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Angela R. Mclean

An investigation is made into the equilibrium and dynamic properties
of a mathematical model that seeks to describe the epidemiology of measles
in developing countries. Advances in the sophistication of mathematical
models of recurrent epidemics have led to the application of such madels to
help in the design of optimal immunisation policies in developed countries.
However most of these models do not take account of case fatalities nor of
positive populaticn growth rates. They are therefore of limited use to aid
in the design of control policies in developing areas. A deterministic,
compartmental, age-structured madel which allows for age-dependent case
fatality rates and tor population grawth is presented and used to compare
the impact of different control policies.

Hethods of data interpretation are described which allow the
estimation of the model's parameters from published epidemiological data.
From such data a baseline parameter set 1s established. This is then used
ac a template in the investigation of the sensitivity of the madel's
equilibrium and dynamic properties to parameter variatian.

The study goes on to investigate the predicted impact of a number of
different vaccination regimes and concludes that it is not possible to
select a vaccination regime that will be optimal in all regions of the
developing world. Comparisons are made between control programmes that
vaccinate once only, programmes that vaccinate twice, and programmes that
start off with one policy and then switch to another.

The final set of results consider the effect of differences in the
assumptions incorporated in the model on its predictions under different
regimes of population growth. Particular attention is paid to changes,
through time, in age prevalence of disease that came about as a result of
population growth.

Throughout the thesis, reference is made to the epidemiology of
measles in tropical regions, and where possible results are interpreted in
terms of their implications for the design of public health policy in
developing countries.
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There are a number of childhocd infectious diseases for which there
exist safe and effective vaccines, but which continue to cause significant
morbidity and mortality, especially in developing countries. Three such
diseases - measles, neonatal tetanus and whooping cough - were the cause of
5 million childhood deaths in 1984. Within the context of gross mortality,
measles is the most damaging of these diseases (Henderson, 1984). In this
study measles has been used as an example of a directly transmitted
childhood infectious disease for which there exists an effective vaccine.
Existing vaccination programmes have had limited impact on disease
incidence, and the reasons for this are complex. A study undertaken in The
Cameroons in 1975 (McBean, 1976) identified 4 areas of vaccine wastage
resulting in only 17% of doses being effective. Two areaé of wastage were
related to age. Either the recipient was too old and had had the diseaée
already, or the child was too young and so was protected by maternally
derived antibody, aéd therefore could not be successfully immunised. The
cther two areas of vaccine wastage were heat inactivation, or simply that
the doses were thrown away. These first two problems (vaccine given to
children still protected by maternal antibody, and vaccine given to children
already immune after having had measles) are manifestations of what is
called the ‘window problem'. Children of immune mothers (virtually all
children) are born with transplacentally derived antibody. Maternally

derived antibodies wane during the course of the first year of life, but



whilst a child has these antibodies they are protected (partially or
completely) from infection by the measles virus, and cannot be successfully
immunised (Albrecht et al 1977, Halsey 1983). In developed countries there
is little risk of infection during these early years, and almost all infants
have lost their protection by maternal antibody before any have acquired
their own antibadies through infection (Collins 1929, Black 1059). It is
therefore practical to wait until all children are susceptible and to
vaccinate :during the second year of life. In contrast, in developing
countries the average age at infection is much lower (Marley 196%9a & b,
Valsh 1983). Therefore a substantial proportion of a cobort will have had
measles already by the age at which every child could be successfully
immunised (i.e. by the age at which maternally derived protection has waned
for almost all children). It is thus much more difficult to determine the
optimal age for vaccination. The work described in this thesis centres
upon the formulation of a mathematical model of disease transmission that
can be applied to the assessment of the impact of different policies aof

mass vaccination in a developing country.

The type of model presented iz a deterministic compartmental model
which describes the changes in age prevalence of disease that take place
aver the course of time. Such models have already been extensively studied,
and have been usefully applied to questions about optimal vaccination |
policy in developed countries (see, for example, Anderson & May 198%5a and
Schenzle 1984b). However, existing models make two assumptions that,
although quite reasonable when modelling events in develaped countries, are
harder to defend when trying to mimic events in the developing world. These

two assumptions are (1) that there are negligible disease related deaths,
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and (2) that the population is of fixed size. There is ample evidence that
case fatality rates are far from negligible in developing countries. Two
examples are given in the findings of Williams (1983), and John (1580).
Villiams found a case fatality rate of 64% amongst Gambian infants, falling
to a rate of 4% amongst 6 - 8 year olds. John (1980, whose data was
callected in India, found a lower case fatality rate of 22% amongst infants
falling to 2% amongst 6 - 8 year olds. In both cases the case fatality rate
was strongly dependent upon age, being at its highest amongst infants, and
falling to zero for those over 8 years old. Turning to consider population
graowth rates, United Nations data (United Nations, 1383) shows that in
Kenya the population is currently growing at an annual rate of 39 per 1000,
and in Thailand the rate is 32 per 1000. These contrast sharply with an
annual growth rate in the United Kingdom of 1.1 per 1000. Thus whilst it
may be reasonable to assunme that the population of the U.X. is of fixed
size, the same cannot be said of Kenya, Thailand or many other developing

countries.

The work presented here is the result of expressing in mathematical

the epidemiclogy of measles in a developing country. These combine
characteristics of infection within individual hasts (the latent and
infectious periods, the rate of expasure to infection, the case fatality
rate) with characteristics of the whole human population (the fertility and
death rates). The objectives of the study can be divided into two groups;
those for which the underlying motivation is the better understanding of
some process ar interaction, and those where the hope is to be able to make

some objective choice between alternative courses of action.
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The first group contains the following aims:
1) To understand more clearly the way in which demographic and
epidemiological processes interact to give rise to observed patterns of
morbidity.
2) To formally describe the réle played by the case fatality rate in giving
rise to these observed patterns. In particular to understand the effect of

cace fatalities upon the shape of the serological profile.

A large part of the work in solving these protlems lies in the
development of methods of data analysis. These allow the interpretation of
available epidemiological and demographic information in order to derive
parameter estimates for inclusion in the model. Once a full set of model
parameters has been chosen the second set of objectives can be tackled,

namely the comparison of different regimes of mass vaccination.

The layout of the thesis is along the following lines. These
introductory remarks are followed by two chapters reviewing published
literature of particular relevance to the project. Chapter two reviews
theoretical work which examines deterministic mathematical models of
directly transmitfed infectious diseases. Chapter three deals with papers
that contain data about the epidemiology of measles in developing countries.
In chapter four the model is introduced and its parameters described.
Chapter five presents equilibrium results and methods of data
interpretation that allow the estimation of the model's parameters. These
methods are applied in chapter six which covers the presentation of data
and its interpretation. Chapters seven eight and nine then present results

obtained through numerical solution of the full model. In chapter seven the
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properties of the model are investigated without introducing the extra
complications of immunisation measurés. Attention ooncentrateé on the
analysis of the sensitivity of the model's predictions to parameter
variation. Chapter eight is devoted to comparing different vaccination
regimes, and cﬁapter nine considers the implications of slight changes in
the way in which the model is formulated. The penultimate chapter extracts
results from preceding chapters to draw scme conclusions pertinent to
public health policy in developing countries. Chapter aleven consists of a
discussian af the whole project, its failures and successes and implicaticns

for the direction of future research.
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The literature concerning mathematical models of epidemiological
processes is very large (see Bailey, 1975) and bhas expanded rapidly in
recent years. In this chapter the relevant subset of the existing literature
- those papers that concern themselves with directly transmitted diseases
of humans - has been singled out for atfention. Because comprerensive
reviews of the subject already exist, attention focuses upon recent
developments (since 1975) with occasional reference to older papers that
are of particular relevance to current work. The aim, then, is to review
current trends in research on the modelling of the spread of directly
transmitted infectinus diseases within human communities and the control of
such diseases by immunisation. Attention is primarily focused on

deterministic as opposed to stochastic models.

2.2 Chapter lavout,

The main body of the chapter commences with some introductory
remarks which consider the attractions of epidemic modelling. This is

followed by a brief section concerning models for the spread of infection
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within households. Attention then turns to models which consider the
dynamics of the spread of infection amongst larger communities.
Consideration is firstly given to the simplest ordinary differential
equation models. The successes and shortcomings of these models are
discussed. The rest of the chapter consists of a sequential consideration of
the various refinements that have.been made to the simple models to try
and redress their shortcomings. A discussion of difference equation models
is followed by consideration of models which employ delay differential
equations. Models of age-structured communities with homogenous and
heterogenous mixing are then considered, followed by stochastic models,
mo@els with seasonally varying contact rates and finally models with a

variety of types of heterogeneity other than age-dependent heterogeneity.
2.3 Introductory remarks

Childhood infectious diseases have a number of aobserved properties
that have made their epidemiology attractive to mathematical treatment.
First aof all there is the very fact that they do occur mostly amongst
children. To quote Fales (1928);

Specific infectious diseases are, in general, selective in their

incidence, and in the distribution of many diseases this selection is

strikingly exhibited by an unequal frequency of occurrence in

different age groups ... so characteristic as to have given these

infections the group designation "infectious diseases of childhood”.
More recently, Fine and Clarkson (1982b) have pointed out that in the U.K.
there is a sharp peak in the age distribution of measles amongst five and
3ix year o0lds. Recurrent oscillations made up of seasonal patterns and

occasianal large outbreaks have been another source of interest. Anderson,

Grenfell and May (1984) have performed time series analyses upon long term
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data for a number of infecticue diseases and have found evidence of annual,
biennial and longer term cycles. These interesting praoperties, the
importance of infectious diseases in terms of public health and the
apparent simplicity of the interacticns that give rise to the observations
have combined to attract much mathematical attention to the.modelling of
childhood infectious diseases. Much of the research has been aimed at
understanding why infectious diseases should often be restricted to certain
subgroups of the population (e.g. children), why there should be occasional
large outbreaks, and why there are seasonal cycles. Another motive has been
the assessment of the impact of different control measures. This latter
motivation lay behind the earliest application of calculus to questions of
infectious disease transmission - Daniel Bernoulli's work on the impact of
innoculation on the epidemiology of smallpox presented to the Academie

Royale des Sciences in 1760.

WVhen considering the spread of disease amongst very small populations
such as households, chance effects are of great importance. Stochastic
models are therefore better able to mimic observed trends. Particular
attention has focused on models which use chains of binomial distributions
to describe the numbers of cases in successive generations of the disease.
Reed and Frost used such a model in lectures from the 1930's gnwards but
their work was not published until after their deaths (Frost (19767,
Sartwell (1976), Fine(1977)). Greenwood (1931) and McKendrick (1926)
considered similiar models. More recently interest has again be aroused in

such models (Griffiths (1973), Becker(1980) & (1981a)) and advances have
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been made in extending such models to allow for heterogeneity of the
infectiousness of individuals, (Becker 1981b) and heterogeneity of contact
rates within and between households (Becker and Angulo 1981, Becker and
Hopper 1983, Ball 1985). Dietz (1985) reviews some of these developments
and compares their predictions with data on chains of cases of the common
cold in households (Brimblecombe et al 1958). These models are useful in
the estimation of the length of the incubation and infectious periods and
can be used to estimate transmission rates {(see Bailey 1975, chapter 19),

but they are of limited applicability in the broader context of large

communities.

The underlying framework of all models lies in the description of the
trgnsition from the susceptible state to the infectious state. In’
deterministic models a description is given of the number of new cases per
unit time, whilst in stochastic models the description given is of the
probability of a new case. Models that describe the spread of infection
within large communities are mostly compartmental in structure, and their

general framework can be summarised by the following flow diagram:

A o X
S-E-I-R
T !

T

The population under consideration is split into a number of non-
overlapping compartments for example S - susceptibles, E - expased (i.e.
infected but not yet infectious), I - infectious and R - removed (i.e. dead

or immune to reinfection). The model then consists of a set of differential
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eguations describing the rates at which individuals progress from one group
to the next. In the example illustrated * is the infection rate, ¢ is the
rate at which individulas leave the incubating (exposed) class, ¥ is the
rate of loss of infectiousness, and m is the rate of loss of immunity. the
type of differenti;l equations used and the exact configuration of the
progression from class to class depend upon the natural history of the
dicease under consideration, and the aims of the model. For diseases with
no immunity (e.g. gonnorhea) S-I-S models are appropriate, people becoming
susceptible again immediately after they have recovered. If there is
immunity upon recovery an S-I-R model can be used and for diseases for
which acquired immunity only exists temporarily the configuration 8-I~-R-8
is appfopriate. ¥hen there is an appreciable time lapse between the moment
of infection and the onset aof infectiousness the exposed class can also be
included giving S-E-I-R models (where E denotes the exposed or incubating
class). In this section ordin&ry differential equation models are discussed
leaving the consideration of models with partial derivatives, stochasticity

and delay differential equations to subsequent sections.

The simplest S-I-R model (Kermack and McKendrick (1927)) is as

follows
das

dt
dI

dt

dR = Yy I 2.3
dt

-8 81 @. D

i

s I -yl (2.2)

In this model the infection rate is defined as » = § I. Thus in time

At there are B S I At new cases and ¥ I At removals, B is the transmission



rate and Y the recovery rate. The term S I is known as the mass action
term. It represents the assumption that a community of people mix like an
ideal gas and that the rate of disease transmission is directly
proportional to the number of meetings between individuals. As it stands
this model contains no demographic rates so can only be used for the
consideration of single epidemics in closed populations. However the
addition of birth and death terms is easily achieved and allows the
modelling of recurrent epidemics in populations subject to the input of new

susceptibles.

The set of differential equations have two equilibrium points, one with
no cases called the zero equilibrium and one with a positive number of
cases - known as the endemic equilibrium. The stability properties of these
two equilibrium points can be thought of as depending upon the value of one
summary parameter, Ro, the basic reproductive rate (Macdonald 1952). The
basic reproductive rate represents the number of new cases that would be
generated if one infectious individual were introduced into a wholly
susceptible population. When Ro is greater than 1 the endemic equilibrium
is stable and the model with renewal of susceptibles exhibits weakly damped
oscillations of a period in broad agreement with the longer term
oscillations visible in case reports. When Ro is less than 1 the zera
equilibrium is stable. Intervention in the transmission of disease (e.g.
immunisation) to such an extent that the value of Ro falls,below unity will
therefore lead to disease eradication. It is from this observation that the
idea of the critical vaccination proportion for eradication (p.) has arisen,
Pe being the proportion that must be immunised in order to reduce the value

0of Ro below 1.



This model and a number of models derived from it have been
extensively applied to a large number of problems concerning viral
(Anderson & May 1982, Millar 1970, Dietz 1975), bacterial (Hethcote & Yorke
1884), and vector borne (MacDonald 1973, Dietz 1980) diseases. The books by
Bailey (1973) and Anderson (1982a) give reviews of some of these
applications and Wickwire (1977) reviews applications of mathematical

optimisation theory to models for the control of infectious diseases.

Analytic treatments of this model and closely related models are
presented by Hethcote (1976) and by VWaltman (1974). The qualitative
behavicur of these ordinary differental equation models is well understond
(Hethcote 1973) and Hethcote et al (1981b) present a review of analytic
results for autonomous models in which they conjecture that 'a single
population, constant parameter epidemic model can suppart periodic
solutions if and only if the model is cyclic and involves temporary
immunity'. In this context the term cyclic is used in the sense that the
structure of the model is cyclic with individuals passing from the
susceptible class to the immune class and back again. Recently studies have
been made of models where the transmission term B S I is'replaced by a
term B S I® (Liu et al 1586) and it has been shown that such a model has
qualitively different behaviour from those with a simple product term,
however no biological justification is given for the use of this

transmission term.

The threshold theorems derived from the simple models have given
useful insights into the epidemiology of directly transmitted infectious

diseases. However there are many observed properties that these simple
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models fail to mimic. First of all, because they describe total numbers of
cases, they can give no insight into the age distribution of cases. Also the
values for the critical vaccoination proportion pe that they predict tend to
be lower than actual experience would suggest (see Fine & Clarkson 1983 for
a critique). They predict damped oscillations towards a stable équilibrium
when perpetuated oscillations are observed. The period of these oscillations
agrees broadly with the longer term observed oscillations but the observed
annual cycles are not mimicked. Although they give a fair description of
reccurrent epidemics in large communities they fail to account .for the
fade-out of diseases in smaller communities. Finally, the assumption of
homogenous mixing ignores the many heterogeneities acting to divide
communities up into sub-units. The following sections deal with models
which, through some refinement af these basic models, attempt ta improve

upon one or more of these shortcomings.

Soper (1929) noted the marked periodicity of measles and presented a
difference equation model with no losses from the infectiocus class which
exhibited oscillatory behaviour. However it was pointed out by Wilson and
Vorcester (1945) that the incluéion of a finite removal rate on the
infectious class or of a death rate would push the model intoc damped
oscillatory behaviour. May (1986) discusses the model in some detail and
shows that the period of its oscillations is the geometric mean of the

generation time of the infection and the average age at infection.



The analysis of observational data on the time taken for case-to-case
transmission implies that neither the duration of the incubation period
(i.e. infected but not yet infectious) nor the duration of infectiousness are
exponentially distributed (Bailey 1975, chapter 15). Investigations have
therefaore been made into models which allow these durations to be
distributed in ways other than the exponential distribution implied by the
term - ¥ Y in equation 2.2 ( Hethcote & Tudor, 1980; Hethcote et al 198la &
b; London & Yorke 1973, Yorke and London 1973, Smith 1983a & b, Grossman
1880). On the whole these modifications do not qualitatively change the
solutions of the models, but it has been shown that for a model with
temparary immunity (i.e. of the SIRS type) a large constant time in the

immune class can induce limit cycle behaviour in the model - that is the

model may mimic recurrent epidemics (Green, 1978).

Motivated by a desire to model the age distribution of infection as it
changes through time, a number of recent studies have extended the S-E-I-R
model so that there is an age structure.lThese models keep track, not only
of the passing of time, but also of the ageing of individuals. Equations 2.1
to 2.3 are therefore replaced by a similiar set of partial differential
equations. However the models described here still assume homogenous mixing
across the whole population. Particular interest has been generated by
questions concerning the optimal vaccination policies to control the rubella

virus given that the most detrimental effect of the infection occurs when
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it is contracted by women during the first trimester of pregnancy (Knox
19380, Anderson & May 1683, Hethcaote 1983, Dietz 1081). These studies
consider the effect of different vaccination programmes on the number of
cases of congenital rubella syndrome (C.R.S.) - the disease of unbarn
infants whose mathers contract rubella which can result in severe
disabilities. Similiar models have also been applied to the modelling of
influenza (Longini et al, 1978); acute bacterial diseases (Cvjetanovich et al
1978) and poliomyelitis and measles (Cvjetanovich et al 1982, Fine and
Clarkson 1982b). Katzmann and Dietz (1984) have used such a model for the
consideration of the optimal age for vaccination in a situation where
maternal antibodies prohibit immunisation of newborns. The solutions of
these madels with age-structure have an age distribution in broad agreement
with those that are observed, but the sharp peaksAin incidence at age © and

6 years pointed out by Fine and Clarkson (1982b) are not mimicked.

All of the models discussed so far assume that the population (though
experiencing turnover through births and deaths) is of fixed total size.
This assumption is dropped in a paper by May and Andersan (1985) which

investigates dicease dynamics in exponentially gro&ing populations.

Vork is progressing to extend existing asymptotic stability results ta
models that have an age structure. Greenhalgh (1986) has shown the
stability of the endemic equilibrium of a model with age structure and

homogenous mixing.



A natural extensicn to a model for an age-structured population is to
consider the effects of age-dependent transmission. A very general model
was proposed in 1974 (Hoppensteadt 1974) and some early approaches to the
problem considered the case where the per capita rate of acquisition of
infection increased linearly with age (Griffith 1974, Anderson and May
1932). This approach proved satisfactory for describing the acquisition of
infection in the child and young teenage classes but was considered to
imply too large a rate of infection for adults. A model was then proposed
where the transmission rate from an infectious individual to a susceptible
depended only on the difference in their ages (Knolle 1983). The most
fruitful approach so far, haowever, seems to have been the division, by age,
of the paopulation into a number of homogenously mixing subgroups followed
by the definiticn of a transmission matrix Bi:; for transmission from
infectives in the jth age class to susceptibles in the ith age class. The
estimation of age-dependent forces of infection from which the elemer;ts of
such a transmission matrix could be calculated is discussed by Grenfell and
Anderson (198%5) and the methods of data interpretation which have been
developed allow a close relationship between theory and observation. Studies
of such models have shown that age dependent nixing may reduce the
critical vaccination proportion for eradication when compared with
predictions based on models which assume homogenous mixing across all age
classes (Schenzle 1984a, Tudor 1985), but may, under other assumptions
about the details of the configuration of the matrix B.;, act to increase it
(Anderson & May 1984). Models with age dependent mixing have been used to

investigate the effects of different vaccination strategies upon the
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incidence of measles (Anderson and May 1985a, Schenzle 1984b, Tudor 193%)
and rubella (Anderson and Grenfell (1985). Dietz and Schenzle (1985)
propase a model with heterogeneity according ta age and a rate of loss of

infectiousness that is a function of time spent in the infectious class.

These models predict age distributions of cases much closer to
observed age distributions than those predicted by earlier models with
homogenous mixing; and the oscillatory behaviour of their solutions is only

very weakly damped.

In a classic series of papers Bartlett (1956, 1957, 1960) showed that
the inclusion of a stochastic element in the transmission function could
serve to perpetuate oscillations indefinitely. However these outbreaks do
not cccur with any strict periodicity. This work also gave rise to the
important threshold theorems about the size of town that could support
measles without the disease fading out. Similiar models have been studied
mare recently by Stirzaker (1975) who investigates periodic solutions of
stochastic models with seasonality. Stochastic epidemic models were

recently reviewed by Neyman and Price (1984)

” o .

Seasonality in the transmission of disease has attracted much
interest. Fine and Clarkson (13%82a) consider that seasonality is more

important than the build up of susceptibles in determining the timing of
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epidemics. Anderson, Greniell and May (1984) performed time series analyses
on leng term data for childhood infectious diseases and found evidence of
annual, biennial and longer term cycles. London and Yorke (1973, Yorke and
London 1973) inferred that contact rates are seasonal from an analysis of
data from New York and Baltimore. In a later paper (Yorke et al 1979) they
show that seasonality in transmissability can greatly increase the minimum
population size for perpetuation of diseases. A paper by Dietz (1976)
presenting a set of ordinary differential equations with a seasomnally
varying contact rate provoked a series of analytic studies of the model's
periodic solutions (Grossman et al 1977, Grossman 1980, Gumowski et al
1980, Smith 1983a & b), and a series of papers considering the peossibility
of the co-existence of periodic solutions of both large and small amplitude
(Schwartz and Smith 1983, Aron and Schwariz 1984, Schwartz 1985). Analytic
studies of the effect of including sea;onality in the contact rate have been
one of the major preoccupations of theoreticians in recent years. However
some of these studies have become somewhat divorced from the original

problems that the models were intended to consider.
2,12 Het :

There are a number of types of heterogeneity that can be incorpaorated
into epidemic models. Anderson and May (1984b & 1985b) identify four types
of heterogeneity; temporal (i.e. heterogenecus mixing according to age),
spatial, genetic and behavioural. Models with age-dependent heterogeneity

have already been considered.
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Little attention has been paid to the effects of the genetic
heterogeneity of the host population on the observed patterns of epidemics.
Anderson and May (1284 and 1985a) have described how genetic heteraogeneity
might give rise to patterns of age prevalence that resemble those induced

by age-dependent susceptibility to infection.

Models that consider spatially heterogenous populations can be divided
into two groups; those that use diffusion processes to model the
dissemination of disease along a line or in the plane, and those that
consider networks of subpopulations that mix homogenously within and
heterogenously between groups. Diffusion models were reviewed in 1977 by
Mollison (1977). Their applications to human diseases is limited by the
fact that human transportation networks dominate the spread of disease.
They have, however, been successfully applied to the spread of animal

diseases, particularly rabies (Murray et al 1986).

