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Abstract.

A zero curvature equation is, in this thesis, a partial

differential equation which can be written in the form

[ ax + q(x,t) - zA , a, - vV (x,t2)1=0
where q, V 4 are matrix-valued functions and A is a constant
semisimple (i.e. diagonalizable) matrix.

In this thesis the work of Drinfel’d,V.G. &
Sokolov,V.V. (J. Sov. Math., 30 , 1975-2036, (1985)) is
generalized. We investigate the construction of these
equations and prove that each one constructed belongs to a
hierarchy of equations all of whose flows commute.

It is shown that each hierarchy is characterized by a
triple (g,6,A) where (g,8) is a @periodically graded
semisimple Lie algebra and A is a semisimple element of
degree one in the gréding. ‘We investigate which gradings
admit such an element and classify these cases for the
simple Lie algebras of rank = 4. We also investigate the
equivalence of the hierarchies in terms of the conjugacy
classes of semisimple elements of g.

A method is presented for constructing transformations
of Miura-type, based on a method due to Drinfel’d & Sokolov
(op.cit.). We show that, 1in certain cases where g =
sl(&+1,C), these transformations can be explained using
differential Galois theory (after Wilson, to be published).
In these cases the appropriate Galois group induces a group
of transformations on the set of solutions to the =zero

curvature equation.
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Introduction.

By a zero curvature equation we will mean a p.d.e.
which can be written as the integrability condition for a

pair of first order differential equations
(ax + q(x,t))Q = zAQ (1)

atn = V+(x, t,z)Q (2)

for the invertible matrix Q(x,t,z). The functions q(x,t),
V+(x, t,z) are matrix-valued, with A a constant semisimple
(i.e. diagonalizable) matrix. The first equation is a
spectral problem for Q(x,t,z), with =z as the spectral
parameter. If we assume the spectrum is t-independent the

integrability condition for this system is given by

[6x+q—zA,at-V+]=0 (3)
This is the zero curvature equation associated with the
spectral (or scattering) problem (1) with t-evolution (2).
We are interested in these equations when they produce a
system of ©p.d.e’s describing the t-evolution of the
(coordinates of the) matrix q(x,t).

Strictly speaking, p.d.e’s of this type were first
considered in the paper of Ablowitz et al. (1974), although
the idea is a natural extension of the work of Lax (1968)
and, later, Zakharov & Shabat (1972, 1974).

In general zero curvature equations are non-linear
p.d.e’s. They have generated a great deal of interest
because there is a well-formed theory about how to construct
exact solutions (and, in particular, soliton solutions). In
principle, solutions to a given zero curvature equation can
be constructed wusing the "inverse scattering method"
pioneered by Gardner et al. (1967). We will not attempt any
analysis of solutions to the equations we investigate; a
rigorous treatment of inverse scattering for =zero curvature

equations can be found in the paper by Beals & Coifman
(1984).



In this thesis we will be wholly interested in the
algebraic properties of zero curvature equations, in
part;icular‘, their construction, their classification and
their relationship to other equations via transformations of
the variables.

We remove any need for analysis by considering the
variables in the equations to be indeterminates generating a
differential algebra. Thus, for example, the modified
Korteweg-de Vries (mKdV) equation

_ a2
9y = 9ypy ~ 699, (4)

describes the derivation 98 s on the differential algebra C{q}
of polynomials in the symbols q , q, » 49, and so forth.

In fact we treat each matrix as the representation of
an element of a Lie algebra (we will only be interested in
semisimple Lie algebras). In particular, a matrix whose
entries are polynomials in =z will be seen as the
representation of an element of a loop algebra over a
semisimple Lie algebra. Thus V_(x,t,z) is considered as an
element of the tensor product of the appropriate
differential algebra with a given loop algebra. A brief
description of the relevant facts about loop algebras over
semisimple Lie algebras will be presented in the second
section of chapter 1. It is assumed that the reader is
familiar with the basic facts about the root space
decomposition of semisimple Lie algebras; the reference most
often used within is Helgason (1978, A.P.).

The 1idea of using loop algebras to investigate zero
curvature equations is due to Drinfel’d & Sokolov
(1981, 1985) (see also Wilson (1981)). Their first important
result was to prove that to each principally graded loop
algebra there corresponds a hierarchy of zero curvature
equations. Their proof makes use of a variation of the
"method of dressing"”; an Iimportant concept first described
by Zakharov & Shabat (1974,1979). This concept will be
explained in the first section of chapter 1, along with the
variation used by Drinfel’d & Sokolov.

The rest of the first chapter is a direct extension of



the work of Drinfel’d & Sokolov (1981,1985) along the lines
suggested by Wilson (1981). It is shown that to each
semisimple element of the form zA in the loop algebra there
corresponds a hierarchy of zero curvature equations, indexed
by the centre of the centralizer of zA. All these equations
possess the same spectral problem (1). We show that all the
derivations in a given hierarchy commute, and that for each
non-trivial equation there is a non-trivial conserved
density which 1is conserved by all the "flows" 1in the
hierarchy (in the literature these properties are sometimes
used to Justify calling the equations in a hierarchy
"completely integrable"). We end the first chapter with an
example of an equation constructed using a loop algebra over
s[(3,C).

The second chapter makes some headway towards
classifying zero curvature equations. We begin by describing
an equivalence relation on the set of hierarchies. From
chapter 1 it ©becomes <clear that each hierarchy Iis
characterized by a triple (g,08,A) where g is a semisimple
Lie algebra, 6 is a automorphism of g of finite order and A
is a semisimple element of g satisfying 6(A)=wA for a
primitive root of unity w with the same order as 6. It is
shown that two hierarchies (g,8,A) and (g,0,A’) are
equivalent (any equation from one can be transformed into an
equation in the other) if A and A’ are Go—conjugate, where
Go is the adjoint group of the Lie subalgebra 8, S g fixed
pointwise by 6.

Larger equivalence classes are found for certain
specializations of the hierarchies which result from setting
equal to zero certain variables which are - stationary with
respect to every flow in the hierarchy. It is found that two
such specialized hierarchies are equivalent if A and A’ have
their centralizers conjugate to one another under Go' In
particular, it is demonstrated that there Iis, up to
equivalence, only one hierarchy corresponding to a
principally graded loop algebra.

The problem of determining the existence of a hierarchy



(g,8,A), that is, the existence of a non-trivial semisimple
element A with 6(A)=wA, proves to be very difficult to solve
in general. We are reduced to a virtually case by case
analysis of the periodically graded simple Lie algebras and
settle for solving the problem for rank(g)s4. Nevertheless
some results hold for arbitrary rank, for example, it is
shown that every periodic grading on sl(&+1,C) corresponding
to an (inner) automorphism of type (so,...,st;l), where
s € {0,1}, admits a suitable semisimple element. The
existence proof 1is constructive, that is to say, in each
case where at least one suitable element exists the proof
shows how to construct such a semisimple element. For the
cases where rank(g)=4 this information is contained in the
table at the end of the fourth section of chapter 2.

Chapter 3 is entirely concerned with the investigation
of transformations of "Miura type". The original Miura
transformation (Miura (1968)) consists of setting

u=gq - q2 (5)
which transforms the mKdV equation (4) into the
Korteweg-de Vries (KdV) equation

u=u, _+6uu (8)
This equation can be written in "scalar Lax form" as
L, =1 P:3 ,» L1

L=23%+u P =43 + 6ud_ + 3u
X 3 X X X

The Miura transformation actually transforms each equation
in the mKdV hlerarchy into an equation which can be written
in scalar Lax form using the same operator L as above. This
transformation has an elegant explanation (due to Wilson, to
be published) involving the wuse of differential Galois
theory.

The differential Galois theory predicts the existence
of a differential field C<y,¢> (the field of rational
expressions in the quantities ¢, v, ¢x’ wx and so on) upon
which the group SL(2,C) acts, such that the variable q is
invariant under the action of a solvable subgroup of
SL(2,C), while u is invariant under the whole SL(2,C)

action. Wilson has shown that there exists a derivation 43 ¢



on this field which is SL(2,C)-equivariant, such that we
obtain both the mKdV and KdV equations when we restrict 4 ¢
to the fixed field of the appropriate subgroup. The
connection with the scalar Lax form is that the field C<¢,y>
is the Picard-Vessiot extension associated with the operator
L, and SL(2,C) is the Galois group of this field over C<u>
(the reference for this is the book by Kaplansky (1957,
Hermann)).

It is shown in chapter 3 that in general for SL(&+1,C)
there exists a similar setup whereby an SL(&+1,C)-invariant
equation exists which can be transformed into a zero
curvature equation by dividing out by the action of a
solvable subgroup of SL(&+1,C). We also show that the
SL(£+1,C) action induces a group of transformations on the
set of solutions to the zero curvature equation.

We then explain how these transformations of Miura type
fit in with a different theory developed by Drinfel’d &
Sokolov (1985). In particular we prove a result which
generalizes the result obtained by Drinfel’d & Sokolov. The
result we prove can be stated briefly as follows.

Each zero curvature equation belonging to the hierarchy
(a,6,A) defines a derivation 8 ¢ on the differential algebra
C{qi}. To each choice of a coarser grading (g,c) (by which
we mean every fixed point of 6 is a fixed point of o) we
define a number of indeterminates r, c which we adjoin to
C{ql} and generate the differential extension «'=C{ q, rm,cm}
of C{ql}. Provided A satisfies certain properties dependent
upon the choice of (g,0), we can prove that there exists a
freely generated differential subalgebra C{u 1} c C{q i}
characterized by the following property: C{ul} is obtained
by setting all r and c. equal to zero in the subalgebra 6’
of 4’ fixed by a certain one-parameter group S of
automorphisms of 4’ (let us stress the point that we cannot
show, in general, that C{ul} is the fixed algebra of a group
of automorphisms of C{ql}).

Our main aim is to prove that 3, preserves C{ul}. This

is done by showing that, after setting all c = o, at is

10



identical to a derivation V + which is S-equivariant on 44’,
hence at preserves the algebra © obtained from ©’ by setting
all‘cm'é 0. Thus at restricts to C{u‘} after setting all
r = 0 in ®.

The variables u, are obtained by a transformation we
call the Miura-Drinfel’d-Sokolov transformation; this is the
generalization of the transformation described by Drinfel’d
& Sokolov (1985). At the end of chapter 3 we present some
examples of these transformations, in particular we show
that the equation constructed at the end of chapter 1
transforms into an equation used for modelling Langmuir

waves.

11



CHAPTER 1

1.1 Preview: the modified Korteweg-de Vries equation.

The archetypal zero curvature equation is the modified
Korteweg-de Vries (mKdV) equation

- _ a2

9 = 9ypy 6q q, 1.1.1
It belongs to the hierarchy of equations which have the zero
curvature representation

-vil=0 1.1.2

_ _ qg O _.01
a-a=(83)-410)

and V + has the form
2 2
[f‘(z ,zq) zg(zz,q) ] 1.1.3
zh(z,q) -£(2°,q)

Here f,g and h are polynomials in z°> whose coefficlients are

[ax+q-zA,6

where

polynomials in gq, qx, qxx"" . For example, the mKdV

equation corresponds to the choice

2 3
423 01 _422 q O +2 0 qxq . 29 -q xx 0
10 0 -q o 3

2
q9-q, 0 q,,.729

The purpose of this preview is to present some of the
facts about this hierarchy of equations which are common to
all the other hierarchies we will be dealing with more
abstractly later. In particular, this first chapter is
concerned with the construction of -equations given a
spectral operator ax + q - zA.

The form of V + is governed by the condition

10
[V+ , ax+q-zl\] -F(q.qx,...)[o_l] 1.1.4
where F(q, qx,...) is a polynomial in q, - STRR (in particular

this expression is independent of 2z). This is necessary to
ensure that 1.1.2 is equivalent to an evolution equation for
q; it follows that

8,9 = Flq,q,,...)

12



It is possible to describe all the matrices V., having
the form 1.1.3 and satisfying 1.1.4. This is most clearly
seen using a "dressing" method similar to the idea developed
by Zakharov & Shabat (1974,1979). The first step is to
demonstrate another characterization of V +

Suppose V(q,z) is a formal Laurent series in =z
(possibly with an infinite principal part V_) so that we
may write

V(g,z) =V _+ V_

=(vnz"+... +v0)+(v_iz_1+... ) 1.1.5
The coefficients v, are traceless 2x2 matrices whose entries
depend upon q. If V(q,2z) is constructed so that it commutes

with ax+q—zA it follows that
[V+,ax+q-zl\]=[ax+q-—zl\,V_] 1.1.6

Notice that the 1left hand side contains no terms with
negative powers of 2z, whereas the right hand side contains
no terms with positive powers of z. Therefore 1.1.68 Iis
independent of z. Moreover, if V(q,z) has the form 1.1.3,
with f,g and h now Laurent series in 22, then 1.1.6 will be
a diagonal matrix, as we require. We see then that each
matrix V_ is given by a series V(q,z) commuting with
6x+q—zA. Therefore by describing the centralizer of ax+q—zA
(in the algebra of formal Laurent series . in z which have
matrix coefficients depending upon g, g, etc.) we will be
able to find the polynomials V + with the desired properties.
This centralizer can be described in the following way.

The basic idea is to transform 6X+q-zA into an operator
whose centralizer is easier to determine, namely ax—zA; this
is done by constructing a formal series

K=K_1Z-1+.... 1.1.7
whose coefficients :c_k(q) take values in sl(2,€) so that
“(a, + q - zNe =28 - zA 1.1.8

The centralizer of ax-zA consists of all formal
Laurent series v(z), independent of x, which commute with
zA. It follows that the series

-K

e v(z) e

13



will commute with ax+q-zA since
[, +aq-2zA, e  v(z) &1

=e K [0 ~zA , v(z)] =0

Any such series v(z) will be a sum of the matrices

en+tf O 1
V-4 [1 O] neZ 1.1.9

For simplicity we take v(z) to be one of these matrices. In
particular if we take nelN the series

K 1.1.10

V(g,z) = e v(z) e
has a non-trivial positive part V+.
Unfortunately it is not clear from this construction
that the function V+(q,z) necessarily produces a polynomial
F(q,qx,...) as required in 1.1.4. For, if we look more
carefully at 1.1.8 we observe that k is defined by a
collection of differential equations. These equations do not
in general have solutions which are local expressions in gq
(i.e. they involve some integrals of ¢q). Nevertheless it is
true that V+(q,z) only contains local expressions in q. To
see this we must adopt the modified dressing method
suggested by Drinfel’d & Sokolov (1981, 1985).
Drinfel’d & Sokolov point out that we need only

conjugate 6x+q-zA into

ex(al“r +q - zA)e X = 3x - 2(q,2) 1.1.11
where [Z2(q,z),A] = 0. Here
= Z-l +
x=2x, ces

where x_k(q) takes values in s[(2,C). It is readily seen
that as a formal series in z we can write

2(q,z) = zA - s(q,2) 1.1.12
where s(q,z) is the principal part of 2(q,z). The
centralizer of A is commutative, so we still have

[ax - 2(q,2z) , v(z)] =0
for any v(z) from 1.1.8. Therefore the series e Xy(z)eX
_commutes with ax+q—zl\. The advantage of this construction is
that it is possible to show that x depends upon gq, qyr--- but
not upon integrals of ¢g. Moreover, a uniqueness argument can

be used to show that V(g,z) = e—xv(z)ex. Therefore V+ will

14



contain coefficients which are local expressions in q. These
two important arguments will be presented later as part of
the general program.

The series Z(q,z) takes values in the centralizer of A,
which is the one dimensional subalgebra generated by the
matrix A. In fact the coefficients of the series expansion
in z are conserved densities for the mKdV equation; the
integrals of the coefficients are time-independent if q(x,t)
is a solution to the mKdV equation. We expect this from the
following heuristic argument.

A (formal) solution to the spectral equation

(ax +q - zA)QUx,2) =0 1.1.13
is given by solving the equation
(8, - 2(q,2))(eX.Q) = 0 1.1.14

This equation may be solved by using the integrating factor
expJ 2(q,z) dx

since the equation 1.1.14 is an equation on an abelian (one

dimensional) subalgebra of s[(2,C). From 1.1.12 it follows

that

.expl-J s(q, 2) dx'].exZA 1.1.15

Let us suppose for a moment that the potential q(x) is a

Qx,z) =e X

smooth, asymptotically rapidly vanishing function on R, with
values in C. The limit

b'4
-xzA _ -X _
}l(ig Q(x,z)e = ’ltm e “.expl I_cso(q(x).z) dx] 1.1.186

is called the (formal) scattering matrix by Drinfel’d &
Sokolov (1985). We treat this limit as a formal series in z.
The so-called direct scattering problem involves evaluating
the singular behaviour of this limit as a function of =zeC
(for a good explanation of direct and inverse scattering on
the line, see Beals & Coifman (1984)). Notice that, since
the series x is comprised of expressions in q, qx,..., which
vanish asymptotically, the 1limit 1.1.16 will be the formal

series
(>}
exp[-j s(q(x),z) dx] 1.1.17
-0

If we let gq(x,t) be a solution to the mKdV equation with
initial value q(x,0) = g(x) we find that the limit in 1.1.16

15



evolves under the simple equation
8,(1im) - z°A(lim) = 0 1.1.18

Therefore an invariant of t is given by

o2 ]
;1;.'1,2 Q(x, t,z)exp(-zA - tzoA) = exp[-I_:(q(x, t),z) dx]

We conclude that the coefficients of the series in z

00 o0

I (2(q,z) - zA) dx = -_[ s(qlx, t),z) dx 1.1.19
-0 -0
are conserved integrals; their integrands will be conserved

densities.

In fact these integrals are invariants of every one of
the flows in the mKdV hierarchy. Later we will prove
algebraically that a similar fact holds for any hierarchy of
zero curvature equations. In general there are as many
conserved densities as there are equations in a hierarchy
(in fact there are infinitely many, all to be found amongst
the coefficients of the appropriate series 2(q,z))

Throughout this section we have been using a Lie
algebra of Laurent polynomials in z with values in s[(2,C)
together with formal series in these polynomials. This Lie
algebra is isomorphic to an algebra of maps from the circle
s! into s[(2,C) (i.e. loops in sI(2,C)) . To describe zero
curvature equations in general we will replace sl(2,C) by an
arbitrary semisimple Lie algebra. In this matter we follow
the lead of Drinfel’d & Sokolov (1981,1985) and use the
language of loop algebras. The next section presents a brief
summary of the basic facts that will be used frequently;
these facts are fully explained in, for example, the book by
Helgason (1978, A.P.)

§1.2 Loop algebras.

Let ¢ be a semisimple Lie algebra of finite dimension
"over C, on which a z -grading has been fixed (here m is a
positive integer and Zm is the cyclic group of integers

modulo m). In other words

16



g = gj and [gj , gk] < 91+k 1.2.1
ez
for - subspaces 3] of g. We will say an element of 3] has
degree j in the grading.

Each Zm—grading corresponds to an mth-order'
automorphism 6 of g. Necessarily, 6 has eigenvalues { ! | w
a primitive m-root of unity; j=0,...,m-1}; in this
correspondence the subspaces 3] are defined to be the
). It follows that each Z -graded
Lie algebra can be denoted by (g,8).

eigenspaces of eigenvalue w

Consider the space L(g,e) of loops in g which may be
represented as Laurent polynomials i.e. maps of the form
n
u:Sl—>g where u(z) = Zuz" , U € G
J=-k )] J
This inherits a Lie algebra structure from g, indeed it is a

covering algebra with covering homomorphism given by the
evaluation map
w: L(g,e) > g
u(z) - u(1)
For any graded Lie algebra (g,08) we can define the Iloop
algebra L(g,08) to be the Lie subalgebra of L(g,e) containing
all loops equivariant with respect to the action of w on S1

(by multiplication) and 8 on g, i.e.

u € L(g,0) if 8(u(z)) = u(wz).

