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A bstract.

A zero cu rv a tu re  equation is , in th is  th e s is , a  p a r t ia l  
d if f e r e n t ia l  equation  which can be w ritten  in the  form

[ dx + q (x , t)  -  zA , - V+(x, t , z )  ] = 0
where q, V+ a re  m atrix-valued fu n c tio n s  and A is  a  co n stan t 
semisimple ( i .e .  d iagonalizab le) matrix.

In  th is  th e s is  the work o f  D rin fe l’d, V. G. &
Sokolov, V.V. (J . Sov. Math., 30 , 1975-2036, (1985)) is  
generalized . We in v estig a te  the co n stru c tio n  o f  these 

equations and prove th a t each one co n stru c ted  belongs to  a  
h ie ra rch y  o f equations a l l  o f  whose flows commute.

I t  is  shown th a t each h ie ra rch y  is  ch a rac te riz ed  by a  

t r ip le  (5 , 0, A) where (5 , 0) is  a  p e rio d ic a lly  graded 
semisimple Lie a lg eb ra  and A is  a  semisimple element o f 
degree one in the grading. We in v estig a te  which gradings
admit such an element and c la s s i fy  these  cases  f o r  the
simple Lie a lg eb ras  o f rank  ^ 4. We a lso  in v estig a te  the 
equivalence o f  the h ie ra rch ie s  in  terms o f the  conjugacy
c la s se s  o f  semisimple elements o f  g.

A method is  presented  f o r  co n stru c tin g  transfo rm ations 
o f M iura-type, based on a  method due to  Dr in f  el* d & Sokolov 
(op.cit.). We show th a t, in c e r ta in  cases  where g =
si (£+l,C ), th ese  transfo rm ations can be explained using
d if f e r e n t ia l  Galois theory  ( a f te r  Wilson, to  be pub lished). 
In  these cases  the  ap p ro p ria te  Galois group induces a  group 
o f tran sfo rm atio n s  on the s e t  o f  so lu tio n s  to  the  zero 

cu rv a tu re  equation.
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In troduction .

By a  zero cu rv a tu re  equation we w ill mean a  p. d. e. 
which can be w ritten  as the in te g ra b ility  condition  f o r  a  
p a ir  o f f i r s t  o rd er d if f e r e n t ia l  equations

(dx + q(x , t) )Q = zAfl ( l )

a £n = v+(x, t ,z ) n (2)

f o r  the in v e rtib le  m atrix fl(x, i , z ) .  The fu n c tio n s  q (x , t ) ,  
V+(x, £ ,z ) a re  m atrix-valued, with A a  co n stan t semisimple 
( i .  e. d iagonalizab le) m atrix. The f i r s t  equation is  a 
sp e c tra l  problem fo r  Q(x, t , z ) ,  with z  a s  the sp e c tra l  
param eter. I f  we assume the spectrum is  t-independent the 

in te g ra b ility  condition  f o r  th is  system is  given by

[ dx + q -  zA , dt -  V+ ] = 0 (3)
This is  the zero cu rv a tu re  equation a sso c ia ted  with the 
s p e c tra l  (o r  s c a tte r in g )  problem (1) with t-ev o lu tio n  (2 ). 
We a re  in te re s ted  in these equations when they produce a  
system o f p .d .e ’s  describ ing  the t-ev o lu tio n  o f  the 
(coo rd ina tes  o f the) m atrix q (x , t ) .

S tr ic t ly  speaking, p .d .e ’s  o f th is  type were f i r s t  
considered in the paper o f Ablowitz et al. (1974), although 
the idea is  a  n a tu ra l ex tension o f the work o f Lax (1968) 
and, la te r , Zakharov & Shabat (1972, 1974).

In  general zero cu rv a tu re  equations a re  n o n -lin ear 
p .d .e ’s . They have generated a  g re a t deal o f in te re s t 

because th e re  is a  well-formed theory  about how to c o n stru c t 
exac t so lu tio n s  (and, in p a r tic u la r , so lito n  so lu tio n s ) . In  
p rin c ip le , so lu tio n s  to  a  given zero cu rv a tu re  equation can 
be co n stru c ted  using  the  " inverse  s c a tte r in g  method" 
pioneered by Gardner et al. (1967). We w ill no t attem pt any 
a n a ly s is  o f  so lu tio n s  to  the equations we in v estig a te ; a  
rig o ro u s treatm ent o f inverse s c a tte r in g  f o r  zero cu rv a tu re  
equations can be found in the paper by Beals & Co i f  man 

(1984).
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In  th is  th e s is  we w ill be wholly in te re s ted  in the 

a lg eb ra ic  p ro p e rtie s  o f zero cu rv a tu re  equations, in
p a r tic u la r , th e ir  co n stru c tio n , th e ir  c la s s if ic a t io n  and

th e ir  re la tio n sh ip  to o th e r equations v ia  transfo rm ations o f 

the v a ria b le s .
We remove any need fo r  an a ly s is  by considering  the 

v a riab le s  in the equations to be indeterm inates generating  a  

d i f f e r e n t ia l  a lgebra. Thus, f o r  example, the modified 
Korteweg-de Vries (mKdV) equation

2
q . = q  - 6q q x̂xx } (4)

d esc rib es  the d e riv a tio n  d ̂ on the  d i f f e r e n t ia l  a lg eb ra  C{q} 

o f polynomials in the symbols q , qx , qxx and so fo r th .
In  f a c t  we t r e a t  each m atrix a s  the  re p re se n ta tio n  o f 

an element o f  a  Lie a lgeb ra  (we w ill only be in te re s ted  in 

semisimple Lie a lg eb ra s ) . In  p a r t ic u la r ,  a  m atrix whose 
e n tr ie s  a re  polynomials in z  w ill be seen a s  the
re p re sen ta tio n  o f  an element o f  a  loop a lg eb ra  over a  
semisimple Lie a lgebra . Thus V+(x, t , z )  is  considered  a s  an 
element o f the ten so r p roduct o f  the  ap p ro p ria te  
d i f f e r e n t ia l  a lg eb ra  with a  given loop a lgeb ra . A b r ie f
d e sc rip tio n  o f  the re lev an t f a c ts  about loop a lgeb ras over 
semisimple Lie a lg eb ras  w ill be p resen ted  in  the second 
sec tio n  o f ch ap te r 1. I t  is  assumed th a t the read er is  
fam ilia r with the basic  f a c ts  about the  ro o t space 
decomposition o f semisimple Lie a lg eb ras; the re fe ren ce  most 
o ften  used within is  Helgason (1978, A. P. ).

The idea o f  using  loop a lg eb ras  to  in v estig a te  zero 
cu rv a tu re  equations is  due to  Dr in f  el* d & Sokolov
(1981,1985) (see  a lso  Wilson (1981)). Their f i r s t  im portant 
r e s u l t  was to  prove th a t to each p r in c ip a lly  graded loop
a lg eb ra  th e re  corresponds a  h ie ra rch y  o f zero  cu rv a tu re  
equations. Their p roo f makes use o f  a  v a r ia tio n  o f  the 
"method o f  d re ssin g " ; an im portant concept f i r s t  described
by Zakharov & Shabat (1974,1979). This concept w ill be 
explained in the f i r s t  sec tio n  o f ch ap te r 1 , along with the 
v a ria tio n  used by D rin fe l’d & Sokolov.

The r e s t  o f the f i r s t  chap ter is  a  d ire c t  ex tension  o f

7



the work o f D rin fe l’d & Sokolov (1981,1985) along the lines 
suggested  by Wilson (1981). I t  is  shown th a t to  each 
semisimple element o f the form zA in the loop a lg eb ra  there  
corresponds a  h ie ra rch y  o f zero cu rv a tu re  equations, indexed 
by the cen tre  o f the c e n tra liz e r  o f  zA. All these  equations 
po ssess  the same sp e c tra l problem (1 ). We show th a t a l l  the 

d e riv a tio n s  in a  given h ie ra rch y  commute, and th a t f o r  each 
n o n - tr iv ia l  equation there  is  a  n o n - tr iv ia l  conserved 
den sity  which is  conserved by a l l  the "flows" in the 
h ie ra rch y  ( in the l i te ra tu re  these  p ro p e rtie s  a re  sometimes 
used to  ju s t i f y  c a llin g  the equations in  a  h ie ra rch y  
"completely in te g ra b le " ). We end the f i r s t  ch ap te r with an 
example o f an equation constructed  using a  loop a lg eb ra  over 
sr(3,C ).

The second chap ter makes some headway towards
c la s s ify in g  zero cu rv a tu re  equations. We begin by describ ing  

an equivalence re la tio n  on the s e t  o f h ie ra rc h ie s . From 
ch ap te r 1 i t  becomes c le a r  th a t  each h ie ra rch y  is  
ch a rac te rized  by a  tr ip le  ( g ,0,A) where g is  a  semisimple 
Lie a lgebra , 0 is  a  automorphism o f g o f f in i te  o rd e r and A 
is  a  semisimple element o f g s a tis fy in g  0(A)=wA f o r  a  
p rim itive ro o t o f un ity  w with the same o rder a s  0. I t  is  
shown th a t two h ie ra rch ie s  ( g ,0,A) and ( g ,0,A ')  a re  
equivalent (any equation from one can be transform ed in to  an 
equation in the o ther) i f  A and A' a re  GQ-co n ju g a te , where 
Gq is  the a d jo in t group o f the Lie subalgebra  gQ £ g fix ed  
pointw ise by 0.

Larger equivalence c la s se s  a re  found f o r  c e r ta in

sp e c ia liz a tio n s  o f  the  h ie ra rch ie s  which re s u lt  from s e tt in g
equal to  zero  c e r ta in  v a riab les  which sire s ta t io n a ry  with
re sp ec t to  every flow in the h ie ra rchy . I t  is  found th a t  two
such sp ec ia lized  h ie ra rc h ie s  a re  equ ivalen t i f  A and A' have

th e ir  c e n tra liz e rs  conjugate to one ano ther under G . Ino
p a r tic u la r , i t  is  dem onstrated th a t th e re  is , up to
equivalence, only one h ie ra rch y  corresponding to  a 
p rin c ip a lly  graded loop algebra.

The problem o f determining the ex istence  o f  a  h ie ra rch y
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(3 , 0, A), th a t is , the ex istence o f a  n o n - tr iv ia l semisimple 

element A with 0(A)=tdA, proves to be very d i f f ic u l t  to solve 
in general. We a re  reduced to a  v ir tu a lly  case  by case 

an a ly s is  o f the  p e rio d ica lly  graded simple Lie a lgeb ras and 
s e t t le  f o r  so lv ing  the problem f o r  rank(g):£4. N evertheless 
some re s u l ts  hold f o r  a rb i t r a ry  rank , f o r  example, i t  is  
shown th a t every  period ic  grading on $r(£+l,C) corresponding 

to  an (in n er) automorphism o f  type (s  , . . .  ,s^; 1 ) , where 
s^e {0 ,1}, admits a  su ita b le  semisimple element. The
ex istence  p roo f is  co n stru c tiv e , th a t  is  to say , in each 
case  where a t  le a s t  one su ita b le  element e x is ts  the  p roof 

shows how to  c o n s tru c t such a  semisimple element. For the 
cases  where ran k (g )^ 4  th is  inform ation is  contained in  the 
tab le  a t  the end o f  the fo u r th  sec tio n  o f  ch ap te r 2 .

Chapter 3 is  e n tire ly  concerned with the in v estig a tio n  
o f transfo rm ations o f  "Miura type". The o r ig in a l Miura

transfo rm ation  (Miura (1968)) c o n s is ts  o f  s e tt in g

U = qx “ q2 (5)
which transfo rm s the mKdV equation (4) in to  the
Korteweg-de Vries (KdV) equation

u = u + 6uu (6)XXX X
This equation can be w ritten  in " sc a la r  Lax form" as 

L t = '  P3 ’ L 1

L = a 2 + u P = 433 + 6u3 + 3uX 3 X X X

The Miura transfo rm ation  ac tu a lly  transform s each equation 
in the mKdV h ie ra rch y  into an equation which can be w ritten  
in s c a la r  Lax form using the same o p e ra to r L as above. This 
transfo rm ation  has an elegan t exp lanation  (due to  Wilson, to 
be published) involving the use o f  d if f e r e n t ia l  Galois 
theory .

The d if f e r e n t ia l  Galois theory  p re d ic ts  the  ex istence  
o f  a  d i f f e r e n t ia l  f ie ld  <D<0 , <f>> (th e  f ie ld  o f ra tio n a l 
expressions in the q u a n titie s  <p, 0, 0^, 0^ and so on) upon 
which the group SL(2,C) a c ts , such th a t  the v a riab le  q is  
in v a rian t under the ac tio n  o f a  so lvab le  subgroup o f 
SL(2,<C), while u is in v a rian t under the whole SL(2,C) 
ac tio n . Wilson has shown th a t there  e x is ts  a  d e riv a tio n  d^
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on th is  f ie ld  which is  S L (2 ,C )-equ ivarian t, such th a t we 
ob ta in  both the mKdV and KdV equations when we r e s t r i c t  
to the fix ed  f ie ld  o f the app ro p ria te  subgroup. The 

connection with the s c a la r  Lax form is  th a t the f ie ld  C<<f>tip> 
is  the P icard -V essio t extension a sso c ia ted  with the o p era to r 
L, and SL(2,C) is  the Galois group o f th is  f ie ld  over C<u> 
(the  re fe ren ce  fo r  th is  is  the book by Kaplansky (1957, 

Hermann)).
I t  is  shown in chap ter 3 th a t in general f o r  SL(£+1,C) 

th e re  e x is ts  a  s im ila r setup  whereby an SL(£ + 1 ,0 - in v a r ia n t 
equation e x is ts  which can be transform ed into a  zero 
cu rv a tu re  equation by d ividing out by the a c tio n  o f a  
so lvab le  subgroup o f SL(£+1,C). We a lso  show th a t  the 
SL(£+1,C) ac tio n  induces a  group o f transfo rm ations on the 

s e t  o f so lu tio n s  to  the zero cu rv a tu re  equation.
We then explain  how these transfo rm ations o f Miura type 

f i t  in with a  d if f e re n t  theory  developed by Dr in f  e I ’d & 
Sokolov (1985). In  p a r tic u la r  we prove a  r e s u l t  which 
genera lizes the  re s u l t  obtained by D rin fe l’d & Sokolov. The 
re s u l t  we prove can be s ta te d  b r ie f ly  as  follow s.

Each zero  cu rva tu re  equation belonging to  the  h ie ra rch y  

( g ,0,A) defines a  d e riv a tio n  d^ on the d if f e r e n t ia l  a lg eb ra  
To each choice o f a  c o a rse r  grading (g,<r) (by which 

we mean every fixed  po in t o f 0 is  a  fixed  po in t o f  <r) we 
define  a  number o f indeterm inates r  , c which we ad jo in  tom m
C{q> and generate  the d if f e r e n t ia l  extension d' =€{<7 , r  , c  >

i i n n
o f Ciq^. Provided A s a t i s f i e s  c e r ta in  p ro p e rtie s  dependent 
upon the choice o f (g , <r), we can  prove th a t th e re  e x is ts  a  
f re e ly  generated  d if f e r e n t ia l  subalgebra  Cli^} c fciq^ 

ch a rac te rized  by the following property : Clu^} is  obtained
by s e tt in g  a l l  r  and c equal to  zero  in the subalgebra

n n
o f  d' f ix ed  by a  c e r ta in  one-param eter group S o f 
automorphisms o f  d' ( le t  us s t r e s s  the poin t th a t  we cannot 
show, in general, th a t Clu^} is  the fix ed  a lgebra  o f a  group 

o f automorphisms o f Ciq^).
Our main aim is  to prove th a t d^ p reserves This

is  done by showing th a t, a f te r  s e tt in g  a l l  c = 0, d is
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id en tica l to a  deriv a tio n  which is  S -eq u ivarian t on d ' , 
hence d^ p reserves the a lgeb ra  £ obtained from by se tt in g  
a l l  c = 0. Thus d . r e s t r i c t s  to  C{u > a f te r  s e tt in g  a l l

ID t i

r  = 0 in £.m
The v a riab le s  u a re  obtained by a  transfo rm ation  we

i

c a l l  the M iura-D rinfel’d-Sokolov transform ation ; th is  is  the 
g en era liza tio n  o f the transfo rm ation  described  by D rin fe l’d 
& Sokolov (1985). At the end o f ch ap te r 3 we p re sen t some 
examples o f these  transfo rm ations, in p a r t ic u la r  we show 
th a t the equation constructed  a t  the  end o f ch ap te r 1 

transfo rm s into an equation used f o r  modelling Langmuir 

waves.
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CHAPTER 1

§1.1 Preview: the modified Korteweg-de Vries equation.

The a rch e ty p a l zero cu rv a tu re  equation is  the modified
Korteweg-de V ries (mKdV) equation

q . = q  - 6 q2 q 1.1.1t ^xxx 1
I t  belongs to  the h ie ra rch y  o f equations which have the zero 
cu rv a tu re  re p re se n ta tio n

[dx  + q -  zA , df -  V+] = 0 1 .1 .2

where

q " zA = ( 0 4  ) ■ z[ ? 0 )
and V+ has the form

f f ( z 2,q ) z g (z 2,q ) 1 1.1.3
zh (z 2 , q) - f ( z 2 ,q ) J

2Here f , g  and h a re  polynomials in z  whose c o e f f ic ie n ts  a re
polynomials in q, q , qxx.............  For example, the  mKdV
equation corresponds to  the choice

o »,-•?) O'
-q 2-q  0  ̂ 0 q - 2q 3-M Mx Mxx M

The purpose o f  th is  preview is  to  p resen t some o f  the 
f a c ts  about th is  h ie ra rch y  o f equations which a re  common to 
a l l  the o th er h ie ra rch ie s  we w ill be dealing with more
a b s tra c tly  la te r . In  p a r tic u la r , th is  f i r s t  ch ap te r is
concerned with the co n stru c tio n  o f  equations given a
s p e c tra l  o p e ra to r 5^ + q -  zA.

The form o f V+ is  governed by the condition

[V+ . ax + q -  zA] = F (q .g x , . . . ) [  * 1 .1 .4

where F ( q ,q ^ , . . . ) is  a  polynomial in q, q^, •. • ( in  p a r t ic u la r  
th is  expression  is  independent o f  z ) . This is  necessa ry  to
ensure th a t 1 . 1.2  is  equivalent to an evolution equation fo r  
q; i t  follows th a t

dtq = Fiq,qx,. . . )

12



I t  is  p o ssib le  to describe  a l l  the m atrices V+ having 

the form 1 .1 .3  and sa tis fy in g  1 .1 .4 . This is  most c le a r ly  
seen using a "dressing" method s im ila r to the idea developed 
by Zakharov & Shabat (1974,1979). The f i r s t  s tep  is to 
dem onstrate ano ther c h a ra c te riz a tio n  o f V .

Suppose V(qr, z) is  a  form al Laurent s e r ie s  in z
(p o ssib ly  with an in f in ite  p rin c ip a l p a r t V_) so th a t we 

may w rite
V (q,z) = V+ + V_

= (v zn + . . .  + v ) + (v z"1 + . .  . ) 1 .1 .5n 0 - 1
The c o e f f ic ie n ts  v a re  tra c e le s s  2x2 m atrices whose e n tr ie s
depend upon q. I f  V(q, z) is  co n stru c ted  so th a t i t  commutes

with 3 +q-zA i t  follow s th a t x

[V , 3  + q -  zA] = [3 + q - z A , V _ ]  1 .1 .6

Notice th a t the l e f t  hand s id e  con tains no terms with

negative powers o f z , whereas the r ig h t  hand s id e  con tain s
no terms with p o sitiv e  powers o f z. T herefore 1 .1 .6  is
independent o f  z. Moreover, i f  V (q ,z) has the form 1 .1 .3 ,

2
with f , g  and h now Laurent s e r ie s  in z , then 1 .1 .6  w ill be
a  diagonal m atrix, as we req u ire . We see then th a t  each
m atrix V+ is  given by a  s e r ie s  V(q, z) commuting with
3 +q-zA. T herefore by desc rib in g  the  c e n tra liz e r  o f  3 +q-zA 
X x

( in the a lg eb ra  o f form al Laurent s e r ie s  . in  z  which have 
m atrix c o e f f ic ie n ts  depending upon q , q^, e tc . ) we w ill be
able to f in d  the polynomials V+ with the d esired  p ro p e rtie s . 
This c e n tra liz e r  can be described  in  the  follow ing way.

The b asic  idea is  to transform  3^+q-zA into an o p era to r 
whose c e n tra liz e r  is  e a s ie r  to  determine, namely 3^-zA; th is  

is  done by co n stru c tin g  a  form al s e r ie s
k. = jc z_1 + . . . .  1 .1 .7-l

whose c o e ff ic ie n ts  k fc(q) take values in  sf(2,C) so th a t
eK(3 + q -  zA)e K = 3 -  zA 1 .1 .8x n x

The c e n tra liz e r  o f 3 -zA c o n s is ts  o f a l l  form alx
Laurent s e r ie s  v (z ) , independent o f x, which commute with

zA. I t  follows th a t the s e r ie s
- k , . K e v (z ) e

13



w ill commute with d +q-zA since  x
[dx + q -  zA , e K v (z ) eK]

= e K [3^-zA , viz)] eK = 0

Any such s e r ie s  viz) w ill be a  sum o f the m atrices

For s im p lic ity  we take viz) to be one o f these  m atrices. In 
p a r t ic u la r  i f  we take ndN the s e r ie s

V (g,z) = e K viz) eK 1 .1 .10
has a  n o n - tr iv ia l  p o sitiv e  p a r t  V .

U nfortunately  i t  is  not c le a r  from th is  co n stru c tio n  
th a t the fu n c tio n  V+iq,z) n e ce ssa rily  produces a  polynomial 

F(g, <7X> • • • )  a s  requ ired  in 1 .1 .4 . For, i f  we look more 
c a re fu lly  a t  1 . 1.8 we observe th a t k is  defined  by a  
co lle c tio n  o f d if f e r e n t ia l  equations. These equations do not 
in general have so lu tio n s  which a re  local exp ressions in  q

( i .e .  they involve some in teg ra ls  o f q ) . N evertheless i t  is  
tru e  th a t V+(q ,z )  only con tains lo ca l expressions in  q. To 
see th is  we must adopt the modified d re ss in g  method
suggested by D rin fe l’d & Sokolov (1981,1985).

Dr in f el* d & Sokolov po in t ou t th a t we need only 
conjugate 3^+q-zA into

eXid + q -  zA)e~* = d - Ziq,z) 1 .1 .11x x
where [Z(qr,z),A ] = 0. Here

X = + .. .
where % ̂ iq) takes values in sr(2 ,C ). I t  is  re a d ily  seen 
th a t a s  a  form al s e r ie s  in z we can w rite

Ziq,z) = zA -  s ( q ,z )  1 .1 .12
where s (q , z) is  the p r in c ip a l p a r t  o f  Z(qr, z ) .  The
c e n tra liz e r  o f  A is  commutative, so we s t i l l  have 

[d - Ziq,z) , viz) ] - 0
^  — y  y

f o r  any viz) from 1 .1 .9 . T herefore the s e r ie s  e viz)e 

commutes with 3^+q-zA. The advantage o f  th is  c o n stru c tio n  is  
th a t  i t  is  p o ssib le  to show th a t x depends upon qtq t... but 
not upon in te g ra ls  o f q. Moreover, a  uniqueness argument can 
be used to show th a t Viq,z) = e Xviz)eX. T herefore V+ w ill

14



con ta in  c o e f f ic ie n ts  which a re  lo ca l expressions in  q. These 
two im portant arguments w ill be presented  la te r  as  p a r t  o f 
the general program.

The s e r ie s  Z(q,z) takes values in the c e n tra l iz e r  o f A, 
which is the one dimensional subalgebra  generated  by the 
m atrix A. In  f a c t  the c o e ff ic ie n ts  o f  the s e r ie s  expansion 
in z  a re  conserved d e n sitie s  f o r  the  mKdV equation; the 
in te g ra ls  o f  the  c o e ff ic ie n ts  a re  tim e-independent i f  q (x , t)  
is  a  so lu tio n  to  the mKdV equation. We expect th is  from the 

follow ing h e u r is t ic  argument.

A (form al) so lu tio n  to  the s p e c tra l  equation
(d + q -  zA)Q(x,z) = 0 1 .1 .1 3

is  given by so lv ing  the equation
(dx -  Z (q ,z ))(e * .Q ) = 0 1 .1 .1 4

This equation may be solved by using  the in teg ra tin g  f a c to r  
ex p / Z(q,z) dx

s in ce  the equation  1 .1 .1 4  is  an equation  on an ab e lian  (one 
dimensional) subalgebra  o f sf(2,C ). From 1 .1 .1 2  i t  follow s 
th a t

Q(x, z) = e * .e x p [ - /  s (q , z) d x ] .e XẐ  1 .1 .1 5  
Let us suppose f o r  a  moment th a t the  p o ten tia l q (x ) is  a  
smooth, asym pto tically  rap id ly  vanish ing  fu n c tio n  on IR, with 
values in C. The lim it

lim f i ( x , z ) e  XZ^ - lim e  * . e x p [ - f  s ( q ( x ) , z )  dx] 1 . 1 . 1 6X-»CO X->00 J —oo
is  ca lled  the  (form al) s c a tte r in g  m atrix by D rin fe l’d & 
Sokolov (1985). We tr e a t  th is  lim it a s  a  form al s e r ie s  in z. 
The so -c a lle d  d ire c t  s c a tte r in g  problem involves evaluating  
the s in g u la r behaviour o f th is  lim it a s  a  fu n c tio n  o f  zeC 
( f o r  a  good explanation o f d ire c t  and inverse s c a tte r in g  on 
the line, see Beals & Coifman (1984)). Notice th a t, s ince  
the s e r ie s  % is  comprised o f expressions in q, q ^ , . . .  , which 
van ish  asym ptotically , the lim it 1 .1 .1 6  w ill be the form al 
s e r ie s

r00
exp [- s ( q ( x ) ,z )  dx] 1 .1 .1 7

-oo
I f  we le t q (x , t) be a so lu tio n  to the mKdV equation with 
in i t ia l  value q ( x ,0) = q(x) we fin d  th a t the lim it in 1 .1 .16
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evolves under the simple equation

a t (lim) -  z3A(lim) = 0  1 .1 . 18
T herefore an in v a rian t o f t is  given by

CO

lim  £2(x, t , z)exp(-zA  -  tz 3A) = ex p [- s (q (x , £ ) ,z )  dx]
X-»oo J

-CO

We conclude th a t  the c o e ff ic ie n ts  o f  the  s e r ie s  in  z
.00 00
J (Z (q ,z ) -  zA) dx = -J s (q (x , t ) , z )  dx 1 .1 .19

-oo -oo
a re  conserved in te g ra ls ; th e ir  in tegrands w ill be conserved 
d en sitie s .

In  f a c t  these  in teg ra ls  a re  in v a rian ts  o f  every  one o f 
the flows in  the  mKdV h ierarchy . Later we w ill prove 
a lg eb ra ic a lly  th a t  a  s im ila r f a c t  holds f o r  any h ie ra rch y  o f 
zero cu rv a tu re  equations. In  general there  a re  a s  many 

conserved d e n s itie s  as  th e re  Eire equations in  a  h ie ra rch y  
( in  f a c t  th e re  a re  in f in ite ly  many, a l l  to  be found amongst 

the c o e ff ic ie n ts  o f  the ap p ro p ria te  s e r ie s  Z(q, z ) )
Throughout th is  sec tio n  we have been using  a  Lie 

a lg eb ra  o f  Laurent polynomials in z  with values in  $r(2,C) 
together with form al s e r ie s  in  these polynomials. This Lie 
a lg eb ra  is  isomorphic to  an a lg eb ra  o f  maps from the  c irc le  
S1 into 3 1 (2 ,0  ( i .  e. loops in 3 1 (2 ,0 )  . To d esc rib e  zero 
cu rv a tu re  equations in general we w ill rep lace  sK2 ,C) by an 
a rb i t r a ry  semisimple Lie a lgebra . In  th is  m atter we follow  
the lead o f D rin fe l 'd  & Sokolov (1981,1985) and use the 
language o f loop a lgeb ras. The next sec tio n  p resen ts  a  b r ie f  
summary o f the  basic  f a c ts  th a t  w ill be used frequen tly ; 
these f a c ts  a re  fu lly  explained in, f o r  example, the book by 

Helgason (1978, A .P .)

§1 .2  L o o p  algebras.

Let g be a  semisimple Lie a lgeb ra  o f f in i t e  dimension
over C, on which a Z -g rad ing  has been fixed  (here  m is  am
p o s itiv e  in teger and Z is the cy c lic  group o f  in tegers 
modulo m). In  o th e r words
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3 = 0 3 . and [3 , 3 ] £ 3 1 . 2.1
j€Z J J K 3 *m

f o r  subspaces 3  ̂ o f  3 . We w ill say  an element o f  3  ̂ has 
degree j  in the  grading.

Each Z^-grading corresponds to  an mth-o rd e r 
automorphism 0 o f  3 . N ecessarily , 9 has eigenvalues { o>J | 0 

a  p rim itive mth- ro o t  o f unity ; j=0, . . .  ,m -l> ; in th is  
correspondence the subspaces 3 a re  defined to  be the

j ^
eigenspaces o f  eigenvalue 0 . I t  follow s th a t each Z^-graded
Lie a lg eb ra  can  be denoted by (3 , 0).