Of the second type of model with spatial heterogeneity the Soviet
simulation models of the spread of influenza (Baryon et al 1977) have
recently attracted renewed attention (Rvachev & Longini 1985, Longini et al
1986) and summaries of their results are now available in English (Fine
1932). Monte Carlo simulation techniques have been used in a series of
papers based on measles data from around Bristol (Cliff et al 1975, Murray
& Cliff 1977). Stability properties of multisite models have been studied by
Hethcote and others (Hethcote 1976, 1978, Nold 1980, Hethcote et al 1981,
Hethcote & Thieme 1985, Post et al 1983). Dietz (1980) shows that spatial
heterogeneity can act to raise the basic reproductive rate R. when compared

with estimates derived from models with homogenous spatial mixing. Models



which consider the immunisation of spatially heterogenous populations have
also been studied (Hethcote 1378) and it has Eeen suggested that
immunisation effarts should be concentrated on the larger population
centres (May & Anderscn 1984) as opp osed to the smaller centres. Arita et
al (1986) present an ob;ervational study of the effect of population

density upon the impact of the smallpox imnunisation programme.

Many of the models described above as being for spatially
heterogenous populations are general enough to be applicable to populations
whose heterogeneity is generated by behavioural differences. Such studies
are of particular relevance to the modelling of sexually transmitted
diseases where it has been shown that disease can be perpetuated by a core
group of highly active individuals (Kemper 1980, Hethcote & Yorke 1984).
Lajmanovich & Yorke (1976) have shown the global asymptotic stability of
an ordinary differential equation S-I-S model with n subpopulations which
they apply to the modelling of gonorrhea transmission. Hethcote and Thieme
(1985) have extended asymptotic stability results to include madels of
heterogenously mixing populations which include immunisation or where the

rate of loss of infectiousness depends upon class age.

2.7 SUummary.

The behaviour of simple ordinary differential equation models for
epidemics is now well understood. Progress is being made in various
directions, all aimed at making the models a better mirror of reality. These
include the introduction of various types of heteraogeneity, the study of

delay differential equation models, and the further analysis of stochastic



models. A lot of attention has recently been paid to somewhat abstract
models with seasonal contact rates, and in some cases these studies have
not made any attempt to link the model to published data, nor to seek a
biological interpretation for the mathematical results. However, other areas
of research are moving more towards the construction of mathematical
models that make direct use of epidemiological data and whose results are

aimed at being of use in the planning of public health programmes.
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The aim of this chapter is to review existing publications concerned

with the epidemiology of measles in developing countries.

The first set of papers reviewed are those which themselves present
reviews of the subject. A number of topics concerned with the epidemiclogy
of measles are then considered in turn. Part of this review considers age
specific rates of seroconversion and the rate of loss of protection by
maternal antibadies. This is followed by a section devated to pépers on age
prevalence. Attention then turns to studies that have measured case fatality
and mortality rates. Studies of the impact of existing programmes are then

assessed.

An excellent general overview of the current status of measles in

developing countries has been published by Walsh (1983), whose article also
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considers the problems inherent in administering measles vaccine in
developing countries. Similiar topics are covered in briefer format by
Abdurrahman and Tagi (1281) and a leading article in the British Medical
Journal (Anonymous, 1976). Ofosu-Amaah (1983) combines a presentation of
current logistic problems with a historical perspective of measles in
Africa. His paper is presented in a volume containing the proceedings of a
conference on measles and measles immunisation which contains a great many
articles on measles epidemiclogy and on the impact of existing programmes.
Cutting (1983) and Foege (1982) both combine reviews of existing praoblems
with presentation of economic arguments for the eradication of measles, but

both admit that eradication is still a long term gaal.

One of the barriers ta the eradication of measles is a problem
generated by the comparatively shart intéfval between laoss of protection by
maternal antibodies and natural infection. This difficulty has been called
the ‘window problem’. A very full and careful biblicgraphic review of the
window problem has been prepared by Halsey <1983) with particular
attention paid to data on age specific rates of sero-conversion. Black
(1982) puts particular emphasis on changes in age prevalence that can be
expected as a result of large scale immunisation programmes, and discusses
some of the implications of such changes. In particular he puts forward the
idea that it may be possible to increase the age of administration of
vaccine after the average age at infection has risen. This rise in the
average age at infection is expected as a result of mass vaccination - even
at fairly low levels. In a paper that emphasises the differences between the
epidemiology of measles in urban, rural and insular populations Davis

(1982) gives a stimulating summary of areas requiring more research. A
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clinician's perspective is presented by Guillozet (1879) who considers
clinicai complications of contemporary measles in tropical Africa. Morley's
classic description of severe measles can be read in his 1969 papers in the
Lancet (Morley, 1969a & b) along with an interesting review of the status
of measles right across the developing world at that time. He also provides
a review of some beliefs and proverbs about measles including the chilling

Arabic comment; 'count your children after the measles has passed’.

One purpose of studies of age specific rates of seroconversion is to
provide information that will help in choosing an ideal age for
administration of measles vaccine given the problem of low vaccine efficacy
in children with high titres of maternally derived antibody. The procedure
adopted is to select a number of children with no history of measles or of
measles vaccination and perform serological tests on blood samples taken
from each child before and after immunisation. Some studies (but not all)
exclude older children with high antibody titres for measles at the first
screening. This is based on the assumption that they have experienced a
sub-clinical measles infection. There is no cansensus on the criterion that
should be adopted to represent seroconversion.‘SOme studies demand a four
fold rise in the dilution of serum that will inhibit agglutination (Ghosh et
al, 1977; Hendrickse et al, 1966; Ministries of Health of Brazil et. al.,
1983), others a ten fold rise (Wood et al, 1980). A different approach is to
choose a particular level of dilution at which to screen, and to call
samples positive or negative according to whether or not they inhibit

agglutination at this level of dilution. The levels of dilution used are:
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1:3 (Ministry of Health of Kenya, 1977; E.P.I.,, 1979) 1:4 {Job et al, 1984),
1:6V(E.P‘L, 1981y 1:8 (Mhere et al, 1984, Burroweé & Cruickshank, 1976; Diok
et al, 1975 - although Dick uses the complement fixation test as opposed to
the haemagglutination inhibition test), or 1:10 (Lee et al, 1983; Breman et
al, 1975). Some studies do.not specify the criterion for seropositivity that
they have set (King, 1978; Ogunmekan et al, 1981). A number of studies
(Breman et al, 1975; King, 1978, Hendrickse et al, 1965; Ghosh et al, 1977;
Ogunmekan et al, 1981; Burrawes & Cruickshank 1976) clump children into
such broad age bands that very little information is gained on changes in
the rate of seroconversion with respect to age. Amongst those studies that
stratify their subjects by month of age there is great variation in the age
specific seroconversion rates. (See table 3.1.) This can partly be explained
by small sample sizes, but is also an illustration of the wide variation

between communities in different geographical locations.

The question of what happens to children who fail to seroconvert after
immunisation has been addressed by Black and co-workers in a project based
in Brazil (Black et al 1984). In a longitudinal study of 79 children who
failed to seroconvert after measles vaccination they found that aonly 60% of
those remaining susceptible could be successfully revaccinated 1% years
after the first immunisation. These results confirm observations made in
the United States (Linnemann, 1983; Wilkins & Wehrle, 1979), but in the

context of a developing country.

Some studies of rates of seroconversion (Job et al, 1984; Hendrickse et
al, 1966; Ministry of Health of Kenya, 1977; Burrowes & Cruickshank, 1975;

E.P.I., 1981; E.P.I., 1979) describe the pre-vaccination age-stratified
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Reference Criterion % tve 6 months % +ve 12 months
Lee, 1983 1: 10 82% 17 100% 12>
Ministries of Health 1: 10 & 59% (319 97% (139

of Brazil et al 1983 x 4

Mhere, 1984 1:8 15% (35 76% 2L
Dick, 1975 1:8 23% 13 80% 5)
Jab, 1984 1: 4 74% (32) o95% (20
Wood, 1980 x 10 57% (46) 89% (9
Ministry of Health 1:3 80% (3L 100% (38

of Kenya, 1977

Table 3.1

Summary of data on age specific seroconversion rates from studies that
stratify age in months. Figures in parentheses show sample sizes.
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serological profiles as well as the seroconversion rates. This information
can be used to determine the rate of loss of protection by maternal
antibody. The illustration of the neonatal antibody profile is the primary
objective of other studies (Harry & Ogunmekan, 1979; Bottiger et al, 1981;
Bhaskaram et al, 1986; Abdurrahman et al, 1982). An analysis of the data
presented in a series of such papers is presented in chapter 6 section 4.
As with rates of seroconversion, there is a broad spectrum of results with
the estimated average duration of protection by maternal antibody ranging
from 3 months (Ministry of Health of Kenya{ 1977 to 5 months (Burrowes &

Cruickshank, 197%).

Great hapes have been raised by the success of trials of Edmonstan-
Zagreb vaccine administered by inhaling an aerosol of measles antigen.
Sabin et al (1983) found a seraconversion rate of 100% of 4-6 month olds
with and without maternal antibodies. This success prompted Morley (1983)
to suggest that eradication of measles this century might be a
possibility. However, further trials in The Gambia (Whittle et al 1983 &
1984) have been less successful, and the method of aerosol vaccination is

not yet in widespread use.

_Studies of age prevalence levels of measles fall into three groups.
First, and most reliable, are serological surveys which measure the
proportion by age in the community that have measles antibodies at a level
sufficient to protect them from infection. In the absence of such

information community based surveys of age incidence can also give a good
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indication of the degree of transmission within different age groups 1in
the community. If even this information is not avallable, hospital and
dispensary records can give a ‘quick and dirty' overview of age prevalence.
However they must be treated with suspicion in the light of the fact that
they are bound to be biased towards cases in the younger age clasges where
measles infection is more likely to lead to severe disease (Morley &

MacWilliam, 1961»

A number of serological surveys were carried out in French VWest Africa
in the sixties (Cantrelle, 1965; Cantrelle, 1969; Baylet, 1969; Boue, 1964) .
The study by Boue (1964) is of particular interest as it contrasis serology
from an urban and a rural community, finding that 100% of 1% - 2 year olds
in Dakar had antibodies to measles, whilst in Popenguine (a small fishing
village) only 33% of the same age group were measles seropositive. Since
the French West African series of studies were performed there have been
very few serological surveys in Africa. Stanfield & Bracken (1971)
performed a small survey on children under 6 years old in the area arocund
Kampala. Although such a study can give useful information about the rate
of acquisition of infection amongst the very young, when planning an
immunisation programme it is desirable to have information on transmission
rates across all age classes. Details of data requirement are discussed in
chapters 6 & 10. India has been better covered by serolagical surveys
(Mehta et al, 1972; Dave, 1983; Bhau et al, 1979; Broor et al, 1976; John &
Jesudoss, 1973). The study performed by Broor et al (1976) includes a large
number (568) of individuals of ages ranging from new-borns to 35 years and
over. Mehta's (1972) study includes a group of ‘adults’ but their ages are

unspecified, and all the other Indian studies only consider children below
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10 or 12 years of age. Other Asian countries where such studies have been
carried out are Thailand (Ueda et al, 1967), Burma (Chin & Thaung, 1985)

and Nepal and Sri Lanka (Brink & Nakano, 1978). The Brink and Nakano study,
like Baue's Senegalese study, compares serology from regions of different
population densities. They found that 27% of hill dwelling children in the
age group 12 -23 months were measles seropositive whilst 59% of the same
age group living in the flatter, more densely populated areas had antibodies
to measles. Kenny et al (1976) and Golubjatnikov et al (1971) have studied
age prevalence of measles antibodies using serclogy in Central America..
Data from these surveys is presented, analysed and interpreted in chapter

8.

A subset of published serological profiles - those drawn from isolated
communities - are of particular interest. Touquote from one paper on
measles in isolated communities (Van Mazijk et al, 1982): 'Epidemics in
isolated populations commonly affect all ages and the relative
susceptibility of the very young, the young, and the elderly can be compared
in a way not at present possible in larger societies.' F.L. Black has been
particularly active in the collectlion of serological profiles from isolated
communities (Black, 1962 & 19795). Willis and Varburton (1974) have studied

measles susceptibility on Pacific islands, and Adels & Gajdusek (1963) have

made a similiar study in New Guinea and Micronesia.

India is well represented by papers presenting community based surveys
of age incidence (Garai & Chakraborty, 1980; Siddiqi et al, 1974; Mathews et
al, 1971; Dhanca & Cowan, 1982; John et al, 1980; Sinha, 1977; Agarwal et al,

1976; Pereira & Benjamin, 1972; Shah et al, 1972). The information contained



in these papers is not analysed in this thesis, but they undoubtedly
contain a rich source of information on age prevalence of measles in India
in the pre-vaccination era. An important community based age incidence
survey from Asia was collected by Koster and co-workers in Bangladesh
(Koster et al, 1981). In Africa a whole series of excellent studies have
been carried ocut as part of the Machakos project including two papers on
age incidence of measles (Voorhoeve et al, 1977; Muller et al 1977). Another
survey of age incidence in a rural setting is presented by E.P.I. (1980b) in
an account of measles epidemiology in rural Somalia. Finally, two studies

from rural Guatemala represent Central America in this list of community

based age prevalence studies (Gordon et al, 1965; Scrimshaw et al, 1966),

The final set of papers to be reviewed in this section present age
prevalence data based on hospital and dispensary records and case reparts.
Although these are not the best ways to gain an accurate impression of the
patterns of age incidence in a community, they have the advantage of being
readily available. Morley & MacVWilliam (1961) and Gans et al (1961) brought
attention to the severity of measles in tropical Africa using hospital in
and out-patient data. In a later paper Morley and others present further
hospital based evidence of the severity of measles in West Africa (Morley
et al, 1967). Other African countries from which éuch information is
available are Kenya (O'Donovan, 1971; Hayden, 1974), Senegal (Helmholz &
Seck, 1975), South Africa (Loening & Coovadia, 1983), Ethiopia (Kaartinen,
1984), Tanzania (Gupta & Singh, 1975), Botswana (E.P.I., 1980a) and Ghana
(Blankson, 1975). In India it is well known that people are reluctant to
take a child sick with measles to see a doctor, and it is prabably for this

reason that most of the age incidence studies have been community based.
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There are two studies based cn case notifications from Central and South
Anmerica; one is from Mexico (de Castro, 1983) and the other is from Chile

(Ristori et al, 1%6z).
36 C X + . _

Data on age specific case fatality rates are fairly abundant in Africa.
In their 1961 paper Morley & MacVilliam showed case fatality rates amongst
outpatients and admissions to Ilesha general hospital. For case fatality
data to be really reliable, one needs to be confident that the denominator
(total number of cases) counts all individuals who have experienced measles
infection, no matter how mild their symptoms have been. For this reason
'hospital and dispensary studies are rather unsatisfactory as they are bound
to see only the warse cases. Community based studies are therefore of great
value when trying to ascertain the case fatality rate. The Machakos studies
in rural Kenya are firmly based in the community and have produced data on
case fatality rates (Muller et al, 1977). An extensive series of papers
presenting wark carried out in Guinea Bissau (Aaby et al, 1983a b & c 1984a
b & ¢ are also based on studies carried out in the community. In these
papers Aaby challenges the notion that children die of measles because they
are malnourished, and instead suggests that overcrowding is a much better
indicator of high risk groups than low weight for age. These results are
supported by work carried out in Bangladesh (Koster et al 1981). In India
there are many religous beliefs associated with measles infection, and
children with measles are often hidden in the home. This makes the
collection of data on case fatality rates particularly difficult and helps

to explain why there have been very few published studies on measles case
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fatality rates in India. However John et al (1980) carried out a small study
in rural south India where they overcame the problem of children being kept
inside by performing house-to-house visits specifically looking for cases.
In chapter 6 these data are reviewed in more detail. Some studies present
data as mortality rates, i.e. death rates per 1000 population (Gordon et al,
1965, Borgono, 1983) but such information is much more difficult to
interpret than case fatality rates in the absence of data on the age

distribution of the population.

pact v i i i

A number of studies have examined the impact of vaccination campaigns
upon the incidence of measles. Two af these are from Yaounde, Cameroun
(McBean et al, 1976; Heymann et al 1983). The first of these records the
depressing statistic that only 17% of measles vaccine doses brought into
the country resulted in the seroconversion of a child follaowing
administration. The later paper presents more optimistic results and
reparts a 44% fall in measles incidence between 1974 and 1979. A report on
the campaign in West and Central Africa which aimed to eradicate smallpox
and cantrol measles (Foster & Pifer, 1971) points to the need for continual
control measures. An interesting approach is taken in a paper based on a
study in Zaire (Kasaongo project team, 1981). The project questioned the
influence of measles vaccination on survival patterns and concluded that
the gain in survival probability endowed by measles vaccination, tended to
diminish over the course of time. A review of the epidemiology of measles

in China (Yihao & Wannian, 1983) reports that following a successful
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immunization campaign the age distribution of cases has shifted upwards

and the case fatality rate dropped.

3.8 Summary.

There is a large amount of data available which describes the
epidemiolagy of measles in developing countries, but much of the published
work contains little quantitative detail. A brief overview of what
quantitative information exists has been given; a more detailed review of

the data itself is presented in chapter 6.
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In this chapter the aim is to give a general introduction to the
model. This is to be achieved by: defining the different compartments of
the model; setting down the partial differential equations describing the
flows between these compartments; and then giving a verbal explanation of
the reasoning behind these equations. Details of the meanings of the
parameters and the types of data from which they could be estimated are
shown in a table. The restrictions that have been imposed upon the moadel

for the purposes of this study are then explained.

4.2 Chapter layout.

The chapter commences with a brief description of the type of model
used. This is followed by definitions of the model's five compartments. The
partial differential equations, initial conditions, and boundary conditions
that constitute the substance of the model are then set down and a verbal
explanation of the biological assumptions they represent is given. This is
accompanied by a diagram representing the model in a schematic way. A
table summarising information aon the parameters will follow. Next, attention
will focus upon the most important of the parameters, the force of
infection, and an associated idea, the 'who acquires infection from whom'

matrix. This leads on to a description of the specific type of age
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the model. A section follows explaining the notational conventions used, and

the chapter concludes with a summary of the material presented.

13 Model D N

The model used throughout this study is age structured, compartimental
and deterministic and is derived from the madel described by Anderson and
May in their studies of the design of vaccination programmes in developed
countries (Anderson & May 1983, Anderson & May 1985a). The model
investigated in this study, differs from that used by Anderson and May in
the following two ways. The assumption that the total population is
constant has been dropped and the possibility that there may be appreciable
case fatalities has been allowed. These extra complications have been
included to allow for certain special features of the epidemiology and
demography of developing countries. The madel consists, in essence, of a set
of partial differential equations describing the flows between subsets of
the population, and initial and boundary conditions for these equations. The
populétion i3 divided into five groups: maternal antibody protected, those
infants who still have transplacentally derived antibodies and are
therefore protected from disease; susceptibles, those who have lost their
protection by maternal antibody and have not yet had any experience of the
infection in question; incubators, those who have caught the disease but are
not yet capable of infecting others; infectives, people at that stage of the
disease when they can pass infection on to others; and immunes, people who

have recovered from the disease and by virtue of their immunity are
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protected from contracting it again - this immunity is assumed to be

lifelong.

These five classes, or compartments are represented by the five
letters; ¥, X, H, Y & Z. The following are the partial differential equations

describing the rates at which people pass from one class to another.

M + M = - (p@ + 6 ) M, t) 4. D
3 At

X + X = § Mca,ty) - ( pla) + x(a,t> ) Xa,t) 4,22
8a at -

OH + 9H = Ma,t) X, t) - Cu@ + o) Haa, v 4.3
3a at

aY + ay = ¢ H@,t) - ( pa) + ada) + ¥ ) Y,t) 4. 4)
8a at

3z + 2 = Y Ya,t) - pa) Za,w 4.5
9a ot

An additional quantity describing total population size, N, is useful, and
since,
N<a,t) = M@a,t) + X@a,t) + H@a,t) + Y@,t) + Z@a,t
the dynamics of this total population are described by;
3y + 3N = - pa) Nda,t) - aca) Y<a,t) (4.6)
3a ot
The boundary conditions for M, X, H, Y & Z are as follows;

[o2]
MO, t) = JO m(a) N(a,t) da 4.7

]

i
o

X<0,t HO,t) = Y0,t) = 20,

That is, all newborns are protected by maternal antibady.
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In addition, the quantities

Mda,te?, fa,ta), H@,te), Y{@,te) & Za,to)
are all assumed to be known for some time to, thus providing the necessary
initial conditions for the equations. The manner in which these initial
conditions are set when finding numerical solutions to the set of equations

is described in chapter 7.

There now follows an explanation of the biological interpretation of
equations 4.1 to 4.5.

All individuals are born protected by maternal antibodies. Although
these infants have protection from measles, they are still at risk from
other sources, and the group is therefore subject to lasses at an age
specific rate p(a) representing deaths by any cause other than measles.
This is referred to as the background death rate. Infants who survive this
period leave the maternal antibody protected group at a constant per capita
raterﬁ to join the susceptible class. Hence the average length of time spent
in the maternal antibocdy protected group is approximately equal to 1/6.

Once in the susceptible class, individuals are at risk of contracting
measles. This théy do at a per capita rate i(a,t). This rate, rx(a,t), is
called the force of infection. However, some susceptible individuals will die
as a result of other causes, and therefore the background death rate udal
also applies to this class.

Upon becoming infected individuals enter the incubator class, where
they stay, on average, for time 1l/¢ before becaming infecticus. Once again
they may die from other causes during this time.

Once an individual has become infecticus, he is deemed to be at

heightened risk due to having the disease. There is, therefore, an
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Figure 4.1

Scheme of flows between compartments in the model. Note in particular that
the total population (N) loses individuals at a higher rate from the
infectious (Y) compartment than from the others.
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additional death term o{a) representing disease related deaths. Other risk
factars don't disappear just because an individua} has measles, so the
background death rate is still present.

Those individuals who survive the disease enter the immune class at a
constant per capita rate ¥, where they stay until they die at an age

specific per capita rate p(a). Figure 41 Surmmorises b possible

tronsifons between nadel cormpartrments.,

Parameter values are estimated from epidemiological data. The
magnitude of the parameters determines the speedé with which the
transitions between groups take place. Thus parameter estimation forms the
bridge between observed patterns and the model's behaviour. All the work
presented in this study has been performed using parameter values measured
from field data. Table 4.1 sunmarises information about the parameters, and

gives a guide to the range of values that they may take.

The force of infection i (a,t) plays a central réle in disease dynamics
because it governs the speed at which new cases are generated. Its
definition is as follows:

the force of infection is the per capita rate at which susceptibles

become infected. ‘

The relationship between the force of infection and the size of the
infectious population is perhaps the most important distinguishing feature

between different models of the dynamics of directly transmitted diseases.

The relationship that has been used in this study is the following;
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................................ Fmmmmmmm e —m———m o m————————————— e
Parameter | Biological Age Dependent | Type of Data Approx, Range
Interpretation / Independent | Measured From of Valuss(yr™")
rate of loss —serological surveys .
§ of matarnal independant of young age classes 2-5
antibodies excluding known cases
pta)l background dependent demographic tables 0- 15
death rate
per capita rate
Ala,t) of acquisition dependent serological surveys 0-1,89
of infaction
T 1/¢ is tha mean | independent clinical observations | 73 - 45 so 1/¢
incubation time is 5 - 8 days
H 1/¥ is the mean | independent clinical observations | 91 - 60 s0 1/%
infectious time is 4 - 6 days
x(a) disease related | dependent tase fatality rates 0-90
death rates
mia) fertility rate | dependent demographic tables 0-0,35
Table 4.1

Summary of information about the model's parameters and pes CqP'\\-Q rates
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[da]
J Ba,a' Y(a',t) da'
° 4.8)

ala, t)
ffra, o dal

In classical non-age-structured deterministic models, (Kermack &
¥cKendrick 1927, Bailey 1975) X, Y and N represent the densities of the
susceptible, infectious and total populations respectively. Individuals move
from the susceptible tao the infected state at rate § X Y, that is at a rate
proportional to the product of the density of susceptible and the density
of infectious individuals. This is the so called 'mass action' assumption.
The age-independent version of equation 4.8 would state that individuals
move from the susceptible to the infected state at rate B X (Y / N ). Here
X and Y represent the total numbers of susceptible and infectious people in
a community and N represents the size of that community. Therefore the rate
of transmission is proportional to the number of susceptibles and the
fraction of the community that are infectious. Under the assumption that
neither the area accupied by the community, nor the number of people in the
community are changing the two definitions differ only by the constant
1 / ¥. In chapter 9 consideration will be given to alternative definitions
that might be appropriate for studies of the dynamics of disease

transmission in communities that are growing.