It follows that u € L(g,6) if and only if

n

- J
u(z) -Jfkujz ' U, € 8y dm 1.2.2

The notation L(g,e) now makes sense if we let e denote the
identity automorphism on g.
Let
L(,g,e)J = {ujzj € L(g,0)} for any j € Z.

Clearly L(g,8) is a Z-graded algebra with homogeneous
subspaces '

L(g,e)J = gjmodm
It can be shown (see, for example, Helgason (1978, A.P.))

that, in particular, L(‘g,e)o is a reductive Lie subalgebra

17



i.e. it is the direct sum of a semisimple subalgebra and its
centre. We may therefore choose a maximal abelian subalgebra
f)o of semisimple elements of ,go. The adjoint representation
of f)o on L(,g,e)J provides a weight space decomposition for
L(g,0); these weight spaces are used as the "root spaces"

for the affine roots.

1.2.3 Definition. An element o
affine root for L(g,8) if the subspace

(a,j) € F);xZ is an

L(g,08)" = { xeL(Q,e)JI [h,x]=a(h)x VYheh }

is non-zero.

1.2.4.Example. Suppose 6 is a finite order inner
automorphism of g, and therefore 6 fixes pointwise a Cartan
subalgebra h of g. Let R denote the root system of g. We
will show that the affine root system A of L(g,08) can be
identified with a subset of Ru{0O} x Z.

Since 0 fixes b pointwise we know that h c 8, It
follows that each maximal abelian subalgebra of semisimple

elements in L(g,0) o is isomorphic to h; we choose f)o such

that n:(f)o) = h. For any x e L(g,0)" ¢ L(Q,G)J, where
a=(a, j), the definition 1.2.3 implies

[n(h) , m(x)] = a(h)n(x) Vh € b
so [h' , w(x)] = (aop)(h’)n(x) vh’ € b

where the homomorphism p:h - F)o satisfies pom = identity.
Therefore aop € b. is a root for g, so we can identify «
with an element of Ru{O} x Z. We conclude that, in this
case, the affine root system A can be seen as a lattice

covering Ru{0O}.

Just as for finite dimensional semisimple Lie algebras,
the structure of each affine root system can be distilled
into a matrix; a generalized Cartan matrix A. Each affine
root system A has a basis {oc1=(a.l,j‘)|1=0,...,£} of simple
affine roots, that is, A belongs to the lattice generated by
this set of affine roots and oti-ocJ g A for all i#j. The

columns of A provide a representation for the vectors a; €

18



»

f)o . It is a fact that ¢ = dim f)o and that the matrix A is
the direct sum of indecomposable generalized Cartan matrices
of porank 1. The matrix A may in turn be represented by a
diagram TI'(A) analogous to the Dynkin diagram of a Cartan
matrix. An indecomposable matrix has a connected affine
diagram with &1 vertices (representing the simple affine
roots ao,...,a‘).

The possible generalized Cartan matrices of affine type
have been classified by Kac (1969), and the diagrams
corresponding to the indecomposable matrices are shown at
the end of this section (taken from Helgason (1878, A.P.)).
The vertices { oci} have corresponding integer labels {nl}
which are the normalized coefficients of linear dependence
of the columns of A. The fundamental theorem of Kac (1969)
states that two loop algebras are isomorphic as Lie algebras

if and only if they have the same affine diagram.

To characterize a loop algebra we must provide a
(generalized) Cartan matrix A of affine type and a specific
Z-grading on a particular Lie algebra Lg(A) constructed from

A. If we let A=(au) we construct the Lie algebra Lg(A) by

fixing a set of generators {el,hl,fll i=0,...,8+ and
demanding that they satisfy the relations
[e1 , fj] = auhi [h1 , hj] =0
[h1 , ej] = a.”ej [hl , fj] = —ajlfj 1.2.5
[..[el,ej],..,eJ] =0 [..[fi.fj],..,fjl =0 i#j
I —_ 1
1-a times 1-a times
J1 J1
P4
¥ nh =0
1=0

(this last relation says that Lg(A) is the quotient of an
affine Lie algebra by its one-dimensional centre).
The root spaces are determined with respect to the
. abelian subalgebra
F)o = <<hi| i=0,...,®
where this denotes the C-subspace generated by the hi. From

1.2.5 it can be shown that each one dimensional space <<ei>>
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is a root space; in fact
e = L(g,8)*  for each i=0,...,¢
A Z-grading is then fixed on the Lie algebra Lg(A) in

the following way. We choose £&+1 non-negative integers

(so,...,sc), not all zero, and assign to e, the degree S,
to ft the degree -s, and to hi the degree 0. This is called
a grading of type (so....,st).We can deduce from this that
the grading of type (so, .. .s‘) defines a map from A to Z
which gives to each root the degree of its root space in the
grading:
(so,...,st) :‘ A —: Z
=Y m, o L m s = degree(a)

0 o
The homogeneous space of degree i is therefore
L(g,0), = L (L(g,0)°|degree(a)=1)

Remark. An automorphism 6 of g corresponding to the grading

of type (so,...,s‘) on Lg(A) is called an automorphism of
type (so,...,sc;k) if the diagram I'(A) is listed in table Kk,
k = 1, 2 or 3. The integer k 1s the index of the

automorphism 6, that is, 0 induces a symmetry of order k on
the Dynkin diagram of g. We note that the grading of type
(1,1,...,1) on Lg(A) is called the k-principal grading by
Kac (1985, C.U.P) when TI'(A) belongs to table k. Unless there
is a chance for confusion we shall refer to this grading
simply as the principal grading. In particular, the (inner)
automorphism of type (1,1,...,1;1) 1is called the Coxeter
transformation, which we will denote by %, so that the
1-principally graded loop algebra over g may be denoted by
L(s,7).

Clearly any two sequences (so,....sc) which are
equivalent under a symmetry of the affine diagram will
induce Z-gradings which are equivalent under an automorphism
of La(A) induced by the symmetry.

We will find later that it is only the gradings of type
(so,...,sc) where this is a sequence of 0’s and 1’s (not all

0) which interest us.
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1.2.6 Example. A realization of the loop algebras L(ul,e)
and.L(o.i,ar).

Let us 1look at the diagram o.i“

and the two loop
algebras given by the gradings of type (1,0) and (1,1),
which correspond to the trivial grading and the principal
grading on 0.1 respectively. We will represent o.l as the
matrix Lie algebra s[(2,C) and obtain a realization of each
loop algebra.

A realization of the Lie algebra Lg(A), where I'(A) is

the diagram uii), is given by the assignment

-1
_(oo0 _[1o0 _foz
0 [zO] By [0—1] %‘[oo ]

_fo1 _[10 _[oo
e1‘[oo] hl‘[o—1] ‘;‘,[10]

This provides the standard realization of this Lie algebra.

0
I

It is not difficult to see that if we consider these as
loops (functions of zes') in s(2,6) then this is a
realization of the loop algebra L(ai,e) which has the
grading of type (1,0). This realization is comprised of all

matrices of the form

£f(z) g(z)
h(z) -f(z)

where f£(z),g(z) and h(z) are Laurent polynomials in z.

The principal realization is given by the assignment

«=(o8) n={c%) 4-[2-0]
with eo, ho' fo as before. Once again the parameter z can be
used to define the Z-grading; in this case we obtain the
grading of type (1,1) corresponding to L(g,¥). This
realization only contains those matrices of the form

[ £(z%) zg(z?) ]
zh(2%) -£(2%)

(e.f. 1.1.3)
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0~(1)

u(1)

5(1)

c(1)

6(1)

e(1)
6

8(1)
7

e(l)
8

(1)
f&
(1)

8,

Tables of affine diagrams.

Table 1
O=0
1 1
1
1 1 11
1
2 - ... —0=0
2 2 2
i
O=>0— . —0O<==0
i "2 2 1
1 1
20—0— ... —9—@2
2 2
1 1
1
2
0—0—0—0—0
i 2 3 2 1
L
0—O0—0—0—0—0—0
i 2 3 4 3 2 1

2
o—o—o—o—o—i——o—o
i 2 3 4 5 6 4

O—O0—O0=—=>0—"0
1 2 3 4 2

O0—O0=>0
1 2 3

2
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Table 2

(2) o<=o0
2 2 1
u(Z) O==>0— ...
2n 1 2
6(2) O<=0— ...
n+1 1 1

1
o.(a) 20—O0— ..
2n-1 2

1
8(2)
6

Table 3
6(3) o=>0—20
4 1 2 1

—-0=—>0
2 2
—-0=—>0
1 1
—Q<=—0
2 1



In this section we present the method of Drinfel’'d &
Sokolov (1985) for the construction of =zero curvature
equations associated with a fixed loop algebra L(g,60). Each
zero curvature equation 1is related to a matrix spectral

problem
(ax+q-zA)Q=0 1.3.1

where q is a function of x taking values in the homogeneous
subspace L(,g.e)o of L(g,8), 2zZA € L(g,e)1 is a constant
diagonalizable matrix and z is thought of as the spectral
parameter.

In their paper, Drinfel’d & Sokolov chose the function
q(x) to be smooth and periodic. However, the dressing method
introduces infinite series in z which have functions of q as
coefficients. In order to avold questions about the
convergence of such expressions we will treat all such
series as formal series. In any case there is no need to
know the analytic properties of . Consequently we will
regard the object @ as a sum Eqiez1 , Where the set {ei|
i=1,...,n} is a basis for L(g,e)o and the q, are
indeterminates. We wuse these to define a differential
algebra whose elements will play the part of functions of x.

Llet B = C[qim)] be the free algebra of polynomials in
the infinitely many generators q(lm) , i=1,..,n ; m e Nu{0},
where

(Mo @ 1 p-
4 = Dyx,..x™ times

A derivation ax over C is defined on B by

(m)y _ _(m+1) . -
<‘3x(q1 ) = q, ; 8x(f.g) o f.g+f.og

for any f,g € B. The algebra with derivation (ﬁ.ax) is the
differential algebra of differential polynomials in the
" indeterminates q- In future the differential algebra
constructed from a set of indeterminates {ai} in this manner
will be denoted by C{ai}.

Now define +the vector spaces
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©
L, =8Lg0) . L =TL(ge)_

18

+ =j
and let L = L_ e L_ . This vector space inherits a natural
Lie algebra structure from L(g,8); in fact the only
difference is that L_ Incorporates formal infinite sums of

elements of the loop algebra. Finally, for any finite

dimensional vector space W define W = WeB. Then let

~

.-
L=L_eL_, vherelL = (ngL(g.e)_J)

The operator in 1.3.1 will be treated as an algebraic
object

a_ +q-2zAhed_+L 1.3.2
X X

The idea behind the dressing method 1s to construct the
centralizer in L of this operator. For then, given any V e L
such that

[6x+q-zA,V]=0 ' 1.3.3

we find that , if V = V+ + V_ is the decomposition of V in
L + @ f._ » then the equation

(6 +q-2zA, V1=1IV , 3 +q-zAl 1.3.4

implies that this expression is an element of ﬁ(g,e) o
Consequently we may define a zero curvature equation by

8 =1V, ,a +q- zAl 1.3.5

A crucial part of the construction of V is that A must

be a semisimple element of g l.e. adA: x B [Ax] is a
diagonalizable matrix in gl(g). It follows that

g = Kernel(adA) @ Image(adA) 1.3.6

where adA is invertible on the latter subspace. The kernel

of adA is covered by the centralizer 3(zA) of zA in the loop

algebra. The centre of the centralizer will be denoted by

¢(3(zA)). The centralizer of zA in L is slightly larger than

3(zA)eB, it contains some infinite series. We will denote it

by 3(zA).

1.3.7 Proposition. For each element z'\‘/k € c(3(zA)) which
lies in a homogeneous subspace I..(g.E))k (k€Z), there exists a

unique series of the form
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v=2zZ + Xl +...elL, zlv e L(g,0) B
k k-1 J J
such that
[6x+q-zA, Vvl =0
and each vj is comprised of homogeneous differential

polynomials.

Remark. We must be careful about the use of the symbol ax
When it is found in an operator, it acts on an element f € 3B
as axf = f‘x + fax . This is the correct expression for the
action of ax as an element of the ring fB[ax] of differential
operators over B. So for any Ve L , [ax , V]l = Vx .
'

The proof of 1.3.7 relies on the next lemma , which is
the basis of the dressing method. The idea is to conjugate
the operator 1.3.2 into an operator whose centralizer is

easier to determine.

1.3.8 Lemma. There exists a unique series

-}
xX=1x z'Jx_ e L_ ) Image( adzA )

=t !

such that
eX ( 8x+q-zA ) e_x=6x+2(zl\) 1.3.9

where 2(zA) e 3(zA) (i.e. Z(zA) commutes with zA).

Remark. It is best to interpret the operation of conjugation

X X

e’ x e * as notation for the formal series

exp ady (x) = x + [x,x] + %[x.[x,x]] ... 1.3.10

It is easily shown that this is a Lie algebra homomorphism.
This avoids having to make sense of the object eX
Moreover, we extend this operation to include any derivation

at on L. We write

exp ady (Bt) a, + [x,at] + ..

t
=0Tt

Proof of lemma 1.3.8 We expand the formal series on the

left hand side of 1.3.7 in terms of its homogeneous
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components in the Z-grading on L, i.e. we collect the
coefficients of z*.

lLLh.s. = q=~2A + [x,q - zA] +...+ o, + [x.ax] +...
=-zA + (q - [x_i,A]) +... 1.3.11
-1
eoot ax -z ((75_1)x +...0) +...

We wish to find X, X , elements of Image(adA),

uniquely such that each c-:ief‘ficient commutes with A. Since
adA is invertible on its image, x_, can be uniquely chosen
to cancel the image-component of q, leaving the component in
the centralizer 3(A). But now we find that each term of
lower degree 1-m < O has X_, occurring only in the
expression [x_m,A] ; all other terms of degree 1-m will
depend upon the known quantities q and X, i<m.

Thus each X_, can be chosen uniquely in image(adA) (by
virtue of the Invertibility of adA on its image) to
annihilate the image-components of each coefficient of '™,
Moreover, since this argument has not involved integration,
each X_, is comprised of elements of the differential

algebra 3. =

Proof of prop. 1.3.7. For each zkvk given in the proposition

set

Vv=eX zkvk e*
Since (Vk)x = 0 and zkvk commutes with all elements of 3(zA)
we know that

[ax + 2(zA) , zkvk] =0

Conjugating this by e X gives the equation 1.3.3.

We demonstrate the uniqueness of V by examining the
homogeneous components of the equation 1.3.3, which have the
form

(6, +a, vi=Ia, v 1] 1.3.12
Let us define the projections

i : g — Image(adA)

k : g — Kernel(adA)
To determine S we first notice that i(vk_l) is uniquely

given by [6x+q,vk], since adA 1is invertible on its image.
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The component k(vk_ 1) is determined by the equation

k([ax +q, vk_I]) =0
This is a differential equation for k(vk_l) whose solution
is guaranteed by the existence of the series V. The solution
is unique up to a constant, which must be zero for each vJ
to be comprised of homogeneous differential polynomials from

B. (This uniqueness proof is due to Wilson (1981)) m

We will refer to the process of conjugating an object
by e X as the dressing operation, after the terminology of

Zakharov & Shabat.

Let us now write V = V_ + V_ as before. We assign a
derivation over C on 3B, commuting with 6x, to the element
v=2z% .
k
1.3.13 Definition. For each homogeneous element v € c(3(zA))

define a derivation av on B by

avq=[V+,ax+q-zA]
[6x+q—zA,V_]

[}

Accordingly, this gives us the zero curvature equation
[3x+q—zA,av-V+]=0 1.3.14

In fact, now that the dressing operation has been
established, it 1is possible to assign to each element
uec(3(zA)) a derivation au defined by 1.3.13 using the
series U = exp(adx)(u). This defines a 1linear map from
c(3(zA)) to the algebra of derivations on B commuting with
ax . The next proposition demonstrates that all these

derivations commute with each other.

1.3.15. Proposition. Let u,v € c(3(zA)) have respective
derivations

44d= (u, , 4]

8,a=1v, , £

where we set £ =8_+ q- zA. Then[8_, 8] = 0.
X u v
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Proof. ( c.f Wilson (1979))

a,(8,a) =1l Vv, , £ +[v_, [U,£]]

[auv+ , £1 + [[V+,U+], 2] + [U+ ,[V+,ﬁ‘3]]
by Jacobi’s identity.

Subtracting a similar expression for av(auq) we find

1]

(3uav - avau)q [[au_U+'aV_v+] [ £]

[}

Thus [6._, 3V]q

u [6U—U+ ’ [av-v+)2]]

+ 18-V, , [£8-U11 =0 =

It is now apparent that by choosing a loop algebra
L(g,08) and a semisimple element zA € 8, ve can construct a
hierarchy of commuting flows, with zero curvature
representations, which are indexed by the centre of the
centralizer of zA.

We now wish to show that this hierarchy possesses a
number of integral invariants common to all flows. Let

K:gaxg—>C |, K(x,y) = Trace(adx.ady).
be the Killing form on g. There exists a symmetric bilinear
form on the loop algebra

K: L(g,0) x L(g,80) —»C
defined by
K : L(g,e)J X L(g,e)_j —C

(u, v) —  K(m(u),n(v))
and all other pairs of homogeneous subspaces are orthogonal
under K.
Let us define , for each v € c¢(3(zA)), a differential
polynomial
Hv(zA) = K(2(zA),v) € B 1.3.18
where Z(zA) is the series in 1.3.9.

1.3.17 Proposition. For any v € c¢(3(zA)), the H‘;zA) are
such that 6qu(zA) € 6x3, i.e. they are conserved densities

for the "flows" au defined above.

Proof. Once again let & = 6X + q - zA. Then
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aqu(zA) K(auZ(zA) y V)

K3 (eX £e %), v)
u

K(eX ([U+,.‘£] + [e_xauex,.@]) e X , V)

K([something in L , 6X+Z(zA)] y V)

-ax K(something, v)
+ (something , [Z2(zA),v])

which belongs to axﬂ since v commutes with Z(zA). =

§1.4 The conservation laws.

An expression of the form

BVH = 6XF , ,F € B 1.4.1
is called a conservation law for the flow av . If H, F are
realized as smooth functions of x and a parameter v along
the flow 8v , it follows that the definite integral of H
over the domain of x (with suitable boundary conditions) is
independent of v. We will see that there are at least as
many non-trivial, independent conserved quantities as there
are non-trivial, independent equations. This will be done by
examining the connection between the conserved densities Hv

and the derivations av .

