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ABSTRACT

In this thesis we investigate empirical Bayes inference for the normal- 

theory linear model. Two models are considered: variances changing according to the 

conjugate prior distribution, inverse-Gamma, and means coming from a normal 

population. The main interest focuses on the construction of confidence intervals for the 

means. A  combination of numerical work and asymptotic theory is used to investigate 

the effect of the prior estimation on the confidence levels; a correction for significance 

levels to allow for the errors in estimating the prior parameters is calculated. Related to 

this is the estimation of the prior parameters. Estimates are compared by means of their 

large-sample behaviour and the relation between efficiency and the errors in confidence 

levels is outlined.

The sensitivity of the empirical Bayes analysis to possible 

misspecification of the Normal conjugate class of distributions, is investigated by 

comparing the empirical Bayes estimates from the Edgeworth expansions for the 

normal distribution.

Also the possibility of discriminating the inverse-Gamma prior 

distribution for the variances, from other distributions is discussed, and a graphical 

method developed.

Two illustrations of the theory are discussed: (i) the analysis of several 

independent 2x2 contingency tables and (ii) a comparative study on the rate of growth 

of the A IDS epidemic in Europe.

The influence of observations from a training sample on the probability 

of allocation in discrimination to two normal populations is examined.
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C H A P T E R  1

INTRODUCTION: EM PIR ICAL BAYES

Empirical Bayes methods are applied to problems in which some or all 

the parameters of the model have a prior distribution. The simplest situation is when the 

observed Y^s are independently distributed according to

Y i-ZC y ilG i)  (1.1)

and the Qj's themselves are independent unobserved random variables from a common 

population

B i - s O i ) ,  (i=l,...,k), (1.2)

with unknown density function g(.).

. The essential difference between a pure Bayesian and an empirical 

Bayes approach lies in the treatment of the prior distribution. In the empirical Bayes 

approach the prior is unknown and must be estimated, whilst in the pure Bayesian 

approach the prior is known (to the analyst). The comparison of both methods will be 

illustrated as we proceed and further discussion of some aspects of this comparison can 

be found in Deeley and Lindley (1981).

The important feature of the empirical Bayes analysis is that through 

consideration and estimation of the prior, supplementary data available on the related 

parameters are employed to improve estimates of 0j.

To estimate we apply Bayes rule to assumptions (1.1) and (1.2) and 

calculate the posterior distribution of 0j

W y ^ / C y i i e ^ c e ^ M y ; )  d-3)

where

y-) = J/(yi I 0*) g{ 0^ (i= l ,...,k), (1.4)

is the mixture distribution of y-x (also called the marginal distribution of y*) and can be 

interpreted as the distribution from which the y{s will actually occur.
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The posterior distribution depends on the unknown prior g(.) and the 

problem now is to estimate g(.).

A f i r s t  approx im a tion  empirical Bayes solution to this problem 

estimates the prior from the relation (1.4) and then pretends that, given the data yi? the 

0i are (independently) distributed according to (1.3) with the unknown quantities 

replaced by their corresponding estimates. This procedure works well when k is large 

and the estimation of the prior is based on a large amount of data, hence the name f ir s t  

approxim ation . For small or moderate k, however, the errors introduced in the prior 

estimation may be considerable and will not be reflected in any of the conclusions. It 

will be our task to investigate the effect of the prior estimation on the models 

considered. From a sample-theory point of view, a second order approxim ation  for the 

limits of empirical Bayes intervals will be constructed along the arguments of 

Cox( 1975b).

With respect to the prior specification, empirical Bayes methods can be 

categorized as param etric em pirical Bayes or as nonparam etric em pirical Bayes. In the 

former one assumes that is in some class of distributions indexed by unknown 

parameters, while in the latter, the only assumption about the prior is the independence 

of the (no distributional form). In nonparametric empirical Bayes two methods are 

available; one that estimates the prior directly using (1.2) (c.f. Laird(1978)) and one 

that seeks a representation of the Bayes rule in terms of the mixture distribution (1.2) 

and uses the data to estimate this marginal distribution; for a reference see 

Robbins(1955). The methods usually require relatively large data sets.

We will be concerned with the parametric empirical Bayes approach, 

where the estimation of the prior is reduced to the estimation of the hyperparam eters  

(the parameters indexing the prior distribution). Often the prior distribution is chosen to 

be from a con jugate  class of distributions, which is categorized by the fact that the 

posterior distribution will belong to the same class as the prior. The computational 

simplicity of the conjugate class of distributions makes their use attractive.



Moms(1982) discussed Bayes and empirical Bayes analysis for the class of the natural 

exponential family with quadratic variance function (on the mean) and conjugate prior 

distributions; included are the normal with normal mean, Poisson with gamma mean, 

gamma with inverse-gamma mean and binomial with beta mean.

More realistic models usually involve nuisance parameters. Two 

situations can be distinguished:

(i) when the parameters of interest (and possibly the nuisance 

parameters) have a prior distribution;

(ii) when some of the nuisance parameters have a prior distribution but 

the parameters of interest do not;

Estimation of the parameters of interest is based; in situation (i) on their 

posterior distribution and in situation (ii) on their marginal distribution with the 

nuisance parameters eliminated by integration. At some stage, in both (i) and (ii) 

elimination of the nuisance parameters which do not have a prior distribution has to be 

considered.

Situations where empirical Bayes methods can be applied appear with 

moderate frequency in applied statistics. The most obvious situation is when the 

parameters arise from some common population. Examples include the two 

applications of chapter 3 :

(i) the analysis of several 2 x 2 tables, where the 0 j are the effect of 

smoking, on a logistic scale, in 14 parallel studies;

(ii) the study of the growth of the AIDS epidemic, where the 0j measure 

the rate of growth in 18 European countries.

Another related situation is when one is not sure w aher to decide on a 

higher level model with different parameters (0 p...,0k) or on a lower level model with 

fewer parameters, for example the 0^  could be related by a regression model. The 

essential element is that the parameters assigned a single prior distribution, must have 

similar physical interpretations and in particular be measured in the same units. An 

important example is when one has to estimate the variance from related treatments and



a choice must be made between the model with constant variance or with different 

variances, that is, between estimating the treatment variance using the within sample 

variances or the pooled estimate of these variance estimates. This particular problem is 

discussed in chapter 2, where it will be shown that the empirical Bayes model 

represents a compromise between these two.

Problems in classical statistics, such as random effects models and 

mixture models, can also be considered from an empirical Bayes view point. Although 

it is assumed that the factor levels Gj are random, emphasis in the empirical Bayes 

approach is on the estimation of 0j, whereas in the random effects model approach, the 

emphasis is on the estimation of the components of variance.

Empirical Bayes models can also be applied to model the overdispersion 

relative to some model. The emphasis differs from the problems just discussed in that 

one is interested in the estimation of the mean of the mixture distribution. The mixture 

model is a useful mechanism for overdispersion, allowing some 'random 

heterogeneity' in the mean parameter. Quasi-likelihood methods can be applied to 

estimate the means of an 'overdispersed' model relative to the exponential family. Firth 

(1987) investigates asymptotic relative efficiency of the Quasi-likelihood model.

The main interest in this thesis is the construction of parametric 

empirical Bayes intervals for the means. The approach is general but is set out in terms 

of its main application the linear model, with errors normally distributed. In chapter 2 

the empirical Bayes model, when the variances change from cell to cell according to 

some distribution, is investigated. The normal linear model, with normal means, is 

analysed in chapter 3. Focus will be on the estimation of the prior parameters and on 

the elimination of the errors incurred by the first approximation empirical Bayes 

solution. The relation between these two issues will also be considered in chapter 2. In 

chapter 4 robustness of the conjugate class of distributions is investigated.

Although empirical Bayes metho_dology is much wider than is 

presented in this thesis, we have tried to present a thorough analysis of the parametric



empirical Bayes methods for the linear model.

A general reference for empirical Bayes methods is Maritz(1970), where 

emphasis is on non-parametric empirical Bayes. A more recent reference, containing 

many other references is Berger(1985, Chap.4).

Theoretical issues of the asymptotical behaviour of the empirical Bayes 

rule, as >®o, will not be considered here. For a reference see Morris(1983a).
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CHAPTER 2

VARIANCES CHANGING ACCORDING TO AN 

INVERSE GAMMA DISTRIBUTION

2.1. Formulation

It is common in many schemes of routine measurement to have quite a 

large number of repeated values on the same individual. For example, blood pressure 

measurements might be taken on consecutive visits of each of a number of patients.

We shall consider studies where it is reasonable to assume that the 

measurements are normally distributed, so that we have independent observations 

from each of k separate populations N ^ C j2), i=l,...,k.

Although measurements may be more or less variable for certain 

subjects, the measurement process to obtain each observation is the same across 

subjects. Common methods of analysis require a choice between two assumptions, one 

of equal and one of unequal variance (for subjects). An empirical Bayes procedure is a 

compromise between these two extremes, in that it considers different variances coming 

independently from the same population of variances with unknown density function, 

/(Oj2). The empirical Bayes analysis can be performed, at least numerically, for any 

choice of prior distribution / ( cjj2); however, we adopt here for its computational 

simplicity, the class of conjugate prior inverse gamma distributions,

/(c î2) 00 (^i2)"(v/2+1)exp[-(vt/2)bi2], x>0 , v>0 , (2 .1)

with mean vx/(v-2) and variance 2(vx)2/[(v-2)2(v-4)] where the scale parameter x and 

dispersion parameter v are unknown. Note that as the prior distribution (2.1) 

tends to the degenerate density function at x. The conjugate class of distributions (2.1), 

whilst convenient, also encompasses a large variety of distributional shapes.

The main focus of interest in this thesis is the construction of confidence



intervals for individual means and contrasts of them, the means being regarded as fixed 

and unknown parameters.

Denote by and S* the sample mean and the sum of squares about the 

sample mean of the ith group of observations. Conditionally on the variances o 2, 

(y^Sj), are independent sufficient statistics distributed as,

y; ~ N(|i;, 0 ;2/nj), (2 .2)

Si ~ Oj2X2(fi). (2.3)

i=l,...,k independently, where fj=nr l is the number of degrees of freedom associated 

with the sum of squares Sj.

Once the nuisance parameters a^, are eliminated, by integration, from 

the product of (2.1), (2.2) and (2.3) as

f ly *  S; I v, x) = l/(y i I I o f t f l o ?  I v, x) d a ^

the conditional distribution of yj given Sj» and the marginal distribution of S-v become 

respectively,

y. IS.~ Li.+J i i *1
S.+vx

i

n-(f;+v) S+v
(2.4)

f -1 S. -(f,+v)/2 S. f /2 -1
/ (S;;v,x) = b Q ,^ ) (l+ - - )  (— ) (vx)-1, (2.5)

1 1  VI vx

(i=l,...,k) independently given v and x (v>0, x>0), where T is a random variable 

having the Student-1 density function with fj+v degrees of freedom and B( . , . )  is the 

Beta function.

The important empirical Bayes points of model (2.1) and the 

consequential answers given by (2.4) and (2.5) are given below.

(i) If (yi, have the conditional (on a 2) distributions (2.2) and (2.3) 

and o 2 is random with density (2.1), then (2.4) and (2.5) are the densities according to



which (y i , Sj) will actually occur.

(ii) Given v and x, y^s are independently distributed according to a 

Students density function with mean jij and variance

(Sj+viJ/tn^fj+v -2)],

which is a weighted average of the sample variance Sj/fj and the prior mean of the 

variances, x ; their corresponding degrees of freedom being the weights. As mentioned 

before, it represents a compromise between, on the one hand, assuming completely 

different variances Gj2 (estimated by S/fj), and on the other hand, assuming constant 

variance x. In particularly, the extreme situations of v—»«> and v=0 lead respectively, to 

the normal theory linear model with constant variance x and to k separate normal 

models with different variances G-2 estimated by Sj/fj, (i=l,...,k).

(Hi) Expression (2.5) provides the means to estimate v and x. The 

estimate of x will reflect the common behaviour of the variances between subjects while 

the estimate of v will be a measure of the dispersion between the variances, large v 

meaning small variance heterogeneity and small v meaning large variance heterogeneity.

Inferences about the means are based on the conditional distributions of 

yi given Sj, (2.4). The objective now is to eliminate the dependence on the unknown 

parameters v and x from the answers given by (2.4).

The empirical Bayes approach to this problem is to estimate the prior 

parameters v and x from the marginal distribution of the sample variances (2.5) and to 

base inferences about (Xj on (2.4) with the prior parameters replaced by their 

corresponding estimates. This procedure works well for large values of k, when the 

parameters are accurately estimated. For small k, however, a more careful investigation 

is needed since the results do not reflect the errors in estimating the prior parameters v 

and x.

In the next section we discuss the estimation of v and x comparing 

maximum likelihood estimates with the method of moments estimates by means of the 

asymptotic relative efficiency as k—»oo, when nj=n is fixed. Both a logarithmic and a 

cube-root transformation of the data are considered, in order to increase the efficiency



In section 2.3, empirical Bayes confidence intervals for the means are 

constructed and a combination of numerical work and asymptotic theory is used to 

analyse the error incurred for not allowing for the variability in the estimates of v and x. 

More specifically a second order approximation for the coverage probability of the 

empirical Bayes confidence interval is calculated and a correction for the significance 

level when the error in estimating v and x is not negligible is then constructed. In 

§2.3.4 the relation between the efficiency of different estimates for the prior parameters 

and the error incurred in the empirical Bayes confidence interval based on these 

estimates is investigated for the special case when the parameters are either location or 

scale. Generalization of the results to a regression model is considered in section 2.5. 

Section 2.6 discusses a graphical method for examining the agreement of the data with 

the inverse-gamma prior distribution (2 .1).

2.2 Estimation of the prior parameters

2.2.1 Introduction

The estimation of v and x is based on the marginal distribution of the 

sample variances (2.5).

It should be mentioned that some information is being ignored, namely 

the information about v and x contained in the distribution of the sample means (2.4). A 

simultaneous numerical analysis involving the joint distributions of (y^Sj), (i=l,...,k) 

could have been performed, with the estimates expressed as integrals, but the 

information gained is likely to be minimal compared to the difficulty involved.

Maximum likelihood estimates and method of moments estimates with 

and without data transformation are considered. Particularly important will be the large 

sample behaviour of these estimates, as k— with =f (f=n-l) fixed.

of the method of moments estimates.



2.2.2 Maximum Likelihood Estim ates

Differentiating the log likelihood function,

with respect to v and x and then equating the derivatives to zero gives

(2.7)

and

(2.8)

respectively, where \j/(.) is the digamma function defined by

\|/(v) = dlogr(v)/dv.
Maximum likelihood estimates of v and x are the iterative solutions of

equations (2.7) and (2.8). Some comments about the solution of these equations are 

given below.

(i) Equation (2.8) estimates t -1 as the mean of the empirical Bayes 

estimates of (a 2)-1.

(ii) An asymptotic approximation of \}/(x) for large x is

\}/(x) = ln(x) -  l/(2x) -  l/(12x2),

(Abramovitz and Stegun, 1965, p.259) with accuracy to three decimal places for x>10. 

For x<10 the approximation can be improved using the recurrence formula

It can be shown that for large v

1 8



(iii) A sufficient condition for v<°° is that

f2 s 21 X
2 ~ 2x2 X

where the expression on the left is the coefficient of the first order term in the Taylor 

series expansion of (2.7) for large v. It is also possible to show that for equal sample 

variances =V, V is a solution of (2.8) and v=©° a solution of (2.7). This is an 

intuitively comforting result, since there is then no evidence of variance heterogeneity.

(iv) Equations (2.7) and (2.8) were solved iteratively for co (=v-1) and 

X, using the NaglO subroutine , convergence to the solution being very rapid. As a 

starting point of the algorithm one could use the moments estimates (2.12) and (2.13), 

discussed in the next section.

The asymptotic covariance matrix of the maximum likelihood estimate of 

(v ,t ) is given by Ivt-1 , where

aWi/csjv, t)
dv dx •}=

i iw  vx
i i
VX XX

is the Fisher total information matrix for v and x.

Since the asymptotic relative efficiency is invariant with respect to 

reparameterizations and the calculations are easier for X (=vx) and v,we consider the 

Fisher information matrix for X (=vx) and v, whose elements are

h
{ v '[(f^ v )]-V ’[v/2] } ;

f.
------ ------ and
2vx(fj+v)

_ V  v i
M 2(vx)2(f+v+2) ’



where \{/'(v)=d\j/(v)/dv is the trigamma function. The parameters cannot usefully be 

orthogonalized, since the expressions of the orthogonal parameters would involve fj.

The information matrix of the parameters of interest (v,x) can then be 

calculated from the above, using

(2.9)

where J, the jacobian transformation matrix of (v, X) to (v, x) is,

1
J =

x

0

v

2.2.3 M ethod o f  M oments Estim ates

In order to have more intuitively accessible estimates v and x, consider 

first the case of a balanced experiment in which fj =f. The method of moments 

estimates are calculated by equating the first and second moments of the distribution of 

Si? calculated in appendix A (expression (A.l)), to their respective sample moments, 

giving,

~ (v-2)S  
x =  — - —  » 

v f
(2 . 10)

-  2(f+2) rV  (S j-S )2
(2.11)

where S= h S fk .

These estimates have a reasonable interpretation even when the a ?  are 

not inverse gamma distributed; x is proportional to the pooled estimate of the common 

variance, and v is an estimate of the variance heterogeneity, a function of the coefficient 

of variation estimate.

