on Information Theory, vol. IT- 

15, No. 4, p. 484-497, July 1969.

[61] Godard, D.. “Channel Equalization Using a Kalman Filter for Fast Data Transmission”, 

IBM Journal of Research and Development, vol. 18, p. 267-273, May 1974.

[62] Mueller, M. S.. “Least-Squares Algorithms for Adaptive Equalizers”, Bell System 

Technical Journal, vol. 60, No. 8, p. 1905-1925, October 1981.

[63] Mueller, M. S.. “On the Rapid Initial Convergence of Least-Squares Equalizer 

Adjustment Algorithms”, Bell System Technical Journal, vol. 60, No. 10, p. 2345-2358, 

December 1981.

[64] Giordano, A. A.; Hsu, F. M.. “Least Square Estimation with Applications to Digital 

Signal Processing”, Wiley-Interscience Publication, John Wiley & Sons, 1985.

[65] Falconer, D. D.; Ljung, L.. “Application of Fast Kalman Estimation to Adaptive 

Equalization”, IEEE Transactions on Communications, vol. COM-26, p. 1439-1446, October

1978.



314

[66] Clark, A. P.; McVerry, F.. “Channel estimation for an HF radio link”, IEE Proceedings, 

vol. 128, Pt. F, No. 1, p. 33-42, February 1981.

[67] Watterson, C. C.; Juroshek, J. R.; Bensema, W. D.. “Experimental Confirmation of an 

HF Channel Model”, IEEE Transactions on Communication Technology, vol. COM-18, No. 6, 

p. 792-803, December 1970.

[68] Perl, J. M.; Kagan, D.. “Real-Time HF Channel Parameter Estimation”, IEEE 

Transactions on Communications, vol. COM-34, No. 1, p. 54-58, January 1986.

[69] Chang, R. W.; Srinivasagopalan, R.. “Carrier Recovery for Data Communication 

Systems with Adaptive Equalization”, IEEE Transactions on Communications, vol. COM-28, 

No. 8, p. 1142-1153, August 1980.

[70] Falconer, D. D.. “Jointly adaptive equalization and carrier recovery in two-dimensional 

digital communication systems”, Bell System Technical Journal, vol. 55, p. 316-334, March 

1976.

[71] Ling, F.; Proakis, J. G.. “Adaptive Lattice Decision-Feedback Equalizers—Their 

Performance and Application to Time-Variant Multipath Channels”, IEEE Transactions on 

Communications, vol. COM-33, No. 4, p. 348-356, April 1985.

[72] “Use of High Frequency Ionospheric Channel Simulators”, CCIR (see [4]) 

Recommendation 520-1 (1978-82), 1982.

[73] Ralphs, J. D.; Sladen, F. M. E.. “An h.f. channel simulator using a new Rayleigh fading 

method”, The Radio and Electronic Engineer, vol. 46, No. 12, p. 579-587, December 1976.

[74] Shimbo, O.; Celebiler, M. I.. “The Probability of Error Due to Intersymbol Interference 

and Gaussian Noise in Digital Communication Systems”, IEEE Transactions on 

Communication Technology, vol. COM-19, No. 2, p. 113-119, April 1971.



315

[75] Saltzberg, B. R.. “Intersymbol Interference Error Bounds with Application to Ideal 

Bandlimited Signaling”, IEEE Transactions on Information Theory, vol. IT-14, No. 4, p. 

563-568, July 1968.

[76] Milewski, A.. “New Simple and Efficient Bounds on the Probability of Error in the 

Presence of Intersymbol Interference and Gaussian Noise”, IEEE Transactions on 

Communications, vol. COM-25, No. 10, p. 1218-1222, October 1977.

[77] McLane, P. J.. “Lower Bounds for Finite Intersymbol Interference Error Rates”, IEEE 

Transactions on Communications, vol. COM-22, p. 853-857, June 1974.

[78] Matthews, J. W.. “Sharp Error Bounds for Intersymbol Interference”, IEEE Transactions 

on Information Theory, vol. IT-19, No. 4, p. 440-447, July 1973.

[79] Jenq, Y. C.; Liu, B.; Thomas, J. B.. “Probability of Error in PAM Systems with 

Intersymbol Interference and Additive Noise”, IEEE Transactions on Information Theory, vol. 

IT-23, No. 5, p. 575-582, September 1977.

[80] Foschini, G. J.; Salz, J.. “Digital Communications Over Fading Radio Channels”, Bell 

System Technical Journal, vol. 62, No. 2, p. 429-456, February 1983.

[81] Falconer, D. D.; Sheikh, A. U. H.; Eleftheriou, E.; Tobis, M.. “Comparison of DFE and 

MLSE Receiver Performance on HF Channels”, IEEE Transactions on Communications, vol. 

COM-33, No. 5, p. 484-486, May 1985.

[82] Eleftheriou, E.; Falconer, D. D.. “Steady-State Behavior of RLS Adaptive Algorithms”, 

ICASSP 85, Proceedings of the IEEE International Conference on Acoustics, Speech, and 

Signal Processing (Cat. No. 85CH2118-8), Tampa, FL, USA, 26-29 March 1985 (New York, 

USA; IEEE 1985), vol. 3, p. 1145-1148.



316

[83] Mueller, K. H.; Spaulding, D. A.. “Cyclic Equalization—A New Rapidly Converging 

Equalization Technique for Synchronous Data Communication”, Bell System Technical 

Journal, vol. 54, No. 2, p. 369-406, February 1975.