The evolution equation associated with v in

c(3(zA)) is

v axvo + [q, v] 1.4.2

o
=[v1.A]

where v, are the coefficients of z' in the expression for V,
the series obtained by dressing v. It will be shown that

this equation can be written in the form

= ¢8
8,9 = 3 3H, 1.4.3

where } is a certain operator and
S .
5q 3 > L(g.e)o @ B

is the formal Euler - Lagrange operator, whose components in
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the basis dual to {ei}, where q = }, qg, , are

3 - m 3
S = T (-3)"% m 1.4.4
. Sq‘ m=0 = aqi
This operator is characterized as follows. Let QB be the
B-module of 1-forms (or "Kihler differentials”, see for
example Matsumura (1962, Benjamin)) with universal

derivation (exterior derivative)

§: B> Qs
This is defined for the differential algebra (3, ax) so that
8 commutes with the 1lift of 48 to QB . Qs is freely

(m)

generated by the symbols 8q1 , with 3x6qim) - 6q(m"”.

i
any HeB it is a straightforward calculation to check that

For

o = 3 si/6q'™) aq™= ) %iaq1 mod 3.9,

In fact this relation fixes &/8q as the component of & on
the 3B-module :1;<<an>> co‘mplementary to axns. It follows that
axszs belongs to the kernel of &/48q. In particular
notice that the equation 1.4.3 1is only dependent on the
choice of the conserved densities up to exact derivatives
i.e. up to the freedom allowed by the conservation law

1.4.1.

s _ 3q
1.4.5 Lemma. E‘Hv = K( Vo -a—qi)
Proof. 6Hv = & K(v,2(A))

K( v, E{exp(adx)(ax+q—zl\) - ax} )

By expanding S{exp(adx)(ax+q-zA) - ax} we can write it in
the form
[ ¢, exp(adx)(ax+q-zA) 1 + exp(ady)sq

[-‘/’,6x + Z2(A)] + exp(ady)dq

-8, ¢ + [#,2(A)] + expladx)dq
where ¥ is a series of terms from L(g,9)®Qs- Hence

BHV = K(v, exp(ady)dq) - aXK(v,.Y’)
since

K(ly,Z2(A)],v) = K(y,[2(A),v]) = 0O
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for any yeL(g,0). Therefore 8H = K(V,8q) mod .0 .
The choice of the generators <§ql gives a unique

splitting for Q1 as the direct sum fB((qu» c} axns. Therefore

S u-= 59 . 39
aqinv K(V, 5"1) K(V, 5"1)

Moreover, it is clear that g% € L(s.e)o from which the
1

lemma follows. =

The lemma allows us to find the element é—H of

» 6qv

L(g,e)o®fB by

) =

sty = Klvg - ) 1.4.6
Using the invertibility of K: L(g,0), — L(g,0); , wve
conclude

_ 1,8
v, = K (55H,) 1.4.7

If we insert this into the evolution equation 1.4.2 we
obtain

_ -1,3
8,a=-18, +q, K (5 H)I 1.4.8

Thus we write the equation in the form 1.4.3 by choosing the
operator § = —ad(ax+q)oK'1.

It follows that there at least as many independent,
non-trivial conservation laws as there are independent

(i.e. commuting) equations.

§1.5 An example of a zero curvature equation for a loop
algebra over s[(3,C)

The simplest examples of zero curvature equations come
from loop algebras over sl(2,C); these are the
equations in the mKdV hierarchy, corresponding to the
principal grading (c.f §1.1), and the so-called AKNS
hierarchy (Ablowitz et al. (1974)) which uses the standard
grading. We will see later that these two hierarchies
exhaust the possibilities for 0'1’ so we will look at 0.2.

The simple Lie algebra a, is isomorphic to the algebra
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s[(3,C) of traceless 3x3 matrices of complex numbers. We

choose a basis for s[(3,C) which consists of the matrices

. 1 0O 00 O
H1 =|10-10 H2 =101 O
0O OO 00 -1
Elj = the matrix with 1 in the i r'ow, Jth column, O
elsewvhere.

let h = £ H1’ Hz» be the C-vector space spanned by H1
and I«I2 . Then b is a Cartan subalgebra and each EiJ is a
root vector (see, for example, Helgason (1978, A.P.)).
We define a finite order (inner) automorphism on
s[(3,C) by choosing the element
-100
T = [0-10] eSLs(C)

0 01
and defining

e : sl(3,C) — sl(3,C)

X +— TXT!
This corresponds to the Zz-grading on s[(3,C)
s[(3,C) = 8, °© &
=« Hl’ Hz’ E

1

E>»e<E_, E E _, E »
21 13

12’ 31’ 23’ 32

The loop algebra L(ua,e) is isomorphic to

¥ ( gozj ) gle )

je2z
In the classification of Kac (1969) T corresponds to an
automorphism of type (1,0,1;1) on u2 where root vectors for
o, o, o« are respectively zE , E and zE in this
o 1 2 31 12 23
representation.

We choose the semisimple element

A=E_+E
13 31

and write the potential q for the spectral operator in the

coordinate form

gts p O
q=|r -2s O
0 0 s-q

The spectral operator is therefore represented by
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g+ts p -z
d_+ | r -2s O 1.5.1
X
-z 0 s-q
A simple computation shows that the centralizer of A is
commutative, i.e. A is regular semisimple, so that
3(zA) = c(3(zA)) = ¥ (€ H-HYZ) o ¢ E_+E_»z"*")
1€27 12 13 31

We will construct a zero curvature equation by choosing

the (homogeneous) element zzv2 = zz(Hi-Ha) of this
centralizer and solving the equation
[ax-l-q-zA, 22v2+zvl+vo+ ... 1 =0
for \A and Vo The zero curvature equation will be
atq = [ vy » 4 1 - axvo 1.5.2
The computation yields
V+ = zav2 + zv, + A
z2 3(pq-pr3ps) 0
= 3(rq+rx+3rs) 3pz‘-222 -3zr
0 -3zp z2
The equations 1.5.2 are
q; = -3( pz')x
p, = 3(p,, - pPq, - pq° - p°r)
- 9s(pq - p, + 3ps) - 3(ps)
r, = -3(rxx +rq, - z‘q2 - rzp) 1.5.3
+ 9s(rq + r + 3rs) - :3(1':5)x
S; = 0

Notice that the variable s is stationary with respect
to this flow , so that it only plays the part of a
parameter. It will be shown later that this is always the
case for variables corresponding to the centralizer of zA.

Consequently we may set s = 0 to obtain the slightly simpler

system
q; = —3(pr)x . )
p, = 3(p,, - Pa, - Pg - PT) 1.5.4
r, = -3(r,_ +rq_- z‘q2 - rzp)
t Xx b4

Notice that q is a conserved density for this system. In
general it 1is difficult to compute the conserved densities
defined in 1.3.16, but Wilson (1981) derived other conserved

densities given by
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K( z-lv_1 , zA ) for V.= vi...4v_+... 1.5.5
This is necessarily congruent to Hv(zA) modulo exact
derivatives since Wilson has shown that 1.5.5 is also a
"Hamiltonian" for the equation characterized by v, i.e. we
can substitute 1.5.5 for Hv in 1.4.3. For the system 1.5.4

the conserved density given by 1.5.5, for s =0, is
3
2( pr, rpx) 3pqr

Remark. It should be explained that we do not expect to be
able to write the equations 1.5.4 in the form 1.4.3 since,
by setting s equal to zero, the potential q belongs to a
subspace of L(g,0) 0@3 on which the form K is degenerate.
Therefore we cannot repeat the construction given in 1.4.8.
Nevertheless the quantity g(prx - rpx) - 3pgr will still be
a conserved density since it is obtained by setting s = 0.

An interesting specialization of these equations (or
more correctly, a slight modification of 1.5.4) is obtained
by restricting the potential q to take values in a real form
of g, that is, in a Lie subalgebra u of the R-Lie algebra
generated by g whose complexification is g. A trivial

example of this is to take the real form s[(3,R) of sl(3,C).
| Then the equations 1.5.4 specialize to the identical
equations with q, p and r R-valued functions.

A slightly more interesting example is to take the
subalgebra of skew Hemitian matrices, su(3,C). Then the
potential q will be restricted to be

igq p O
qgq=| P 00
0 0 -iq

where g Is now an R-valued function. Of course we must also
require A and v2 to be skew Hermitian, which can be done by
replacing the current choices by A=i( E113+I~231 ) and
v2=L(H1—H2). These choices modify the equations in s[(3,C)
by multiplying the right hand side of 1.5.4 by { The
specialization to su(3,C) then gives

a, = -3(1p1%)

p,=30p + pipi? + p(q® - q,) )
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A similar specialization can be obtained using the real form
su(2,1).
~ We will see later (in §3.6) that the equations 1.5.4

also possess a transformation of Miura type.
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CHAPTER 2

§2.1 The determination of equivalent hierarchies of
zero curvature equations.

A hierarchy of zero curvature equations is determined

by a choice of the spectral operator
ax + q-2zA q e 50

or, more correctly, by a choice of 1loop algebra L(g,8)
(which determines the potential q and therefore the
differential algebra B) and a choice of non-zero constant
semisimple element zA € L(g,0) . Equivalently, we will
consider a hierarchy to be given by a triple (g,6,A)
consisting of a Zm-graded semisimple Lie algebra (g,0) and a
non-zero semisimple element Aegl.

The question of the existence of such an element A for
a given (g,08) will be left until later; it is a difficult
problem to classify these cases. The purpose of this section
is to define a notion of equivalence between hierarchies and
then determine when two hierarchies are equivalent in this

sense.

2.1.1.Definition. Let B and B’ be two differential algebras
and let D and D’ be two collections of derivations, on B and
B’ respectively. We will say that D and D’ are equivalent if
there exists an isomorphism between B and B’ that induces a

bijection between D and D’.

Remark. For any isomorphism ¢:B — 3’ of the algebras , a

derivation 8 on B induces a derivation godegp ® on B’.

Using this definition we will consider the equivalence
of hierarchies as collections "of derivations on the
differential algebra 3.

An obvious case where two hierarchies are equivalent is

36



the following. Let Go denote the adjoint group of
transformations on 8, s it is a subgroup of the adjoint
group G of g. Since [,go, 31] S g for each homogeneous
subspace 8, S g, Go has a representation on each 8, which
can be lifted to L(g,e)l. In particular, Go has a
representation as a subgroup of GL(gl). It is a
straightforward conclusion from the definition of semisimple
elements that every element in the Go-orbit of a semisimple
element is semisimple. It follows that the hierarchy
(g,0,A) belongs to a collection of hierarchies
{(g,0,8.A)18<G }.

2.1.2.Lemma. All the hierarchies in the collection

{(g,06,g.A) | geGo} are equivalent.

Proof. Each equation in the hierarchy (g,6,A) is given by a
constant element vec(3(zA)) and characterized by the unique
series V= v+... e L satisfying

[ax+ q-2A,V]=0
For any g e Go the adJjoint action is a Lie algebra
homomorphism, so that

{ 6x+g.q—g.zl\, g.vVl]=0 2.1.3
But clearly this series g.V = g.v + ... characterizes the
equation for the derivation ag.v in the hierarchy (g,06,g.A).
We can write

g.a=Laqlge) =Fpe pe3
and identify this with the potential p in the operator

ax + p - z(g.A)
associated with the hierarchy (g,0,g.A). Therefore the
differential algebra 3 for (g,0,A) is isomorphic to the
algebra B’ for (g,0,g.A). This isomorphism induces the
bijection av — ag'v between the hierachies (g,0,A) and

(g,0,g.A). =
Recall that the equations of the hierarchy (g,0,A) are

indexed by the centre c¢(3(zA)) of the centralizer of zA in

the loop algebra. Now suppose A’e is another semisimple
8
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element with the same centralizer as A; 3(A’) = 3(A).
Necessarily c¢(3(zA’)) = c¢(3(zA’). We intend to show that in
this case the hierarchies (g,6,A’) and (g,8,A) are
equivalent after a specialization, namely, after setting
some of the dependent variables equal to zero.

Recall from the previous chapter that the equation

[6X+q—zA, av—v+]=o

can also be written as

-[ax+q,vo]=avq=[l\,v 1 2.1.4

-1
where V= v + ... + vo V.t If we recall also the

projections i, k of g orllto the image and kernel of
adA respectively, we notice that 2.1.4 implies
d k@) =k([ A, v 1) =0

Consequently we may set to zero the coordinates of k(q)
without disturbing the consistency of the equations 2.1.4
(we choose a basis of 8, which 1is compatible "with the
splitting 8, = k(go) ® 1(30)). Moreover, it can readily be
seen that the effect of this specialization is equivalent to

constructing the hierarchy based on the operator

ax + i(g) - zA 2.1.5
The whole mechanism of the dressing method is still valid;
for each vec(3(zA)) there exists a unique series V = v+...

whose homogeneous terms belong to L(g,e)Jaiii, where (:ﬁ,ax) is
the differential algebra of differential polynomials in the
coordinates of i(q). The equation

[a +ilq) -2r, d - Vi=o0 2.1.8
is precisely the specialization of 2.1.4 above. We will
denote the hierarchy of specialized equations taken from
(8,6,A) by {g,6,A}.

Remark. In practice these specialized equations are of
equal significance to the original equations. The
coordinates for k(q) are stationary with respect to all the
derivations in the hierarchy, therefore they only play the
part of parameters in the equations. For example, in §1.5 we
found the equations 1.5.4 much easier to handle than the

full equations 1.5.3.
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Note also that, formally, the algebra B is described as
the quotient of B by the differential ideal X generated by
the_coordinates of k(q). The derivation 6V on B preserves X,
for if q, is a coordinate of k(q) and reX then Bv(qlr) =
qlavr € X. Thus we can push av onto B/X and its defining
equation will be 2.1.6, since i(q)=q mod X.

The next proposition is a key result about the
equivalence of these specialized hierarchies. The proof will

need to be developed in a series of lemmas.

2.1.7.Proposition. Let A, A’ be two semisimple elements
satisfying 3(A) = 3(A’). Then the hierarchies {g,0,A} and
{8,0,A' } are equivalent.

The idea behind the proof is quite simple. ' The next
lemma shows that there is an isomorphism between the abelian
subalgebra c¢(3(zA)) and the algebra of operators commuting
with ax+1'(q)-zA. Similarly, there 1is an algebra of
commuting operators isomorphic to ¢(3(zA’) corresponding to
the hierarchy {g,0,A’}. We will see that when 3(A) = 3(A’)
we can identify these two algebras of operators and thereby
identify the zero curvature equations of one hierarchy with
those of the other.

2.1.8.Lemma. For any u, v € c(3(zA)) the two equations
[ax+1(q)—zA, au-l..l+]=0
[6x+1(q)-zA, av-v+]=o

2.1.9

imply
[au—u+,a -V 1=0

Proof. Using 2.1.9 and the Jacobi identity we find that

[ [ au—u+ R av-v+ 1, ax +i(q) —2A]1=0 2.1.10

Now let £ = [ 6u-fJ+ , av—\'/+ ] e L+®§3. In the Z-grading on
L+®f.B we can write f = fo + zf‘1 + ...+ znf‘n . The component

of degree zero in 2.1.10 is

39



axfo-l-[i(CI) , fo]=0
Since axfo has one more derivative than [i(q).f‘o] can have,
fo does not belong to the differential algebra unless it is
zero. If we repeat this argument for each fl, i=1,...,n

successively, we discover that f=0. m

In fact it was not necessary to specialize the
hierarchy to prove this lemma; the reason for the
specialization is the following.

If we choose A’ such that 3(A’) = 3(A) then there

exists an operator

a_+ - zA 2.1.11

y P
such that

[6,+p-2A , 5, -V, 1=0 2.1.12
for all the operators in the hierarchy {g,6,A}. In
particular

- ! - = .1.13

[6y+p zA,3x+i(q) zZA 1 =0 2

where we have written ay for azA’ . With a change of

perspective we intend to view the hierarchy {g,0,A} as the
hierarchy {g,06,A’} using 2.1.11 as the spectral operator.
The specialization is necessary so that the object p can be
taken to be a "potential" for a spectral operator; we will
see that p = i(p), which forces us to consider only spectral

operators having values in .i(go).
In order to show that the hierarchies for A and A’ are

equivalent we need to find an isomorphism between their

respective differential algebras. To do this we need the

following lemma.

2.1.14.Lemma. The maps adA, adA’ induce the same splitting
g = k(g) @ i(g)
if 3(A) = 3(A).

Proof. Of course k(g) = 3(A), so we want to show that the
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¢c(3(A’)). This is an abelian subalgebra of semisimple
elements of g, so its adjoint representation provides a

weight space decomposition

8=23Jl Wece
AEY

*

where
g ={ xeg | [c,x] = Alc)x V cec }
and W={2ae | g #1{0}}
It follows that for any cec
Image(adc) = % ( g | alc) #0)
Both A, A’ € ¢, and since 3(A) = 3(A’) we conclude that
A(A) = 0 if and only if A(A’) = 0, when AeW. Therefore the

images of adA and adA’ are the same. m

2.1.15.Lemma. There exists an invertible linear

transformation C: i(g) — i(g8) such that p = C(i(q)).

Proof. Firstly, p = i(p) by virtue of its construction; p is
the component of degree zero In the infinite series
expad(-x) (zA’) from the dressing operation (there is no
difficulty in “"specializing" the entries of x). Therefore
p = -[x_i,A’], which belongs to i(g)e3 by the previous
lemma.
From the equation 2.1.13 we have the identity
(A, i(q)] = (A, pl

Therefore the lemma follows if we set C = (adA) ‘e(adA’),
which is invertible on i(g). =

The result of this is that we may use the coordinates
of p, call them P, as generators for the differential
algebra (.‘.B,ax). The equation 2.1.13 gives the relationship

between 8 and 8_ as
>4 y
a.p + [ i(q) , p]l= Byl(q) 2.1.16

It follows that if we replace i(q) by C (p) every
"differential polynomial in 3 can be written as a
differential polynomial in the  y-derivatives of the

coordinates P,
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Now let us write the spectral operator associated with
the hierarchy {g,0,A’} as
d + p -zA' 2.1.17
y P |

so that the differential algebra for this hierarchy is the
algebra (2, dy) of all polynomials in the coordinates P, and
their formal derivatives with respect to dy

) There is an obvious isomorphism between (?,dy) and
(fB,ax) where we map P, it q, and dy to 6x . However, we wish

to relate the two operators 2.1.17 and 2.1.11.

2.1.18.Lemna. Let §:(?,d ) — (:iz,ax) be the homomorphism of
differential algebras characterized by §( pl) = p = c(i( q))l

and gody = ayoz . Then this is a isomorphism.

Proof. The 1image of ¢ will clearly be the differential
algebra generated by all the P, and their y—derivat‘ives, for
which the 1somorphism. with (?,dy) is clear. However, the
differential algebra (ﬁ,ax) is 1identical to the differential
algebra generated by all P, and their y-derivatives due to
the lemma 2.1.15 and the relation 2.1.16. =

We are now in a position to prove proposition 2.1.7. It
will be shown that the zero curvature equations in {g,6,A’}
constructed using the dressing method on the operator 2.1.17

map, under {, to the equations 2.1.12 in {g,9, A}.

Proof of proposition 2.1.7. It suffices to exhibit this

mapping for the equations given by homogeneous elements v =
zkvk € c(3(zA)). By proposition 1.3.7 there exists a unique
series
V=2 +2W o+ ...+ + .
Kk k-1 o
with homogeneous terms in L(g,08)®P, satisfying

[d +p-2zN ,V]=0
y P
We define a derivation dv on (fP,dy) by

[d, +p-2zN ,d -V 1=0
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This equation is founded on the identities

ld +p, s 1=0[A,n 1 J=1
y J n 2.1.19

dyk(«so) + k([p,uol) =0

which uniquely determine 5 given \A

However, clearly the equation

[ay+p-zA’ ) 3V-V+]=O

. . k k-1

in {g,0,A}, where V+ =zZv + Z A + ... + Vo implies

that the terms vj, Jj=1, are the unique solutions to the
image under { of the equations 2.1.19. It follows that
& uo) =V, - Therefore the differential polynomials dvpx e?

given by
dvp=_[ dy"'P»»‘Uo]
map to avpi from
9P = -[6y+p,v°] ]

If we combine the results of 2.1.2 and 2.1.7 we arrive
at a larger equivalence class for the specialized hierarchy
{8,0,A}.