Consider the  space L (g ,e) o f  loops in 3 which may be
rep resen ted  as  Laurent polynomials i .e .  maps o f  the  form

1 n u : S1 —> 3 where u (z ) = J] u z J , u € 3
J = - k  J J

This in h e rits  a  Lie a lg eb ra  s tru c tu re  from 3 , indeed i t  is  a  
covering a lg eb ra  with covering homomorphism given by the 
evaluation  map

n : L(3 ,e )  — > 3 

u (z ) t-> u ( l )
For any graded Lie a lgeb ra  (3 , 0) we can define  the  loop
algeb ra  L (g ,0) to be the Lie subalgebra  o f  L(3 ,e )  con tain ing

1
a l l  loops eq u iv arian t with re sp ec t to  the ac tio n  o f  0 on S 
(by m ultip lica tion ) and 0 on 3 , i .e .

u e L(3 , 0) i f  0 (u (z ))  = u (0z ) .

I t  follow s th a t  u e L(3 , 0) i f  and only i f

n
u (z ) = £  U ZJ

J = -k 3
uJ € 3jmodm 1 . 2 . 2

The n o ta tio n  L(3 ,e ) now makes sense i f  we le t e denote the 
id en tity  automorphism on 3 .

Let

L (3 ,0 ) = {u z J € L(3 , 0)> f o r  any j  e Z.

C learly  L(3 , 0) is  a  Z-graded a lg eb ra  with homogeneous 
subspaces

L(g, 0) = 3, ,J Jmodm
I t  can be shown (see, fo r  example, 
th a t, in p a r tic u la r , L(3 , 0) is  a

Helgason (1978, A.P. )) 
reductive  Lie subalgebra

17



i .e .  i t  is  the  d ire c t  sum o f  a  semisimple subalgebra  and i ts  
cen tre . We may th e re fo re  choose a  maximal abelian  subalgebra  
fjQ o f semisimple elements o f  The ad jo in t rep re sen ta tio n
o f fjQ on L($, 0)^ provides a  weight space decomposition fo r  
L (g ,0 ); these  weight spaces sire used as the " ro o t spaces" 

fo r  the affine roots.

1 .2 .3  D efin ition . An element a  = (a,j) € ^ qx Z is an 

affine root for L(g, 0) if the subspace

L(s,0)a = { xeLCg.O)^ [h,x]=a(h)x Vhel)0 > 

is non-zero.

1 .2 .4 . Example. Suppose 0 is  a  f in i te  o rd e r inner 
automorphism o f  3 , and th e re fo re  0 f ix e s  pointw ise a  C artan 
subalgebra  5 of q . Let R denote the ro o t system o f  Q. We 

w ill show th a t the a f f in e  ro o t system A o f L (g ,0) can be 
id en tified  with a  su b se t o f  Ru{0} x Z.

Since 0 f ix e s  5 pointw ise we know th a t Ij c gQ. I t
follow s th a t each maximal abelian  subalgebra  o f  semisimple 

elements in L (§ ,0 )q is  isomorphic to 5; we choose 5Q such 
th a t 7r( 5q) = 5- For any x e L ( a ,0)a c LCg,©)^, where
a=(a, j ) ,  the d e fin itio n  1 .2 .3  implies

[7r(h) , 7r(x) ] = a (h ) 7r(x) Vh € 5Q
so [h 7 , 7c(x) ] = (aop) (h 7 )7r(x) Vh7 e 5
where the homomorphism p:F) h-» s a t i s f i e s  pon = iden tity . 
T herefore aop e 5* is a  ro o t f o r  g, so we can id en tify  a
with an element o f R\j{0} x Z. We conclude th a t, in th is
case , the a f f in e  ro o t system A can be seen as a  la t t ic e

covering Ru{0>.

J u s t  as fo r  f in i te  dimensional semisimple Lie a lg eb ras , 
the s tru c tu re  o f each a f f in e  ro o t system can be d is t i l le d
into a  m atrix; a  generalized  Cartan m atrix A. Each a f f in e
ro o t system A has a  b a s is  {a =(<1̂ , j  ) | i=0.........£} o f  simple
a f f in e  ro o ts , th a t is , A belongs to the la t t ic e  generated  by 

th is  s e t  o f a f f in e  ro o ts  and £ A fo r  a l l  i* j. The
columns o f A provide a rep re sen ta tio n  fo r  the v ec to rs  a . €
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•
fj . I t  is  a  f a c t  th a t  i = dim 5 and th a t the m atrix A is  o o
the d ire c t  sum o f indecomposable generalized  Cartan m atrices
o f corank 1. The m atrix A may in tu rn  be rep resen ted  by a

diagram T(A) analogous to  the Dynkin diagram o f a  C artan
m atrix. An indecomposable m atrix has a  connected a f f in e
diagram with 1+1 v e rtic e s  (rep resen tin g  the simple a f f in e
ro o ts  a .........a  ).o i

The p o ssib le  generalized  Cartan m atrices o f  a f f in e  type 
have been c la s s if ie d  by Kac (1969), and the  diagrams
corresponding to the indecomposable m atrices a re  shown a t  
the end o f th is  sec tio n  (taken from Helgason (1978, A.P. ) ) .  
The v e rtic e s  {o^} have corresponding in teger labels {n^} 
which a re  the  normalized c o e ff ic ie n ts  o f  lin ea r dependence 
o f the columns o f A. The fundamental theorem o f Kac (1969) 
s ta te s  th a t  two loop a lgebras a re  isomorphic as Lie a lgeb ras 
i f  and only i f  they have the same a f f in e  diagram.

To c h a rac te riz e  a  loop a lg eb ra  we must provide a  
(generalized) Cartan m atrix A o f a f f in e  type and a  sp e c if ic  

Z -grading on a  p a r tic u la r  Lie a lgebra  Lg(A) constructed  from 
A. I f  we le t A=(a^) we c o n stru c t the Lie a lgeb ra  Lg(A) by 
fix in g  a  s e t  o f generato rs  { e ,  h ,  f  | i=0, . . . , £ >  and
demanding th a t they s a t i s f y  the re la tio n s

[e l = 8 h 
ij i [h , h } = 0l j

[h , • e j ] = a  e 
Ji J

[h , f ] = - a  f 
i J Ji J

1 .2 .5

[ e , e j ! "
1

oii<D

i i
= 0 i*J

1- a tim es 1- a  tim es
Ji J i

i
T  n h  = 0u i 1 1=0

( th is  la s t  re la tio n  says th a t Lg(A) is  the quo tien t o f an
a f f in e  Lie a lg eb ra  by i t s  one-dim ensional c en tre ) .

The ro o t spaces a re  determined with re sp ec t to  the
abelian  subalgebra

5 = «h\ i=0, . . . , £ »  o i
where th is  denotes the C-subspace generated by the h . From
1 .2 .5  i t  can be shown th a t each one dimensional space «e »
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is  a  ro o t space; in f a c t
€e1> = L (g ,0 )m fo r  each i = 0 , . . . , £

A Z-grading is  then fix ed  on the  Lie a lg eb ra  Lg( A) in

the  follow ing way. We choose £+1 non-negative in tegers
( s q ......... s^), no t a l l  zero , and a ss ig n  to  e  ̂ the degree s^,
to  f the degree -s^ and to the degree 0. This is  ca lled
a  g rading  o f type ( s q , . . . ,  s^). We can deduce from th is  th a t

the  g rading  o f  type (s  , .  . , s  ) de fin es  a  map from A to  Zo ^
which gives to  each ro o t the degree o f  i t s  ro o t space in  the 

grading:
( s rt......... s  ) : A -------- » Zo *■ i i

a  = £  m a  i—> £  = degree(a)
o o

The homogeneous space o f degree i is  th e re fo re
= E (L (g ,0)a |d eg ree(a)= i)

Remark. An automorphism 0 o f g corresponding to  the grading 
o f type (s  , . . . , s 4) on Lg(A) is  ca lled  sin automorphism of
type (s  .........s^ik) i f  the diagram T(A) is  lis te d  in tab le  k,
k = 1, 2 o r 3. The in teger k is  the index o f  the 
automorphism 0, th a t is , 0 induces a  symmetry o f o rd e r k on 
the  Dynkin diagram o f  g. We note th a t  the grading o f  type 
( 1 , 1 , . . . , 1 )  on Lg( A) is  ca lled  the k -p rin c ip a l grading  by 
Kac (1985, C.U. P) when T(A) belongs to  tab le  k. Unless th e re  
is  a  chance f o r  confusion  we s h a ll  r e f e r  to  th is  grading 
simply as  the p r in c ip a l grading. In  p a r tic u la r , the  (inner)
automorphism o f type ( 1 ,1 ......... 1; 1) is  ca lled  the Coxeter
transfo rm ation , which we w ill denote by y, so th a t the 

1-p r in c ip a lly  graded loop a lg eb ra  over g may be denoted by 

L (g ,y ).

C learly  any two sequences (s  , . . . , s p  which sire
equ ivalen t under a  symmetry o f the a f f in e  diagram w ill
induce Z-gradings which a re  equivalent under an automorphism
o f Lg(A) induced by the symmetry.

We w ill fin d  la te r  th a t i t  is  only the g rad ings o f type
(s , . . . , s  ) where th is  is a  sequence o f  0’ s and l ' s  (not a l l  0 ^
0) which in te re s t us.
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1 .2 .6  Example. A re a liz a tio n  o f the loop a lgeb ras LCa^e) 
and LCa^.y).

Let us look a t  the diagram a*1* and the two loop 
a lg eb ras  given by the gradings o f type ( 1 , 0) and ( 1 , 1 ), 
which correspond to  the t r i v ia l  grad ing  and the p r in c ip a l 
grading  on resp ec tiv e ly . We w ill rep resen t as  the

m atrix Lie a lg eb ra  $1 (2 ,0  and ob ta in  a  re a liz a tio n  o f  each 
loop a lgeb ra .

A re a liz a tio n  o f  the Lie a lg eb ra  Lg(A), where T(A) is

This provides the  standard realization o f  th is  Lie a lgebra .
I t  is  no t d i f f i c u l t  to see th a t  i f  we consider these  as
loops (fu n c tio n s  o f  zeS1) in  $ K 2 ,0  then th is  is  a
re a liz a tio n  o f  the  loop a lg eb ra  L tc^ .e) which has the
grading  o f  type (1 ,0 ) .  This re a liz a tio n  is  comprised o f a l l
m atrices o f the form

f f ( z )  g(z) 1 
[ h(z) - f ( z )  J

where f ( z ) ,g ( z )  and h (z ) a re  Laurent polynomials in z.

The principal realization is  given by the assignm ent

with eQ, hQ, f a s  before . Once again  the param eter z can be 
used to  de fin e  the Z-grading; in th is  case  we ob ta in  the 
grading o f type (1 ,1 ) corresponding  to  L (g ,y ). This 
re a liz a tio n  only con tain s those m atrices o f the form 

f f ( z 2) z g (z 2) 1 

zh(z2 ) - f ( z 2 ) J
( c . f .  1 .1 .3 )
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1 
a1

6<i)

a)

6m

Tables of affine diagrams.

Table 1 Table 2

1 2 3 4 3 2 1

1 2 3 4 5 6 4 2
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§ 1 .3  F o rm a l c o n s t r u c t io n  o f  z e ro  c u r v a tu r e  e q u a t io n s .

In  th is  sec tio n  we p resen t the method o f D rin fe l’d & 
Sokolov (1985) fo r  the co n stru c tio n  o f zero cu rv a tu re  
equations a sso c ia ted  with a  fix ed  loop a lgeb ra  L (g ,0). Each 
zero cu rv a tu re  equation is  re la te d  to a  m atrix sp e c tra l 
problem

(3 + q -  zA)n = 0 1 .3 .1x
where q is  a  fu n c tio n  o f x tak ing  values in the homogeneous 
subspace L (g ,0)Q o f L (g ,0 ), zA e L (g ,0) i is  a  co n stan t
d iagonalizab le  m atrix and z is  thought o f as  the sp e c tra l

param eter.
In  th e ir  paper, D rin fe l’d & Sokolov chose the fu n c tio n  

q(x) to  be smooth and period ic . However, the d re ss in g  method 
in troduces in f in ite  s e r ie s  in z which have fu n c tio n s  o f q as
c o e ff ic ie n ts . In  o rder to  avoid questions about the
convergence o f such expressions we w ill t r e a t  a l l  such 
s e r ie s  as  form al s e r ie s . In  any case  there  is  no need to
know the a n a ly tic  p ro p e rtie s  o f q. Consequently we w ill 
regard  the o b jec t q as a  sum » where the s e t  { e j
i = l , . . . , n >  is  a  b asis  fo r  L (g ,0)Q and the q a re
inde term m a tes. We use these to  define a  d if f e r e n t ia l
a lgeb ra  whose elements w ill p lay  the p a r t  o f fu n c tio n s  o f  x.

Let 2 = C[ ]  be the f r e e  a lg eb ra  o f  polynomials in 

the in f in ite ly  many generato rs  q^m) , i = l , . . , n  ; m e INu{0>,
where

q lm)= q  I I m-times M ^ ix x .. .  x

A d e riv a tio n  d over C is  defined  on 2 by x

a X m , ) = « <r ) : V f -«J - V - g  + f- V

fo r  any f , g  € 2. The a lgeb ra  with d e riv a tio n  (2 ,5 ^ ) is  the 
d if f e r e n t ia l  a lg eb ra  o f d i f f e r e n t ia l  polynomials in the 
indeterm inates q . In  fu tu re  the d if f e r e n t ia l  a lgeb ra  
constructed  from a  s e t  o f indeterm inates {a^} in th is  manner 
w ill be denoted by Cfa^}.

Now define  the vecto r spaces
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00
L+ =j!oL(a,e)j L- =jIiL(9,0)-j

and le t L = L+ © L_ . This vecto r space in h e rits  a  n a tu ra l

Lie a lg eb ra  s tru c tu re  from L (g ,0); in f a c t  the only
d iffe ren c e  is  th a t L_ incorpora tes form al in f in i te  sums o f
elements o f  the loop a lgebra . F inally , f o r  any f in i te
dim ensional v ec to r space W define  W = W®B. Then le t

00

L = L+ ® L_ , where L_= ( ^ L C g , 0 )^ )

The o p e ra to r in 1 .3 .1  w ill be tre a ted  a s  an a lg eb ra ic  

o b jec t

a + q - z A e d + L  1 .3 .2x n x

The idea behind the d re ss in g  method is  to  c o n s tru c t the 
c e n tra liz e r  in  L o f th is  o p era to r. For then, given any V e L 
such  th a t

[dx + q -  zA , V] = 0 1 .3 .3

we f in d  th a t  , i f  V = V+ + V_ is  the  decomposition o f V in 

L+ © L_ , then  the equation

[dx + q -  zA , V J  = [V+ , dx + q -  zA] 1 .3 .4

implies th a t  th is  expression  is  an element o f  L (g ,0)Q . 
Consequently we may define  a  zero  cu rv a tu re  equation by

3 q = [V , a + q -  zA] 1 .3 .5v + x
A c ru c ia l  p a r t o f the co n stru c tio n  o f V is  th a t  A must 

be a  semisimple element o f g i .e .  adA: x i-> [A,x] is  a
d iagonalizab le  matrix in g f(g ). I t  follow s th a t

g = Kernel(adA) © Image(adA) 1 .3 .6
where adA is  inv ertib le  on the  la t te r  subspace. The kernel

o f adA is  covered by the c e n tra liz e r  $(zA) o f zA in the loop 
a lgebra . The cen tre  o f the c e n tra liz e r  w ill be denoted by

c(j(zA )). The c e n tra liz e r  o f zA in L is  s l ig h tly  la rg e r than
j(zA)®3, i t  con tains some in f in ite  s e r ie s . We w ill denote i t  
by 3(zA ).

1 .3 .7  P roposition . For each element z v ^  € c(j(zA )) which 

lies in a homogeneous subspace L (g ,0 )k (keZ), there exists a 

unique series of the form
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+ . . . € L ,„  k , k-1V = z v + z  vk k-1
such that

z JVj e L ( 5 ,0 ) j®2

[3x +
and each v is  

J
polynomials.

q -  zA , V] = 0 
comprised of homogeneous differential

Remark. We must be c a re fu l about the use o f the  symbol d . 

When i t  is  found in an o p e ra to r, i t  a c ts  on an element f  € 2 
as d f  = f  + fd . This is  the c o rre c t expression  f o r  theX X X
ac tio n  o f d a s  an element o f the r in g  2[3^] ° f  d if f e r e n t ia l
o p era to rs  over 2. So f o r  any V € L , [3 , V] = V .

X x
f

The p ro o f o f 1 .3 .7  re l ie s  on the  next lemma , which is  
the b a s is  o f  the d ressin g  method. The idea is  to  conjugate 

the o p e ra to r 1 .3 .2  into an o p e ra to r whose c e n tra liz e r  is  
e a s ie r  to determine.

1 .3 .8  Lemma. There exists a unique series 
00

X = E z~*X € L_ fl Image( adzA )
J = i

such that

eX ( d + q -  zA ) e~X = d + Z(zA) 1 .3 .9  x ^ x

where Z(zA) € 3(zA) ( i . e .  Z(zA) commutes with zA).

Remark. I t  is  b e s t to  in te rp re t the opera tion  o f  conjugation
v —y

e x e a s  n o ta tio n  f o r  the  form al s e r ie s

exp adx (x) = x + [%,x] + [% ,x]] + . . .  1 .3 .10

I t  is  e a s ily  shown th a t th is  is  a  Lie a lg eb ra  homomorphism.
y

This avoids having to  make sense o f  the  o b jec t e 
Moreover, we extend th is  opera tion  to  include any deriv a tio n  
3^ on L. We w rite

exp ad% (3^) = a t  + + . . .

=3t -xt * ■■■

Proof o f lemma 1 .3 .8  We expand the form al s e r ie s  on the 
le f t  hand s id e  o f 1 .3 .7  in terms o f i t s  homogeneous
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components in the Z -grading on L, i. e. we c o lle c t the 
c o e f f ic ie n ts  o f zk.

l . h . s .  = q -  zA + [%,q -  zA] + . . .+  d + [ * ,5 ^  +. . .

= -zA + (q -  [x ^ .A ])  + . . .  1 .3 .11

•••+ 9x - +- " ) +-"

We wish to  f in d  x ^ % . . .  , elements o f Image(adA),
uniquely such  th a t each c o e ff ic ie n t commutes with A. Since 
adA is  in v e rtib le  on i t s  image, % 1 can be uniquely chosen 
to  cancel the image-component o f q, leaving the component in 
the c e n tra liz e r  3(A). But now we fin d  th a t each term o f
lower degree 1-m < 0 has % o ccu rring  only in the-m
expression  [% , A] ; a l l  o th e r terms o f degree 1-m w ill-m
depend upon the known q u a n titie s  q and % , i<m.

Thus each x can be chosen uniquely in image(adA) (by
-in

v ir tu e  o f the invert ib i l i ty  o f adA on i t s  image) to
1 “ IDan n ih ila te  the image-components o f each c o e f f ic ie n t o f  z  

Moreover, s in ce  th is  argument has no t involved in teg ra tio n , 
each % is  comprised o f  elements o f  the  d if f e r e n t ia l

“ ID

a lg eb ra  S. ■

Proof o f  prop. 1 .3 .7 . For each z v^ given in  the p ro p o sitio n  
s e t

V = e- * z kv e*
k

Since (v ) = 0  and z v commutes with a l l  elements o f j(zA)
k X  k

we know th a t

[8x + Z(zA) , zkv j  * 0
- y

Conjugating th is  by e ^ g ives the equation  1 .3 .3 .

We dem onstrate the uniqueness o f  V by examining the 
homogeneous components o f  the equation 1 .3 .3 , which have the 
form

[d + q , v ] = [A , v ] 1 .3 .1 2
X  J J— 1

Let us define  the p ro jec tio n s
i : g —> Image(adA) 
k : g —» Kernel(adA)

To determine v we f i r s t  no tice  th a t i(v  ) is  uniquely 
given by [5 +q,v ], s in ce  adA is  in v e rtib le  on i t s  image.

X  k
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The component Jc(vk ) is determined by the equation

k^ ax + » vk_i]) = 0
This is  a  d if f e r e n t ia l  equation fo r  k(v  ) whose so lu tio nk-1
is  guaranteed by the ex istence  o f the  s e r ie s  V. The so lu tio n  
is  unique up to  a  co n stan t, which must be zero  f o r  each 
to  be comprised o f  homogeneous d if f e r e n t ia l  polynomials from 
2. (This uniqueness p roo f is  due to  Wilson (1981)) ■

We w ill r e f e r  to  the  p rocess o f  conjugating  an  o b jec t 
by e * a s  the  d re ssin g  opera tion , a f t e r  the terminology o f  
Zakharov & Shabat.

Let us now w rite  V = V+ + V_ a s  befo re . We a ss ig n  a

d e riv a tio n  over C on 2 , commuting with d , to  the element 
kv = z v . k

1 .3 .1 3  D efin ition . For each homogeneous element v € c(j(zA ))
define a derivation d on 2 byv J

a v q = [V+ , ax + q -  zA]
= [dx + q -  zA , V_]

Accordingly, th is  gives us the zero  cu rv a tu re  equation
[d + q -  zA , d -  V J  = 0 1 .3 .1 4

In  f a c t ,  now th a t the d ressin g  opera tion  has been 
e s tab lish ed , i t  is  p o ssib le  to  a ss ig n  to  each element 
uec(j(zA )) a  d e riv a tio n  3^ defined by 1 .3 .1 3  using the 
s e r ie s  U = exp(ad^) (u ) . This defines a  lin e a r map from 
c (j(zA )) to  the  a lg eb ra  o f  d e riv a tio n s  on 2  commuting with 

d . The next p ro p o sitio n  dem onstrates th a t  a l l  these
d e riv a tio n s  commute with each o ther.

1 .3 .1 5 . P roposition . Let u ,v  e c(j(zA )) have respective 

derivations

duq = [U+ , £)
3vq = [V+ , £]

where we set £ = d + q -  zA. Then [d , d ] = 0.
X  n  U V
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P ro o f .  ( c . f  W Uson ( 1 9 7 9 ) )

auOvq) = iauv+ . + tv+ . [u+,2]]
= [9 V . 21 + [ [ V . .U J ,  2] + [U , (V , 2 ]] 

by Ja c o b i’s iden tity .

S ub trac ting  a  s im ila r expression  fo r  d^Cd^q) we fin d

(a a - a a )q = [[a -u ,a - v j  , <e]UV VU u + v +

Thus [3u , dy ]q = [du-U+ , [dv-V+t£]]

+ [dy-v+ , [£,au-u+]] = 0 ■

I t  is  now apparen t th a t  by choosing a  loop a lg eb ra  
L (g ,0) and a  semisimple element zA e g^ we can c o n s tru c t a  
h ie ra rch y  o f  commuting flow s, with zero  cu rv a tu re
re p re se n ta tio n s , which a re  indexed by the cen tre  o f  the 
c e n tra liz e r  o f  zA.

We now wish to  show th a t th is  h ie ra rch y  p o ssesses  a  
number o f in te g ra l in v a rian ts  common to  a l l  flows. Let 

K :g  x g —> C , K (x ,y ) = T race(adx. ad y ). 
be the  K illing form on g. There e x is ts  a  symmetric b ilin e a r  
form on the loop a lgeb ra

K : L (g ,0) x L (g ,0) —» €
defined  by

K : L(g, 0) x L(g, 0) _ j —> C

( u , v ) i—> K (n(u ), 7r(v))
and a l l  o th e r p a irs  o f homogeneous subspaces a re  orthogonal 
under K.

Let us define  , f o r  each v e c (j(zA )), a  d if f e r e n t ia l  

polynomial
Hy (zA) = K(Z(zA),v) € S 1 .3 .1 6

where Z(zA) is  the  s e r ie s  in  1 .3 .9 .

1 .3 .1 7  P roposition . For any v e c (j(zA )), the H^zA) are

such that d H (zA) € d B, i . e .  they are conserved densities u v x J
for the "flows" d defined above. u

Proof. Once again  le t £ = d + q -  zA. Then
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3 H (zA) = KO Z(zA) , v)
U V u

= K(au (e% £ e~X) , v)

= K(e* ([U+,£ ] + [e_*3ue%,£}) e~X , v)

= K( [something in  L , a^+ZCzA)] , v)

= -a  K(something, v)
+ (something , [Z (zA ),v ])

which belongs to  d S  s in ce  v commutes w ith Z(zA). ■

§1 .4  The conserva tion  laws.

An expression  o f  the form
a H = a F , H.F e 2  1 .4 .1v x

is  ca lled  a  conserva tion  law f o r  the flow  3 . I f  H, F a rev
re a liz e d  as  smooth fu n c tio n s  o f x and a  param eter v  along 
the flow  3v , i t  follow s th a t the d e f in ite  in te g ra l o f  H 
over the domain o f  x (with su ita b le  boundary cond itions) is  
independent o f  v. We w ill see th a t th e re  a re  a t  le a s t as  
many n o n - tr iv ia l, independent conserved q u an titie s  as  th e re  
a re  n o n - tr iv ia l, independent equations. This w ill be done by 
examining the connection between the conserved d en sitie s  
and the d e riv a tio n s  3v

The evolu tion  equation a sso c ia ted  with v in 
c($(zA)) is

- 3 q  = 3 v + [ q , v ]  1 .4 .2v^ x o n o
= [v_4 , A]

where v a re  the c o e ff ic ie n ts  o f z l in the expression  fo r  V, 
the s e r ie s  obtained by d ressin g  v. I t  w ill be shown th a t 
th is  equation can be w ritten  in the form

i-4-3

where ^  is  a  c e r ta in  o p era to r and

lq : 3 -» L(S-0)o ® 3
is  the form al Euler -  Lagrange o p e ra to r, whose components in
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a rethe b a s is  dual to  {e^}, where q = £  qc^

I," S (-ax," l g ‘-.
M m=0

1 .4 .4

This o p e ra to r is  ch arac te rized  as  follow s. Let Qg be the 
2-module o f 1-form s (o r  "Kahler d if f e r e n t ia ls " ,  see f o r  
example Matsumura (1962, Benjamin)) with u n iv e rsa l 
d e riv a tio n  (e x te r io r  de riv a tiv e )

5 : 2 —> s
This is  defined  f o r  the d if f e r e n t ia l  a lgeb ra  (2, 3^) so th a t 

S commutes with the l i f t  o f  3 to  Q . £2 is  f re e lyX  & &
generated  by the  symbols Sq|m), with 3^5q |m) = Sq*m+1>. For 

any He2 i t  is  a  s tra ig h tfo rw ard  c a lc u la tio n  to  check th a t

SH = E ( 3hW “’) 6q <n,= E mod 9 8
i , m 1 M

In  f a c t  th is  re la tio n  f ix e s  S/Sq a s  the component o f  5 on 
the 2-module complementary to  I t  follow s th a t
3^ s belongs to the kernel o f S/Sq. In  p a r t ic u la r  

no tice  th a t the  equation 1 .4 .3  is  only dependent on the 
choice o f the conserved d en sitie s  up to exac t d e riv a tiv e s  
i. e. up to the freedom allowed by the conserva tion  law 

1 .4 .1 .

1 .4 .5  Lemma. f - H  = K( v , )3qj v o 5q i

Proof. 5H = 5  K fv.Z(A ))---------- v
= K( v , 5{exp(adx)(3 +q-zA) -  3 } )X  a

By expanding 5{exp(ad%)(3^+q-zA) -  3^} we can w rite  i t  in 

the form
[ iP , exp(adx) (3^+q-zA) ] + exp(ad%)5q 

= [^ , 3 .̂ + Z( A) ] + exp(ad%)5q 

-  -3xP + [y\ Z(A)] + exp(ad%)5q 

where P  is  a  s e r ie s  o f terms from L(g,0)®fls- Hence 

5Hv = K(v,exp(ad%)5q) -  S^KCv,^)
since

K([y, Z(A )] , v) = K (y,[Z (A ), v ] ) = 0
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f o r  any y eL (g ,0). T herefore SH s  K(V, 5q) mod d Q .
V X 8

The choice o f the genera to rs  8 q gives a  unique 
s p l i t t in g  f o r  a s  the d ire c t  sum S€8q^  © T herefore

Moreover, i t  

lemma follow s.

H = K( V , | 2  )= K( V , | 3  ) 5q i v 8q Sq ̂

is  c le a r  th a t  e L(a ,0)5gt °  o from which the

The lemma allows us to f in d  the element -=r-H o fSq v
L(g,0)*®2 by

|-H  = K(v , . ) 1 .4 .6Sq v o

Using the in v e r tib il i ty  o f K: L (g ,0)Q —> L(a ,0 ) q , we
conclude

v = K_1(J-H  ) 1 .4 .7o Sq v

I f  we in s e r t  th is  into the evolu tion  equation 1 .4 .2  we 

ob ta in

a vq = - [ 3 x + q ,  1 .4 .8

Thus we w rite the equation in the form 1 .4 .3  by choosing the 

o p e ra to r £ = -ad ( S^+qJoK-1.
I t  follow s th a t th e re  a t  le a s t as  many independent, 

n o n - tr iv ia l  conservation  laws as  th e re  a re  independent 

( i .e .  commuting) equations.

§1 .5  An example o f a  zero  cu rv a tu re  equation f o r  a  loop 
a lg eb ra  over sr(3,C)

The sim plest examples o f  zero cu rv a tu re  equations come 
from loop a lg eb ras  over sf(2 ,C ); these  a re  the 
equations in the mKdV h ie ra rch y , corresponding to  the 
p rin c ip a l grading  ( c . f  § 1 .1 ) , and the so -c a lle d  AKNS 
h ie ra rch y  (Ablowitz et al. (1974)) which uses the s tan d ard  
grading. We w ill see la te r  th a t  these  two h ie ra rch ie s  
exhaust the p o s s ib il i t ie s  f o r  a , so we w ill look a t  a^.