It is possible to shown that if

Z(Sj -  S)2/kS2 -  2/f <0,

20



then v<2-f. Also if the left hand side of the condi tion is close to zero v-*-°© and

v— are possible solutions. Since a negative estimate of v is meaningless and the 

condition in this case seems to indicate that the variability between the sample variances 

is small we should estimate v=°°.

The scale parameter x is positive , thus a solution of (2.10) is not 

sensible for v<2. An ad  hoc procedure is to replace (v-2) by v in (2.10).

It remains to investigate the situation in which the fj are different. It can 

be shown that in this case the estimation equations are

~ (v - 2 ) £ S j 
T = --------- ,

v I f .x
(2.12)

I s 2 ( Is . )
v = 2{2---- !----

( 2 f ;)
}/{

I s 2_______  & S ) ‘

^ + 2 )  ( If , ) *
}• (2.13)

An application of this problem, considered by Hui & Berger(1983) is to 

the estimation of regression coefficients (typically slopes) in longitudinal studies. A 

mixed method was considered; the method of moments to estimate x and the maximum 

likelihood method to estimate v. They also suggest replacing (v—2) by v in the 

moments estimate equation of x. The equations are easier to solve than the maximun 

likelihood equations.

We proceed now to calculate the asymptotic covariance matrix for the 

moments estimates when the sample sizes are constant (fj =f).

Writing equations (2.10) and (2.11) as Zk(0)=O, where 0’=(v,x), from 

the first order term of the Taylor series expansion of Zk(0) at the true parameter value 

we calculate the asymptotic covariance matrix,

cov(0) = Ak_1cov {Zk(0) }(̂ k“1)T (2.14)

where Ak = dE[Z^(Q)]/dQ is evaluated at the true parameter value.

The asymptotic covariance matrix, cov{Zk(0)}, is the covariance matrix 

of the first two sample moments of S, which are calculated in appendix A (A.l),

21



elements

CovfZjXv/c)) = -
K +2k 2 

4 2

(2.15)

The matrix of derivatives of equations (2.10) and (2.11) has the

9Z /̂9v = -  2ft/(v - 2 ) ,

3z[/3x = fv / (v - 2),

2fx2v{v(v -2)(v -4) -  (f+v -2)(v2 + lv  -$)}v = ----------------------------------
(v -2)3(v -4 )2

4fv2x (f+v -2)
x = ------------------ .

(v -2)2(v -4)

Unfortunate ly, no elegant and simple formula is available for the 

asymptotic covariance matrix of the moments estimates (v, x).

2.2.4 A sym ptotic R elative Efficiency

We now investigate the large sample behaviour of the method of 

moments estimates relative to the maximum likelihood estimates as k—>°°, with fj =f 

fixed. In particular, we are interested in the behaviour of the asymptotic relative 

efficiency with respect to the amount of variance heterogeneity measured by v and with 

respect to the sample size (f+1). The asymptotic efficiency of the method of moments 

estimates (v, x) relative to the maximum likelihood estimates (v, x) is given by

are{(v, x ) : (v, x)}= {I acov(v, x) I / 1 acov(v, x) 1}1/2, (2.16)

where I acov(v, x) I and I acov(v, x) I are the determinants of the asymptotic covariance 

matrices calculated in (2.9) and (2.14), respectively.
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are{v : v}=iWSw

and (2.17)
are{x: x}= iTC/iTr,

respectively, where ivv and iTT are the diagonal elements of the inverse Fisher 

information matrix Ivx-1 (2.9), and iw and iTX are the diagonal elements of the 

asymptotic covariance matrix of the method of moments estimates (2.14).

Expressions (2.16) and (2.17) are evaluated for some values of f, v and 

x=l, and displayed in Table 1. The last row and last column in each table correspond to 

the asymptotic relative efficiency when v=°o and f=<», respectively. Although the 

values were theoretically calculated by considering expansions of the covariance 

matrices as v—><» and f—»«> we omit their expressions.

It is clear from examination of Table 1 that the loss of efficiency 

incurred in using the method of moments can be considerable, depending heavily on the 

amount of variance heterogeneity. For moderate and small values of v (v<12) the 

method of moments has efficiency less than 70%. Full efficiency is attained as v— ,

i.e., for the normal-theory linear model.

The individual asymptotic relative efficiencies o f the estimates of v and z

when the other parameter is unknown, are
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likelihood estimates

Table 1. Asym ptotic efficiency o f  moments estim ates relative to the maximum

are{ (v, x ): (v, x)}
v=prior degrees /=  sample degrees of freedom

of freedom
2 10 20 oo

10 0.51 0.42 0.38 0.31
12 0.69 0.58 0.54 0.45
14 0.78 0.69 0.64 0.55
16 0.84 0.76 0.71 0.61
18 0.88 0.80 0.76 0.66
20 0.90 0.84 0.90 0.81

30 0.96 0.93 0.90 0.81
oo 1.00 1.00 1.00 1.00

2

are{v: v} 
10 20 oo

10 0.29 0.21 0.18 0.14
12 0.49 0.38 0.33 0.26
14 0.62 0.50 0.45 0.35
16 0.71 0.59 0.54 0.42
18 0.77 0.66 0.60 0.48
20 0.82 0.72 0.66 0.52
30 0.92 0.86 0.82 0.67

O O 1.00 1.00 1.00 1.00

2

are{x: x) 

10 20 O O

10 0.32 0.28 0.27 0.26
12 0.56 0.52 0.51 0.51
14 0.70 0.67 0.67 0.68
16 0.79 0.78 0.77 0.78
18 0.84 0.83 0.83 0.84
20 0.88 0.87 0.87 0.88
30 0.95 0.95 0.95 0.96
oo 1.00 1.00 1.00 1.00
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An interesting feature in Table 1 is that except for very large values of v 

and f, it is true that

are{ (v, x ): (v, x)}>are{x : x}>are{v : v}.

That is, the joint estimation of v and x by the method of moments is more efficient than 

the estimation of each parameter separately, compared to the respective maximum 

likelihood estimates. If we write the joint asymptotic relative efficiency as

are{ (v, x) : (v, x)}=are{v : v}1/2are{x : x} 1/2(1—p2vx)1/2( l—p2vx)_1/2,

where and are the correlation coefficients of the maximum likelihood estimates 

and the moments estimates, respectively. It is clear that when p^ 2 «  p^2, the value 

of are{(v, x ): (v, x)} is large compared to both are{v : v} and are{x: x}.

2.2.5 Logarithm ic Transformation

Bartlett & Kendall(1946) show that a logarithmic transformation of the 

sample variances, log(Si), is closer to normality than the distribution of Sv A similar 

idea is attempted here, where we investigate the gain in efficiency of the method of 

moments after the logarithmic transformation is applied to the sample variances Sv

Consider the random variable W=log(Si). The cumulant generating 

function of W can be expressed as

Kw(4) = log{E[ exp(W^)]} = ^log(vx) + log(E{ [S /(v t)]q ),

where E{ [S/(vx)]$} = B(v/2-£ , f/2+£) / B(v/2, f/2).

The cumulants of W are then obtained from the derivatives of the 

cumulant function at £=0 ,

---- —  = [log(vx)] r + ( - l)V r_1)(v/2) + V
d ?

with 8 1,. is the dirac function at r=l, and \|/^(.) is the r^ derivative of the digamma
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function \j/(.). In particular the first four cumulants are

Kt= log(vx) + \i/(f/2) -  \|/(v/2),

K j p V 1)(^2)+V1}(v/2),
k3= y<2)(f/2) -  V 2)(v /2), (2.18)

K4=\j/3)(f/2)+V3)(v/2).
Again we consider balanced experiments (fj =f) and equating the first 

and second moments to their respective sample moments we obtain

\j/(f/2) -  \j/(v/2) + log(vx) -  Slog = 0, (2.19)

V(f/2) + \|/’(v/2) -  Z[log(Si) -  Slog]2/k = 0, (2.20)

with Slog = Llog(Sj)/k, where v and x are the moments estimates of v and x from the 

distribution of log(Si). Note that, although the same notation as used in §(2.2.3) is 

being used here to indicate moments estimates, the estimates are not the same.

Some comments are due.

(i) To solve the above equations we first find a solution v from (2.20) 

and with this value substituted in (2.19) we calculate x. These equations are generally 

easier to solve than the maximum likelihood equations.

(ii) An asymptotic approximation of y(x) for large x is

Y'(x) s  1/x +l/(2x2),

(Abramovitz and Stegun, 1965, p.260), with accuracy of up to three decimal places for 

x>10. For smaller values of x the approximation can be improved by using the above 

formula for \|/’(x+j), where (x+j) is large enough to give the desired accuracy, together 

with the recurrence formula

V’(x) = V’(x+j) + ^ r  +  — ■—r + ... + ---- — -  .
X2 (x + ir  (x+j-1)
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(iii) Asymptotic expansions of (2.19) and (2.20) for large values of v

and x give:

' 1 X  «i/k r 1 . 1 1 1 i= - n S i exp( 7  + —
f i=i f 3r v 3v2

(2.21)

k
Si=l

2( Vf + l/f  "+ 1/v  + l/v2 )-(l/k) X  (log(S.) -  S )2 = 0log;

The second equation is a quadratic form in l / v  and it is possible to show that ^ > 0  if

Z[log(Si) -  Slog]2/k > 2/f+2/f2, 

that is, in the case of heterogeneity of the sample variances.

(iv) The estimate x given by the first equation in (2.21) is proportional to 

the geometric mean of the sample variances Sj.

(v) These approximations can be used as initial values for the solution of 

(2.19) and (2.20).

The development to calculate the asymptotic covariance matrix of v and 

x from (2.19) is essentially the same as in section 2.2.3. The asymptotic covariance 

matrix, cov{Zk(0)}, is as given by expression (2.15) with the corresponding 

cumulants of the distribution of log(Sj) given by (2.18). The matrix of derivatives Ak is

azkV3v = - \ | / 2>(v /2 )  /2  +  NT1,

3ZkV9 i =  1/t ,

3Zk2/3v = \)/2)(v/2) /2,

azk2/9v = o.

The asymptotic relative efficiency of the method of moments estimates 

relative to the maximum likelihood estimates when considering a logarithmic 

transformation of the sample variances is calculated using expressions (2.16) and 

(2.17), and the values displayed in Table 2. Note that the asymptotic covariance matrix 

of the maximum likelihood estimates (2.9) is invariant with respect to data 

transformations.
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Table 2. A sym ptotic efficiency o f  moments estim ates relative to the 
maximum likelihood estim a tes , when a logarithm  

transformation is applied to the sample variances

are{ (v, x ): (v, x)}
v=prior degrees /=  sample degrees of freedom

of freedom
2 4 10 20 oo

2 0.78 0.94 0.92 0.87 0.81
4 0.57 0.87 0.98 0.97 0.90

10 0.39 0.69 0.94 1.00 0.96
16 0.35 0.62 0.90 0.98 0.98
20 0.33 0.60 0.88 0.97 0.98
30 0.31 0.56 0.84 0.95 0.99
oo 0.27 0.49 0.74 0.86 1.00

2 4
are{v: v} 

10 20 O O

2 0.67 0.92 0.87 0.82 0.75
4 0.34 0.78 0.97 0.94 0.85

10 0.16 0.48 0.89 0.99 0.94
16 0.13 0.39 0.80 0.96 0.96
20 0.12 0.36 0.77 0.94 0.97
30 0.11 0.32 0.71 0.90 0.98
oo 0.08 0.25 0.57 0.74 1.00

2 4
are{x: x} 

10 20 oo

2 0.69 0.93 0.93 0.88 0.83
4 0.50 0.85 0.99 0.98 0.95

10 0.37 0.72 0.96 1.00 0.99
16 0.34 0.68 0.94 0.99 1.00
20 0.33 0.67 0.93 0.99 1.00
30 0.31 0.65 0.92 0.98 1.00
oo 0.28 0.60 0.89 0.97 1.00
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From Table 2 we see that the method of moments estimate based on the 

log transformation is particularly efficient for large sample sizes (large f). This is a 

generalization of the result of Bartlett & Kendall (1946), that the distribution of log(Si) 

is closer to the normal for large f under the null hypothesis that the variances are the 

same, i. e., H0:v=°o. However, for very small sample sizes the method of moments, 

based on the log transformation, has very low efficiency. The marginal distribution for 

f<2 is /-shaped and a log transformation produces a distribution with a long negative 

tail.

2.2.6 H ilferty Transformation

Finally we consider the method of moments estimates after a cube-root 

transformation of the observed variances, also called the Wilson-Hilferty 

transformation. This transformation is usually used to approximate the gamma 

distribution to the normal distribution (Johnson & Kotz, vol.l, 1970, p.176).

The moments estimates based on this transformation are the solutions of 

the following equations,

,.t̂ r (f/2+l/3)r(v/2-l/3) - A
( V X ) -------------------------------------- Stt =  0.

r(f/2) r(v/2)
(2 .22)

r(v/2) r(v/2 -2/3) S s f 3 r(f/2+l/3)2 

r(v/2 -  1/3)2 = k (SH)2 r(f/2)r(f/2+2/3)

where = E Sj1/3/k.

A solution for the these equations exists for v>4/3.
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Asymptotic expansions of (2.22) give

9v 8iv2 k5"

2/3

H

1/3.= s f i - ± + _ i _ l ( i — - i - 1
H1  9f gif2 H  ^  27v ^ ’

where the first expression is a second degree equation in 1/v (=co) and the second 
calculates the estimate of x as proportional to the cube of SH. Initial values to the 
solution of (2.22) can be found by solving the approximate equations for co and x.

The calculations for the asymptotic covariance matrix are made as in 
sections 2.2.3 and 2.2.5. We omit the expressions of the moments of Sj1/3 about the 
mean, since no simple and elegant form is available. The moments about the origin of 
Sj1/3 can be calculated from the expressions in appendix A. The matrix of derivatives of 
equations (2.22), denoted by Z h a s  elements

a z nv av  = a ^ y a v ,  

a ^ v a x  = ( i /3 )^ y x ,

a v / a v  = 3|i2'/3v -  2ji1,(3|J1,/3v) and 
a ^ /a x  = (2/3)p.2'/x,

where
a ^ y a v  =  ( i /3  ) ^ y v  +  (^ y 2 )[ \ j /(v /2 - i /3 )  -  v (v /2 )] , 

a ^ '/a v  =  (2 /3 )|i2'/v + (^ y 2 )[v (v /2 -2 /3 )  -  \j/(v/2)], 

and li^, \x2 2°® the first two moments about the origin of the distribution of Si1/3.
Table 3 gives the asymptotic efficiency of the method of moments 

estimates relative to the maximum likelihood estimates when the sample variances are 
transformed according to the Wilson-Hilferty transformation.
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Table 3. Asym ptotic efficiency o f  moments estim ates relative to the 

maximum likelihood estim a tes , when a H ilferty transformation  
is applied to the sample variances

are{ (v, x ): (v, x)}
v=prior degrees /=  sample degrees of freedom

of freedom
2 4 6 10 20 oo

4 0.80 0.73 0.73 0.61 0.55 0.47
6 0.93 0.94 0.91 0.87 0.80 •0.70
8 0.91 0.97 0.95 0.90 0.90 0.79

10 0.88 0.96 0.98 0.98 0.94 0.84
20 0.78 0.90 0.95 0.96 1.00 0.93
30 0.75 0.86 0.92 0.97 1.00 0.94
oo 0.67 0.78 0.83 0.89 0.94 1.00

2 4
are{v

6

:v}
10 20 oo

4 0.66 0.56 0.49 0.43 0.37 0.31
6 0.89 0.89 0.84 0.76 0.67 0.54
8 0.85 0.95 0.95 0.90 0.81 0.66

10 0.78 0.93 0.97 0.96 0.89 0.73
20 0.62 0.81 0.90 0.97 0.99 0.87
30 0.57 0.76 0.85 0.94 0.99 0.91
oo 0.45 0.60 0.69 0.79 0.88 1.00

2 4
are{x: 

6

:x)
10 20 oo

4 0.79 0.71 0.65 0.58 0.53 0.46
6 0.90 0.95 0.94 0.91 0.87 0.81
8 0.87 0.96 0.98 0.98 0.95 0.91

10 0.83 0.95 0.98 0.99 0.98 0.95
20 0.75 0.90 0.95 0.99 1.00 0.99
30 0.72 0.87 0.93 0.98 1.00 1.00
oo 0.66 0.82 0.89 0.94 0.98 1.00
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Comparison of Tables 2 and 3 indicates that in general the Wilson- 

Hilferty transformation is more efficient than the logarithmic transformation with the 

exception of the two first rows, i.e. small values of v. In this case the marginal 

distribution has long tails and the log transformation is more efficient in approximating 

the distribution of Sj to normality. However, for small sample sizes (small f), the 

Wilson-Hilferty transformation makes the method of moments very efficient. This is 

the case when the marginal distribution is J-shaped and the log transformation produces 

a distribution with long tail.

2.2.7 Conclusions

Computationally, the simplest estimate is the method of moments 

estimate based on the sample variances Slv..,Sk; however, it has rather low efficiency 

except for large v when it approaches full efficiency. For situations in which there is 

overdispersion, f>v and small v it has rather low efficiency.

The method of moments applied to the log transformation of the sample 

variances have high efficiency for moderate and large values of f.

In general the maximum likelihood estimate is to be preferred since no 

substantial gain in simplicity is attained by the method of moments based on some 

transformation of the sample variances, and a loss of efficiency is almost always 

incurred.