[84] Clark, A. P.; Zhu, Z. C.; Joshi, J. K.. “Fast start-up channel estimation”, IEE 

Proceedings, vol. 131, Pt. F, No. 4, p. 375-382, July 1984.

[85] Clark, A. P.; McVerry, F.. “Improved Channel Estimator for an HF Radio Link”, Signal 

Processing, vol. 5, No. 3, p. 241-255, May 1983.

[86] Wilkinson, J. H.; Reinsch, C.. “Handbook for Automatic Computation”, Volume II, 

Linear Algebra, p. 9-11, Springer-Verlag, 1971.

[87] Golub, G. H.; Van Loan, C. F.. “Matrix Computations”, p. 125-135, North Oxford 

Academic, 1983.

[88] Clark, A. P.; Hau, S. F.. “Adaptive adjustment of receiver for distorted digital signals”, 

IEE Proceedings, vol. 131, Pt. F, No. 5, p. 526-536, August 1984.

[89] Sato, Y.. “A Method of Self-Recovering Equalization for Multilevel Amplitude- 

Modulation Systems”, IEEE Transactions on Communications, vol. COM-23, p. 679-682, June 

1975.

[90] Godard, D. N.. “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional 

Data Communication Systems”, IEEE Transactions on Communications, vol. COM-28, No. 

11, p. 1867-1875, November 1980.

[91] Benveniste, A.; Goursat, M.. “Blind Equalizers”, IEEE Transactions on 

Communications, vol. COM-32, No. 8, p. 871-883, August 1984.

[92] Foschini, G. J.. “Equalizing Without Altering or Detecting Data”, AT & T Technical 

Journal, vol. 64, No. 8, p. 1885-1911, October 1985.



317

[93] Cioffi, J. M.; Kailath, T.. “Fast, Recursive-Least-Squares Transversal Filters for

Adaptive Filtering”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 

ASSP-32, No. 2, p. 304-337, April 1984.

[94] Clark, A. P.; Harun, R.. “Assessment of Kalman-filter channel estimators for an HF

radio link”, IEE Proceedings, vol. 133, Pt. F, No. 6, p. 513-521, October 1986.

[95] Eleftheriou, E.; Falconer, D. D.. “Tracking Properties and Steady-State Performance of

RLS Adaptive Filter Algorithms”, IEEE Transactions on Acoustics, Speech and Signal

Processing, vol. ASSP-34, No. 5, p. 1097-1110, October 1986.

[96] Eleftheriou, E.; Falconer, D. D.. “Adaptive Equalization Techniques for HF Channels”, 

IEEE Journal on Selected Areas in Communications, vol. SAC-5, No. 2, p. 238-247, February 

1987.

[97] Clark, A. P.; Abdullah, S. N.. “Near-maximum-likelihood detectors for voiceband 

channels”, IEE Proceedings, vol. 134, Pt. F, No. 3, p. 217-226, June 1987.

[98] Clark, A. P.; Abdullah, S. N.; Ameen, S. Y.. “A comparison of decision-feedback 

equalizers for a 9600 bit/s modem”, Journal of the Institution of Electronic and Radio 

Engineers, vol. 58, No. 2, p. 74-83, March/April 1988.

[99] Schwartz, M.; Bennet, W. R.; Stein, S.. “Communication Systems and Techniques”, New 

York: McGraw-Hill, 1966, Chapter 9.

[100] Bitzer, D. R.; Chester, D. A.; Ivers, R.; Stein, S.. “A Rake System for Tropospheric 

Scatter”, IEEE Transactions on Communication Technology, vol. COM-14, p. 499-506, 

August 1966.

[101] Shafi, M.; Moore, D. J.. “Further Results on Adaptive Equalizer Improvements for 16 

QAM and 64 QAM Digital Radio”, IEEE Transactions on Communications, vol. COM-34, No. 

1, p. 59-66, January 1986.



318

[102] Turin, G. L.; Clapp, F. D.; Johnston, T. L.; Fine, S. B.; Lavry, D.. “A Statistical 

Model of Urban Multipath Propagation”, IEEE Transactions on Vehicular Technology, vol. 

VT-21, p. 1-9, February 1972.

[103] Turin, G. L.. “Introduction to Spread-Spectrum Anti multipath Techniques and their 

Application to Urban Digital Radio”, Proceedings of the IEEE, vol. 68, No. 3, p. 328-353, 

March 1980.

[104] Hashemi, H.. “Simulation of the Urban Radio Propagation Channel”, IEEE 

Transactions on Vehicular Technology, vol. VT-28, p. 213-224, August 1979.

[105] Clark, A. P.. “Digital Modulation for Cellular Radio Systems”, Technical Note, 

Telecommunications (USA), vol. 20, No. 9, p. 46, 48, 50, September 1986.

[106] IEE Colloquium on “Multiple Access Techniques in Radio Systems”, Electronics 

Division. Organised by Professional Group E8 (Radiocommunication Systems), Tuesday 7 

October 1986, Digest No. 1986/95.

[107] Bajwa, A. S.; Parsons, J. D.. “Small area characterisation of UHF urban and suburban 

radio propagation”, IEE Proceedings, vol. 129, Pt. F, No. 2, p. 102-109, 1982.

[108] Karim, R.. “Packet Communications on a Mobile Radio Channel”, AT & T Technical 

Journal, vol. 65, Issue 3, p. 12-20, May/June 1986.