The simple Lie a lg eb ra  a2 is  isomorphic to  the a lgeb ra
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sl(3,C) o f tra c e le s s  3x3 m atrices o f  complex numbers. We 
choose a  b a s is  fo r  31 (3 ,0  which c o n s is ts  o f the m atrices

■ 1 0  0 ' ' 0 0  o ’

= 0 - 1 0 H = 0  1 0

0  0  0
2

0  0 - 1  L J

= the m atrix with 1 in the i 
elsewhere.

th ,throw, j  column, 0

Let 5 = ^  H , H > be the C -vector space spanned by H 1 2  1
and H Then 5 is a  C artan subalgebra  and each E^ is  a
ro o t v ec to r (see , f o r  example, Helgason (1978, A .P .) ) .

We define  a  f in i te  o rd er (inner) automorphism on 
$1(3 ,0  by choosing the element

f - 1 0 0
T =

and defin ing

0 - 1 0  
0 0 1

s i( 3 ,0  -  

X

€ SL (O
3

s l ( 3 , 0
TXT

This corresponds to  the Z2-g rad ing  on si( 3 , 0
si ( 3 , 0  = a © a,

H , H , E , E : 
1 2 12 21

© « E
13’ 31'

E , E 3
23 32

The loop a lg eb ra  L(cl2,0 ) is  isomorphic to

E c aQz J © s .zJ+1 )
j«=2Z

In  the c la s s if ic a t io n  o f  Kac (1969) T corresponds to  an 
automorphism o f  type ( 1 , 0, 1 ; 1 ) on ag where ro o t vecto rs  fo r

and zE in th isa a0' 1 
re p re se n ta t ion .

(*2 a re  re sp ec tiv e ly  zE^, 12 23

We choose the semisimple element
A = E

13
+ E

31

0 0 1 ’ 

0 0 0 
1 0  0 J

s 1

and w rite the p o ten tia l q f o r  the s p e c tra l  o p e ra to r in the 
coord inate  form

q =
q+s p 0 
r  - 2s  0
0 0 s -q

The sp e c tra l  o p e ra to r is  th e re fo re  rep resen ted  by
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d +X

q+s p -z 
r -2s 0 
- z  0 s-q

1.5 . 1

A simple computation shows th a t the  c e n tra liz e r  o f A is 
commutative, i .e .  A is  re g u la r  semisimple, so th a t

a(zA) = c($(zA)) = Yt 1
je2Z

H -H »zJ e  € E +E »zJ+1)
1 2  13 31

We w ill c o n s tru c t a  zero  cu rv a tu re  equation by choosing
the (homogeneous) element 2z v = z (H -H ) 1 2 o f th is

c e n tra liz e r  and so lv ing  the equation
[ d + q -zA , z v + zv + v +X  M 2  1 0

f o r  v and v . 1 o

. 1 = 0

The zero cu rv a tu re  equation w ill be

at q = [ vo q ] -  d v M x 0 1 .5 .2
The computation y ields

V = z v + z v  + v + 2 1 0

z 3 (pq-px+ 3 p s )
3 (rq+ rx+3rs) 3 p r-2 z2

-3  zp

0

-3  z r  
2

The equations 1 .5 .2  a re  

rtq . = -3 ( p r ; .

1 .5 .3

Pt  = 3Cpxx - pqx - pq* - P2r )
-  9s{pq - px + 3ps) -  3 (p s )^

r t  "  - 3 ( r xx + r,5rx ■ r<?2 -  r2p)
+ 9 s ( rq  + r  + 3 rs )  -  3 ( r s )

st ■ 0
Notice th a t the v a riab le  s is  s ta t io n a ry  with re sp ec t 

to  th is  flow  , so th a t i t  only p lays the p a r t  o f  a  
param eter. I t  w ill be shown la te r  th a t  th is  is  always the 
case  f o r  v a riab le s  corresponding to  the  c e n tra liz e r  o f zA. 

Consequently we may s e t  s  = 0 to o b ta in  the s l ig h tly  sim pler 
system

It = - 3 ( p r ;x 2
P£ = 3(P -  pqx - pqZ - P2D

2 2r .  = - 3 ( r  + rq - rq - r p)t xx ^x M K

1 .5 .4

Notice th a t q is  a  conserved den sity  fo r  th is  system. In 
general i t  is  d i f f ic u l t  to compute the conserved d en sitie s  
defined  in 1 .3 .1 6 , but Wilson (1981) derived o th er conserved 
d e n sitie s  given by
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K( z_1v , zA ) f o r  V = v+. . . +v i +. . . 1 .5 .5
This is n e ce ssa rily  congruent to  Hv (zA) modulo exac t
d e riv a tiv e s  s in ce  Wilson has shown th a t 1 .5 .5  is  a lso  a
"Hamiltonian" f o r  the  equation ch a rac te rized  by v, i. e. we
can s u b s ti tu te  1 .5 .5  f o r  Hv in 1 .4 .3 . For the system 1 .5 .4
the conserved d en sity  given by 1 .5 .5 , f o r  s - 0, is

- ( p r  -  rp  ) -  3pqr 2 K x x

Remark. I t  should be explained th a t we do not expect to be 
ab le  to  w rite the equations 1 .5 .4  in the form 1 .4 .3  s ince , 
by s e tt in g  s equal to zero , the p o te n tia l q belongs to  a  
subspace o f L (g ,0 )o©3 on which the form K is  degenerate. 
T herefore we cannot rep ea t the c o n stru c tio n  given in 1 .4 .9 . 

N evertheless the q u an tity  - ( p r ^  ” r Px ) ~ 3pqr w ill s t i l l  be 
a  conserved den sity  s in ce  i t  is  obtained by se tt in g  s = 0.

An in te re s tin g  sp ec ia liz a tio n  o f  these equations (o r 
more c o rre c tly , a  s l ig h t  m odification o f  1 .5 .4 )  is  obtained 
by r e s t r ic t in g  the p o ten tia l q to  take values in a  re a l  form 
o f g, th a t is ,  in a  Lie subalgebra  u  o f  the IR-Lie a lg eb ra  
generated  by g whose complexif ic a tio n  is  g. A t r iv ia l  
example o f th is  is  to  take the re a l  form sf(3 ,IR) o f  sf(3,C ). 
Then the equations 1 .5 .4  sp ec ia liz e  to the id en tica l
equations with q, p and r  IR-valued fu n c tio n s .

A s lig h tly  more in te re s tin g  example is  to  take the 
subalgebra  o f  skew Hemitian m atrices, su(3 ,C ). Then the
p o te n tia l q w ill be re s tr ic te d  to  be

p 0 '

A so
II -p 0 0

0 0 -iq

where q is  now an R-valued func tion . Of course  we must a lso  
req u ire  A and vg to be skew Hermitian, which can be done by 
rep lac ing  the c u rre n t choices by A=i(Ei 3+E3 i) and 
v =L(H -H ). These choices modify the equations in $1 (3 ,0  
by m ultiplying the r ig h t  hand s id e  o f  1 .5 .4  by i. The 
sp e c ia liz a tio n  to $u(3,C) then gives

qt = ”3 ( ,p |2 ) x
ipt = 3( pxx + p |p |2 + p (q2 -  iqx ) )
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A sim ila r sp e c ia liz a tio n  can be obtained using the re a l  form 

su(2 , 1 ).
We w ill see la te r  ( in  §3 .6) th a t  the equations 1 .5 .4  

a lso  possess a  transfo rm ation  o f Miura type.
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CHAPTER 2

§2.1 The determ ination o f equivalent h ie ra rc h ie s  o f 
zero cu rv a tu re  equations.

A h ie ra rch y  o f zero cu rv a tu re  equations is  determined 
by a  choice o f  the s p e c tra l  o p era to r

S + q - z A  q e g
o r, more c o rre c tly , by a  choice o f  loop a lg eb ra  L (g ,0) 
(which determines the p o ten tia l q and th e re fo re  the 
d if f e r e n t ia l  a lg eb ra  3) and a  choice o f  non-zero co n stan t 
semisimple element zA € LCg,©)^ Equivalently , we w ill
consider a  h ie ra rch y  to  be given by a  tr ip le  (g , 0,A) 
co n sis tin g  o f a  Z^-graded semisimple Lie a lg eb ra  (g ;0 ) and a  

non-zero semisimple element Aeg^
The question  o f the ex istence  o f  such  an element A f o r  

a  given ( g ,0) w ill be le f t  u n ti l  la te r ;  i t  is  a  d i f f ic u l t  
problem to c la s s i fy  these  cases. The purpose o f  th is  sec tio n  
is  to  define  a  notion o f equivalence between h ie ra rc h ie s  and 
then determine when two h ie ra rch ie s  a re  equivalent in  th is  
sense.

2 .1 .1 . D efin ition . Let 3 and S ' be two differential algebras 

and let 2 and 2' be two collections of derivations, on 3  and 
S ' respectively. We will say that 2 and 2‘ are equivalent if 

there exists an isomorphism between 3 and S ' that induces a 

bijection between 2 and 2 ' .

Remark. For any isomorphism <p: 3 — > S ' o f the a lgeb ras , a  
d e riv a tio n  d on $ induces a  de riv a tio n  <p<>d°<p~X on S '.

Using th is  d e f in itio n  we w ill consider the equivalence 

o f h ie ra rc h ie s  as co lle c tio n s  o f deriv a tio n s  on the 
d i f f e r e n t ia l  a lg eb ra  3.

An obvious case  where two h ie ra rc h ie s  a re  equivalent is
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the follow ing. Let Gq denote the a d jo in t group o f 

tran sfo rm atio n s  on gQ ; i t  is  a  subgroup o f  the a d jo in t 
group G o f  g. Since [gQ, g j  S g  ̂ f o r  each homogeneous 
subspace g  ̂ £ 3 , Gq has a  re p re sen ta tio n  on each g  ̂ which 
can be l i f te d  to  LCg.G)^ In  p a r tic u la r , Gq has a
re p re se n ta tio n  as  a  subgroup o f  GLCg^. I t  is  a  
s tra ig h tfo rw a rd  conclusion from the d e fin itio n  o f  semisimple
elements th a t  every element in  the G -o rb i t  0 o f a semisimple
element is  semisimple. I t  follow s th a t the h ie ra rch y
(g, 0, A) belongs to a  co lle c tio n o f h ie ra rch ie s
< (g ,0*g. A) lg€GQ>.

2 .1 .2 .Lemma. All the hierarchies in the collection

A) lgeGQ> are equivalent.

Proof. Each equation in the h ie ra rch y  (5 , 0, A) is  given by a  

co n stan t element vec(j(zA )) and ch a rac te rized  by the unique 
s e r ie s  V = v + .. .  e L s a tis fy in g

[ dx + q -  zA , V ] = 0
For any g 6 Gq the a d jo in t ac tio n  is a  Lie a lgebra  
homomorphism, so th a t

[ dx + g .q  -  g.zA , g. V ] = 0 2 .1 .3
But c le a r ly  th is  s e r ie s  g.V = g .v  + . . .  c h a ra c te r iz e s  the
equation f o r  the d e riv a tio n  d in the h ie ra rch y  ( g ,0,g .A ).g .v
We can w rite

g-q  = E ^ ( g . ^ )  = E PjC4 p e s
and id e n tify  th is  with the p o te n tia l p in  the o p e ra to r 

dx + p -  z (g . A)

asso c ia ted  with the h ie ra rch y  ( g ,0,g .A ). T herefore  the
d if f e r e n t ia l  a lgeb ra  2 f o r  ( g ,0,A) is  isomorphic to  the

a lg eb ra  2 7 f o r  (g ,0 ,g .A ). This isomorphism induces the
b ije c tio n  d 1—» d between the h ie rach ies  (g ,0 , A) and v g .v
( g ,0,g .A ). ■

Recall th a t the equations o f the h ie ra rch y  ( g ,0,A) a re  
indexed by the cen tre  c(j(zA )) o f the c e n tra liz e r  o f zA in 
the loop a lgebra . Now suppose A/ eg j is ano ther semisimple
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element with the same c e n tra liz e r  a s  A; 3(A ') = 5(A).
N ecessarily  c($(zA ')) = c(3(zA ') . We intend to show th a t in
th is  case  the h ie ra rc h ie s  (5 , 0, A7) and (3 , 0, A) a re
equ ivalen t s ifte r a  sp ec ia liz a tio n , namely, a f te r  se tt in g
some o f the dependent v a riab les  equal to  zero.

R ecall from the previous chap ter th a t  the equation
[ a  + q -  zA , 3 -  V 1 = 0x v +

can a lso  be w ritten  as
- [ a  + q , v  ] = 3 q = [ A , v ] 2 .1 .4x n 0 v 1 -1

where V = v +  . . .  + v + v + . . .  . I f  we re c a l l  a lso  the0 -1
p ro jec tio n s  i, k o f g onto the image and kernel o f 
adA re sp ec tiv e ly , we no tice  th a t 2 .1 .4  implies 

avJc(q) = k ([ A , v 4 ]) = 0
Consequently we may s e t  to zero the coo rd ina tes  o f k(q) 
w ithout d is tu rb in g  the consistency  o f  the equations 2 .1 .4  
(we choose a  b a s is  o f  gQ which is  compatible with the 
s p l i t t in g  q q = k (gQ) © i (g Q)) .  Moreover, i t  csin re a d ily  be 
seen th a t the e f fe c t  o f th is  sp ec ia liz a tio n  is  equivalent to 
co n stru c tin g  the h ie ra rch y  based on the o p era to r

a + i(q )  -  zA 2 .1 .5x
The whole mechanism o f the d ressing  method is  s t i l l  va lid ;
f o r  each vec(§(zA)) th e re  e x is ts  a  unique s e r ie s  V = v + .. .

• #
whose homogeneous terms belong to  L (g ,0 ) ®2, where (S ,d ) is

J x
the d i f f e r e n t ia l  a lg eb ra  o f  d i f f e r e n t ia l  polynomials in the 

co o rd ina tes  o f i (q ) .  The equation
[ dx + i(q )  -  zA , 3v -  V ] = 0 2 .1 .6

is  p re c ise ly  the sp e c ia liz a tio n  o f 2 .1 .4  above. We w ill 
denote the h ie ra rch y  o f  sp ec ia lized  equations taken from 

( g ,0,A) by { g ,0,A>.

Remark. In  p ra c tic e  these sp ec ia lized  equations a re  o f 
equal s ig n ific a n ce  to  the o r ig in a l equations. The
coord ina tes  fo r  k(q) a re  s ta tio n a ry  with re sp ec t to a l l  the 
d e riv a tio n s  in the h ie ra rch y , th e re fo re  they only play  the 

p a r t  o f param eters in the equations. For example, in §1 .5  we 
found the  equations 1 .5 .4  much e a s ie r  to  handle than  the 

f u l l  equations 1 .5 .3 .
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Note a lso  th a t, form ally, the a lg eb ra  2 is  described  as 
the quo tien t o f  2 by the d if f e r e n t ia l  ideal X generated by 
the coo rd ina tes  o f k (q ). The d e riv a tio n  d on 2 p reserves X, 

f o r  i f  q  ̂ is  a  coord inate  o f k(q) and reX then d^(qr) - 

q^S^r e X. Thus we can push onto 2/X  and i t s  defin ing  
equation  w ill be 2 .1 .6 ,  s in ce  i(q )= q  mod X.

The next p ro p o sitio n  is  a  key r e s u l t  about the 
equivalence o f  these  sp ec ia lized  h ie ra rc h ie s . The p ro o f w ill 
need to  be developed in a  s e r ie s  o f lemmas.

2 .1 .7 . Propos itio n . Let A, A' be two semisimple elements 

satisfying i(A) = l(A'). Then the hierarchies {q ,Q, A} and 

{q , 0, A' } are equivalent.

The idea behind the p roof is  q u ite  simple. The next 

lemma shows th a t th e re  is  an isomorphism between the abelian  
subalgebra  c(3 (zA)) and the a lgebra  o f  o p era to rs  commuting 
with 3x+i(q)-zA . S im ilarly, th e re  is  an a lg eb ra  o f
commuting o p e ra to rs  isomorphic to c(3(zA ') corresponding  to 
the h ie ra rch y  { g ,0,A '} . We w ill see th a t  when $(A) = a(A ') 
we can id en tify  these  two a lgeb ras o f  o p e ra to rs  and thereby 
id e n tify  the zero  cu rv a tu re  equations o f  one h ie ra rch y  with 

those  o f the o ther.

2 . 1 . 8 . Lemma.

imply

For any u, v € c(%(zA)) the two equations 

[ ax + iCq) -  za , au -  U+ ] = 0 

[ dx + i(q )  -  zA , ay -  V+ ] = 0
2 .1 .9

P roof. Using 2 .1 .9  and the Jacob i id e n tity  we fin d  th a t

[ [ 0 - 6  , a -V 1 , 3 + i(q )  -  zA ] = 0 2 . 1. 10
U + V +  X

Now le t  f  = [ d ~U , 3 -V ] € L 0 2 . In  the 2 -g rad ing  on u + v + +
L ®2 we can w rite f  = f  + z f  + . . .  + z  f  . The component 
o f  degree zero in 2 . 1. 10 is
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3/ o  + [ i(<> - f0 ] = 0
Since 9 f  has one more d e riv a tiv e  than  [ i ( q ) , f  ] can have, 
f*o does not belong to  the d i f f e r e n t ia l  a lgeb ra  un less  i t  is  
zero . I f  we re p e a t th is  argument f o r  each f  , i = l , . . . , n
su ccessiv e ly , we d isco v er th a t fsO. ■

In  f a c t  i t  was not necessa ry  to sp ec ia liz e  the 
h ie ra rch y  to  prove th is  lemma; the reason  f o r  the
sp e c ia liz a tio n  is  the  following.

I f  we choose A' such th a t 3(A ') = 3(A) then there
e x is ts  an o p era to r

3 + p -  zA'y 2 . 1. 11

such th a t
[ a  + p  - zA' , a -  v l  = 0 2 . 1. 12

f o r  a l l  the
y v + 

o p e ra to rs  in the h ie ra rch y { g ,0,A>. In
p a r t ic u la r

[ ay + p -  zA‘ , a + i(q )  -  zA ] = 0X 2 .1 .1 3

where we have w ritten  d f o r  3 ^ ,  . With a  change o f 
persp ec tiv e  we intend to  view the h ie ra rch y  { g ,0,A} a s  the 

h ie ra rch y  { g ,0,A'> using  2 . 1 . 1 1  a s  the  sp e c tra l o p era to r. 
The sp e c ia liz a tio n  is  necessary  so th a t  the o b jec t p can  be 
taken to  be a  "p o ten tia l"  f o r  a  s p e c tra l  op era to r; we w ill 
see  th a t  p = i ( p ) ,  which fo rc e s  us to  consider only sp e c tra l  

o p e ra to rs  having values in  i ( )  •

In  o rder to  show th a t the h ie ra rc h ie s  fo r  A and A' a re  
equ ivalen t we need to  f in d  an isomorphism between th e ir  
re sp ec tiv e  d i f f e r e n t ia l  a lg eb ras . To do th is  we need the 

follow ing lemma.

2 .1 . 14. Lemma. The maps odA, axiA' induce the same splitting 

Q = k(g) © 
if i(A) = i(A').

Proof. Of course  k (s )  = 9(A) > so we want to show th a t the 
images o f  cudA and udA1 a re  the same. Let c — c(3(A )) —
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c(3C A7) ) .  This is  an abelian  subalgebra  o f semisimple
elements o f q , s o  i ts  ad jo in t rep re sen ta tio n  provides a

weight space decomposition

Q =  E  8  W c  c *
xev

where

&X = { x<=$ | [c ,x ]  = A(c)x V cec > 
and W  = { Aec* | qX * {0} >
I t  follow s th a t fo r  any cec

Image(adc) = J] ( QX | A(c) * 0 )
Both A, A' e c, and since  j(A) = 3(A7) we conclude th a t 
A (A) = 0 i f  and only i f  A (A ') = 0, when AeW. T herefore the 
images o f  adA and adA' a re  the same. ■

2 .1 .1 5 . Lemma. There exists an invertible linear 

transformation C: i(g) —» i(q ) such that p = C(i(q)).

Proof. F ir s t ly , p = i(p )  by v ir tu e  o f  i t s  co n stru c tio n ; p is  
the  component o f  degree zero in  the in f in ite  s e r ie s  

expad(-%) izA' ) from the d ressin g  opera tion  ( th e re  is  no 
d i f f ic u l ty  in  "spec ia liz ing" the e n tr ie s  o f  %). T herefore 
P = which belongs to  i(g)®B by the previous
lemma.

From the equation 2 .1 .1 3  we have the id en tity  
[A7 , i ( q ) ] = [A , p]

T herefore the lemma follows i f  we s e t  C = (adA) 1o(adA/ ), 

which is  in v e rtib le  on i ( s ) .  ■

The r e s u l t  o f th is  is  th a t we may use the coo rd ina tes  
o f  p, c a l l  them a s  gen era to rs  f o r  the d if f e r e n t ia l
a lg eb ra  (2 ,3 ^ ) . The equation 2 .1 .1 3  gives the re la tio n sh ip  

between 3 and 3 as
X y

3^p + [ i(q ) » P ] = ayJ(q) 2 .1 .1 6

I t  follow s th a t i f  we rep lace i(q )  by C_1(p) every

d if f e r e n t ia l polynomial in 2 can  be w ritten as  a

d if f e r e n t ia l polynomial in the y -d e riv a tiv es  o f  the

coord inates p .i
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Now le t  us w rite  the sp e c tra l  o p era to r a sso c ia ted  with 

the h ie ra rch y  { g ,0,A ' > as
d + p -zA' 2 .1 .1 7y

so th a t the d if f e r e n t ia l  a lgeb ra  f o r  th is  h ie ra rch y  is  the 
a lg eb ra  (2 , dy) o f a l l  polynomials in  the coord ina tes  p̂  and 
th e ir  form al d e riv a tiv e s  with re sp ec t to  d .

There is  an obvious isomorphism between (.9, dy) and
(2 ,3  ) where we map a i t  q and d to  3 x i l y x
to  r e la te  the two o p e ra to rs  2 .1 .1 7  and 2 .1 .1 1 .

However, we wish

2 .1 . 18. Lemma. Let £:(9,dy) —» (2, be the homomorphism of 

differential algebras characterized by tfp^ ~ Pl ~ C(l(q)) 

and - 3y°£ • Then this is a isomorphism.

Proof. The image o f £ w ill c le a r ly  be the d if f e r e n t ia l  
a lg eb ra  generated  by a l l  the p̂  and th e ir  y -d e riv a tiv e s , f o r  
which the isomorphism with (9,dy) is  c lea r. However, the 
d i f f e r e n t ia l  a lg eb ra  (2 ,3 ^ ) is  id e n tic a l to the d if f e r e n t ia l  
a lg eb ra  generated  by a l l  p and th e ir  y -d e riv a tiv e s  due to 
the lemma 2 .1 .1 5  and the re la tio n  2 .1 .1 6 . ■

We a re  now in a  p o sitio n  to  prove p ro p o sitio n  2 .1 .7 . I t  
w ill be shown th a t the zero  cu rv a tu re  equations in {g, 0, A' } 
co n stru c ted  using  the d ressin g  method on the o p e ra to r 2 .1 .1 7  
map, under £, to  the equations 2 . 1. 12  in  { g ,0,A>.

P roof o f  p ro p o sitio n  2 .1 .7 . I t  s u f f ic e s  to  ex h ib it th is  

mapping f o r  the  equations given by homogeneous elements v = 
z  v^ e c($(zA)). By p ro p o sitio n  1 .3 .7  there  e x is ts  a  unique 
s e r ie s

k ic-i
V  =  Z  V  +  Z  W + . . . + 4 $  +  . . .

k k-1 0
with homogeneous terms in L(g,0)®2, s a tis fy in g  

[ dy + p - zA' , V ] = 0

We define  a  d e riv a tio n  d on (9, d ) byv y

[ d + p - zA7 , d - 1 / ] =  0 y v +
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This equation is  founded on the id e n titie s
[ d + p , v ] = [ A7 , ] j ^ l

y J J 2 .1 .1 9
d^k(oQ) + k([p,ASQ]) = 0

which uniquely determine given .
However, c le a r ly  the equation

[ d + p -  zA7 , d -  V ] = 0 y v +

in {g,0,A }, where V+ = z v fc + z v + . . .  + v , implies 
th a t  the terms v^, j£ l ,  a re  the  unique so lu tio n s  to  the 
image under £ o f the equations 2 .1 .1 9 . I t  follow s th a t 
« * Q) = vq . T herefore  the d if f e r e n t ia l  polynomials d ^ i  € ^  
given by

d a  = - [  d + a ,*» ]v^ y o
map to  5 from

a p = - [ a  + p ,v  ] ■v^ y ^ o

I f  we combine the re s u lts  o f  2 .1 .2  and 2 .1 .7  we a r r iv e  
a t  a  la rg e r equivalence c la s s  f o r  the sp ec ia liz ed  h ie ra rch y  
{g, 0, A}.

2 .1 .2 0 . P roposition . For any two semisimple elements A, A' 6 

g i the specialized hierarchies { g ,0,A} and { g ,0,A 7} a re  
equivalent if, for some g € Gq, j(g .A ) = 3(A7).

Remark. I t  is  in te re s tin g  to note th a t c(j(zA )) = cCgCzA')) 
i f  and only i f  3(A) = 3( A '). We know the la t te r  implies the 
form er, and the  form er implies c(3(A )) = c(3(A7)) in g. But 
th is  means [A ,3(A7 )]= 0, th e re fo re  3(A7) S 3(A). I f  we 

in terchange A and A7 in th is  argument we see 3(A) = 3(A7).

In  o rd e r to  determine the equivalence c la s s  o f  a  
sp ec ia lized  h ie ra rch y  { g ,0,A} we need to  examine the 

^o_conjugacy c la s s  o f 3(A) in g. In  the next sec tio n  we will 
d escribe  b r ie f ly  how to do th is  . and then provide a  few 
examples.
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§2.2  The C artan  subspace and equivalent sp ec ia lized  
h ie ra rc h ie s .

In  o rd er to  understand the GQ- o r b i t  o f 3(A) we must 
understand  the GQ-o r b i ts  o f semisimple elements o f 3

I t  is  well-known (see e .g . Helgason (1978, A. P. )) th a t 
the G -orb its  o f  semisimple elements a re  ch arac te rized  by any 
C artan subalgebra  o f g. Every semisimple element lie s  in a  
C artan  subalgebra  and a l l  C artan  subalgebras a re  
G -conjugate. Moreover, two elements o f  the same Cartan 

subalgebra  5 a re  G-conjugate i f  and only i f  they  a re
conjugate  under the  ac tio n  o f  the Weyl group; th is  is  the
f in i te  group isomorphic to the quo tien t group 

Normalizer (5) /S ta b il iz e r  (I))
Vinberg (1976) showed th a t the  c h a ra c te r iz a tio n  o f 

GQ-o r b i ts  o f semisimple elements in g can be done in 
ex ac tly  the same manner, rep lac in g  the  notion o f  a  C artan
subalgebra  by a  C artan  subspace o f  £ .

Given (g ,0 ) ,  Vinberg (1976) defined a  C artan  subspace s 
£ g to be a  maximal subspace o f semisimple elements which 
is  a lso  an ab e lian  subalgebra o f  g. He showed th a t  the
GQ- o r b i t  o f any semisimple element in  g j in te rs e c ts  s. 
Consequently, a l l  Cartan subspaces a re  GQ-co n ju g a te  and the 
union o f a l l  C artan subspaces con ta in s a l l  semisimple 
elements in g . Vinberg defined the Weyl group o f  a  graded 
Lie a lg eb ra  to be the f in i te  group isomorphic to 

W(s) =* N (s)/S(s)

where N($) = { gsG | g .s  = s >0
S(s) = { g€GQ | g .c  = c Vces >

a re  the norm alizer and s ta b i l iz e r  o f  s in  Gq. Vinberg a lso  
proved th a t two elements o f  s a re  GQ-con juga te  i f  and only 
i f  they a re  conjugate  under the ac tio n  o f  th is  group W(s).

We a re  in te re s ted  in fin d in g  the c la s se s  o f  semisimple 
elements o f  which have the same c e n tra liz e r  up to
GQ-conjugacy. We begin by examining when two elements o f  s 
have the same c e n tra liz e r .
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Since s is  an abelian  subalgebra  o f semisimple elements 
o f  g i t s  ad jo in t rep re sen ta tio n  on Q y ie lds a  weight space 
decomposition

3 s E /  » 6 s * 2.2.1
/i€0

where
/  = { X 6 3 | [ c , x ] = p (c )x  V C € s >

* fi
and 6 is  the co lle c tio n  o f  weights pe$ such th a t  Q is  
n o n - tr iv ia l. Notice th a t we have allowed 0 € 6 ; i t s  weight 
space is  the c e n tra liz e r  3(s) o f  s.

The c e n tra liz e r  o f any Aes is  given by

3(A) = E ( S"l M(A)=0 ) 2 .2 .2

Let us denote by 6 the su b se t o f 6 containg a l l  those  p
A

which a n n ih ila te  A. Then a l l  elements with common 
c e n tra liz e r  3(A) a re  contained in the in te rsec tio n  o f  the 
hyperplanes o f  s which a re  the kernels  o f each p € G . This

A

in te rsec tio n  w ill be ca lled
H  = { c e s | p (c ) = 0 V p e 6 >

A A

Remark. In  the case  where s is  a c tu a lly  a  C artan  subalgebra  
o f q , an example o f which w ill soon be given, the  weight 
space 6 is  a  ro o t space, each p is  a  ro o t and the 
hyperplanes {c | p (c )= 0>, fo r  each non-zero pe6 , a re  dual to 
the walls o f the Weyl chambers in s*. The group W(s) must 
then be isomorphic to the Weyl group o f  the Lie a lgeb ra .