32



2.3 Confidence intervals for the means

2.3.1 Introduction

The (l-2a) empirical Bayes confidence interval for based on (2.4) is

S. +vx . 1/2i  ̂ 1) }.
n.(v + 9 (2.23)

where ^  is the (l-oc)-quantile of the Student-r density function with v+fj degrees of 

freedom and (v,x) are estimates of (v,x).

variability in the estimates of v and x is not considered. Nevertheless, if (v,x) are 

consistent estimates based on a large amount of data (large k), then the errors of 

estimation should be negligible and the required coverage property hold up to higher 

order in k. It remains then to investigate the effect of errors in the estimation of (v,x) 

on the confidence interval for small or moderate values of k. To do this, simulation 

studies are used and a modification of significance level is calculated. It will be shown 

that only in very special situations do the errors of estimation have a significant effect 

on the coverage probability of intervals (2.23).

2.3.2 Simulation Studies

Two simulation studies are considered; one with the moderately large 

value of k=20 (300 simulations), and the other with the quite small value of k=4 (400 

simulations). The sample sizes are held constant, so that f.=f.

In both experiments data are generated according to the structure given 

in equations (2 .1), (2.2) and (2.3), using the appropriate subroutines of the NaglO 

library. The maximum likelihood estimate of (v,x) is found by solving equations (2.7) 

and (2 .8) iteratively, using the generated sample variances (Si,...,Sk). Confidence 

intervals (2.23) are then calculated. Table 4 displays the proportion of intervals in both

The coverage probability of (2.23) is not exactly (l-2a) since the
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simulation studies which cover the true mean jij for some values of v and x. The 

numbers in brackets are the respective coverage proportions of the exact confidence 

interval, that is, the confidence interval with the true parameter values (v,x).

This example serves to illustrate the general point that the errors in 

estimating (v,x) have very little effect on the coverage probability, with the exception of 

the rather extreme situation of very small k and f. Note that for f=4 in the second 

simulation study (k=4), (v,x) are estimated from S2, S3 and S4 with 4 degrees of 

freedom each, a rather extreme example, and the change in the coverage probability is 

still very small.

Table 4. Proportions o f the simulated 95% em pirical Bayes confidence interval 
and o f  the confidence interval using the true param eter values (in brackets)

containing the true mean Jij 

300 simulations with k=20

v=prior degrees /=  sample degrees of freedom
of freedom

2 4 6

2 0 .95(0 .95 ) 0.96(0.97) 0.95(0.94)
10 0.95(0.95) 0.96(0.96) 0.95(0.96)
20 0.92(0.94) 0.94(0.94) 0.96(0.96)

400 simulations with k=4

v=prior degrees /=  sample degrees of freedom
of freedom

2 4 6 10 20

2 0.88(0.93) 0.94(0.96) 0.94(0.95) 0.94(0.94) 0.95(0.95)
10 0.91(0.95) 0.93(0.95) 0.94(0.95) 0.94(0.95) 0.95(0.95)
20 0.90(0.95) 0.94(0.96) 0.93(0.94) 0.92(0.95) 0.95(0.96)

The simulations were performed in the most favourable situation, that of
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estimating (v,x) by the maximum likelihood method. Nevertheless, changes in the 

confidence limits when other methods are used are likely to be minimal. We pursue this 

investigation in §2.3.4 in the case of location and scale parameters.

2.3.3 Correction fo r  Significance Level

The idea here is to develop a second order approximation for the 

coverage probability of the empirical Bayes confidence interval. Then, from the relation 

between the expected and the approximate coverage probabilities, a correction for the 

significance level is calculated which enables the construction of an empirical Bayes 

confidence interval with coverage probability (l-2a) up to order ̂ (n*1).

The approach was developed in Cox(1975b) as an approximate method 

of constructing prediction intervals. Here the formulation is restricted to the particular 

problem being studied: i.e., second order approximation of empirical Bayes confidence 

intervals.

For convenience consider the case of a single parameter. The 

generalization to the multidimensional case is immediate and does not provide further 

insight. Suppose v is known and consider the correction for the errors in estimating x. 

Write,

V f V T
n(f+v)

as the lower limit of the (l-2a) confidence interval for }ik such that for x known

Pr[ \ik < qa(x) I Sk ] = a.

For x unknown we form an estimate W from S j ,..., Sk with 

E(W-c) = a(x)/k

and (2.24)

Var(W) = b(x)/k.
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The first approximation empirical Bayes confidence interval (2.23) takes 

qa(w) as the lower limit. The lower tail probability is not exactly the required a, the 

method requires a second order approximation to the probability,

P r[ nk < qa(W) I Sk] = E { P r [  nk < qa(w) I Sk> W=w ]}. (2.25)

Conditionally on Sk> yk is independent of W and (2.25) is just

G[ qa(w) I Sk] = E { P r [  pk< qa(w) I Sk ]}.

The first term of the Taylor series expansion of (2.25) at W=x is

a(T) r d  G[q (w) I SJ . ,
/>r[(L <q (w)IS ] = G [ q  (x)IS ] + - l ^  { ------- 2--------L |  } +

K a  k  a  k  k  d  W  w = T

b(x) r d 20  [q^lw) I Sk] |

2k d  w2 W=T

= a  + ca(x)/k + o(n_1). (2.26)

where ca(x) gives the correction of the significance level.

Thus if the critical value of the statistic is found from the lower a'- 

quantile of its distribution, where a'=a-ca(w)/k, the empirical Bayes interval will have 

confidence limit (l-2a) up to order o(n_1).

To calculate the correction factor ca(w) we have to compute up to order 

<9(n_1) the asymptotic bias and the covariance matrix of W, conditionally on Sk. If 

maximum likelihood estimates are used, general formulae are available for the 

asymptotic properties in Cox & Hinkley (1974, Ch.9) which can be adapted to take 

account of the conditioning. However, the difficulties associated with the conditioning 

can be avoided, at the cost of a slight loss of precision, by basing the estimation of x on 

S 1,...,Sk_1.

While the method is, in principle, very general, problems in which the 

parameters to be estimated are neither location nor scale tend to be more complicated. 

This is the case for the parameter v, in which the derivatives of G(.) involve the
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derivatives of the critical value ta with respect to v.

It is illuminating though to consider the case of the errors in estimating 

x. To avoid problems with conditioning we shall in fact consider k+1 groups of 

observations and estimate the correction for the significance level of the empirical Bayes 

confidence interval of \ iv

Denote by g^ the Student-f density function with d  degrees of 

freedom and G\j its respective cumulative distribution function.

Also take W=x the maximum likelihood estimate of x, based on 

S2,.-.»Sic+i. The cumulative function at qa(x) is

S + vx 1/2
G t q W I S ^ G ' f - t p ^  ),

a 1 v+f “ Sj+VX

where ta is the 1-a upper quantile of the Student-f density function with v+f degrees 

of freedom.

The first and second derivatives of G with respect to x are

d  G[qre(x)| s 1]| _ - " X J V

d i  t=x 2(S.+vx)
and 1 (2.27)

* 2° r q ,w 1 s i] I _ v t , O V t l l  v ( f - w i )  *  }
d z 2 X=x 4(S.+ vx)2 f+v (f+v) + t2

The unconditional asymptotic bias and variance of the maximum 

likelihood estimate can be calculated from the expression given in Cox & Hinkley 

(1974, p.309),

E ( i  -  x) = {2£[U.(x)U’.(x)] + E[U .-C x )] } ^ )2,

Var(x) = (i^)'1,

where U.(x) is the derivative with respect to x of the log likelihood function (2.6) and 

is the total infonnation for x as defined by (2.9).

After some calculations the expressions for the bias and variance can be
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shown to be

2x(f+v+2 )(f+2) 
E (x -  x) ---------------------

kvf(f+v+4)

w ^  2x2(f+v+2) Var(x) = --------------  '
kvf

(2.28)

(2.26).

The correction ca(x) is calculated by substituting (2.27) and (2.28) in

The 'corrected' significance level is a'=a-ca(x)/k. It then follows that 

the empirical Bayes interval for fij with confidence level (l-2a) up to order ^(n-1) is 

calculated from (2.23) with the critical value of the statistic, t^, calculated from the 

lower a'-quantile of the Student-r density function with v+f degrees of freedom.

To compare results, the approximate (up to o(n-2)) confidence level of 

intervals (2.23), l-2 [a+ca(x)/k], were calculated for the same situation as in the second 

simulation study, (with k=4) of Table 4. The values are displayed in Table 5.

Table 5. Second order approximation o f  confidence levels fo r  the 95% em pirical 

Bayes interval allowing fo r  the errors in estimating x by maximumUkelihood.

v=prior degrees /=  sample degrees of freedom 
of freedom

2 4 6 10

2 0.95 0.95 0.95 0.95
4 0.94 0.95 0.95 0.95

6 0.93 0.94 0.95 0.95
10 0.92 0.94 0.95 0.95
20 0.91 0.94 0.94 0.95

Comparison of Tables 4 and 5 shows immediately that the main 

difference lies in the first column (f=2) for values of v smaller than 10. This is no 

surprise since Table 5 corrects the confidence level only for the errors in estimating x
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while in Table 4 both errors are considered. Also, for small values of v, the individual 

sample variance Sj/fj is the dominant term in the empirical Bayes estimate of the 

standard deviation, thus the errors in estimating x are less influential than the errors in 

estimating v. On the other hand, for large values of v, the errors in the estimation of x 

seem to explain most of the changes in the confidence level and in this case the 

dominant term in the empirical Bayes standard deviation is the common variance x.

The preceding discussion provides some justification for ignoring the 

errors in estimating v and x in most situations. Only in the rather extreme case of small 

values of v, large overdispersion, and fewer than 5 replicate observations need a 

correction be considered. In these cases instead of calculating the correction for 

estimates of v a conservative solution would be to consider the limit of the correction 

for x when v—*»,

lint c (x) =v-»°o a 2kf

It should be mentioned that other approaches which allow for the 

variability of the estimates of the prior parameters are possible. The pure Bayesian 

approach to this problem is to assign a second stage prior distribution 7t(̂ ,) for the 

unknown parameter X̂ =(v,x). The uncertainty about X is then described in terms of this 

second stage prior distribution, which can be a known proper prior, but is more often 

chosen to be an improper prior distribution. Therefore, the dependence of the results on 

the unknown parameter X is eliminated by taking expectations with respect to its 

(second stage) posterior distribution. The method is called hierarchical Bayes analysis 

and a general reference is Berger(1985, Chap.4), containing many other references.

To illustrate the method and to compare with empirical Bayes analysis, 

consider a noninformative prior on the scale parameter x

7t(x | v) = (1 !z)dz.
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From (2.1) and (2.3) it can be shown that the posterior distribution of

G ,̂ is inverse-gamma,

r S. + vx. 2 -(fi+v)/2-i
f(o? | S., v, x) «  exp ( 1 j(G.) , (i=l,...,k) independently,

2 g i
and the Bayes estimate of Gj2 is the posterior mean

E[ai2 ISj, v, x) = (Sj+vx) / (fi+v -  2).

Then the Bayes estimate of the 0-2 after elimination of x is given by

E { c . 2  I S, v} = Ef(x, s> v){ E[Gi2 ISif v, x)}

where S=(S1,...,Sk) and f(x | S, v) is the (second stage) posterior distribution of x 

calculated from

nf(S.lv,x)7c(x|v)
f(x |S,v) = — -------------------------,

i n f(S. I v, x) 7t(i |v) d  x

and f(Sj I v, x) is the marginal distribution (2.5).

Calculation of E{Gj2 1 S, v) involves numerical integration in

. r k . S . - (fi+V)/2 w  S . -<fl+v>/2+1 -Zf./2+l
fln(i+—) }(i+—) x 1 Jt(xiv)dx

V________i=2 vr_______________ VX_______________________________
(v+fr 2)

} x l ic(xlv)dx
Ji=l VX

S..-(fi+V)/2-If./2

However, for large v a rough approximation is

IS.
Efo2 |S, v} = -----*-------------

1 (v+f -2 ) I ( f  -2)

which is equivalent to the pooled estimate of x, and illustrates the fact that in general, 

when k is large, there will be essentially no difference between the empirical Bayes and 

hierarchical Bayes with vague second prior distribution. Some comments about the 

comparison of the two approaches are:
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(i) The hierarchical Bayes analysis automatically incorporates the errors 

of the prior estimation.

(ii) From a computational viewpoint, empirical Bayes theory requires 

the solution of likelihood equations such as (2.7) and (2.8), while the hierarchical 

Bayes approach requires numerical integration, which can be somewhat more difficult, 

especially if it is of high dimension. The computational problem can be minimized by 

considering asymptotic approximations to the posterior moments and marginal densities 

such as in Tierney and Kadane(1986).

(iii) Clearly the empirical Bayes approach appeals to frequentists while 

the hierarchical Bayes approach appeals to Bayesians, although from a full subjectivist 

approach the formal prior dx/x is not acceptable.

2.3.4 Effect o f  D ifferent Estim ates on the Confidence Level

In this section we investigate the effect of different estimates on the 

empirical Bayes confidence interval. Two aspects of the investigation are considered. 

The first examines the effect on the confidence level as different methods in estimating 

the prior parameters are used. The second compares the expected length of 'corrected' 

confidence intervals for these different estimates.

Denote the change in the lower tail probability of empirical Bayes 

confidence interval (2.23) when x is estimated by x by

a-a= ca(x)/k, (2.29)

where ca(x) is calculated from (2.26).

Consider x and x, two estimates of x. Using (2.29), the ratio of the 

changes in the significance level is

(a-a)/(a-a)=ca(x)/ca(x).
Particularly, in the simplest situation, of unbiased estimates,we have that

(a-a)/(a-a)=are(x:x),
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that is, the ratio of the changes is simply the asymptotic relative efficiency between the 
two estimates. In general, when the effect of the estimation of more than one parameter 
is being considered or when they are biased, the correction involves the derivatives of 
the distribution function and the comparison is not so straightforward.

As an illustration we compare the effect in estimating x on the 
confidence interval when using the maximum likelihood estimate x and the method of 
moments estimate x. Since the bias of x is positive and x is unbiased, the ratio of the 
changes in the significance level is

(oc-a)/(a-a)>are(x:x).
This inequality provides the means of calculating the effect of estimating x by the 
method of moments. For example, when v=10 and f=2, the change in the significance 
level when we allow for the errors in estimating x by x is (a-a)=0.015, as calculated in 
Table 5. From Table 1 the are(x:x)=0.32, hence (a-a)<0.047 and the confidence level 
when x is estimated by x is greater than 90%. Therefore, unless efficiency is very low 
the errors in estimating x by the moments estimates are small.

We now study the comparison of two estimates after allowing for the 
errors in estimating the prior parameters. Since the confidence level of the second order 
interval is l-2 a  up to order <9(n_1), independent of the estimate which is being used, 
comparison is based on the differences of the expected length of those intervals. The 
formulation is in terms of the estimation of x but the results can be applied directly to 
any location or scale parameter.

Suppose W is an estimate of x satisfying (2.24). Then the lower limit of 
the second order empirical Bayes interval is

qa*(w) = yi-ta* h(w),

where h(w) is a known function of w and a* = a -ca(w)/k.
Since

E[ h(w)] = h(x) + h'(x)a(x)/k + o(k-i), (2.30)
and from the fact that
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*0*

*o

the lower critical value of the statistic near the true parameter value t is

t =1 -a* a
c(x)a

kg f(-t )v+f a

It then follows that

E[q (W)] = q (x) +a* a
b(T)

2k g f(-t ) v+f a
r d G \
{---t ) +o(k ).d w2 w=x

It is interesting to note that the expected length depends only on the 
asymptotic efficiency of the considered estimates and not on bias. Therefore, as to be 
expected on general grounds, estimates with larger efficiency produce second order 
intervals with smaller expected length.

2.3.5 Conclusions and remarks

The discussion provides some justification for ignoring the errors in 
estimating the prior parameters, in some important situations. Exceptions were for 
small sample sizes and for those estimates of v and T having low efficiency.

One question that would be of interest is the comparison of the empirical 
Bayes intervals (2.23) with the standard Student-r confidence under the assumption of 
constant variance,

Yi * tajfi (S/k)1/2, (2.31)
where S is the usual 'pooled' estimate of the common variance. However it revealed to 

be a difficult problem.
As mentioned before, a practical advantage of the empirical Bayes 

interval is its flexibility since assumptions (2.1) encompasses a wide range of situations
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with different variability in the variances.

2.4 Contrast of Means

If we are interested in confidence intervals for contrasts of means, 
expression (2.4) leads to the result that, conditionally on the sample variances, the 
random variable I c ^  has the form

V  v  f Si + vx
1=1 i=i n.(v+f.)

1/2
v+f. (2.32)

where T are independent random variables each having the Student-f density function 
with v+fj degrees of freedom, and np^* 1 are the sample sizes.

The distribution of (2.32) is a generalization of the Behrens-Fisher 
distribution for the difference of two means. A suggestion by Cox( 1975a) is 
approximating the distribution of (2.32) by a Student-r with scale parameter 0 and 
degrees of freedom £, by equating their corresponding second and fourth cumulants. 
The second and fourth cumulants of (2.32) are,

* 2 (S.+vx) (f.+v)
K = Z , Ci---------------’2 i=i 1 n.(f.+v) ( f .+ v -2 )

Je, S.+vx . 2  (f.+v)2
K4 =  S Ci (— 1 ---------------•i=i ^ (f+ v) (f.+v -  2) (f.+v -  4)

Equating k2 and k4 to the second and fourth moments of a Student-r variable with 
scale parameter 0 and degrees of freedom £, gives

C2 = k2(k22+2k4)/(k22+4k4),

0 = k22/k4 + 4. (2.33)
Note that the method requires that (fj+v -4)>0.
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Thus the (l-2 a ) empirical Bayes confidence interval for I c ^  is

{scjyi ± e* (2.34)
with 0* and C* the estimated values of the solutions of (2.33).