The constant of proportionality B represents the combination of two
biological quantities; firstly the degree of contact between infectious and
susceptible individuals, and secondly the probability that contact between
an infectious and a susceptible individual will result in infection. The
function B(a,a') is exactly analogous to the constant B, with the extension

that the two components mentioned above are deemed to be dependent on the
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ages of the infectious and susceptible individuals. So R(a,a'? combines the
following two factors; the degree of close contact between susceptible
people of age a and infectious people of age a', and the propensity for a
susceptible person aged a to develop the infection after exposure to an

infectious person aged a'.

This study follows previous work on age structured epidemic models
(Schenzle 1984a, Anderson & May 1985a) in dividing a lifetime into n
discreté age classes and assuming that for susceptible individuals in the
ith age class and infectious individuals in the jth age class, B(a,a" is a
constant with value B:i;. Thus B(a,a" is a step function which can be
represented by an n by n matrix of constants. This matrix [8:;] is called
the 'who acquires infection from whom' (VAIFV) matrix. The two components
of fa,a") are too complex to measure directly, but using the definition of
the force of infection it is possible to find values for the B.; by an
indirect method. Restricting the function 8(a,a') in the manner mentioned
above has the following immediate consequence. For any fixed time 7, X\(a,m)
is a step function, constant over the age ranges determined in the
definition of Ba,a'). Figure 4.2 illustrates the kind of surface that would

represent f(a,a".

Let i (t) be defined,

xi(t) = xa,t (a a)
i-1"71
then by definition
n -
xi(t> = j§1 Bij YJ(t) (4”9)

where
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400

B(a,a') per year

Figure 4.2

The 'who acquires infection from whom matrix’, Bi;. In this study the
transmission function B(a,a') is restricted so that it can be represented by
an n x n matrix of constants. This matrix is further restricted so that it
only has n different elements. This further restriction is necessary to
allow the calculation of the B:s's from the estimated \i's.



T it e U T T I e e e Y T

55

Y.ty = % va,tda
J a

a=1
and as before EeD represents the total number of pecple in the community.
Under the additional assumption that Ma,t)/dt = 0 (i.e. that each \:i(t) is
equal to a constant i), it is possible to estimate the X: from age
prevalence data. Héving measured the \; from a data set, still assuming
that dx¢a,t)/dt = 0, a set of Y, can be calculated from the equilibrium age
distribution for Y<(a). If the B.; matrix is then restricted to having only n
elements, these f+,...,B~ are trivially derived from the set of linear

equations represented by equation 4.9.

There are two important facts about this matrix [B.;1. Firstly, a given
set of Xis measured from a serological profile does not define a unique
WAIFV matrix. Fortunately those configurations that give rise to negative
values for one or more of the B.,...,8~ can be rejected as being biclogically
unacceptable and this eliminates a number of the possibilities. However it
does become necessary to investigate the effect of adopting a variety of
different configurations for the VAIFV matrix. This wark is presented in
chapter 7. The second important point ta be borﬁe in mind is that the
elements of the matrix do not change with time. They represent sociclogical
and bioiogical quantities that are assumed to be constant aver long periods

of time.

The distillation of the force of infection into n functions () is
extended to all the age dependent parameters. So a lifetime is divided up
into the same n age classes as for the B matrix;

8o T 81y A1 T ARyreey Qyi=1 T @ns
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The parameters p(a), «(a) and mda) are then defined as step functions

constant over these age classes;

piad

.<

f‘}il

Hi

L g

<
r al A m1 0 a <« a1
<: { '
afa) = a, ma) = m for a, ¢ a < a
J J j-1 J
L 154 m a ¢ a < a
n V' "n n-1 n

The ways in which these are estimated, and full details of the process for

finding the Bi,s are described in chapter 6.

The majority of the notational conventions that will be used in the

text have already been mentioned. The purpaose of this section is to draw

them all together in aone place.

M@,

X,

H@a,t
Y@,
Za,t

Na,t>

Yt

the number of people protected by maternal antibodies
of age a at time t.

the number of susceptible people of age a at time t
the number of people who are infected but not yet
infectious of age a at time t

the number of infectious people of age a at time t
the number of immune people of age a at time t
the number of people of age a at time t

the total number of infectious people at time t
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Y. the total number of infectious people in the jth age
class at time t

(and similiarly for all other groups)

ai-1 the lower limit of the ith age class
as the upper limit of the ith age class
4.6 _Summary

The set of partial differential equations, boundary conditions and
initial conditions that constitute the maodel have been presented and their
biological interpretations given. The model is different from that from
which it is derived because it allows case fatalities and population grawth.
All the age dependent parameters of the model are restricted to being step

functions, and one set of age classes serves all the parameters.
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5.1 Aims of Qbaptg[ 5.

The purpose of this chapter is to present results gained by studyiﬂg
the equilibrium properties of the model defined in chapter 4. These results
fall into two categories, those that are generated to enable the
interpretation of epidemiological data, and those that express certain
epidemiological properties of a community in terms of the model's
parameters. Discussion will faocus first upon methods of data interpretationm,
and then upon the derivation of expressions for three epidemiological
measures namely; the average age at infection (A), the basic reproductive

rate (Ro) and the critical vaccination proporticn (pe).

2.2 Chapter layout,

The text commences with a list of the reasons for studying equilibrium
properties. This is followed by an outline of the assumptions that are
inherent in such studies, and a defence of their applicability to this
model. The derivation of a method for interpreting serological profiles
starts with the addition of a new class to the model, this class is called
'‘excess deaths'. Using this extra class, a method is derived whereby values

of the force of infection can be measured from serological profiles drawn
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from communities that have suffered significant case fatalities. A second
method of data interpretation is then described. This demonstrates how to
measure disease related death rates from case fatality rates. The second
part of the chapter is devoted to finding expressions for the three
epidemiological measures; the average age at infection (A), the basic
reproductive rate (Rw) and the critical vaccination proportion.(pc). Before
this can be done a reduced version of the model is introduced, which does
not allow for the protection by maternal antibody. The quotation of
pertinent results from mathematical demography completes the preliminary
waork necessary far this section of the chapter. The first set of results
derived and discussed considers the special case when the model has only
one age class. Expressions are derived for the average age at infection, the
basic reproductive rate and critical vaccination proportion. This exercise
iz then repeated for the general case when the model has many age classes.

The chapter concludes with a summary of the results.

2.3 Introductory remarks.

The full model, represented by equations 4.1 to 4.5 and their initial
and boundary conditions, is too complex to be treated analytically. For this
reason its solution is investigated using numerical methods. However
computer simulated solutions of the equations can only yield limited
insights into the model's behaviour. The analytical treatment of a greatly
simplified version of the model can give a- complimentary set of results.
These are useful because they embody certain properties of the model's
behaviour in easily understood formulae. The following simplification is

made when equilibrium properties are studied: rather than making the force
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of infection vary with the number of infective people, it is assumed that
the force of infection is equal to a constant. (Or when transmission is
assumed to be age dependent a vector of constants). Under these assumptions
the age distribution of individuals in each class does not change with

time, and the problem becomes one of the consideration of a set of ordinary
differential equations describing these age distributions. The connection
between this simple problem and the full model is the assumption that aver
a long period of time the force of infection as defined in the full model
does tend to a constant value as time tends to infinity. This has not been
proven analytically, but results of numerical analysis do not disagree with

this assumption.

5.4 Methods of d . .

The principle objective af this area of study is to be able to measure
the force of infection from available age prevalence data. Such data takes
the form of serological profiles which represent the proportion of the
population seropositive by age. The proportion of the community of age a at

time t in each class is represented by a °'d variable. Thus;

M (a,t) = Mda, t) X*(a,t) = X(a, t) H'(Ga,t) = H(a, t)
Nda,t) Nda,t) ¥(a,t)
B. L
Yo(a’t) = Y(a;t) Z.<a’t) - Z(a,t)
Nda, t N(a, t>

As the rate of change of the total population N(a,t) is governed not only
by population size, but also by the number of individuals in the infectious
state (equn. 4.6), straightforward division of equations 4.1 through 4.5 will
give a set of equations for M° to Z° whose right hand sides all contain

terms involving products of Y°(a,t) and whichever variable is under

= et e T wes T A d et ve S o VS A v c AT AT AT A et ST e rad s syttt e B L e e e e -
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)
»
2
2
2

Figure 5.1

Scheme of flows between compartments in the extended model. By defining
a new compartment E, and an alternative total population V, a situation
is achieved where losses from the 'would-be total® population V are at a
uniform rate from each compartment.
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consideration. This seems to make the praoblem much more difficult. However
the introduction of a sixzth state, ‘excess deaths' allows the definition of
an alternative set of proportions which serve to clarify the problem.
Conceptually this sixth class represents those individuals who have died as
a result of contracting the diszease and who wauld not have died from some
other cause. The numbers in this class of age a at time t, E(a,t), are

therefore described by the equation
9E + 3E = «(a) Y(a,t) - p(a) Ea,t) 5.2)
3a Ot
. It is now possible to define a new ‘would-be' tatal papulation -~
Va,t) = HN@,t) + E@,
- that is, the total living population plus those who have died prematurely ’

as a result of having had the disease. This total population W(a,t) abeys

the following differential equation;
AWV + I = - p@ Wa,ty (5.3
da 0t

This extended system is summarised in figure 5.1.

Having defined this new type of total population W(a,t), it is in turm

used in the definition of a third set of variables;

K a,t) = TV yig = 2@V gy = B
Wa,t) W(a, t) Via, t)
(5.45
t
Ve, = LY G = 2P gy = BE@P
Wia,t) Wia, t) Via, t)

The partial differential equations governing their dynamics are as follows.
oM’ + O = - 6 M'(a,t 5.5
Oa ot
axt + X = & M, t) - aa,t) X' (a, ) 5.6
da ot
DH* + OH' = 2da,t) X'Ca,t) - ¢ H'(a,t) (5.7

da Sg

P AP S S T



BT + 3V = o H'(a,t) - Cada) +Y¥ ) Y a,t) 5.8
3a ot
3z + 3z = ¥ 1D 5.9
Ba Bt
3E' + ' = «@) E'(a,t) 5.10
3a ot

The boundary conditions are as follows:

1

Xco,e

X',

1]
"

H'O,t> = Y'(O,0) = Z'W,D E'C@0, ) = 0
and the initial conditions are trivially derived from the initial conditions
specified for equations 4.1 to 4.5 with the additional specification of

E (a,tcx N

Under the assumption that 2{(a,t) and «(a) are constant over given age
ranges and that @x(a,t)/dt = 0, the equilibrium values of this set of
variables are easily found by solving the piecewise-linear ordinary
differential equations which are obtained when the time derivatives for
equations 5.5 to 5.10 are set to zero. This then gives expressions for the
equilibrium age distributions of individuals in each of the stétes in terms

of the model's parameters.



It then remains to clarify the relationship between these 'd variables

and the quantities which are of epidemioclogical interest, the °d variables.

~

Since
¥a,t0 = ¥,y - E@a,W
and
E@®m = VWi, t) E'@,
M (a,t) = M, t
Wia,t) - E(a,t)
_ Ma,t
W,t> (1 - E'<(a)
- M' (a)
(1 - E*@n

and similiarly for X°, H°, Y° and Z°. From the serological profile the
propartion susceptible at each age X°(a) is known. If all the parameters
other than the force of infection are known, having derived an algebraic
expression for X°¢a) in terms of the madel's parameters, it takes anly an
application of a root-finding algorithm to the function

FOO = X°@ @ - E'@) - X'@
to obtain the age-specific values for the force of infection, the X;. In
chapter 6 some illustrative examples of serological profiles and the forces

of infection estimated from them are shown.

Clearly the magnitude of E'(a) governs the extent by which this
estimated value of the force of infection differs from the value that would
be obtained using a method that does not take account of case fatalities.
Since

E'(a) = oj'acx(a') Y'¢a') da'
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this in turn depends upon the magnitude of a(a), which is determined by the

Fh

case fatality rate. Given a set of age specific case fatality rates;

P1y Pz, ... Pn for age classes 0 - aiv, a1 — az, .y &n—1 ~ an
a2 set of disease-related death rates for these same age classes are derived
as follows: the parameter p, represents the proportion of those people aged

between a,-: and a; leaving the infectious state, who go into the excess

deaths state. Expressed algebraically,

%
aj Y(a) da
a, ™ o
- J-1 _ J
pj ) ) ( + )
a, o
rJ ¥ j
(Y + a,) Y da
a, ™ J
i-1
S0
¥ pJ
aj = v B.1L
1 - pj )

For the younger age classes, where the case fatality rate can be as high as
26% (Aaby, 1983a), taking account of death from disease can increase the
estimated force of infection by as much as 17% when compared with
estimates that are derived using methods which ignore disease related
deaths. When studying the dynamics of measles in less developed countries
much of the interest lies in the first few years of life. Therefore such an
underestimation of the force of infection at these young ages is of
considerable practical relevance. In chapter 6 some numerical examples of
disease related death rates are shown, and the dependence of the force of

infection upon the disease related death rate is illustrated with examples.



(o))
[&]]

5.5 ng.- demiolosical constants

In the following analysis a reduced system is considered for the sake
of clarity. The maternal antibody protected class is dropped and the
boundary condition altered to

X0,t) = ofLm(a) Na,t) da

to accommodate this change.

Before deriving expressions for the epidemiological constants, the
following two definitions, additional to those mentioned at the end of

chapter 4, are made.

Nt

NG, )
that is, B is the reciprocal of the average birth rate.
And,

B =

1a) = exp I —ofa;.x(a‘) da' 1

In order to investigate epidemiological constants such as the average
age at infection it is necessary to note a few pertinent results from the
theory of mathematical demography (Pollard, 1973). The 'would be'
population, W{(a,t), whose dynamics obey equation 5.3 can be thought of as
undergoing an age structured birth-death process if the following
alteration is made to the fertility function.

NCO,t) = ofLm<a) N(a,t)da = ofLm(a) (1 - E'<a)) Wia,t) da

If the following definition,
w() = mnfa) - E'@»
is made, then,

NCO,t) = °J‘Lma) V(a,t) da
but since
W,t) = NO,t)

this yields
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V,t) = ofLw<a) Via,t) da (5.12)
It is well known (Pollard, 1973) that under the conditions defined by
equations 5.3 and 5.12 the 'would be' population V(a,t) settles to a stable
age distribution with overall growth at rate r, where r satisfies the Euler
relation

oJLma) e "% 1@ da = 1
and the stable age distribution is given by

Wa,t) = Vo, e % 1lw@ (5.13)

The total population Nt) also grows at rate r, since

Nea,t) = W(a,t) (1 - E'@))
- L
wew o W@ - R
at At
[+
Hence
Nty = N e'F (5.14)

In what follows it is assumed that there is only one age class. As
discussed above these results are derived because they can give insights
into some of the properties of the model. They are also useful when trying
to understand the more complex formulae derived when the case with many

age classes is studied.

A further piece of preliminary work is necessary before continuing.
This is to find an expression for the total susceptible population X(t), and
an approximation to the value of the total infectious population Y.
Bearing in mind that

-ra
Xla,t) = W,t) e 1@ X' (ad (5.1%

and that when there is only one age class;

1y = e M2 (5.16)
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and

X = e N2 (5.17)

it is easily shown that

N 1 - e—(r + u+ ML
X{t> = W,y (5.18
r+ p+ N

If L is large, this simplifies to;

ey = __ O 5.19)
(r+p+ N
At equilibrium,
N o~ X oa_ o &+ a o~ Y a _ e—(y + ) a
'@ =
v = N o+ a = X O+ o=
. : . -ra —Xa ;
dropping terms of order of magnitude e and e this simplifies to
Yy = X' @ ~
B+ o
and therefore
Yooy = 2 X® (5.20)
o+ o

The necessary tools are now available to derive expressions for the
equilibrium values of three important epidemiological quantities, namely,
the average at infection A, the basic reproductive rate R., and the critical

praportion to be vaccinated for eradication pe.

The average age at infection is defined as follaws;

ofLa xa) X(a,t) da
A = (5.21)

ijx<a> X(a,t) da

and for one age class, without vaccination

(r + p + Na

X(a,t) = WO,t) e
S0
A = M W(O,t)ofL ae rtp+na da
A w<o.t>°fL e TERETN A,
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hence

W 1 TTHEI NG s oL e D

-(r + u +
r+p+ o (1-e (FEREML

If L is large

p o= L (5.22)

r+ g+ N
Consideration of the relative sizes of r, p and X gives
1

)N

A =

This relationship (noted'in previaus works on age structured epidemic
models (Anderson & May 1985a)) is of interest because of its implications
for the outcome of vaccination programmes. When the force of infection is
lawered as a result of vaccination, the average age at infection will rise.
In a situation where the risk of serious disease resulting from infection is
at its highest in the younger age groups, this effect of immunisation is

obviously beneficial.

The basic reproductive rate R. represents the number of new cases that
will arise if a single infectious individual is introduced into a totally
susceptible population (Macdonald, 1952). The effective reproductive rate R
is the number of new cases that will arise as a result of the introduction
of one more infectious individual into a population containing susceptible
and immune individuals. The quantities are related in the following way;

R = RO

=1 ]

In a situation where the total human population is static, at equilibrium

the reproductive rate R is equal to 1. In this model, however, where the
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longer hglds. In order for the disease to remain at equilibrium the number
of infected individuals must increase at the same rate as the total
population. An individual is on average infectious for time 1/(y + a). So at

the start of his infectious period the total population is (equation 5.14)

Fco) e TF

and at the end it is
r¢t + 178 + o)

N e
¥y +
i.e. the population increases by a factor of er/ ¥ o S0
R = er/(x + o
Therefore, at equilibrium
B ﬁ(t) er/(x + o)
RO = _
X
B T I N

-Cr + pu+ ML

V0,t) (1 - e )

If L is large

R, - T /Y TP e
W0,
and equation 5.22 for A holds.
Also
W0, t) = NCO,t)
and
T® - B
NCO,t)
hence faor large L,
Ro ) E er/(x + 5. 23)
A

Since r is small and ¥ is large e"/“**=° = 1 and equation 5.23 therefore
agrees with the expression for Reo derived in May and Anderson (1985), even
though that study uses a different definition of the force of infection. The

interest in this result lies in comparing values of R for



Country | Year B Ro Reference for value of A
Chile 1962 3. 42.5 | 12.5 | Ristori et al, 1962
U. s, 1965 5 68.3 | 13.7 | Collins, 1929
Ghana 1960-68 | 2. 30.6 | 12.2 | Morley, 1969a
Kenya 1974 3. 26.1 7.5 { W.H.O0., 1979
India 1976 3 35.3 | 11.8 | Bhau et al, 1976
Senegal 1964 1. 31.1 17.3 | Boue, 1964
Table 5.1

Sample values of Ro from around the world. All values for B are
estimated from, U.S. Agency for International Development, 1977.




am il & T8 Rk R A T Ad Y b o il Rt W fe TR ® SRR e e e

7a

developed and developing countries. In developing countries the average age
at infection is low, but the high birth rate and and consequent low value
of B balance this, yielding the surprising result that Ro 1s no greater in
developing countries than in developed ones. Some numerical values for Ro
are shown in table 5.1 to illustrate this point. In calculating these values
the term e~7¢¥ * *° has been ignored as its value is approximately 1. (For
example, realistic values of r, ¥ and «a might be; r = 0.02, ¥ = 52 and

a = 10, yielding e=7¢* * => = 1.,00032.)

To conclude this section concerned with the model with one age class,
attention is centred upen the critical vaccination proportion: the
proportion of the population that needs to be vaccinated in order to

achieve eradication.

Vhen there is only one age class the definition of the force of

infection is

B Yt

Nt

N =

where B is a constant determined by factors that are unchanged by

vaccination
A Nt
Y ()
N(t) 3 +ad (r + g+ 0
e—(r + u + ML

B =

V@,t) X' 1 - )
and 1f L is large
B & + o
po= 2 T X .20
A0

Vhere equation 5.24 is derived using equations 5.18, 5.21 & 5.22, and Ao

represents the average age at infection before vaccination is introduced.
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Now cuppose that a fraction p of each cohort is successfully vaccinated at

birth. The force of infection under these circumstances is still defined as
B Yt
Nt

A

substituting equation 5.18 for Y(t) and using the definition of X ()

Xt = <>JLwco,t> Xy e T T RFN A
yields o , -
N (O S RC I A T I (R0

NCE)Y (¢ + o)
but the initial condition is now X'(0) = (1 - p), s0

(1 - P) = Nty (y + o
at eradication p » p_, X 9 0, and F(t) » W(t) = V0, [QJLe~(r +ay
S50

1 - p = ﬁl—f——ai (5.25)

c
) B

and using equation 5.24 for B gives;

P, = 1-20 (5.26)

© B

.

As discussed when considering Ro, B / Ao is approximately constant. This
has the very important implication that the proportion of each cohort that
needs to be immunized to eradicate measles in developing countries is the

same as that necessary for eradication in developed countries.

Having found expressions for A, Ro and p« in the special case where
there is only one age class, the general case is now investigated. As in the
previous section a few definitions and preliminary results are discussed

first.

Defining

He~? e
>

¥, = j a, - a,_,)
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and
Yo = 0
yields, when a; ¢ al a5
« X'(ay = X' expl ¥ xi(a - ai_l)]. (8.27
Furthermore, if
i
g, = jél K (aj - aj—l)
and
bo = 0
then for ai-ls a < a,
1@) = expl —ﬂi—l_ pi (a - ai—l)] . (5.29

The definition of ij<t> is;

— ai;
Xj(t) = 4 J 7X@, t)da

=1

%G, X' @ da

J=1

using equations 5.27 and 5.29 for X'(a) and l(aJ,

J-a.ie["\h‘—r‘)\.i (a,~a;—1 ”e'rae[ ‘ﬁ‘}_, -ps (@ay—as— )]da
-1

X, (4 = W(0,t) X' (O
3 aj

- ~ =8 - - PRI SPRRRI T S
= VO, X' [1-e (r+ps+x;) as—ay 1)] e (raj—1tgs—1+ys-1) (5.30)
Using the analogous argument to that shown in the derivation of sguation
5.20, it is easy to show that for a;-1v ¢ a < a;
Y' (@) = ij X @
N+ o)
YT
And therefore that,
T = 2R (5.31)
] oy + aj)

For the details of this last approximation see Anderson and May (1985a).
The necessary tools have now been assembled for the derivation of the many
age class results: these start with the consideration of the average at

infection, A.
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Substituting the expression for X(a,t) (equation 5.15) into the
definition of the average age at infection (equation 5.21), and exploiting

the fact that X{(a,t) has been restricted to being a step function, yields;

=}

DY faia e T3 X'(a) da
i=1"1 ai-»

n
IoN, 2 2T ) X' (@) da
i=171 as-

Substitution of equations 5.27 and 5.29 for X'(a) and 1(a) gives

n
i ~(r+pitr.) (@a~ai- ~(gi-rtyi-r1*trai-1)
I, fa ae (r+pitiil(@~as-1) e (fi-1tyi-r1trasi- da
i=1"1 i
A =
n
i —(rtu.trs - R ~{(fi-rtyi-1trai-
$ % fa e (r+uc+xi) (@-as-1) o (gi-rtys-itra ')da

i=1"1 i1

which after integration becomes;

=($itgatras)

;E: ! [(rdpithidas- ¢ ]]Eil’l-l+vi-‘+rai—t) = [letpathidas + 1] e

1=
Although this equation clearly fails to endow any further insight as it

stands, it is helpful for showing how the numerical value of the average
age at infection depends upon the age dependant case fatality rate and the
configuration of the WAIFW matrix. Tables are shown in chapter 6 depicting

this relationship.