However, each H  a lso  con ta in s elements o f  s with a
A

la rg e r c e n tra liz e r  than 3(A), s in ce  3(A) £ 3(A ') i f  6 £ 6
A A*

i .e .  i f  £ H . Therefore i t  is  necessary  (and s u f f ic ie n t)  
to have H = H  in  o rd er to  say  th a t 3(A) = 3(A ') .

A* A

In  most cases  i t  w ill be e a s ie r  to  work with the s e ts  
o f  weights 6 . I t  is  easy  to e s ta b lish  th a t the Weyl group

A

W($) a c ts  on the s e t  o f  weights 6 by 
* -1

w p  =  p o w  W €  W( s ) ,  p  €  6

T herefore we can say  th a t two elements o f s have the same 
c e n tra liz e r  i f  and only i f  the s e t  o f  weights an n ih ila tin g
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one is  conjugate, under th is  ac tio n , to the s e t  o f weights 

an n ih ila tin g  the o ther.
T reating  the general case  beyond th is  b r ie f  d iscu ssio n  

is  d i f f i c u l t  and req u ires  a  b e tte r  understanding o f the 
Weyl group o f  a  graded Lie a lgebra . We w ill f in is h  th is  
d iscu ss io n  by looking a t  a  few simple examples.

2 .2 .3  Example. Examine the period ic  grading corresponding 
to the automorphism o f type ( 1 , 0, 1 ; 1 ) on p resen ted  a t  the 
end o f ch ap te r 1. I t  was shown th a t, f o r  the choice o f 
semisimple element A = E +E the in te rsec tio n  o f 3(A) with 
g is  one dim ensional (see 1 .5 .2 ) .  Therefore the dimension 
o f a  C artan  subspace fo r  th is  graded Lie a lg eb ra  must be 
one, s in ce  Aes implies sSj( A). We conclude th a t th e re  is  

only one sp ec ia lized  h ie ra rch y  o f  equations f o r  th is  choice 
o f grading.

2 .2 .4  Example. An in te re s tin g  example is  provided by the 
Z -g rad ing  given by an automorphism o f  type (1 ,0 ,1 ;  1) on c . 
The diagram c 1̂ is

a  a  a0 1 2O— >o< o

In  th is  case  each Car tan  subspace is  a c tu a lly  a  C artan 
subalgebra  f o r  c . We w ill compute a  C artan subspace and 
c la s s ify  the sp ec ia lized  h ie ra rc h ie s  up to equivalence. We 
use the re p re sen ta tio n  sp(2,C) o f  co n sis tin g  o f the  4x4 
complex m atrices o f the form

where A , A and A a re  2x2 b locks, with A . k both
1 2 3 2 3

symmetric. To ob ta in  a  ro o t space decomposition we f ix  the 
C artan subalgebra  5 o f diagonal m atrices, spanned by

’ 1 '  0
- 1 H = 1

-1 2 0
1V. J - 1L J

H and H a re  p ro p o rtio n al to the co roo ts  o f a and a 1 2 1 2
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re sp ec tiv e ly , where = (c^.O ), = (a  , l ) .
Rather than  e x p lic itly  l i s t  the ro o t v ec to rs  which 

belong to  and in th is  grading le t  us simply note th a t 
the subalgebra  c o n s is ts  o f  a l l  m atrices o f the  form

A 0 1 -

0 -A1
0 is  the 2x2 block o f  0 ' s

and g is  the  subspace o f  a l l  m atrices o f the form

f 0 A - 2

A 0V. 3 -

In  p a r t ic u la r ,  the elements
f „ 0 11 „ i  - i i

a  1 0 A = a  - i  i
0 1 0
1 0  -  ^ J

2

J

span a  C artan  subalgebra  s in  g . A quick com putation shows 
th a t these  can be (sim ultaneously) d iagonalized , to  H and 
H2 re sp ec tiv e ly .

As mentioned in the remark e a r l ie r ,  we can use our
knowledge o f the ro o t system fo r  c2 to  determine the
conjugacy c la s se s  o f c e n tra liz e rs  o f elements o f  $. The ro o t

*  2system is  a  s e t  o f v ec to rs  in s s c ,  bu t i t  can be 
rep resen ted  schem atically  by the diagram

There a re  two types o f ro o ts , long and sh o rt. The Weyl group 
is  generated by the re f le c tio n s  along each ro o t. We see th a t 
a l l  long ro o ts  a re  conjugate and a l l  s h o r t ro o ts  a r 6 

conjugate under combinations o f these re f le c tio n s  (th e  group 
is , o f course , the group o f symmetries o f the square , D ).

The diagram above in d ica tes  the reg ions corresponding 
to elements o f s with c e n tra liz e rs  o f d if f e re n t  dimension.

47



The re g u la r  elements, those whose c e n tra liz e r  is  s, 
correspond to  the reg ions between the ray s  generated by the 
ro o ts ; these  a re  the Weyl chambers. The s e t  o f a l l  reg u la r 
elements forms one c la s s  y ield ing  one sp ec ia lized  h ie ra rch y , 
s in ce  every re g u la r  element has the same c e n tra liz e r .

A fe a tu re  o f the geometry o f  th is  ro o t system is  th a t 
each long (resp ec tiv e ly , sh o rt)  ro o t is  orthogonal to
ano ther long (sh o rt)  ro o t. Therefore the kernel o f any ro o t 
can be id e n tif ie d  with the subspace generated  by ano ther 
ro o t o f  the same length. Any non-zero element o f s lying in 
the  kernel o f  a  ro o t has a  th ree  dim ensional c e n tra liz e r . 
Since a l l  ro o ts  o f the same length a re  conjugate, th e re  a re  
p re c ise ly  two conjugacy c la s se s  o f c e n tra liz e rs  o f 

n o n -reg u la r elements.
This simple an a ly s is  o f the ro o t system has determined 

th a t th e re  a re  th ree  d is t in c t  equivalence c la s se s  o f

sp ec ia lized  h ie ra rch ie s  f o r  th is  choice o f grading on c . 
They correspond to choosing Aes to be e ith e r

( i)  any reg u la r element,
o r  ( i i )  any element an n ih ila ted  by a  s h o r t  ro o t 
o r ( i i i )  any element ann ih ila ted  by a  long ro o t.

Each sp ec ia lized  h ie ra rch y  is  ch a rac te rized  by a
sp ec ia liz ed  sp e c tra l  o p era to r. We may choose rep resen ta tiv e
s p e c tra l  o p e ra to rs  corresponding to  the th ree  cases  lis te d  
above to  be

■ 2qr 3 p+r 0
•

0 2 0 ■

( i) d +
X 3 p--r s

-2<7 r-3  p -  z 2 0 0 1

* 0 -3p-r -s - _ 0 1 0

f
<7 P

•
0

•
0 0 1 *

( i i ) a +
X

r <7 “<7 - r -  z 0 1 1 0

» 0
-P “<7

1 0 0

' 0 P
•

0
■

0 0 0 •

( i i i ) a +
X

r <7 0 - r -  z 0 0 0 1

. 0
- p -cr J 0 1 0

Notice th a t only in case  ( i i )  has the element A been 
chosen to  lie  in the C artan subalgebra  $. In  cases ( i)  and
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( i i i )  the semisimple elements belong to the Cartan 
subalgebra  generated by E +E and E +E (once again  E

13 31 24 42 l j
is  the  m atrix with a  1 in the i - th  row, j - t h  column and 0’ s 
elsew here). This choice has been made because i t  is  e a s ie r  
to  c o n s tru c t zero  cu rv a tu re  equations from these  o p e ra to rs .

For example, in each case  above an equation belonging 
to  the sp ec ia lized  h ie ra rch y  {c , 0,A> corresponds to the 
element z  A in c (j(zA )). These equations a re

( i)  2 - f + 6pk + 2rh

st = gx ~ 6pk ~ 2rh 
3 =  hx - (2q-s)k + r(g-f)

= -Ic + (2q-s)h + 3p(g-f)

where f  = i  qxx + S < 2(rpx'prx) - (pr)x }

*  = l sxx - { 2(pr)x - (rpx-prx) > 
h = - p - - (2q+s)r -  ;  (q -s )r

3 * XX 3 M X  6 ^X X

k = r + (2q+s)p + -  ( q + s ) p
XX  M 2 X X

( i i )  qt = ( -1- qxx * q3 * 3pqr >x

pt "  4 pxxx “ “ I  ((pq2>x + rppx}

r . = -  r  -  rq - ~ {(rq2) + p r r  }t 4 xxx ^xx 2 ^ x r x

( i i i )  qt = j  ( qxx + ZCpr^rp^) - Bpqr - 2q )^

pt = pxxx + l ( p q xx + ‘  2px(q+2pr) - 2 p r x )

rt = r xxx + I  < rqxx + 2qx(rx+rq) + 2rx(q*+3pr) * 2 r \  )

2 .2 .5 . Example. For each a f f in e  diagram T(A) the grading o f 
type ( 1 ,1 , .  . , 1) on Lg(A) provides a  unique equivalence c la s s  
o f h ie ra rc h ie s , fo r  the follow ing reasons.

R ecall th a t  the ro o t space o f each simple a f f in e  ro o t 
is  generated  by the s in g le  v ec to r ê . The subspace o f 

3 elements o f  degree one f o r  th is  grading is  id en tified  with
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t
= { x = £ x ^  | x^C >

We w ill see , a t  the end o f the  sec tio n , th a t  an element o f 

is  semisimple i f  and only i f  every x^O. When T(A) is  a  
diagram from ta b le  1 (so  T(A) is  an  extended Dynkin diagram) 
th is  r e s u l t  has a lread y  been proved by K ostant (1959).

However, every such semisimple element has the same 
c e n tra liz e r , up to conjugacy by Gq (which is  isomorphic to 
Hq = exp 1)Q f o r  th is  g rad ing ). This is  not d i f f ic u l t  to  see. 
Any element h o f l) can be w ritten  as

h = V k h , k € C
** i i i

1 =  0

and by d e fin itio n
exp(k ad h )e = exp(k a  ). e A = (a  ) l i J i Ji J iJ

Although the vecto rs  a re  lin e a rly  dependent they have
corank 1 , th e re fo re  i t  is  p o ssib le  to  conjugate an element x
in L (g ,0 ) , with x *0 fo r  a l l  i, in to  any element

i
xf - T, xf e , x *0 f o r  a l l  iu i i l1=0

with the condition , say , x^ =  x q . C learly  then, any 
semisimple element o f L (g ,0) l is  con jugate  to  kx f o r  some 
k*0. But kx and x have the same c e n tra liz e r , th e re fo re  a l l
semisimple elements in 
c la s s  o f c e n tra liz e rs .

8 ! p o ssess the  same GQ-conjugacy

F ina lly  le t us note th a t, in  th is grading, no
sp e c ia liz a tio n  is  requ ired  f o r  the  equivalence re la tio n  
2 .1 .2 0  to  apply. R ecall from lemma 2 .1 .2  th a t unspecia lized  
h ie ra rc h ie s  a re  equ ivalen t i f  th e ir  semisimple elements a re  
GQ-co n juga te . We have ju s t  shown th a t  in  th is  grading every 
semisimple element o f  g is  Gq(= Hq)-co n ju g a te  up to  a  
s c a la r  m ultiple. However, i t  is  c le a r  th a t  the  h ie ra rc h ie s  
( g ,0,A) and ( g ,0,kA) a re  equivalent; we merely re sc a le  the 
equations. By combining these  p ro p e rtie s  we o b ta in  our 
r e s u lt .  We could a lso  have proved th is  by showing th a t q q 

(^5q) equals i. e. no semisimple element o f  L (g ,0 ) j
commutes with an element o f  5 •
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§2 .3  A condition  f o r  the ex istence  o f a  n o n - tr iv ia l  
h ie ra rchy .

I t  is  time to  address the question  o f when the  graded
Lie a lg eb ra  (5,8) has a  non-zero semisimple element A € g .

I t  is  well-known th a t the semisimple elements o f  5 a re
ch a rac te riz ed  by the  p ro p erty  th a t th e ir  o rb its , under the 
ac tio n  o f  the ad jo in t group G, a re  Z a risk i-c lo sed  ( la te r  we 
w ill prove th is )

I t  has a lread y  been mentioned th a t  the ad jo in t group Gq

o f q q is  a  subgroup o f  G, said th a t i t s  ac tio n  p reserv es  g .
I t  was shown by Vinberg (1976) th a t the  semisimple elements
o f g can  a lso  be ch a rac te rized  in tr in s ic a l ly  by th e ir
G - o r b i ts .  We s ta te  without proof:0

2 .3 .1  P ropostion . (Vinberg, 1976) An element of g is 

semisimple if and only if its Gq- orbit is Zariski-closed.

In  fu tu re  c lo su re  w ill be taken with re sp ec t to  the  Z a risk i 
topology un less  otherw ise s ta te d .

In  th is  sec tio n  i t  w ill be shown th a t 
n o n - tr iv ia l  elements o f g with c losed  G -o r b i ts  e x is t  i f  a  
c e r ta in  p roperty  o f the weights f o r  the  re p re se n ta tio n  o f  gQ 
on is  s a t is f ie d .  Recall th a t  the re p re se n ta tio n  o f  gQ on 
g is  equivalent to th a t o f L (g ,0)Q on L (g ,0) i . I t  follow s 
th a t the weights a re  p rec ise ly  the s e t  

{ a € Ij* I (a, 1 ) € A }
where A is  the a f f in e  ro o t system fo r  L (g ,0). The main 
r e s u l t  we intend to prove is  the follow ing, which is  a  
p a r t ic u la r  ap p lica tio n  o f a  r e s u lt  proved by Dadok & Kac 

(1985).

2 .3 .2  P roposition . Suppose the set A of affine roots of 

degree 1 contains a collection B of roots with the 

properties:

(i) a-/3 g Aq for any a , 0 e B,
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( ii) there exists a set of strictly positive integers

{ p3 | £ e B > satisfying £ p b  = 0 , £ = (A, 1).
B

Then contains a non-trivial element with a closed

G -orbit. o

Before we prove th is  p ro p o sitio n  we p resen t some
prelim inary  re s u lts .  The f i r s t  o f these, again  due to 
Vinberg (1976), says th a t ^  con tains no n o n - tr iv ia l
semisimple elements un less each o f the in tegers  s q.........s^ is
e ith e r  0 o r 1. I t  is  fo r  th is  reason  th a t we expressed
in te re s t  only in these  cases e a r l ie r .  Vinberg’ s  p roof is 
based upon an examination o f the ac tio n  o f the cen tre  o f the 

reduc tive  a lg eb ra  qq on the irred u c ib le  subspaces o f  A
sim pler p roo f w ill be presented .

Let II = {aQ, . . . ,a ^ >  be a  b a s is  o f simple ro o ts  f o r  A 
and define

n = { a € l l | s = 0 }
0 1 1

n = { a  e n | s  = 1 >1 i l
n = { a  € n | s  ^ 2 }2 1 1

2 .3 .3  P roposition . has no non-trivial semisimple

elements if II is non-empty.

Proof. Let T be the a f f in e  diagram corresponding to  A and 
le t  Ai = { (a , 1) e A} be the c o lle c tio n  o f a f f in e  ro o ts  o f  
degree one. C learly  a l l  o f these  come from the sub-diagram  
o f T obtained by deleting  a l l  the v e r tic e s  corresponding to 

II2 . However, every proper sub-diagram  o f  T is  the Dynkin 
diagram o f some semisimple Lie subalgebra  a o f 5 . So the 
ro o ts  in Ai correspond to  p o s itiv e  ro o ts  o f a. Moreover 
th e re  e x is ts  a  b a sis  o f ro o ts  f o r  3 f o r  which the p o s itiv e  
ro o ts  o f a a re  a lso  p o s itiv e  f o r  3 . Consequently 3i belongs 
to the n ilp o ten t subalgebra  o f 3 comprised o f  the ro o t
spaces f o r  i t s  p o s itiv e  ro o ts . Each element o f th is
subalgebra  is  n ilp o ten t (in  the ad jo in t rep resen ta tio n  each 
element is represen ted  by an upper tr ia n g u la r  m atrix); i t
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follows that the only semisimple element in is 0. ■

Remark. It is not such a strong result to prove that every 
element of ^  is nilpotent. A very simple argument shows 
that if does not contain a non-zero semisimple element 
then necessarily every element is nilpotent. Any xeg^ is 
characterized by 0(x) = wx , where w is a primitive root of 
unity with the same order as 0 . Every xeg has a unique 
Jordan decomposition x = x +x , x semisimple, x

s  n s  n
nilpotent, [x ,x ] = 0 . Thus

s  n
0 ( x )  = 0(X ) + 0(X ) 

s  n
=  COX =  U X  +  (OX 

a n
However, for any automorphism 0 of g, 0 (x ) is semisimple,

s
0(x ) is nilpotent and [0(x ),0(x )] = 0 . Thus 0(x ) = wx

n s  n a a
by the uniqueness of the Jordan decomposition. So we have
proved that if xeg then x eg .

1 s i

Now let us assume that n is empty. For convenience2
write LCg,©^ = 2 , then we have the root space
decomposition

a = 4̂ (3, e)‘
1

It is not always true that each affine root space is 
one-dimensional. However if we let A° denote the collection 
of singular (or imaginary) roots,

a0 = {(o,j) € a>
it is true that L(g,0)fl is one-dimensional for each 0 6 A-A0 
(see e.g Helgason (1978, A. P. )). The next lemma demonstrates 
that the presence of a singular root in Ai implies the 
existence of a non-trivial semisimple element in g .

2 .3.4 Lemma. Let (0,1) e Aj . Then 2 contains semisimple 

elements which are non-zero.

Proof. Recall that an affine root a = J] m a belongs to A
, 1=0 1 1 t i

if J] m s  = 1. So if a = (0,1) it must be that a = T n a ,
^  i i u  i i

i = o  1=0
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where the in tegers  a re  the unique (normalized) p o s itiv e  

in tegers  s a tis fy in g
i
£ n a  = 0 , a  = ( a , s ) .L 1 1 i i i

1=0

t
Consequently n s  = 1 , so th a t an imaginary ro o t has

i=o 1
degree one only i f  a l l  the a re  zero  except f o r  one s ^ l  
f o r  which n = l .  However, by inspection  we quickly  see th a t 
the only automorphisms 0 with th is  p roperty  have o rd e r 1 , 2 

o r 3 and correspond to symmetries o f the Dynkin diagram f o r  
g which have the same o rder. I f  the automorphism is  t r iv ia l  
then £ s  q . The n o n - tr iv ia l symmetries induce automorphisms 

o f a  C artan subalgebra  o f g and, being o f o rder 2 o r  3, must 
have a  non-zero  eigenspace o f degree one. Thus £ con tains a  
non-zero  subspace o f a  C artan subalgebra . ■

From now on we may assume th a t does not con tain  a  
s in g u la r  ro o t. We intend to show th a t, in th is  case , we can 
ex p lo it the follow ing theorem o f Kempf & Ness (1978) to  f in d  
closed  o rb its .

2 .3 .5  Theorem. (Kempf & Ness, 1978) Let W be a finite 

dimensional C-vector space, G a connected reductive subgroup 
of GL(W) with a maximal compact subgroup U < G. Let 11*11 be a 

Hermitian norm on W which is U-invariant, and for each x € W 
define a length function

p : G —> 1R+U{0>
x 2 

g i-> llg.xll

Then the G-orbit G. x is closed if and only if p^ has a 
critical point on G.

Since th is  is  a  r a th e r  im portant theorem i t  deserves 
some explanation. The f i r s t  im portant s tep  in the p roo f was 
to  show th a t the only c r i t i c a l  po in ts o f the fu n c tio n  p a re

X

minima. I t  follow s th a t i f  G. x is  c losed  then p must a t ta in
X

a  minimum and th e re fo re  have a  c r i t i c a l  point. I f  G. x is  not
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clo sed , an ex tension  o f the Hilbert-Mumford theorem (see 
B irkes (1971)) says th a t there  e x is ts  a  one-param eter 
subgroup T = <2r ( s ) | s  € C>, o f G such th a t lim y ( s ) .x  lie s

s-»co

in  W but no t in G. x . Kempf & Ness showed th a t on the 
q u o tien t space

(max. compact subgroup o f  T )\T  = sN c* = IR + 

the fu n c tio n  p (s )  is  s t r i c t l y  decreasing  as |s |-*»  , thus p
X  X

never a t ta in s  a  minimum f o r  seC.

2 .3 .6  Example. We w ill use th is  theorem to show th a t x is
semisimple i f  and only i f  G. x is  c losed . F i r s t  we must
d esc rib e  the compact re a l  form o f 3 we wish to  use, and the 
Hermitian norm.

Let us f ix  a  ro o t space decomposition o f 3

g = 5 © E 9a
We can choose ro o t v ec to rs  e € 3 such th a t K(e , e )=1 fo r

a a —a
a l l  aeR, where K is  the K illing form on 3 . I t  follow s th a t
[e ,e ]=h , where K(h , • ) - a  (no tice  th a t h is  not ina —cl a a a
general the co roo t o f a; th is  d e f in itio n  has been made f o r  
la te r  convenience). T reating 3 a s  a  Lie a lg eb ra  over IR, we 
define  the r e a l  form

u = E i!R€h » + V M e  -e » + V m€e +e »"  a "  a —a a -aa€ft a€& a€&

where R «h» is  the re a l  v ecto r space generated  by h .
cl a.

C learly  u is  a  r e a l  form, s in ce  3 = Lu + u. In  f a c t  u is  a  
compact form sin ce  the K illing form is  negative d e fin ite  on 
u. With re sp ec t to th is  choice o f  r e a l  form we have the 
complex conjugation

* : 9 ----- > 9
x+iyh-» x -ty  x ,y  € in

2 AConsequently we ob ta in  a  Hermitian norm llzll = K( z ,z ) .  
Moreover th is  norm is  in v a rian t under the compact group o f 
"u n ita ry  transfo rm ations" U < G whose Lie a lg eb ra  is  u.

We will now show th a t, f o r  any x€3 , the fu n c tio n  
p : G —> IR+u{0}
X

g l-> II g. xll2
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has a  c r i t i c a l  po in t i f  and only i f  x is  semisimple. I t  is 
c le a r  th a t fo r  any c r i t i c a l  po in t g o f p the fu n c tio n  p

x g. x
has a  c r i t i c a l  po in t a t  e, the id en tity  o f G. So we may
assume th a t x is  such th a t e is  a  c r i t ic a l  po in t. The
id en tity  e is  a  c r i t i c a l  poin t i f  and only i f

j
t  p (exp sy) | = 0 f o r  a l l  y 6 A 2 .3 .7a s  x o

where we have used the f a c t  th a t  exp: g —» G is  onto in a  
neighbourhood o f  the iden tity . I f  we compute the d e riv a tiv e
we f in d  th a t 2 .3 .7  is  equivalent to

K( [y, xj , x ) = 0 f o r  a l l  y € g

i .e .  K( y , [x ,x ] ) = 0 f o r  a l l  y € g
Thus e is  a  c r i t i c a l  po in t o f  p^ i f  and only i f  [x ,x ]  = 0,
s in ce  K is  non-degenerate on g. However, i t  is  a  s tan d a rd
r e s u l t  o f lin e a r  a lg eb ra  th a t a  m atrix is  d iagonalizab le  i f  
and only i f  i t  is  normal, i. e. i t  commutes with i t s
Hermit ian tran sp o se . In  the a d jo in t rep resen ta tio n , the
Hermitian tran sp o se  o f  adx is  adx. We conclude th a tA*
norm ality is  equ ivalen t to  [x ,x ] = 0. ■

Now le t us apply Theorem 2 .3 .5  to  the re p re sen ta tio n  o f 
Gq on S. As in the example, th e re  is  a  canonical choice o f 
compact form f o r  L (g ,0)o given by

u = V iR«h » + V M e  - e  » + V W€e +e »
0 ^  a ^  a -a ^  a -a

clQ a A ct€ A
0 0 0

where h e  5 , e e  L (g ,0)a a re  genera to rs  f o r  L (g ,0)
a 0 a 0

s a tis fy in g  K(e ,e  )=1, K(h ,* )= a  , a = (a ,0 ) . This is  the Lie
a —a a

a lg eb ra  f o r  a  maximal compact subgroup UQ of Gq.
We have assumed th a t does not con tain  s in g u la r

ro o ts , th e re fo re  the space
31t = L (g ,0) i + L fg ,© )^

can be spanned by ro o t vecto rs  e^ e ^  /SeA ,̂ chosen to 
s a t i s f y  K (e ^ ,e fl)= l. Consequently 3JT can be decomposed, as an 
IR-vector space, into 3K = 3t + where
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<R = V \R«e -e » + V  ilR«e +e »U 13 -13 U 13-13
13 €  A /?€ A1 1

The complex con jugation  : 3Tt —> 5JT o f 3JT with re sp ec t to  5t 
is  ch a rac te rized  by e - -e g. C learly , con jugation  maps
L (g ,0 ) l onto L (g ,0 ) and th e re fo re  we may define  a

Hermitian norm
I • | : £ — ¥ IR+u{0>

x K (x ,x )1/2

Moreover th is  norm is  U -in v a ria n t. U a c ts  along 3t ( s in ce0 o
[uQ,3t] £ 3T ) so , given any g € UQ, a+tb € 3H,

g7a+Ib = g. a  + ig. b = g. a  -  ig. b = g. Ta+Ib)
Therefore

K( g .x  , g .x  ) a  K( g .x  , g .x  ) = K( x , x )
by the G -in v a rian ce  o f the b ilin e a r  form K. Hence we have o
es tab lish ed  the  ex istence  o f  a  fu n c tio n  

p : G —> IR+u{0> x € S
x o

1 i2g I g .x  |
s a tis fy in g  the  conditions o f  Theorem 2 .3 .5 .

2 .3 .8  Lemma. p^ has a critical point at e  if and only if 

[x ,x ] = 0.

P roof. As in  example 2 .3 .6 , the to ta l  de riv a tiv e  o f  p^ a t  e 
is  zero i f  and only i f

K( [y ,x ] , x ) = 0 fo r  a l l  y € L (g ,0)Q 2 .3 .9
However, K ([y ,x ] ,x )  = K(y, [x ,x ] )  , and K is  non-degenerate 
on L (g ,0 )Q (see  e .g . Helgason (1978, A.P. ) ) .  T herefore  2 .3 .9  
is  equivalent to  [x ,x ]  = 0. ■

We want to  equate the p roperty  "p^ has a  c r i t i c a l  
point" with the ex istence o f  a  co lle c tio n  o f  ro o ts  with the 
p ro p e rtie s  (i) and (ii) in 2 .3 .2 . For convenience le t us 

make the follow ing d e fin itio n .

2 .3 .1 0  D efinition . Let B c A be a non-empty collection of
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roots with the two properties:

(i) a -0  ft Aq for any a , 0 € B,
(ii.) there exists a set of strictly positive integers 

{ | 0 e B > satisfying J  p b  = 0 , 0 = (A, 1).
fl€A

We w ill say  th a t such a collection is of affine type.

Remark. This name f o r  the s e t  B is  prompted by the
observation  th a t  i f  B is  am indecomposable s e t  then i ts  
elements a re  rep resen ted  by C artan m atrix o f a f f in e  type 
(see Kac (1985 C.U. P) f o r  an exp lanation  o f  generalized  
C artan m atrices).

2 .3 .1 1  P roposition . Suppose contains no singular root 

and there exists a collection B c At of affine type. Then 

there exist x € C-{0> , B e B, such that the elementB
x = V x e e 2B U  3 3 36B

i s  semisimple.

Remark. This r e s u l t  is  a  sp ec ia l case  o f a  r e s u l t  o f Kac & 
Dadok (1985) which provides a  s u f f ic ie n t  cond ition  f o r  the 
ex istence  o f c losed  o rb its  f o r  a  ra tio n a l re p re se n ta tio n  o f 
a  reduc tive  a lg eb ra ic  group on a  C -vector space.

Proof. We w ill show th a t, i f  we choose the values x such
------------  B

2_____ _____
th a t  | x j  s  xx^ - (the  s t r i c t ly  p o s itiv e  in tegers  in

2 .3 .9  ( i i ) ) ,  then [x , x ] = 0. We conclude, by lemma 2 .3 .7B B
and the ap p lica tio n  o f the Theorem 2 .3 .5  o f Kempf & Ness, 
th a t  the G - o r b i t  o f x is  c losed . Now,o B

[x . x JB B = [ E x ea ca€B
S
B€B

x eB -B

= - E
B €B

[e eJ
sin ce  a -0  6 A f o r  a, 0 6 B. By d e fin itio n , [e ,e ] = h .B -8 B
I f  we apply the b ilin e a r form K we have
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K( tx ,x  1, • ) = -  E lxs l2K( ha, ■ )
ae B

= -  E lx  l2a , 3 = (6 ,1)
fl€B

2
Thus d ire c tly  from our choice |x  | = / we have 

K( [x ,x  ] , • )  = 0B B
As we mentioned e a r lie r , K is  non-degenerate on L (g ,0)q , to
which [x ,x  ] belongs, th e re fo re  [x ,x  ] = 0. ■B B B B

Remark. I t  should be pointed out th a t  in  genera l i t  is  not 

p o ssib le  to  conclude th a t x is  semisimple d ire c tly  from the 
p ro p erty  [x ,x  ] = 0. In  general we cannot f in d  a  compact 
form fo r  the a lg eb ra  5 f o r  which the  complex conjugation
maps n(e ) to  -n(e ), where n: L(a , 0 )—»A. However, in mostb -b
cases th is  can be done. For any f in i te  o rd er inner
automorphism, o r  ou te r automorphism o f  index 2 , the  graded 
Lie a lg eb ra  (g ,0 )  does have a  compact form ch a rac te rized  by 
the mapping e^h-> - e  pushed down onto 5 . Thus we could 
prove p ro p o sitio n  2 .3 .1 1  f o r  a l l  the loop a lgeb ras
c la s s if ie d  by the diagrams in tab le s  1 & 2 (see  ch ap te r 1 , 
§ 1 . 2 ) simply by invoking the elem entary theorem about normal 
m atrices.