A systematic study of the effects of the estimation of (v,x) on the 
confidence level of the above interval (2.34) has not been attempted here, but it would 
be surprising if the results differ considerably from the results in §2.3.3, and this is 
confirmed by the simulation experiment below.

The data for this are generated as in the simulation study of §2.3.2, with 
k=4 and a constant number of replicate observations f+ l=  5. Maximum likelihood 
estimates of v and x are calculated from the marginal distribution of S1,...,S4 and 
substituted into the expressions for and k4. Estimates of 0 and £ are then calculated 
from expressions (2.33) as well as the empirical Bayes 95% confidence interval (2.34) 
for the difference of the first two means We also calculate the exact 95%
confidence interval based on the Behrens-Fisher distribution, i.e.,

y2-yi± u a
s1+s2 1/2

1 f(f+i)s

where ua is the (l-2a)-quantile of the Behrens-Fisher distribution, tabulated in Fisher 
& Yates(1957), (with f1=f2=f).

The percentage of intervals containing (p  ̂-  p.2) in 300 simulations is 
given in Table 6. The second row refers to the coverage properties of interval (2.34) 
with the true parameter values.
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Table 6. Comparison of the coverage proportion of 95% confidence intervals for the
contrast (|ii -  |I2) in 300 simulations

f=4
v=2 v=10 v=20

Emp. Bayes C.I. (2.32) 0.94 0.94 0.91
Emp. Bayes C.I. with true 

parameter values 0.95 0.95 0.94
Behrens-Fisher 0.95 0.97 0.95

Again the effect of empirical Bayes estimation on the confidence level 
when the number of replicate is small (f+l=5) is not very large if we consider that in 
this study the number of groups is extremely small, k=4. The effect seems to be larger 
when v — which in turn means that we are losing efficiency if we do not consider 
common variance in the normal-theory set up.

2.5 Empirical Bayes estimates of regression parameters

In many applications the means E(Yi)=|ii often express dependence on 
explanatory variables xi0,.-..,Xip whose values are known. A widely used form of 
dependence is the generalized linear model

g(Hi) = £ xiA- (2.35)r=0

where p = (P0,...,pp) are the regression parameters to be estimated from the data 
(yi,...,yk) and g(.) a specified link function.

The generalized linear predictor together with a distribution for the 
independent variable from the linear exponential family, characterizes the class of 
generalized linear model introduced by Nelder and Wedderbum(1972).

Many standard models fall neatly into the generalized linear framework, 
as for example, normal linear regression, probit analysis for proportions, logistic
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regression and the log-linear model for Poisson counts. Restriction to generalized linear 
models is not important from a theoretical point of view since a great deal of the theory 
holds for non-linear regression. However, the generalized linear model has the 
advantage of easy interpretation whilst retaining flexibility and computational 
simplicity.

The most familiar model satisfying (2.35) is linear regression where the 
errors are normally distributed with constant variance x and the link function is the 
identity function so that

= xJ V  i= l,...,k . (2.36)r=0

Here we assume that there are nj replicatesffom the response variable Y-v 
distributed according to

N(p.j, c^2), i=l,...,k ,
and that p explanatory variables are measured on each individual. Interest focuses on 
the estimation of the regression parameters p when the cr '̂s are unknown. The 
discussion is set up in terms of the linear form of dependence (2.36) since the 
generalization to the results for (2.35) is immediate and no further insight is provided.

The least squares estimate of p with estimated sample variances as 
weights, is the solution to the equation

XTW s'1( y - X P s) = 0, (2.37)
where X=(xir), (i=l,...,k; r=0,...,p) is the design matrix and Ws=diag[Si/[ni(n-l)]} 
is the estimated weight matrix.

The main motivation for the use of an empirical Bayes approach to 
estimate the regression parameters is to produce more efficient estimates. It also avoids 
the problem of a zero weight in equation (2.37) since for small values of ni5 it might 
happen that one of the sample variances is nearly zero or, with rounded data, exactly 
zero. Empirical Bayes estimates of the variances, although not solving completely the 
problem, reduce the chance of having zero weights.



The empirical Bayes weighted least squares estimate of P, with the 
assumption of the inverse-Gamma distribution (2.1) for the variances, is the solution of

XTWG'1( y - X p G) = 0 ,  (2.38)
where W G=diag{[Si+vx]/[ni(ni+v -1)]} is the matrix of the empirical Bayes estimates 
of the variances.

Calculation of the asymptotic covariance matrices for both estimates ps 
and PG, as k— and with fixed ni? is considered when the variances follow the 
distribution assumption (2.1).

Write Zs(ps) for the left-hand side of equation (2.37). The asymptotic 
covariance matrix of Ps is calculated from expression (2.14) in §2.2.3.

Conditional on S=Sl5...,Sk, we have that
dE[ Zs((5s) I S] /<*PS = -XTWs-iX  

and
Cov[ ZS(PS) I S] = -XTWs'1Var(YIS1,...,Sk)Ws_1X

x , n .(n .-l) r S.+vx ,  , 
=XTdiag{— — —  [ — — ] }x.  

(n.+v -3) s 2

Substituting both these expressions in (2.14) and calculating the 
expectation with respect to the marginal distribution of the sample variances (2.5), it 
follows that the asymptotic covariance matrix of Ps, Cov(ps), is

t { x Td i a g [ ^ ^ X ] " 1{ x Td i a g [ ] X  } { XTd i a g [ ^ L ^ ] x  j \  (2.39) (n.-3) (n.-3)(n.-5) (n.-3)

Repeating this process but with
dE[ Zg(Pg) IS] IdpG = -XTWG-lX, 

and
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T , n.(n.+v - l ) 2Cov[Zr (pr ) I S] = X diag{-----— -------------(n.+v -3)(S.+vx)

leads to the asymptotic covariance matrix of the empirical Bayes weighted least squares 
estimate pG,

t  if t  rn.(n.+v-1 ), T .=r{XTdiag(n.)X}-1 [x 'd ia g t—1— ------ J x j  {X*diag(n )X }-‘.(n.+v -3)

Then the asymptotic efficiency of ps relative to pG is given by 

are(ps : PG) = {I Cov(PG) I / 1 Cov(pG) 1}

“ ( n  ̂ ni+V _3̂ ni"5  ̂J1/P 
i=i (n.+v -l)(n.-3)

(2.40)

(2.41)

The usual weighted least squares estimate Ps is as efficient as pG when 
>oo, that is, when the empirical Bayes estimates of the variances coincide with the 

Sj. Otherwise pG is more efficient than ps, especially for large v when the model tends 
to the linear normal regression model. As v— the asymptotic relative efficiency is

(rUni-SVCni-S)}^,

which can be quite small for small values of nv This is by no means a surprise, since, 
because we have assumed that the variances come from (2.1), PG is expected to be 
more efficient than Ps.

The maximum likelihood estimate, p, based on the full empirical Bayes 
assumption (2.1) and (2.3) provide the means of assessing the efficiency of the least 
squares empirical Bayes estimate, pG. To calculate the asymptotic covariance matrix of 
P we follow Cox and Hinkley(1968).

Write the log likelihood of p based on (2 A) as
/ = E  hjftyP)

where
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hi(ei;P) = - [ ( ni+v)/2] lo g ((ni+ v -D + e ^ /C J ,

with ei=(yi- | i i) and î=(Si+vt)/[ni(ni+v -1 )]. 
We then have that

a2/
3Pr3Ps

k au.. au.= X h :’(E.; P)— —
r ,  > * apr 3ps W .

where fy’O and h ’̂Q  are the first and second derivatives of h^.).
Since

E M e ^ ) }  =0,

E{E[hi”(ei;p)ISi]} = n ^ + v  )/[ i (ni+v -2 )], 
it follows that the asymptotic covariance matrix of the maximum likelihood estimate p is

r .n.(n.+v)N X1-1Cov(p) = x {X  diag(—— ---- )  X j .n.+v+2i

The asymptotic efficiency of PG, relative to P is then
- - k ( (m+v -3)(n .+v+2), i/p

are(p0:p) = n  {— --------- 1-------} •i=i (n.+v - l) (n .+ v )

The loss of efficiency of the empirical Bayes weighted least squares 
estimate, pG, is small for large nf or large v (small overdispersion), as expected; full 
efficiency is attained when v=°o. For example with small nj=3, and reasonable amount 
of overdispersion, v=2, the efficiency of pG relative to p is (0 .70)^ , which can be 
very small if k is large compared to p.

Palta & Cook(1987) considered Monte Carlo studies to compare 
estimates of regression coefficients in longitudinal studies with weights o? estimated 
by the unpooled sample variances, pooled sample variance and empirical Bayes 
estimate. The results showed that the empirical Bayes method had the advantage of 
good performance in all situations (balanced and unbalanced designs).
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2.6 Graphical method to test adequacy of the prior

2.6.1 Test for overdispersion

The overdispersion with respect to the normal-theory model is measured 
by v, where small values of v mean large overdispersion, and large values mean 
variance homogeneity. It is of interest here to investigate the assumption of the inverse 
gamma prior distribution for the variances o^.

The first step is to check for overdispersion, i.e. as to whether there is 
any need to consider a more complicated model. This can be done informally by 
plotting the ordered sample variances Si against the expected order statistics of the chi- 
square distribution with/degrees of freedom (Pearson & Hartley, 1970, Table20). 
More formal procedures are available. Cox(1983) gives a general version of the test for 
overdispersion. Cox & Solomon (1986) show that the locally most powerful test for 
Ho: l/v=0 is based on the marginal distribution of the dispersion index,

(ssfyk

(SSj/k)2

which for large k, is asymptotically normal.
A better approximation for the distribution of /, when k is very small 

is given by the gamma or log-Normal distributions correcting for skewness. The plots 
in figure 1 compare the standardized third cumulants of /  with those of a gamma and a 
log-normal variable, each with the same coefficient of variation, as k varies from 0 to 
20, for f=2 and f=6. It is clear that, for small k (k<8), the standardized third cumulant 
of /  is better approximated by the standardized cumulant of the gamma, while as k 
increases (particularly for small f), it is closer to the standardized cumulant of a log- 
Normal variable. For larger values of f the normal distribution is a good approximation. 
The first and second moments of /  are calculated in appendix C.

(2.42)
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Figure 1. Comparison of the standardized third cumulants of the distribution of the 
dispersion index (2.42) with the third cumulants of the gamma and the log-normal 

with the same coefficient of variation for values of k

u I
* log-Normal 
+ Gamma

2.6.2 Probability plot of the inverse-gamma distribution

If overdispersion is detected it remains to investigate the assumption of 
inverse gamma prior assumption (2.1). An informal analysis based on a probability plot 
is suggested here.

Under assumption (2.1) the variable

{Si/(vx)}/{l+(S/vx)},

follows a Beta distribution with parameters f/2 and v/2. The cumulative distribution 
function of Sj is the incomplete Beta function,

F(Si) = Pr(Si<s) = Ix[(f/2),(v/2)],

where x=[s/(vx+s)],which is tabulated in Pearson (1934).
Then, assuming continuity of F(S{), it follows that 

<D-‘{ Ix[(f/2),(v/2)]}
is normally distributed. This suggest plotting

(2.43)

52



against the expected order statistics from the standard normal distribution, where 
x(i)=S(i/ (S (i)+VT) and are the ordered sample sum of squares. So, if the variances 
vary according to an inverse gamma prior distribution, then a straight line plot is 
expected, assuming that the model is Normal.

A strong departure from the inverse gamma prior assumption occurs 
when the variances come from a two point prior distribution, i.e

r x , with probability p
of = { ‘V  " " ( i - p ) (2.44)

To investigate the performance of the graphical method just described 
we consider two simulation studies where for some value of v and f  (x=l):

(i) the variances (Jj2 are simulated in the first one according to the 
inverse-gamma prior and in the second one according to the two point prior (2.44) (the 
values of x ls x2 and p are found by equating the first two moments of both prior 
distributions given v and x);

(ii) given the variances Oj2, generated according to (i), S[ are generated 
as

For both simulations then the ordered statistics (2.43) were plotted 
against the normal order staistics.

In Figure 2, plots (a), (b) and (c) compare the inverse gamma and the 
two point prior distributions for different values of the overdispersion parameter v and 
sample size f. The simulations show that, at least for large overdispersion (small v) the 
probability plots are more nearly a straight line when the prior distribution is inverse- 
gamma.

Clearly as v increases and the model tends to the normal theory model 
with constant variance, both plots will get closer to a straight line and it will become 
more difficult to distinguish between different prior assumptions. Also, for small 
values of k, (the simulation are for k=40) the visual impact of outliers is stronger and
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distinction between different shapes more difficult, but this is a handicap of all 
graphical procedures.

The question of making precise the statement of 'large overdispersion' 
is now investigated.

Denote the overdispersion parameter by co=l/v. Then the asymptotic 
variance of co0, the maximum likelihood estimate of co under the assumption of no 
overdispersion, Hq: co=0, is

Var(a>0) = 2/{kf(f+2».
If cot is the true parameter, then for cot>3x st.err (co0) the chance of 

detecting overdispersion is large. This means that for k=40, v<k1/2f/6 is approximately 
v<f. This is satisfied by plot (b), where the distinction between the two plots is more 
evident and the plot from the two point prior distribution reveals two very distinctive 
variance populations.

A more challenging situation is when the overdispersion has a 
reasonable but not an overwhelming chance of being detected (Cox, 1983). The 
variance of S /f  under the hypothesis of no overdispersion is 2t2/f. Thus if v~k1/2f 
the variance

Var(Si/f) £ 2i 2{1+ (f-2)/v}/f
is increased by OCl/Cfk1̂ )) and is at the border of detectability.

In this situation the probability plot will not be very efficient in 
discriminating between different prior distributions; it will look like a straight line in 
most situations.
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Figure 2. Probability plots of the normalized function of the sample variances, 
Uq  against the expected normal order statistics for ĉ 2 either coming from the inverse-gamma prior or the two point prior

Inverse gamma with v=5.0 and x=1.0.
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ESTIMATION IN PARALLEL STUDIES

3.1 Introduction
This chapter investigates inferences about the means from k parallel, 

independent studies. The purpose here is to illustrate empirical Bayes techniques that 
can be used to summarize evidence in the data (coming from the k studies) about the 
means, thereby obtaining improved estimates of the mean in each study.

The model considered is the normal model with means normally 
distributed. An important point is that the variances in each experiment are assumed to 
be known. The feature of the model is that the means present extra variability along 
with their respective known variances (usually measuring sampling error).

The model is not new and its derivation is reviewed in §3.2. Empirical 
Bayes confidence intervals for the individual means are constructed and a correction to 
allow for the errors in estimating the prior is calculated, along the same lines as in 
§2.3.3. Generalization to the linear regression model is considered in §3.5.

The theory is discussed and illustrated by considering two applications; 
the analysis of several 2 * 2  tables with data from 14 experiments on the effects of 
smoking and lung cancer (Cox, 1970, p.81) and a comparative study of the rates of 
growth of the AIDS epidemic in Europe.
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3.2 Empirical Bayes estimates

3.2.1 Formulation

We shall consider experiments in which it is reasonable to assume that 
the estimator Z{, of the i^1 experiment, has a normal distribution with unknown mean p. 
and known variance Vj, so that

Zi ~!VQii ,V i) independently i=l,...,fc. (3.1)
If the variances are unknown, they can be replaced by accurate estimates 

obtained from the data, without greatly affecting the analysis. This usually requires that 
Zi is an estimate based on a large amount of data.

The empirical Bayes model assumes that the p. themselves are normally 
distributed with mean m and variance x :

~ N ( m, x ) independently i= 1 ,...£, (3.2)
One of the motivations for (3.2) is that, although considering different 

means Jij in each experiment, it may be sensible to think of the experiments as chosen 
from a larger population with normally distributed means. A practical motivation is that 
it provides estimates with smaller standard errors. The important characteristics of this 
model are that m will measure the overall mean of the k experiments and x the extra 
variability in Z{, beyond the variability arising from the sample variances Vj.

Interest focuses on inference for the separate means fij and for the 
common mean m. Robustness of the empirical Bayes estimates from assumptions 
(3.1) and (3.2) will be examined in chapter 4.

Given m and x, the posterior distributions of the f '̂s are 
tZ/V.+m/xn -  n ( ------------- , (l/V .+l/x) *) , independently, i= l,...,&. (3.3)

l/V.+l/x

Two features of (3.3) are:
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(i) The empirical Bayes estimate of p.. , the posterior mean, is a 
compromise between the independent estimate Zj and the common mean m, with 
weights inversely proportional to their respective variances, Vj and x. Hence, each 
estimate, Zi} is pulled towards the prior mean m, the extreme values and the values 
with large variance (compared to x), experiencing most shift.

(ii) Standard errors are smaller than V ^ ,  producing shorter confidence
intervals.