For the many age class model the basic reproductive rate is redefined
in the following way; Ro: 1s the average number of secondary cases (in all
age classes) generated by one case in age class i if the population is
wholly susceptible. An individual in age class 1 is susceptible for time
1/¢¢ + as:). The per capita rate at which susceptible people in the jth age

class become infected is x;, and in the definition of Re: it is stated that



76

the whole population should be susceptible. Thus the number of new cases
generated in the jth age class by an infectious individual in the ith age
class is equal to

X, N,

NI

+
¥ ai)

and therefore

n -—
L, x, X
R I N R
01
+
¢y a )
By definition
n —
_ xE1 Bjk Ty
x' - —
J ]

but in this case ?i = 1 and ?j = 0 for j#i so

,,)\J = -jl
N
S0
n —
I, 8, 1§ |
Ry, = - 3t 3 (5.33)
TEXRE

Once again this formula is somewhat unenlightening as it stands, but is
useful for comparing changes in the numerical values of the age specific
basic reproductive rates under different assumptions about the case
fatality rate and WAIFW matrix configuration. These are studied in chapter

6.

The argument used in order to find the critical vaccination proportion
when there are many age classes is rather more complex than the others, so

before embarking upaon the derivation a brief summary is given.
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The aim is to obtain an expression of the form

Y = - T

A (1 pC) G X
where )\ is the vector Gai, Az,ooin) and G is a matrix of constants that are
found under the assumption that each X: is very small. The argument will

then continue,
1 (1 - pC)G - I = 0
for nontrivial soclution for A. And therefore,

1
P, = L~

-

m

where ¢ is the dominant eigenvalue of G.

By definition
1 I -
N, = - L, B..Y ()
L Npy 3T

using equation 5.31 far Yj(t) yields

ol .. N, X. (D
x.=_.1_Z”JJ
N j=1 y + aj)

Substituting equation 5.30 far ij(t)

: Bk WOEY XYL T -e
iy

N j= + 7. gt ).
NCEY =t (Y a” (r B XH

=(repsthid(as=as-1) e'(ras-1+§s-t*ij-x)

]

At the critical vaccination praportion X'(0) = (1 - pe) and the x:i 9 0,
-(r4ps)as=as- “(rag-146;s-
] LB A WO (-p)ll-e (rtps)as=a; 1)] . (rag-1#f;-1)
_ i c

i 2=~ [y mmmmme—- -

NCBY =t (Y +a) (r+p.t))
I 1

AT = d-p) G AT

has non-trivial solution if and only if

G - . I = 90

(1 - pc)

So must be an eigenvalue of G.

1 - pc)

That is,
P, = 1 -1 (5.34)
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where ¢ is the dominant eigenvalue of the matrix G whose elements gijare
- . oo A - iq 4+ - .
B = By VOB L= (s (@s = as-n) g mTas=1 F 1) 5 g5

ij ~
NGy (¥ + aj > (r + “j )

Some numerical values for p. are shown and discussed in chapter ©.

The equilibrium properties of the model have been studied and have
yielded two different types of results. The first type shows how to
interpret case fatality rates and serological praofiles in order tao derive
parameter sets for the model. The 'second type shows how certain
epidemiological constants depend upon the madel's parameters. For the
special case where there is only one age class these relationships are as
follows; the average age at infection is approximately equal to the
reciprocal of the force of infection; the basic repraoductive rate Ro is
approximately equal to B/A where A is the average age at infection, and B
is the reciprocal of the average birth rate; the critical vaccination

proportian for eradication of disease pe is equal to 1 - 1/Re. .

These last two results yield the important conclusion that the
proportion of each cohort that must be immunised in order to eradicate
measles in develaping countries is the same as that necessary in developed
countries. When there are many age classes these relationships are not
easily summarised because they are algebraically very clumsy. These results
are useful for looking at numerical values of these epidemiological measures

and these are considered in the next chapter.
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This chapter has three objectives; (1) to present the available data
concerning measles epidemiology in develcping countries; (2) to prepare
this data for input to the madel using the methods of data interpretation
dizscussed in the previous chapter; and (3) to use these parameter sets to
investigate the numerical values of the three epidemiological constants alsa

discussed in the previous chapter.

©.2 Chapter layout.

The chapter starts with a ‘'recipe' for a simulation run. That is, a
list of all the parameters that must be provided in order to find a
numerical solution to the full madel. This list also indicates the form in
which this information must be prepared. The main body of the chapter then
goes an to discuss each item on the list in more detail; reviewing the
types of data that can provide such information, discussing the methods of
data interpretation necessary to extract parameter values from the raw
data, and giving examples of estimated parameter values. The types of data
fall into five groups; demographic data, data on the rate of loss of
protection by -maternal antibody, case fatality rates, serological profiles,

and case reports through time. Having discussed the strengths and the
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weaknesses of the available data, the idea of a baseline parameter set is

introduced. This is a set of parameter values that is selected as a
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The final section of the chapter uses the baseline parameter sets that have
been prepared in order to investigate the effects of parameter variation on

the numerical values of the average age at infection (A), the basic

reproductive rate (R») and the critical vaccinaticn proportion (p<).

As the model investigates the effect of population growth on measles
epidemiology, data on age specific birth and death rates are essential
components of the analysis. These are entered as vectors of live births per
thousand women per year by age, and annual death rates by age. As discussed
in chapter five section five, there is a stable age distribution associated
with any such pair of vectors. This is the age distribution to which a
population will settle if subjected to unchanging rates of births and
deaths. These stable age distributions are calculated separately, and alsa

read into the programme.

The epidemioiagical parameters that are required are the following:
the' rate of loss of protection by maternal antibody, (assumed to be a
constant of value 6); the age specific disease related death rates, (a
vector of constants denoted by «i); and the age specific forces of infection
(another vector of constants denoted by ;). The configuration of the WAIFV
matrix, and the regime of vaccination to be examined must also be

specified.
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The first type of data presented concerns the differences between the
.demography o0f the developed versus the developing world. The first
comparison is between the respective age distributions of populations in
these regions. In figure 6.1 the age distributions of the populations of
Ecuador, Iran, Kenya, Senegal, Thailand and the U.K. are compared. These
graphs show the familiar pattern of a large proportion of the population in
the 0-5 and 5-10 age bands in developing countries, contrasting with a
much more homogencus distribution by age in the U.X. Indeed in the U.K. and
the U.S.A. at present the age distribution is, to a good approximation,
uniform. In figure 6.2 age specific fertility rates from the same six
Sountries are compared. Thesé graphs display a similiar gulf between
developed and developing countries. In the U.K. the peak is at 25-29 years
with a value of 135.8 births per thousand women per year, less than half
the peak value of 338 in Kenya. These patterns of age distribution of
population and fertility rate can be characterised by one constant; the
overall, annual, per-capita birth rate. This is defined as the annual number
of live births, divided by thé total population. For a community which
remains constant in size, births must just balance deaths and therefore the
average per-capita birth rate must be equal to the reciprocal of the
expectation of life. In communities where there is net growth in the size of
the population, the annual per capita birth rate is greater than the
reciprocal of the expectation of life. The constant B that has been used in
chapter five is the reciprocal of this average birth rate. In table 6.1
crude demographic rates from a variety of countries are compared. In order

to study the effect of different values for the age specific birth and death
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Figure 6.1

Age distribution of populations {from a variety of developing and
developed countries;

(a) Ecuador, (b) Iran, <(c) Kenya, (d) Senegal, <(e) Thailand, and
(f) United Kingdom (England and Vales).

The graphs record the age distributions of populations, showing totals
for five year age bands, expressed as a fraction of the whole
population.

All data are from the United Nations Demographic Yearbaook for 1983.
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B et pommmm=-=- peieieisepmeieiueie |
-1 .
Country Year _fiffff_?ff_l?9°-ff_,1_ (Average | Year expectation of
Crude { Crude ( Pop™ | annual life at birth
Birth | Death | Growth] birth | |~ ====f==~======
Rate Rate Rate rate)”’ Male | Female
r B ‘
Ecuador | 1975-80 | 41.6 | 10,4 | 31.2 | 24.0 | 1974-79 | 59.5 | 61.8
Tran 1974-75 | 42.5 | 11.5 | 31.0 | 23.5 1973-78 | 57.6 | 57.4
Kenya 1975-80 | 52,8 | 14.4 | 29.4 | 18.6 1969 6.9 | 51,2
Senagal | 1975-80 | 47,8 | 22,1 | 25.7 | 20,9 | 1975-80 | 40.6 | 43.8
Thailand | 1975-80 | 32.3 | 8.9 | 23.4 | 31.0 | 1960 | 53.6 | 58.7
India 1979 33,2 | 12,8 | 20,4 | 30,1 | 1961-70 | 46.4 | 44.7
UK (E+W) | 1981 12.8 | 11.7 | 1.0 781 1978-80 | 70.4 | 76.6
UsA 1982 16,0 | 8.6 | 7.4 | 62.5 1979 69.9 | 77.8
Table 6.1
Crude demographic data from a selection of developed and developing
countries. The average annual birth rate is calculated as

crude birth rate /7 1000 so B is an inverse measure of the birth rate.
Notice that in the UK and USA B 1is approximately equal to the
expectation of life at birth, whilst in all other countries B is
substantially the lesser of the two.
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rates, the following approach was adopted. High, medium and low birth rates
and high and low death rates were selected. The six possible combinations
of these were then studied. Figures 6.3 and 6.4 show the birth and death
rates that were used, and figure 6.5 shows the stable age distributions
associated with each of the six possible combinations. Table 6.2 summarises

the other important demographic constants, namely averall population growth

rate and average birth rate, associated with each of the combinations.

The first of the three types of epidemiolagical data that need to be
specified is the rate of loss of protection by maternal antibody. Built into
the model is the assumption that there is an exponential decay in the
pfoportion of each cohort protected by transplacentally derived antibadies.
That is, by age a a fraction exp(-éa) of each cohort is still protected.
(See equation 4.1) The quantity that needs to be estimated is therefore the
decay coefficient §. A special type of serological profile is needed in
order to estimate 6. A normal serological profile records the propeortion, by
age, 0f a community which displays a level of measles antibody that could
be assumed to offer protection from measles infection. A serological profile
designed to measure § must have the follow{ng additional properties.
Attention should focus on the youngest age classes, those aged less than 18
months. The age stratification must be very fine - ideally in age bands of
one month. All measles cases should be excluded. This last requirement is
very difficult to fulfil as subclinical infection is common amongst very
young children. So in practice all kpnown cases are excluded. Figure 6.6
shaows the results from 4 surveys which meet these requirements, and figure

6.7 shows the values of the rate of loss of protection by maternal antibody



Figure 6.3

High, medium and low age specific fertility rates selected for use in
studies of the effects of variations in demographic processes. The high
fertility rates are from Kenya in the years 1966-70, the medium
fertility rates are from Thailand in the years 1974-79, and the low
fertility rates are from Thailand in the years 1970-74. The high and low
data are from U.S. Agency for International Development (1977), and the
medium data are from the United Nations demographic yearbock for 1982.

Figure 6.4

High and low age specific death rates selected for use in studies of the
effects of variations in demographic processes. The high death rates are
from Thailand in the year 1970, and the low death rates are from Sri
Lanka in the years 1970-72. All data are from U.S. Department of
Commerce, Bureau of Census, Country Demographic Profiles.
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Figure 6.5 )
Stable age distributions associated with each of the six possible

combinations of birth and death rates.
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High birth rate, Low death rate
Medium birth rate, Low death rate
Low birth rate, Low death rate
High birth rate, High death rate
Medium birth rate, High death rate
Low birth rate, High death rate.

Birth | Death | Population Population (Annual
Rate Rate Growth Rate | Doubling Time | Birth Rate)~!
(per 1000)
year—' years years
r B

high low 41.9 16.5 19.1
medium|{ low 25.4 27.3 25.9
low low 11.02 62.9 34.2
high high 38.9 17.8 18.8
medium|{ high 22. 4 30.9 25.4
low high 8.02 86.4 33.8

Table 6.2
Crude demographic rates from the six possible combinations of the

selected high,

medium and low birth and death rates.

Notice that the

values in cloumns 3 and 5 (that is the values of r and B respectively)
are close to the values in the corresponding columns in table 6.1. This
is taken as an indication that these combinations of demographic rates
give a fair representation of the range of population processes seen in
developing countries.



Figure 6.6

Serological profiles which exclude known cases. These are used to

measure the rate of decay of maternal antibodies. When known,

sample
sizes are shown in parentheses.

(1) Bulawayo. (87) Burrowes and Cruickshank, 1975
(2) Tanzania. (649) E.P.I. 1981
(3) Nigeria. (108> Abdurrahman et al. 1982

(4) Nairobi, Kenya. (1764) Ministry of Health, Kenya 1977

Figure 6.7

Values for the rate of loss of maternal antibodies (§) estimated from
the serological profiles excluding known cases shown in figure 6.6.

Error bars show 995% confidence intervals for the estimated values of §.
Data are from:

(1) Burrowes and Cruickshank, 1975
(2) E.P.1I. 1981

(3> Abdurrahman et al. 1982
(4) Ministry of Health, Kenya 1977
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thaat were estimated from them. The average duration of prctection can be

seen to lie somewhere between 3 and 12 months.

The second type of information required is the age specific disease
related death rate. With the sort of age dependancy used in this study
(described in chapter 4 section 4), this will consist of a vector of values,
one far each age class. The raw data that is used for estimating disease
related death rates is in the form of case fatality rates. There is some
difficulty over the definition of a case fatality. In communities where
general levels of health are poor it is often diffioﬁlt to be specific about
the cause of an individual's death. It is often the case that a number of
factars are responsible. In practice a common definition for a case fatality
is any death occurring within one month of the onset of measles symptoms.
Figures 6.8 and 6.9 show some data on case fatality rates from Africa and
from Asia, and table 6.3 shows some values of disease related death rates

as measured from case fatality rates.

Figures 6.10 to 6.12 show serological profiles from a variety of
developing countries, and 6.13-shows a serological profile from the U.S.A.
As discussed above, they record the proportion of each age group that
display a level of measles antibody (i.e. antibody titre) that would be
expected to prevent measles infection. All the profiles shown are from
studies which specifically exclude individuals known to have been
vaccinated. Therefore people register as seropositive either because they
are protected by maternal antibody, or because they have experienced the
disease. For the African and Asian profiles (figures 6.10 and 6.11) there is

the usual pattern of a sharp draop in the percent seropositive during the



Figure 6.8

Measles case fatality rates in Africa. Data are from community studies

and studies of outpatients. When known, sample sizes are shown in

parentheses.

1 Outpatients and addmissions. Ilesha Hospital December 1959 - May
1960 (2119) (Morley and MacWilliam, 1961)

2 & 3 An epidemic in two Gambian villages: 2, Keneba (230); 3, Jali
(207) March - April 1961. (McGregor, 1964.)

4 & 5 Two epidemics in the Machakos study area in Kenya: 4, April 74 -
March 76, (424); 5, April 76 - March 77 (665). (Muller et al,
1977.)

6 Bandim Guinea-Bissau March - April 1979 (98) (Aaby et al 1983a.)

7 & 8 Jrban and Rural Guinea Bissau: 7, Rural (103); 8, Urban (83).
1979 - 1983. (Aaby et al 1983b)

S Bandim, Guinea Bissaul979 (170) (Aaby et al 1984a)
10 Quinhamel, Gunea Bissau 1979 - 1982 (162). (Aaby et al 1984b)
Figure 6.9

Measles case fatality rates in Asia. Data are from community studies and
studies of outpatients. WVhen known, sample sizes are shown 1in

parentheses.
1 A village in rural south India October 1977 - March 1978 (65) (John

et al 1980)-
2 12 villages Matlab Bangladesh August 1975 - July 1976 (896) (Koster

et al 1981)
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gase fatality 63,64 | 22,22 | 15,00 7,69 4,00 0,00
rate (%)

dise;;e reIated—
death rate (yr~')

O L T T T e I I T T

tase fatality
rate (%)

disease related o 00
death rate (yr—") 14,86 | 14,18 6,50 8.00 0,00 0,

rate (%)

disease related
death rate (yr™")

Table €.3 )

Disease related death rates measured from case fatality rates. The
formula derived in chapter 5 (equation 5.11) has been used for these
calculations. The value of ¥ has been set at 52 (that is the infectious
period 1is assumed to last, on average, for 1 week). The high case
fatality rates are from a study in The Gambia (Williams, 1983), the
medium case fatality rates are from a study in rural South India (Jobhn,
1980) and the low case fatality rates are from a study in rural Kenya
(Muller, 1977) :
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first year of life as maternally derived antibodies wane, followed by a
rebound as herd immunity acquired through natural infection begins to
accumulate. This pattern does not show through in the data from Central
America (figure 6.12) because the age specificity during the first year of
life is not of a sufficiently fine grain. It is noticeable that in the
African and Asian graphs a cohort begins to show immunity acquired through
infection before immunity from maternally derived antibodies has been
completely lost. So there is no age at which all individuals in a cochort are.
susceptible. In caontrast, in the profile from the U.S.A. almost every member
of the cohort has lost his or her maternally derived antibodies before any
member acquires antibodies through infection. This illustrates the ‘window
problem' that was discussed in chapter 1. The absence of any age at which a
whole cohort could be expected to seracanvert after vaccination makes it
difficult to decide on the optimal age for immunizétion. If vaccine is given
at too young an age many children will still be prevented from
seroconverting by the presence of transplacentally derived antibtodies. If
the age at vaccination is raised much above one year a large percentage of
each cohort will have already had measles. There is also the added
complication that the case fatality rate is markedly greater amongst
infants so they are arguably at greatest need of protection by

immunisation.

The most interesting feature of these graphs is the rapidity of the
rebound follawing loss of protection by maternal antibody, particularly in
developing countries. A comparison of the solid lines (which simply pass
through a set of points representing a crude average of all the data) shows

that the percent of the population seropositive rises much more quickly in



Figure 6.10

Measles serology from Africa. When known, sample sizes are shown in
parentheses.

1 Pikine, Senegal. July 1968 (144) (Cantrelle, 1969

2 Popenguine, Senegal. 1957 (88) (Boue, 1964)

3 Dakar, Senegal. 1957 (151) (Boue 1964)

4 Dakar, Senegal. 1964. (Baylett, 1969)

5 Lagos, Nigeria. 1979 (224) (Qgunmekan, 1981

6 Niakhar, Senegal. 1964 (87) (Cantrelle, 1965)

7 Lagos, Nigeria. 1979 (152) (Harry & Ogunmekan, 1979)
Figure 6.11
Measles serology from Asia. When known, sample sizes are shown in
parentheses.

Pondicherry, S. India. 1978 (350> (Bhau, 1979)

Bombay, India. 1971 (250) (Mehta, 1972)

Chandigarh, N. India 1975 (569> (Broor, 1976)

Rural villages, Maharashtra, India. 1971 (897) (Shah, 1972)
Vellore Town, India. 1972 (277> (John, 1973)

Bangkok, Thailand. 1967 (367) (Ueda, 1967)

Rural Nepal. 1977 (1145) (Brink, 1978)

Rural Sri Lanka. 1977 (1966) (Brink, 1978)

N0 0l W
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Figure 6.12 ,

Measles serology from Middle America. When known, sample sizes are shown

in parentheses.

1 Middle America <(i.e. Daminican Republic, Honduras, & Republic of
Panama) 1974 (2970) (Kenny, 1976)

2 Huixquilucan, Mexico. 1971 (667) (Golubjatnikov, 1971)

3 Paraguay 1971 (408) (Golubjatnikov, 1971

Figure 6.13
Measles serology from the U.S.A.
1 New Haven, Connecticut. (308) Black, 1959
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these serclogical profiles. In figure 6.14 and table 6.4 the values for the
force of infection, and the seroclogical profiles they would predict are
compared with raw data. The iour serological profiles that have been used
are amongst the best summarised in figures ©.10, 6.11 and 6.12. It is worth
pointing out that the two profiles frcm Senegal are from an urban and a
rural community, Popenguine being a small fishing village. The method for
estimating values of the force of infection from serological profiles has
been described in chapter 5. It is important %o remember that from a given
serological profile, the estimated values of the force of infection will
depend upon the assumed values of the rate of loss of protection by
maternal antibody and the disease related death rates. Table 6.5 shows the
effect of variation in the disease related death rates and the rate of lass
of protection by maternal antibaody upon the estimated values of the force
of infection. The values of the force of infection read into the program
serve only as a starting point from which a set of values for the
transmission (ar WAIFV) matrix, (RB:;1 can be calculated. However it is also
necessary to séeoify a configuration of the matrix which, as discussed in
chapter 4, is restricted to having n elements. In table 6.6 two different
VAIFV matrix configurations and the B:,'s they generate are shown. These
were calculated from the forces of infection which were estimated from the
Ueda serological profile. The following method was used. The estimated \'s
are used to generate equilibrium age distributions for each of the six age

classes in the model. From the age distribution for the infectious (Y)
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Figure 6.14

A selection of serological profiles and the forces of infection (As)
measured from them.

X raw data points

A reblocked data points

— predicted serology from estimated \s

Data are from:

(a) Bangkok, Thailand. (Ueda, 1967)

¢+ Vellore, India. (John, 1973

() Dakar, Senegal. (Boue,1964)

@ Popenguine, Senegal (Boue, 1964)

-Place Date ) ) Forces SF'IEfechBB'Zyr—'S ----------- i
“Bangkok | 1967 | | .0535 | ,1209 | 4553 | 5810 | ,2410 | ,2253 I 1673
TDakar | 1957 | | 758 | 1.0701| 6755 | 075

Popenguine | 1957 | | .2838 | .2805 | .3796 | .2725 | 2585 | 1328
Vellore | 1972 | |.4598 I 5819 13575 | 0482 0168
""""""""" T TIITIIIIITITIIIIILIIIIIII IIIIIITIIIIIIIIIITII,

Age (years) 0 0,5 1 2 3 4 5 6 7 8 9 10 50

Table 6.4

Forces of infection measured from serological profiles. These are the
same results as those presented in graphical form in figure 6. 14.



ity | of paernat | Forees of ifection tyr )
Rate antibodies (yr~™')| M Az Az ha As \e A7

S| | | e | | | | e
N N e M N T R T X IR
T\ T | i || | e || i
O O G | o | | | | | e
N T e A T R
I N R e e A )
T T\ | | | || e
T T T || e | e || e

Table 6.5

The dependance of the estimated values of the forces of infection upaon
the assumed values of the rate of loss of maternal antibodies, and the
case fatality rates. High, medium and low case fatality rates refer to
those shown in table 6.3. Notice that a higher case fatality rate used
when estimating the Xs leads to a higher value for x. That is, methods
that do not take case fatalities into account give underestimates of the
true value of the force af infection. In general greater values of §
serve to increase A\, and decrease x=. Notice, also, that when the value
of § is set to 4 per year (i.e. average duration of maternal antibodies
is 3 months), a negative value for iz is estimated, hence the assumption
that § is equal to 4 is incompatible with this serological profile.