U nfortunately , f o r  the few remaining cases  (those
(3)

p erta in in g  to  the diagram 6 ) i t  is  not so elementary to
prove 2 .3 .1 1 , th e re fo re  i t  was necessary  to invoke the 
r e s u l t  2 .3 .5 . In  any case , the p roof 2 .3 .1 1  is  more elegan t 
than  a  case  by case  p roof.

I t  could be shown th a t fo r  any non-zero values y € C,B
£eB, the element y = J] y e is  semisimple. I t  is  p o ssib le

0€B
to  show th a t, i f  Hq is  the maximal abelian  subgroup o f Gq 
whose Lie a lg eb ra  is  5 » then y is  always a  s c a la r  m ultiple0 B
o f some element o f  the o rb it  H . x .0 B

Remark. Recall in the previous sec tio n , example 2 .2 .5 , i t
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was claimed th a t the element
t
E x,e,
i =0

is  semisimple i f  and only i f  x^O f o r  a l l  i. This is  evident 
now from two f a c ts :

(a) the s e t  o f  simple a f f in e  ro o ts  is  an  a f f in e  
co lle c tio n  (indeed th is  is  where the  name comes from)

(b) any p roper su b se t o f  { e j i= 0, . .£ }  generates a  
subalgebra  c o n sis tin g  e n tire ly  o f  n ilp o ten ts .

Notice th a t  i f  Â  does con ta in  the  s in g u la r  ro o t (0 ,1 )  

then the  s in g le to n  { (0, 1 )} can be considered  to  be a  
c o lle c tio n  o f  a f f in e  type. So, between the r e s u l ts  2 .3 .4  and

2 .3 .1 1  we have the re s u l t  2 .3 .2 ,  which we may r e s ta te  as:

A sufficient condition for the existence of a

semisimple element in that the set of roots Al
contains a collection of affine type.

§2 .4  Graded Lie a lg eb ras  with a  n o n - tr iv ia l  C artan  
subspace.

Using the r e s u lts  o f  the previous sec tio n  we w ill 
compile a  l i s t  o f  a f f in e  diagrams together with the  g rad ings 
o f type (s  , . . . , s p  f o r  which ( g ,0) admits a  co lle c tio n  o f 
ro o ts  in  o f  a f f in e  type. In  general i t  does no t appear
p o ssib le  to  c la s s ify  these  cases  completely w ithout 
perform ing an almost case  by case  an a ly s is . Our main aim in 
th is  sec tio n  is  to  c o n s tru c t a  tab le  o f the  simple Lie 
a lg eb ras  with rank  ^ 4 toge ther with the g rad ings which 
admit a  n o n - tr iv ia l  C artan subspace. I t  w ill be shown la te r  
th a t th is  tab le  l i s t s  a l l  the graded simple Lie a lg eb ras , 
ran k (g ) ^ 4, possessing  th is  p roperty .

We begin by proving a  few re s u l ts  which hold f o r

60



a r b i t r a r y  ra n k .

2 .4 .1 .  Lemma. If 0 is an involution (i.e. has order 2) then 

(g, 0) has a non-trivial Cartan subspace.

Proof. Let be a  simple a f f in e  ro o t corresponding to a
vertex  labelled  with s = l ;  a t  le a s t  one e x is ts . Let
a = ( a , l )  e Ij*xZ. Then ( - a , 2 n - l )  is  a  ro o t f o r  any in teger i i o 1
n s in ce  - a  is  a  ro o t and the o rd e r o f  0 is  2. The s e t  l
{ ( a , l ) , ( - a , l ) >  is  c le a r ly  a  co lle c tio n  o f a f f in e  type in
A , so the lemma follow s. ■ l

2 . 4 . 2 .  Lemma. Given any non-trivial grading of type

( s ......... s^), s e { 0, l } ,  on the diagram a /1* or, for i > 2, on

6̂  , the corresponding graded Lie algebra has a non-trivial 

Cartan subspace.

Proof. For each o f these diagrams the c o e ff ic ie n ts o f
lin e a r dependence {n  ̂| i=0, . . o f the columns o f the
C artan m atrix s a t i s f y n =n 

i J
f o r a l l i» J- T herefore the

simple ro o ts  { a = ( a  , s  )} have the p ro p erty
t
E a = 0
i =o

Given the grading of type (s q.... ŝ ) we can decompose

the a f f in e  diagram a*1* o r in to  a  co lle c tio n  o f
d is jo in t, connected subdiagrams s a tis fy in g

(a) every vertex  o f the o r ig in a l diagram lie s  in some

r*>
(b) fo r  each r  one and only one vertex  corresponds to

an s  =1 . i
I t  can be shown (see, f o r  example, Helgason

(1978, A. P. )) th a t  fo r  each connected subdiagram the
simple sum

<k) L j 1 j k

is  an a f f in e  ro o t. By p roperty  (b) ̂ a (k))“ s  A . Since no two
subdiagrams in te rse c t we conclude th a t  a  - a  is  not a6 (j) (k)
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ro o t f o r  any j ,k .  I f  we w rite a  = (a  ,1 )  then
t

Therefore {a >(k)
the lemma follow s.

(k) = E « = °
1=0

is  a  co lle c tio n  o f  a f f in e  type, whereupon

Remark. According to  th is  lemma any f in i te  o rd e r inner 

automorphism on $((£+1 , 0  ( f o r  which (s  , . . . , s p  is  a
sequence o f  0*s and l*s )  admits a  semisimple element in i t s  
eigenspace o f  degree one.

2 .4 .3 . Lemma. Given any grading of type ( l , s  , . . . , s  , 1 ) ,l i
s € < 0, l > ,  on either o r  c(1), £ £ 2 , with the verticesl t t
labelled as

ba)

a  o0
a  <>■1
a  ot

—o= > o at-i

c*1 * o=>o- ... —o<=o
n a  a  a  ao i  t-i t

the corresponding graded Lie algebra has a 

Cartan subspace.

non-trivial

Proof. The c o e ff ic ie n ts  { n j i =0 , . . .  £} a re  nQ= l, n^=l, n^=2 
fo r  i= 1 , . . . , £ - 1 .  Therefore i f  a l l  s^O  fo r  1=1 , . . . , £ - 1  the 
corresponding automorphism is  an involu tion  and the lemma is  

tru e  by 2 . 4 . 1 .  So we may now assume s ^ l  fo r  some
ie { l .........£-l> . In  th is  case  i t  is  p o ssib le  to decompose

e ith e r  o f the subdiagrams

o---- o— . . .  -o —>o o f 2 . 4 . 4
a  a
l <-i

or

o---- o— . . .  —o----o o f  2 . 4 . 5
a  a
l t - i

into d is jo in t, connected subdiagrams with the p ro p e rtie s  
(a) and (b) lis te d  in the p roof o f the previous lemma. We
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proceed as before to define

“«« = E (V  “j6^ ’ “ ‘“(w’15

The co lle c tio n  {ao,o^, a ^ }  S \  *s  tyPe sin ce
( i)  no p a ir  o f  these  ro o ts  has a  d iffe ren c e  which is  a  

ro o t ( th is  follow s from the d is jo in ted n ess  o f the r  )
* - i

( i i )  a  + a  + T. 2a  % = a. + a  + 2 V a  = 0 ■o *■ u (k) o * u i
i =  i

2 . 4 . 6 .  Lemma Given any grading of type ( 0 , s  , . . . , s ,  . 0 ) ,
s e { 0 , l > ,  on b(1> the corresponding graded Lie algebra has a 1 ^
non-trivial Car tan subspace.

Proof. Let s^ be the f i r s t  in teger in  the sequence

(s  , . . . , s  ) which equals 1. Define
8 = a  + a  + . . .  + a  
*0 0 1 k
8 = a  + a  + . . .  + a

t i k
Then /3 and 8 a re  a f f in e  ro o ts  in A . Moreover 8 -8 is  not o w  i *
a  ro o t.

I f  k=£-l then is  a  c o lle c tio n  o f a f f in e  type
whereupon the lemma is  tru e . I f  k < t- 1 th e re  is  a  

n o n - tr iv ia l  diagram

o— o -  . . .  —o = > o  2 . 4 . 7
a  a
k + l  «-i

I f  none o f s^+l, . . . ,  equals 1 then the  corresponding 
automorphism is  an involution, so the lemma follow s by 
2 . 4 . 1 .  Otherwise i t  is  p o ssib le  to  decompose the  graph 2 . 4 . 7  
in to  a  c o lle c tio n  o f d is jo in t, connected diagrams { r  > whichm
have the  p ro p e rtie s  (a) and (b) lis te d  in the p roof o f lemma 
2 . 4 . 2  As befo re  we le t

a. = £  (a  | a  <=r )(m) j J m

The c o lle c tio n  {6 , 3 , a  } is  a  co lle c tio n  o f a f f in e  type0 t (m)
in Ai f o r  the same reasons ( i)  and ( i i )  as in the p roo f o f 
the previous lemma. ■

The purpose o f these re s u lts  2 . 4 . 2 ,  2 . 4 . 3  and 2 . 4 . 6  is
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to  reduce the  number o f individual cases  which must be 
tre a te d  in the tab le  to come. The tab le  takes the following 
form. Each a f f in e  diagram corresponding to  a  simple Lie 
a lg eb ra  o f  rank  ^ 4 is  given in the  le ft-h a n d  column,
to ge ther with the scheme f o r  labelling  the v e rtic e s  by 
a  , . . . , a  ( in  the case  o f and c(1) the scheme w ill beo i i t
the same as th a t given in p ro p o sitio n  2 . 4 . 3 ) .  Next to th a t 
appears a  sequence o f in tegers  ( s q , . . . , s ^ )  corresponding to 
a  p e riod ic  grading f o r  which th e re  e x is ts  a  n o n - tr iv ia l  
C artan  subspace. I f  th is  f a c t  is  the r e s u l t  o f  one o f the 
p revious lemmas then i t  is  re fe rre d  to  in  the  rig h t-h an d  
column. Otherwise the rig h t-h an d  column w ill l i s t ,  f o r  each 
case , a  co lle c tio n  o f  ro o ts  o f  a f f in e  type in A .

One should keep in mind th a t many g rad ings o f  type 
(s  , . . . , s p  a re  equivalent due to the  symmetries o f  a  
diagram and only one rep re sen ta tiv e  need be lis te d . 

Moreover, in general the involu tions w ill u su a lly  not be 
lis te d  s in ce  they a re  easy  to  determine and a l l  such cases 
a re  covered by lemma 2 . 4 . 1 .

Some o f the cases  which appear in th is  tab le  have 
a lread y  been investigated  by Vinberg (1976) where he l i s t s ,  

f o r  those  graded exceptional Lie a lg eb ras  f o r  which is  
semisimple, the dimension o f  the C artan  subspace and the 
group W(s). Some o f the inform ation presen ted  in the paper 
by Kac (1980) can a lso  be used to determine the  ex istence o f 
a  n o n - tr iv ia l  C artan subspace, although one needs to  know 
how to  d esc rib e  the re p re sen ta tio n  o f  Gq on g in  h is  terms.
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Aff ine diagram Grading (s  , . . , s^)

o =
1

c <l)
2

=>o<=o 2 1

(1

(1

0 , 1 ) 

i ,  i ) lemma 2.4.  3

6( 1 » ( 1 , 1 , o, 0) a  , a  +2a  , a  +a3 0 1 2 1 3
1Cj ) ( 1 . o, 0, 1 ) lemma 2 . 4 . 3

2(>=>o2 (0, 1 , 1 , 0) lemma 2 . 4 . 6
(J!>

( 1 . 1 , 0, 1 )

( 1 . o, 1 , 1 ) * lemma 2 . 4 . 3

Cl, 1 , 1 , 1 ) •

c (1) ( 1 , s  , s , 1 ) lemma 2 . 4 . 33 1 2
s = 0 or 1

j C o l l e c t i o n  o f ro o ts  
o f  a f f i n e  type.

o=> o— o<=o 
1 2  2 1

( 1 )

1o
20-------0=

2
=>o2

( 1 , 1 , 0 , 0 , 0 ) 

(1, o, 1, 0, 0)

(0,s ,s fs ,0) 

s  = 0 o r 1l

a  , a  +2a +2a  , a  +a
0 1 2  3  1 4

a  +a +a , a  +a +2a  , a
0 1 4  1 2  3 2

lemma 2. 4 .3  

lemma 2 . 4 . 6

(l)
(1. 0 , i, 0, 0 ) a +a , a +a 0 1 1 2

a +a +a2 3 4
(1, 0. o, 1, 0 ) a +a +a , a 0 1 2  2

a +a3 4

(0 , 1, 0, 1, 0 ) a +a , a +a f 0 1 1 2
a +a3 4

(l.s ,s ,sV 1)1
s = 0

d
or

0
1 lemma 2 .
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6 (1>
4 Cl, 1, 0, 0, 0) a +a +a . a +a +a

0 2 4 1 2 3

ica
a> 0 (1, 0, 1, 0, 0) a , a +a +a +a , a 

0 1 2 3 4 2
0 ------ c1

1C
> ------ o a2 1 3
>

Cl, 0, 0, 0, 1) a +a +a , a +a +a
0 1 2 2 3 4

a
4 Cl, 1, 1, 0, 0) a , a , a , a +a +a

0 1 2 2 3 4

(1. 0, 1, 0, 1) a , a , a , a +a +a
0 2 4 1 2 3

Cl, 1, 0, 1, 1) a , a , a +a , a +a
0 1 2 3 2 4

(1, 1. 1, 1, 1) a , a , a , a , a
0 1 2 3 4

r-(l) 
' 4 (0, 0, 1, 0, 0) a +..+a , a +. . +a

0 3 1 4
a0 a

4
a +2a +a
2 3 4

? 2 3 *4 2 (1. 1, 0, 0, 0) a , a 0 1
a +3a +4a +2a
1 2  3 4

(1. 0, 1, 0, 0) a +a , a +a 0 1 1 2
(0, 1, 0, 0, 1) -

a +2a +a
2 3 4

(1, 1, 1, 0, 0) a , a , a +a +a
0 1 2  3 4

a +2a
2 3

(0, 1, 0, 1, 0) a +a +a , a 0 1 2  1
a +a +a , a
2 3 4 3

Cl, 0, 1, 0, 1) a +a , a +a +2a
0 1 1 2  3
a , a +a
2 3 4

(1, 1, 1, 0, 1) a , a , a +2a 
0 1 2  3

a , a
2 4

Cl, 1, 1, 1, 1) a , a , a , a ,a o' 1 * 2 3 4

 ̂(1)
y 2 Cl, 1. 0) a , a +3a , a 0 1 2 1

a0 a2 (1, 1, 1) a , a , a
O--O 1 ->Q
1 2  3
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a
2 ( 1 , 0) involution

( 1 . 1 ) a  , aa a 0 1
0 l

a ( 2)
4 Cl, 0, 0) involut ion

a a (0, 1 , 0) a  +a , a  +2a
0 2 0 1 1 2

o =l

O
N

AIIO
N

A

Cl, 1 , 0) a  , a  +2a  , aO 1 2 1

( 1 , 0, 1 ) a  +2a  , a0 1 2

Cl, 1 , 1 ) a  , a  . a0 1 2

&<3) (s ,s ,sj
4 0

(0,
1 2  

1 , 0)
•
► a  +2aa a  a +al 2 0 Cl, 0, 0) l 2 0

o==»o— o J
l 2 1

(0, 0, 1 )
*
► a  +a , a  +a .

( 1 . 1 , 0) .
1 2’ 2 0

(1, 1 , 1 ) a  , a  0 1 “ a
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§2.5 Graded Lie a lgebras with a  t r iv ia l  C artan  
subspace. rank( o ) ^ 4̂ _

At p re sen t th e re  does not appear to be a  d ire c t  p roof 
th a t the s u f f ic ie n t  condition , 2 . 3 . 2 ,  fo r  the ex istence  o f 
a  n o n - tr iv ia l  C artan  subspace is  a lso  necessary . 
N evertheless th is  is  tru e  f o r  a l l  graded Lie a lg eb ras  ( g ,0) 
with ran k (g ) ^ 4. In  the la s t  sec tio n  a l l  those cases  where 
the condition  2 . 3 . 2  holds were lis te d . In  th is  sec tio n  we 
w ill see th a t f o r  every o th er grading  o f those a lgeb ras 
th e re  a re  no n o n - tr iv ia l  semisimple elements in g . This 
w ill be done case  by case, mainly using  a  r e s u l t  due to 

Vinberg (1976).
I t  is  well known in the l i te ra tu re  th a t sin element o f  g 

is  n ilp o ten t i f  and only i f  the Z a risk i c lo su re  o f i ts  

G -orb it con tain s 0. A s im ila r c h a ra c te r iz a tio n  holds f o r  the 

re p re sen ta tio n  o f Gq on g . We w ill use without p roo f the 
re s u lt :

2 . 5 . 1 .  P roposition . (Vinberg, 1976) i4n element xeg is

nilpotent if and only if closiGq. x ) contains 0 .

Once again , c lo su re  is  taken with re sp ec t to  the Z a risk i 
topology.

Remark. I have no t found, in the  l i te ra tu re , a  simple p roof 
o f the statem ent th a t  xeg is  n ilp o ten t i f  and only i f  
clos(G . x) con ta in s 0. I t  seems worth providing one here.

Suppose xeg is  n ilp o ten t, then by the Morozov embedding 
theorem (see, f o r  example, Jacobson (1962, Wiley)) th e re  
e x is ts  heg such th a t  [h, x] = -x . T herefore

lim e x p (a d ih ).x  = (l im e x p ( - t ) ) . x  = 0
I ->C0 1 ->00

Hence 0 e c los(G.x) .
Conversely, i f  0 € clos(G . x) then fo r  any G -invarian t 

polynomial f  on g fo r  which f (0 )=0  we have f (x)=0.  The
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a d jo in t re p re se n ta tio n  p u lls  in v a rian t polynomials on sf(g) 
back to G -invarian t polynomials on 3 . I t  follow s th a t 
t r [ ( a d x ) n] = 0 f o r  a l l  p o s itiv e  in teg ers  n, th e re fo re  adx is 

n ilp o ten t.

The o rb i t  c h a rac te riz a tio n s  o f  semisimple and n ilp o ten t 
elements (p ro p o sitio n s  2 . 3 . 1  and 2 . 5 . 1 )  lead to  the next 
r e s u lt ,  the p ro o f o f which can be found in the  paper by 

Vinberg (1976).

2 . 5 . 2 .  P roposition . (Vinberg, 1976) The closure of the 
GQ-orbit of any element X€gi contains precisely one closed 
orbit, namely, the orbit of the semisimple part of x in  its 
Jordan decomposition.

As a  c o ro lla ry  we ob ta in  a  cond ition  which guarantees 

th a t  g j only co n ta in s  n ilp o ten ts .

2 . 5 . 3 .  C orollary . If, for some xeg ^ cIos(G o.x ) = g i then 
only contains nilpotents.

Proof. Let y eg ^  then the GQ- o r b i t  o f  i t s  semisimple p a r t ,  
y , belongs to  g = clos(G  .x ) .  But 0 a lso  has the  closed
s 1 0

o rb it  {0} and so by the previous p roposition  we must have
G .y  = {0>. T herefore y =0, thus y is  n ilpo ten t. ■
O s s

Consequently, to  prove th a t g j con tains only n ilp o ten ts  
we need only show th a t th e re  e x is ts  an element o f g^ 

s a tis fy in g  the next condition. Vinberg (1976) mentions th is  
re s u l t  without p roof.

2 . 5 . 4 .  P roposition . Suppose, for some xeg  ̂ that [g ^ x ]  = 
g . Then closiGq. x ) = g , therefore gj contains nilpotents 
only.

Proof. I t  is  not d i f f i c u l t  to see th a t clos(G  .x ) is a ------ 0
closed , irred u c ib le  v a rie ty  with the same dimension as G . x.0
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Since Gq . x is  non-singu lar i ts  dimension equals the
dimension o f [a , x ]. Thus we have a c losed  irred u c ib le  o
sub v arie ty  clos(G Q. x) £ whose dimension equals th a t  o f
A . An elem entary theorem o f  a lg eb ra ic  geometry s ta te s  th a t 
c 1o s (Gq. x ) cannot be a  p roper su b se t (see, f o r  example, 
Humphreys (1975, S p ringer)) i .e .  c 1o s (Gq. x ) = At • ■

This r e s u l t  w ill be the main to o l used to  show th a t a l l  
the  g radings ignored by the  e a r l ie r  tab le  correspond to 
graded Lie a lgeb ras with a  t r i v ia l  C artan subspace. In 

p ra c tic e  showing th a t [ x] = Aj f o r  some xsAj is  qu ite
ted ious; sometimes i t  is  p o ssib le  to use a  sim pler te s t .

2 . 5 . 5 .  Lemma. Let 0 be an inner automorphism of g (these 
correspond to the affine diagrams in table 1 of chapter 1). 
If the order of 0 does not divide the degree of any 
homogeneous G-invariant polynomial belonging to a basis for 
the ring of G-invariant polynomials on A then At contains 
nilpotents only.

I t  is  well-known th a t the r in g  C(a1 of G -invarian t 
polynomials on a is  f in i te ly  generated . Any two bases o f 
homogeneous G -invarian t polynomials f o r  th is  r in g  have the 
same l i s t  o f the degrees o f  the  polynomials in  the  b a s is , 

th a t  is  to  say , these degrees a re  in v arian ts  o f  A- A l i s t  o f 
these numbers can be found in, f o r  example, Bourbaki (1968, 
Hermann).

Q
Proof. Let {^> be a  b a sis  o f the rin g  C(a 1 where ^  has 
degree di. The subvarie ty  o f a

{ xsa I ^ ( x )  = 0, Vi >
is  ca lled  the nu ll-cone o f a ; i t  is  well known th a t th is  s e t  
only con tains n ilp o ten ts  ( in f a c t  we can deduce th is  from 
the p roof given e a r l ie r  th a t  an element is n ilp o ten t i f  the 

c lo su re  o f i t s  G -orb it con tains 0 ). Now le t m = o rd er(0 ) and 
le t w be a  prim itive m-th ro o t o f un ity . I f  0 is  an inner 
automorphism (and th e re fo re  belongs to G) f o r  any element
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we have

^ ( x )  = ^ ( e .x )  = ^(w x) = wdl<̂i (x) fo r  a l l  i
diI f  m does no t divide di then w *1  f o r  any i, th e re fo re  

^ ( x )  = 0 f o r  a l l  i. Hence g belongs to the nu ll-cone. ■

Between the  re s u lts  2 .5 .4  and 2 .5 .5  we w ill be ab le to 

show th a t each grading no t appearing in the  tab le  in the 
previous se c tio n  p e rta in s  to  a  case  where £ con ta in s only 
n ilp o ten ts . The following tab le  is  arranged  s im ila rly  to  the 

previous one, with the a f f in e  diagrams in the  le ft-h an d  
column and the  grading in the c e n tra l column. In  the column 
on the r ig h t th e re  w ill appear e ith e r  a  s e t  o f  ro o ts  from Ai 

o r the o rd e r o f the grading. The form er designates th a t 
th e re  e x is ts  a  vecto r x, which is  a  sum o f non-zero ro o t 
v ec to rs  fo r  the  ro o ts  given, with the p roperty  x] = g .

To ac tu a lly  dem onstrate th is  in each case  would be a  
tiresom e procedure; one example w ill be computed a fterw ards 
to give an ind ica tion  o f how to proceed in general. When the 
o rd er o f an inner automorphism appears in the rig h t-h an d  
column th is  ind ica tes  th a t i t  does not d ivide any o f the 

di. These degrees w ill be lis te d  beside the name o f  the 
re lev an t a f f in e  diagram.
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A f f i n e  d ia g ra m  jG ra d in g  (s  ,

x = V (x  e \a. l i s t e d )« rt

[V x] = 9 !

=>o<=o 2 1
(1 , 1 , 0 ) o rd e r  = 3

(1. 0, 1, 0)

a. i. 1, 0)

i( 1}
3

i
2()=>0 2

2 ,4 ,6 a , a +a +a
0 1 2  3

o rd e r  = 5

,.(1) o n c c3 2 ,4 ,6

o=>o— o<=o 
1 2  2 1

( 1 , 1 , 0, 0) ai l
(0, 1 , 1 , 0) a  , a: 1 2
( 1 , 1 , 1 , 0) | o rd e r  = 5

b(1) 2,4,6,8
4
10

20----0=>02 2

( 1 , 0, 0, 1 , 0) a ,a +a +a +a
0 1 2 3 4

( 1 , 1 , 1 , 0, 0) o rd e r  = 5

( 1 , 1 , 0, 1 , 0) o rd e r  = 5

( 1 , 0, 1 , 1 , 0) o rd e r  = 5

( 1 , 1 , 1 , 1 , 0) o rd e r  = 7

a

c (1) 2 , 4 , 6,8
4

_> 2 2 2<=?

(0, 1, 1, 0, 0) 
(1, 1, 0, 0, 0) 
(1, 1, 1, 0, 0) 
(1, 0, 1, 1, 0) 
(1, 1, 0, 1, 0) 
(1, 1, 1, 1, 0)

a  +a , a  0 1 2
a a  0 1
o rd e r  = 5 
o rd e r  = 5 
o rd e r  = 5 
o rd e r  = 7

[1) 2 , 4 , 6 ,4
4

a
19 0

(1, 1, 1, 1, 0) o rd e r  = 5

)---o a2 1 3
i6
a



f'1’ 2,6 ,8, 12 o o o, 1, 0) a , a +a
4 3 3 4

a a (0, 0, o, 1, 1) a .  ao • 4 3 4

? 2 3
>o— o
4 2 (1, o, o, o, 1) a +a +a +2a , a

0 1 2  3 4

(1, 0, 1, 1, 0) a +a , a , a
0 1 2  3

(0, 1, o, 1, 1) a , a +a , a
1 2  3 4

(1. o. 0, 1, 0) «
(0, 1. 1, 0, 0) ► order = 5(0, 0, 1, o, 1)
a, i, 0, 0, 1) m

(0. 0, 1, 1, 0) •
(i, i. 0, 1, 0) - order = 7(1, o, o, 1, 1)
(0, 1, 1, 0, 1) •
(0, 1. 1, 1, 0) •
(0, 0, 1, 1, 1) ► order = 9
(1, 1, 0, 1, 1) .
(1. 1, 1, 1, 0) 1► order = 10(1, o, 1, 1, 0) J

(0, 1, 1, 1, 1) order = 1 1

s (1)a 2 2,6 (0, 0, 1) a2
(0, 1, 1) order = 5a a0 2 (1, o, 1) order = 4o— o = »o1 2 3

n (2)a2 (0 ,1) a 1
a l___2 ao c ^ > o  1

( 2 )

a a

o = > o = > o  1 2  2

(0, 0, 1) 

(0, 1, 1)

a2

a , a 1 2

(s ,S ,S )0 1 2 
(0, 1, 1)

(1, 0, 1)
1 2 

a , a0 2

(3)

a a a 
1 2 0

2 1
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2 .5 .6 . Example. One example is  s u f f ic ie n t  to dem onstrate 
the method o f proving the ex istence o f a  dense o rb it . Take 
the example o f  the grading o f type (1 ,0 ,1 ,0 )  fo r  We
w ill see th a t th e re  e x is ts  an element x in the subspace

L (g ,0)a + L (g ,0)5 a  = a  , 0 = a  +a + aO 1 2 w

such  th a t

[ L (g ,0)Q , x ] = L (g ,0) i
The space L (g ,0) i is  the sum o f  ro o t spaces f o r  the

ro o ts

a , a  +a , a  +a +a , a  , a  +a , a  +a +a 
0 0 1 0 1 2  2 1 2 1 2 3

The ro o ts  corresponding to L (g ,0)Q lie  in
A = { ±a , ±a , ± (a  +a ) >

0 1 3 1 3
Therefore i f  x , x a re  non-zero ro o t vecto rs  f o r  a , 8

a 13
re sp ec tiv e ly  i t  is  c le a r  th a t

[ £ L (g ,0)r , x + x ]
"  a 13

re  Ao

con tain s the ro o t spaces corresponding to

ag = /3 -  (a  +a ) , a0+a1 = a  +a1
a  +a +a = a  + (a  +a ) , a  +a = 8 -  a  

0 1 3  1 3 1 2 K 3

Moreover

L (g ,0)Q = © E L (g ,0) r
0

where 5Q is  a  3-dim ensional abelian  subalgebra  which a c ts  
d iagonally  on the ro o t spaces o f  L (g ,0). Thus

[ 5Q , xa+ xff ] = L (g ,0)a + L (g ,0) fl 
s in ce  a  and 0 a re  lin e a rly  independent. The re s u l t  follow s.

F ina lly  le t  us note th a t, in  p rin c ip le , the paper by 
Kimura et a 1. (1986) con ta in s a l l  the  inform ation we seek. 