2.1.20.Proposition. For any two semisimple elements A, A e
8, the specialized hierarchies {g§,68,A} and {g,6,A’} are
equivalent if, for some g € Go’ 3(g.A) = 3(A").

Remark. It is interesting to note that c(3(zA)) = c(3(zA’))
if and only if 3(A) = 3(A’). We know the latter implies the
former, and the former implies c(3(A)) = c(3(A’)) in g. But
this means [A,3(A’)]=0, therefore 3(A’) < 3(A). If we

interchange A and A’ in this argument we see 3(A) = 3(A’).

In order to determine the equivalence class of a
specialized hierarchy {g,8,A} we need to examine the
Go-conjugacy class of 3(A) in g. In the next section we will
describe briefly how to do this.and then provide a few

examples.
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§2.2 The Cartan subspace and equivalent specialized

hierarchies.

In order to understand the Go-orbit of 3(A) we must
understand the Go-orbits of semisimple elements of 8,

It is well-known (see e.g. Helgason (1878,A.P.)) that
the G-orbits of semisimple elements are characterized by any
Cartan subalgebra of g. Every semisimple element 1lies in a
Cartan subalgebra and all Cartan subalgebras are
G-conjugate. Moreover, two elements of the same Cartan
subalgebra h are G-conjugate if and only if they are
conjugate under the action of the Weyl group; this is the
finite group isomorphic to the quotient group

Normalizer(h)/Stabilizer(h)

Vinberg (1976) showed that the characterization of
Go-orbits of semisimple elements in g, can be done in
exactly the same manner, replacing the notion of a Cartan
subalgebra by a Cartan subspace of 91'

Given (g,0), Vinberg (1976) defined a Cartan subspace s
s 8, to be a maximal subspace of semisimple elements which
is also an abelian subalgebra of g. He showed that the
Go-orbit of any semisimple element in 8, intersects s.
Consequently, all Cartan subspaces are Go—conjugate and the
union of all Cartan subspaces contains all semisimple
elements in 8, Vinberg defined the Weyl group of a graded
Lie algebra to be the finite group isomorphic to

W(s) = N(s)/S(s)
where N(s) { geG0 | g.s =58}
S(s) = { geG0 | g.¢c = ¢ VYces }

are the normalizer and stabilizer of s in Go' Vinberg also
proved that two elements of s are Go—conjugate if and only
if they are conjugate under the action of this group W(s).

We are interested in finding the classes of semisimple
"elements of 8, which have the same centralizer up to
Go-conjugacy. We begin by examining when two elements of s

have the same centralizer.
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Since s is an abelian subalgebra of semisimple elements
of g its adjoint representation on g yields a weight space

decomposition

where

g8 ={xegllc, x]l=plc)x Vces}
and 6 is the collection of weights ues* such that ,g” is
non-trivial. Notice that we have allowed 0 € 6; its weight
space is the centralizer 3;(s) of s.

The centralizer of any Aes is given by
3(A) = T (8"l u(a)=0) 2.2.2

Let us denote by GA the subset of 6 containg all those pu
which annihilate A. Then all elements with common
centralizer 3(A) are contained in the intersection of the
hyperplanes of s which are the kernels of each pu e GA. This
intersection will be called

RA={ces | u(c)=0Vp.eGA}

Remark. In the case where s is actually a Cartan subalgebra
of g8, an example of which will soon be given, the weight
space 6 1is a root space, each pu is a root and the
hyperplanes {¢ | u(c)=0}, for each non-zero pe6, are dual to
the walls of the Weyl chambers in s'. The group W(s) must
then be isomorphic to the Weyl group of the Lie algebra.

However, each RA also contains elements of s with a
larger centralizer than 3(A), since 3(A) < 3(A’) if 6 < 6
i.e, if RA_ = RA. Therefore it is necessary (and sufficient)
to have RN = RA in order to say that 3(A) = 3(A’).

In most cases it will be easier to work with the sets
of weights GA. It is easy to establish that the Weyl group
W(s) acts on the set of weights 6 by

Wi =pow' weWs), pe6
Therefore we can say that two elements of s have the same

centralizer if and only if the set of weights annihilating
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one is conjugate, under this action, to the set of weights
annihilating the other.

. Treating the general case beyond this brief discussion
is difficult and requires a better understanding of the
Weyl group of a graded Lie algebra. We will finish this

discussion by looking at a few simple examples.

2.2.3 Example. Examine the periodic grading corresponding
to the automorphism of type (1,0,1;1) on a presented at the
end of chapter 1. It was shown that, for the choice of
semisimple element A = 15113+EI31 the intersection of j3(A) with
8, is one dimensional (see 1.5.2). Therefore the dimension
of a Cartan subspace for this graded Lie algebra must be
one, since Aes implies s53(A). We conclude that there is
only one specialized hierarchy of equations for this choice

of grading.

2.2.4 Example. An interesting example is provided by the
Zz—grading given by an automorphism of type (1,0,1;1) on cz.

The diagram c;I) is
o o, o
09-=>o<=o2

In this case each Cartan subspace is actually a Cartan
subalgebra for c, We will compute a Cartan subspace and
classify the specialized hierarchies up to equivalence. We
use the representation sp(2,C) of cz, consisting of the 4x4

complex matrices of the form

where A1’ A2 and A3 are 2x2 blocks, with A2, A3 both
symmetric. To obtain a root space decomposition we fix the

Cartan subalgebra h of diagonal matrices, spanned by

H1 and H2 are proportional to the coroots of ot1 and a2
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respectively, where a = (al,O), @, = (az,l).
Rather than explicitly 1list the root vectors which
belqng to 8, and 81 in this grading let us simply note that

the subalgebra 8, consists of all matrices of the form

AL O
t 0 is the 2x2 block of 0’s
t
0 -A;

and 8, is the subspace of all matrices of the form

In particular, the elements

01 1 -1
9 40 2 -
1 01 2 | 1-1
10 2 -1 1 ¢

span a Cartan subalgebra s in 8,- A quick computation shows
that these can be (simultaneously) diagonalized, to H1 and
H2 respectively.

As mentioned in the remark earlier, we can use our
knowledge of the root system for <, to determine the
conjugacy classes of centralizers of elements of s. The root
system is a set of vectors in s' & Ca, but it can be

represented schematically by the diagram

N

~
v
R

v

There are two types of roots, long and short. The Weyl group
is generated by the reflections along each root. We see that
all 1long roots are conjugate and all short roots are
conjugate under combinations of these reflections (the group
is, of course, the group of symmetries of the square, Da)'

The diagram above indicates the regions corresponding

to elements of s with centralizers of different dimension.

47



The regular elements, those whose centralizer is s,
correspond to the regions between the rays generated by the
roots; these are the Weyl chambers. The set of all regular
elements forms one class ylelding one specialized hierarchy,
since every regular element has the same centralizer.

A feature of the geometry of this root system is that
each long (respectively, short) root 1is orthogonal to
another long (short) root. Therefore the kernel of any root
can be identified with the subspace generated by another
root of the same length. Any non-zero element of s lying in
the kernel of a root has a three dimensional centralizer.
Since all roots of the same length are conjugate, there are
precisely two conjugacy classes of centralizers of
non-regular elements.

This simple analysis of the root system has determined
that there are three distinct equivalence classes of
specialized hierarchies for this choice of grading on c e
They correspond to choosing Aes to be either

(i) any regular element,
or (ii) any element annihilated by a short root
or (iii) any element annihilated by a long root.

Each specialized hierarchy 1is characterized by a
specialized spectral operator. We may choose representative
spectral operators corresponding to the three cases listed

above to be

[ 2q 3p+r 0 ] [ o 20 ]
(1) O * | 3P T S 2¢ r3p| " 20 °
0 01 o0
9 —Sp—r -5 4 . - J
r q p 0 - r 0 0 1 -
(i1) o, + roa 5 -zlg 4 1O
- Q“ —p —q o - 1 0 g o
[ 0 p o 1 [ 0 0 0)
(ii1) o +| r a o _, -2y o O 1
0 : 01 0
- —p —q o’ “ o

Notice that only in case (ii) has the element A been

chosen to lie in the Cartan subalgebra s. In cases (i) and
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(iii) the semisimple elements belong to the Cartan
subalgebra generated by }.=.'13+E31 and E224+I-34=2 (once again EU
is f;he matrix with a 1 in the i-th row, Jj-th column and O’s
elsewhere). This choice has been made because it is easier
to construct zero curvature equations from these operators.
For example, in each case above an equation belonging
to the specialized hierarchy {cz,e.A} corresponds to the

element z°A in ¢(3(zA)). These equations are

(1) 2qt = fx + Bpk + 2rh
5 = gx - 6pk - 2rh
3p, = h_- (2q-s)k + r(g-f)

r, = —kx + (2q-s)h + 3p(g-f)

=1 1 - -
where f = s Iux * 3 { 2( rp, prx) ( pr)x }

= 1 _ - - ’

=7 Sex { 2(pr)x (rpx prx) }
=1 -1 -1 -

h =3 Py~ 3 (2q+s)rx 8 (qx Sx)r
= 3

k = ro.t (2q+s)px + 3 (qx+sx)p

(11) q“(-lq +q3+3pqr)

t 2 'xx X

p,=*p __-pg_ -2 {(pg®>_ + rpp}
t 4 TxXxx XX 2 b 4 X

=1 - -3 2
T =8 Txxx ~ T™xx ™ 2 {(rq )x * pnx}
=1 - - - a3
(iii) q, = 3 ( 9. * 2(prx rpx) 8pqr - 2q )x
_ 3 _ _ 2 _ 2
Py = Puyy * 2 ( pq,. + qu(px Pq) 2px(q +3pr) - 2p r. )
= 3 2 2
r,=r. .*: ( rq .+ qu( rx+rq) + 2rx( q +3pr) + 2r P, )

2.2.5. Example. For each affine diagram I'(A) the grading of
type (1,1,..,1) on Lg(A) provides a unique equivalence class
of hierarchies, for the following reasons.

Recall that the root space of each simple affine root
a is generated by the single vector e.- The subspace 8, of

g elements of degree one for this grading is identified with
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P4
L(g,e)1 ={ x =1§:0xie1 | x €C }
We will see, at the end of the section, that an element of

8, is semisimple if and only if every xiato. When T'(A) is a
diagram from table 1 (so I'(A) is an extended Dynkin diagram)
this result has already been proved by Kostant (1959).

However, every such semisimple element has the same
centralizer, up to conjugacy by G0 (which is isomorphic to
Ho = exp F)o for this grading). This is not difficult to see.
Any element h of F)o can be written as

4

h=Lkh , keC
1=0
and by definition
exp(k‘ad hl)ej = exp(kia‘u).ej A= (aU)

Although the vectors hx are linearly dependent they have
corank 1, therefore it is possible to conjugate an element x

in L(g.e)i, with xi¢0 for all i, into any element
[

X' =3 xie, »  x#0 for all i
i=0
with the condition, say, x’ = X, Clearly then, any

semisimple element of L(g,8) ' 01s conjugate to kx for some
k#0. But kx and x have the same centralizer, therefore all
semisimple elements in 31 possess the same Go—con,jugacy
class of centralizers.

Finally 1let wus note that, in this grading, no
specialization 1is required for the equivalence relation
2.1.20 to apply. Recall from lemma 2.1.2 that unspecialized
hierarchies are equivalent if their semisimple élements are
Go—conjugate. We have just shown that in this grading every
semisimple element of 8, is Go(s Ho)—conjugate up to a
scalar multiple. However, it is clear that the hierarchies
(g,0,A) and (g,6,kA) are equivalent; we merely rescale the
equations. By combining these properties we obtain our
result. We could also have proved this by showing that 8,
(EF)O) equals 1'(30) i.e. no semisimple element of L(gg,e)1

commutes with an element of f)o.
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§2.3 A condition for the existence of a non-trivial

hierjarchy.

It is time to address the question of when the graded
Lie algebra (3,'9) has a non-zero semisimple element A e 8,

It is well-known that the semisimple elements of g are
characterized by the property that their orbits, under the
action of the adjoint group G, are Zariski-closed (later we
will prove this)

It has already been mentioned that the adjoint group Go
of 8, is a subgroup of G, and that its action preserves 8,
It was shown by Vinberg (1976) that the semisimple elements
of 31 can also be characterized intrinsically by their
Go—orbits. We state without proof:

2.3.1 Propostion. (Vinberg, 1976) An element of 8, is
semisimple if and only if its Go-orbit is Zariski-closed.

In future closure will be taken with respect to the Zariski
topology unless otherwise stated.

In this section it will be shown that
non-trivial elements of 8, with closed Go—or‘bits exist if a
certain property of the weights for the representation of 30
on g, is satisfied. Recall that the representation of 8, on
g, is equivalent to that of L(,g,e)o on L(,g,e)1 . It follows
that the weights are precisely the set

{aeh | (a1) e}
where A is the affine root system for L(g,8). The main
result we intend to prove is the following, which is a
particular application of a result proved by Dadok & Kac
(1885).

2.3.2 Proposition. Suppose the set A1 of affine roots of
degree 1 contains a collection B of roots with the
properties:

(i) a-B ¢ A, for any «, B € B,
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(ii) there exists a set of strictly positive integers

{ #, | B e B} satisfying Zuﬁ&=0 , B = (&1).
BEB
Then 8, contains a non-trivial element with a closed

G -orbit.
o

Before we prove this proposition we present some
preliminary results. The first of these, again due to
Vinberg (1976), says that 8, contains no non-trivial
semisimple elements unless each of the integers Syre 1S, is
either O or 1. It is for this reason that we expressed
interest only in these cases earlier. Vinberg’s proof is
based upon an examination of the action of the centre of the
reductive algebra 8, on the irreducible subspaces of g . A

simpler proof will be presented.

Let T = {ao,...,at} be a basis of simple roots for A
and define .
H°={aienlsi=0}
"1={°‘1e“'51=1}
H2={aieﬂlsi->.2}
2.3.3 Proposition. 8, has no non-trivial semisimple

elements if Hz is non-empty.

Proof. Let I' be the affine diagram corresponding to A and
let A1 = {(a,1) € A} be the collection of affine roots of
degree one. Clearly all of these come from the sub-diagram
of T' obtained by deleting all the vertices corresponding to
Hz . However, every proper sub-diagram of I is the Dynkin
diagram of some semisimple Lie subalgebra a of g . So the
roots in A1 correspond to positive roots of a. Moreover
there exists a basis of roots for g for which the positive
roots of a are also positive for g. Consequently 8, belongs
to the nilpotent subalgebra of g comprised of the root
spaces for its ©positive roots. FEach element of this
subalgebra is nilpotent (in the adjoint representation each

element is represented by an upper triangular matrix); it
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follows that the only semisimple element in 8, is 0. =

Remark. It is not such a strong result to prove that every
element of 8, is nilpotent. A very simple argument shows
that if 8, does not contain a non-zero semisimple element
then necessarily every element is nilpotent. Any xe,g1 is
characterized by 6(x) = wx , where w is a primitive root of
unity with the same order as 6. Every xeg has a unique
Jordan decomposition x = xs+xn s xs semisimple, X
nilpotent, [xs,xn] = 0. Thus
8(x) = 6(x ) + 6(x )
8 n
= WX = WX + WX
s n
However, for any automorphism 6 of g, e(xs) is semisimple,
B(Xn) is nilpotent and [e(xs).e(xn)] = 0. Thus 9(x8) = wx,
by the uniqueness of the Jordan decomposition. So we have

proved that if xeg1 then xgeg1 .

Now let us assume that Hz is empty. For convenlence
write L(g,e)1 = & , then we have the root space
decomposition

8
g2 = BgAL(g,e)

1
It is not always true that each affine root space is

one-dimensional. However if we let A° denote the collection
of singular (or imaginary) roots,

2° = {(0,J) e A}
it is true that L(g.G)B is one-dimensional for each B e A-A°
(see e.g Helgason (1978,A.P.)). The next lemma demonstrates
that the presence of a singular root in A1 implies the

existence of a non-trivial semisimple element in 81'

2.3.4 Lemma. Let (0,1) € A1 . Then £ contains semisimple

elements which are non-zero.

Z
Proof. Recall that an affine root « =} mo belongs to A1
1=0

<
if ¥, ms, = 1. So if « = (0,1) it must be that « = ne
1=0 1=0
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where the integers n are the unique (normalized) positive

integers satisfying

P4
a 0O, « = (a,s).
l_z_:onii v o = (a, 1)

2

Consequently ¥ ns, = 1 , so that an imaginary root has
i=0
degree one only if all the s, are zero except for one sl=1

for which nt=1. However, by inspection we quickly see that
the only automorphisms 6 with this property have order 1, 2
or 3 and correspond to symmetries of the Dynkin dlagram for
g which have the same order. If the automorphism is trivial
then 8 = g. The non-trivial symmetries induce automorphisms
of a Cartan subalgebra of g and, being of order 2 or 3, must
have a non-zero eigenspace of degree one. Thus £ contains a

non-zero subspace of a Cartan subalgebra. =

From now on we may assume that A1 does not contain a
singular root. We intend to show that, in this case, we can
exploit the following theorem of Kempf & Ness (1878) to find

closed orbits.

2.3.5 Theorem. (Kempf & Ness, 1978) Let W be a finite
dimensional C-vector space, G a connecled reductive subgroup
of GL(W) with a maximal compact subgroup U < G. Let l-ll be a
Hermitian norm on W which is U-invariant, and for each x € W
define a length function
p : G— R*u{0}
g B Ilg.xll2
Then the G-orbit G.x is closed if and only if P, has a

~critical point on G.

Since this is a rather important theorem it deserves
some explanation. The first important step in the proof was
to show that the only critical points of the function p, are
minima. It follows that if G.x is closed then P must attain

a minimum and therefore have a critical point. If G.x is not
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closed, an extension of the Hilbert-Mumford theorem (see
Birkes (1971)) says that there exists a one-parameter
subgroup T = {y(s)| s € €}, of G such that %}’g 7(s).x lies
in W but not in G.x . Kempf & Ness showed that on the
quotient space

(max. compact subgroup of T)\T = si\¢* = R*
the function px(s) is strictly decreasing as |s|+o , thus P,

never attains a minimum for seC.

2.3.6 Example. We will use this theorem to show that x is
semisimple if and only if G.x 1is closed. First we must
describe the compact real form of g we wish to use, and the
Hermitian norm.