98

56.7 56.7 56.7 56.7 311.0 201.1 214.5
56.7 146.7 | ° 146.7 146.7 311.0 201.1 214.5
56.7 146.7 703.0 703.0 311.0 291.1 214.5
56.7 146.7 703.0 1389.2 311.0 291.1 214.5
311.0 311.0 311.0 311.0 311.0 291.1 214.5
291.1 291.1 291.1 201.1 291.1 291.1 214.5
214.5 214.5 214.5 214.5 214.5 214.5 214.5
Configuration 2
76.3 76.3 76.3 76.3 76.3 76.3 76.3
155.0 155.0 155.0 155.0 155.0 155.0 155.0
583.8 583.8 583.8 583.8 583.8 583.8 583.8
745.0 745.0 745.0 745.0 745.0 745.0 745.0
307.9 307.9 307.9 307.9 307.9 307.9 307.9
288.9 288.9 288.9 288.9 288.9 288.9 288.9
214.5 214.5 214.5 214.5 214.5 214.5 214.5
Table 6.6

Who acquires infection from whom (WAIFV) matrix configurations. The
arrangements of these numbers indicate the assumptions that are made
about heterogeneity of transmission according to age. Configuration 1
implies the assumption that both the age of the infectious individual
and the age of the susceptible individual influence the rate of disease
transmission, and that the hihgest transmission takes place within the
4-6 year old age group. Configuration 2 implies the assumption that the
transmission coefficient depends solely upon the age of the susceptible.
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Class, the total number of infectious individuals in each age class (¥, is
calculated. The tctal population'ﬁ is also found from these equilibrium age
distributicns. Eecause the WAIFV matrix only contains n different B.,'s the
3et 0f linear equations;

n -_—
A = ¥ B,,Y, /X%

can be solved for the n different R's.

There are, however. a number of praéerties ol serological profiles
drawn from develaping countries which coﬁbine to cause problems with the
estimation of the age dependent lambdas. These are illustrated in figure
6.15. In developing countries very high levels of immunity are reached at
young ages. For example in the serological profile illustrated, 21 out of 22
people aged between 8 and 10, and 42 out 43 aged between 10 and 14, were
seropositive. Sample sizes tend to be small - the whole survey illustrated
involved 367 individuals. A third factor is that surveys tend to deal
axclusively with young people - in the survey shown the oldest individuéls

ere fourteen. These three factors combine to make it impossible to make a

b

reliable estimate of A\ - the force of infection that should apply to the

top age class.

In table 6.7 this problem iz illustrated with an example based upon
the data in figure ©.15. In order to restrict the number of cases to be
considered, two assumptions were made when drawing up this table. These
were; (1) 21 seropositives out of every 22 people by the age of 10 is a
carrect representation of the situation in the community, and (2) the force

of infection amongst adults is at least zero. In the terminology of the
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Figure 6.15 ge tyear
Ueda's serological profile with 05% confidence intervals for the
percentages.
o | A | B | B | B | Be | B | e | B
95,45 | 0,0 62,99 | 152,96 | 709,22 | 1395,43 | 317,27 | 297,31 0,0
97.67 | 0,1673 | 56,74 | 146,71 | 702,97 | 1389,18 | 311,02 | 291,06 214,52
98,81 | 0,3353 | 49,09 | 139,06 | 695,32 | 1381,53 | 303,37 | 283,41 | 428,57
99,94 | 1,0821 14.74- 104,71 | 66-,97 | 1347,18 | 269,02 | 249,06 | 1379,72
Table 6.7

The range of possible estimates for X» and B

assumed to be 95,45,
proportion seropositive between age 8 and 10.)

and \» is assumed to be at least 0.

to B» given that pe is
(Here pe is the
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table these assumptions are interpreted to; (1) ps = 95.45, and (2) pr :
95.45. From the calculation of 95% confidence intervals for p» an upper
limit of 99.94 is set, and two intermediate values for p» are chosen. This
gives a range of four plausible values of pr from which X»» can be
estimated. The table shows that although the range of pr is only 5%, the
corresponding range for \» is much greater, and the effect upon the
calculated values of the B:i's - particularly R» - is also great. To
summarise, problems inherent to the study of measles in developing
countries ¢high levels of immunity at young ages) and created by
shortcomings of existing data (small sample sizes concentrating on young
people) combine to make the reliable estimation of the force of infection
for adults impossible. This in turn affects the calculated values of the age

specific transmission coefficients.

The final sets of epidemiclogical data to be considered record
reported cases of measles through time. (Figure 6.i6). The series from the
U.X. shows the familiar cycle of a year of high incidence followed by a.
year of low incidence, the patiern persisting until 1968 when 1t is
disrupted by the introduction of widespread vaccination. The time series
from Mexico has the same high year - low year cycle until 1956, then in the
years 1959 to 1964 there are yearly epidemics of equal magnitude. [t seems
possible that this change may be as a result of increasing urbanisation
(see chapter 9 for a further discussion of this point). This pattern of
annual epidemics is disrupted in 1964, either by the introduction of
vaccination, or through some change in reporting procedure. It is impossible
to tell which. The series from Senegal shows annual cycles coupled with an

underlying trend of increasing numbers of reparted cases. This same trend



Figure 6.16
Long term measles case reports.
1 United Kingdom (England and Vales)

2 Mexico
3 Senegal
4 Iran

The U.X. data are from the Annual reviews of the Registrar General of
England and Wales. The data for Mexico, Senegal and Iran are from W.H.Q.
annual statistical reviews for 1940 - 1980
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considers it worth publishing.

In order to investigate the effect of variation in parameter values, it
is necessary toc choose scme baseline from which variation can be measured.
To this end two baseline parameter sets have been established. The first of
these uses forces of infection measured from the Ueda serological profile
and the secand uses forces of infection measured Irom the serclogy
collected by Boue in Dakar (see figure 6.14 (a) and (¢) for references). The
Ueda data shows a comparitively low force of infection whilst the Xs
measured from the Boue data are much higher. High birth rate, low death
rate (thus maximum population grcowth rate) and low case fatality rates are
shared by both baseline parameter sets. For the Ueda baseline parameter set
the value of 6§ is set to two per year, whilst for the Boue baseline
parameter set, § is four per year. Thus average ages of loss of protection
by maternal antibody are six months and three months respectively. These
baseline parameter sets are used extensively in the studies presented in

the next section.

In the next three sections attention focuses upon numerical values of
the average age at infection, A, the basic reproductive rate, Ro, and the
critical vaccination proportion for eradication, p.. Using the formulae
derived in chapter 5, tables are drawn up that show the sensitivity of
these numerical values tao variations in the force of infection, demographic
rates, case fatality rates and WAIFV matrix configuration. The discussion

falls into three sections, each one focusing on the results presented in one
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3 the three tables; 6.3, 6.9 and 6.11. Table 6.8 shows the outcome aof
parameter variation upon the value of the average age at infection, and
tables 9.9 and ©.11 deal in a similiar fashion with the basic reproductive
rates and the critical vaccination proportion. In what follows, it is useful
ta bear in mind that it is the serological profile that is taken as a
starting point. If ohanges are made to the assumed values of the case

fatality rates, the values taken by the forces of infection must also

change. In this way the serological profile predicted by the combination of

ct

a

e}
M

ase ality rates, rate oi loss of protection by maternal antibody and

-t

orces of infection remains constant in shape. Occasional reference is made
to the one age class versions of the formulae for A, R. and p.. Although
these are not the formulae that were used in drawing up the tables, they

are referred to because they can contain relevant information that is

obscured by the algebraic detail of the many age class versions.

In table 6.8 comparisons are drawn between different values of the
average age at infection. These were calculated using the formula presented
in equation 5.32. When considering these results it should be remembered
that equation 5.32 was derived under the assumption that all new-borns are
susceptible. This is clearly notf true, and would lead to underestimation of
the average age at infection. In particular, the result from the Baoue
-serological profile collected in Dakar (raw 11) probably underestimates the

true average age at infection by about six months.
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y and (2, alterations to the

oy

As zan e saen by comparing rows <
configuration of the WAIFV matrix have no effect upon the value of the
average age at infection. This is to be expected because the formula in
aquation 5.32 is couched in terms of the i.'s which determine the values of
the B.;'s, while being independent of the configuration of the WAIFWV matrix.
Comparing rews (1), 3) and (4) shows that increases in the assumed level
of case fatalities lead to decreases in the estimated average age at
infection. This is essentially the same result.as that shown in table 6.5.
That is, increases in the assumed level of case fatalities lead to increased
estimates of the forces of infection. These in turn lead to decreased

estimated values for the average age at infection.

Turning now to the effects of variations in the demographic rates,
birth rates are conéidered first. Rows (1>, B) and &), and 7)), (8) and
(9) reveal that lower birth rates lead to glightly higher estimates of the
average age at infection. Turning to the one age class result,

A=1/(0 + p + ), makes it easier to see why this should be so. Lower
birth rates lead to decreasing populaticon growth rates r, and decreasing
values of r lead to increasing values of A. Comparisan of rows (1) and (77,
8) and (8), and (6) and (9) show that decreases in the death rate also
serve to increase the average age at infection. Again use of the one age

class formula helps to see why this occurs. It should be noted that both

these effects (of variation in birth and death rates) are very small.

To compare the average ages at infection implied by different
serological profiles, it is useful to refer back to figure 6.14 and table

6.4. These show the serological profiles referred to as ‘Ueda', 'John', 'Boue
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Serological Demography | Case VALIFV Average
Profile births - Fatality | Matrix age at
deaths Rate Config” | Infection
low 1 3.198 €1
high~low 2 3.198 o
zZero 1 3.260 ¢
veda medium 1 3.111 ca
medium-low | low 1 3.247 s
low-low low 1 3.290 cen
high-high low 1 3.200 ¢7>
medium-high| low 1 3.249 cEo
low-high low 1 3.292 B
John high-low low 1 1.241 C1o
I?gglecar) high-low low 1 1.089  |erio
?g;;enguine) high-low low 1 2.207 crmo
Table 6.8 -

Sensitivity of the calculated value of the average age at infection to
parameter variation. Calculations were performed using the formula for
the average age at infection derived in chapter 5. Serological praofiles
are those shown in figure 6.14. High, medium and low birth rates are
those -shown in figure 6.3. High and low death rates are depicted in
figure 6.4. Case fatality rates and WAIFW matrix configurations are
shown'lgn tables 6.3 and 6.6 respectively.

i
V>
N



Eefore looking in detail at the results in table 6.9, a brief recap is

presented of the definition of the basic reproductive rate, and the formula
for its calculation. The basic reproductive rate for the ith age class, Rai,
is the number of new cases that would be generated in a wholly susceptible
population, if one infectious individual whose age lay in the ith age class
was introduced. Equation 5.33 shows that K., is calculated as the product
of the average time for which someone in the ith age class is infectious,
1/ &+ ai) 7, and the average 'infectability' of the population when
exposed to an infectious individual in the ith age class (I Bs: N; /7 N ).
Figure 6.17 shows three dimensional sketches of the fupction Ba,a'y for the
four different serological profiles considered in table 6.8. It is hoped that
reference to these graphs will be helpful in the following discussioﬂ, The
first row of table 6.9 shows the R.i's that are calculated from the Ueda
baseline parameter set, which includes the WAIFV matrix illustrated in
tigure €.17¢a). The camparatively large values of Bz and Ba are reflected in
the large values of R.x and R.a. In row (2) the effect is shown of
switching the WAIFV matrix configuration to configuration 2 (table 6.5). The
only heterogeneity within this row is provided by the differences in the
duration of infectiocusness brought about by the age specific disease related
death rates. So the values of the R..'s are approximately equal, and only

vary where the disease related death rates vary.
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The situation conceraing the effects of variation in the disease
raiated death rates is somewhat more complex. There are two ways in which
changes in the a's may act to change the values of the R..'s. Firstly higher
«'s lead to shorter infectious periods and therefore smaller R.:'s. Secondly
aigher «a's result in higher estimated values for the \'s (forces of
infection), hence greater B's, hence greater R..'s. Which of these two
effects is the dominating influence depends upon the relative differences
petween the values of the disease related death rates. Thus when the
differences are very large the first effect dominates and higher case
fatality rates imply smaller R..'s: this is seen far R.: to Rua. When the
differences are smaller the second effect is more important and greater
case fatality rates lead to greater R..'s: this is illustrated by Rus, Raos

and R-:.\"/' .

Comparing rows (1), (8) and &), and (7), 8) and (9) illustrates the

4,

act that lower assumed obirth rates lead to lower estimates for the R,
Consideration of the one age class result R-. = B / A helps to explain this.
Lower birth rates imply greater values of B and hence greater R.. In

contrast higher death rates imply higher R..'s.

The last comparison to be made whilst considering basic reproductive
rates is between different serological profiles. As there is only ane basic
reproductive rate for each age class, John's serological data only provides
five R..'s, Boué's serological study from Dakar only generates four, and so
on. The R.i's calculated using John's serological data are very low. This is
because of the very low values of Ma and Ms that were estimated from that

serological profile. As a result B. and Bs are excessively small {(as can be
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[ Serological | Demography | Case VAIFY Basic Reproductive Rates
Profile births - Fatality | Matrix
deaths Rate Config™ | Ror | Roz | Ros | Roe | Ros | Ros | Ro7
s oy B 333 | 3.46 | 5.40 | 6,38 | 4.84 | 4.71 | 4,13
. 2 534 | 491 | 529529557557 |5,5
high-low - -
2810 1 347 | 2,77 | 5.47 | 652 | 4,74 | 4,61 | 4,04
Veda nediun | 264 | 3,26 | 5,33 | 6,10 | 4,99 | 4,86 | 4,26
pediun-low | low | | 438 | 4.45 | 6.48 | 7.46 | 5,95 | 5.82 | 5.23
Tlow-low | low | 1 563 | 562775873 |7.27|7.15] 6,58
high-high | low | 342 | 3.54 | 549 | 6.47 | 4,94 | 4,81 | 4,22
nediua-high| low | 450 | 4,56 | 6.60 | 7,58 | 6.08 | 5,95 | 5,35
low-high | low | 581 |58 | 7,94 |893|7.481/7.35 /6,74
John “high-lov | low | 242|263 | 211 | 062 048 - | -
Boue .
Datan) high-low | low | 464 | 5,14 | 4,49 | 1,69
Boue | pigh-low | low v lae | a2 ] a6 | ans 32| - | -
(Popenguine}
Table 6.9

<1

23

(3

3>

5)

6)

(7>

(8>

[$-3)

<103

(11

Sensitivity of the calculated value of the basic reproductive rates to
Calculations were performed using the formula for
the basic reproductive rates derived in chapter 5. Serological profiles
are those shown in figure 6.14.

parameter variation.

those shown in figure 6.3.
figure 6.4,

shown in tables 6.3 and 6.6 respectively.

High, medium and low birth rates are
High and low death rates are depicted in
Case fatality rates and WAIFV matrix configurations are
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Figure 6.17
Diagrams of the four transmission functions (the B(a,a')s) generated by

the
(a)
(b)
()
(d>
For

four serological profiles in figure 6.14.
Ueda

John

Boué (Dakar)

Boué (Popenguine)

references see legend to figure 6.14
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seen in figurs 5.192). As these apply to all individuals over the age O
the averaging process in the calculaticn of the R..'s only inflates their
inTluence. The probiem here stems right back to specious estimates of the
force of infection in older age classes. This serves to illustrate the great
impartance of obtaining good data on changes in proportion immune by age
across the whole spectrum of ages. The R.i's for Boué's serology from Dakar
and from Popenguine are surprisingly similiar in value given the disparity

in the a's and B's. This is simply a consequence of the averaging pracess

that forms part of the calculation cf the basic reproductive rate.

In section 4 of this chapter attention was drawn to prablems
assoclated with the estimation of M - the force of infection for adults -
and an illustrative example of these problems was given. (figure 6.14 and
table ©.7) As is shown in table 6.10 these problems with the estimation of
A have a great effect upon the estimated value cf p.. The values of p.

shown in table 6.10 were calculated using equation 5.34, for each of the

-,

our possible sets ol Bi's generated by different assumed values of the
proportion seropositive at age fourteen years. As can be seen an
unacceptably broad range of values for p. is calculated. The fact that pe
should be so sensitive to small variations in parameters about which there
iz little information effectively removes any confiidence in its predictions.
These problems notwithstanding, a sensitivity analysis of pe to variation
in other parameters has been performed, and the results are presented

below.
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In table 8.11 the efiects of variation in model parameters upon pe are
shown. Changing the configuration of the WAIFV matrix has a substantial
erfect upcn p.. Because the choice of the matrix configuration cannot be
Iixed by reference to data, this is a disturbing result. Changes in the
assumed level of case fatalities have virtually no effect upon the value of
Pe. This is because the two counteracting effects discussed in section 6.6
balance each other out. As would be expected a lower assumed birth rate

eads to higher vaccinaticn levels required for eradication. The reason for

ot

his is most easily seen by considering the one age class result (equation

ct

where B is the reciprocal of the average birth rate and A is the average
age at infection. Decreases in the assumed birth rate lead to increases in
tae value taken by B, and hence increases in p.. This does not mean that
increasing the birth rate in a community makes eradication of disease
easier! The interpretation of this result should be as follows. The average
age at infection in a community is determined by a combination of
demographic and social factors. If a high rate of transmission (low average
age at infection) is the result_of a very high birth rate thean eradication
will be easier than if the same high transmission is the result of a
greater degree of mixing. Comparing the values of B in tables 6.1 and 6.2
shows that only the low birth rate gives a value for B near to that which
prevails in Thailand. As the Ueda data were taken in Bangkok, this can be
interpreted as indicating that vaccination levels of 86% are nearer to the
true eradication level than levels of 78%. This makes the useful point that

it is vital to have good demographic data about the community under



consideration if reliable values for the critical vaccination proportion ar

to be found.

Turning to consider the rest of the results in the table, compariscn
between raws (1) and ¢6), (4) and (7>, and (%) and (9) show that
differences in the death rate have very little effect upon the critical
vaccination proportion. The result from the John serological profile is
quite untenable. As in the last section this is because of the very low

evels estimated for R.s: Here again is an illustration of the importance of

-

goad data on age specific changes in immunity in the older age classes. The
last two rows show surprisingly similiar results. Looking back at the
average age at infection for the Dakar and the ropenguine data (1.089 and
2.207 respectively), and, again remembering the cne age class result;

Pe =1 - A/ B

(equation 5.26) would suggest that the critical vaccination proportion would
be lower in the fishing village Popenguine. However this is not the case,

and this is another illustration of the importance of the influence of the

force of infection in the clder age classes.

There are three factors that undermine faith in these predictions of
the critical vaccination proportion. First of all they are based upon a
formula that is derived from a simplified moadel that ignores the period of
infancy when children are protected by maternal antibodies. Secondly they
are sensitive to small variations in the force of infection for adults; this
quantity is hard to estimate with accuracy. Thirdly they are sensitive to

variation in the configuration of the WAIFV matrix about which there is
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Table 6.10

Range of possible values for p. given variation in the estimated value
for xr and B3 to B». The selection of the range of values of \» is
documented in table 6.7,

Serological Demography | Case VAIFV Critical
Profile births - Fatality | Matrix Vaccination
deaths Rate Config™ | Proportion
1 0,783 <1
low
high-low 2 0.815 e
Zero 1 0.782 <o
Ueda Ca
medium 1 0.783 <an
medium-low | low 1 0.819 B
low-low low 1 0.854 can
high-high low 1 0.787 7
medium-high| low 1 0.823 caE
low-high low 1 0.858 CEo
John high-low low 1 0.511 €10
Boue ) e
(Dakar) high-low low 1 0.728 11
Boue . 1
(Popenguine) high-low law 1 0.729 vE
Table 6.11

Sensitivity of the calculated value of the critical wvaccination
proportion to parameter variation. Calculations were performed using the
formula for the critical vaccination proportion for eradication derived
in chapter 5. Serological profiles are those shown in figure 6.14. High,
medium and low birth rates are those shown in figure 6.3. High and low
death rates are depicted in figure 6.4. Case fatality rates and WAIFV
matrix configurations are shown in tables 6.3 and 6.6 respectively.
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actors combine tc severely reduce the

reliability of the predictions embodied in these estimates of p..

The averall message from this chapter is that the interrelationships
tetween data sets are as important as the quality of any cne data set. Thus
a high quality serological profile with large sample sizes covering all age
classes is of greatly diminished value if it is not backed up with
information on the case fatality rates, birth rates and background death

rates which prevail in the community from which the profile was drawn.
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The aim of this chapter is fo investigate the affect of parameter
variation on the dynamic behaviour of the fuil model. In much the same way
as section 5 of chapter 6 investigated the sensitivity of A, Re and p. to

parameter variation, this chapter studies the outcome of deviation from the

baseline parameter sets upon the model's full solution.

7.2 Chapter layaut.

The chapter starts with a description of the numerical methad by
which an approximation to the model's full solution is saught. This is
followed by a detailed description of the solution zenerated by the baseline
parameter set. The main body of the chapter is then presented in four parts
dealing, respectively, with the following four types of data; birth and
death rates, case fatality rates, rate of loss of protection by maternal
antibody, and WAIFW matrix configuration. The chapter concludes with a

summary of the primcipal results.



Using a step length of three days, Euler's method is used to solve the
equaticns 4.1 - 4.5 along the characteristic lines t = a + constant. The
initial conditions are set by:
A(i) solving the ordinary differential equations aobtained by dropping time
derivatives, (i.e. setting OM/3t = dX/3t = ... = 3Z/3t = O

(ii) transforming these solutions so that they conform to the stable age
distribution determined by the age-specific birth and death rates, and then
(111> perturbing the whole system by shifting 20% of the susceptible class

inte the immune class. The perturbation allows the investigation of the

dynamics aof the system as it returns to equilibrium.

The initial conditions are calculated using the age-dependent forces
of infection that are defined by a given parameter set. After the
equilibrium solutions have been found (1), and transformed so as to conform
to the requisite stable age distribution (ii), the elements of the WAIFV
matrix are calculated using the method described in chapter 6 section 4.
After the WAIFV matrix has been calculated, in all subsequent time steps it
is used to calculate the farces of infection. This is done using definition
4.9 with the vector describing number oﬁ cases by age at the last time

step.
7.4 The baseline parameter set.

In this chapter, only the baseline parameter set founded on the

serology collected in Thailand (the Ueda baseline parameter set) is used
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(Ueda et a2l 1967). In what follows the properties of this data set ares
summarised. The birth rates are high and death rates are low {(see figs 6.3

r references) and therefore the rate of population growth is

w
fu}
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rapid. The disease related death rates are at a low level, measured from

)

case fatality rates which have a maximum of 11% amongst 1 - 2 year olds
(table 5.3 for values and references). The rate of loss of protection by
maternal antibody is set at 2 per year; the average duration of protection
by maternal antibody is six months. The WAIFV matrix configuration is that
called configuration 1 in toble 6.6, Thus hetérogeneity in transmissioa is
assumed to be the combinaticn of differences in mixing amongst age groups,
and changes in susceptibility according to age. Figure 7.1 shows the number

f cazes by age and time that are predicted by the model using this set of

ot

parameters. The figure shows the solution surface for the Y(a,t) class of
the model. The number of cases cycles with a period of approximately two
years. The oscillations can be seen to be damping fairly quickly towards an
equilibrium age distribution of cases. As the number of new susceptibles is
always increasing (due to the positive net population graowth rate’, there is
an underlying trend of increasing numbers of cases each year. However,-
there are no gross changes in the age distributicn of these cases, so a
slice cut across the surface at time 20 years would have the same shape as
a slice cut at time 1 year. The 'step’ between ages 1% and 2 is caused by
the combination of the low estimated value of the force of infection for
this age class (.= = .1209) with the fact that by age 1% practically all
children have lost thelr protection by maternal antibody. Thus there is not
the influx of new susceptibles that keeps the number of cases rising in the

younger ages. (It seems unlikely that this is a realistic reflection of the

true age distribution of cases.) Figure 7.2(a) shows the changing
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serciogical profile over the course of 20 years, In an unvaccinated
community, people appear as seragpaositive either because they still have
protection from maternal antibody, or because they have experienced

on seropositive by age,

[

he serclogical profile records the proport
50 that each point on the surface in figure 7.2(a) is found by adding Ma,t>
and Z(a,t) (maternal antibody protected and immunes) and dividing the sum
by N<a,t) (total population). The oscillations that were so visible in figure
7.1 are still visible in the serological profile. In a year of high incidence
people are, on average, infected at a younger age, therefore the serological
profile has a steeper slope when compared with a year of low incidence. The
third surface to be shown from the solution of the Ueda baseline parameter
set (figure 7.2(b)) records the number of people of age a at time t in the
excess deaths class. This class represents those who have died from

measles who would not yet be expected to have died from some other cause.
Individuals enter the class at a rate determined by the number of cases and
the age specific case fatality rates, and leave it at an age specific, per
capita rate equal to *the background death rate as applied to the uninfected
members of the community. In figure 7.2(b) there is a rise up to age seven
years as a result of the large numbers of cases and high case fatality rate
in the young age classes. The graph then falls off as mortality from other
causzes begins to dominate. Once again the oscillations in the number of
cases par year can be seen. Note that the excess deaths class has the best
‘memory' of the fluctuations in number and age of cases. Thus each epidemic
peak is 'remembered' as a peak in the number of excess deaths amongst
those who were case fatalities in that year. The only difference between a
year of high incidence and a year of low incidence is whether you get it

aged 2 or aged 4. In a year of high incidence, however, many more people
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Figure 7.2 .
(a) Three dimensional view o0f the changing serological profile

through time generated using the Ueda baseline parameter set. Each
point on this surface is obtained by adding Mda,t) to Z<(a,t> and

dividing the sum by N(a, tO,

(b) Three dimensional view of the solution surfaces for the E(a,t)
class, numbers of excess deaths by age and time. Numbers in this
class count individuals who have died of measles who one would not
yet expect to have died from some other cause. The solution was
generated using the Ueda baseline parameter set.