They re p o rt in th a t paper the c la s s if ic a t io n  o f a l l  the 
ra t io n a l  rep resen ta tio n s  o f  reduc tive  a lg eb ra ic  groups which 
admit only a  f in i te  number o f o rb its . In  p a r tic u la r , i f  the 
re p re sen ta tio n  o f Gq on admits only a  f in i te  number o f 
o rb its  then g i must con tain  a  dense o rb it , th e re fo re  g 
con tains only n ilp o ten ts , by 2 .5 .3  ( i f  g is the union o f a  
f in i te  number o f o rb its  then i t  is  the union o f th e ir
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c lo su res , bu t g is  irred u c ib le  th e re fo re  one o f these

c lo su res  is not a  proper su b se t) .
Consequently i f  I could t ra n s la te  each rep re sen ta tio n  

o f Gq on q  in to  the language used by Kimura et al. then I 
could make use o f th e ir  re s u lts . U nfortunately  i t  is  not a t  

a l l  c le a r  to me what the re la tio n sh ip  is  between th e ir  
n o ta tio n  and the  d e sc rip tio n  o f the rep re sen ta tio n  o f  Gq on

»»■
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CHAPTER 3

§3.1 Miura*s transform ation .

The b asic  observation  o f Miura (1968) was th a t the mKdV 

equation
q. = q ~ &q2q 3 .1 .1t ^xxx x

could be transform ed into the KdV equation
u. = u + 6uu 3 .1 .2t xxx x

by the su b s titu tio n
u = q - q2 3 .1 .3x

We wish to f in d  a  con tex t in which th is  transfo rm ation  can 

be understood, f o r  i t  is  no t obvious th a t the d i f f e r e n t ia l  

polynomial = q  ̂ - 2qq̂  should be ab le to  be expressed  
purely  as a  d i f f e r e n t ia l  polynomial in  the v a riab le  u. More 
form ally, r e c a l l  from chap ter 1 th a t  C {q} denotes the
d if f e r e n t ia l  a lg eb ra  o f  polynomials in  q, q ^ , . . Then we

wish to d iscover why the d e riv a tio n  d^ on C{q> defined  by 

3 .1 .1  p reserv es  the subalgebra  C{u>.
In  th is  sec tio n  we w ill d esc rib e  how the Miura 

transfo rm ation  is  explained as  an example o f  some general 
machinery developed by D rin fe l’d & Sokolov (1981,1985). The 
follow ing sec tio n  w ill show the c o n tra s t  between th is  and a  
more elegan t exp lanation  due to  Wilson (to  be pub lished). 
Before anything can be done a  l i t t l e  prelim inary  d iscu ss io n  

is  necessary .
I t  had been known fo r  some time befo re  1981 th a t 3 .1 .3  

is  the p re sc r ip tio n  fo r  fa c to r iz in g  the Schrodinger 
o p era to r,

a 2 + u = (d -q)(d +q) 3 .1 .4X X X
This o p e ra to r p lays a  p iv o ta l ro le  in the theory  o f the KdV 
equation (see Gardner et al. (1968) fo r  example), however 
le t us examine th is  fa c to r iz a tio n  a t  fa c e  value.

This second o rder o p era to r has a  two dimensional
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3 .1.5
null-space spanned by functions \Jj, <f> satisfying

(d2 + u)if> = 0 (d2 + u)(f> = 0 W (0,0) = k
where W i s  the Wronskian

w(^,0) = \Jj<t>x-Mx 
and k is a non-zero constant. In particular we may choose \Jj, 
(ft to be compatible with the factorization, that is to say

(d + q)\fi = 0 (dx + q)\p = kifT1 3 .1 .6
where the second relation follows from the fact that ^-1 
spans the null-space of a^-q.

If we choose (ft, \Jj such that k=l then the relations in
3 .1.6 can be rewritten as

[ ax + [ 0 4 ]  ] [ 0 1% )  = 0

whereas the relations in 3 .1.5 are equivalent to

[ ax + ( u o) ] [ l x  ( W j D / ' P  } = 0

Drinfel’d & Sokolov pointed out that the operators in
3 .1.7 and 3 .1.8 are equivalent under a unique gauge 
transformation

3 .1.7

3 .1.8

d + x (° o)= [4 i)[* +[° 4)]& i) 3 .1.9

Moreover they showed that there is an analogous result for 
the factorization of the operator

d * + u  d * + . . . +  u — (d +q ).. . (d +q ) 3 .1 .1 0x <-i x o x x
with

E?, = 0
1=0

In this case the matrix operators

d + x

q -1 0 ...
0 g -1 0 . . .

. .  . .

0 <7 .

3 .1.11

and

a +x

0 -1 0 ...
0 -1 0 ...

“  -1
u .... u 0 -o *-i

3 . 1.12
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a re  gauge equivalent by the ac tio n  o f a  lower tr ia n g u la r  

un ipo ten t m atrix with unique en tr ie s  which belong to C{q^}. 
The fa c to r iz a tio n  3 .1 .1 0  has been used by Sokolov & Shabat 
(1980) and Fordy & Gibbons (1980) to c o n s tru c t zero 
cu rv a tu re  equations, f o r  the v a riab le s  q , given a  Lax 
equation with the s c a la r  sp e c tra l o p e ra to r 3 .1 .1 0  (see a lso  
Kupershmidt & Wilson (1981)).

Of course  i t  is  not obvious th a t th is  transfo rm ation  o f 
m atrix o p e ra to rs  allows to  pass from one equation to 
ano ther. For the Miura transfo rm ation  the argument p resented  
by D rin fe l’d & Sokolov (1985) goes b r ie f ly  as follow s.

In  zero cu rv a tu re  form the mKdV equation has the 
s p e c tra l  o p e ra to r with rep resen ta tio n

3 + f q ~Z1 3 .1 .1 3x [~z -q)

Recall from ch ap te r 1, §1 .2 , th a t th is  uses the p rin c ip a l
re a liz a tio n  o f the loop a lgebra . In  the s tan d ard  re a liz a tio n  

th is  o p e ra to r has the form

a + I q _11 3 .1 .1 4x [-z -q)

Under the ad jo in t ac tio n  o f lower tr ia n g u la r  unipotent 
m atrices in SL(2,C) the element

is  f ix ed . Consequently

(4 ?][»,* [4 4E 5) 4)
A more general statem ent is  th a t  the o p e ra to r

£ = a + f q -1)
X  L r _ z  -<U

can be transform ed into

M(£) = d + f ^ l] , ji = q - q + rx l fi-z 0J ^ M

3. 1.15

3 .1 .1 6

3 .1 .1 7

3. 1.18

by a  gauge transfo rm ation  using  a  unique lower tr ia n g u la r  
unipotent m atrix ( i t  is  o f  course  the same lower tr ia n g u la r
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m atrix used in 3 .1 .1 6 ) .
D rin fe l’d & Sokolov were fo rced  to in troduce the 

o p e ra to r £ because gauge ac tio n  o f the  group N_ o f matrix 
"functions" o f the form

r 1 o i
[a(x) 1 J

does not p reserve  the s e t  o f o p e ra to rs  having diagonal 
p o te n tia ls . £ can be thought o f as a  generic element o f the 
s e t  o f o p e ra to rs  with lower tr ia n g u la r  p o te n tia ls , on which 
N_ a c ts  by gauge transfo rm ations.

Having noticed  3 .1 .1 6  we would like  to be ab le to  say  
th a t the Miura transfo rm ation  is  the re s u l t  o f "dividing 
out" by the ac tio n  o f N_. We th ink  o f the v a riab le  /x as 
being an y_-gauge in v a rian t s in ce  the map £ h-» M(£) a ss ig n s  

a  unique M(i?) to the >/_-gauge o rb it  o f  £. U nfortunately  th is  

idea does not go through, but D rin fe l’d & Sokolov managed to 
salvage some o f th is  concept ingeniously.

They defined two d e riva tions

dt£ = [ V (r)+ , £ ] 

Vt£ = [ V (r)+ , £ ]
3 .1 .1 9

where [V (r) ,2 ]  = 0 and V (r)+ (resp ec tiv e ly , V(r) ) is  the 
f in i te  s e r ie s  o f  terms in V(r) o f  non-negative degree in the 
p rin c ip a l (resp ec tiv e ly , s tan d ard ) grading. The d e riv a tio n  
d y ie ld s  the mKdV equation when rsO (c le a r ly  V(0) is  the 
s e r ie s  V commuting with the o p e ra to r 3 .1 .1 3 ) ,  while the 
d e riv a tio n  gives the KdV equation f o r  the v a riab le  jx ( i t  
is  th is  la t te r  d e riv a tio n  which is , so to speak,
;V _-invarian t).

According to D rin fe l’d & Sokolov we look a t

(Vt- a t )2 = [ V(r) -  V (r)+ , £ ] 3 .1 .2 0

The m atrix V (r)+ -  V (r)+ is  lower tr ia n g u la r  ( r e c a l l  th a t  in 
the p rin c ip a l grading the genera to r 

- _ - i f  0 O')1 11 0 J
has degree - 1 , while in the s tan d ard  grading

S)
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and th e re fo re  has degree 0 ). The idea o f  Dr in f el* d & Sokolov 
is  th a t  must be tangent to  the one-param eter subgroup
e x p (s (V (r)+ -  V (r)+)) o f  N_. Since p is an in v a rian t o f th is  
group they conclude th a t (V^-d^Jp = 0. Therefore d^ a lso  
gives the KdV equation fo r  u when rsO.

The rem arkable achievement o f D rin fe l’d & Sokolov was 
to prove th a t a  s im ila r procedure can be followed f o r  any 
zero cu rv a tu re  equation a sso c ia ted  with the grading o f type 
( 1 , 1 , . . . , 1 )  (the  p rin c ip a l grading) on the Lie a lg eb ra  Lg(A) 
with a f f in e  C artan matrix A. Their general r e s u l t  is  
th is :  le t  (g ,v ,A ) be the h ie ra rch y  o f zero cu rv a tu re
equations corresponding to  the p rin c ip a l grading on Lg(A), 
where

t
zA = E e,

1=0

in terms o f the canonical g enera to rs  fo r  Lg(A). To any 
vertex  o f the a f f in e  diagram T( A) th e re  corresponds

another h ie ra rch y  o f equations, u su a lly  re fe rre d  to  a s  the 
generalized  KdV equations, which a re  obtained from the 
h ie ra rch y  (g ,u ,A ) by a  transfo rm ation  o f  Miura type.

When the diagram is  a*1* the generalised  KdV h ie ra rch y  
obtained fo r  any choice o f  vertex  is  p rec ise ly  the  h ie ra rch y  
o f Lax equations a sso c ia ted  with the s c a la r  o p e ra to r 3 .1 .1 0  

(see D rin fe l’d & Sokolov (1985) ).
A sim ila r r e s u l t  can be obtained fo r  some grad ings 

o th er than the p rin c ip a l grading. L a te r we w ill look a t  the 
conditions necessa ry  to  ob ta in  th is  re s u lt ;  th is  e n ta i ls  a  
rig o ro u s development o f  the p roo f outlined  by D rin fe l’d & 

Sokolov.
For the meanwhile we w ill re tu rn  to  Miura’s

transfo rm ation . The explanation Ju s t given appears ra th e r  
ungainly; in the next sec tio n  we w ill examine a  more e legan t 
explanation  due to Wilson (to  be published).

§3.2  Miura’ s transfo rm ation  and SL(2,(C)

Let us reco n sid er the fa c to r iz a tio n  3 .1 .4  in the lig h t
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o f d i f f e r e n t ia l  Galois theory. The simple r e s u lts  we w ill 
use in  th is  sec tio n  can be found in the book by Kaplansky 
(1957, Hermann, see e sp ec ia lly  chap ter v i) .

Let C<u> denote the d if f e r e n t ia l  f ie ld  o f  ra tio n a l 
fu n c tio n s  o f  u, u^, uxx and so on, i. e. the quo tien t f ie ld  
o f  the  d if f e r e n t ia l  a lg eb ra  C{u>. We view C<q> as  the f ie ld  
ex tension  o f C<u> n ecessary  to fa c to r iz e  the Schrodinger 
o p e ra to r. As Wilson (to  be published) po in ts ou t, i t  would 
be very  convenient i f  th is  was a  Galois extension, th a t is , 
i f  C<u> was the fixed  f ie ld  o f  some group G o f 
(d if fe re n t ia l)  automorphisms on <D<q>. For then any
G -equivarian t d e riv a tio n  on C<q> would p reserve  C<u>.

However, th is  is  not the case , but the reason  why 

implies a  more in te re s tin g  explanation  o f Miura’s
transfo rm ation .

The f ie ld  ex tension <D<u> c £<\fi, <f» im plic itly  used in 

the previous sec tio n  is  the ex tension  con tain ing  the 
so lu tio n  space to the equation 

(dx + u)\ft = 0
I t  is  a  Galois ex tension  with Galois group SL(2,C), where 
the ac tio n  is

( \p <f> ) i— ¥ ( ip <f> ) ( a  0 ] 3 .2 .1
[ r  s ]

= ( oap+y<}> &ijj+8<f> ) aS-0y = 1
I t  is  no t d i f f i c u l t  to  see  why. Consider the tran sfo rm ations
3 .2 .1  f o r  a rb i t r a ry  a , 0 ,y ,8 . Provided aS-02r*O th is  is  a

2charge o f b a s is  f o r  the  n u ll-sp ace  o f + u , th e re fo re  u 
is  in v a rian t. However we a lso  have the  re la tio n  W($, $)=1, 
which is  not p reserved  un less aS-py^l.

At th is  po in t we a re  reminded th a t  the f ie ld  <C<̂ r,<p> is  
no t f re e ly  generated; i t  im plicitly  con tains the  re la tio n  
00x- ^ x= l. We p re fe r  to  work with a  f r e e  f ie ld  s in ce  then we 
have independent inde term inates in which to  w rite our 
equations. F ortunately  th is  can be remedied by le ttin g  t) = 
<f>/\f). The d if f e r e n t ia l  f ie ld  C<7)> is  the  su b fie ld  o f C<\p, <t>> 
fix ed  by the cen tre  {±1} o f SL(2,(C). The cen tre  is  a  normal 
subgroup, th e re fo re  we conclude th a t C<u> c C<7)> is a lso  a  
Galois extension, with Galois group PSL(2,C) =

81



SL(2 ,€ ) /c e n tre .
Indeed we have a  sequence o f ex tensions

C<u> c C<q> c C<7)> 3 .2 .2

where

u = qx - q2 , d = \ \ x\  3 .2 .3

The a c tio n  o f  PSL(2,C) on C<tj> is  by lin e a r f r a c t io n a l  

tran sfo rm a t ions

^  p _ L_o77 a 5- 0y=l 3 . 2.4
a  + yi)

We see from th is  th a t C<q> c C<t?> is  the Galois extension 
corresponding  to the so lvab le  subgroup PB+ o f  upper 
tr ia n g u la r  m atrices in SL(2,C) modulo {±I>. This subgroup 

a c ts  v ia  the  a f f in e  transfo rm ations

7) i— > (($a  + n)a 2 3 .2 .5

However, PB+ is  no t a  normal subgroup o f PSL(2,C), 

th e re fo re  C<q> cannot be a  Galois ex tension  o f C<u>. 
N evertheless, Wilson po in ts out th a t we have a l l  we need to 

explain  Miura’s  transfo rm ation .

The equation

711 71 xxx ~ 2 ^xx^x 3 .2 .6

on C<tj> is  PS L (2 ,C )-invarian t. This csui be seen by w riting  

th is  equation  as
T)t = S(v)vx 3 .2 .7

The exp ression  S (t>) is  ca lled  the Schw artzian d eriv a tiv e  o f 
tj; i t  is  well known to  be in v a rian t under lin e a r f r a c t io n a l  
tran sfo rm atio n s  (indeed S(tj) = 2u). T herefore the d e riv a tio n  
d defined  by 3 .2 .6  p reserves both the  su b fie ld s  <D<q> and 
C<u>, and o f  course  any su b fie ld  fix ed  by a  subgroup o f 
PSL(2,C). This equation y ie ld s  the mKdV and KdV equations 
f o r  the v a riab le s  q and u re sp ec tiv e ly . Wilson (to  be 
published) c a l ls  3 .2 .6  the "Ur-KdV equation".

Now i t  would be very  p leasing  i f  we could say  th a t th is  
explanation  is  the b lu ep rin t f o r  a  concep tually  n ea te r p roof 
o f the r e s u l t  obtained by D rin fe l’d & Sokolov described  a t  
the end o f  the previous sec tio n . However, i t  is  not c le a r , 
except in the case  o f sf(£+l,C ), what the c o rre c t analogue
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o f the top f ie ld  C<0, i//> is . So f i r s t  le t  us look a t  the case  
o f srU +l,C) and la te r  on we w ill attem pt to  understand  the 
more d i f f i c u l t  cases.

§3 .3  The case  o f the p rin c ip a l grading on sf(£+l,C ).

We w ill look a t  how the Galois group approach can be 
used fo r  zero  cu rv a tu re  equations with the sp e c tra l  o p e ra to r

a +x

-z

<7,

0 , 
- z

- z
-z

0 <7

E <7t = o
1=0

3 .3 .1

These come from the p r in c ip a l grading on the  Lie a lg eb ra  

with diagram a*1*. The zero cu rv a tu re  equation defin es  a  
d e riv a tio n  on the d if f e r e n t ia l  f ie ld  C<qQ, ...,q> which lie s  

in the middle o f the sequence o f f ie ld  ex tensions 

C<uq, . . . ,u >  C C<qQ......... q>  c C<\Jî  . . . ,^ > 3 .3 .2

where 

L 

and

— a + u a +
*+l  X *■  X u — (d +q )...(d +q ) 3 .3 .3o x v  x

(d +q ) . . .  (d +q )iji = 0 , i= 0 ,. .  . ,  n 3 .3 .4x n  x *i ’
The c o n s tra in t

E <7j - 0 
1=0

is  equ ivalen t to  u s  0 and th e re fo re
W(^o>. . . ,  = consteuit 3 .3 .5

We w ill f ix  the Wronskian to  be 1. Consequently the

d if f e r e n t ia l  f ie ld s  in the sequence 3 .3 .2  a re  not f re e ly
generated  (although i t  is  t r i v ia l  to  remedy th is  f o r  the 
bottom two f ie ld s ) .  We w ill look a t  th is  problem la te r . 
F i r s t  we w ill see how to  c o n s tru c t an SL(£ + 1 ,0 - in v a r ia n t
equation on the top f ie ld  which induces our given zero  

cu rv a tu re  equation on C<qQ, . . . , q>.
In  the p rin c ip a l re a liz a tio n  the zero  cu rv a tu re

equation has the form
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3 . 3 . 6[ 3  + q - z A , 3 . - ( v z k + . . . +  v ) ] = 0x n t  k 0

where 3^+q-zA is  the o p e ra to r 3 .3 .1 . However, we may a lso
w rite  these  two commuting o p e ra to rs  in the s tan d ard

re a liz a tio n , so th a t we have the commutator

[ 3x+q-(zA_+A+) , 3^-(yfcZk + ... + vq) ] = 0 3.3.7

Here A+ is  the m atrix with 1 ‘ s  along the super d iagonal and 
0 ’ s elsewhere, while A_ has a  s in g le  1 in the bottom le f t  
co rner. The m atrix vq is  upper tr ia n g u la r  with e n tr ie s  
belonging to the d if f e r e n t ia l  a lgebra  C{qQ,...,q}. We know 
th a t  the equation 3 .3 .7  is  id en tica l to

[ d x  + q -  A+ , 3 t -  v q  ] =  0 3 .3 .8

s in ce  these o p e ra to rs  a re  the components independent o f  z 

(more form ally , o f degree zero in the s tan d ard  grading) from 
the p a ir  o f commuting o p e ra to rs  above. For example, the mKdV 

equation can be rep resen ted  by the commuting p a ir  o f upper 
tr ia n g u la r  m atrices

3 +

f
qr -l '

, 3 . -
■Zq3-qxx Ziq-q2! '

X
b 0 -<7 .

’ t

■ 0 -

The o p e ra to r 3^+q-A+ is  the o p e ra to r 3 .1 .1 1 . As with 
the $r(2,C) case , i t  is  p o ssib le  to  w rite the re la tio n s

3 .3 .4  in the form
(3x + q -  A+)tf = 0 3 .3 .1 0

where S' is  upper tr ia n g u la r  and has top row
( 0  i// ... 0 )

All the o th er e n tr ie s  o f  ^  a re  elements o f  the f ie ld

C<«/f and a re  uniquely determined by the cond ition0 ^
3 .3 .1 0 .

I t  is  no t d i f f i c u l t  to  see th a t the equation 3 .3 .8  is  
the s e lf -c o n s is te n c y  cond ition  fo r  defin ing  the d e riv a tio n

d t on C<^o, . . . ,\Jj > by
3 =  v 3 .3 .1 1t o

Needless to say , on the su b fie ld  C<qQ, ...,q> th is
d e riv a tio n  is id en tica l to  the zero cu rv a tu re  deriv a tio n .

We want to show th a t the a c tio n  o f SL(£+1,C) on
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C<tfr......... \p> given byo ^
( \}jq . . . ) i—» ( ifiQ . •. ^  )g geSL(£+l,C) 3 .3 .1 2

leaves the equation 3 .3 .1 1  in v arian t. F i r s t  we tra n s la te  the

ac tio n  into an ac tio n  on
For any g 6 SL(£+1,C) we can fa c to r iz e  the m atrix 'Pg 

into the p roduct
tfg = (tfg)_(tfg)+ 3 .3 .1 3

where (tfg) is  a  lower tr ia n g u la r  unipotent m atrix, (tfg) + is  
upper tr ia n g u la r , both o f  whose e n tr ie s  a re  ra tio n a l
expressions in  the  coord inates  o f  'Jr. This is  a  m an ifesta tion  
o f  the  f a c t  th a t  the b ig c e l l  N_B+ is  open dense in
SL(£+1,C), where N is  the group o f  lower tr ia n g u la r  

un ipo ten t m atrices (see, f o r  example, Humphreys 

(1975, S p r in g e r))

3 .3 .1 4 . Lemma. The action 3 .3 .1 2  induces the mapping

i---- > (tfg)+

Proof. We can e a s ily  check th a t the  top row o f  (4rg )+ is  
p re c ise ly  the image o f 3 .3 .1 2 ; no tice  th a t i t  is  equal to
the top row 'Pg. To prove th a t the o th e r e n tr ie s  a re  c o rre c t 
we show th a t they bear the same re la tio n  to  th is  top row as  

the e n tr ie s  o f ¥ do to i t s  top row.
Recall is  ch arac te rized  by the equation 3 .3 .1 0 . So 

c le a r ly
(tfg^C tfg)-1 = ~ q + A+

The le f t  hand s id e  is
[(*g) J ^ C t f g r 1 + (4'g)_[(4'g) + ]x (^ g )^ 1 (4fg )2 1

Therefore
ax  -  [ (« g )+]x ( * g ) ; '  = W l ’ i a ,  + q -  A+H*g>_

The l e f t  hand s id e  o f  th is  is  upper tr ia n g u la r , whereas the 
r ig h t hand s id e  only has A+ above the d iagonal, th e re fo re  i t  

has the form
q + q 7 — A 3 .3 .1 5

x +
where q 7 is  a  d iagonal m atrix o f t ra c e  zero. The e n tr ie s  o f

q 7 a re  ch arac te rized  by the equation
(5 + q 7 -  A J(tfg ) = 0x + +
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and th e re fo re  a re  completely determined by the top row o f 
(^g) + . Consequently the o ther e n tr ie s  o f ($g) + a re  
determined by the top row using equations id en tica l to those 

in 3 .3 .1 0 . ■

We a lready  know from the Galois theory  th a t the Galois 
group o f C<^Q, ...,\Jj> over C <qrQ, . . . , q >  is  B+ and we recover 
p a r t  o f th is  from the observation  th a t  i f  g e B+ then C^g) + 

= $g, so

(^g) (^g )"1 = S' g- g"1^ 1 = -q  + A 3 .3 .1 6
X  X  ■

T herefore the e n tr ie s  o f q a re  c e r ta in ly  B -  invar ian t.

Remark. Let us look a t  the reason  why B+ is  the Galois 
group o f C<\}t t... ,\f)> over C<g ,... ,q>. The fa c to r iz a tio n  
3 . 3.3  o f L uniquely determines a  f la g  o f subspaces o f  the 

lin e a r span Y o f  { 0 , . . . , ^ .  This f la g  is  Y ^ Y ^ . . .  cY^=Y 
where Y is the kernel o f  the o p e ra to r in 3 .3 .4 . The ac tio n  
o f S L ( l+ l,0  on Y defined  by 3 .3 .1 2  is  such th a t g f ix e s  
the f la g  above i f  and only i f  g e B+. This is  because 

<0 , • • • ,0 > spans Ŷ .

The e n tr ie s  o f  the m atrix q ' in 3 .3 .1 5  show how 

SL( 1+ 1 ,0  a c ts  on the elements q ,...,q€.

3 .3 .1 7 . C orollary . For any g € SL( 1+ 1 ,0  we may write
dx + g°q -  A+ = + q -  A+](S'g)_ 3 .3 .1 8

where
goq = diag(goqQ, ...,goqJ

and goq is the expression for the action of g on q  ̂induced 
by 3.3.12.

A more e x p lic it  expression  comes from the expansion o f 

3 .3 .1 8
goq -  A+ = ( t f g ) ^  (¥g)_ + (^ g l^ C q  “ A+)(¥g )_

Since the r ig h t hand s id e  is  upper tr ia n g u la r  the lower 

tr ia n g u la r  terms on the le f t  hand s id e  must cancel so th a t
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3 .3 .1 9goq = q -  [('Pg)"1 A (tfg) ]— + — a

where the s u b sc r ip t  "d" denotes the d iagonal component of 
the m atrix in b rack e ts .

I t  w ill now be shown th a t the  equation 3 .3 .1 1  is  
SL( i+1, C ) -  in v a rian t.

3 .3 .2 0 . P roposition . Let go#, g°v denote the

transformation by g € SL(£+1,C) of the elements of and vq 
induced by the action 3 .3 .1 2 . Then 

d^goV)  = (g°vQ)(g°V)
Thus the derivation d^ is S L (£+ l,C )-equ ivarian t, so the

equation is SL(£+1 , 0 -invariant.

Proof. We have a lread y  e s tab lish ed  th a t  g°^ = (¥ g )+. Now we 
must prove th a t

d . (g®^) (go^)-1 = gov 3 .3 .2 1
To e s ta b lish  the r ig h t hand s id e  we re tu rn  to  the  d e fin itio n  
o f v as the component o f  degree zero , in the  s tan d a rd
grading , o f V . Recall th a t  V+ is  defined  as the s e r ie s  o f 
terms o f non-negative degree ( in  the  p rin c ip a l g rading) from 
the s e r ie s  V commuting with the s p e c tra l  o p era to r. T herefore 
v is  determined by the equation

[ dx + q -  (zA__+A+) , V ) = 0

where we have chosen to use the s tan d a rd  re a liz a tio n . This
equation implies

[ ( ^ g ) l1(a x+q-A+)(^g )_  + zA_ , ( t f g r ^ W g ) . .  1 = 0

s in ce  A_ is  f ix ed  by the group N ( i t  is  a  lowest weight

v ec to r f o r  SL(£+1,(C)). We can w rite th is  a s

[ dx + goq -  A+ , goV ] = 0

by v ir tu e  o f  lemma 3 .3 .1 7 . The s e r ie s  g°V is  th e re fo re
p re c ise ly  the s e r ie s  V with the d i f f e r e n t ia l  polynomials in 
q rep laced  by the same polynomials in g»q̂ . This follow s 
from the f a c t  th a t we can conjugate V and goV into the same
element o f 0(3(zA)) in the manner o f  the method o f  d ressin g .
Thus the s e r ie s  have the same co n stru c tio n  using
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d if fe re n t  p o te n tia ls  in the sp e c tra l  opera to r.
By d e fin itio n  z°v is  the m atrix with the d if f e r e n tia l  o

polynomials in  q rep laced  by the same polynomials in g 0^ .
T herefore g°u is  the term o f  degree zero (in  the s tan d ard  

o
grading) o f (g<>V) , the s e r ie s  o f non-negative terms (in  the 
p r in c ip a l grading) o f g°V. Denote th is  term o f  degree zero 

by (goV)°. Then

goi>Q = (goV)° = [ (^g )_ 1V (^g)_]°

= [ ( ^ g ) : 1V (^g)_ l+ 3 .3 .2 2

The la t te r  id e n tity  is  a  r e s u l t  o f  (*g)_ being lower 
un ipotent. Once again  the s u b sc r ip t ',+,, denotes the  terms o f 
non-negative degree in the p rin c ip a l grading. In  p a r tic u la r  

th is  term w ill be upper tr ia n g u la r  s in ce  the o b jec t inside 

the b rack ets  has degree zero  in the s tan d a rd  grading.
F ina lly  we w ill prove the p ro p o sitio n  by showing th a t 

the le ft-h an d  s id e  o f  3 .3 .2 1  equals 3 .3 .2 2 .

[c*g)+]tc««);1 = [(»gr1(**)]t[(**r1(*g)r1 

= 3{w i ‘- (««)_+

= d^Vg)^-  (*g)_ + (*g)_

This must be upper tr ia n g u la r , th e re fo re  the f i r s t  term must 
cancel the s t r i c t l y  lower tr ia n g u la r  p a r t o f  the  second 

term, leaving 3 .3 .2 2 . ■

Consequently the  d e riv a tio n  d . defined by 3 .3 .1 1
p reserv es  both  the su b fie ld s  C<qp , . . .  q>  and C<uq, . 
Dr in f  el* d & Sokolov (1985) have shown th a t  the 
cu rv a tu re  equation 3 .3 .6  induces a  s c a la r  Lax equation

u >.i
zero

atL*i = IP-L« 1

where P is  a  s c a la r  d if f e r e n tia l  o p e ra to r with c o e ff ic ie n ts  
from C<uq, ...u>. We may conclude from th e ir  r e s u l t  th a t the 

equation 3 .3 .1 1  implies th is  Lax equation fo r  the v a riab les

u ,. . . u .o t
To w rite the equation 3 .3 .1 1  e x p lic itly  in terms o f the 

v a riab le s  \b ,...,iZ r we must include the c o n s tra in t

88



W(^ ,... ,\J) ) = 1. However, as  with the Ur-KdV equation, i f
0 1 - i

we choose to define  tj = 'PjPq we f in d  th a t the v a riab les  
a re  d if f e r e n tia l ly  independent, th a t  is , the

a lg eb ra  C{ti , . . .  ,71^ is  f re e . We can see th is  by re tu rn in g  
to the d e fin itio n s  3 .3 .3  and 3 .3 .4 .