Let us fix a root space decomposition of g

g=helg
aE€Rr :
We can choose root vectors e e g such that K(ea, e_)=1 for

all aeR, where K is the Killing form on g. It follows that
[ea, e-a]=ha, where K(ha,~)=a (notice that ha is not in
general the coroot of a; this definition has been made for
later convenience). Treating g as a Lie algebra over R, we
def'ine the real form
w=Y REh> + PREe ~e_» + ) iR€e e _»
a€R a€R a€R
where R((ha)) is the real vector space generated by ha.
Clearly u is a real form, since g = éu + n. In fact 1 is a
compact form since the Killing form is negative definite on
. With respect to this choice of real form we have the
complex conjugation
fr g —>8
X+iy > xX-iy X,y € iu
Consequently we obtain a Hermitian norm Nz = K(z,;).
Moreover this norm is invariant under the compact group of
"unitary transformations" U < G whose Lie algebra is u.
We will now show that, for any xeg, the function
p.: G — R'u{0}
g - g x?
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has a critical point if and only if x is semisimple. It is
clear that for any critical point g of px the function pg.x
has a critical point at e, the identity of G. So we may
assume that x is such that e is a critical point. The

identity e 1is a critical point if and only if
d =
clspx(exp sy)lo =0 for all y e g 2.3.7

where we have used the fact that exp:g — G is onto in a
neighbourhood of the identity. If we compute the derivative
we find that 2.3.7 is equivalent to

K([y.x],;c)=0 for ally e g

i.e. K(y, [xx])
Thus e is a critical point of P, if and only if [x,x] = O,

O forallyeg

since K is non-degenerate on g. However, it is a standard
result of linear algebra that a matrix is diagonalizable if
and only if it 1is normal, i.e. it commutes .with its
Hermitian transpose. In the adJjoint representation, the
Hermitian transpose of adx is ad.;c. We conclude that

normality is equivalent to [x%,x] = 0. =

Now let us apply Theorem 2.3.5 to the representation of
G0 on £. As in the example, there is a canonical choice of
compact form for L(,g,e)o given by

u = L R D> + P Ree —e_ D + L R&e +e_»
aEAo aEAo aEAo

where h e F)o, e e L(g,8)" are generators for L(g,e)0
satisfying K(ea,e_a)=1, K(ha,-)=a , o=(a,0). This is the Lie
algebra for a maximal compact subgroup Uo of Go.

We have assumed that A1 does not contain singular
roots, therefore the space

;M = L(g,0), + L(g,0)

can be spanned by root vectors eB, e_p BGAl, chosen to
satisfy K(en,e_B)=1. Consequently M can be decomposed, as an

R-vector space, into Mt = Nt + { where
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M= 3 lR((eB—e_B)) + Y iIR((eB+e_B>)

BEA BEA
1 1

The complex conjugation ~ M — M of M with respect to %

is characterized by EB = -e_. Clearly, conjugation maps

L(,g,e)1 onto I..(g,e)_1 and therefore we may define a
Hermitian norm
-] : & = R'u{0}
x > K(x, %2
Moreover this norm is Uo—invar'iant. Uo acts along % ( since

[uo,fn] € %) so, given any g € Uo’ a+ib € M,

g.atib = g.a + ig.b = g.a - ig.b = g.(a+ib)

Therefore

K(g.x, g.x)=K(gx, gx)=K(x, x)
by the Go-invariance of the bilinear form K. Hence we have
established the existence of a function
+
P, : GO—HRU(O} xeg
2
g - lg.xl
satisfying the conditions of Theorem 2.3.5.

2.3.8 Lemma. P, has a critical point at e if and only if

[x,x] = 0.

Proof. As in example 2.3.6, the total derivative of P, at e
is zero if and only if

K( [y,x] , x)=0 for all y e L(g.e)0 2.3.9
However, K([y,x],x) = K(y,[x,X]) , and K is non-degenerate
on L(g,e)o (see e.g. Helgason (1978,A.P.)). Therefore 2.3.9
is equivalent to [x,Xx] = 0. m

We want to equate the property P has a critical
point" with the existence of a collection of roots with the
properties (i) and (ii) in 2.3.2. For convenience let us

.mak‘e the following definition.

2.3.10 Definition. Let B < A 1be a non-empty collection of

57



roots with the two properties:
(i) a-B ¢ A, for any «, B € B,
_ (ii) there exists a set of strictly positive integers

{ M | B € B} satisfying Zua&= 0 , B=(&1).
BEA
We will say that such a collection is of affine type.

Remark. This name for the set B 1is prompted by the
observation that if B is an Iindecomposable set then its
elements are represented by Cartan matrix of affine type
(see Kac (1985 C.U.P) for an explanation of generalized

Cartan matrices).

2.3.11 Proposition. Suppose A1 contains no singular root
and there exists a collection B c A1 of affine type. Then
there exist X, € C-{0} , B € B, such that the element
x =Y xe, €&
BEB
is semisimple.

Remark. This result is a special case of a result of Kac &
Dadok (1985) which provides a sufficient condition for the
existence of closed orbits for a rational representation of

a reductive algebraic group on a C-vector space.

Proof. We will show that, if we choose the values X, such
that Ixﬂlzs xB§B = u, (the strictly positive integers in

2.3.9 (ii)), then [xB,EB] = 0. We conclude, by lemma 2.3.7
and the application of the Theorem 2.3.5 of Kempf & Ness,
that the Go—orbit of Xg is closed. Now,

[xB’iB] = [ E xaea ’ -Z §fie-B ]
a€B BEB

2
= - I Ix]% [e,e_]
BEB

since a-8 ¢ A for o, B € B. By definition, [eB,e_B] = h

If we apply the bilinear form K we have
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- 2
KC DXl ) = = B 1,1 °KChy, o)

=-zixl% , 8= (81)
BEB

Thus directly from our choice IxBI2= B, we have
K([xB.xB],-) =0
As we mentioned earlier, K is non-degenerate on L(g,8) 0’ to

which [xB,xB] belongs, therefore [xB,xB] =0. =

Remark. It should be pointed out that in general it is not
possible to conclude that Xy is semisimple directly from the
property [xB,>_<B] = 0. In general we cannot find a compact
form for the algebra g for which the complex conJjugation
maps n(eB) to —n(e_B), where m:L(g,0)—g. However, in most
cases this can be done. For any finite order inner
automorphism, or outer automorphism of index 2, the graded
Lie algebra (g,8) does have a compact form characterized by
the mapping e -e_ pushed down onto g. Thus we could
prove proposition 2.3.11 for all the loop algebras
classified by the diagrams in tables 1 & 2 (see chapter 1,
§1.2) simply by invoking the elementary theorem about normal
matrices.

Unfortunately, for the few remaining cases (those
pertaining to the diagram 6:3)) it is not so elementary to
prove 2.3.11, therefore 1t was necessary to invoke the
result 2.3.5. In any case, the proof 2.3.11 is more elegant

than a case by case proof.

It could be shown that for any non-zero values Y, € C,

BeB, the element Yg = Y y.e, is semisimple. It is possible
BEB
to show that, Iif HO is the maximal abelian subgroup of Go

whose Lie algebra is P)o, then Yy is always a scalar multiple

of some element of the orbit Ho.xB.

Remark. Recall in the previous section, example 2.2.5, it

59



was claimed that the element

4
L %€
1=0
is semisimple if and only if x1¢0 for all i. This is evident
now from two facts:
(a) the set of simple affine roots is an affine
collection (indeed this is where the name comes from)
(b) any proper subset of {eili=0,. .8} generates a

subalgebra consisting entirely of nilpotents.

Notice that if A1 does contain the singular root (0,1)
then the singleton {(0,1)} can be considered to be a
collection of affine type. So, between the results 2.3.4 and
2.3.11 we have the result 2.3.2, which we may restate as:

A sufficient condition for the existence of a

semisimple element in 8, is that the set of roots A1

contains a collection of affine type.

§2.4 Graded Lie algebras with a non-trivial Cartan

subspace.

Using the results of the previous section we will
compile a list of affine diagrams together with the gradings
of type (so,...,s¢) for which (g,0) admits a collection of
roots in A1 of affine type. In general it does not appear
possible to classify these cases completely without
performing an almost case by case analysis. Our main aim in
this section 1is to construct a table of the simple Lie
algebras with rank = 4 together with the gradings which
admit a non-trivial Cartan subspace. It will be shown later
that this table lists all the graded simple Lie algebras,
rank(g) = 4, possessing this property.

We begin by proving a few results which hold for
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arbitrary rank.

2.4.‘1.Lemma. If @ is an involution (i.e. has order 2) then

(8,0) has a non-trivial Cartan subspace.

Proof. Let a« be a simple affine root corresponding to a
vertex labelled with sl=1; at least one exists. Let
ai=(al,1) € F);xz. Then (-a‘,zn—l) is a root for any integer
n since -a is a root and the order of 6 is 2. The set
{(ai,l),(-ai,l)} is clearly a collection of affine type in

A1’ so the lemma follows. =

2.4.2.Lemma. Given any non-trivial grading of type

(s "“’S¢)' sle{O,l}, on the diagram o.i“ or, for £ > 2, on
3

24

Cartan subspace.

, the corresponding graded Lie algebra has a non-trivial

Proof. For each of these diagrams the coefficients of
linear dependence {nll i=0,...,84 of the columns of the
Cartan matrix satisfy nl=nJ for all 1i,j. Therefore the
simple roots (oc1=(al,s!)} have the property

24
) a =0
1=0
Given the grading of type (s ,...,s,) we can decompose
the affine diagram ai“or 6(‘2)

disjoint, connected subdiagrams {I"k} satisfying

into a collection of

(a) every vertex of the original diagram lies in some
r,
k

(b) for each l"k one and only one vertex corresponds to
an s1=1.

It can be shown (see, for example, Helgason
(1978,A.P.)) that for each connected subdiagram I"k the

simple sum
@, =L (ocj I ocjel"k)
is an affine root. By property (b) {a(k)} < AI. Since no two

subdiagrams intersect we conclude that am-oc(k) is not a
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root for any J,k. If we write a(k)=(a(k),1) then

Ya = Ya =0
(k) i=01

Therefore {oc(k)} is a collection of affine type, whereupon

the lemma follows. m

Remark. According to this lemma any finite order inner
automorphism on sl((&+1,C) (for which (so, ey S c) is a
sequence of 0’s and 1’s) admits a semisimple element in its

eigenspace of degree one.

2.4.3. Lemma. Given any grading of type (1,51,...,50_1,1),
(1)
¢

k4

sle{O,l}, on either b(c“ or , & = 2, with the vertices

labelled as

24

()
(1)
b oP—0— ... 0=0 «
P’ 1 -1
o
F4
1
c: ) O==>0- ... —O<==0
o [»4 o o

o 1 -1 ¢
the corresponding graded Lie algebra has a non-trivial

Cartan subspace.

Proof. The coefficients {nll i=0,...8 are n=1, n=1, n=2
for i= 1,...,81. Therefore if all Sx=0 for i=1,...,81 the
corresponding automorphism is an involution and the lemma is
true by 2.4.1. So we may now assume sl=1 for some
ie{1,...,£8-1}. In this case it is possible to decompose

either of the subdiagrams

O0—o0— ... =0==>0 of bi“ 2.4.4
o o

1 =1

or
(1)

o—0~ ... —-0—0 of c, 2.4.5
o o

1 -1

into disjoint, connected subdiagrams 1"k with the properties

(a) and (b) listed in the proof of the previous lemma. We
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proceed as before to define

« = Y (ccj | ajel"k) = (a(k),l)

The collection {oco,occ,a } s A1 is of affine type since

(k)
(i) no pair of these roots has a difference which is a

root (this follows from the disjointedness of the I"k)
-1
(11) @ +a +FL2¢  =a +a + Zigla1 =0 =

2.4.6. Lemma Given any grading of type (0’51""'55..1’0)'

sie{O, 1}, on Bin

non-trivial Cartan subspace.

the corresponding graded Lie algebra has a

Proof. Let s, be the first integer in the sequence
(51’ ce ,sc_i) which equals 1. Define

Bo=a°+oc1+... +or.k

B¢=a¢+u1+ +ock

Then BO and B‘ are affine roots in A1‘ Moreover BO-BC is not
a root.

If k=£-1 then {Bo.ﬁe} is a collection of affine type
whereupon the lemma is true. If k < €1 there is a

non-trivial diagram

oO—o0— ... —0==0 2.4.7
aku aé-l

If none of s ,... equals 1 then the corresponding

S
automorphism i:l an ir:;t)lution, so the lemma follows by
2.4.1. Otherwise it is possible to decompose the graph 2.4.7
into a collection of disjoint, connected diagrams {l"m} which
have the properties (a) and (b) listed in the proof of lemma

2.4.2 As before we let
%y = ) (“j | ajer'm)

The collection {Bo’Be’“(m)} is a collection of affine type

in A1 for the same reasons (1) and (ii) as in the proof of

the previous lemma. =

The purpose of these results 2.4.2, 2.4.3 and 2.4.6 is
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to reduce the number of individual cases which must be
treated in the table to come. The table takes the following
forn}. Each affine diagram corresponding to a simple Lie
algebra of rank = 4 1is given in the left-hand column,
together with the scheme for labelling the vertices by
Aoseeer, (in the case of Bi“ and cin the scheme will be
the same as that given in proposition 2.4.3). Next to that
appears a sequence of integers (so,. .o ,sc) corresponding to
a periodic grading for which there exists a non-trivial
Cartan subspace. If this fact is the result of one of the
previous lemmas then it is referred to in the right-hand
column. Otherwise the right-hand column will list, for each
case, a collection of roots of affine type in Al.

One should keep in mind that many gradings of type
(so,....s‘) are equivalent due to the symmetries of a
diagram and only one representative need be 1listed.
Moreover, in general the involutions will wusually not be
listed since they are easy to determine and all such cases
are covered by lemma 2.4.1.

Some of the cases which appear in this table have
already been investigated by Vinberg (1976) where he lists,
for those graded exceptional Lie algebras for which 8, is
semisimple, the dimension of the Cartan subspace and the
group W(s). Some of the information presented in the paper
by Kac (1980) can also be used to determine the existence of
a non-trivial Cartan subspace, although one needs to know

how to describe the representation of Go on g, in his terms.
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Affine diagram :Grading (so,..,st) Collection of roots
of affine type.
c;1’ (1, 0, 1)
O—>0<—0 (1, 1, 1) lemma 2.4.3
i 2 i
p'1? (1, 1, 0, 0) o, o +2c_, o +o
3 oo o’ 1 2" "1 3
1 (1, 0, 0, 1) lemma 2.4.3
2§==>8 (o, 1, 1, 0) lemma 2.4.86
1 (1, 1, 0, 1)
(1, o, 1, 1) } lemma 2.4.3
(1, 1, 1, 1)

(1, S,» S, 1)

Sx= Oor 11

lemma 2.4.3

p¢ 1) (1, 1, 0, 0, 0) ia o +20_+2a_,a. +o
4 0’1 T2 73’1
1 (1, 0, 1, 0, 0) ia +o +ot ,0 +o_+2a_, 0
o 1 4’1 =2 T3 2
2%“8==>8 (1’51’52’83’1) lemma 2.4.3
1
(0'51’52’33’0) lemma 2.4.6
s1 =Q0or1l
¢tV (1, 0, 1, 0, 0) | &+, , a +o_+
4 Ty o 1 1 2 '3
a_+o_+o
0=>9—0—0<=0 2 3 &
(1, o, o, 1, 0) ao+a1+a2, @ ta
o« _+a
3 4

(o, 1, o, 1, 0)

(1,51,52,33,1)

s =0or1
i

o to , o+, o +o
0o 1 1 2 2 3

o_+o
3 4

lemma 2.4.3
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(1)
64 (1, 1, 0, 0, 0) ao+a2+a4, a1+a2+a3
16 % (1, o, 1, 0, 0) o, « +to_ o ta , «
@ - 1 2 3 4 2
g 2 1% (1, 0, 0, 0, 1) o +o +a , o +to_+o
. 0 1 2° 2 3 4
o (1, 1, 1, 0, 0) o, o, @, o+ +a
4 o 1 2° "2 3 &
(1, o, 1, 0, 1) o, o, o, o +o +o
o 2’ T4 1 2 3
(1, 1, 0, 1, 1) o, o, o+, o _+o
(] 1 2 3 2 &
(1, 1, 1, 1, 1) o, o, 0, 0, O
o 1 2’ '3 4
f(l) (o, o, 1, 0, 0) o +..40, o +..+a
4 o 3 1 4
o o o +20_ +a
0 4 2 73 &
8 95—9 32
(1, 1, 0, 0, 0) a, «
) 1
o +3a_+4a_+20
1 2 3 4
(1, 0, 1, 0, 0) ot , o +a
o 1 1 2
(0, 1, 0, 0, 1) o, +2a e,
(1, 1, 1, O, 0) o, o, o+ +o
0 1 2 3 &
o +2a
2 73
(o, 1, 0, 1, 0) o +a to , o
o 1 2 1
o +o_to , o
2 3 & 3
(1, 0, 1, 0, 1) o+, o +to +2a
0o 1 1 2 3
o, o+
3 4
(1, 1, 1, o, 1) o, o, o +tou
o 1’ "2 73
o, o
2’ &
(1, 1, 1, 1, 1) o, 0,0, 0,0
0’1’ 2°73" &
(1)
8, (1, 1, 0) o, o +30 , o
0 1 2 1
% %2 (1, 1, 1) @, @, @
0—O0==50 :
i 2 3
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0.(2)
2 (1, 0) involution
1
« i (1, 1) @, &
o 1
12) (1, 0, 0) involution
) @ (o, 1, 0) oco+a1, a1+2a2
=92 (1, 1, 0) « , o +20 , o
o 1 2’ 1
(1, 0, 1) ao+2a1, @,
(1) 1) 1) ao, al, az
(3)
64 (50’51’52)
cc1 a2 oco (0, 1, 0) } a1+2a2+a0
o0—0 (1, o0, 0)
i 2 1
(o, 0, 1) “1+°‘2' a2+°‘o
(1, 1, 0)
(1, 1, 1)‘ @, %, @
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§2.5 Graded Lie algebras with a ¢trivial Cartan

subspace, rank(g) = 4.

At present there does not appear to be a direct proof
that the sufficient condition, 2.3.2, for the existence of
a non-trivial Cartan subspace is also necessary.
Nevertheless this is true for all graded Lie algebras (g,0)
with rank(g) = 4. In the last section all those cases where
the condition 2.3.2 holds were listed. In this section we
will see that for every other grading of those algebras
there are no non-trivial semisimple elements in 91' This
will be done case by case, mainly using a result due to
Vinberg (1976).

It is well known in the literature that an element of g
is nilpotent if and only if the Zariski closure of its
G-orbit contains 0. A similar characterization holds for the
representation of Go on g. We will use without proof the

result:

2.5.1. Proposition. (Vinberg, 1976) An element xeg is

nilpotent if and only if clos(Go.x) contains O.

Once again, closure is taken with respect to the Zariski

topology.

Remark. I have not found, in the literature, a simple proof
of the statement that xeg is nilpotent if and only if
clos(G. x) contains 0. It seems worth providing one here.
Suppose xe€g is nilpotent, then by the Morozov embedding
theorem (see, for example, Jacobson (1962, Wiley)) there

exists heg such that [h,x] = -x. Therefore
‘lm exp(adth).x = (‘l_i)g exp(-t)).x =0

Hence 0 € clos(G.x).
Conversely, if 0 € clos(G.x) then for any G-invariant

polynomial f on g for which f(0)=0 we have f(x)=0. The
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adjoint representation pulls invariant polynomials on sl(g)
back to G-invariant polynomials on g. It follows that
tr[(adx)”] = O for all positive integers n, therefore adx is
nilpotent.

The orbit characterizations of semisimple and nilpotent
elements (propositions 2.3.1 and 2.5.1) lead to the next
result, the proof of which can be found in the paper by
Vinberg (1976).