122

are killed by the disease than in a year of low incidence because of the
much higher case fatality rate amongst young children. It is because of
this good memory that there is a deep trough running diagonally across the
surface. This represents the very low number of case fatalities generated
during the year immediately after the initial perturbation. These surfaces
help gain an overview of the solutions gemnerated by the model. However for
comparing solutions generated using different parameter sets it is mare
useful to look at slices through these surfaces and totals over all ages

through the course of time.
7.5 Demographic procegses.

The first set of comparisons to be made considers the effect of
changes in birth and death rate on model predictions. The parameters used
are those discussed in chapter 6 and illustrated in figures 6.3 and 6.4. A
selection of three birth rates and two death rates are combined in six
combinations. Attention focuses first on the number of cases that are
predicted by each of the six possibilities. Figure 7.3(a) shows the total
number of cases over the course of twenty years. Comparing the relative
positions of the six lines and the population growth rates associated with
each of the six possible combinations, it is easy to see that greater rates
of population graowth lead to larger numbers of cases. Although the rate of
damping is unaltered, the inter-epidemic period is slightly shortened. In
figure 7.3(b) the number of cases, by age, at time 20 years is shown for
each of the six possibilities. As before the greater the rate of population
growth the more cases, but the age distribution of cases is independent of

either birth or death rates. This can best be seen in figure 7.3(c) which



Figure 7.3

Sensitivity of the model's predictions under variation of the vital rates. Results generated
using the Ueda baseline parameter set and deviations from it. Actual birth and death rates
used are documented in chapter 6 figures 6.3 and 6.4,

(a)
(b)
)

@

OOl W

Total cases through time.

Age incidence of measles after twenty years.

Proportions seropositive through the presence of maternal antibodies or naturally
acquired immunity following infection after twenty years.

Numbers by age in the excess deaths class after twenty years.

High birth rate, low death rate, population growth rate is 41.9 per 1000 per year
Medium birth rate, low death rate, population growth rate is 25.4 per 1000 per year
Low birth rate, low death rate, population growth rate is 11.02 per 1000 per year
High birth rate, high death rate, population growth rate is  38.09 per 1000 per year
Medium birth rate, high death rate, population growth rate is 22.4 per 1000 per year
Low birth rate, high death rate, population growth rate is 8.02 per 1000 per year
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shows the serclogical profiles for these same six possibilities. The age

sl

distribution of cases is independent of population growth rate because the
definition of the force of infection used in generating these results

sumes that the rate of transmission depends upon the

(1]

equation 4.9) a
proportion of the population that is infected. Figure 7.3(d) shaws the
numbers, by age, after 20 years, in the excess deaths class for each of the
sizx possibilities. This class has the best memory of past events in the
community. Again each epidemic peak is 'remembered' as a peak in the number
of excess deaths amongst those who were case fatalities in that year. This
graph also illustrates the process by which the initial conditions are set.
At time 20 years there is a confluence of all six lines. Points to the right
of this meeting place represent individuals who were in the excess deaths
class at the time when initial conditions were set. Thus the order in which
the six lines appear conform to the stable age distributions as shown in
figure 6.5: from the top downwards the order is 3-6-2-5-1-4. To the left of
the crossover lie points representing people whao have entered the excess
deaths class gince the setting of the initial conditions. Here, numbers of
excess deaths fall into the same order as the total number of cases, (1-4-
2-5-3-6). That is, given identical age distributions a larger number of

cases leads to a larger number of excess deaths.
7.6 Case Fatalify Rates

In table 6.3 three sets of case fatality rates and the disease related
death rates associated with them are listed. For the dynamical studies aof
the model the highest of these three had to be omitted because its very

high disease related death rate amongst infants (91.01 yr—') would have



Figure 7.4

Sensitivity of the model's predictions under variation of the case
fatality rate. Results generated using the Ueda baseline parameter
set and deviations from it. Actual case fatality rates and disease
related death rates are documented in chapter 6 table 6.3.

(a) Taotal cases through time.

(b) Age incidence of measles after twenty years.

(c) Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection
after twenty years. ,

(d) Numbers by age in the excess deaths class after twenty years

1 Medium case fatality rate
2 Low case fatality rate
3 Zero case fatality rate
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in what fcllows three possibilities are considered: medium, low and zero
case fataliity rates. Here the serological profile is taken as the starting

point. Therefore when changes are made to the values of the case fatality

rates, the values taken by the forces of infection are aiso changed. Figure

)]

a

7.4 ) shows total cases through time for the three cases; medium, low and
zero case fatalities. In table 6.5 it was shown that a higher assumed case

1atality rate leads to higher estimated values for the forces of infection.

-1
¢t
e
[1]]
¢t
=g
©
Q)
11}
0
he)
H

o
[
ot
=

«
=
[

og
[
0
~
[
@)
0
O
1]
[}
w]
[
[N
ol
,
1)
O
ct
et
8]
]
ot
[=
a1}
ot
[
D
Y
(o8

ot
a
s
g
T
1l
g
e
oG
[=a
ct
[
<

mbers of cases, and shorter inter-epidemic periods associated with

<

higher case fatality rates. The very slight differences in numbers of cases

by age in figure 7.4(b) illustrate the fact that in order to keep a constant
serological profile, the assumed force of infection must be changed to
account for changes in the case fatality rates. Figure 7.4(c) illustrates

the constancy of the serolaogical profile under these restrictions. Figure
7.4(d) shows excess deaths by age after 20 years for the medium and low
case fatality rates. The example where the case fatality rate is set to zero
does not register on this graph. As woula be expected there are many more
excess deaths when the case fatality rate is assumed to be of medium

severity, yet the overall shape of the curve is similiar for the low and

medium examples.

In this section the insistence on keeping a fized serological profile
as a starting point is relaxed. Two sets of experiments are shown: the

first varies the rate of loss of protection by maternal antiboady & and the
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icrces of infection X\ so that the serolegical profile is of fixed shape; the
second varies & but not a. This deviation from the normal procedure is
allowed so that the underlying procee;ses generating the numerical results
can be better understood. Figures 7.5, 7.6 and 7.7(a) and (b) deal with the
first experiment where, as previcusly, the serclogical profile is fixed at
the starting point (t = 0). Three possible values for the rate of loss of
maternal antibodies are investigated; §=2, §=2.25, and 6=2.5. These
correspand to average durations of maternal antibody protection of 6
months, 5.3 months and 4.8 months respectively. A broader range of values
for § was not investigated because if § is set to any greater value either
negative As or negative fs are generated. Figure 7.5 shows the three sets of
forces of infection {estimated from the Ueda serology) associated with each
of the three different values for the duration of maternal antibody
pratection. Note that for §=2.25 and §=2.5 the force of infection amongst
infants 1is greater than amongst 1-2 year olds. Figure 7.6 shows total cases
through time for each of these three cases. Notice also the dramatic
increase in the rate of damping for the increased values of §. Figure 7.7<a)
shows cases by age at time 20 years and 1llustrates the strange age
distributions of cases predicted when using the two larger values of §. It
is perhaps surprising that such 'lumpy' age distributions of cases should
give rise to the smooth, uniform serological profiles shown in figure
7.7(b>; However it is important to remember that the forces of infection
were chosen specifically to keep a uniform serological praofile. In order to
try and understand the damping effect illustrated in figure 7.6, the
experiment was repeated without altering the forces of infection. Figure
7.8(a) shows total cases through time as predicted by three separate runs

of the programme, differing only in the value of the rate of loss of



Figure 7.5

Forces of infection estimated from Ueda's serological profile under
three different assumptions about the rate of loss of protection by
maternal antibodies.

Figure 7.6

Sensitivity of the model's predictions under variation of the rate of
loss of protection by maternal antibodies, 6. In this example the
usual procedure of keeping the serological profile as the fixed
starting point is adhered to. Thus, when § varies, the age dependent
xs vary as illustrated in figure 7.4. Results generated using the
Ueda baseline parameter set and deviations from it. Total cases
through time.

1 § =.2.0
2 § =2.25 -
3 § = 2.5



128

R
AR

(LN
NNNN\NN\\W\NN

ERUMBEIMITITTNINRR
(L
\NN\N\N\NNNNN

1

A IR

V(LN

ANAAAAANANNNNNNNNNNNAAAN

AR
(LN

%r

@
e}

T I I T
5 A n o - °
o o o O o

(4oe£k uod) uoposul Jo o210}

6—8 8—-10 10-50

<8° 935P U 25

Za 2

— I 1+ 1 I+ 1°@©r 1+ —— & 4977173 1T "7 "1
4 5 6 7 8 9 1011 12 13 14 15 16 17 18 18 20

| —
c 1 2 3

550.00

481 .25 -

412.50 A
343.7S
275.00
206 .25 4
137.50
68.75

0.00

TIME (YERRS)

3

2



Figure 7.7

Sensitivity of the model's predictions under variation of the rate of
loss of protection by maternal antibodies, 6. In this example the
usual procedure of keeping the serological profile as the fixed
starting point is adhered to. Thus, when & varies, the age dependent
As vary as illustrated in figure 7.4. Results generated using the
Ueda baseline parameter set and deviations from it.

(a) Age incidence of measles after twenty years.

(b) Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection
after twenty years.
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Figure 7.8

Sensitivity of the model's predictions under variation of the rate of
loss of protection by maternal antibodies, §, without changing the
forces of infection. Thus, in this case the serological profile is
not fixed. Results generated using the Ueda baseline parameter set
and deviations from it.

(a) Total cases through time over the course of twenty years.

(b) Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection
after twenty years.
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protection by maternal antibody. Again § was varied from 2 to 2.5. This
result shows that the damping illustrated in figure 7.6 is a result of the
o

relative values of the forces of infection, and not caused by changes in d.

Figure 7.8<(b) emphasises the fact that for this latest experiment the

serclogical profile was not held constant.

In chapter 6 (table 6.6) two different configurations of the WAIFW
matrix were shown. In this, the final section of this chapter, the impact of
changing the WAIFW matrix configuration on the model's solution is
considered. Figure 7.9(a) shows total cases through time for the two
canfigurations under consideration. The second configuration (representing
the assumption that all age heterogeneity is the result of age related
changes in susceptibility) results in a longer inter-epidemic period. Figure
7.9(b) shows sevological prcfiles at the peak of the last epidemic for each
cf the two configurations. The figure shows that the age distribution of

cases is not affected by the WAIFW matrix configuration.

The chapter has studied the affect of parameter variation upon the
solution of the full time- and age-dependent model. It has been shown that
a higher population growth rate leads to a larger number of cases, but does
not affect the age distribution of those cases. Changes in the case
fatality rate only effect the model's dynamics slightly: These changes are

brought about indirectly through the changes in the force of infection made



Figure 7.0
Sensitivity of the model's predictions under variation of the
configuration of the WAIFVW matrix. Results generated using the Ueda

baseline parameter set and deviations <from it. The matrix
configurations considered are those shaown in table 6.6

(a) Age incidence of measles after twenty yearé.
(b> Proportions serapasitive through the presence of maternal

antibodies or naturally acquired immunity follaowing infection
after twenty years. )

1 Configuration 1
2 Configuration 2
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in arder to kxeep a uniform serological profile. Similarly, changes in the

By

antibody do not affect the madel's

—

rate o loss of proftection by materna
dyramics. However the gross changes in the relative values of the forces of
infection amongst the first few age classes (made s0 as to preserve the
zhape of the sersolcgical profile) have a marked effect upon the rate of
damping of the oscillations. It is not clear why this should be so, but the
assumption is that the relationship between the values of the force of
infection is important. Equally unclear is the reason why two different
WAIFW matrix configurations should lead to two very different inter-

apidemic pericds. These last two points require Ifurther investigation,

o
et
v}

nalytic) perhaps in the confext cf a 'swripped down' model with

less complexitity (e.z. population growth and case fatalities).
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8.1 4 : + a

The gverall aim of this chapter is to study the impact of different

mass vaccination strategi

[
D

S upon measles moropidity and mortality. This is

attemiﬁd

y comparing the model's behavicur when different regimes of

. (<8

control by vaccination are introduced. This cbjective is approached by two
aroups of experiments. The first of these continues the thame of the
praevious chapter, and considers the sensitivity of the model's predictions
to changes in parameter values. The effects of variation in the rate of loss
of protection by maternal antibody are studied with particular reference to
the window problem. As before, the method used is to study the effects of
deviations from a baseline parameter set. The second group of experiments
compares the outcome cf a range of different vaccination strategies.
Throughout the chapter, special attention is paid to four ways of
summarising model predictions, namely; total cases through time, cases by
age, age-specific serology, and excess deaths by age. In order to study the
effect of mass vaccination when applied to communities displaying different
patterns of age specific exposure to infectiom, in this chapter two
different baseline parameter sets with different age-specific forces of

infection are used,



s
Ca
ol

The chapter starts with an explanation of the way in which the
pratection of susceptibles by vaccination is included in the model. Then an
averview oI the results for the Boué Laseline parameter set is presented.
As in chapter 7 this is presented via the discussion of surfaces describing
the full scluticn of the equaticns for a selection of the model's
compartments. After a discussion of the actual levels of coverage currently
being achieved in developing countries, attention focuses on the impact cof
vaccination upon the model's dynamics. Section 7 of the chapter then deals
with model sensitivity to parameter variation. Comparisons are made between
parameter sets based on the predicted impact of a vaccination regime of
50% of 9 month olds. Variation in the rate of loss of protection by
maternal antibody is studied for baoth baseline parameter sets. Attention
then turns to evaluation of different regimes of immunisation. These fall
into three groups. The first, referred to as the 'one stage programmes',
consists of vaccinating a certain proportion of individuals within a
comnmunity at a given age once and once only. The second group, the 'two
stage programmes', consists of vaccinating the community twice. The third
group, the 'two-phase programmes', start cff with a one stage programme for

a given number of years and thén switch to a different one stage

programme.

Anderson and May (1883) include vaccination in their model as a rate

process. Thus when they say 'vaccinate 8%5% of 1 year alds' they do indeed
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Zta) which describes the vaccination schedule, and acts ta remaove

~y

individuals from the susceptible class X to the immune class Z. Thus

8]

equations 4.2 and 4.5 become:

X + X = § Ma,td -  pla) + ala,t) + c@ ) X, 8.
3a 2t
?¥Z + 2 = Y Yea,t) + cla) X(a,t) - pla) Za,t (8.2
3a 3t
where for an annual vaccination proportion p
0 0 ¢a<i
cla) = -In (1-p> 1 ¢acda
0 2 ¢adlk

However in this study it was desirable to be maore precise about the exact
age at which individuals were to be vaccinated so as to be able to assess
the effect of glight shifts in the age at which vaccine is administered. For
example, in section S the difference between vaccination at 6 months and at
9 months is studied. Therefore vaccination of 85% of 1 year olds is assumed
to take place within 3 days of their lst birthday. As the step length in
the numerical procedure employed to solve the partial differential equations
is set at three days, vaccination is very simply introduced into the

simulation programme.

3.4 The Boue baseli .

It is most useful to describe the Boué baseline parameter set through
~camparison with the baseline parameter set used in the previous chapter -
the Ueda baseline parameter set. The difference lies in the age-dependent

farces of infection and the rate of loss of protection by maternal antibody.
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The forces of infecticn are depicted in figure 6.14 () and (¢, and
tabulated in table 5.4. The Boue data show much higher forces of infecticn
amongst children under 5 years old, but a low force oi infection for
everybody over 5. In comparison the Ueda data yield a more nomogenous
range of forces of infecticn. In the Boué baseline parameter set the rate of
loss of protection by maternal antibody is assumed to be 4 yr~' (.e.
average duration is 3 months), whilst for the Ueda baseline parameter set
the parameter § is set to 2 yr~' implying an average duration cf protection
by maternal antibody of 6 months. Figures 8.1, 8.2 and 8.3 show three
imensiaonal surfaces describing the number of cases, the proportion
seropositive and the number of excess deaths through age and tinme for baoth
baseline parameter sets. The high force of infection for the Boue data is
reflected in the very steep rise in the number of cases by age, and the
concentration of cases amongst young individuals. Epidemics are more
frequent than with the Ueda data, and the oscillations damp more quickly
towards the equilibrium age distribution of cases. This rapid damping can
be seen when comparing the serological profiles through time for the iwo
parameter sets. The Ueda serology has much more visible ripples than the
Boué, and (as mentioned in the previous chapter) these reflect the fact that
in epidemic years, individuals are, on average, infected at a younger age.
The aother point to note when comparing serclogical profiles is the much
greater severity of the window praoblem in the Boué serology. The rise in
the proportion seropositive is so rapid that a maximum of just aver 50% of
any cohort are susceptible simultanecusly. This is to be compared with the
Ueda serology where the 'trough' of susceptibility is much deeper. The third
set of surfaces for comparison show excess deaths through time and age. In

arder to interpret the differences between these two surfaces it is



Numb. cases

Figure 3.1

Three dimensional views o0of solution surfaces for the Y(a,t) class,
numbers of cases by age and time. Solution surfaces are shown

generated using both baseline parameter sets to allow comparison aof

the twa.

(a) Solution for the Boué baseline parameter set.
(b) Solution for the Ueda baseline parameter set.

The solutions were generated using the numerical method described in

section 7.3
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Three dimensional views of the changing serological profiles through
time generated by the two baseline parameter sets. Each point on
these surfaces is obtained by adding M(a,t) to Z(a,t) and dividing
the sum by N{(a,t).

(a) Solution for the Boué baseline parameter set.

(b) Solution for the Ueda baseline parameter set.
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Figure 8.3

Three dimensional views of the solution surfaces for the E(a,t)
class, nubers of excess deaths by age and time. Numbers in this class
count individuals who have died of measles who one would not yet
expect to have died from some other cause.

(a)> Solution for the Boué baseline parameter set.

(b)> Solution for the Ueda baseline parameter set.
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necessary to note that the axis on figure 8.3(a) rises to a value of 758.9,
and on figure 8.3(b) the maximum value is 462.3. Both baseline parameter

sets assume the same (low) disease related death rates, s0 this difference

o

0
i3]

in the numbers of excess death lely the result of the difference in

wn
o
0
[
O

the age distributions of cases.

Cne of the beneificial achievements of the Expanded Programme for
Immunisation at the W.H.O. has been the design and dissemination of a

statistical protocol for the estimation of vaccine coverage, known as the

]

EPl cluster sampling technique. The protocol has provided a standard
technique for finding out what percentage of children in a target age group
have received vaccine. Figure 8.4 shows the results of all the coverage
surveys using this method that have been published by E.P.I. since January
1985. The figures would imply that, at the moment, certain develaping
countries can achieve coverage levels of between 50% and 75%. The W.H.O.

recammended age for the administration of measles vaccine is 9 months.

Figures 8.5(a) to (e) and 8.6(a) ta (e) shaw the effect of a vaccination
campaign which successfully immunises 50% of susceptibles at the age of
nine months. Figure 8.5 shaows effects on a community where disease
transmission is described by the Boué parameter set and figure 8.6 shaws
the predicted consequences for a community for whom the Ueda parameter

set applies. Vaccinatian of 50% of those susceptibles aged nine months is
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Figure 8.4

Coverage with measles vaccine

in the 12-23 month age group. Data

collected using the EPI cluster sampling technique, and reported by
EPI Geneva since January 1985.
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introduced aiter the simulation has been running for four years. Figure

8.5 (&) =shows that the vaccination campaign acts to reduce the nunber of

(%4

Uit

cases, but not by as much as 50% because some children are still protected
by maternal antibady at the age of nine months, and because some cases
accur befocre the age‘éf vaccination. The inter-epidemic period is also
affected by mass immunisation in that it lengthens. Straight after the
introduction of vaccination there is a particularly long period aof low
incidence: this is discussed in detail at a later stage in this chapter.
Figure 8.5(b) shows the number of cases by age before and after the
introduction of vaccination. The number of cases declines, and there is a
shift in the age distribution towards the older ages. There is a siight
increase in the number.of cases in people over five years old. Figure 8.5(c)
shows the proportion who are seropositive as a result of infection at the
end of the simulation. The figure illustrates the easing of the window
problem that is brought about by low-to-moderate levels of vaccination. The
praoportion serologically positive, either through successful vaccination ar
through having had the disease is shown in figure 8.5(d); the proportiaon
still susceptible - the area above the line - remaihing approximately the
same after the introduction of vaccination, but with a different age
distribution. The last graph in figure 8.5 shows the numbers in the excess
deaths class. The numbers in this class are reduced by the introduction of
mass immunisation. This is a consequence of the reduced number of cases,
and the fact that these cases are occuring, on average, at an older age
when the case fatality rate is lower. Turning to consider the same five
graphs based on the results generated using the Ueda data, the same overall
effects can be seen. However in figure 8.6(a) the immediate dynamic

response to the introduction of mass vaccination is slightly different; this
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Figure 8.5
The effects of introducing vaccination upon the model's predictions
when using the Boué baseline parameter set.

(a)

Total cases through time.

(b) Age incidence of measles at the peak of the last epidemic.

(c) Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

(d) Proportions seropasitive through the presence of maternal
antibodies, naturally acquired immunity infection aor as a result
of successful vaccination. Taken at the time of the peak of the
last epidemic.

(e) Numbers by age in the excess deaths class at the peak of the
last epidemic.

1 Without vaccination. The peak of the last epidemic is at time
t = 19.25 years.

2 With vaccination of 50% of 9 month old susceptibles starting
from time t = 4 years. The peak of the last epidemic is at time
t = 18.5 years.

Figure 8.6

The effects of introducing vaccination upon the model's predictions
when using the Ueda baseline parameter set.

(€9
(b)
(c)

(d>

(e)

Total cases through time.

Age incidence of measles at the peak of the last epidemic.
Proportions seropositive through the presence of maternal
antibodies or naturally acquired through infecticn. Taken at the
time of the peak of the last epidemic.

Proportions seropositive through the presence of maternal
antibodies, naturally acquired immunity through infection or as
a result of successful vaccination. Taken at the time of the
peak of the last epidemic.

Numbers by age in the excess deaths class at the peak of the
alst epidemic.

Without vaccination. The peak of the last epidemic is at time
t = 18.75 years.

With vaccination of 50% of 9 month old susceptibles starting
from time t = 4 years. The peak of the last epidemic 1is at time
t = 18 years.
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is discussed in more detail in section 3.8. In figure 8.6(b) the increase in
the number of cases amongst older peaple is more noticeable. This is
because the Ueda serology predicts a force of infection for the taop age

class greater than that estimated from the Boue serclogical profile.