Let us assume fo r  the moment th a t u is  a  f re e  
v a riab le . Then a l l  the f ie ld s  in the  sequence 3 .3 .2  a re  

f re e . The Galois group o f  the top f ie ld  over the bottom 
f ie ld  is  now GL(£+1,C) (we have a  "P icard-V essio t"
ex tension ). In  p a r tic u la r

W(g°^0, • • • ,g « ^ )  = det(g).W (^Q, . . .  , ^ )

(see Kaplansky (Hermann, 1957)). The su b fie ld  C<ti , . . . ,  y>  is  
c le a r ly  f r e e  in th is  case; i t  is  the  fixed  f ie ld  o f  the 

cen tre  {kl I keC } o f GL(£+1,C). I t  follow s th a t the

Wronskian (and i t s  d e riv a tiv es) cannot belong to  the f ie ld

C<t? , . . . , n >  s in ce  i t  is  no t f ix ed  by th is  subgroup.1 ^
T herefore the elements ^ , . . . , 7)̂  and W (^Q, . . . , ^ )  a re  
d if f e r e n tia l ly  independent. As a  re s u l t ,  co n stra in in g  the
Wronskian has no e f fe c t  on the independence o f  the v a riab les

.... V

The orbit of solutions under the Galois group.

As well a s  explain ing the transfo rm ations o f
Miura type, the Galois group induces a  group o f
tran sfo rm ations on the so lu tio n  space o f  a  zero  cu rv a tu re
equation. This transfo rm ation  is  given by 3 .3 .1 7 ; s in ce  g°ty

= (^ g )+ is  a  so lu tio n  o f  3 .3 .1 1  i t  follow s th a t goq must be 

a  so lu tio n  to  the equation 3 .3 .8 . This transfo rm ation  w ill
be n o n - tr iv ia l  i f  g «S B+ (th e  o rb it  o f  a  so lu tio n  w ill be 
id e n tif ia b le  with the homogeneous space SL(£+1,C)/B+) .

3 .3 .2 3  Example. For the mKdV equation the SL(2,C) ac tio n  
3 .2 .1  induces the transfo rm ation

q  i—> Q' = ;;7J r f 1 “  (a + 7m)v(cL + t o )"1 3.3.24
6  X X  X X
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where we re c a l l  q = - tj n”1.^ 2 xx 'x

For example the t r iv ia l  so lu tio n  q=0 transform s into the 
almost equally  t r i v ia l  ra tio n a l so lu tio n

q' = ^  ^ a , b co n stan ts

A le ss  t r i v ia l  example is  the tran sfo rm atio n  o f the
o n e -so lito n  so lu tio n

g(x , t)  = zsech  o> where w = zx + z t 
For a rb i t r a ry  param eters a , y in 3 .3 .2 4  th is  so lu tio n  is  
transform ed into

q' (x, t)  = zsech  w -  [ -e  ^  ~ j—  e2** ln (cosec 2p + c o t 2p )l 1

where p = Arctan (e“). This new so lu tio n  s t i l l  vanishes a s  x 

tends towards ±co but, u n fo rtu n a te ly , i ts  behaviour is  f a r  
from nice s in ce  the fu n c tio n

-e -2p -  e2p In (cosec 2 p + co t 2p)

has a  zero in the range o f  p, 0 < p < ^  .

The examples dem onstrate th a t the transfo rm ation  3 .3 .2 4  
is  s ig n if ic a n tly  d if fe re n t  from the  "Backlund 
transform ation" constructed  by Wadati (1974). This is  a lso  
evident from the f a c t  th a t  the transfo rm ation  3 .2 .1 2  does 
not e x p lic itly  involve the time v a riab le  i, whereas in the 
Backlund transfo rm ation  i t  is  necessary  to  include an 
equation governing the t-dependence o f  the new so lu tio n .

§3 .4  G-in v arian t equations in general.

The sp ec ia l form o f  the  o p e ra to r 3 .3 .1  allowed us to 
a sso c ia te  the  v a riab les  qQ, ...qt with the f a c to r iz a t io n  o f  a  
s c a la r  lin ea r opera to r. In  general the  s p e c tra l  o p e ra to r f o r  
a  zero  cu rv a tu re  equation w ill no t have a  form which 
suggests  any such a sso c ia ted  lin ea r o p era to r. Without th is  
i t  is  no t c le a r  th a t th e re  is  any sequence o f f ie ld  

ex tensions analogous to 3 .3 .2 .
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N evertheless, i t  is  p o ssib le  to approach the
co n stru c tio n  o f  G -invarian t equations, a t  le a s t  f o r  G = 

PSL(£+1,C), from another po in t o f view which does not depend 
upon the ex istence  o f the a sso c ia ted  s c a la r  d if f e r e n t ia l  
o p era to r. This holds some hope o f being u se fu l in the 
general case . I t  w ill be i l lu s tr a te d  by re tu rn in g  to the 
case  G = PSL(2,C); the Ur-KdV -  mKdV -  KdV sequence 
introduced in §3 .2 .

The p rin c ip le , due to Wilson (p r iv a te  communication), 
is  to  regard  the  Ur-KdV equation as  defin ing  a  lo ca l flow on 
a  space o f fu n c tio n s  X  on which G a c ts  on the  r ig h t . The 
f ie ld  ex tensions 3 .2 .3  correspond (in  rev erse  o rd e r) to  the 
quo tien t spaces in the sequence

X  — > DC/PB+ — > X/G 3 .4 .1
In tu itiv e ly  each d if f e r e n t ia l  f ie ld  rep resen ts  the " f ie ld  
o f  func tions"  over one o f these  spaces.

Remark. U nfortunately  th is  analogy between f in i te
dimensional v a r ie tie s  where the f ie ld  o f  fu n c tio n s  is  the 
f ie ld  o f  f r a c t io n s  o f the coo rd ina te  rin g , and in f in ite  
dimensional m anifolds is  not a  good one. One o f  the problems 
is  th a t we cannot w rite every fu n c tio n a l on a fu n c tio n  space 
as  the ( in te g ra l o f) a  ra tio n a l expression  involving the 
fu n c tio n s  and th e ir  d e riv a tiv es.

For our purposes the an a ly tic  p ro p e rtie s  o f the space X 
a re  irre le v a n t provided we end up with a  sen s ib le  coordinate  
d esc rip tio n . Therefore, to  avoid questions about g lobal 

s tru c tu re , we w ill deal with germs o f fu n c tio n s .
We define  DC to be the space o f germs (a t  0) o f 

holomorphic fu n c tio n s
# : C — » N \G 3 .4 .2o -

with the p ro p erty  th a t, f o r  any l i f t
$ : 0 — > G 3 .4 .3o

o f ( i . e  'P(x) = N $(x) in some neighbourhood o f 0) the 

m atrix germ 1 has the form
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3 . 4 . 4

where the unsp ec ified  e n tr ie s  Eire germs o f C-valued
fu n c tio n s . This p ro p erty  can be s ta te d  more form ally a s

$ : C — » b + A 3 .4 .5x o -  +
where 6_ c $1(2 ,0  is  the subalgebra  o f  lower tr ia n g u la r  
m atrices, and A+ is  the matrix 3 .4 .4  with O’s  in p lace  o f 
the unspecified  e n tr ie s .

In  coo rd ina tes  we w rite any element o f G = PSL(2,C) as 
the equivalence c la s s

[ C d ] = { [ O d } mod{±I} 1 ad'bc=1 }

The quo tien t N_\G is  the space

{ [ a  b ] | ( a t ) « C 2- f ( 0  0 ) 1 )

I f  we w rite
. _ [ a(x) Mx) 1 

[ c(x) d(x) J

the condition  3 .4 .5  reduces to ab - a  bx x
the space

1. T herefore X is

{ [ a (x ) M x) ] | W(a,b) = 1 > 
The Wronskian cond ition  ceui be rew ritten  as

th e re fo re  X can be id en tified  with

{ c e r ta in  germs o f  holomorphic fu n c tio n s  ^—> P 1 >

Previously  we fix ed  t> = -  and ignored the po in t a t  in f in ity .ci
However, th is  po in t is  very  im portant; the value o f  7? passes 
through the p o in t a t  in f in ity  p re c ise ly  when any l i f t  $ 
ceases to  lie  in the big c e ll  N_PB+ o f  PSL(2,C). We see  th is  
in the fa c to r iz a tio n

' 1 o' 'a O ' r i — I
$ = a

£ i 0 i- 0 1

This leads us back to  the previous d e sc rip tio n  o f  the 
coord inate  tj; in the previous sec tio n  was the m atrix o f
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W (a ,b )  =  1 3 . 4 . 6

indeterm inates rep resen tin g
f L ^a b

3 .4 .7 .  Remark. I t  is  worth noting th a t  the m atrix germ 4' in 
3 .4 .6  is  a  meromorphic germ. The condition  ab^-a^b = 1

implies th a t  any zero  o f  a is  a  simple zero (otherw ise b 
would no t be holom orphic). T herefore ¥  has iso la ted  (simple) 
po les. Equivalently , any l i f t  4 o f  ¥  takes values in  the  big 
c e l l  except a t  iso la ted  po in ts .

3 .4 . 8 . Lemma. DC/PB+ is  in  bijection with a set of
meromorphic germs

q : C -----» J) s  Co
where 5 is the Car tan subalgebra of diagonal matrices in 
sr(2 ,C).

P roof. I t  is  c le a r  th a t  we can id e n tify  each element ¥  o f  DC 
with a  meromorphic m atrix germ ¥:C ~—» PB+ ; i t  is  given by 
3 .4 .6 .  This germ s a t i s f i e s

¥ ¥~1 : C — » 5 +

th e re fo re  the d iagonal -q  o f  ¥ ¥-1 is  a  meromorphic germ and 
is  a lso  PB+-in v a r ia n t ( c . f .  3 .3 .1 6 ) .

I f  two germs ¥, ¥ ' a re  such th a t  ¥x¥~1= ¥^(¥')_1 then 
¥ = ¥7 g fo r  some g € PB+ th e re fo re  the  map ¥^¥-1 —> q is  a  
b ije c tio n . ■

The space DC/G is described  using the  gauge 
transfo rm ation  due to  D rin fe l’d & Sokolov presen ted  in  §3 .1 . 
We can s ta te  as  a  f a c t  th a t fo r  each germ q th e re  e x is ts  a  

germ

such th a t 

has the form

n(x) = C — » N o -

n(3 + q -  A ,)nx +
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3 . 4 . 9a +x

where the  unspec ified  en try  is  a  meromorphic germ. This 
o p e ra to r is  the  unique o p era to r o f th is  form in the gauge 
o rb it  o f the group o f  lower tr ia n g u la r  m atrices. Given th is  

we can prove the follow ing lemma.

3 .4 .1 0 . Lemma. OC/G is in bijection with the set of
meromorphic germs u : C > C obtained by the gauge
transformation above on the operator d - V V *.x x

Proof. Let $ be any l i f t  o f tf. We w ill show f i r s t  th a t  a l l  

germs $g, g € G, lead to  the same o p e ra to r o f  the  form
3 .4 .9 .

The o p e ra to r d -  $ $_1 is  the same a s  d -  ($g) ($g)-1 

f o r  every element g o f G. I t  is  equ ivalen t to  d^ by

the  gauge transfo rm ation

Therefore each element o f  4G, f o r  any l i f t  $ o f leads to  
the same en try  u in the  o p e ra to r 3 .4 .9 .

Now suppose th a t a re  two l i f t s  o f  elements o f  DC

which both map to  the same o p e ra to r o f the form 3 .4 .8 . Then

f o r  some meromorphic germ l(x )  with values in N_ ( th is  
follow s from both  n, m having values in  N_). We may conclude

and K x l i '  must be holomorphic in a  neighbourhood o f 0. 
Consequently f o r  each x in  th is  neighbourhood 

N_$(x) = N _$ '(x )g
T herefore $, $ ' a re  both l i f t s  o f the same element o f OC/G. ■

So f in a l ly  we have the s tru c tu re  3 .4 .1  we req u ire . The 
most important th ing  is  th a t we have obtained decent

m(x)(dx - flf^mCx) m(x) =

This can be seen from

W 1*) W 1*)"1 = $ $'x x

a -  $ 1 = a -  ( K x ) ^ ) (Kx)^)'1x x x x

th a t  (!$ ' )x ( l$ ' )-1 is  holomorphic s in ce  $x$_1 is . T herefore
$ = l ( x ) $ 'g
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coord ina tes  tj, q and u fo r  DC, %/PB+ and DC/G (q is  the en try  
in the d iagonal m atrix q ). I f  we ignore the d e ta i ls  o f the 

an a ly s is  we can begin to form ulate an approach to 
genera liz ing  th is  co n stru c tio n .

The e s s e n tia l  ingredient f o r  the  g en era liza tio n  is  the 
presence o f a  second Z-grading on L (g ,0 ). We rep lace  G by 
the ad jo in t group A o f  a  Lie subalgeb ra  a c g where a is  
(isom orphic to ) the subalgebra  L (g ,0)° o f  elements o f  L (g ,0) 
with degree zero in the second Z-grading. This second 
grading  is  c o a rse r  than the o r ig in a l in the sense th a t 

L(g, 0 )Q c L (g ,0 )°

Remark. The loop a lgeb ra  L (g ,e) with the s tan d ard  grading 
has the most co a rse  o f a l l  gradings s in ce  the Lie a lg eb ra  o f 

elements o f degree zero is  isomorphic to  g. Thus we define  a 
to  be the Lie subalgebra  o f g corresponding  to the embedding 

o f L (g ,0)° in L (g ,e)Q.

For example, the case d e a lt with in the previous 
sec tio n  compares the p rin c ip a l g rading  with the s tan d ard  
grading. In  th is  case  L (g ,0)Q s  !j.

In  general the o rig in a l g rading  on L (g ,0) induces a
n o n - tr iv ia l  Z -grading on a. We use th is  to  o b ta in  the
" trian g u la r"  decomposition

a = m + g + m °o +
where gQ = L (g ,0)Q and m_ (m+) is  the  n ilp o ten t subalgebra  
o f  elements o f  negative (p o s itiv e ) degree. In  the case  o f 
the p r in c ip a l-v s -s ta n d a rd  grading th is  is  

g = u_ + 5 + \
We would like  to take the space DC to be the subspace o f

{ holomorphic germs ¥:C > M__\A > M_ = exp m_

such th a t f o r  each l i f t  $ o f S'

$ : C — » p + A  , P = n t + g  3 .4 .1 1x o r -  + r -  -  ®o
Here A+ is the component o f A (e g^) lying in m+. We w ill
see la te r  th a t  the p ro p e rtie s  d esired  o f A+ s tro n g ly  a f f e c t
the choice th a t is  made fo r  the second grading.
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We propose to  rep lace  the sequence o f p ro jec tio n s  3 .4 .1  

by
X ----> X/P+ — > X/A 3 .4 . 12

where P+ = exp p+ , p+ = + m+. For th is  to  make any sense
a t  a l l  we must a t  le a s t  be ab le  to  show th a t

X/P = { c e r ta in  germs q : C — > a } 3 .4 .1 3+ o o

This is  id e n tif ia b le  with a  s e t  o f  p o te n tia ls  f o r  the
s p e c tra l  o p e ra to r. This can be done, a s  e a r l ie r ,  by
id en tify in g  each element o f X with a  m atrix germ

¥ : C ^ p +

Then
* tf"1 X : c r *  a o + A+

Conversely, $  is the unique so lu tio n , up to  r ig h t

m ultip lica tion by an element o f  P+, to  the equation

+ q -  A J *  = 0 3 .4 .1 4

Given a  zero  cu rv a tu re  equation
[dx + q -  zA , dt -  V+] = 0

we have a  lo ca l flow 3^ f o r  the co o rd ina tes , given by
3 .4 .1 3 , on X/P+. In  p rin c ip le  we can d efine  a  flow on X by

dji = v V 3 .4 .1 5t o
where v q  is  the component o f  degree zero  o f V+ in the second 

grading on L (g ,0 ). This induces the flow  
[3X + q -  a+ , a t  -  1>0] = o

on X/P+, which is  p rec ise ly  the zero cu rva tu re  equation we
s ta r te d  with. This is  in d ire c t  analogy to the observations 
3 .3 .1 0  and 3 .3 .1 1  in the previous sec tio n .

In  f a c t  sym bolically we can rep ea t the s tep s  o f the 

p roof o f p ro p o sitio n  3 .3 .2 0  th a t the equation 3 .4 .1 5 , in the 
case  o f sf(£+l,(D) with the p r in c ip a l-v s -s ta n d a rd  g rading , is 
A -invarian t. However th is  is  meaningless un less the
equations can be w ritten  in coord ina tes . This is an
unresolved problem.

Curiously, i t  is  e a s ie r  to d esc rib e  the space X/A in
coo rd ina tes . The basic  idea is  contained in the p roof o f
lemma 3 .4 .1 0 . We id en tify  each element o f X/A with a  double 
co se t M  $A, where
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M  = { germs m :<D — > M >- o -

and $ s a t i s f i e s  3 .4 .1 1 . This is  in tu rn  id en tified  with a  
gauge-equivalence c la s s  o f o p era to rs

{ mOx -  | m e M_ > 3 .4 .1 6

which con ta in s  the o p era to r in 3 .4 .1 4 . In  the next sec tio n  
we w ill e f fe c t iv e ly  show th a t, f o r  c e r ta in  choices o f A+, 
th e re  e x is ts  a  unique o p era to r in th is  c la s s  which belongs 

to the s e t
{ dx + n -  A+ | n : C £—> r >

where T is  a  p a r tic u la r  subspace o f a ( in  the case  o f 
$rU+l,C) d e a lt with in the previous sec tio n  the unique 
o p era to r is  given by 3 .1 .1 2 ) .

This b rings us the f u l l  c irc le  round to  the method o f 
D rin fe l’d & Sokolov. We saw in §3.1 th a t they managed to 
describe  the transfo rm ation

DC/PB+ ----> DC/SL(2,C)
without any knowledge o f the space DC. In the next sec tio n  we 
w ill use the ideas o f D rin fe l’d & Sokolov to , e ffe c tiv e ly , 
c o n s tru c t the map

DC/P+ — > DC/A
although we w ill re tu rn  to  an e n tire ly  a lg eb ra ic  po in t o f 
view. A cavea t on th is  co n stru c tio n  is  th a t the element A+ 
must s a t i s f y  c e r ta in  cond itions, so only c e r ta in  h ie ra rc h ie s  
o f zero cu rv a tu re  equations admit th is  " transfo rm ation  o f  
Miura type".

§3 .5  The Miura-Dr in f e r  d-Sokolov transfo rm at ion .

We w ill rep lace  the map
DC/P+ — > DC/A 3 .5 .1

with the "dual" mapping (in c lu sio n ) o f d if f e r e n tia l  
a lgebras

C{ut> <----> C{qf = 2 3 .5 .2
This w ill be done by form alizing  the method used by 
D rin fe l’d & Sokolov (1985) to describe  the coord inates o f
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the gauge-equivalence c la s se s  introduced a t  the end o f the 
previous sec tio n . The se tt in g  f o r  our main r e s u l t  w ill be as 
follow s.

Let ( g ,0, A) be a  h ie ra rch y  o f  zero  cu rv a tu re  equations 
and le t  L (g ,0) have the grading o f  type (s  , . . . , s ^ )  ( th is  is  
a  sequence o f  0*s and l ’ s ) .  Choose another Z -grading, o f 
type (<r , . . . ,  o*̂ ), which is  c o a rse r  than the f i r s t  in the 
sense: a  = 0 i f  s^ = 0. We denote the  homogeneous subspace 
o f elements o f  degree j  in the l a t t e r  grading by L (g ,0) J. 
Then L(9 , 0)q c L(g, 0)° and we can decompose the la t te r  
red u c tiv e  subalgebra  into

L(g, 0)° = m_ © L (g ,0)o © m+

where m_ (m+) is  the n ilp o ten t subalgebra  o f  elements o f 

negative (p o s itiv e ) degree in L (g ,0). As befo re  we define  
p_ = m_ + L(9 , 0)q. Let X € L (g ,0 ) i be the semisimple element 

covering A e g ( i . e  X = zA). I t  is  c le a r  th a t

L ( s ,0 ) i c L(5 , 0)° © L(9 , 0)*

We s p l i t  X = + X accord ing ly  ( i t  follows th a t X̂  is  the

l i f t  o f A+ to LCg,© ^).
Our aim is  to prove the follow ing re s u lt ,  which is  a  

g en era liza tio n  o f the re s u l t  obtained by D rin fe l’d & Sokolov 
(1985) (described  a t  the end o f § 3 .1 ).

3 .5 .3 . P roposition . Suppose the hierarchy (g,Q,A) has been 
chosen together with a coarse grading of type (<rQ,..., <r̂ ) 
such that the semisimple element X in the loop algebra 
satisfies:

(i) [ A1 , m_ ] = 0,

(ii) odX : m_ — » is injective.
Then there exists a free subalgebra C{û  of C{q̂  such that 
any derivation on defined by a zero curvature
equation from (9,0,A), maps C{ut> into itself. The variables 
u are obtained by a transformation of Drinfel* d-Sokolovi
type, in other words, by a gauge transformation of the 
operator d̂ +q-X.
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3 .5 .4 .  Example. Let us show th a t the cases tre a te d  by 
D rin fe l’d & Sokolov s a t i s f y  the conditions o f the 
p ro p o sitio n . When L(g, 0) corresponds to  the p rin c ip a l 
g rading  we may assume, without lo ss  o f  gen era lity ,

* = E e
1=0

where { e th,fj  is  the s e t  o f canonical g en era to rs  fo r  
Lg(A). D rin fe l’d & Sokolov choose the  second grading  to  be 
o f  type ( 0 , . .  , s  , . .  ,0 ) ,  s = l .  In  th is  case  the a lg eb ra  m_ is  
generated  by { f  |J* i} , p_ is  generated by { f  , h |j* i>  and

A = Ye 
o Z. J J*i

A = e l i

Here p ro p erty  ( i) is  a  consequence o f the re la tio n s

[e , f  ]=5 h . l j ij l
P roperty  ( ii) follows from a  re s u lt  o f K ostant’ s 

(1959), re fe r re d  to  e a r l ie r ,  which say s  th a t AQ+p is  reg u la r 

semisimple i f  p is  a  lowest weight v ec to r f o r  p_. A re g u la r  
semisimple element only has semisimple elements in i t s  

c e n tra liz e r , whereas m_ only c o n s is ts  o f  n ilp o ten ts . 

T herefore the kernel o f  ad(AQ+p) on m_ is  t r iv ia l .  However, 
[p,m_] = 0 s in ce  p is  a  lowest weight vecto r, th e re fo re  adAQ 
is  in jec tiv e  on m_. More generally , th is  argument shows th a t 
i f  A is  re g u la r  semisimple then ( ii) o f 3 .5 .3  follow s from 

(i).

The p rin c ip le  behind the transfo rm ation  developed by 
D rin fe l’d & Sokolov is  the notion  o f "dividing out" by the 
gauge ac tio n  o f the group M_ on the space o f o p e ra to rs

{ 5  - 9  $-1 | $ a  l i f t  o f  an element o f DC >x x

described  above. In  the a lg eb ra ic  form ulation we rep lace  
th is  s e t  by a  "generic element"; the o p e ra to r

£ = ax + Z V ,  + E r.C. - X
1 m

= 3 + q + r -  A 3 .5 .4
x

where { e } is  a  b a sis  fo r  L (g ,0)o , is  a  b a s is  f o r  m_
and { r > is a  s e t  o f indeterm inates independent o f C{q >.m 1
This o p era to r belongs to the c la s s
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3 + p — X 3 .5 .5x -
where d  = C{g , r  }. For example, fo r  the mKdV equation £ has1 m
been given in 3 .1 .1 7 .

The group must be rep laced  by the group M  =

exp(m_®4). As promised a t  the end o f  the previous sec tio n ,
i t  w ill be shown th a t  i f  X s a t i s f i e s  th e  cond itions ( i) and
(ii) in 3 .5 .3  then each jHygauge o rb it  in

3 + p ®d -  Xx -
con ta in s a  unique element o f  the c la s s  o f  o p e ra to rs  

3 + T®j4 — XX
where the subspace F c p_ is  given by the  next lemma.

3 .5 .6 . Lemma. Suppose

adX : m — > p o -
is injective; then there exists a  homogeneous subspace

T c p_ satisfying
p = T © [ X , m ]

-  o  -

where dim X = dim L (o ,0) and f = © f , X c L (g ,0) .o J J J J

Proof. Define Pj = P_ f| L (£ ,0) . For each j <0 the map

adXo rj 'j+l
is  in jec tiv e  by p roperty  (i) o f 3 .5 .3 . We define  XJ+i

to  be

a  complementary subspace to  [ , p^] in  p , and f =p wherek r k
k is  the lowest degree. I t  follows th a t  dim X - dim L (g ,e)
s in ce  odAQ is  in jec tiv e  on m__.

3 .5 .7 . Remark. In  the  case  o f  $r(£+l,C) with the 
p rin c ip a l-v s -s ta n d a rd  grading (as  in sec tio n s  3 .2  and 3 .3 )  
the subalgebra  p_ is  the a lgeb ra  o f  lower tr ia n g u la r  
m atrices and we may choose X to  co rresond  to  space o f 
"companion" m atrices, which have non-zero  e n tr ie s  only in 
bottom row (excluding the d iagonal p o s itio n ).

From now on we w ill assume th a t  X s a t i s f i e s  the 
cond itions o f p ro p o sitio n  3 .5 .3 .

3 .5 .8 . Lemma. Let & be a differential algebra, p e p_®&.
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Then there exists a unique y € mj$& such that
exp ady (3^ + p -  A) € 3 + fog -  A

Proof. We decompose p into J] p , y in to  £  y where
jso J j<o J

p^y^ e Pj. Then the s e r ie s  above expands into

■ \  - Ao + <po + [ V  y-i ,}

+ <P-!+ [V y-21+ S[y-l-[V y-l1,_ V - l } +---

where we have used the  p roperty  [A ^y] = 0 from 3 .5 .3 . Here 
we have gathered  a l l  the  terms o f  the same degree in  L(g, 0) 
(note th a t  Aq has degree 1). Since odAQ is  in jec tiv e  on tn_ 
we see th a t  th e re  e x is ts  a  unique y such th a t the  f i r s t  
term in b races  belongs to  T . S im ilarly  th e re  e x is ts  a  
unique y , given y , such th a t the second term in b races 
belongs to  X . The s e r ie s  is  f in i te ,  th e re fo re  y is  
uniquely determined by th is  p rocess. ■

As a  r e s u l t  o f  th is  lemma i t  is  p o ssib le  to  define  a

map
M : 3 + p ®g — A ----> 3 + fog —Ae x - x

which a ss ig n s  to each element o f  the  le f t  hand s id e  the 
unique o p e ra to r given by th is  lemma.

3 .5 .1 0 . D efin ition . We will call the transformation 
£ ,---> M^(2)

the Miura-Dr infer d-Sokolov transformation of the operator 
£. Fix a basis {£} of X, then we define {/î } to be the set 
of coordinates for M (£):A

M( J £ ) = 3  + T p Z  - A
A  X  U  " l

We denote by g the differential subalgebra of d.

Now we a re  going to  prove p ro p o sitio n  3 .5 .3  a f te r
choosing the v a riab les  u to be given by se tt in g  a l l  r  =0i m
in the exp ressions f o r  ped. The a lg eb ra  d then co llap ses  to 
C {q} = 2, so we have the inc lusion  3 .5 .2 . Notice a lso  th a t 
with a l l  r  = 0 the o p e ra to r £ becomes 3 + q -  A and we s t i l l

in X

have a gauge transfo rm ation
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exp ad y ( r  =0){3 + q -  A} 6 d + r<s£{u > -A
m X X i

where y ( r  =0) denotes th a t a l l  r  =0 in  y. The v a riab le s  um m  1
a re , o f  course , the coord inates  o f  th is  opera to r.

To prove 3 .5 .3  we must show th a t each zero  cu rv a tu re  
d e riv a tio n  p reserves CIu^}. To do th is  we d efine  two
d e riv a tio n s , d and 7^, on A. The form er w ill y ie ld  the zero 
cu rv a tu re  equation when a l l  r  =0.