The marginal distribution of Zj , obtained after elimination of the 
unknown means from the product of (3.1) and (3.2) by integration, is

Z N (m, Vj+ x), independently /=1,...,&. (3.4)
Empirical Bayes intervals for the means ^  are constructed from (3.3) by 

replacing the unknown parameters m and x by their respective estimates, calculated 
from the marginal distribution of Zj (3.4). For large values of k this empirical Bayes 
confidence interval, seems to be adequate, in most cases, whereas for small values of 
k, it is advisable to investigate the way in which the estimation of m and x affects the 
results. This will be done in §3.4 by comparing the coverage probability of the 
empirical Bayes interval with the expected coverage probability.

3.2.2 Maximum likelihood estimates of the prior parameters

The maximum likelihood estimates for m and x are found from the 
marginal distribution of Zv (3.4) and can be expressed as

m = X  Z / (V + i)!±  1/(V. + x) (3.5)
i=l i=l

and

i=l
( Z -  m )2-  V. 

(V;+ T)2 } / X  1/(V.+ T)2.
i=l (3.6)
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Note that m is a weighted average of the individual estimates Z{ with 
empirical Bayes weights (Vj+x).

Although there is no closed expression for the estimates of m and x,
£oCequations (3.5) and (3.6) provide an easy iterative procedure their calculation. Simply 

start with a guess for x (which can be the unweighted between means variation) and 
calculate m, using (3.5). Then calculate a new appproximation for x and repeat this 
procedure until the estimates stabilize, which will often be in a few iterations.

If the variances are constant, such that V ^V , then (3.5) and(3.6) 
become, respectively

m -  Z,

x = Z ( z . - z ) 2/k-v.i=l
In this case, negative values of x might occur when the 'estimated between means 
variation' is small compared to the within variation V. Thus, convergence of equation 
(3.6) to a negative value of x probably indicates that most of the variation of Zj is 
explained by Vj and we should estimate x by x =0. The analysis reduces then to the 
analysis of k normal populations with means m and known variances V-v

The maximum likelihood estimates of m and x are uncorrelated and 
their asymptotic variances are, respectively,

imm= { i l / ( V i+ x ) } _1,i=l

and (3.7)

i“ = { i i l / ^ + T ) 2}'1.Z i=l
The discussion now continues in the following sections by considering 

two applications: the analysis of several 2x2 tables and a comparative study of the Aids 
epidemic in Europe.
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3.3 Analysis of several independent 2*2 tables

3.3.1 Introduction

Randomized block experiments are a common tool in many contexts to 
compare treatments. A simple example is of k parallel studies in which individuals are 
assigned at random, either to a treatment or a control group and a binary response is 
measured, each separate study consisting of a single 2*2 table. Interest focuses on the 
estimation of the treatment effect. Usually, simple merging of the k tables is not 
advisable, since the response may be influenced by factors other than the treatment 
effect, such as characteristics specific to each study.

The empirical Bayes approach used here, provides a means of 
combining the evidence of the difference among treatments from all studies. It also 
produces improved estimates of the treatment effect in each experiment.

3.3.2 The model and the empirical logistic transform
Denote the probability of success in study /, for untreated and treated 

patients, respectively, as
0iO = e^iO/(l+ e^io ) and 0n = e^iV(l+ e ^ 1), (3.8)

where
Xy = logteij/a-Oij)], (j =0,1; i =1 ,...,£) 

is the logistic transform or the log odds ratio-of the probability Gy. The comparison of 
the difference among treatments is made in terms of the difference of the log odds ratio

Aj = ̂ ii-Xio = log {[0ii(i-eio)] / [eiod-On)]}. (3.9)

The reason for considering this reparameterization, is that it allows estimation of the 
treatment effect in retrospective studies, as in the example considered in §3.3.3. For a 
prospective study, in which the observed proportion of successes is an estimate of the 
probability of interest, other reparameterizations can be considered, such as the 
difference in the probabilities of success, Gii-0jo.
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Three possible models for the analysis of several 2><2 tables, suggested 
in Cox(1970), are:

(ml) ^ 0= oq and oq+Aj,
(m2) Xl0= cxj and oq+A and
(m3) Xj0= a  and X*i= a+A
Model (m l) assigns arbitrary probabilities to each of the 2k cells, and 

corresponds to a saturated model. Model (m2) specifies a constant logistic treatment 
effect but arbitrary probabilities for the k tables. It corresponds to a randomized block 
experiment where a l5...,ak are the nuisance parameters, and is probably the most 
commoiijused in applications. In model (m3) the probabilities are constant for all k 
studies and the data can be condensed into a single 2x2 table.

Various procedures have been suggested in the literature for the analysis 
of (m2). To mention two: unconditional maximum likelihood estimation as given by 
fitting a logistic linear model, and conditional maximum likelihood estimation based on 
the 'extended' hypergeometric distribution. The method used here is based on a normal 
approximation of the distribution of the empirical logistic transform,

Xij = log[(fly- 0.5)/(fljj~Ry-  0 .5 )], ( i= l,...,k; j=0,l),

where R[\ is the number of the n\\ treated individuals and R\q the number of the 
«i0  untreated individuals who respond positively. For a more detailed discussion of 
this form of the empirical logistic transform see (Cox, 1970, p.79).

For large n\\ and «io, provided that and Ojo are not too near 0 or
1, the variable

Z p  X̂ i X̂ Q,

is normally distributed with mean Aj and variance consistently estimated by

V. = V 1 / 2 . - 1TO
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If the treatment effect is supposed constant, model (m2), weighted least 
squares with estimated weights Vj and the techniques from the normal theory model can 
be used to estimate A. The problem in which we are interested, however, concerns the 
case of different treatment effects.

3.3.3 Studies on the association between smoking and lung cancer

We now turn to the data of 14 retrospective studies on the association 
between smoking and lung cancer Cox(1970, Ch.6). Table 7 gives the values of Z; and 
Vj1/2 from the separate analysis of each study. The data provide strong evidence 
against the hypothesis of a constant treatment effect, with the estimates of the treatment 
effect of studies 6, 7 and 11 standing out.

The question arises as to whether we believe that, for example, the 
effect of smoking on lung cancer in study 11 is actually 3.81 (on a logistic scale) with 
standard deviation 0.524, or whether it can be improved upon by using the information 
from the other studies. The estimation of the overall effect of smoking on lung cancer is 
another question of interest.

To combine evidence we assume that the treatment effect Aj in each 
study is normally distributed according to (3.2). As mentioned earlier, the motivation 
for (3.2) is that, although considering different logistic treatment effects, it may be 
sensible to think of the fourteen studies as chosen from a larger population with 
normally distributed effects. The results of §3.2, i.e. (3.3) and (3.4) follow  
immediately.

Maximum likelihood estimates of the common mean m and of the 
standard deviation x1/2 obtained from the solutions of (3.5) and (3.6) are

m = 1.69 and x1/2 = 0.639.
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The first approximation confidence interval for m is given by

m ± ka 1/(V. + x )}
-1/2

where is the lower a-quantile of the standard normal. The 95% confidence interval 
for m is (1.29, 2.09).

The empirical Bayes confidence interval for the mean of each separate
study is

{  — ------7 -  + k  ( l / V . + l / i ) " 1' 2 } .
l/V.+l/t °

(3.10)

Table 7 gives the empirical Bayes estimate of the mean, its standard 
deviation and the corresponding values of the 95% empirical Bayes interval of the mean
(3.10), for each of the 14 studies. An immediate comparison with the results obtained 
from the standard separate analyses confirms that all point estimates are moved towards 
the common mean p=1.69 and that the empirical Bayes standard deviations are smaller 
than the independent standard deviations. For example, in study 11 after combining 
evidence from the other studies, the treatment effect estimate is 2.96 with standard 
deviation 0.405, compared to 3.81 and 0.524. Confidence intervals with a treatment 
effect near the overall effect or with small standard deviation compared to x1/2 are 
changed only slightly, though are always notionally more efficient, as can be seen in 
studies 5 and 13.

The results in Table 7 do not allow for the variability of the estimates m 
and T. In the next section a correction for the significance level, to allow for this 
variability, is calculated along the same lines as in § 2.3.3.

As a final comment, if the Vys are not accurate estimates of the 
variances, an ad hoc procedure, which in practice works well, is to calculate the critical 
values of the confidence interval from a Student-/ distribution with the degrees of 
freedom associated with the estimated variance Vi-
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Table 7: Confidence intervals for the effect of smoking on lung cancer in each
of the 14 studies

Study z i V i1/2 95% C.I. emp.Bayes 
est. of Aj

(1/i+l/Vi)-1/2 95%E.B.C.I.

1 1.83 .653 (0.55, 3.11) 1.76 .456 (0.87, 2.65)
2 1.90 .607 (0.72, 3.09) 1.80 .441 (0.94, 2.67)
3 1.51 .463 (0.61, 2.42) 1.58 .374 (0.83, 2.32)
4 0.64 .327 (0.00, 1.28) 0.86 .292 (0.29, 1.43)
5 1.74 .212 (1.33, 2.16) 1.74 .200 (1.34, 2.13)
6 2.61 .370 (1.88, 3.33) 2.38 .319 (1.75, 3.00)
7 0.25 .546 (-0.82, 1.32) 0.86 .415 (-0.01, 1.73)
8 2.27 .401 (1.49, 3.06) 2.11 .339 (1.44, 2.77)
9 1.79 .625 (0.56, 3.01) 1.74 .447 (0.87, 2.62)

10 1.37 .268 (0.85, 1.90) 1.42 .247 (0.94, 1.91)
11 3.81 .524 (2.78, 4.83) 2.96 .405 (2.17, 3.76)
12 1.18 .275 (0.64, 1.71) 1.26 .251 (0.76, 1.75)
13 1.46 .173 (1.12, 1.80) 1.48 .167 (1.15, 1.80)
14 
m =

1.81 
1.69, x

.493 
= 0.639.

(0.85, 2.78) 1.77 .390 (1.00, 2.53)

3.4 Correction for the prior estimation.

3.4.1 Correction for the significance level
We turn now to the calculations of the correction for the significance 

level of the empirical Bayes interval (3.10) to allow for the errors in estimating m and 
x. With a slight change of notation (we will use again jij instead of to denote the 
mean of the i^ experiment mean) we proceed as in § 2.3.3.

The calculation, showed in appendix B, of the second order term of the 
bias of the maximum likelihood estimates m and x revealed that m is an unbiased 
estimate of m and that

E(x — x) = — { £  1/(V.+ X)} ~ = - i mm.
i=l
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Since m and x are uncorrelated (3.7), and the bias of m, is zero the 
bivariate extension of the correction factor (2.26) has only three terms different from 
zero. After some straightforward calculations to obtain the derivatives with respect to 
m and x, of the lower tail probability in interval (3.10), the correction for the 
significance level a  is

cjtn ,x) = —
(j)(-k ) d.

{k }+I  1/(1+<F>) a+<P;) “ l+<Pii=l

<t»(-ka) ̂ k d2cp. d. (2+cp. k2) o (k2 _ 3) (3.11)
(l+<Pi)Z l/(l+cpj )2 (1+<P;)3 (1+9;)2 “ 4(1+(p.)

i=l

where cp^Vj/x is the ratio between the individual variance and the prior variance, 
di=(Zi-m )/{(pix/(l+cpi) ) 1/2 is the standardized distance between the prior and the 
sample mean and is the (l-a)-quantile of the standard normal distribution. Thus 
ca(m,x) is the correction of the lower tail probability a  when allowing for the 
variability of the estimates of m and X. To obtain the coverage probability (up to 
o( 1/n)) of ( l -2 a ) ,  the empirical Bayes interval should be calculated from the a'- 
quantiles of the standard normal, where a '= a -ca(m,x) is the corrected significance 
level.

Table 8 gives the values of the correction ca(m,x), when a=0.025, for 
each of the 14 experiments of Table 7. An interesting feature of the results is that the 
correction for those experiments with a large negative dj is larger compared to those 
with a large positive dj, especially in studies 4 and 7. This is clear from expression
(3.11) where all the terms linear in dj are negative. Interpretation seems to be related to 
the fact that the method approximates the lower tail probability of the interval, thus for 
m>Zi (far from the lower tail) the correction for the lower tail probability is large and 
for m<Zi (near the lower tail) the correction for the lower tail probability is small. The 
indication is that for extreme dj the correction for the upper tail probability should be
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calculated and the average of the two corrections considered. Table 8 also gives the 
average of the the corrections for the lower and upper tail probabilities (column 4) and 
the 95% empirical Bayes interval based on this correction (column 5).

Table 8: Correction factor (3.10) for 95% empirical Bayes confidence intervals

Hierarchical Bayes
lower tail average e.B.est. of

Study 4 ca (m,x) ca (m,x) 2nd order E.B.C.I. (3.10) st.error 95% interval

1 0.31 .009 .011 (0.76, 2.76) 1.78 0.512 (0.78,2.78)
2 0.48 .007 .010 (0.84, 2.76) 1.83 0.488 (0.87, 2.79)
3 -0.48 .009 .008 (0.80, 2.36) 1.57 0.401 (0.78, 2.35)
4 -3.60 .021 .010 (0.04, 1.32) 0.81 0.302 (0.22, 1.40)
5 0.25 .001 .002 (1.34, 2.14) 1.74 0.204 (1.34, 2.14)
6 2.89 -.001 .010 (1.69, 3.07) 2.44 0.336 (1.78, 3.10)
7 -3.47 .039 .021 (-0.24, 1.96) 0.73 0.453 (-0.16, 1.62)
8 1.71 .000 .008 (1.39, 2.83) 2.15 0.358 (1.45, 2.85)
9 0.22 .009 .011 (0.76 2.72) 1.76 0.498 (0.78, 2.73)

10 -1.30 .006 .004 (0.92, 1.92) 1.42 0.254 (0.92, 1.91)
11 5.23 .005 .034 — 3.15 0.440 (2.29, 4.01)
12 -2.03 .009 .005 (0.75, 1.81) 1.24 0.258 (0.73, 1.75)
13 -1.38 .003 .002 (1.14, 1.81) 1.47 0.169 (1.14, 1.81)
14 0.31 .006 .008 (0.94, 2.60) 1.78 0.421 (0.96, 2.61)

Comparison of the intervals in Tables 8 and 7 reveals that the correction 
has some effect; the empirical Bayes intervals, corrected for the estimation of m and x, 
are larger compared to the 'first approximation' intervals in Table 7, but smaller than 
the standard separate 95% confidence intervals. Experiments 7 and 11, with the most 
extreme values of Idjl have the largest corrections, with the correction for experiment

ihod11 being larger then 0.025. This is related to the fact approximation is being calculated 
for small probabilities, thus, the error in the approximation may be large compared to 
the small value of the probability. In fact when a=0.010 the average correction also 
is 0.010. Nevertheless, the method seems to be sensitive to extreme observations and a
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robustness analysis, as discussed in chapter 4, is advisable.
Inference about the treatment effect in experiments 5 and 13, in all three 

analyses, is basically unchanged.

3.4.2 Hierarchical Bayes

As mentioned earlier, another approach to the elimination of the 
dependence of the posterior results on the unknown prior parameters is given by the 
hierarchical Bayes analysis.

As an illustration, we consider here the hierarchical Bayes linear model 
with a joint uniform prior distribution for m and x, 7 t ( m , x) s i .

Conditional on (Z ^ ...^ ), (V1,...,Vk) and x the distribution of m can
be shown to be

N{m *,[El/(V i+ x)]-1 }, (3.12)
where m*=ZZi/(Vi+ x)/S l/(V i+ x).
Note that m* is the maximum likelihood estimate of m when x, is known. To eliminate 
the dependence of the posterior mean of on m, we have to calculate the expectation 
of the posterior distribution (3.3) with respect to (3.12). It then follows that the 
posterior distribution of jij is normal with mean

Z./V. + m */xi i____'
l/V. + l/T

(3.13)

and variance
(l/V i + 1/t)-1 + (1/V; + 1/t)"2{ 2  l/(Vj+ X)}-1. (3.14)

The covariance of Jij and Pj is
(1 /Vi + l/xj-'O /V j + 1/x)-1 (Z  x2/(V;+ x) )->.

In order to eliminate the dependence on x we would have to calculate the expectation of 
the posterior mean and variance with respect to a distribution of x conditional only on 
(Z l5...,Z k) and (V1,...,V k). No analytical expression is available in this case.
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Berger(1985, Chapter 4) evaluated this integral when the variances Vj within 
experiments are the same. Another possibility is to integrate numerically x from the 
posterior quantities (3.13) and (3.14) with respect to the likelihood function of xt 
calculated from the marginal distribution (3.4)

r ni/(vi+x)11/2
« 1 --------------J e x p { -^ [Z z f /(V j+T)-m *E l/(V .+x)]}.

El/^+x) 2

Table 8 displays the results (columns 6 and 7) of the expectation of the 
posterior mean (3.13) and the posterior variance (3.14) with respect to the likelihood of 
x and the 95% interval (column 8). Comparison with the the second order emprirical 
Bayes intervals shows that in general both intervals are very similar, the latter being 
slightly smaller. The largest difference is for experiments 7 and 11 indicating that the 
approach correcting for the lower tail probability is more robust than the hierarchical 
Bayes with improper priors.

Lindley and Smith (1972) considered a general hierarchical Bayes model 
for the linear model with proper conjugate prior distributions.

Morris( 1983a) developed approximations to the posterior mean and 
variance which do take into account the additional errors in estimating the prior (see 
also Morris( 1983b)).

The analysis of the several 2 *2 tables considered in the last section is 
not completely satisfactory. It requires large values of ni0 and nA1 for the normal 
approximation of the logistic transform. Also it is not valid for probabilities 0io and 0n 
near 0 or 1, which is the case for some medical applications where events can have 
small probabilities.