8.7 Sensitivity to variation in the rate of lgss of maternal antibody.

One benefit of the introduction of mass vaccination is the easing of

ct

he window problem. The severity of the window problem is intricately bound
up with the length of duration of protection provided by maternal
antibodies. It would therefore seem useful to know the sensitivity of
predicted changes in the window problem to different values of §, the rate
of loss of protection by maternal antibady. In chapter 7 two sets of
experiments were described in the context of attempting'to understand the
r5le of the magnitude of § in the model's dynamical behaviour. In this
chapter only the experiments where the serological profile is fixed are
performed. Using both the Ueda and the Boué data, the effect of assuming
three different values for the parameter ¢ are studied. The forces of
infection M\ are varied when 6 is varied, so that the serological profiles at
the start of the simulation (t = 0) are identical. Notice that in the
experiments on the Ueda data set & only varies between 2 and 2.5, whilst
the experiments on the Boué data allow variation of § between 2 and 4.
Figures 8.7(a) and &.8(a) show total cases through time for the Boué and
Ueda experiments. These figures show that a higher assumed value of &
(shorter duration of maternal antibady protection) leads to greater impact
induced by mass immunisation (fewer cases). This result can also be seen in

figures 8.7(b) and 8.8 (b) where greater values of § imply smaller



Figure 8.7

Sensitivity of the model's predictions under variation of the

parameter 6, the rate of loss of maternal antibodies. Results

generated using the Boué baseline parameter set and deviations from

it.

(a) Taotal cases through time.

(b> Age incidence of measles at the peak of the last epidemic.

(c) Numbers by age in the excess deaths class at the peak of the
last epidemic.

1 § = 2.0 Peak of the last epidemic is at time t = 20 years.
2 § = 3.0 Peak of the last epidemic is at time t = 18.375 years.
3 § = 4.0 Peak of the last epidemic is at time t = 19.25 years.
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Figure 8.8

Sensitivity of the model's predictions under variation of the

parameter &, the rate of loss of maternal antibodies. Results

generated using the Ueda baseline parameter set and deviations from
it.

(a) Total cases through time.

(b) Age incidence of measles at the peak of the last epidemic.

(c) Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

(d)> Numbers by age in the excess deaths class at the peak of the
last epidemic.

1 § = 2.0 Peak of the last epidemic is at time t = 18.375 years.
2 § = 2.25 Peak of the last epidemic is at time t = 18.125 years.
3 § = 2.5 Peak of the last epidemic is at time t = 18.375 years
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The first set of one sStage programmes to be considered compares the
effect of different levels of vaccination. Levels of 28% 50% 75% and 100%
are tried on both the Boué and the Ueda data; the results are shown in
figures 8.9 and 8.10. Investigation of the effects of different levels of
vaccination is then pursued further with a study of the effects of
vaccination of 80% 85% 90% and 95% using the Ueda data. The results of this
investigation are shown in figure 8.11. The last of this series of
investigations applies a vaccination coverage of 97% to the Ueda data, and
simulates events for 56 years after the introduction of vaccination, as
cpposed to the period of 16 years employed in the majority of the numerical
simulations. Results are shown in figure 8.12. Apart from the trivial
observation that greater levels of vaccination have greater impact upon
morbidity (figs 8.9(a), 8.10(a) and 8.11¢)) and mortality (figs 8.9(d,
3.10¢d) and 8.11{d)); there are a number of points of interest to nate.
These are dealt with in the order of the figures in which they are

illustrated.

In figure 8.3(a) it can be seen that the time that elapses between the
introduction of mass vaccination and the subsequent epidemic depends upon
the level of vaccination. Thus at 25% coverage there is barely any
peroeptibie change in the inter-epidemic period, whilst with 75% coverage

there is a significant delay before the next outbreak. This ‘honeymaon



Figure 8.9

The impact of a range of different vaccination regimes which reach

different percentages of the susceptible population. All the

programmes tested here administer vaccine at age O months.

Predictions generated using the Boué baseline parameter set.

(a) Total cases through time.

(b) Age incidence of measles at the peak of the last epidemic.

(¢) Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

(d) Numbers by age in the excess deaths class at the peak of the
last epidemic.

1 25% The peak of the last epidemic is at time t = 18.625 years
2 50% The peak of the last epidemic is at time t = 18.5 years

3 75% The peak of the last epidemic is at time t = 20 years

4 t =

100% The peak of the last epidemic is at time 20 years
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pericd' has been gbserved in The Gambia (Jobe, perscnal communicaticn)

igh levels of immunisation were intraduced over a short period
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of time. The length of the 'honeymoon pericd' depends mot oniy on the level
of vaccination coverage but also on the way in which the force of
infection changes with age. The pericd of low incidence of infecticn
immediately following the introduction of vaccination leads to low levels of
immunity amongst those individuals who (if it were not for immunisation)
waould have acquired infection during the period of low incidence. This is
illustrated in figure 8.9(c) where there is low disease induced immunity
amongst 14 -16 year olds at time 20 years. These are the individuals who
were born in the two years immediately following the start of mass
vaccination, so were 0 - 2 years old during the years of low incidence.
These are the ages when the force of infection is at its highest. It should
be stressed that figurs 8.9(c) only registers disease induced immunity and

protection by maternal antibody. Individuals seropositive as a result of

having been successiully immunised are not registered on this graph.

Figure 8.10¢) illustrates total cases through time when widely varying
levels of vaccination (25% - 100%) are applied in a community where the
average age at infection is comparatively old (A = 3 for the Ueda baseline
parameter set) and the duration of protection by maternal antibody is long.

t iz apparent that the impact of the introduction of vaccination is much
slower under these circumstances. Even with 100% coverage it is almost 5
years before the number of cases sinks to zero, and the ‘honeymoon effect’
isn't visible until the gecond epidemic following the initiation af control
measures. Figure 8.10(b) shows that peak incidence occurs at approximately

age three, so that it takes two years before vaccination at age 9 months



Figure 8.10

The impact of a range of different vaccination regimes which reach

different percentages of the susceptible population. All the

programmes tested here administer vaccine at age 9 months.

Predictions generated using the Ueda baseline parameter set. )

(a) Tatal cases through time.

(b) Age incidence of measles at the peak of the last epidemic.

(¢) Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

(d)> Numbers by age in the excess deaths class at the peak of the
last epidemic.

25% The peak of the last epidemic is at time
50% The peak of the last epidemic is at time
75% The peak of the last epidemic is at time
100% The peak of the last epidemic is at time

17.875 years
17.875 years
= 19.5 years
19.5 years

ot o ot
1}

> WK



CASES

CASES

550.

481

412.

343.

27s.

206

137

68.

120

105

-25 4

«25

+50 1

90 4

7S 4

60 1

45

30 1

oo

00 1

TINE

(YERRS)

—

——

7.5 10.0

RGE

T T
12.5 15.0

(YERRS )

PROPORTION SEROPOSITIVE (CRSES + VACCN)

EXCESS DERTHS

1.000
0.875
n.7sol
0.625 1
0-500 1
0.375 1
0-250 1

0.125

0.000 : T T r . — : y
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
RGE (YEARS)
1 2 3
1100 (:i
963 4
stw
588
550 1
4131
275 1
I
//\\\ ] e
136 4 / i / = -
’
VTN~
&% 50 1070 1570 2000 250 30,0 35.0 400 45.0 50-0
AGE (YERRS)
1 2 3 4



has a dramatic inrluence cn the number of cases. The slow rate of loss of
protection by maternal antibody means that lewer rates of seroconversion

are achieved when vaccinating at © months. These two factors combine to

cause this different pattern.

Figures 8.114a) to (d) illustrate the impact of a different set of

levels of vaccination, with a narrower range but at a higher level. Thus the

s

ocur levels compared are 30%, 85% 90% and 95%. As coverage levels increase
the ‘honeymoon period' gets longer (fig 8.11<a)) and the age distribution of
cases after sixteen years of vaccination skews more towards the older
individuals (fig 8.11(b)) From this simulation it would appear that
immunisation of 95% of those susceptible at age 9 months would eradicate
the disease, but figure 8.12 shows this to be incorrect. The latter figure
shows total cases through time for 60 years, using the Ueda baseline
parameter set, and vaccinating 97% of 9 month olds. There is a very long
periAd with no cases, and £hen a large outbreak 42 years after the
introduction of mass vaccination. This might seem surprising, until it is
pointed out that if the average duration of protection by maternal antibody
is 6 months, 22% of a cohort will still be protected by maternal antibody
at the age of 9 months. Under the assumption that this 22% will not
seraconvert when vaccinated, vaccination of 97% at age 9 months is only
equivalent to guccessful immunisation of 76% of each cohort. The crucial
question of the age at which vaccine should be administered is studied in
the next section. The example shown in figure 8.12 illustrates two
shortcomings of this model. When cases drop to very low levels - as they
do between times t = 6 years and t = 44 years - stochastic effects become

relatively more important. Thus if a stochastic element had been



Figure 8.11

The impact of a range of different vaccination regimes which reach

different percentages of the susceptible population. All the

programmes tested here administer wvaccine at age 9 months.

Predictions generated using the Ueda baseline parameter set.

(a) Total cases through time.

(b) Age incidence of measles at the peak of the last epidemic.

(c) Proportions seropositive through the presence of maternal
antibaodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

(d)> Numbers by age in the excess deaths class at the peak of the
last epidemic.

1 80% The peak of the last epidemic is at time t = 16.875 years
2 85% The peak of the last epidemic 1s at time t = 19,125 years
3 80% The peak of the last epidemic is at time t = 20 years

4 95% The peak of the last epidemic ig at time t =

20 years
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Figure 8.12
Long term predicted impact of vaccinating 97% of 9 month old

csusceptibles. The results were generated using the Ueda baseline
parameter set,



incorporated into the model, the case illustrated in the figure would have
fects would have lead %o fade-
out oI the disease. The model assumes that the community under
consideration is so isolated that no cases would be imported. This is
clearly quite unrealistic and an element of spatial heterogeneity allcwiag
dicease transmission between different communities needz to be considered.
if occasional new inrectives were introduced to the community modelled

here, the post-vaccination epidemic would occur soomner.

The next twa sets of experiments investigate the changes that come
about as a result of varying the age at which vaccine is administered.
Table 8.1 shows the percentage of a cohort that will still be protected by
maternal antibody at a range of ages. The youngest age considered is 3
months, and the oldest age for which results are tabulated is 1 vear 6
months. The table shows the percentage protected by maternal antibody at
each age for two values of the parameter &§. The second and fourth columns
show the maximum effective immunisation rates that could be achieved by
vaccinating 50% of a cohort at each age, assuming that no child protected
by maternal antibody will serocanvert upon vaccination. The figures in this
column are calculated assuming that no vaccine is wasted on individuals who
have already experienced the disease; in practice this is a weak assumption.
Figure 8.13(a) shows the predicted total number of cases under six
different regimes of vaccination. In each case 50% af each cohort are
vaccinated, but the age at which vaccine is administered is varied. The
youngest age at which vaccine is administered is 3 months and the oldest
age is 1 year 6 months The predictions shown in these figures were

calculated using the Boué parameter set, so the average duration of



o
(&)l

T T Average Duration of Maternal Antibodies |
T T S honths (8 =4y | T months (8 =2 y)
T W protacted | max, successful | % protected | max, successful
by maternal | immunisation rate | by maternal | immunisation rate
antibndies at 50% coverage antibodies at 50% coverage
o | 36.8% | 3164 60.7% | 19.7%
e | 135w | B | %86 | N6
""" mo | s.0% | 47.8% | 22.3% | 38.9%
Ty | e T 09,15 13,56 3.3
Tyroamo | 0.7 | aew | g.20 | 5.9
Tyrgmo | 020 | 499 | 508 | 7.5
Table 8.1

Programme efficacy at different ages for two different rates of lass of

protection by maternal antibody.




Figure 8.13

Predicted impact of different vaccination regimes which immunise 50%
of susceptibles at a range of ages. The results were generated using
the Boué baseline parameter set.

(a)
(b)
)

(d>

Total cases through time.

Age incidence of measles at the peak of the last epidemic.
Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

Numbers by age in the excess deaths class at the peak of the
last epidemic.

Vaccine administered at age 3 months. The peak of the last
epidemic is at time t = 20 years

Vaccine administered at age 6 months. The peak of the last
epidemic is at time t = 18.375 years

Vaccine administered at age 9 months. The peak of the last
epidemic is at time t = 18.5 years

Vaccine administered at age 1 year. The peak of the last
epldemic is at time t = 19.5 years

Vaccine administered at age 1 year 3 months. The peak of the
last epidemic is at time t = 17.75 years

Vaccine administered at age 1 year 6 months. The peak of the
last epidemic is at time t = 18.25 years
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-3

hus columns 1

m

maternal antibody protection was assumed to be 3 nmonths.
and 2 cf table 8.1 apply. In figure 8.13(a) it can be seen that the best
ages at which to vaccinate are 6 - 9 months, as at these ages there is the
greatest reduction in the number of cases. At younger than 6 months too
much vaccine is wasted on individuals stilil protected by maternal antibody,
and at older than 9 months too many people have already had measles.
Figure 8.13(c) shows that these regimes of immunisation serve to greatly
improve the window problem, whilst the regimes which vacqinate at a later
age do much less to increase the average age at infection. Figure 8.13(d)

reveals that vaccinating at 6 to 9 months also results in the greatest

reduction in the number of excess deaths.

Figures 8.14(a) to (d) show the results of the same experiment
perisrmed using the Ueda baseliﬁe parameter set. Here the rate of loss of
protection by'maternal antibody is much slower, and the average age at
infection is older. Columns 2 and 4 of table 8.1 give the proportion
protected by maternal antibodies and the maximum effective immunisation
rates for the six possible ages at vaccination. The combination of long
lasting protection from maternal antibodies, and a relatively low risk of
infection at a young age combine to make vaccination at age 1 year 3
months the best choice for reducing the number of cases and alsoc for the
reduction in disease induced mortality. The best age at which vaccine
should be administered depends, therefore, upon the age distribution of
cases that prevails in the community before the introduction of mass
vaccination. Although the V.H.O.'s recommendation for immunising at age 9

months provides a useful guide-line for health planners, the results



Figure 8.14

Predicted impact of different vaccination regimes which immunise 50%
of susceptibles at a range of ages. The results were generated using
the Ueda. baseline parameter set.

(a)
(b)
)

(d)

Tatal cases through time.

Age incidence of measles at the peak of the last epidemic.
Proportions seropasitive through the presence "of maternal
antibodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

Numbers by age in the excess deaths class at the peak of the
last epidemic.

Vaccine administered at age 3 months. The peak of the last
epidemic is at time t = 18 years

Vaccine administered at age 6 months. The peak of the last
epldemic is at time t = 19.375 years

Vaccine administered at age © months. The peak of the last
epidemic is at time t = 17.875 years

Vaccine administered at age 1 year. The peak of the last
epidemic is at time t = 18.25 years

Vaccine administered at age 1 year 3 months. The peak of the
last epidemic is at time t = 18 years

Vaccine administered at age 1 year 6 months., The peak of the
last epidemic is at time t = 18.25 years
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Befare moving on to discuss the next series of experiments a brief
conaidefation is given tc the observed pattern of disease incidence that
immediately follows the introduction of mass vaccination, in particular the
observation that there is an extended inter-—epidemic period. In the
paragraphs abave this phenomenon has been dubbed the 'honeymoon period‘. In
order to explain its cause, it is necessary to refer to the concept of herd
immunity. This is an expression of the idea that there is a certain
threshold density of susceptibles below which disease transmission will
cease. When the fcrce of infection depends upon the age of susceptibles
this threshold is a sum of the susceptible population in different age
classes, weighted by age. In the absence of vaccination the susceptible
population oscillates about this threshold with an age distribution
determined by the rate of loss of protection by maternal antibody and the
age—dependent farces of infection. After the introduction of mass
vaccination the susceptible population ascillates about an equilibrium
determined by the rate of loss of protection by maternal antibody , the
forces of infection and the age specific vaccination regime. The weighted
sum of this post-vaccination susceptible population is the same as the
weighted sum of the pre-vaccination susceptible population, but the age
distribution that gives the sum is different. The ‘'honeymoon period' is
genérated during the shift from the pre-vaccination to the post-vaccination
age distribution of susceptibles. Figure 8.15 is a sequence of serological
profiles recording proportions seropositive through protection by maternal

antibodies, naturally acquired immunity or vaccine induced immunity. The



Figure 8.15

A sequence of serological profiles recording proportions seropositive
from cases and from vaccination. The unshaded area represents the
susceptible pool. The figure shows serological profiles.taken at 6
monthly intervals between time t = 3.5 years and time t = 8.5 years.
These results are from a simulation where at time t = 4 years a
vaccination programme reaching 75% of 9 month old susceptibles was
introduced. The figures are drawn such that this immunisation is
visible in the third block of the histograms. The bottom right hand
figure shows cases through time for this simulation. The black dots
represent moments in time when the slices have been taken.
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unskhaded areas represent the susceptible pool. Vaccination of 75% o
month olds is introduced at time t=4 years. The post-vaccination epidemic
starts at time t=6 years, reaches its peak at time t=7.5 years, and is over
by time t=8.5 years. Comparing the age distributiocn of cases at times t=3.5
and t=7.5 years one can see the difference between the pre-vaccination and
the post-vaccination age distribution of susceptibles. In the pre-
vaccination distribution there are a large propartion susceptible at around
age 1 year, and very few susceptibles amongst children over 5. In the post-
vaccination age distribution there are fewer 1 year old susceptibles (as a
result of immunisation) but more susceptibles between the ages of 5 and 10.
Between time t=4.5 years and t=6 years, the combination of a low proportion
0I one year olds susceptible (because of immunisation) and a low propartion
0f older children susceptible (because they were infected before the
introduction of immunisation) leads to a very small susceptible pool. It

therefore takes longer than usual for the density of susceptibles to rise

above the threshold density., and trigger another epidemic.

The experiments described in this section consider the impact of
immunisaticn programmes that vaccinate at two different ages. At each age,
50% of susceptibles are assumed to be successfully immunised. As before,
results are displayed using four summary graphs. Figure 8.16 shows results
derived using the Boué parameter set, vaccinating at 3 months and 1 year, &
months and 1 year, and 9 months and 1 year. Figure 8.17 shows the results
of the same experiment performed on the Ueda parameter set. For the Boué

parameter set the regime that vaccinates at 6 months and 1 year is best



Figure 8.16

Two stage programmes. Predicted impact of a range of vaccination
regimes which immunise 50% of susceptibles at two different ages. The
results were generated using the Boué baseline parameter set.

(a)
§+))
(c)

(@

Total. cases through time.

Age incidence of measles at the peak of the last epidemic.
Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

Numbers by age in the excess deaths class at the peak of the
last epidemic.

Vaccine administered at age 3 months and at age 1 year. The peak
of the last epidemic is at time t = 17.25 years.

Vaccine administered at age 6 months and at age 1 year. The peak
of the last epidemic is at time t = 20 years.

Vaccine administered at age 9 months and at age 1 year. The peak
of the last epidemic is at time t = 20 years.
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Figure 8.17

Two stage programmes. Predicted impact of a range of vaccination
regimes which immunise 50% of susceptibles at two different ages. The
results were generated using the Ueda baseline parameter set.

(a)
(b
(c)

@

Total cases through time.

Age incidence of measles at the peak of the last epidemic.
Proportions seropositive through the presence of maternal
antibodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

Numbers by age in the excess deaths class at the peak of the
last epidemic.

Vaccine administered at age 3 months and at age 1 year. The peak
of the last epidemic is at time t = 17.25 years.
Vaccine administered at age 6 months and at age 1 year. The peak
of the last epidemic is at time t = 19.25 years.
Vaccine administered at age 9 months and at age 1 year. The peak
of the last epidemic is at time t = 16.75 years.
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(in that it does most tc reduce both the number of cases and the number of

excess deaths), whilst for the Ueda parameter set vaccinating at 9 months
and 1 year is the mos%t beneficial regime. This underlines the point made

he goptimal vaccination policy can only be determined with

a knowledge of existing patterns of disease incidence.

3 10 fpwg_pka,—e pmog,‘ammsc

/

In this final comparison of &iiferent regimes of vaccinaticn, a study
is made of the impact of a vaccination campaign that starts by vaccinating
at one age and then switches to a different age. This experiment was
suggested - by the observaticn that for a year after the introduction of
high levels of immunisaticn, the transmission of disease falls to a very
low level. Given this low level of disease transmission, it was felt that it
might be possible, by increasing the age at which vaccine was administered,
to enhance the impact of the campaign. By waiting until a later-age faor the
administration of vaccine, mare people would have lost their maternal
antibodies, and could therefore be successfully immunised. The low levels of
disease transmission would mean that these individuals would not be at risk
from infection. In other words, the plan was to use the 'honeymoon period'

to overcome the window problém.

Figures 8.18(a) and (b) show the serclogical surface, and some slices
through it that are produced under the influence of a vaccination regime of
75% at 9 months old starting at time t=4 years. These have been drawn
using results generated with the Boué baseline parameter set. This

experiment was performed upon this parameter set because it is the one that



Figure 8.18
Illustrations of the easing of the window problem as a result of the
introduction of immunisation. The results illustrated show the impact
of immunising 75% of susceptibles at age 9 months, starting at time
t = 4 years.

(a)

()

Three dimensional view of the proportion seropositive through
the presence of maternal antibody or naturally acquired immunity
following infection. Time ranges from t =3 years to
t = 10 years, and age ranges from 0 to 10 years.

Two dimensional view of the proportion seropositive through the
presence of maternal antibody or naturally acquired immunity
following infection. These are slices taken through the surface
above at 6 monthly intervals from t = 4 years until t = 6.5
years.



10

10

10

e

N

N

01 )"

saunwuwl "dodd

Age (years)

0.9

1 T 1
e n =
o o o

aAljIsododas “udoud

0.1

3.5

Age (years)



best iliustrates the window problem. The two graphe show the proportion

only. This procedure is adopted to illustrate
the way in which the window problem becomes less severe after the
introduction of vaccinaticn. The experiment tests the outcome of changing
the policy at time & years to vaccinate at either 1 year or 1 year &
months. The proportion of susceptibles immunised is assumed to be the same
- i.e. 75% - but because the age at vaccination is older, the averall
proportion vaccinated was expected to be greater (fewer people protected by
maternal antibodies), and the impact of the campaign was expecited to
improve. Hcwever as can be seen in figure 8.16¢a) to (d) the reverse
happened, and the impact of the campaign was greatly reduced. In every
aspect, the two phase programmes give poorer results than a programme that
continues to vaccinate at 9 months. There are more cases (8.19(a) and (b)),
resulting in more people being immune through infection at the end of the
twenty year simulation (8.19¢c)), and more excess deaths (8.19(d)) in the
altered programme than in the original one. Figures 8.20 (), (b) and (c) are
three dimensional illustrations of cases by age far each of the three
different strategies. They show that the two phase programmes fail because
they do not immunise enough people to eradicate the disease, and leave at
risk large numbers of individuals below the age at which vaccination is

administered.

3.1 Summary

The impact of a range of different regimes of vaccination has been
studied with the following conclusions. Vaccination acts to decrease the

number of cases and increase the inter-epidemic period. The age
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Figure 8.19

Two-phase programmes. Predicted impact of vaccination programmes
which start off with one regime and then switch to another. In all
three cases the initial regime is to vaccinate 75% of 9 month old
susceptibles starting at time t = 4 years. The results were generated
using the Boué baseline parameter set.

(a)
(b)
(c)

(d

Total cases through time.

Age incidence of measles at the peak of the last epidemic.
Proportions seropositive +through the presence of maternal
antibodies or naturally acquired immunity following infection.
Taken at the time of the peak of the last epidemic.

Numbers by age in the excess deaths class at the peak aof the
last epidemic. .

Unchanging regime reaching 75% of 9 month old susceptibles. The
peak of the last epidemic is at time t = 20 years.

At time t = 4 years a regime reaching 75% of 9 month old
susceptibles 1s introduced, and at time t = 6 years this is
changed to 75% of 1 year old susceptibles. The peak of the last
epidemic is at time t = 20 years.

At time t = 4 years a regime reaching 75% of 9 month old
susceptibles 1s introduced, and at time t = 6 years this is
changed to 75% of 1%year old susceptibles. The peak of the last
epidemic is at time t = 19.5 years.



Figure 8.20

Three dimensional views of cases by age and time for the two-phase
programes as compared with an unchanging regime. Time ranges from

t = 3 years to t = 10 years, and age ranges from 0 to 10 years.