2.5.2. Proposition. (Vinberg, 1976) The closure of the
Go—orbit of any element Xeg, contains precisely one closed
orbit, namely, the orbit of the semisimple part of x in its

Jordan decomposition.

As a corollary we obtain a condition which guarantees

that 91 only contains nilpotents.

2.5.3. Corollary. If, for some xeg, clos(Go.x) =8, then

8, only contains nilpotents.

Proof. Let Yes,, then the Go—orbit of its semisimple part,
Y belongs to 8 = clos(Go.x). But 0 also has the closed
orbit {0} and so by the previous proposition we must have

(?:o.ys = {0}. Therefore ys=0, thus y is nilpotent. =

Consequently, to prove that 8, contains only nilpotents
we need only show that there exists an element of 8,
satisfying the next condition. Vinberg (1976) mentions this

result without proof.

2.5.4. Proposition. Suppose, for some X€g , that [gdx] =

8, Then clos(Go.x) = 8, therefore 8, contains nilpotents
only.
Proof. It is not difficult to see that clos(Go.x) is a

closed, irreducible variety with the same dimension as Go.x.

69



Since Go.x is non-singular its dimension equals the
dimension of [go,x]. Thus we have a closed irreducible

subvariety clos(Go.x) S g, whose dimension equals that of

8-

clos(Go.x) cannot be a proper subset (see, for example,

An elementary theorem of algebraic geometry states that
Humphreys (1975, Springer)) i.e. clos(Go.x) =8 - =

This result will be the main tool used to show that all
the gradings ignored by the earlier table correspond to
graded Lie algebras with a trivial Cartan subspace. 1In
practice showing that [go,x] = 8, for some X€g, is quite

tedious; sometimes it is possible to use a simpler test.

2.5.5. Lemma. Let 6 be an inner automorphism of g (these
correspond to the affine diagrams in table 1 of chapter 1).
If the order of © does not divide the degree of any
homogeneous G-invariant polynomial belonging to a basis for
the ring of G-invariant polynomials on g then 8, contains

nilpotents only.

It is well-known that the ring C[g]c of G-invariant
polynomials on g is finitely generated. Any two bases of
homogeneous G-invariant polynomials for this ring have the
same list of the degrees of the polynomials in the basis,
that is to say, these degrees are invariants of g. A list of
these numbers can be found in, for example, Bourbaki (1968,

Hermann).

Proof. Let {}1} be a basis of the ring ﬂ:[g]G where }l has
degree di. The subvariety of g
{ xeg | }1(x) =0, Vi}

is called the null-cone of g; it is well known that this set
only contains nilpotents (in fact we can deduce this from
the proof given earlier that an element is nilpotent if the
closure of its G-orbit contains 0). Now let m = order(8) and
let w be a primitive m-th root of unity. If 6 is an inner

automorphism (and therefore belongs to G) for any element
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Xeg, we have

}l(x) = }’1(9.x) = }x(wx) = wdlfl(x) for all i

If m does not divide di then wdiﬁ for any 1, therefore

Ji(x) = 0 for all i. Hence 91 belongs to the null-cone. =

Between the results 2.5.4 and 2.5.5 we will be able to
show that each grading not appearing in the table in the
previous section pertains to a case where 31 contains only
nilpotents. The following table is arranged similarly to the
previous one, with the affine diagrams in the left-hand
column and the grading in the central column. In the column
on the right there will appear either a set of roots from A1
or the order of the grading. The former designates that
there exists a vector x, which is a sum of non-zero root
vectors for the roots given, with the property [go.,x] =g,
To actually demonstrate this in each case would be a
tiresome procedure; one example will be computed afterwards
to give an indication of how to proceed in general. When the
order of an Inner automorphism appears in the right-hand
column this indicates that it does not divide any of the
di. These degrees will be listed beside the name of the

relevant affine diagram.
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Affine diagram iGrading (so,..,s ) [go,x] = 8,

X =Y (xaeala listed)

- 2,4
0> 0<—0 (1, 1, 0) order = 3
i i
(1)
b 2,4,6 (1, o, 1, 0) o, o ‘o +o
3 ) 1 2 3
2§==>g (1, 1, 1, 0) order = 5
1
¢!V 246 (1, 1, 0, 0) «
3 1
(o, 1, 1, 0) @, @,
=9—9<=% (1, 1, 1, 0) order = 5
5t 2,4,6,8 ¢ (1, 0, 0, 1, 0) | &, +x_+o_+
4 0’ 1 3 4
1 (1, 1, 1, 0, 0) order = 5
2%——8==>8 (1, 1, 0, 1, 0) order = 5
1 (1, o0, 1, 1, 0) order = 5
(1, 1, 1, 1, 0) order = 7
(1)
c 2,4,6,8 (0, 1, 1, 0, 0) o+, o
4 0o 1 2
o=>9—0—0<=0 (1, 1, o, 0, 0) @, o
(1, 1, 1, 0, 0) order = 5
(1, o, 1, 1, 0O) order = 5
(1, 1, 0, 1, 0) order = 5§
(1, 1, 1, 1, 0) order = 7
51 2 .4,6,4
« (1, 1, 1, 1, 0) order = 5
1 o
%
o —0 a
i 2 1 .3
1
o
4
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(1)
f4 2,6,8,12 (o, o, 0, 1, 0) o, (x3+a4
@ «, (0, 0, 0, 1, 1) @, «
959 % (1, o, 0, 0, 1) o« +a o +20 , @
0o 1 2 3 4
(1, o, 1, 1, 0) ao+a1, @, o
(o, 1, 0, 1, 1) o, o+,
1 2 3" a4
(1, 0, 0, 1, 0) i )
(o, 1, 1, 0, 0) _
(0, 0, 1, 0, 1) +» order =5
(1, 1, 0, 0, 1) | |
(0, 0, 1, 1, 0) i)
(1, &, 0, 1, 0) _
(1, 0. 0, 1, 1) y order =7
(0, 1, 1, 0, 1) | |
(o, 1, 1, 1, 0)
(o, o, 1, 1, 1) order = 8
(1, 1, o0, 1, 1)
(1, 1, 1, 1, 0) _
(1, 0. 1, 1. 0) } order = 10
(o, 1, 1, 1, 1) order = 11
(1)
8, 2,6 (o, 0, 1) @,
(o, 1, 1) order =
% %,
(1, o, 1) order =
0—0o==0
i 2 3
(2)
2 (0,1 @
@ L g o
o' (0, 0, 1) @
4 2
% %
(o, 1, 1) a0
O=>0=>0 1’2
i 3 2
(3)
64 (50’51’52)
(o, 1, 1) o, o
@ o, e 1 2
o=>0—20 (1, 0, 1) ao’ @
i 2 1
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2.5.6. Example. One example is sufficient to demonstrate
the method of proving the existence of a dense orbit. Take
the example of the grading of type (1,0,1,0) for B;”. We

will see that there exists an element x in the subspace

a B
L(g,8) + L(g,0) @ =, B = @ o to
such that
[ L(g,8), , x ] =L(g,0)
The space L(,t_);,e)1 is the sum of root spaces for the
roots
o, ot , o ta b, o, o 4o, O +a_+o
0 01 0o 1 2 2 1 2 1 2 3
The roots corresponding to L(,g,e)o lie in
= + +
o, =1 ta , 2o , (a +a) }
Therefore if x , X are non-zero root vectors for «, B
respectively it is clear that
r
[ ¥ L(g,8)" , x + X, ]
7€A
0
contains the root spaces corresponding to
@, = B - (oc1+oc3) y @ote = @t
@t to, = @ +(oc1+oc3) @ e = B - o,
Moreover
L(g,e)o = f)o I L(g,0)”
rE€A
0
where F)o is a 3-dimensional abelian subalgebra which acts
diagonally on the root spaces of L(g,6). Thus
a 8
{ f)o y X+ X ] = L(g,0) + L(g,0)

since a and B8 are linearly independent. The result follows.

Finally let us note that, in principle, the paper by
Kimura et al. (1986) contains all the information we seek.
They report in that paper the classification of all the
rational representations of reductive algebraic groups which
admit only a finite number of orbits. In particular, if the
representation of Go on g, admits only a finite number of
orbits then 31 must contain a dense orbit, therefore ,91
contains only nilpotents, by 2.5.3 (if 91 is the union of a

finite number of orbits then it is the union of their
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closures, but 31 is irreducible therefore one of these
closures is not a proper subset).

. Consequently if I could translate each representation
of Go on g into the language used by Kimura et al. then I
could make use of their results. Unfortunately it is not at
all clear to me what the relationship is between their

notation and the description of the representation of Go on

8,
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CHAPTER 3

§3.1 Miura's transformation.

The basic observation of Miura (1968) was that the mKdV

equation
2
= - 3.1.1
9t = Ayxx 6q qy
could be transformed into the KdV equation
l u, = u + 6uu 3.1.2
t XXX b 4
by the substitution
2
= - 3.1.3
u=q,-9q

We wish to find a context in which this transformation can
be understood, for it is not obvious that the differential
polynomial u ¢ = 9y " 2qqt should be able to be expressed
purely as a differential polynomial in the variable u. More
formally, recall from chapter 1 that C{q} denotes the
differential algebra of polynomials in gq, R Then we

wish to discover why the derivation 8, on C{q} defined by

3.1.1 preserves the subalgebra C{u}. i

In this section we will describe how the Miura
transformation is explained as an example of some general
machinery developed by Drinfel’d & Sokolov (1981, 1985). The
following section will show the contrast between this and a
more elegant explanation due to Wilson (to be published).
Before anything can be done a little preliminary discussion
is necessary.

It had been known for some time before 1981 that 3.1.3
is the prescription for factorizing the Schrédinger
operator,

ai +u = (8-q)(8 _+q) 3.1.4
This operator plays a pivotal role in the theory of the KdV
equation (see Gardner et al. (1968) for example), however
let us examine this factorization at face value.

This second order operator has a two dimensional
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null-space spanned by functions ¥, ¢ satisfying

(32 +uwy =0 (32 +uw¢p=0 W9 =k 3.1.5
where W(y, ¢) is the Wronskian

Wiy, 8) = yo_-gu_

and k is a non-zero constant. In particular we may choose y,
¢ to be compatible with the factorization, that is to say

(B, + @ =0 (8 +aqy=ky 3.1.6
where the second relation follows from the fact that np'l
spans the null-space of ax—q.

If we choose ¢, Y such that k=1 then the relations in

3.1.6 can be rewritten as

q -1 v ¢ =
R 3.7
whereas the relations in 3.1.5 are equivalent to
0 -1 Y ¢ =
[ax+[u 0]] [V’x (W;l)/w] =0 3.1.8

Drinfel’d & Sokolov pointed out that the operators in
3.1.7 and 3.1.8 are equivalent under a unique gauge

transformation

R F REE ORET (A e

Moreover they showed that there is an analogous result for

the factorization of the operator

41 -1 _
6x tu, 8, +...+tu = (ax+qc)...(ax+qo) 3.1.10
with
P4
Lq =0
1=0
In this case the matrix operators
q0 -1 0...
s +|9 4 -1 0... 3.1.11
x e e
-1
0 q,
and
o -1 0.
3 + 0 -1 0... 3.1.12
X .o
oo =1
uo uc_1 o]



are gauge equivalent by the action of a lower triangular
unipotent matrix with unique entries which belong to C{qi}.
The factorization 3.1.10 has been used by Sokolov & Shabat
(1980) and Fordy & Gibbons (1980) to construct zero
curvature equations, for the variables q, given a Lax
equation with the scalar spectral operator 3.1.10 (see also
Kupershmidt & Wilson (1981)).

Of course it is not obvious that this transformation of
matrix operators allows to pass from one equation to
another. For the Miura transformation the argument presented
by Drinfel’d & Sokolov (1985) goes briefly as follows.

In 2zero curvature form the mKdV equation has the

spectral operator with representation
a_ + [ a - ] 3.1.13
X -z -

Recall from chapter 1, §1.2, that this uses the principal
realization of the loop algebra. In the standard realization

this operator has the form

8 + [‘7 ‘1] 3.1.14
b.4 -2 -

Under the adjoint action of lower triangular unipotent

matrices in SL(2,C) the element

0 0o
[_z 0] 3.1.15

is fixed. Consequently

(0 e[ Y (e s

A more general statement is that the operator

£=3a_+ [g_z :1] 3.1.17

can be transformed into

_ 0] -1 _ _ 2
M(l’)—ax-b[u_z 0] » B=q -q +r 3.1.18

by a gauge transformation using a unique lower triangular

unipotent matrix (it is of course the same lower triangular
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matrix used in 3.1.18).
Drinfel’d & Sokolov were forced to introduce the
operator £ because gauge action of the group ¥_ of matrix

"functions" of the form

1 (0]
a(x) 1

does not preserve the set of operators having diagonal
potentials. £ can be thought of as a generic element of the
set of operators with lower triangular potentials, on which
¥_ acts by gauge transformations.

Having noticed 3.1.16 we would 1like to be able to say
that the Miura transformation is the result of "dividing
out" by the action of ¥_. We think of the variable p as
being an ¥_-gauge invariant since the map £ — M(£) assigns
a unique M(£) to the ¥_-gauge orbit of £. Unfortunately this
idea does not go through, but Drinfel’d & Sokolov managed to
salvage some of this concept ingeniously.

They defined two derivations

8,2 [V(r):, 21 4119
Ve = vir) , £1

where [V(r),£] = 0 and V(z')+ (respectively, V(r)+) is the
finite series of terms in V(r) of non-negative degree in the
principal (respectively, standard) grading. The derivation
a : yields the mKdV equation when r=0 (clearly V(0) is the
series V commuting with the operator 3.1.13), while the
derivation V ¢ gives the KdV equation for the variable p (it
is this latter derivation which Iis, so to speak,
¥ -invariant).

According to Drinfel’d & Sokolov we look at

(V,-9,)2 = [ vir)t - v(r), , &1 3.1.20

+ ’
The matrix V(r)® - V(r) + 1s lower triangular (recall that in

the principal grading the generator

_ -1 0 O
f,=z [1 0]

has degree -1, while in the standard grading
_{o o
f, = [ 1 0 ]
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and therefore has degree 0). The idea of Drinfel’d & Sokolov
is that V¥ t-a ¢ must be tangent to the one-parameter subgroup
exp(_s(V(r)+ - V(r),)) of ¥_. Since p is an invariant of this
group they conclude that (vt-a t)u = 0. Therefore & ¢ also
gives the KdV equation for u when r=0.

The remarkable achievement of Drinfel’d & Sokolov was
to prove that a similar procedure can be followed for any
zero curvature equation associated with the grading of type
(1,1,...,1) (the principal grading) on the Lie algebra Lg(A)
with affine Cartan matrix A. Their general result Iis
this: let (g,v,A) be the hierarchy of zero curvature
equations corresponding to the principal grading on Lg(A),
where

24

zZA = § e,

1=0
in terms of the canonical generators for Lg(A). To any
vertex a of the affine diagram TI'(A) there corresponds
another hierarchy of equations, wusually referred to as the
generalized KdV equations, which are obtained from the
hierarchy (g,v,A) by a transformation of Miura type.

When the diagram is o.in the generalised KdV hierarchy
obtained for any choice of vertex is precisely the hierarchy
of Lax equations associated with the scalar operator 3.1.10
(see Drinfel’d & Sokolov (1985) ).

A similar result can be obtained for some gradings
other than the principal grading. Later we will look at the
conditions necessary to obtain this result; this entails a
rigorous development of the proof outlined by Drinfel’d &
Sokolov.

For the meanwhile we will return to Miura’'s
transformation. The explanation Just given appears rather
ungainly; in the next section we will examine a more elegant

explanation due to Wilson (to be published).

§3.2 Miura’s transformation and SL(2,C)

Let us reconsider the factorization 3.1.4 in the light
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of differential Galois theory. The simple results we will
use in this section can be found in the book by Kaplansky
(1957, Hermann, see especially chapter vi).

-Let C<u> denote the differential field of rational
functions of u, ux, uxx and so on, i.e. the quotient field
of the differential algebra C{u}. We view C<g> as the field
extension of OC<u> necessary to factorize the Schrédinger
operator. As Wilson (to be published) points out, it would
be very convenient if this was a Galois extension, that is,
if C<u> was the fixed field of some group G of
(differential) automorphisms on C<g>. For then any
G-equivariant derivation on €<g> would preserve C<u>.

However, this is not the case, but the reason why
implies a more interesting explanation of Miura’s
transformation.

The field extension C<u> c €<y, ¢> implicitly used in
the previous section is the extension containing the
solution space to the equation

(82 + wly = 0
It is a Galois extension with Galois group SL(2,C), where

the action is

(y ) — (y ¢)f[a B 3.2.1
¥ 3
= ( ap+yd By+dd ) ad-By =1

It is not difficult to see why. Consider the transformations
3.2.1 for arbitrary «,B8,7,8. Provided ad-By=0 this is a
change of basis for the null-space of 8}2‘ + u , therefore u
is invariant. However we also have the relation W(y,¢)=1,
which is not preserved unless ad-Br=1.

At this point we are reminded that the field C<y,¢> is
not freely generated; it implicitly contains the relation
w¢x-¢¢tx=1. We prefer to work with a free field since then we
have independent indeterminates in which to write our
equations. Fortunately this can be remedied by letting 7 =
¢/Y. The differential fleld C<n> is the subfield of C<y, ¢>
fixed by the centre {*I} of SL(2,C). The centre is a normal
subgroup, therefore we conclude that €<u> < C<%> is also a

Galois extension, with Galois group PSL(2,C) =
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SL(2,C) /centre.

Indeed we have a sequence of extensions

C<u> c CLg> < C<n> 3.2.2
where
= - g% =1 I -1 3.2.3
u= qx q » q 2 xan . .
The action of PSL(2,C) on C<n> 1is by linear fractional
transformations
n — B2 on «5-By=1 3.2.4

a+ ¥
We see from this that C<q> < C<n> is the Galois extension
corresponding to the solvable subgroup FPB A of upper
triangular matrices in SL(2,C) modulo {+I}. This subgroup

acts via the affine transformations
n — (Ba + M2 3.2.5

However, PB+ is not a normal subgroup of PSL(2,C),
therefore C€<gq> cannot be a Galois extension of C<u>.
Nevertheless, Wilson points out that we have all we need to
explain Miura’s transformation.

The equation

RN . Ve 3.2.6
on C<np> is PSL(2,C)-invariant. This can be seen by writing
this equation as

n, = S(n)nx : 3.2.7

The expression S(n) is called the Schwartzian derivative of
n; it is well known to be invariant under linear fractional
transformations (indeed S(n) = 2u). Therefore the derivation
a £ defined by 3.2.6 preserves both the subfields C<q> and
C<u>, and of course any subfield fixed by a subgroup of
PSL(2,C). This equation yields the mKdV and KdV equations
for the variables q and u respectively. Wilson (to be
published) calls 3.2.6 the "Ur-KdV equation".

Now it would be very pleasing if we could say that this
explanation is the blueprint for a .conceptually neater proof
of the result obtained by Drinfel’d & Sokolov described at
the end of the previous section. However, it is not clear,

except in the case of s[(£+1,C), what the correct analogue
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of the top field C<¢,y> is. So first let us look at the case
of sl(&+1,C) and later on we will attempt to understand the

more difficult cases.

§3.3 The case of the principal grading on s{(£+1,C).

We will look at how the Galois group approach can be
used for zero curvature equations with the spectral operator
qg -z O0...