A better approach would be to consider an empirical Bayes analysis 
based on the conditional distribution of the number of success r^ given the marginal 
total ti=ril-4-ri0. This is the 'extended' hypergeometric distribution (Johnson & Kotz, 
1969, p.160),
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which are independent for i=l,...,k.
Because of the intractability of this distribution, the solution would have 

to be numerical. The use of approximations for the posterior moments and the marginal 
distributions, as given in Tierney & Kadane (1984), together with the use of the EM 
algorithm (c.f. Dempster, Laird and Rubin, 1976) might facilitate the solution.

3.5 A more general model

3.5.1 Formulation
A natural extension of the i.i.d. assumption (3.2) for the P; is to 

consider that the Pj arise from a regression model
Hi =X;T0 + £j

where 0T = (0l5...,0p) is a vector of unknown regression coefficients and XjT a known 
vector of explanatory variables.

The extension of the results when e{ ~ N(0, x) is immediate: estimation 
of the hyperparameters 0 and x is based on the mixture distribution (3.4), with the 
unknown overall mean replaced by the regression mean Xj 0. Thus the maximum 
likelihood estimates of 0 and x are the iterative solution of equations (3.5) and (3.6). 
The mean of the posterior distribution (3.3) is then

Z./V. + xT0/x  1 1 1
1/V.+ 1/x

(3.15)

As an illustration of this model we consider in the next section, 
empirical Bayes estimates of the rates of growth of the AIDS epidemic in Europe.
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3.5.2 Rate of growth of the AIDS epidemic in Europe: a comparative
analysis

There is great variation between European countries in the overall 
incidence of AIDS and detailed interpretation of this variation would be difficult. The 
rate of increase is, however, more nearly constant, although showing non-trivial 
variation, and the object of this section is a comparative study of this rate of increase. 
To improve the estimate of the increase rate for a particular country, by combining the 
information from all the other countries, empirical Bayes methods are applied to the 
data.

Countries (Bulgaria, Czechoslovakia, German D.R., Hungary, Iceland, 
Luxemburg, Malta, Poland, Romania and U.S.S.R.) reporting very few cases have 
been omitted. For the remainder, quarterly data on new cases in 1986 and 1987 and the 
total number of cases to March 1986, reported in Table 10, were analysed by fitting a 
Poisson process with an exponential growth rate:

rate of incidence in year t = a  exp(pf).
While the rate of increase may be rather slower than exponential, the 

resulting estimate of P is a useful summary statistic for fitting the growth in the recent 
past, although not recommended for extrapolation.

The model specifies that the numbers of AIDS cases, Nj, in (tj_l5tj], 
(j=0,.-,s), with t_!--«>, follow Poisson distributions with means

to

[a  exp((3t) dt = a  exp(p to)/P = a  <po(p)
—oo
tj
j a  exp(Pt) dt = a  exp(pt.)(l-e'P5j)/P = a  9j(P)> 0=1,*..,s),

tj-i
where 8j=tj — .
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Maximum likelihood estimates of a  and (3 are the solutions of

a - N.p
exp(pt$ = 0,

V  N.d.expGPd.)
> - U ------1- = 0.j= f (l-exp(-P8.))

(3.16)

with N.=Z Nj , the total number of cases at rs.
Note that the maximum likelihood estimate of the increase rate, given by 

the second equation, is independent of the overall incidence rate a. This is because, 
conditional on the total number of cases N., (N0,...,NS) have a multinomial distribution 
with probabilities <pj(P)/E(pj(p), therefore, not involving a . The maximum likelihood 
estimate of p, given by (3.16) is equivalent to the maximum likelihood estimate from 
the multinomial conditional distribution of (N0,...,NS) given the total number of cases
N ..

The elements of the asymptotic covariance matrix of the maximum 
likelihood estimates are

s
= { a  X  exp(pt t) 5?/(l-exp(-p5.)) }

j=i

-l

S
va =  a  (t -P -1)2 {  X exP(Ptj.^/(l-expC-pSp) }  + apexp(-pts) ,

j=l

s -;L
vas= 1 ■j=i

Table 9 (columns (a) and (b)) reports the estimates of p and their 
estimated standard errors, vp1/2. Note that P is in yr.'l and the population doubling 
time is 0.69/p yr.. Some systematic features are apparent. To help in interpreting these 
the proportions of cases that are I.V. drug users (%IVDU), heterosexuals (%HE), 
homosexual/bisexuals, are also available in Table 9.
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(i) Belgium has a very low rate of increase. It has also a high proportion 
(58%) of heterosexual cases and known special circumstances. There is however some 
indication that a heterosexual epidemic would grow more slowly than one driven from 
the other sources.

(ii) The Mediterranean countries have high values of p and also high 
proportions of IV drug users.

Maximum likelihood estimates for the regression coefficients 0 and x 
(calculated from equations (3.5) and (3.6)) from the fitting of a normal model with 
mean

P = 0O + 0j (%IVDU) + 02(%HE) (3.17)

and variance

gave
X + Vp

parameter estimate (yr1) st. err.(yrl) 
0O 67.14 5.47
0! 0.62 0.19
02 -0 .46  0.23

and estimate of x (yr2) = 0.00941.
The fitted rates of increase for each country and corresponding standard 

errors are displayed in Table 9 (columns (c) and (d)).
The estimated model suggests, but of course does not prove, that the 

rates of growth of the epidemics amongst heterosexual, homosexual/bisexual and IV 
drug users are different and in increasing order. A direct check of this hypothesis has 
not been attempted here, although U.S. data might make this feasible. In fact, however, 
the hypothesis is in accord with other rather qualitative information on the issue.

Clearly Belgium has a major effect on the inclusion of the proportion of 
heterosexuals in (3.17). The fitting of the model with Belgium deleted from the data 
gives
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P* = 64.80(3.99} + 0.64 {0.15} (%IVDU), 
where the numbers in brackets are the standard errors.

Since for almost all countries (excluding Belgium) the largest proportion 
of cases are either homosexuals/bisexuals or IV drug users, there is the suggestion that 
the growth rate of the epidemic is determined by the rates of growth amongst IV drug 
users and homosexual/bisexuals. To check this assumption we consider the fit of a 
Poisson process with intensity

a 0exp(p0t) + (XjexpCPi t),
the sum of the two growth rates, subject to the constraint that the ratio of the expected 
numbers of cases in the two subpopulations at rs, equals the ratio of the observed 
proportions. However, there is not enough information in the data for sensible 
maximum likelihood estimates of the parameters to be achieved. This might be possible 
if the proportions were available for a further time.

To improve the estimate of the increase rate for a particular country, by 
combining the information from all the countries, we may calculate the empirical Bayes 
estimate of pj given by (3.15) and its standard error,

Emp. Bayes est. of pj = Xj pj + (1- Xp (fitted pj*), 
st. error of E.B. est of pj = X ^

where Xj= x/tx+Vp^.
This provides a compromise between the individual estimates (a) and the estimate from 
the fitting of the 'regression' (c). For countries with small standard error ( France, W. 
Germany, Italy, U.K.) the empirical Bayes estimate is effectively the individual 
estimate , while for countries with large standard errors the empirical Bayes estimate 
is near the 'regression' estimate.

An immediate comparison with the results in §3.3.3, Table 7, shows 
that here the individual estimates experienced less of shift than there. The reason is that 
here the estimate of the prior variance is large compared to the individual
variances Vj . Thus when Vi« x ,  the empirical Bayes estimate is essentially the
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individual estimate Z {. Also, the estimate of the regression coefficients from the 
maximum likelihood equations (3.5) and (3.6) are very to close to the ordinary least 
squares estimates. On the other hand when the individual estimates Z-x would
experience a large shift towards the regression estimate x^G, and maximum likelihood 
estimation of the coefficient is equivalent to a least squares estimation with weights V-v

Table 9. Estimated exponential rates o f increase fo r  18 European countries.
fitted Pj(yrl)

est. Pj (yr1) from (3.17) emp. Bayes(yr1) %ivdu %he%hom
(a) (b) (c) (d) (e) (0 <g> (h) (i)

est. ft st. err. est. st. err. est. st.err.
Austria .834 .081 .807 .041 .823 .062 23 2 5
Belgium .304 .028 .416 .111 .313 m i 2 58 25
Denmark .585 .048 .661 .046 .601 .043 2 5 84
Finland .447 .124 .618 041 .553 .076 4 17 71
France .851 .017 .724 .038 .847 .017 12 5 62
W. Ger. .731 .021 .714 .042 .731 .021 9 3 75
Greece .985 .116 .571 .848 .741 .074 1 23 47
Ireland .803 .161 .846 .045 .834 .083 30 3 27
Israel .394 .081 .684 .052 .514 .062 2 0 61
Italy 1.033 .030 1.054 .094 1.035 .029 64 4 21
Netherl. .687 .040 .687 .048 .687 .037 4 2 87
Norway .681 .098 .677 .041 .679 .069 6 7 79
Portugal .710 .089 .547 .064 .636 .066 6 35 51
Spain .997 .039 .999 .076 .997 .036 53 1 25
Sweden .641 .061 .639 .047 .641 .052 0 7 81
Switz. .636 .041 .744 .035 .652 .038 19 10 63
U.K. .717 .024 .665 .047 .714 .024 2 4 85
Yugosl. 1.317 .273 .810 .042 .867 .091 28 8 40
Doubling time 0.693/P yr.
(Based on report of the WHO Collaborating Centre on AIDS)



Table 10. Total number o f  AIDS cases reported in 18 European countries
CountryMar. 86 Jun. 86 Sep. 86
Austria 34 36 44
Belgium 160 171 180
Denmark 80 93 107
Finland 11 11 14
France 707 859 1050
W.Ger. 459 538 675
Greece 14 22 25
Ireland 8 9 10
Israel 23 24 31
Italy 219 300 367
Netherl. 120 146 180
Norway 21 24 26
Portugal 24 28 40
Spain 145 177 201
Sweden 50 57 76
Switz. 113 138 170
U. K. 287 340 512
Yugoslavia 3 3 3

Mar. 87 Jun. 87 Sep. 87 Dec. 87
72 93 120 139

230 255 277 277
150 176 202 228

19 19 22 24
1632 1980 2532 3073
999 1133 1400 1669

42 49 78 88
14 19 19 25
38 39 43 47

664 870 1104 1411
260 308 370 420

45 49 64 70
54 67 81 90

357 508 624 789
105 129 143 163
227 266 299 355
729 870 1067 1227
10 11 21 26

Dec. 86
54

207
131

14
1221
826

35
12
34

523
218

35
46

264
90

192
610

8
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CHAPTER 4

ROBUSTNESS of EMPIRICAL BAYES ESTIMATES

4.1 Introduction

This section is devoted to studying the sensitivity of the empirical Bayes 
analysis to possible misspecification of either the prior or the sample distribution. The 
approach adopted here considers a larger class of distributions with departures from the 
normal distribution, and then investigates robustness of confidence intervals for the 
means as the distributions vary in that class. Specifically, empirical Bayes estimates are 
calculated for the mean and its variance when the distributions of the sample and prior 
means are not normal and belong to the specified class. The comparison with the 
empirical Bayes estimates calculated from the normal assumptions gives the correction 
for departures from normality and indicates the sensitivity to distributional shapes.

4.2 Correction for the empirical Bayes estimate of the mean

With a slight change of notation, the analysis in the previous chapter 
was based on the normal assumptions,

Xj -  N  (M-i, a*2), (4.1)
1 N  (m, x2) independently i=l,...,& (4.2)

with m  and x2 estimated from the data and o 2̂ known.
For convenience the suffix i will be omitted unless otherwise noted.
We suppose now that X is the mean of n independent, identically 

distributed random variables whose distribution has standardized cumulants pr. The 
Edgeworth expansion of the density of X about the normal density is
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/(xl p) = a  '<(i(zs){ 1+ p3h3(zs)/(6n1/2) + p4h4(zs)/(24n) 
+p32h6(zs)/(72n) +0(n-3/2)}, (4.3)

where <J)(.) is the standard normal density and zs = (x -  |i)/a is the standardized 
version of x. The hermite polynomials hj(z) are defined by

and explicit expressions for the first seven hermite polynomials (see Kendall and 
Stuart, vol.l, p.167) are

The effect of non normality on the prior distribution will be studied by 
considering the class of 'perturbed' prior distributions approximated by

where zp = (|1 -  m)/x is the standardized version of |i and K3/n1/2, K4/n,... are the 
standardized cumulants of the 'true' prior distribution of p. The prior distribution does 
not depend on n\ however its cumulants are expressed as powers of n~l as an artefact 
to simplify the comparison between sample and prior distribution, it being assumed 
initially that we are interested in situations in which the departures from normality are of 
roughly equal importance in the two components. The index p  in zp stands for prior 
and s in zs stands for sample.

h0(z) = 1,
hi(z) = z,
h2(z) = z2 -  1,
h3(z) = z3 -  3z,
h4(z) = z4 -  6z2 + 3,
h5(z) = z5 -  10z3+ 15z,
h6(z) = z6 -  15z4+ 45z2-  15.

/(plm) = t ‘<Hzp) {1 + K3h3(zp)/(6n1/2) +K4h4(zp)/(24n) 
+ K32h6(zp)/(72n) + 0(n-3'2)}, (4.4)

The posterior mean and variance assuming that (4.3) and (4.4) are the
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'true' distributions are calculated from the posterior distribution of |x
f([L\x) = /n(M-; pN,VN){ 1 + [p 3h*3(zs)+K3h*3(Zp)]/(6n1/2) + 

[p4h*4(zs)+K4h*4(zp)]/(24n) + [p32h*6(zs)+K32h5*e6(zp)]/(72n) + 

[p3E(h3(zs)!x)+K3E(h3(zp)lx)][p3h*3(zs)+K3h*3(zp)]/(36n)+
P3K3 [h3(Zs)h3(zp)-E {h3(zs)h3(zp) lx} ]/(36n) + 0(n"3/2)}, (4.5)

where pN and VN are, respectively the mean and variance of the posterior distribution 
/ N(p;pN,VN) based on the normal assumptions (4.1) and (4.2) and

hj*(z(|i)) = hj(z(|i)) -  E[hj(z(|i))l x]
is a location invariant version of the hermite polynomials where z(|i) is a linear function 
on fi. The expectations in (4.5) are taken with respect to the posterior normal density 
/n (W M-N’̂ n) •

The calculation of the posterior mean of (4.5) involves the calculation of 
E[ hj*(z(|i))p I x] =E{ hj[z(p)][p-pN] I x}

= VN1« E{ hj[z(n)] h1[(ii-|lN)A,N1/2] I x} 
and

E{ hj[z(p)] I x} = E{ hj[z(p)] h0[(p-pN)Â N1/2] ' x).
A general formula to calculate the above expectations is given by,

(for a proof see appendix D).

In particular for z(p)=zs and z(p)=zp it is possible to show that

(j-r)! (<j2+ x 2)>a h. (-d ),J-r

and
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E{h.(Z ) h ( l ^ i ) l x }  =1 r Py 1/2 ' J1/2
N (j-r)! (cr+ xz)i ^ M 12 j"rh. (d ),

where d= (x -  m)/(o2 + x2)1/2, is the standardized distance between the sample mean 
and the prior mean.

A better and more illuminating way of writing the results is in terms of 
the dimensionless ratio (p2=x2/o2 between variances. Thus, after some straightforward 
calculations we show that the standardized correction for the empirical Bayes estimate 
|iN when the 'true' underlying distributions satisfy (4.3) and (4.4) is

BM‘Hl» . w g v . „ * y r ^ > h 241
V“  6 n ,l*» V  ’ 2 n (lV )>

+
(p2((p2 -  l)p3K3 

2n( 1—cp2)3 {d2-  2d} + O (rf3/2). (4.7)

One important point to note about the form of (4.7) is, as would be 
expected, that the leading term corrects for skewness whereas kurtosis is corrected by 
the second order term.

Before commenting on the form of (4.7) with respect to d  let us 
examine its behaviour with respect to cp. The Taylor series expansion of (4.7) for large 
cp is

q>_1{ ^ h 2(d)/2nia + [2K4h3(d) + K ^ e f i  -  2d))]/n}-K?((fT2), 
and for small 9 ,

<p{p3h2(d)/2n1/2 + [2p4h 3(d) + p32(^  -  2$]/n}+0(cp2).
Hence, if the prior variance is large compared to the sample variance (large cp) the 
correction (4.7) depends only on the prior cumulants k3 and k4, to first order in cp, 
suggesting that departure of the prior from normality is the more important factor 
affecting p,N. In other words, for large cp, |iN is a robust estimate of the mean with
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respect to departures from normality of the sample distribution. If, however, the sample 
variance is large compared to the prior variance (small cp), the important factor affecting 
|IN is departure of the sample distribution with respect to the normal. These results are 
no surprise since the normal posterior mean fiN, is a weighted average of the prior and 
sample mean with the respective variances as weights. The last term of (4.7) is of 
smaller order in 9  (for all cases) and will be ignored in the following discussion.

Robustness arguments clearly depend on the actual observed values and 
here this is reflected by the form of the correction factor (4.7) with respect to d.

(i) When d=0 the only non null term is the first order term correcting 
for skewness with h2(d)= -1. For skewness of the prior distribution the posterior 
mean is moved away from its larger tail and for skewness of the sampling distribution it 
is moved towards its larger tail. But, unless the third cumulants are very large the 
correction is small.