ID

Both d e riv a tio n s  a re  defined using  the same s e r ie s  V(r)

commuting with the o p e ra to r £. V(r) is  ch arac te rized  by the
element v in  c(g(A)); we can  rep ea t the d re ss in g

co n stru c tio n  used in  ch ap te r 1, §1 .3 . The im portant p o in t is
th a t V(r) reduces to  the unique s e r ie s  V corresponding  to
the d e riv a tio n  d on S when a l l  r  =0. The p roo f th a t  th is

V m
can be done w ill be delayed u n til  the end o f the sec tio n ; i t  

is  a  s tra ig h tfo rw ard  extension o f  p ro p o sitio n  1 .3 .7 .
Given th is ,  we can w rite

V(r) = V (r)+ + V(r) 

= V (r)+ + V(r)
where V (r)+ (V (r)+) is  the f in i te s e r ie s  o f terms o f
non-negative degree in the grading o f type

( s o ......... s <>
(resp ec tiv e ly , o f type

(<ro ......... o*p). Now define
d £ = [

V
V (r)+ , £ ] 3 .5 .1 1

7 £ = [
V

V (r)+ , £ ]
In  each case  the de riv a tio n s  a re  w ell-defined s in ce  in both 
cases  the  rig h t-h an d  s id e  is  an element o f p_04. This is  
evident from the id e n titie s

[ V( r )+ , £ ] = [ £ , V(r)_ ]

[ V( r )+ , St ] = [ Z , V ( r ) -  ]
I t  was explained e a r l ie r ,  in §3 .1 , th a t the d e riv a tio n  

7^ is  needed because is  no t eq u iv arian t with re sp ec t to 
the transfo rm ations which leave u fixed . So we cannotl
r e s t r i c t  d to  £ by "dividing ou t by the ac tio n  o f  M.”. 
U nfortunately , n e ith e r can we dem onstrate th a t  V is 
" ^ -e q u iv a r ia n t"  on 4. In  f a c t  the gauge ac tio n  o f M  does 

not induce a  group o f transfo rm ations on 4. An example
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o rig in a l M iura-D rinfel’ d-Sokolov
c la r i f ie s  th is  poin t.

Recall the __ w ....
transfo rm ation  from §3.1

£ i---------- > M(£)

d + x ( r - z  -q] '---- > ax + [ ° - z  "o] M = V * +r

I t  is  a  quick computation to  show th a t conjugating  £ by

[c l] csC{<7’r> 

induces the transfo rm ation  
q i— > q + c

_ 2r  i— > - c  + 2cqr + c + r  x

3 .5 .1 2

3 .5 .1 3

on C{q, r> . However, un less c is  independent o f both q and r  a  
second ap p lica tio n  o f  th is  transfo rm ation  does not give the 
same r e s u l t  a s  rep lac ing  c by 2c (which is  the re s u l t  o f

squaring  3 .5 .1 3 ) .
To re c t i fy  th is  we must define  c to  be ano ther 

indeterm inate which we ad jo in  to C{q, r> . We can show th a t
3 .5 .1 3  does define  a  (one param eter) group o f  automorphisms 
o f C{q, r,c>  and th a t (which is  extended to  C{q, r ,  c} by
defin ing  V^csO) is  eq u iv arian t with re sp ec t to  the  a c tio n  o f 
th is  group. I claim th a t  C{/i, c} is  the  subalgebra  fix ed  by
th is  group, th e re fo re  V p reserves i t .  A fter we s e t  c=0 i t
follow s th a t Vv maps C{/i} in to  i t s e l f .

By follow ing th is  p rin c ip le  i t  w ill be shown th a t, in 
general whenever p ro p o sitio n  3 .5 .3  ap p lies , V p reserves £. 
I t  remains then to  show th a t (V -3 ) is  id en tica lly  zero on 
£. This is  done in  much the  same way a s  described  e a r l ie r ,  

in  §3 .1 . F ina lly  we w ill see th a t s e tt in g  a l l  r  sO gives usm
the  r e s u l t  we d esire .

Thus the crux  o f  the p roof o f 3 .5 .3  lie s  in describ ing  
a  group o f automorphisms whose in v a rian ts  a re  the 

"coord inates" ni o f M(£).
R ecall th a t the s e t  {£ > is  a  b asis  f o r  m . We le tm —

c = V c C where {c > is  a  s e t  o f indeterm inates which wem m  m
ad jo in  to 4 to give the d if f e r e n t ia l  a lg eb ra  4{c > =

m

C { g ,r  , c > .  We define X(s) = exp (adsc), f o r  a  complex
i m  m
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param eter s , and equate th is  with a  one param eter group o f 
gauge transfo rm ations

X(s) : d + p ®d{c > -A ----> d + p ®<4{c > -A 3 .5 . 14x -  m X  ~ m
£ i-------------» ex p (sad c)[£)

In  coord inates

X (s)o2 = a + l q (s )e , + J r  (s  )< -  A 
x  1 1  m m

f o r  some g ( s ) ,  r  (s )  e *4{c > depending upon s .1 m m
Corresponding to th is  we define  a  one param eter fam ily

o f automorphisms o f d{c >:m

y>(s) : die > ----> die }m m

*1 ' q ^ s )  *
r r  (s )m m
C Cm J * m '

In  f a c t  th is  fam ily forms a  group under composition o f  maps.

3 .5 .1 5 . Lemma. y ( t)o ^ ( s )  = #>(s+t) where s , t  € C.

Proof. We prove th a t th is  holds f o r  each g en era to r q , r
i m

o f d  ; t r iv ia l ly  i t  is  tru e  f o r  each c .
m

Let q is) = Q ( g , r  , s c  ) d esc rib e  the  d if f e r e n t ia l  
1 1 1 m m

polynomial given by <p(s )g  ̂ . I t  is  the e^-coordinate o f
Xis)£. I t  follow s th a t Q ( g ( t ) , r  ( t ) , s c  ) is  the

1 1  m m
e^-coordinate o f  X(s)oX(t)J£ , s in ce  X (t) merely rep laces g ,  
r  by g ( t ) , r  ( t ) .  C learly  X (s)oX (t)2  = X (s+t)2. Thus

m l  m

(pis+t)q = Q (g ( t ) , r  ( t ) , s c  )
1 1 1  m m

However

(pit)q is) = Q (g  ( t ) , r  ( t ) , s c  )
1 1 1 m m

by d e fin itio n , th e re fo re  ^(s+ tlg^  = (pit) o<pis)q̂  . The same 
argument app lies  to  each r  . ■

3 .5 .1 6 . Lemma. The subalgebra £{c > of die} is preciselym m
the subalgebra of invariants of the one-parameter group 

S = { #>(s) | S(E0 > .

Proof. I f  we s e t  & = ^{c > in lemma 3 .5 .8  we see th a tm
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M (£) - M (£) = M (X(s)£)a & t
sin ce  c e m ®d{c >. T herefore each n is  S -in v a rian t and, o f- m 1
cou rse , so is  each c . Thus every element o f > is

m  m

S -in v arian t.
To show th a t these sire the only S -in v a rian ts  we look a t  

the id en tity
£ = exp(-ody)M^(i2)

where y = V y £ is  given by lemma 3 .5 .8 . This te l l s  us
D  ID

th a t  the s e t  {q ,r } belongs to  the d if f e r e n tia l  a lgeb ra
1 m

C { u ,y  ,c  }, th e re fo re  th is  is  equal to  d{c >. However, the 
i m  m  o

ac tio n  o f #>(s) on y is  ch arac te rized  by
in

X (s)£  = exp(sadc) oexp(-ady)M^(j?)

= exp(ad  y(s))M^(i?)

fo r  some y (s )  = V y  (s )<  in m ®^{c > (the  ex istence  o fm m ~ m
y (s )  is  a  c o ro lla ry  to lemma 3 .5 .8  s in ce  X (s)£  belongs to

the c la s s  d + p ®d{c > -X ). x m
Now suppose f ( y  ) is  a  S - in v a rian t d if f e r e n t ia ln

polynomial, then f ( y  Cs)) belongs to  C{y >. In  p a r t ic u la r  i t
ID ID

must be in v a rian t under a  sp e c ia liz a tio n  o f <p(s )  where we 

s e t  c = y f o r  a l l  m. In  th is  case
m  m

exp(ad y ( s ) ) = e x p ( ( s - l ) a d  y)

T herefore f ( y  ) = f ( ( s - l ) y  ) f o r  a l l  s . But f  cannot be 
m  id

in v a rian t under sca lin g  o f  a l l  coord ina tes  un less i t  is  a  
co n stan t. T herefore only £{c > con ta in s  S -in v a rian ts . ■

m

We extend 7 to d{c > by defin ing  V c so fo r  a l l  c .
V  m  V  m  m

Then is  S -equ ivarian t.

3 .5 .1 7 . Lemma. ?>(s) 1o7v<>^(s) = 7v»

Proof. I t  s u f f ic e s  to show th is  f o r  the genera to rs  o f d; i t  

is  t r iv ia l ly  tru e  fo r  each c^.
We want to show th a t

Vv (X(s)J?] = Vy£

By d e fin itio n
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V^[X(s )iS] = exp(sadc) [V (r) + ,J£]

= [ ex p (sad c )V (r)+ , exp(sadc)i2 ]
Notice th a t c belongs to L(3 , 0)O0i4{c >, th e re fo re

n

ex p (sad c)V (r)+ = [exp(sadc)V (r) ] +
However

[ exp(sadc)V (r) , X (s)£  ] = 0
We w ill prove la te r  th a t exp(sadc)V (r) is  the  unique se r ie s  
commuting with X(s)i£ corresponding to v 6 c (j(A )), hence i t  

must be the s e r ie s  obtained from V (r) by rep lac ing  q , r1 m
with q ( s ) ,  r  ( s ) .  T herefore, with a  s l ig h t  abuse o f thei m
n o ta tio n

Vv tX (s)2] = V(s ) [  V (r)+, 2 ]
= p (s)(V vie)

More c o rre c tly
< P ( S ) - 1 V V # > ( S ) 0 £  S3 ■

3 .5 .1 8 . C orollary . V maps & into itself.

Proof. Let f  € £ c £{c >; then f  is  S - in v a rian t by lemma
ID

3 .5 .1 6 . Thus

V* = V*(s)f) = ̂ s)°7vf
by the previous lemma. So V f  is  S - in v a rian t and must lie  in 
S{c >. However, the d e fin itio n  o f  V is  independent o f the

n V
indeterm inates c , th e re fo re  V f  belongs to  £. ■ m v

3 .5 .1 9 . Lemma. The derivation V -3  is identically zero on---------  v v J
the algebra £.

P roof. Compare the deriv a tio n
(Vv- a y )2 = [ V (r)+-V (r )+ , 2 ] 

with the d e riv a tio n  3 from d into *4{c } defined byS in
a £ = [c ,2 ]  = X (s)£  I 3 .5 . 19s ds s=o

Since the gen era to rs  p̂  o f £ a re  S -in v a rian ts  we fin d
j

d fl = -7—  <p(s)u | = 0SM ds r M s=0
Consequently we have the follow ing a lg eb ra ic  p roperty  o f the
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d if f e r e n t ia l  polynomials |i : the d e riv a tio n
3 : d ----> die }s  m

q h> F (g , r  ,c  )
i I i m m

r  h-> G (a  , r  , c  )
m m i m m

3 .5 .2 0

defined by 3 .5 .1 9  is  such th a t
d u(q r ) b 0 f o r  a l l  u .s l i m  i

Now i f  we rep lace  c in 3 .5 .2 0  by the £ -co o rd in a te  o f
V(r) -V (r )+ e m we ob tain  the d e fin itio n  o f V^-3^ mapping

into i t s e l f .  I t  follow s th a t ( 7 - 3  )u s o  f o r  a l l  u .v v M

F in a lly  we have proved the p ro p o sitio n  3 .5 .3 , s in ce  i t
follow s immediately from the lemma above th a t:

The derivation d maps £ into itself and therefore maps
C{u > into itself after setting all r  s  o. i m

In  the next sec tio n  a  few examples w ill be produced to 
dem onstrate the u t i l i ty  o f the M iura-Drinfel* d-Sokolov 
transfo rm ation . Before ending th is  sec tio n  we w ill re tu rn  to 

the p roof o f  the follow ing re s u lt ,  which was postponed 

e a r lie r .

3 .5 .2 1  P roposition . For each v € cfjfA,),) there exists a 
unique series V (r), with coefficients v ( r )  consisting of 
homogeneous differential polynomials, commuting with £. When 
we set each r so , V(r) is the unique series given bym
proposi tion 1.3.7.

As with p ro p o sitio n  1 .3 .7  we prove th is  using the 
d re ssin g  method.

Lemma. There exists %(r) € L_ s  ^nQ(L (g ,0) ®d) such that

exp adx(r) (3^+q+r-A) € 3^ + 3(A)

where 3CAJ is the centralizer of A in  L, where 
L = { j ©QL(g, 0) ®d} © L_.
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Proof. This is  a  s tra ig h tfo rw ard  extension o f the p roof o f 
lemma 1 .3 .8 . Since A is  semisimple x (r )  can be determined by 
i t s  homogeneous components in L (g,0)ys4. These a re  
su ccess iv e ly  given by the requirem ent th a t the homogeneous 

terms in the expansion o f
exp(ad% (r)). (3^+q+r-A)

lie  in 3(A ). ■

C orollary . For each v € c(j(A )) q L(g, 0) the series 
V (r) = exp a d (-% (r)) .v

V(r) is the unique homogeneous series with leading term v 

commuting with

Proof. Once again  th is  is  a  s tra ig h tfo rw ard  ex tension  o f 
the p ro o f o f  p ro p o sitio n  1 .3 .7 . C ertain ly  V (r) commutes with 

i t s  uniqueness is  v e r if ie d  by looking a t  the  equations 

im plicit in

[ 0 + q + r  -  -A , v + vfc i + . . .  ] = 0

where v^ a re  the components o f  V o f degree j  in  the  grading 
o f type (s  , . . . , s p .  Looking a t  the homogeneous terms in  the 
expansion o f th is  equation we fin d

V j  + tq>VJ] + E  [ r - n ’ Vj J  = U > V j - l ] 
n>0

where r  is  the component o f degree -n  in the grading  above
-n

(we have defined  r  s  m_®*4 th e re fo re  i t  has no components o f 
non-negative degree). This determines the element v  ̂ ^  
given v , v , e tc , up to  i t s  component in 3(A). This 
component is uniquely determined by the d i f f e r e n t ia l  

equation fo r  v  ̂ i , s in ce  we req u ire  each c o e f f ic ie n t to 
c o n s is t o f homogeneous d if f e r e n t ia l  polynomials. ■

§3 .6  Some examples.

Example 1. An in te re s tin g  example comes from looking a t  
sf(3,C) with the p rin c ip a l grading. We w rite the s p e c tra l  

o p e ra to r as
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a +
X

q -z 0
0 p-q -z 
-z 0 -p

3 .6 .  1

which, in terms o f the canonical genera to rs  fo r  the loop 
a lgeb ra , is

d + qh + ph - z ( e  + e + e )

There a re , up to  equivalence, two p o ssib le  g rad ings more 

co arse  than the p rin c ip a l grading on a2> They a re  the 
s tan d a rd  grading (o f type ( 1 , 0, 0)) and the grading  o f  type 

( 1,0 , 1 ).

In  the la t te r  grading the s p e c tra l  o p e ra to r has the 

re p re sen ta tio n

d + x
<7
0
-zV

-1
p-q
0

0 ' 
- z  
-P .

3 .6 .2

Conjugating th is  by
‘ 1 0  0* 
-q 1 0
0 0 1 -

y ie lds

3 .6 .3

r o
a +X r

- z\.

-1 0 * 
p - z
0 -p  .

r  = q - q + ^x M <7P 3 .6 .4

T herefore we expect zero  cu rv a tu re  d e riv a tio n s  from the 
h ie ra rch y  with sp e c tra l  o p e ra to r 3 .6 .1  to  p reserv e  the 
subalgebra  C{p, r> o f  C{g, p>. One such d e riv a tio n  is  defined 
by the equations

3qt~ (V  qZ)x ~ 2lpx~ p2+ qp)x

3pr  _ tV  p2)x * 2 (V  q2+ qp)x 

On the the subalgebra  C{p, r> th is  gives

3 .6 .5

3p = -p  + 2 pp + 2 r  rt xx x x

3 r =  r  -2 (p  -  p2 ) ~2p(p -  p2 ) -2 (p r)  -  4p rt xx rx r xx x r x x x
In  the s tan d ard  grading the sp e c tra l o p e ra to r 3 .6 .1  has

the rep re sen ta tio n
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a +
X

q - 1 0  
0 p- q -1 

- z  0 -p
3 . 6 . 7

We a lready  know from §3.3 th a t the Miura transfo rm ation  in 
th is  case  can be obtained from the sequence o f f ie ld  
ex tensions

C<u,v> c C<qr,p> c £<0^ ^ , \Ji > 3 .6 .8

where i/>q, \ji , ifĵ span the kernel o f the o p era to r

d3 + vd + u 3 .6 .9x x

and a re  chosen to be compatible with i t s  fa c to r iz a tio n  into

(ax ~p){dx +p -q)idx +q)
The v a riab le s  u, v a re

u = (qx- q2)x + qipx- p2+ qp)

v = (px~ P2) + iqx- q2+ qp)

The zero cu rv a tu re  equation 3 .6 .5  on C<q,p> induces the 

equations
zu . = u - -v

t X X  3 XX X

i
(0

 IC
O

3 .6 .1 2
v.=v + 2u t  XX X

on C<u, v>. These equations 
rep re sen ta tio n , a s  expected

a lso  have a  Lax p a ir

L. = [P,L]
z

L - d3 + vd + u , P =
X  X

a2 + -v
X  3

3 .6 .1 3

Remark. The system 3 .6 .1 2  con tains the  Boussinesq equation 
(see e. g. Fordy & Gibbons (1981)). The corresponding zero

cu rv a tu re  equation  3 .6 .5  has been dubbed the  "modified

Boussinesq" equation by Fordy & Gibbons. The change o f 

v a riab les
Q  = ^( q + p) , S = | ( q  -  p) 

s im p lifie s  3 .6 .5  to

= SXX -  2W S)x 
3St = -Qxx ♦ (4S2 - 2Q2)x

3 .6 .1 0

3 .6 .1 1
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An equivalent system (using d if f e r e n t  choices f o r  the 
v a riab le s ) was co n stru c ted  by Sokolov & Shabat (1980) as 
p a r t  o f th e ir  in v estig a tio n s  into "modifying" Lax equations.

There is  a  rem arkable connection between the f ie ld  
C<p,r> and the  sequence 3 .6 .8 . We f in d  th a t C<p,r> is  the 
su b fie ld  o f  C f i x e d  by the parabo lo ic  subgroup P 
o f  SL(3,C) o f  m atrices o f  the form

e SL(3,C)
* *
* *
0 0

This subgroup fix e s  the f la g  o f v ec to r spaces

This f la g  can be id en tified  with the p a r t ia l  fa c to r iz a tio n

(ax - p ) ( a 2 + pdx + qx-  q2+ qp) 3 .6 .1 4

o f the o p e ra to r 3 .6 .9 . Therefore the in v a rian ts  o f the 

ac tio n  o f P a re  generated by p and r .  Consequently the 

equations 3 .6 .6  f i t  into the scheme
DC — > DC/B+ - >  O C /P  - »  DC/SL(3,C) 3 .6 .1 5

where DC is  defined  much the same a s  the s im ila r space 
described  in §3 .4 . Using the su b s titu tio n

u = rx -pr , v = px -p 2 +r 3 .6 .1 6

the equations 3 .6 .6  can be transform ed into the  equations 
3 .6 .1 2 .

I t  is  by no means c le a r  th a t  the  Miura- Dr in f  e l ’ d - 

Sokolov tran sfo rm atio n  between the o p e ra to rs  3 .6 .2  and 3 .6 .4  
should produce the in v a rian ts  o f  P . In  the  f i r s t  p lace

3
th e re  is  no fa c to r iz a tio n  o f the s c a la r  o p e ra to r d +vd +ux x
im plicit in the re p re sen ta tio n  3 .6 .2 .

In  the language o f  §3 .4  the two choices o f g rad ings o f 
type ( 1 , 0, 1 ) and ( 1 , 0, 0) correspond to  two d if f e r e n t  spaces 
DC' and DC with p ro jec tio n s

DC' ->  DC'/P+ —> DC'/A

X —> DC/B+ —> DC/SL(3,C)
*

Here A = SL(2,C)®C , rep resen ted  as the group o f m atrices o f 
the form
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€ SLC3.C)
' * * O'
* * 0
0 0 *V  J

By . co n s tru c tio n  0C'/P+ and 3C/B+ must both have the 
co o rd ina tes  q and p. What is  s tr ik in g  is  th a t both X' /A and 
X/Pi have the  same coord inates p and r .  I w ill not pursue 
th is  fu r th e r  in th is  th e s is , a sid e  from pointing out th a t

f 0
d + x r

-z

-1 0 ' 
p - 1
0 -p  J

is  the unique o p era to r o f the type

a +x

f 0 
*

-zV.

-1 0 ' 
* -1
0 * J

in the o rb it  o f  the s p e c tra l  o p era to r 3 .6 .7  under the gauge 
ac tio n  o f the group o f m atrices o f the form

’ 1 0
a 1
0 0V

0 • 
0 
1

where a € C<q,p>

Example 2. Recall from §1.5  
derived  the  system o f  equations

q€ -3(pr)x
pr  3(pxx - pqx ' ' p2r)2 2r  = - 3 ( r  + rg  -  rq - r  p)t xx ^x ^ ^

o f  ch ap te r 1 th a t we

3 .6 .1 7

I f  we make the  su b s titu tio n

u = q2 - qx + pr 

v = pq ~ Px 
w = r

then the  equations 3 .6 .1 7  transfo rm  into
u. = -6 ( w )t x
v. - 3(v -  uv)t  xx
w. = -3(w  -  uw)t xx

This su b s titu tio n  was obtained by the
Miura-Drinfel* d-Sokolov transform ation :

3 .6 .1 8

3 .6 .1 9

follow ing
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’ <7 P - 1  * * 0 0 - 1  '
r  0 0 i— > d + w 0 0
- z  0 .

X u -z  V 0 J

This is  p o ssib le  because the m atrix

* 0 0 1 *
X = 0 0 0

- z  0 0

s a t i s f i e s p ro p e rtie s  (i) and ( W o f p ro p o sitio n
th is  case tn_ is  the s e t  o f m atrices o f the form

f 0 0 0 *
0 0 0 
* * 0

€ sf(3,C)

and is  the s e t  o f m atrices o f the form
' * * 0 '

o e sr(3,o* *
* *

In  th is  example the grading on L(cl2, 0) is the grading o f 
type ( 1 , 0, 1 ) and the c o a rse r  grading is  the s tan d a rd  grading 
(o f type ( 1 , 0, 0) ) .

I t  is  a  su rp ris in g  f a c t  (brought to my a tte n tio n  by 
Drs. J . D. Gibbon and J . Gibbons) th a t i f  we rep lace  x by ix, t 

by -it and s e t
A = w = v , B = u

(where the b a r  denotes the complex conjugate) then we ob ta in
from 3 .6 .1 9  a  s e t  o f equations used to  model Langmuir waves

IA. = 3 U  -  AB) t xx
Bt = -6< M n x

f o r  which Yajima & Oikawa (1978) d iscovered  a  cu rious 
inverse  s c a tte r in g  problem.

Example 3. For our la s t  example, le t  us look a t  an example 
where the conditions o f  p ro p o sitio n  3 .5 .3  do no t hold. 
R ecall from §2 .2  in ch ap te r 2 th a t th ree  s p e c tra l  o p e ra to rs  
were given, corresponding to the th ree  d is t in c t
(sp ec ia lized ) h ie ra rch ies  admitted by the g rad ing  o f type 
( 1 , 0, 1 ) on c^1*. We w ill look a t  the p rospects  o f  f in d in g  a 
M iura-D rinfel’d-Sokolov transfo rm ation  when we f ix  the 
c o a rse r  grading  to be the s tan d ard  grading (o f type 
( 1 ,0 ,0 ) ) .  In  th is  case  the subalgebra  L (g ,0)° has the
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tr ia n g u la r  decomposition

where

41 32 31

1 , E -  E , E -  E »
2 12 43 21 34

E + E , E »
14 23 13

and E^, have been defined  in §2 .2 . This is  more c le a r ly

Lts.e)0 =

tn = «E
42

90 = «Ht,

tn+ = €E
24

rep resen ted  as
0 0 + +
0 0 + +
- - 0 0
- - 0 0

s in ce  L (g ,0 ) s  c .
Look a t  the  o p era to r

d + x

0
- z
- r

0 -z -p -q ̂

which corresponds to  case  (Hi) in  example 2 .2 .4 .  In  the 
s tan d a rd  g rading  i t s  semisimple element A s p l i t s  into 

A + A = E + zE
0 1 24 42

A M iura-D rinfel’ d-Sokolov transfo rm ation  cannot be applied  
in th is  case  s in ce  [E ,E ] = 0 th e re fo re  A is  not

24 31 o
in jec tiv e  on m .

However, one can check th a t the o th er two c a se s , with 

the re sp ec tiv e  s p e c tra l  o p e ra to rs

' 2q  3p+r Q '  0 2 ° '
a +X 3 p-r s _ 0 ^ - 2q r -3 p -  z 2 0 0 1

0 0 1 0L “  -3 p - r  -s J W *  /

f o r  case  (i), and

* p o ' ’ o 0 l '
a + r  q -  z n , 1 0X 4 -<7 - r 0 1

0l -  - d -q J . 1 0 0

f o r  case  (ii), do admit Miura -  D rin fe l’ d -  Sokolov 
tran sfo rm atio n s . These transfo rm ations p re d ic t the 

su b s titu tio n
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u = 2 r  -  3p

v = + 2qr2 + r 2-  6p r  + 9p2

w = 3p^ ~ rx + 3pq + rq + 3ps -  r s

y = + 9p2 - r2 + s2
f o r  the h ie ra rch y  in  case  ( I.), and the  su b s titu io n

P = rx ~ 2rc* 
y = q x  - q2 ~ pr 

5 = p x  - 2pq
f o r  the equations in the h ie ra rch y  given by case  (ii). I 
leave i t  to  the in te re s ted  read er to  compute the  (new ?) 
" in teg rab le" system s o f p .d .e ’s  obtained by applying these 
su b s titu tio n s  to  the systems given in  example 2 .2 .4 .
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C o n c lu s io n .

I t  should be c le a r  to  read ers  o f  D rin fe l’ d & Sokolov 
(1985) th a t th is  th e s is  has made su b s ta n tia l  use o f  th e ir  
ideas, which prove to  be q u ite  ro b u st in  th a t  the 

fundam ental p rin c ip le s  lend themselves e a s ily  to 
g en era liza tio n .

No s ig n if ic a n t e f f o r t  was needed to  prove the follow ing 

re s u lt :
to  each periodically graded semisimple Lie algebra 

( g ,0) admitting a semisimple element in ^  there corresponds 
a hierarchy of integrable equations; the equations are 
indexed by the abelian subalgebra c(j(zA )) of L (g ,0).

I t  seems q u ite  reasonable  to  r e f e r  to these  equations 
as " in teg rab le" . In  every case  the equation p o ssesses  an 
inverse s c a tte r in g  problem which can , in p rin c ip le , be
solved fo r  c e r ta in  c la s se s  o f  p o te n tia l. In  p a r t ic u la r ,  
so lito n  so lu tio n s  can  always be co n stru c ted .

N aturally  we wish to  know when ( g, 0) admits a  h ie ra rch y  
o f equations. I would like  to  tender the  follow ing
co n jec tu re  which is  wholly c o n s is te n t with the re s u l ts  
obtained in ch ap te r 2 (and o th er r e s u l ts  I have neglected  to  
in c lu d e ).

Conjecture: A periodically graded semisimple Lie algebra
( g ,0) possesses a non-trivial Cartan subspace (i.e. has a 
non-zero semisimple element in g ^  if and only if the 
collection of affine roots of degree one for L (g ,0) contains 
a collection of affine type.

From a  p ra c t ic a l  po in t o f view i t  is  un likely  th a t 
anyone w ill fe e l the need to compute zero cu rv a tu re  
equations when the rank o f g is large. One must bear in mind 
th a t the number o f v a riab les  is  a t  le a s t  equal to  the rank
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and a t  most equal to  the dimension o f  5 (although in the 
l a t te r  case  a t  le a s t rank(g ) many v a riab les  w ill be 
s ta t io n a ry  with re sp ec t to  a l l  flows s in ce  the dimension o f 
3(A) is  a t  le a s t  equal to the  rank o f g)

Perhaps the most in te re s tin g  r e s u l t  in th is  th e s is  is  
the  d e sc rip tio n  o f  the M iura-D rinfer d-Sokolov (M. D .S .) 

tran sfo rm atio n . One p o in t which has no t been inv estig a ted  is  
the ex ten t to  which i t  can be used, th a t is  to  say , f o r  
which (g, 0) does th e re  e x is t  an element A s a tis fy in g  the 
cond itions under which the  tran sfo rm atio n  holds? A sim ila r 
question  a r is e s  i f  we t ry  to  f in d  a  concrete  d e sc rip tio n  
o f the scheme o f Wilson’s ,  th a t  the M.D.S tran sfo rm atio n  is  
only p a r t  o f  a  s e r ie s  o f transfo rm ations obtained by 
d iv id ing  out by the  a c tio n  o f  a  Lie group. Conceptually we 

have viewed th is  scheme a s  the sequence 
DC — > OC/P — > DC/A

The in te re s tin g  problem is  to  make sense  o f  th is  scheme. 
E ssen tia lly  i t  is  a  problem o f "co o rd inates" , th a t  is  to 
say , determ ining whether o r  not each space in  th is  sequence 
corresponds to a  f re e ly  generated  d if f e r e n t ia l  f ie ld . 
Moreover, the space OC/P should provide the coo rd ina tes  fo r  
the zero cu rv a tu re  equations. The M. D.S. transfo rm ation  
should d esc rib e  the coord inates  on 3C/A. So the problem is  to 
f in d  a  sen s ib le  d e sc rip tio n  o f  the "space" X on which a  Lie 
group A a c ts  (on the r ig h t)  which f i t s  in with the previous 
two cond itions.
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