(a)
(b)

«©)

Unchanging regime reaching 75% of 9 month old susceptibles.

At time t =4 years a regime reaching 75% of 9 month old
susceptibles is introduced, and at time t = 6 years this is
changed to 75% of 1 year old susceptibles.

At time t =4 years a regime reaching 75% of 9 month old
susceptibles is introduced, and at time t = 6 years this is
changed to 75% of 15year old susceptibles.
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children, and the window problem is eased. Immediately afier the
introduction of immunisation there is a long pericd of low dicease
incidence. This phen omenon has been called the 'honeymoon period'.
effect becomes more marked with increasing levels of immunisation. The
effect is generatea during the shift from the stable age distribution of
susceptiblas thatf exists before the introduction of vaccination, to that
which exists after its intréduction. Ztudies on the impact of regimes which
administer vaccine at different ages find that the optimal age to vaccinate

dependent on the patterns of disease prevalence that exist in the

-
(4]
[

community before the introduction of immunisation. Thus for a community
with a very low average age at infection and a severe window problem, the
©-9
optimum age ror vaccination is arcundpmonths. For a community where the
average age at infection is older and the window protlem less severe, the
best results are obtained by immunising at age 1 year 3 months. Studies of
two stage programmes (which vaccinate each cohort twice) underline the
point that aoptimal contral policy can only be determined with a knowledge
nf existing patterns of disease incidence. Studies of two-phase programmes
(which start with one vaccination regime, and then switch to ancther)

suggest that switching strategy in the middle of a programme can act to

reduce the impact of mass vaccination.
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In this, the last chapter of results, the aim is to consider a variety
of ways in which the force of infection could be related to the number of
infecticus people and the size of the total population. The chapter
investigates one family of such relationships and studies how it can
influence patterns of measles incidence in growing populations. Particular
attention is paid to the manner in which the age prevalence of disease
changes as population size graows. Consideration is given to the type of
data that would be required to measure the parameters that are introduced

in a new definition of the force of infection.

2.2 Chapter lavout.

The chapter commences with a discussion of the exact meanings of the
model's compartments M, X, H...etc. Two possible ways in which the force of
infection might be related to community size are then presented. The new
parameters introduced in their definitions are then discussed. Attention
then focuses on three pieces of data concerning changes in age prevalence
that come about as a result of increases in community size. The next

section of the chapter studies one particular range of definitions of the
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force of “infection. First the sensitivity of the model's predictions to
variations in this definition is considered. This is followed by
consideration of the predicted impact of mass vaccination, and the way in
which assumpticns built into the definition of the force of infection

changes such a prediction.

In the preceding chapters it has been the practice to refer %o the
quantity M(a,t) as the pumber of children in the community of age a at time
t who are protected by maternal antibodies; to X(a,t) as the pumber of
susceptibles of age a at time t; and so on. Existing studies using these
types of models have tended to define the quantities X, Y, and so an as
dengitiec of susceptibles, infectives, or whatever. When studying epidemics
within populations of constant size, interchangeable use of the wo;ds
‘number' and ‘density' does not cause confusion. However once the assumption
of constant population size is dropped it becomes very important to be
clear about which definition is being used. In what follows the definition

of X{a,t) continues as the numhgn of susceptibles of age a at time t.

In chapter 4 a working definition of the force of infection was
adopted (equation 4.8) and all the work in subsequent chapters has been
based upon this definition. The definition is as follows;

(]
J BCa,a') Yca',t) da'
aAa,t) = 0 - 9. 1)

[s4]
J Nda',t) da’
0
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Tais deiinition, by assuming that the force of infection is determined by

of the cocmmunity that are infectiocus, renders the force of

infection independent of community size. In a study of the epidemiology of
endemic infections in growing populations May and Anderson (1985) have

used the following definition of the force of infection;
[v2)
Aa,t) = J RCa,a'y Yé',t) da' (9.2)
0

Using this definition for a growing population implies the assumption that
the force of infection rises linearly with increasing community size. It
seems clear that the true relationship between the rate of disease
transmission and the size of the community lies somewhere between these
two extremes. There is of course an endless variety of functions that, upon
parameter variation, will provide a continuum between the two, but in this
chapter two possibilities are discussed, and one is studied in detail. The

latter (which was firsi suggested by Anderson (1982b) is as follows;

[e2]

J Ba,a') Y(a',t) da'
A, ) = 0 (9.3)
® p
I Nca',t) da'
0

where the parameter p lies between 0 and 1. Setting p = 1 recaptures
definition (9.12, so that the force of infection is independent of
community size, and setting p = 0 recaptures definition (9.2), where the
force of infection Axs lincarly with  community size. So what does the
parameter p measure? It is a composite measure nf two quantities; a
physical one and a sociological one. The physical measurement describes the
relationship between community size and population density. It is therefore
a measure of the way in which the area of a city changes as the number of

people increases. The scciological camponent is more subtle, and is a
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measure 01 changes in people's lifestyles that come about as their

population density or community size increases ar decreases.

The alternative intermediate definition that is discussed here has
been suggested by Dietz (1982) and takes the form of a saturation function

along the lines;

[vs]
J ga,a'y Y¢',t) da'

0
(9.4

il

ra, t?

[v2)
A+ B I Ndaa',t) da'
0

Setting A equal to 0 and B to 1 recaptures definition 9.1, and setting A to
1 and B ta 0 recaptures definition 9.2. For intermediate values of A and B,
when the total population is small the constant term A dominates and the
relationship resembles that in definition 9:2. That is the force of
infection increases as the population grows. But when the total population
is large the term B x tofal population dominates and the force of infection

becomes less dependent on community size.

9.4 1 | data i .

In the years 1883 to 1902 the town council of Aberdeen made it
compulsory to notify all cases of measles, and‘prosecuted those found to
have failed to do so. The data is of particular value because the cases were
recarded by age stratified into single years rather than grouping into five
year age bands. This gives an unusually fine 'grain' to the data and allows
the construction of an interesting view of annual age incidence over the

twenty year time span. The data is portrayed graphically in figure 9.1. Qver



Figure 9.1
Measlez age prevalence from Aberdeen in
Data are from Wilson (1904)

Table 9.1

Population of Aberdeen between 1883 and 1902. Data are from Wilson

(1904)

Year | Population
1881 | 105,538
1891 | 123,348
1901 | 154,295

the years 1383 to .1802.




Figure 9.2

Age specific serology and cumulative cases by age from community

studies in urban and rural populations in developing countries.

These 1illustrate the younger average age at infection in urban

centres.

(a) & (b) Serological profiles from Senegal: Dakar and Popenguine,
a small fishing village. Data are from Boué (1964)

(¢) & (d) Serological profiles from Nepal : The flatter more
densely populated Terai areas and hill regions.
Data are from Brink & Nakana (1978)

(e) & (£) Cumulative cases by age from Urban and Rural South
Africa. Data are from Loening & Coovadia (1983)



X seropositive

X seropositive

sumulative ‘% cases

Senegal: Dakar

N~ —

Nepal: Terai

90
80
70 1
80 4
50 -
40
30
20

10

S. Africa: Urban

X seropositive

cumulative % oases

i

Senegal: Popenguine

Nepal: Hills

70 4

30 4

40 -

20 o

10 -4

S. Africa: Rural

N
> -




177

the course of twenty years (1883 - 1902) the population of Aberdeen grew
by 50% (table 9.1 but there was no detectable shift in the age distribution
oI cases over this time. This is evidence on the side of setting the
parameter p of definition 9.3 to zeroc, and making the force of infecticn
independent of community size. However this is incompatible with the wealth
of data that show that in urban areas the average age at infection is lower
than in ruro) areas. Figure 9.2 shows data from a selection of three such
studies that are from developiﬁg countries. This information reveals that in
denser populations the rate of disease transmission is higher than in low

density (or small) communities.

The sort of data that is available to allow the estimation of the
parameter p compares the average age at infection with community size. In

order to interpret such data the following argument is used.

To a first approximation,

A =21/ 4 9.5)

The definition 9.3 (in its age independent form) can be rewritten;

- - q.6)
x = By 1 p) (

where y is the propartion infectious, and as before ¥ is the total
population. Then taking logarithms yields the following linear relationship
between log ) and log T,
log » = log By)+ (1=~p) log ¥ . ©.7)
Figure 9.3 shaws same data collected in New York State at the beginning of
this century which compares community size and average age at infection.

Figure 9.4 shows the same data under a log transformation. The best
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Figure 9.3

Average age at infection for a range of different sized towns in

New York State. Data are from Fales (1928)
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Figure 9.4
Data from figure 9.3 under the logarithmic transformation.
+ Transformed data.
--— Best estimate for a straight line through the points.
The slope of the line is estimated as .085 £ .03
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estimate for the slope of the line is 0.085 giving an estimated value of p

oI 0.915. The 95% confidence interval for the estimated value aof p is

It is hard to. see a way in which field data could be interpreted so as
to indicate which of the definitions 9.3 or 9.4 would be the best to use.
However having chosen a relationship between X and ¥ it should be possible
t0 collect data that would ailow the estimation of the value of the
parameter p. Ideally such data would be in the form of a series of
serological profiles taken over the course of time in the same place whilst
a population grew in size such that the population density rose. However
the serology would only be easy ta interpret if drawn. from an unvaccinated
population, and for measles such populations are disappearing fast. However,
in the late 1950's and early 1960's quite a lat of serological profiles were
collected in developing countries. It would be of great value to return to
those communities now and collect further serological data to see if the
age prevalence has changed over the past twenty years. The alternative is
to repeat the data collectlion exercise performed in New York State early
this century and collate age prevalence data from a variety of unvaccinated
communities of different size. For example this could be done in India
where there is as yet no well organised mass vaccination programme against
measles. The need for such a study is urgent since the Indian Health
Authorities are under increasing pressure from the World Health

Organisation to introduce mass measles vaccination.



b e Y P e E e L SR S LS -
oo ake TN v andid .j;wx:'u ~ i

oy 3
Jeal’s and

el

P eI SRS S S + 1 v S N =Vl o1 e Ahas == - = - v 7 ~ T oo
cerinivicn oi the Iorce oI inrection is the same as in previous chapters.

steeper rebound Iollowing ioss of protection by maternal antibody after the
16 years. Figure 9.5 shows the resuits ci an experiment where the value of

p was varied over 5 vaiues from 1 to 0. The experiment was performed
employing the Ueda varameter set, which assumes a high birth rate and a
otal population at the start of the experiment
iilustrated in figure 2.6 15 200,000 and at the end of the twenty years for

wnich the simulation runs the total population is 440,000, The smaller the

value of p the shorter the inter-epidemic period becomes (fig 9.6(a’).
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irtually everybody eventually experiences measies infection, and
changes in the force of infection only affect the age at which the disease

is coniracted. Figures 9.6<(5) and (c) illustra
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lesz than 1 the age distribution of cases shifts towards younger children

az the population grows, and that smaller values of p lead to greater
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Serological profiles at time t = 4 years and at the peaks of the
last epidemics. In (a) the parameter p was assigned value 1 and
the profile does not change. In (b) the parameter p was assigned
value 0.5 and the profile has become steeper over the course of
the sixteen years.
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Sensitivity of the model's predictions to variation in the
parameter p. Results generated using the Ueda baseline parameter
set.
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saifts in age distribution. The result of the changes in age distribution is

reater numbers of excess deaths because the case fatality rate is greater

O

amongst the younger individuals (fig 9.6(d)). Figure 9.7 shows results of
this experiment illustrated by three dimensional views of cases by age and
time for three different values of p. These show the changes in age
distribution of cases that cccur when p is assigned a value less than 1.
Figures 9.8 and 9.9 illustrate a variant of this experiment that considers
long term predictions for different values of p. The simulations cover 60
years rather than the usual 20, but only the two extreme cases p = 1 and p
= 0 are studied. As before the number of cases is largely unaffected, but
when p = 0 the inter-epidemic period gets shorter and shorter and the rate
0f damping of the oscillations is increased (fig 9.8). After 60 years the
change in age distribution of cases is even more marked (fig 9.9(a) and
(b)), and the differences in the number of excess deaths even greater (fig
9.9(cY). The final figure of this chapter (fig 9.10) illustrates the
sensitivity of the predicted impact of immunisation to the definition of
the force of infection. The results were generated using the Ueda baseline
parameter set, and based on introducing a vaccination regime of 97% of
susceptibles at age 1 year 3 months. The figure illustrates the predicted
number of cases for the two possibilities p = 1 and p = 0. When p is set at
a value of 1 the vaccination regime is adequate to eradicate the disease.
But when p is set to 0 there is a huge epidemic 24 years after the

introduction of vaccination.
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Figure 9.7 )

Sensitivity of the model's predictions to variation in the

parameter p. Three dimensional views of cases by age over the

course aof time.

(a> p = 1. There is no change in the age distribution of cases
over the twenty years.

(b) p = 0.5. There is a slight shift in age distribution towards
younger individuals.

(¢ p = 0. There 1s a more marked shift in age distribution
towards younger individuals.
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Figure 9.8

Total cases through time over the course of sixty years for the
two extreme values of p; p = 1 and p = 0. Results generated using
the Ueda baseline parameter set.
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Figure 9.9

Sensitivity of long term model predictions to variation in the
parameter p for the two extreme values p = 1 and p = 0. Results
generated using the Ueda baseline parameter set.

(a) Cases by age after 60 years

(b) Proportion seropositive by age after 60 years.

(cY Numbers by age in the excess deaths class after 60 years.
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Cne possible range of definitions of the force of infection has been
studied, and a range of responses ta population growth generated. If the
farce of infection 1s assumed to be strongly dependent upon the size of the
population, the age distribution of cases shifts towards younger children

over the courze of time. This results in more excess deaths, and decreases

the impact of control programmes.
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The purpose of this chapter i to present a brief summary of the

practical implications of results discussed in previous chapters.

lQ .2 Qha p !;er Ldg(:)u t

There are five results felt to be of direct relevance to the design of
vaccination programmes, and these are discusséd in the following sequence.
First attention is focused dpon the relationship between the critical
vaccination proporticn and the average birth rate. The second conclusion
concerns the necessity of acquiring adequate quantitative infarmation on
the epidemiology of measles before an optimal programme can be selected.
The period of low incidence that follows the introduction of an
immunisation programme (the 'honeymoon period’) is then discussed. The
fourth section considers the outcome of two-phaseée programmes (i.e.
programmes that begin with one strategy and then switch to another). The
fifth and final section deals with potential changes in age prevalence of
measles as a result of increases in population size, and the way in which

such changes would influence the outcome of a vaccination campaign.



R = B/ A i (5.23)

1 -1/ Ra. 5.26)

o
n
1R

where R is the basic reproductive rate, B is the reciprocal of the average

birth rate, A is the average age at infection and p. is the critical

if equation 5.23 is rewritten as follows,

A

R

B/ Ro

one can see that the average age at infection in a community is dependent
upon two factors, one demographic (B) and one determined by the degree of
mixing and magnitude of disease transmission (Ro). A low average age at
infection can therefore be caused by two things; a high birth rate (thus
low B) or a high basic reproductive rate (thus large Ro). If the éverage
age at infection is low because the average birth rate is ﬁigh, eradication

will be much easier than if the low average age at infection is the result

of a large basic reproductive rate.

In chapter 8 section 8 comparisans were made to establish the effect
of administering vaccine at different ages, and it was found that the best
age for vaccination was quite different for the two different parameter
sets. (éee figures 8.13(a), 8.14 (), 8.16{@) and 8.17(a)) That is, the optimal

contral programme for a community is strongly dependent upon the pattern
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of age incidence of disease prevailing in that community. It is therefore
essential to perform some kind of study of age incidence of disease before
enbarking upon the design of a vaccination programme. The sort of study.
that is performed must, clearly, depend upan the resources available, but
the minimum adéquate information would consist of a community survey of
the average age at infection. For a disease like measles where the severity
of the symptoms is strongly age dependent, a hospital based survey is

bound to be biased towards younger individuals. The most reliable way to
find the age prevalence of disease is to perform a serclogical survey based
on the collection of a large number of serum samples aver a broad spectrum
of ages. However in many places such a project would be beyond the scope of
existing facilities. In such cases, community based studies which record all
cases over the course of a complete epidemic cycle could be used to
estimate the average age at infection. Because of the great variation in age
prevalence patterns between communities, (as illustrated in chapter 5), and
the importance of accurate information about such patterns when designing a
control programme, indiscriminate use of data from one place when designing

a control programme for another is inadvisable.

Another aspect of data requirements is that of the completeness of
data sets. This point was first emphasised in chapter 6 in the context of
the estimation of epidemiological parameters such as the basic reproductive
rate and the critical vaccination proportion. It is highly desirable to have
reliable information on the demographic characteristics of a community for
whom a vaccination campaign is being planned in addition to the kind of

age prevalence data discussed above. Demographic data - particularly the
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proportion for eradication as discussed in section 10.3.
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At the end of chapter 8 section 8 a special emphasis was laid upon
the long period of low incidence that follows the introduction of mass
inmunisation, which has been dubbed the 'honeymoon period'. Because of
different patterns of age prevalence, patchy vaccine administration (in a
spatial sense) and the gradual introduction of immunisation these patterns
have not been clearly identifiable in developed countries following the
initiation of mass vaccination. However in developing countries low average
ages at infection and a comparatively sharp initiation of large scale
immunisation programmes will give rise to more obvious manifestations of
this phenomenon. Health planners should therefore be warned that the
apparent initial success of a vaccination campaign may be followed by a
large epidemic. The timing and size of such an epidemic will depend upon
the level of coverage, the details of the age specific rate of disease

transmission, and the age structure of the community.

10.6 Two-phase programmes.

In chapter 8 section 10 a study was made of the impact of programmes
which start with one vaccination regime and then switch to another (two-
phase programmes). The experiments were performed to see if it would be
possible to improve the efficacy of a control programme by changing the

strategy after a few years of mass vaccination. It has been postulated
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(3lack, 1982) that following the rise in the average age at infection {(which
comes about as a direct consequence of mass immunisation) it should be
possible to raise the age at vaccination and achieve higher rates of
seroconversion. In the small number of cases that have so far been studied
raising the age at vaccination two years after programme initiation reduces
the impact of the control programme. This reduction in the efficacy of the
programme comes about because there are large numbers of cases at ages
below the new age at vaccination. It may be that for higher levels of
vaccination than those tested there is an advantage to be gained by
switching strategies, or that the strategy should not be switched until a
longer period fhan two years has élapsed, If there is an advantage to be
gained by switching strategies, there is clearly a fine balance to be

achieved and caution would be necessary in assessing when to switch,

10.7 !"hange& in QQmm]m].I;I size

Chapter 9 investigated the impact of population growth upon age
prevalence of disease. The results showed that in circumstances where age
prevalence does shift towards younger individuals as population grows, the
changes are slow, but can have%aramatic affect upon the impact of a
vaccination programme. Figure 9.10 showed the predicted impact of a
vaccination programme applied to a growing community under two different
assumptions about the relationship between the rate of disease transmission
and the size of the community. Under the 'best’ assumption (rate of disease
transmission independent of community size) the vaccination regime was
enough to eradicate the disease. But when the 'worst' assumption (strong

correlation between increases in population size anrd increase in the rate of
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t0o eradicate the dicease because of the increases in the rate of disease

transmission which accompanied population growth.

It is.hard to determine a very precise way in which to define the
force of infection a€a,t), and the work presented in the chapter has been
based upon only one of the many possible definiticns. Because of these
shaortcomings, and the general lack of reliable data on the subject it would_
seem unwise to interpret the results of the chapter as other than a general
caution. This cauld be stated as; 'beware of shifte in age prevalence
towards younger children that may accompany population growth as these

may render an optimal control programme obsolete’.
10.8 Summary

Five major results that have emerged during the course of the project
have been singled ocut as being of particular relevance to the planning of

public health policy in developing countries.



s
[le]
]

In this the final chapter of the thesis a discussion is presented that
concerns itself with the project's successes and failures, alternative

approaches, and directions in which further progress could be made.

The bulk of the new results are presented in the preceding chapter.
There are, however, some points that do not conform to that chapter's brief
which could provide new insights into old prablems. The concept of excess
deaths has proved a useful idea, both for the interpretaﬁion of case
fatality rates as disease related death rates, and for the interpretation of
serological profiles drawn from communities that have suffered significant
case fatalities. Furthermore the concept already has currency amongét
physicians working in the field of tropical public health who have long
been aware that deaths are postponed, not prevented. In more general terms,
the rigour involved in the estimation of model parameters is an aid to the
understanding of interactions between different data sets and can therefore

act as a guide in the collection of data.

Looking back to the introductory chapter it can be seen that one of
the stated aims of the project was to construct a tool that could be used
to compare the impact of different regimes of vaccination. To some extent

this has been achieved: the use of this tool produced several of the points



discussed in chapter 10. Its potential is not yet exhausted, and discussion

urther ways in which it might be used.
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In a catalogue of the project's failures,the most unsatisfactory area
of inguiry concerns the critical vaccination proporticn for eradication, pe.
This result (presented in chapter 5) has been derived from a simplified
version of the model which ignores the existence of maternal antibodies.
The only defence for this approach is that it has led to the result
discussed in chapter 10 section 3 which does offer some general insight
into levels of vaccination required for eradication. A more specific, and
perhaps more serious criticism of the project is that the two types of
ocbjectives (understanding and deciding) that were identified in the
introductary chapter have to some extent become inseparable. Thus a model
containing all the complications (useful when trying to choose between
regimes of vaccination) has been used in the sections that try to
understand the interactions between different processes. The failure to
understand the cause aof the results presented in chapter 7 sections 7 and 9
(namely the effects of changes in the relative values of the forces of
infection and the configuration of the WAIFV matriff%he model's dynamic
behaviour) are the most glaring manifestations of the problems arising from

working with a very complex (and supposedly more realistic) model.

A better way to approach the problem of complexity versus simplicity
is to introduce the complications one at a time. First of all a model for a
population of fixed size that suffers significant case fatalities might have
been studied. Then a model for a growing population without case fatalities

could have been considered. Throughout all this, age dependence in the force
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¢ infection could have been omitted. Only at the time when different
programmes of immunisation were to be compared should all the

complicaticns have been included at cnce.

Looking forward rather than back, the following are seen as possible
directions for future develapment. The computer programme that generates
the numerical sclutions for the model could be used to investigate the
impact of other strategies of immunisation. Two phase programmes with high
coverage rates are of immediate interest, as are 'pulse' programmes. The
latter consist of annual periods of intense activity which aim to immunise
all children in the target group over the course of a few days each year.
Such strategies have been adopted in some South American countries and
have aroused much interest. Anoiher approach might be fto try and build scme
very simple economic parameters into the model. Most of the cost of
delivering vaccine to a child lies in administration and transport rather
than in the actual cost of the dose (Hendersan 1984). Many communities have
very infrequent access to immunisation services. These two points raise
some interesting questions about the logic of a rigid decree that children
should not be immunised until they are nine months old. In general a model
of this type would form a good basis from which to make a rigorous

analysis of the economics of vaccination in developing countries.

A subject area that might benefit from further analytic investigation
is the immunological status of infants as they lase their protection by
maternal antibodies. Seroconversion studies show that for some children
there is a period of time when they neither have measles antibody titres

that would be expected to protect them from measles infection, nor can they
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be successrully immunised. In this model it has been assumed that infants
pass straight from the maternal antibody protected class to the susceptible
{and imnunisable’ class. It might prove interesting to introduce an

intermediate class of susceptible but not immunisable individuals in order

toc assess how this affected the predicted impact of vaccination programmes.

When many diiferent factors are known to influence the epidemiclogy of
a disease, the rigour intrecduced by the use of a mathematical model can
serve to unravel what may appear to be a complex web of cause and effect.
The work that has been presented here is the result of expressing in
mathematical terms what are believed to be the essential features of th
epidemiology of measles in develaping countries. The purpose of this
approach has been to clarify and extend the understanding of these
essential features their relative importance and their interreaction in

determining the epidemiology of measles in developing countries.

P.S.

In planning immunity for the herd
One observation should not be blurred
Vith effective protection
From viral infection

Deaths aren't prevented, just deferred.
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