(ii) The effect of skewness on the posterior mean for moderately large 
\d\ is dominated by the first order term, which moves E(|il x) from |iN in the direction 
of the longer tail of the skewed prior distribution and moves E(jil x) from pN in the 
opposite direction away from the longer tail of the skewed sampling distribution (see 
figure 3). Thus, for example, if d>0 (x<m) the posterior mean will tend towards x if 
k3>0 or towards m  if p3>0. The latter could be interpreted as a correction for possible 
outliers in the longer tail of the distribution of x. The third term, correcting for 
skewness, has an additive effect when the skewness is negative and a subtractive effect 
when the skewness is positive.

(iii) The effect of kurtosis in the posterior mean is represented by the 
second term in (4.7). For moderately large Idl, the posterior mean will tend towards the 
sample mean x when the prior distribution has positive kurtosis, k4>0, or will tend 
towards the prior mean m  when the sampling distribution has p4>0. These results 
agree with Dawid(1973) that for large \d\ the empirical Bayes estimate from a prior 
distribution with a flat, i.e. long, tail is closer to x. This is advisable if we consider that 
an extreme observation should somehow discredit the prior value m. On the other hand
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for a sample distribution with a flat tail, the empirical Bayes estimate is closer to m, 
suggesting that x is an outlier.

Considering both the effect of skewness and kurtosis, the correction is 
generally larger when the signs of the two first terms in (4.7) are equal. Since we are 
considering positive kurtosis, the correction will be large when x is in the longer tail of 
the prior distribution (figure 3, (al)) or when m  is in the smaller portion of the 
sampling distribution (figure 3, (b2)). In the former the posterior mean will tend to x 
and in the latter to the common mean m. This is illustrated by Table 11(a), which 
shows the values of the correction for positive skewness and kurtosis of the sampling 
distribution,p3= l, p4=l and cp=l, for some values of d and h; the correction is larger 
when m<x. Table 11(b) calculates the correction for p3= - l ,  p4= l and cp=l and the 
values are slightly larger than in the previous table because of the additive affect of the 
second order term correcting for skewness. The larger correction is when d<0, i.e. 
when m  is in the smaller tail of the sampling distribution.

The correction for departures of the prior has the opposite sign to the 
correction for equivalent departures of the sampling distribution. Thus, for a prior 
which mimics the sampling distribution the effect will tend to be cancelled and the 
correction negligible.

Note, however, that (4.7) may give rather bad values as d—»°o, since 
the hermite polynomials are unbounded. This is due to the fact that Edgeworth 
expansions, using the three correction terms in (4.3), are not usually good 
approximations in the tails of the distribution (Bamdorff-Nielsen & Cox, 1979). In fact, 
when (K4cp2 -  p4)>0, d>0 and p3=K3=0, E(fi|x) may be greater than x if

d> [3 + 24n/(K4(p2 -  p4)}i/2?

that is if d ~ O (n1/2). However, this represents quite extreme values of d, as for 
example, when n=4 and (K4<p2-p 4)=l then d>!0.

In the empirical Bayes approach m  and x2 are estimated, and can be 
interpreted, respectively, as the weighted mean of the separate experimental means and
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the between sample variation. The error incurred in replacing m  and % by their 
maximum likelihood estimates is 0 (k r 112), where k is the number of samples.

While theoretically, expression (4.7) could be used as a correction for 
}IN in the case of suspected non normality, it requires a large sample size n and 
estimates of the cumulants for each separate sample, and so the feasibility is 
questionable.

Table 11: Correction (4.7) o f  the posterior mean |iN when
(a) p3=l, p4=l and cp=l.

n=l n=2 Ti­lla n=10 n=20 n=30
d

5.0 -7.89 -4.82 -3.03 -1.71 -1.13 -0.90
4.0 -4.32 -2.71 -1.74 -1.01 -0.68 -0.54
3.0 -1.98 -1.28 -0.85 -0.50 -0.34 -0.28
2.0 -0.61 -0.42 -0.29 -0.18 -0.12 -0.10
1.0 . 0.02 0.01 0.01 0.00 0.00 0.00
0.0 0.18 0.12 0.09 0.06 0.04 0.03

-1.0 0.10 0.05 0.03 0.01 0.01 0.00
-2.0 0.05 -0.08 -0.12 -0.11 -0.09 -0.08
-4.0 1.02 -0.04 -0.41 -0.47 -0.41 -0.36
-5.0 2.53 0.39 -0.43 -0.66 -0.61 -0.55

(b) p3=- P4= 1 and (p=l.
n=l <NIIC n=4 n=10 n=20 n=30

a
5.0 0.60 1.18 1.21 0.98 0.77 0.65
4.0 0.98 1.04 0.91 0.67 0.51 0.43
3.0 0.85 0.72 0.57 0.39 0.29 0.24
2.0 0.45 0.33 0.24 0.16 0.11 0.09
1.0 0.02 0.01 0.01 0.00 0.00 0.00
0.0 -0.18 -0.12 -0.09 -0.06 -0.04 -0.03

-1.0 0.10 0.05 0.03 0.01 0.01 0.00-2.0 1.11 0.67 0.41 0.23 0.15 0.12
-3.0 3.10 1.84 1.13 0.62 0.40 0.31
-4.0 6.32 3.71 2.24 1.21 0.78 0.61-5.0 11.01 6.39 3.81 2.02 1.29 1.00
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4.3 C orrection for posterior variance

To investigate the effect of non normality on confidence intervals we 
consider the posterior variance of |i,

Var(|ilx) = E[(|i-|iN)2|x] -  [H((x|x) - HN]2.
Since,
E[hj*[z(p.)] (ii-HN)2|x )) = VN E{hj[z(|X)] h2[(n-nN)Â NW]|x), 

using (4.6) it can be shown that,
<p(p cp+K ) cp2(p +K )

Var(nlx) = VN{ 1+ ^  \ ( d )  + H d )n (l+(p2) 2n(l+cpz)

<P2(Pj + *2)
2n(l+cp2)3

| P 3K3 
n(l+cp2)3 2 1^0 )+<p3 (2h20 )+ ! ) } } ,

where d= (x -  m)/(o2 + x2)1/2.
As in the posterior mean the leading term of the posterior variance 

corrects for skewness.
When ^=0, the first order term vanishes. The term correcting for 

kurtosis is negative and in general Var(pjx) will be close to and often smaller, in this 
case VN overestimates the 'true' variance.

The qualitative behaviour of the leading term <9 (n-1/2) for positive 
(K3<p+p3) is that Var(|i|x)<VN when x<m and Var(|i|x)>VN when x>m. The 
interpretation for positive skewness of the prior distribution is simply that for x in the 
left portion of the prior distribution (which compared to the Normal is less dispersed) 
VN overestimates the 'true' variance and for x in the right portion of the prior 
distribution (which compared to the Normal is more dispersed) VN underestimates the 
'true' variance. The interpretation for positive skewness of the sample distribution, 
while not so clear, might be that for large d  and for m  in the left portion of the sample 
distribution (x>m) there is conflict between prior and sample information, and the
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variance of a robust estimate should be bigger.
When both distributions are symmetrical, that is p3=K3=0, the leading 

term is 0(n-1) and involves only the fourth cumulants correcting for kurtosis. The 
behaviour with respect tod is: for !dl<l, VN overestimates the ’true' variance and for 
large d, VN underestimates the 'true' variance. Hence, when there is conflict between 
sample and prior means VN may considerably underestimate the true variance, 
especially for large d  and small n, and the empirical Bayes confidence interval based 
on the normal assumptions may be seriously too small.

The asymptotic expansion of (4.8) for large 9  is
VN{  l+p3/<pn1/2[h,(rf) + K3h2(d)/2nW]}+0(<p-2). 

and for small tp is
VN{  l+cpiCj/n^th^rf) + p3h2M)/2ni'2]}+0((p2).

It is interesting to note that for large or small 9  the term correcting for 
kurtosis is of smaller order. Also, differenting from the results for the mean, the 
variance depends on both third cumulants. Thus for large 9  (x2>o2) the term 0 ( r r l/2) 
corrects for skewness of the sample distribution while for small 9  (x2<o2) it corrects 
for skewness of the prior distribution.

In contrast to the case of the posterior mean, departures of the same kind 
for both the sample and the prior distribution give rise to terms with the same sign, 
increasing the correction for the posterior variance, as illustrated in the example below. 
Tables 12 (a) and (b) give the values of the ratio between the variances Var(p|x)/VN 
calculated from (4.8), for p3=K3=p4=K4=l and p3=p4=l, k3=k4=0 when 9 2=1, 
respectively. Because skewness is positive in both cases the correction is larger for 
positive d  when the posterior variance is underestimated by the variance from the 
normal assumptions. The posterior variance is overestimated for values of d  around 
zero when the ratio is smaller than 1. Only in the very extreme situation, in Table 12(b), 
of n=l and d=-5.0, was a negative ratio calculated as a consequence of the poor 

approximation given by the Edgeworth expansion at the tails of the distributions.
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Table 12: Ratio between posterior variances Var(jjJx)/VN

(a) p3:=i. p4=1>k3=1, k4=1 and cp=l.
n=l n=2 n=4 n=10 n=20 n=30

d
5.0 15.10 8.78 5.41 3.17 2.32 2.00
4.0 10.45 6.31 4.07 2.56 1.96 1.74
3.0 6.68 4.28 2.95 2.03 1.65 1.51
2.0 3.79 2.69 2.05 1.58 1.38 1.30
1.0 1.77 1.53 1.37 1.23 1.16 1.13
0.0 0.62 0.81 0.91 0.96 0.98 0.99

-1.0 0.36 0.53 0.66 0.78 0.85 0.87
-2.0 0.96 0.69 0.64 0.69 0.75 0.79
-3.0 2.44 1.28 0.83 0.69 0.70 0.73
-4.0 4.80 2.31 1.24 0.77 0.70 0.70
-5.0 8.03 3.78 1.87 0.94 0.74 0.71

IICLS P4=1 and (p=l.
n=l n=2 n=4 n=10 n=20 n=30

d
5.0 3.49 2.61 2.06 1.63 1.43 1.35
4.0 2.85 2.22 1.82 1.49 1.34 1.27
3.0 2.28 1.86 1.59 1.36 1.25 1.20
2.0 1.77 1.53 1.37 1.23 1.16 1.13
1.0 1.32 1.23 1.17 1.11 1.08 1.06
0.0 0.94 0.97 0.98 0.99 1.00 1.00

-1.0 0.62 0.73 0.82 0.89 0.92 0.93
-2.0 0.36 0.53 0.66 0.78 0.85 0.87
-3.0 0.16 0.36 0.52 0.69 0.77 0.81
-4.0 0.02 0.22 0.40 0.60 0.71 0.76
-5.0 -0.05 0.11 0.30 0.51 0.64 0.70

To conclude, we illustrate the results when the prior distribution is non- 
Normal with k3=1, k4=1 (figure 3, a) and when the sampling distribution is non- 
Normal with p3=l, p4=l (figure 3, b). The figures show the direction of the shift of 
the posterior mean from |iN and the size of the posterior variance compared to VN. The 
effects on the posterior mean and variance are larger when the first order term 
correcting for skewness and the correction for kurtosis have the same sign, i.e. when:

(i) in (al) the sampling distribution is in the larger tail of the prior,
(ii) in (b2) the observed sample is an outlier from its distribution.
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Figure 3. Illustrative example o f  the effect o f  skewness and kurtosis 
in the posterior mean and variance

(a1)

var(M- lx) >

(a2)

(b1)

var(n lx) <

(b2)

var(M- lx) >

4.4 Conclusions and remarks

Two situations can be distinguished in the discussion of robustness; one 
when d { is small, i.e. when the likelihood is in the central portion of the prior 
distribution, and one when d  is large and the likelihood is in the tail of the prior 
distribution (subscripts, indicating different populations, are now included for clarity of 
the discussion).

In the first situation of small distance between x. and m, the results 
indicate that the use of the normal distribution is reasonably robust to small departures 
from normality of both the prior and the sample distribution. The posterior mean is 
close to |iN and the posterior variance is close to VN, in some cases being smaller than 
VN, as illustrated in Table 12. Thus, in this situation of small d. the computational
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simplicity of the normal distribution makes its use attractive.
However, the situation just discussed is not really of much interest since 

for m  close to x. the empirical Bayes estimate has little effect on the individual 
estimates x..i

In the more interesting situation of large d., the empirical Bayes 
estimate of the mean, from the normal assumptions, can be intuitively unappealing, 
being close neither to the common mean m  nor to the sample mean x. and the variance 
being substantially underestimated by VN. The results of the previous section show that 
priors with flatter tails will tend to be robust in the sense that they are less influential if 
the likelihood is in the tail; the estimate of the mean will be closer to its sample mean x. 
and the variance bigger, reflecting the conflict between m  and x.. On the other hand if 
the sample distribution has flatter tails the estimate of the mean will be close to the prior 
mean m, interpreting x. as an outlier and the variance will again be bigger, reflecting 
the conflict between m  and x..i

The difficulty now is to determine what is large d., and alternative 
estimates in the case when the normal assumptions are not advisable. Note that d. is 
the standardized version of x. with respect to its marginal distribution,

x. ~ N  (m, <j2+t2).
In extreme cases one could be alert to a robustness problem by the surprisingly large 
value of Idjl. At least as a guide, significance tests based on the marginal distribution 
could be used to determine what is surprisingly large, although it does not seem 
possible to determine if the robustness problem is from the model or from the prior. 
Berger(1985, Ch.4) discusses the role of the marginal distribution in robustness of the 
prior distribution.

While distributions with flat tails are likely to appear in some 
applications, implementation is difficult and the results, in most cases, can be obtained 
only numerically. However, the results indicate that the use of the normal is not 
advisable for extremely large Id.l. One possible way of overcoming this difficulty is to
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consider estimates of the form
>*N ldi' 2 d0

ldil> d o’
if x2 is larger or of the same order as <5-2, or

Mn ldi'^ do 
u. = { .1 1 m Id I > <Li 0

if G 2 is much larger compared to x2. In this last case we are interpreting xj as an outlier 
from its own distribution.

Perhaps a more relevant discussion about the behaviour of confidence 
intervals, in the presence of departures from normality, would be in terms of their 
coverage properties. However, such discussion would involve conditional probabilities 
and has not been attempted.
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CHAPTER 5

INFLUENTIAL OBSERVATIONS IN THE ALLOCATION PROBABILITY TO
TWO NORMAL POPULATIONS

5.1 Introduction

In the last chapter the effect of extreme observations on the empirical 
Bayes estimate of the mean was analysed in a robust framework. In other words the 
effect of extreme observations was studied comparing the changes in the empirical 
Bayes estimates with respect to changes in the distributional assumptions. It was 
shown that, for example, empirical Bayes estimates for the mean of a population with 
an extreme sample mean from a prior with flat tails (compared to the Normal) would 
tend to be more robust in the sense that the empirical Bayes estimate would experience 
less shift towards the prior mean.

Another way of examining the effect of extreme observations is by the 
use of Influence measures.

A Bayesian approach to the problem of influential observations in 
regression is review ed in Geisser(1984). It compares the posterior distribution of the 
parameters with and without the set of observations whose influence is to be 
determined. If the objective is to ascertain the influence of observations in the prediction 
of a future observation then the predictive distribution is used. As an indicator of the 
discrepancy between the two distribution functions (with and without the observations 
whose influence will be measured), the Kullback-Leibler information measure 
(Kullback & Leibler, 1951) is used. Comparisons with the Cook’s statistics (Cook & 
Weisberg, 1982) for the influence of an observation with regard to the estimation of 
regression parameters are made.

The same methodology is applied here to Bayesian discriminant
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analysis, in which training samples are available from two normal populations, it being 
required to calculate the probability that a new individual comes from one of the 
populations. Interest focuses on the influence of individual observations in the training 
sample on the allocation of future observations. This influence is measured by 
comparing the posterior probability of allocation with and without the observation 
whose influence we want to measure.

If one is interested in evaluating the influence of observations in the 
training sample when the observation we want to classify is not yet observed more 
relevant approaches are available. For two normal populations, one possible approach 
is logistic regression and the methods described in Cook & Weisberg(1982) could be 
applied. Also Copas(1988), in an important paper, discusses influence of outliers in 
binary regression and develops techniques for robust estimation.

5.2 Formulation

Let the two populations, 7tj and 7t2, have p -multivariate normal 
distributions NQij, Zx) and N(}i2, £ 2) with mean vectors Jij, |x2 and covariance 
matrices Zlt Z2. Further, let the training samples be of equal size n and have mean 
vectors xx, x2 and estimated covariances matrices Slf S2. We assume that (jij, Ej) and 
(l^, S y  are independent with known prior distribution g(|i, £).

Let z denote the future observation and qj and q2 the a priori 
probabilities of classifying z in populations 7̂  and 7t2.

On the basis of the full training data the posterior probability that z 
comes from 7tj, given z, is

q, /  (z I*,. s,,it)Pi = -----------; ----------------------- l— ------------ , (5.1)
q j  (z I Xj, Sr  7 )̂ + q2f  (z I x2, S2, tc2)

where /(z I Xj, Sj, TCj) is the predictive distribution of z, given that z comes from 7tj, 
(j= U ).
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Suppose that the i th observation from the training sample of 7̂  is 
deleted. We denote x^, the new sample mean vector and covariance matrix of Ttj, 
respectively.