(o}

24
3 + °© g -2 0... Yq =0 3.3.1

-z 1=0
-z 0] q,

These come. from the principal grading on the Lie algebra

(1)

with diagram a, The zero curvature equation defines a

derivation on the differential field C(qo, ceesq2 which lies
in the middle of the sequence of field extensions
C<uo,...,uc>cc<qo,...,qc>cC<|,(10,....n/;t> 3.3.2
where
_ Z+1 14 _
Lc+1 = 8x + ucax-* cee tu = (ax+qt)"'(ax+qo) 3.3.3
and
(ax+q1)...(ax+qo)¢l =0 , i=0,...,n 3.3.4

The constraint

£q =0
1=0
is equivalent to u, = 0 and therefore
W(l[lo, .. "l'z.) = constant 3.3.5

We will fix the Wronskian to be 1. Consequently the
differential fields in the sequence 3.3.2 are not freely
generated (although it is trivial to remedy this for the
bottom two fields). We will look at this problem later.
First we will see how to construct an SL(&+1,C)-invariant
equation on the top field which induces our given =zero
curvature equation on C<qo, ey q£>.

In the ©principal realization the zero curvature

equation has the form
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k

[ ,+a-2A,8,- (vz *...4v)1=0 3.3.6

t
where ax+q-zA is the operator 3.3.1. However, we may also
write these two commuting operators in the standard
realization, so that we have the commutator

k =
[ 8 *aq (zA_+A)) , 8~y z + ... + vo) l1=0 3.3.7

Here A . is the matrix with 1’s along the super diagonal and
0’s elsewhere, while A_ has a single 1 in the bottom left
corner. The matrix v, is upper triangular with entries
belonging to the differential algebra C{qo, R § ) We know
that the equation 3.3.7 is identical to

[3x+q—A+,at-v0]=0 3.3.8

since these operators are the components independent of =z
(more formally, of degree zero in the standard grading) from
the pair of commuting operators above. For example, the mKdV
equation can be represented by the commuting pair of upper

triangular matrices

3
q -1 29°-q 2(qx-q2)
a_ + , 8, - =0 3.3.9
X 0o - t 0 —2q3
q 9,724

The operator ax+q-A + is the operator 3.1.11. As with
the s[(2,C) case, it 1is possible to write the relations
3.3.4 in the form

(3x +q- A+)\Il =0 3.3.10
where ¥ is upper triangular and has top row
Cy, ¥, - ¥,)

All the other entries of ¥ are elements of the field
C<|/10, e -*"? and are uniquely determined by the condition
3.3.10.

It is not difficult to see that the equation 3.3.8 is
the self-consistency condition for defining the derivation
6t on C<tpo,...,z/1t> by

a,vy=v»Vv 3.3.11
t o}
Needless to say, on the subfield C<q°,...,qc> this
derivation is identical to the zero curvature derivation.

We want to show that the action of SL(&+1,C) on
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C<|po, “ee ,¢‘> given by

( tl/o e Y, ) — | wo cee Y, )g geSL(£+1,C) 3.3.12
leaves the equation 3.3. 11 invariant. First we translate the
action into an action on V.

For any g € SL(&1,C) we can factorize the matrix ¥g
into the product

vg = (\Ifg)__(\Ilg)+ 3.3.13

where (¥g)_ is a lower triangular unipotent matrix, (¥g) . Is
upper triangular, both of whose entries are rational
expressions in the coordinates of ¥. This is a manifestation
of the fact that the big cell N B_ is open dense in
SL(&+1,C), where N_ is the group of lower triangular
unipotent matrices (see, for example, Humphreys

(1975, Springer))

3.3.14. Lemma. The action 3.3.12 induces the mapping

v (¥g),

Proof. We can easily check that the top row of (¥g) is
precisely the image of 3.3.12; notice that it is equal to
the top row ¥g. To prove that the other entries are correct
we show that they bear the same relation to this top row as
the entries of ¥ do to its top row.
Recall ¥ is characterized by the equation 3.3.10. So
clearly
(¥g) (%) = - q+ A,
The left hand side is
[(3g) ) (¥) " + (¥g)_[(¥g),] (%),  (¥) "
Therefore
8 - [(¥g),] (¥9);' = (¥g) '[8, + q - A, 1(¥R)_
The left hand side of this is upper triangular, whereas the
right hand side only has A_ above the diagonal, therefore it
has the form
ax +q - A, 3.3.15
where q’ is a diagonal matrix of trace zero. The entries of
q’ are characterized by the equation

(6, +q - A)(¥), =0
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and therefore are completely determined by the top row of
(¥g),. Consequently the other entries of (vg), are
determined by the top row using equations identical to those

in 3.3.10. =

We already know from the Galois theory that the Galois
group of 03<w°,... ,g(;¢> over C<q°,...,qc> is B+ and we recover
part of this from the observation that if g € B+ then (\Ilg)+
= Vg, so

-1 _ -1.-1 _
(\I/g)x(\l’g) = \leg.g ¥ =-q+A, 3.3.16

Therefore the entries of q are certainly B +—1nvariant.

Remark. Let us look at the reason why B + is the Galois
group of c<¢o,...,wc> over C<q°,...,qc>. The factorization
3.3.3 of La_1 uniquely determines a flag of subspaces of the
linear span Y of {wo""’¢¢}‘ This flag is Yochc...cY‘=Y
where Yl is the kernel of the operator in 3.3.4. The action
of SL(4+1,C) on Y defined by 3.3.12 is such that g fixes
the flag above if and only if g € B+. This is because
{wo,....wl} spans Yl.

The entries of the matrix g’ in 3.3.15 show how
SL(Z+1,C) acts on the elements Qo+,

3.3.17. Corollary. For any g € SL(&+1,C) we may write
8, +geq - A = (W) '8+ q - AT(¥)_ 3.3.18
where
goq = diag(goqo, ..., 8°9,)
and g°q, is the expression for the action of g on q, induced
by 3.3.12.

A more explicit expression comes from the expansion of
3.3.18
goq - A, = (¥g) "8 (¥g)_ + (¥g) '(q - A)(¥g)_

Since the right hand side is upper triangular the lower

triangular terms on the left hand side must cancel so that
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goq = q - [(¥g) " A (¥g) ], 3.3.19

where the subscript "d" denotes the diagonal component of
the matrix in brackets.

It will now be shown that the equation 3.3.11 is
SL(¢+1,C)-invariant.

3.3.20. Proposition. Let goY, gov denote the
transformation by g € SL(£+1,C) of the elements of ¥ and vo
induced by the action 3.3.12. Then

6t(go'll) = (govo)(go\l’)
Thus the derivation 8, is SL(&+1,C)-equivariant, so the

t
equation is SL(&+1,C)-invariant.

Proof. We have already established that go¥ = (¥g) + Now we
must prove that

at(gow)(gom" = gov, 3.3.21
To establish the right hand side we return to the definition
of v, as the component of degree =zero, in the standard
grading, of V+. Recall that V+ is defined as the series of
terms of non-negative degree (in the principal grading) from
the series V commuting with the spectral operator. Therefore

v, is determined by the equation
[ 8x+q- (zA_+A+) , V31=0

where we have chosen to use the standard realization. This

equation implies
[ (%) 7(8 +q-A,)(¥g)_ + zA_ , (¥g) 'V(ig)_1 =0

since A_ is fixed by the group N_ (it is a lowest weight
vector for SL(£&+1,C)). We can write this as

[ax+goq-A+,goV]=0

by virtue of lemma 3.3.17. The series goV is therefore
precisely the series V with the differential polynomials in
.qi replaced by the same polynomials in goql. This follows
from the fact that we can conjugate V and goV into the same
element of ¢(3(zA)) in the manner of the method of dressing.

Thus the series have the same construction |using
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different potentials in the spectral operator.

By definition gev, is the matrix with the differential
polynomials in q, replaced by the same polynomials in g°q,.
Therefore gov, is the term of degree zero (in the standard
grading) of (geV)_, the series of non-negative terms (in the
principal grading) of goV. Denote this term of degree zero
by (goV)°. Then

gov, = (gov)° = [(\Ilg):1V(‘I’8)_]o

= [(eg) V() _], 3.3.22

The latter identity is a result of (¥g)_ being Ilower
unipotent. Once again the subscript "+" denotes the terms of
non-negative degree in the principal grading. In particular
this term will be upper triangular since the object inside
the brackets has degree zero in the standard grading.

Finally we will prove the proposition by showing that
the left-hand side of 3.3.21 equals 3.3.22.

[(¥g),1,(vg)] [(eg) ' (eg) 1,1 (¥g)  (3g)17

8,(¥g) " (vg)_ + (¥g) . 4, ¥ (¥g)_

a,(¥g) " (¥g)_ + (¥g) v . (¥g)_

" This must be upper triangular, therefore the first term must
cancel the strictly lower triangular part of the second
term, leaving 3.3.22. =

Consequently the derivation 4 " defined by 3.3.11
preserves both the subfields C<qo,. --q2 and c<uo,. cou2.
Drinfel’d & Sokolov (1985) have shown that the zero
curvature equation 3.3.6 induces a scalar Lax equation

ath-u = [P, L¢+1]

where P is a scalar differential operator with coefficients
from C<uo,...uc>. We may conclude from their result that the
equation 3.3.11 implies this Lax equation for the variables
Ups oo Uy

To write the equation 3.3.11 explicitly in terms of the

variables l/lo, ey l[ll we  must include the constraint
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W(l/lo,...,lllt) = 1. However, as with the Ur-KdV equation, if
we choose to define 7 = lpllly: we find that the variables
Nyyeoenm, are differentially independent, that is, the
algebra C{ni,...,n) is free. We can see this by returning
to the definitions 3.3.3 and 3.3.4.

Let us assume for the moment that u, is a free
variable. Then all the flelds in the sequence 3.3.2 are
free. The Galois group of the top field over the bottom
field 1is now GL(&+1,C) (we have a "Picard-Vessiot"

extension). In particular

W(goy,,...,g9,) = det(g).W(y,,....¥)

(see Kaplansky (Hermann,1957)). The subfield C<n1, coam) s
clearly free in this case; it 1is the fixed field of the
centre {kI | kec'} of GL(&+1,C). It follows that the

Wronskian (and its derivatives) cannot belong to the field
C<n1,...,~nc> since it 1is not fixed by this subgroup.
Therefore the elements Nseeead, and W(sbo,...,!ll) are
differentially independent. As a result, constraining the
Wronskian has no effect on the independence of the variables
Nysenes M,

The orbit of solutions under the Galois group.

As well as explaining the transformations of
Miura type, the Galois group induces a group of
transformations on the solution space of a zero curvature
equation. This transformation is given by 3.3.17; since go¥
= (\Ilg)+ is a solution of 3.3.11 it follows that geq must be
a solution to the equation 3.3.8. This transformation will
be non-trivial if g ¢ B, (the orbit of a solution will be
identifiable with the homogeneous space SL(¢+1,C)/B +).

3.3.23 Example. For the mKdV equation the SL(2,C) action

.3.2.1 induces the transformation

= 1 -1 _ -1
q— q I (a + wn)x(a + ) 3.3.24

89



where we recall g = énxxn;l.

For example the trivial solution g=0 transforms into the
almost equally trivial rational solution

, _ _2a

q P a,b constants

A less trivial example 1is the transformation of the
one-soliton solution

q(x,t) = zsech w where w = zx + zat
For arbitrary parameters a«, 7 in 3.3.24 this solution is
transformed into

q’'(x,t) = zsech v - [se-ap - %{E e In(cosec 2p + cot 2p)]-1

where p = Arctan (e”). This new solution still vanishes as x
tends towards +o but, unfortunately, its behaviour is far

from nice since the function

a-2 1 2
e 1z © In(cosec 2p + cot 2p)
has a zero in the range of p, 0 < p < Tz-t .

The examples demonstrate that the transformation 3.3.24
is significantly different from the "Backlund
transformation" constructed by Wadati (1974). This is also
evident from the fact that the transformation 3.2.12 does
not explicitly involve the time variable t, whereas in the
Bicklund transformation it 1is necessary to include an

equation governing the t-dependence of the new solution.

§3.4 G-invariant equations in general.

The special form of the operator 3.3.1 allowed us to
associate the variables 9, ---4, with the factorization of a
scalar linear operator. In general the spectral operator for
a zero curvature equation will not have a form which
suggests any such associated linear operator. Without this
it is not <clear that there is any sequence of field

extensions analogous to 3.3.2.
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Nevertheless, it is possible to approach the
construction of G-invariant equations, at least for G =
PSL(¢+1,C), from another point of view which does not depend
upon the existence of the associated scalar differential
operator. This holds some hope of being useful in the
general case. It will be illustrated by returning to the
case G = PSL(2,C); the Ur-KdV - mKdV - KdV sequence
introduced in §3.2.

The principle, due to Wilson (private communication),
is to regard the Ur-KdV equation as defining a local flow on
a space of functions X on which G acts on the right. The
field extensions 3.2.3 correspond (in reverse order) to the
quotient spaces in the sequence

X — fr/PB+ — X/G 3.4.1
Intuitively each differential field represents the "field

of functions" over one of these spaces.

Remark. Unfortunately this analogy between finite
dimensional varieties where the field of functions 1is the
field of fractions of the coordinate ring, and infinite
dimensional manifolds is not a good one. One of the problems
is that we cannot write every functional on a function space
as the (integral of) a rational expression involving the

functions and their derivatives.

For our purposes the analytic properties of the space X
are irrelevant provided we end up with a sensible coérdinate
description. Therefore, to avoid questions about global
structure, we will deal with germs of functions.

We define X to be the space of germs (at 0) of
holomorphic functions

¥ Cs—>N_\G 3.4.2

with the property that, for any lift
$:C 5 G ‘ 3.4.3

of ¥ (i.e ¥(x) = N_&(x) in some neighbourhood of 0) the

matrix germ <I>x<l’-1 has the form
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[' 1] 3.4.4
» »

where the unspecified entries are germs of C-valued
functions. This property can be stated more formally as
28 1 C b+ A, 3.4.5
where b_ < s[(2,C) is the subalgebra of lower triangular
matrices, and A+ is the matrix 3.4.4 with 0’s in place of
the unspecified entries.
In coordinates we write any element of G = PSL(2,C) as

the equivalence class

[z Z] ={ [z Z]mod{i'l} ] ad—bc=1}

The quotient N _\G is the space

{labl|l(a b)ecC: {00}

If we write

= [a(x) b(x) ]
c(x) d(x)

the condition 3.4.5 reduces to abx-axb = 1. Therefore X is
the space
{[ a(x) b(x) 1| W(a,b) =1}

The Wronskian condition can be rewritten as

b -2 a -2
- = a or - = -b
a b

X X

therefore X can be identified with
{ certain germs of holomorphic functions 7:C 5—-) IP1 }

Previously we fixed 7 = g and ignored the point at infinity.
However, this point is very important; the value of 7 passes
through the point at infinity precisely when any 1lift &
ceases to lie in the big cell N_PB_ of PSL(2,C). We see this

in the factorization

Sl IS N

This leads us back to the previous description of the

coordinate 7; in the previous section ¥ was the matrix of
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indeterminates representing

a b

W(a,b) =1 3.4.6

o 1
2 i

3.4.7. Remark. It is worth noting that the matrix germ ¥ in
3.4.6 is a meromorphic germ. The condition abx-axb = 1
implies that any zero of a is a simple zero (otherwise b
would not be holomorphic). Therefore ¥ has isolated (simple)
poles. Equivalently, any 1lift & of ¥ takes values in the big

cell except at isolated points.

3.4.8.Lemma. SI/PB+ is in bijection with a set of
meromorphic germs

q:C 5 h=c
where h is the Cartan subalgebra of diagonal matrices in

s[(2,C).

Proof. It is clear that we can identify each element ¥ of X
with a meromorphic matrix germ ¥:C r PB A it is given by
3.4.6. This germ satisfies

¥ C b A,
therefore the diagonal -q of \I’x\li-l is a meromorphic germ and
is also PB_-invariant (c.f. 3.3.16).
If two germs ¥, ¥ are such that \I!X\If'1= \Il}'{(‘l")-1 then

¥ = ¥'g for some g € PB_ therefore the map \l[!x\I'-1 — q is a
bijection. =

The space X/G is described wusing the gauge
transformation due to Drinfel’d & Sokolov presented in §3.1.
We can state as a fact that for each germ q there exists a
germ

n(x) =¢C 5 N_
such that
n(@_+q - 1\+)n-1

has the form
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0o -1
6x+ [' 0] 3.4.9

where the unspecified entry is a meromorphic germ. This
operator is the unique operator of this form in the gauge
orbit of the group of lower triangular matrices. Given this

we can prove the following lemma.

3.4.10. Lemma. X/G is in bijection with the set of

meromorphic germs u : C 5 c obtained by the gauge

transformation above on the operator ax - ‘IIX\II-I.

Proof. Let & be any lift of ¥. We will show first that all
germs ®g, g € G, lead to the same operator of the form
3.4.9.

The operator 8_ - Qxd’-l is the same as 3 - (<I>g)x(<l’g)-1
for every element g of G. It is equivalent to ax - \le\II'l by
the gauge transformation

m(x) (3 - \I!X\Il'i)m(x)-l m(x) = o0 "

This can be seen from
(@90 _(ev'0)™" = 0 o™
Therefore each element of &G, for any 1lift & of ¥, leads to
the same entry u in the operator 3.4.9.
Now suppose that &, &’ are two 1lifts of elements of X
which both map to the same operator of the form 3.4.8. Then

-1 _ _ , s 21
ax - ﬁxﬁ = ax (1(x)® )x(l(xM )

for some meromorphic germ 1(x) with values in N_ (this
follows from both n, m having values in N_). We may conclude
that (19’ )x(ld!’)-1 is holomorphic since Qxé_i is. Therefore

d = 1lx)d'g
and 1(x)®’ must be holomorphic in a neighbourhood of O.
Consequently for each x in this neighbourhood

N &(x) = N_&' (x)g
Therefore ¢, &’ are both lifts of the same element of X/G. m

So finally we have the structure 3.4.1 we require. The

most important thing 1is that we have obtained decent
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coordinates 7, g and u for X, ‘:I/PB+ and X/G (q is the entry
in the diagonal matrix q). If we ignore the details of the
analysis we «can begin to formulate an approach to
generalizing this construction. '

The essential ingredient for the generalization is the
presence of a second Z-grading on L(g,8). We replace G by
the adjoint group A of a Lie subalgebra a c¢ g where a is
(isomorphic to) the subalgebra L(,g,e)° of elements of L(g,0)
with degree zero in the second Z-grading. This second
grading is coarser than the original in the sense that

L(g,0), < L(g,0)°

Remark. The loop algebra L(g,e) with the standard grading
has the most coarse of all gradings since the Lie algebra of
elements of degree zero is isomorphic to g. Thus we define a
to be the Lie subalgebra of g corresponding to the embedding
of L(g,e)o in L(g,e)o.