The new value of the posterior probability that z comes from 7Clf given
z, is

i qt/  (z |x r  s ‘ , n  )
pi n  ; : • (5.2)

Q\f (z  ̂  ̂X2’ ̂ 2’ ̂ 2̂

One way of assessing the influence of the deleted observation i in the 
allocation probability is to measure the difference between (5.1) and (5.2). To do this 
we use the Kullback-Leibler information measure of distance which is the expected 
value of the logarithm of the ratio between the posterior probabilities of allocation (5.2) 
and (5.1),

I(i)(z) = Pi1 ln (Pi* /Pi) + (1-Pi*) lntO-pji) /(1-Pi)], (5.3)
with the expectation taken with respect to (5.2).

The influence index (5.3) provides a way of ordering individual 
observations based on their impact on the allocation probability of z. Note that the 
index of influence defined above is conditioned on z, so the order of influential 
observations depends on the particular future observation z.

5.3 Equal and known covariance matrices

To demonstrate the calculations and analyse the dependency of the 
influence index I(j)(z) on the deleted observation i and the future observation z, we 
consider first the simplest situation of equal and known covariance matrix Z. We also 
assume vague prior distribution for ^  and i^, so that the predictive distributions of the 
future observation z are multivariate normal,

/(z I xj, Z, 7tj) =Np( xj, (n+l)Z/n),
/(z I Xj1, Z, TCj) =Np( Xji, nZ/(n —1)), (j=l,2). (5.4)
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Since a simple explicit expression of I(i)(z) is not obtainable when we 
substitute (5.4) in (5.3), we consider an approximation for large n.

Write
dy=Z 1/2(xij-Xj), (5.5)

where Xy is the deleted observation from population Ttj (j=l,2), and

S-i'2 = ptDiag(V'2>->V'2) P ’

with Xj.... X the characteristic roots of X-1.
Also let

Aj2(z) =  (z -Xj)1 X "1 (z -Xj),
<̂ j(z) = exp(-(l/2)Aj2(z)>, (j=l,2). (5.6)

The first term of the expansion of (5.3) in powers of 1 In in terms of 
(5.5) and (5.6) is then

i y Z )={
q ^ / z ^ z  )

2n2[ q^^z ) + q2<t>2(z )]2 } { A 2(z )}{d ;.d j.} . (5.7)

where the deleted observation i e jc., j=l,2.
The expression above has a nice factorization in terms of the different 

sources of influence. The first is an overall influence for a given z and has its 
maximum value when q^^z) = The second component gives the population
influence, so that if z is near the mean of n v  that is, A12(z)<A22(z), the observations 
from n 2 will have relatively large values of (5.7). The third component gives the 
observation influence within a population, so that if A12(z)=A22 (z), the 
most influential observation will be the one most distant from z.

Using an extremely small value of n in order to check the adequacy of 
(5 .7) as an approximation to I(i)(z), ten observations were generated from the two 
bivariate normal distributions,

^O.QNjCjXlJ+O.lN.Uj),!}
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and

3t2 = N 2{(o)’1)-

The data are shown in Figure 4, in the end of this chapter.
The measures I(i)(z) and I*(i)(z) are calculated for data of figure 4 and 

z=(0.65, 0 .93) and the observations corresponding to the ten largest values of I(i)(z) 
are then ordered. The results are shown in Table 13.

Table 13. Comparison o f  the influence index I(i)(z) and its approximation I(i)*(z) fo r  
z=(0.65, 0.93), with covariance matrix assumed known and equal to E, the sample

pooled covariance matrix

X1 x2 Obs. Pop. IPi1 “ Pil x io2 I(i)(z)Xl03 I(i)*(z)xl03

1.25 1.30 5 2 5.41 7.24 6.77
2.27 -2.09 3 2 5.52 7.03 7.30
0.81 2.11 9 1 3.78 3.33 2.19
1.45 -1.69 8 2 3.27 2.50 2.58
2.05 -1.06 4 2 2.40 1.35 1.32
2.14 -1.31 10 1 2.16 1.13 1.75
3.70 1.20 7 2 2.01 0.97 0.75
0.23 -0.57 1 2 1.54 0.57 0.50
1.09 -0.15 10 2 1.49 0.54 0.52

-0.30 0.68 7 1 1.45 0.50 0.32

f  3.13 0.56
XjKO.71, 0.14), x2=(1.91, -0.29), £ = (  Q _  {
qj=q2=0.5 and p2(z ) = 0.70.

The approximation between Iq (z) and I*q (z) depends on the location 
of z and the results above are typical for not very extreme z's. For z's very distantly 
located and small values of n the exact I(i)(z) and the approximation I*(i)(z) can have 
quite different values.

Nevertheless, in this example, I*(i)(z) is on the whole an excellent
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approximation to I(j)(z). Note that although observation 8 from 7̂  is the most extreme 
it is not influential for both measures.

Also, the fact that the leading term of I(i)(z) is of order 1/n2 explains the 
perhaps surprisingly small values of I(i)(z). This suggests that in the case of known 
covariance matrices, for large n and typical z (not extreme) the allocation probability 
of z is appreciably affected by individual observations only in very extreme cases.

5.4 Unknown covariance matrices

We consider now the more realistic situation of different and unknown 
covariance matrices. Assuming vague priors for | il5 |i2, and Z2 the predictive 
distributions for the future observation z have the form of multivariate Student-f 
distributions. Because of the difficulties in dealing with these distributions we make the 
expansions using a 'best' scaled normal approximation to the Student-r. The 
approximated predictive distributions are then

f ( z  I Xj, I ,  Ttj) = Np{ Xj, Sj [(n-l)(n+l)]/[n(n-3)]}, 
f ( z  I xji, Z, Jtj) s  Np{ Xji,Sji [n(n-2)]/[(n—l)(n -4 )]}, (j=l,2). (5.8)

Write
Aj*(z) = Sj_1/2 (z -Xj),
dij*= Sj- 1/2(xij -  

and
<t>j*(z) = ISj-1/2| exp(-(l/2)Aj*(z)tAj*(z)), (j=l,2). (5.9)

where Xjj is the deleted observation from population 7tj (j=l,2), and
Sj_1/2=PtDiag(Ti11/2,...,T|p1/2)P,

with T) [,...,11 the characteristic roots of Sj-1.
Then, making the expansions in the same way as before, the 

approximate influence measure is
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I*(z) = {----- q‘q2 ^ ------} { A*(z)‘d*. + [1- (d*)‘d * ][l- A*(z)‘a*(z)] } ,
2n2[ qx(>*(z) + q2<))*(z) ]2 J J' J‘ J‘ 1 1

‘s*j. <3=1. 2)-
The square of the first term inside the second brackets is equivalent to 

the last two expressions of I*(i)(z), (5 .7), when the covariance matrices are supposed 
known. The other terms are the effect introduced by the estimation of the unknown 
covariance matrices.

Using the same data as in Figure 4 we calculate the I(i)(z) and Ia(i)(z), 
supposing now unknown covariance matrices. The results are shown in Table 14 for 
z = (3 .7 6 ,1 .9 3 ).

Table 14. Comparison o f  I(i)(z) and Ia(i)(z) when z-(3 .7 6 , 1.93), and the covariance
matrices are supposed unknown

X1 x2 Obs. .Pop. Ipp-pil xlO I(i)(z)xl02 I(i)a(z)xl02

6.44 1.27 8 1 3.97 37.41 15.71
3.70 1.20 7 2 2.43 12.14 11.75
0.81 2.11 9 1 1.46 4.36 6.06
3.59 0.50 6 2 1.16 2.72 5.03
2.14 -1.31 10 1 0.76 1.15 0.36
2.27 -2.09 3 2 0.96 0.97 0.93
0.23 -0.57 1 2 0.46 0.43 0.09
1.09 -0.15 10 2 0.40 0.32 0.24
2.05 -1.06 4 2 0.38 0.30 0.41

-1.17 0.26 3 1 0.28 0.15 0.07

q i= q 2= 0.5 , X j=(0.71, 0 .14), x 2= (1.91, -0 .29), P l (z )= 0 .48 ,

‘5.10 0.77' [1.15 0.35'
and S0=|0.77 1.05 2 [0.35 1.27
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The agreement between I(i)(z) and Ia(i)(z) is not so good as in the 
previous example, but for such a small value of n the approximation is still reasonable 
and gives good general guidance. Better agreement of I(i)(z) and Ia(i)(z) should be 
expected as n increases and in general the effect of individual observations decreases 
as n increases. As before, the agreement between I(i)(z) and Ia(i)(z) depends on the 
location of z and on the configuration of the training sample. Note that the values of 
I(i)(z) are bigger than in Table 13. The same is true for the changes in the allocation 
probability which changes from 0.48 to 0.08 when observation 8 from is deleted. 
This shows that individual observations can be influentional when the covariance 
matrices are supposed unknown. This is presumably because of the effect, caused by 
the deletion, on the estimation of the covariance matrices.

For p! near pj1,I^(z) can be approximated by

(Pi -  Pi')2/ [2pi(l-pi>]
which is the standardized distance between the two probabilities of allocation. The 
approximation is particularly good when p! is near 0.5 and can provide some insight 
about the magnitude of I(i)(z); for example if pj=0.5 a value I(i)(z) indicates a change 
of magnitude approximately (I^(z)/!)1/2 in the probability of allocation on deleting 
observation i.

Figure 4. Scatter diagram o f the generated data
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A ppendix  A. Properties o f the m arginal distribution o f the
sample variances (2.5)

The marginal distribution of S* (2.5), obtained by integrating out the 
unknown variances G 2 from the product of (2.1) and (2.3), belongs to the family of 
Pearson type VI distributions, (Johnson and Kotz, Vol.2, 1970). It is interesting to 
note that the distribution of SJ(vx), can also be obtained as the distribution of the ratio 
of two independent ^-distributions with fj/2 and v/2 degrees of freedom, being 
proportional to an F-distribution.

The density function of X=S/(vx) is
/ X(x) = B_1(a,b) {l+x)‘ (a+b) xb-l, x>0, a>0, b>0,

where a=v/2 and b=fj/2=f/2. The density above is the standard form of a Pearson type 
VI density function. Moments of X and (1+X) are

Ejx1] = T(a -  r) T(b + r)/{T(a) T(b)} (r<a)

E[(l+x)r] = T(a -  r) T(a + b)/{ r(a+b-r) T(a)} (r<a).
The r4*1 moments of S* and Sj+vx are then

r r (f+2r-2)(f+2r-4)...fE[S ] = (vx)r--------------------------- ,
1 (v -2)(v -4)...(v - 2r) 0<r<v/2,

E[(l+x)r] = (vx)r (v+f -2)(v+f -4)...v 
(v -2)(v -4)...(v -2r) ’ (kr<v/2 ,

and the moments of S f1 and (Sj+vx)'1 are
r (v +2r - 2)(v+2r - 4)...vE[S. ] = (vx) -----------------------------

1 (f+2r)(f+2r - 2)...(f - 2) r>0 ,

E[(Si+vx)~r] = (vx)' (v+2r - 2)(v+2r - 4)...v 
(v+f+2r -2)(v+f+2r - 4)...(v+f) ’ r>0 .



From the expressions relating cumulants and moments we calculate the first 
four cumulants of the distribution of S-v 

vxfk = -------
1 (v—2)

2(VT)2f(f+v -2 )
2 (v -2 )2(v -4) ’ (A1)

, ,,  r f(f+2)(f+4) 3f2(f+2) 2 ?K = (VX)31----------------------  -  ----------------  + --------- f,3 (V -2)(v -4)(v - 6) (V -2  )2(v -4) (v - I f

and
(VT)4f r (f+2)(f+4)(f+6) 4f(f+2)(f+4) 6f*(f+2) 2? 2
(v -2) (v-4)(v-6)(v -8) (v -2)(v -4)(v -6) + (V-2)2(v -4) (v -2)3 ^

The cumulant is not defined for v<2r. It can be shown that as 
v— the moments tend to the moments of a variable distributed as x%2(f) and as f—»<» 
to the moments of an inverse gamma distribution, as is to be expected.

The tail of the distribution depends on the term (Si/vx)-v/2+1; for small 
values of v the distribution has a very long tail.

The mode of (2.5) is vx(f-2)/(v+2); for f=2 the mode is zero and for 
f<2 the density function is 7-shaped with mode at zero.
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Let /(0,Y) = logfY(Y; 0) be the log likelihood function for 0=01,...,0P 
based on the observations Y. The partial derivatives of / with respect to the components 
of 0 may be written as

Ur(0) = a/(0,Y)/00r,
Urs(0) = 32/(0,Y)/30ra0s; r,s=l,...,p,

and so on. The maximun likelihood estimate of 0 satisfies Ur(0) = 0.
For simplicity we use here the index notation described in McCullagh 

(1987) where summation over any index is implicitly implied when this index is 
repeated once as a superscript and once as subscript. The range of summation is not 
explicitly stated but it is clear from the context

The first order terms of the expansion of Ur(0) are
0 = Ur(6)=Ur(0) + (0s -  0s)Urs(0) +(1/2)(0S -  0s)(6( - 0 ‘)Urst(0) + op(l/n) (B.l) 

Taking expectation we have

0 = E((0S -  0s)Urs(0)} + E{(1/2)(0S -  0s)(0l -  0l)Urst(0)) + o(l/n)
= E{(0S-  0s)}E{Urs(0)) + 5sCov{(0s -  0s), Urs(0)) + 

( W J E K ^ - W ' - e D E l U J ) )  + o(l/n),
(B.2)

where Cov{(0s -  0S)(0‘ -  0‘), Urst(0)) is o(l/n).
Assuming the usual regularity conditions for the likelihood function we 

have from (B.l) that
Ur(0) = (0s -  0s)Urs(0) + 0p(l) 

and from the weak law of large numbers that
u rs (0) V i rs (0),

where Irs(0) = -E{Urs(0)}, is the Fisher information matrix of 0. We can then write

A ppendix B. Second order bias calculations
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U r(6) = (0s -  0s)Irs(0) + op{\). (B.3)

If Irs(0) is the inverse matrix of Irs(0), inverting expression (B.3) it 
follows that the maximum likelihood estimate is

(0s -  0s) = Ur(0) Irs(0) + op ( 1). (B.4)
Expression (B.2) can the be written as

a(0s)}Irs(0) = I*(0) Cov{Ut(0), Urs(0)} + (1/2) I*(0) E{Urst(0)} + o( 1/n),
where a(0s) is the bias of 0s. Since the index s in the above expression indicates the 
summution we can write the left hand side as a(0v)}Irv(0) and invert to get an 
expression for the bias as

a(0v)}=Irv(0) P(0) {Cov{Ut(0), Urs(0)} + (1/2) E[Urst(0)]} + o (l/n ). (B.5)
The calculations for the bias of x are substantially simplified since the 

information matrix Irs(0) is a diagonal matrix. Write 0*=m and 02=x, for the 
calculations of the bias of 02 we have v=2 , therefore r=2, and then either t=s=l or 
t=s=2. Thus

a(02) = [I22(0)]2(Cov[U2(0), U22(0)] + (1/2) E[U222(0)]} + 
P W ^ M C o v r U ^ ) ,  U12(0)] + (1/2) E[U211(0)]}

The first term of the above equation correspond to the bias of 02 when 01 is known and 
it is not difficult to show that it is zero. The expressions in the secondterm are

Cov[U!(0), U12(0) = E {(31 /dm)(d21 Idmdx)} = - S  l/(Vi+ x)2, 
E[U2n(0)]} = E{(33l/3m20x)} = L l/(Vi+ x)2.

From the covariance matrix of 0, (3.7) we then have that the bias of x is 
a(x) = —(X l/(Vj+ x)}"1.

The maximum likelihood estimate of m  is in this case an unbiased
estimate.
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A pendix C. M om ents of the dispersion index I (2.42)

The moments of I (2.42) are calculated using the fact that the statistics
Sj/ESj (i=l,...,k) are distributed according to a Dirichlet distribution and for equal 
sample size f, simple calculations give the first two moments of I,

^(D = f(k-l) _  (f+2)
kf+2 " & + o  (k 2)

and

. . f TN- f f k ) 2 /  (f+6)(f+4)(f+2) (k-l)(f+2)2f  (f+2)2
^2 K2 J 1 (kf+6)(kf+4)(kf+2) (kf+6)(kf+4)(kf+2) (kf+2)2 1

2(f+2) 
= fk + O (k 2).
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A ppendix D. P roof o f expression  (4.6)
Expression (4.6) can be written as

E { h ( i ^ )  h ( ^ i ) I  x } = J « z ) H j (  V ) H ^Z) d z  t0 -1)J X ¥ r-f/^PN

where z=(p-pN)Â N1/2, a=(^-pN)A N̂ 1/2 and b=8/VN1/2.
Because of the orthogonality properties of the Hermite polynomials and 

from expansion,

c j.i h iD 1=0
(z) (D.2)

it can be shown that

E { h . ( i ^ ) h ( ^ i ) l x } = r ! c .L Jv £ J  rV T ,1/2 '  } j,r
N

In order to calculate the coeffients Cj>r of expression (D.2) we use the 
generating function of the Hermite polynomials

h(z; t) = exp {zt - 12/2 }.
The generating function for x=(z -  a)/b is then

h(x; t) = exp{ t - 12/2 } = h(z; t / b ) h { - - i ( l -  -Jr )-1/2; t ( l - l /b 2)1/2}. D.3)b b b

The Hermite polynomial of order k given by the k111 derivative of (D.3)
at t=0 , is

Hj (X) = i  (  i  )  ^  H ( -  ( l -  -L )J_1.
1=0 h (b - 1) ' b (D.4)

Thus substituting the values of a and b in (D.4) we get
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