For example, the case dealt with in the previous
section compares the principal grading with the standard
grading. In this case L(,g.e)o = b,

In general the original grading on L(g,08) induces a
non-trivial Z-grading on a. We use this to obtain the
"triangular" decomposition

a=m_+g +m
where g = L(g,0) o and m_ (m,) is the nilpotent subalgebra
of elements of negative (positive) degree. In the case of
the principal-vs-standard grading this is

g=n_+5hH+ n,

We would like to take the space X to be the subspace of
{ holomorphic germs ¥:C 5 M \A } M_=exp m_

such that for each lift & of V¥

-1 _
2 :C oo _+ A s P_=m_+ g 3.4.11
Here A+ is the component of A (e '91) lying in m,. We will
see later that the properties desired of A+ strongly affect

the choice that is made for the second grading.
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We propose to replace the sequence of projections 3.4.1
by
X — :r/p+ —> X/A 3.4.12
where P+ =exp P, ., P, = go +om. For this to make any sense
at all we must at least be able to show that

/P, = { certain germs q : C 5 8, } 3.4.13

This is 1identifiable with a set of potentials for the
spectral operator. This can be done, as earlier, by
identifying each element of X with a matrix germ

¥v:C ‘6—) P +

Then
1

\I’x\IJ : C % + A +
Conversely, ¥ is the unique solution, up to right
multiplication by an element of P+, to the equation
(ax +q- A_'_)\Il =0 3.4.14
Given a zero curvature equation
: " v +] =0

we have a local flow 8 ¢ for the coordinates, given by

[ax+q-zA.a

3.4.13, on SI/P+. In principle we can define a flow on X by
atw = vo\I' 3.4.15
where v, is the component of degree zero of V+ in the second
grading on L(g,0). This induces the flow
[ax +q- A+ , 8 ¢
on fI/P+, which is precisely the zero curvature equation we

-v0]=0

started with. This is in direct analogy to the observations
3.3.10 and 3.3.11 in the previous section.

In fact symbolically we can repeat the steps of the
proof of proposition 3.3.20 that the equation 3.4.15, in the
case of s[(&+1,C) with the principal-vs-standard grading, is
A-invariant. However this is meaningless unless the
equations can be written in coordinates. This is an
unresolved problem.

Curiously, it is easier to describe the space X/A in
coordinates. The basic idea is contained in the proof of
lemma 3.4.10. We identify each element of X/A with a double

coset M_®A, where

86



H_={ germs m :C ~—> M_}

and & satisfies 3.4.11. This is in turn identified with a

gauge-equivalence class of operators
-1, -1
{md, -22 )m  |Imed } 3.4.16

which contains the operator in 3.4.14. In the next section
we will effectively show that, for certain choices of A+,
there exists a unique operator in this class which belongs
to the set
{6x+;.:.-l\+ | p.:Ca—>f}

where [ is a particular subspace of a (in the case of
s[(&+1,C) dealt with in the previous section the unique
operator is given by 3.1.12).

This brings us the full circle round to the method of
Drinfel’d & Sokolov. We saw in §3.1 that they managed to
describe the transformation

X/PB, —> X/sL(2,c)
without any knowledge of the space X. In the next section we
will use the ideas of Drinfel’d & Sokolov to, effectively,
construct the map

iI/P+ — X/A
although we will return to an entirely algebraic point of
view. A caveat on this construction is that the element A .
must satisfy certain conditions, so only certain hierarchies
of zero curvature equations admit this "transformation of

Miura type".

§3.5 The Miura-Drinfel’ d-Sokolov transformation.

We will replace the map
I/P+ — X/A 3.5.1
with the "dual" mapping (inclusion) of differential
algebras
C{ui} — C{ql} =38 3.5.2
This will be done by formalizing the method wused by
Drinfel’d & Sokolov (1985) to describe the coordinates of
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the gauge-equivalence classes introduced at the end of the
previous section. The setting for our main result will be as
follows.

Let (8,0,A) be a hierarchy of zero curvature equations
and let L(g,0) have the grading of type (so,....st) (this is
a sequence of 0’'s and 1’s). Choose another Z-grading, of
type (o-o,...,o—c), which is coarser than the first in the
sense: crj = 0 if sj = 0. We denote the homogeneous subspace
of elements of degree j in the latter grading by L( 3,9)“.
Then L(g,0) 0o € L(g,e)o and we can decompose the latter

reductive subalgebra into

o —
L(g,8) =m_o L(,g,e)o om

where m_ (m +) is the nilpotent subalgebra of elements of
negative (positive) degree in L(g,0). As before we define
p_=m_ + L(g,e)o. Let A € L(Q,B)1 be the semisimple element
covering A € 8, (i.e A = 2zA). It is clear that

L(g,e)1 c L(g,9)° ® L(g.e)1

We split A = 7\0 + ?tl accordingly (it follows that }‘1 is the
lift of A, to L(g,e)i).

Our aim is to prove the following result, which is a
generalization of the result obtained by Drinfel’d & Sokolov
(1985) (described at the end of §3.1).

3.5.3. Proposition. Suppose the hierarchy (g,0,A) has been
chosen together with a coarse grading of type (°'o"""r¢)
such that the semisimple element A in the loop algebra
satisfies:

(1) [Ai,m_]=0.

(i) adr : m_—> p_ is Injective.
Then there exists a free subalgebra C{ui} of C{q 1} such that
any derivation on C{q!}, defined by a zero curvature
equation from (g,6,A), maps C{ul} into itself. The variables
u are obtained by a transformation of Drinfel’d-Sokolov
type, in other words, by a gauge transformation of the

operator 6X+q-A.
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3.5.4. Example. Let us show that the cases treated by
Drinfel’d & Sokolov satisfy the conditions of the
proposition. When L(g8,8) corresponds to the principal
grading we may assume, without loss of generality,
14
A=Y e,
1=0
where {el,hl,fl} is the set of canonical generators for
Lg(A). Drinfel’d & Sokolov choose the second grading to be
of type (0,..,51,..,0), sl=1. In this case the algebra m_ is
generated by {fjlj:i}, p_ is generated by { fj,hjlj:i} and
A = Ye , A=ce
o 21 3 1 1
Here property (i) 1is a consequence of the relations

[el, fJ]=61jh['

Property (ii) follows from a result of Kostant’s
(1959), referred to earlier, which says that h°+p is regular
semisimple if p is a lowest weight vector for p_. A regular
semisimple element only has semisimple elements in its
centralizer, whereas m_ only consists of nilpotents.
Therefore the kernel of ad(?t°+p) on m_ is trivial. However,
[p,m_] = O since p is a lowest weight vector, therefore ad?\o
is injective on m_. More generally, this argument shows that
if A is regular semisimple then (ii) of 3.5.3 follows from

(i).

The principle behind the transformation developed by
Drinfel’d & Sokolov is the notion of "dividing out" by the

gauge action of the gi‘oup M_ on the space of operators
(o - 2 | ®a lift of an element of X }

described above. In the algebraic formulation we replace

this set by a "generic element"; the operator

£

8x+§qie‘+§rmcm—h

ax+q+1‘-7\ 3.5.4

where {ei} is a basis for L(,g,e)o ,{cm} is a basis for m_
and {r} is a set of indeterminates independent of C{ql}.
m

This operator belongs to the class
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6x + ped -2 3.5.5
where 4 = C{ql, rm}. For example, for the mKdV equation £ has
been given in 3.1.17.

The group M_ must be replaced by the group M‘ =
exp(m_o4). As promised at the end of the previous section,
it will be shown that if A satisfies the conditions (i) and
(ii) in 3.5.3 then each M -gauge orbit in

3, + p_ed - A
contains a unique element of the class of operators

ax + [ed - A

where the subspace [ ¢ p_ is given by the next lemma.

3.5.6. Lemma. Suppose

adA : m_ — P_
is injective; then there exists a homogeneous subspace
[ ¢ p_ satisfying

po=lela, m ]

] = i ’ = b4 r » .
where dim | = dim L(g 9)0 and [ ® IJ ; © L(g 6)J

Proof. Define ? =P N L(g,e)j. For each j<O the map

(]
is injective by property (i) of 3.5.3. We define rm to be

adr_ pj—):pﬁ1

a complementary subspace to [Ao,:pJ] in pya’ and rk=:pk where
k is the lowest degree. It follows that dim [ = dim L(g,e)o

since ad)to is injective on m_. =

3.5.7. Remark. In the case of sl(&+1,C) with the
principal-vs-standard grading (as in sections 3.2 and 3.3)
the subalgebra p_ is the algebra of Ilower triangular
matrices and we may choose [ to corresond to space of
"companion" matrices, which have non-zero entries only in

bottom row (excluding the diagonal position).

From now on we will assume that A satisfies the

conditions of proposition 3.5.3.

3.5.8. Lemma. Let & be a differential algebra, p € p_o§.
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Then there exists a unique y € m_o§ such that
exp ady (8x+p-7t) eax+f®8-7l

Proof. We decompose p into }¥ p, , y into § yj where
J=0 . J<o

pJ.y € pj. Then the series above expands into

J
-Al - J\o + {1.'»0 + [ Ao’ Y, 1}
*Ap Dy %[y-vuo’yﬂ]]_ Oyt *ee

where we have used the property [Al,y] = 0 from 3.5.3. Here
we have gathered all the terms of the same degree in L(g,90)
(note that A  has degree 1). Since adA  is injective on m_
we see that there exists a unique y_ . such that the first
term in braces belongs to l'o. Similarly there exists a
unique Y o given Y o such that the second term in braces
belongs to T_i. The series 1is finite, therefore y is
uniquely determined by this process. =

As a result of this lemma it is possible to define a
map

M : 8+ P eE -2 — 3+ le8 -A

which assigns to each element of the left hand side the

unique operator given by this lemma.

3.5.10. Definition. We will call the transformation

2 — M ()
the Miura-Drinfel’ d-Sokolov transformation of the operator
¥. Fix a basis {61} of I, then we define {“1} to be the set
of coordinates for M‘(i‘!):

M‘(IE) = ax + ¥ uigl o,
We denote by € the differential subalgebra C{ul} of 4.

Now we are going to prove proposition 3.5.3 after
choosing the variables u, to be given by setting all rmEO
in the expressions for plesd. The algebra 4 then collapses to
C{ql} = B, so we have the inclusion 3.5.2. Notice also that
with all r= 0 the operator £ becomes 8x+ q - A and we still

have a gauge transformation
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exp ad y(rmso){ax+ q-2A} e ax+ [@C{ul} -A

where y(rmEO) denotes that all rmEO in y. The variables u,

are, of course, the coordinates of this operator.

To prove 3.5.3 we must show that each zero curvature
derivation preserves C{u ‘}. To do this we define two
derivations, av and Vv' on 4. The former will yield the zero
curvature equation when all rmEO.

Both derivations are defined using the same series V(r)
commuting with the operator £. V(r) is characterized by the
element v in ¢(3(A)); we <can repeat the dressing
construction used in chapter 1, §1.3. The important point is
that V(r) reduces to the unique series V corresponding to
the derivation 3v on B when all rmEO. The proof that this
can be done will be delayed until the end of the section; it
is a straightforward extension of proposition 1.3.7.

Given this, we can write

V(r) = V(r),_ + V(r)_

v+ vim”
where V(r')+ (V(r)+) is the finite series of terms of

non-negative degree in the grading of type ( Sgre+1S c)
(respectively, of type (c‘o, ..+»0,)). Now define
6v2 = [ V(r‘)+ , 21 . 3.5.11

ve=Lve)', g1
In each case the derivations are well-defined since in both
cases the right-hand side is an element of p_ed. This is
evident from the identities

[ V(r) £]

[ 2, V(r)_ ]

+ ’
[vim™, e1=1¢2, vir)" 1
It was explained earlier, in §3.1, that the derivation

VV is needed because av is not equivariant with respect to
the transformations which Ileave B fixed. So we cannot
restrict 6v to & by "dividing out by the action of M‘".
Unfortunately, neither can we demonstrate that Vv is
"M‘—equivariant" on 4. In fact the gauge action of M‘ does

not induce a group of transformations on 4. An example
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clarifies this point.
Recall the original Miura-Drinfel’ d-Sokolov
transformation from §3.1

2 — M(¥)

q -1 0 -1 _ . _2
ax!"[r—z -] 6x+[u~z 0] K=q-q+r
It is a quick computation to show that conjugating £ by

1 0
[ c 1] c € C{q,r} 3.5.12

induces the transformation
q—q+c ) 3.5.13
r»—)-cx+2cq+c +r

on C{q,r}.However, unless c is independent of both q and r a
second application of this transformation does not give the
same result as replacing ¢ by 2c (which is the result of
squaring 3.5.13).

To rectify this we must define ¢ to be another
indeterminate which we adjoin to C{q,r}. We can show that
3.5.13 does define a (one parameter) group of automorphisms
of C{q,r,c} and that v, (which is extended to C{q,r,c} by
defining VVCEO) is equivariant with respect to the action of
this group. I claim that C{p,c} is the subalgebra fixed by
this group, therefore Vv preserves it. After we set c=0 it
follows that V  maps C{u} into itself.

By following this principle it will be shown that, in
general whenever proposition 3.5.3 applies, Vv preserves 6.
It remains then to show that (vv—av) is identically zero on
. This is done in much the same way as described earlier,
in §3.1. Finally we will see that setting all rmEO gives us
the result we desire.

Thus the crux of the proof of 3.5.3 lies in describing
a group of automorphisms whose invariants are the
"coordinates" B, of M(%).

Recall that the set {Cm} is a basis for m_. We let
c=Ycg  where {c} is a set of indeterminates which we
adjoin to 4 to give the differential algebra sd{cm} =
C{ql,rm,cm}. We define X(s) = exp(adsc), for a complex
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parameter s, and equate this with a one parameter group of
gauge transformations
X(s) : 8 + pod{c} -2 — 3 _+ p od{c} -A 3.5.14
- X - m X - m
2 +——— exp(sadc)[¥]
In coordinates

X(s)o2 = a, + ) qi(s)el + 7 t'm(s)cln -2

for some ql(s), rm(s) € sd{cm} depending upon s.
Corresponding to this we define a one parameter family

of automorphisms of sd{cm}:

p(s) : d{c} — d{c}
m m

q, ql(s)
r = | r(s)
m m
c c
m m

In fact this family forms a group under composition of maps.

3.5.15. Lemma. ¢(t)op(s) = ¢p(s+t) where s,t € C.

Proof. We prove that this holds for each generator q, T,
of 4 ; trivially it is true for each c.

Let qi(s) = Qi(ql,rm, scm) describe the differential
polynomial given by go(s)ql . It is the ei-coordinate of
X(s)&. It  follows that Q‘(qﬁ(t) , rm( t), scm) is the
g -coordinate of X(s)oX(t)2 , since X(t) merely replaces q,
r by q!(t), rm(t). Clearly X(s)oX(t)£ = X(s+t)£2. Thus

(P(S"'t)ql = Ql(ql(t),rm(t),scm)
However
go(t)qi(s) = Qi(ql(t).rm(t),scm)

by definition, therefore (p(s+t:)qi = <p(t)°<p('s)q1 . The same

argument applies to each r.m
3.5.16. Lemma. The subalgebra i?{cm} of sd{cm} is precisely
the subalgebra of invariants of the one-parameter group

S = { ¢(s)]| seC }.

Proof. If we set € = 4{c } in lemma 3.5.8 we see that
m
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M (£) = M(2) = M (X(s)2)

since ¢ € m_o4{ cm}. Therefore each K, is S-invariant and, of
course, so is each c . Thus every element of ©{ cm} is

S-invariant.
To show that these are the only S-invariants we look at

the identity

¢ = exp(-—ady)M‘(S‘.’)
where y = } qum is given by lemma 3.5.8. This tells us
that the set {ql,rm} belongs to the differential algebra
c{ BoY o cm}, therefore this is equal to sd(cm}. However, the

action of ¢(s) on v, is characterized by
X(s)¢ = exp(sadc)oexp(-ady)M‘(JE)
= exp(ad y(s))M‘(l')

for some y(s) = L y (s){ in med{c} (the existence of
y(s) is a corollary to lemma 3.5.8 since X(s)£ belongs to
the class ax+ p_ed{ cm} -A ).

Now suppose f( ym) is a S-invariant differential
polynomial, then f(ym(s)) belongs to C{ym}. In particular it
must be invariant under a specialization of ¢(s) where we
set c =y, for all m. In this case

exp(ad y(s)) = exp((s-1)ad y)
Therefore f(ym) = f((s-l)ym) for all s. But f cannot be
invariant under scaling of all coordinates unless it is a

constant. Therefore only &{ cm} contains S-invariants. =

We extend V. to #{c} by defining V ¢ =0 for all c.
v m Vn m

Then VV is S-equivariant.
3.5.17. Lemma. go(s)_lonoq)(s) =V,

Proof. It suffices to show this for the generators of ; it
is trivially true for each c .
We want to show that
VV[X(SHB] = va
By definition
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v [X(s)2] = exp(sade) vim™*, el

[ exp(sad,c)V(r')+ , exp(sadc)® 1]
Notice that ¢ belongs to L( 3,9)°®A{cm}, therefore

exp(sadc)V(r)* = [exp(sadc)V(r)]"
However

[ exp(sadc)V(r) , X(s)2 1 =0
We will prove later that exp(sadc)V(r) is the unique series
commuting with X(s)# corresponding to v € ¢(3(A)), hence it
must be the series obtained from V(r) by replacing q, r,
with ql(s), rm(s). Therefore, with a slight abuse of the

notation

o(s) v(ir)', 21
p(s)(V_2)

Vv[X(s)Zl

More correctly
<p(s)-1Vv<p(s)oiE =V2 =

3.5.18. Corollary. vaaps € into itself.

Proof. Let f € § ¢ ﬁ'{cm}; then £ is S-invariant by lemma
3.5.16. Thus
vEf = Vv(go(s)f) = :p(s)ovvf

by the previous lemma. So va is S-invariant and must lie in
&1 cm} . However, the definition of Vv is independent of the

indeterminates c. therefore va belongs to €. =

3.5.19. Lemma. The derivation vv-av is identically zero on

the algebra ©.

Proof. Compare the derivation
+
(Vv-av)-‘f =[ Vv(r) -v(r)_, £]
with the derivation as from 4 into «{ cm} defined by
d

8.2 = [c,2] = - X(s)¢ | 3.5.19
Since the generators K of © are S-invariants we find

8 u = d_ ¢(S)u | =0

s'i1 ds 1 s=0

Consequently we have the following algebraic property of the
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differential polynomials B the derivation
3, : 4 — sd{cm}
q, = Fl(qi,rm,cm) 3.5.20
r e Gm(qi,rm, cm)
defined by 3.5.19 is such that
asul(qi,rm) =0 for all B,

Now if we replace c, in 3.5.20 by the cm-coordinate of
V(r-)+-V(r') + € m_o4 we obtain the definition of vv-av mapping
4 into itself. It follows that (Vv-av)ul = 0 for all e ®

Finally we have proved the proposition 3.5.3, since it
follows immediately from the lemma above that:
The derivation av maps € into itself and therefore maps

C{ui} into itself after setting all r = 0.

In the next section a few examples will be produced to
demonstrate the |utility of the Miura—-Drinfel’d-Sokolov
transformation. Before ending this section we will return to
the proof of the following result, which was postponed

earlier.

3.5.21 Proposition. For each v € ¢(3(A)) there exists a
unique series V(r), with coefficients vj(r) consisting of
homogeneous differential polynomials, commuting with £. When
we set each rmEO, V(r) is the unique series given by

proposition 1.3.7.

As with proposition 1.3.7 we prove this using the
dressing method.

Lemma. There exists x(r) e L_ = jEO(L(g,G)j®sd) such that
exp ady(r) (ax+q+r—k) € ax + 3(A)

where 3(A) is the centralizer of A in 1., where
L= {jc;DOL(g,B)J@sd} eL_.
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Proof. This is a straightforward extension of the proof of
lemma 1.3.8. Since A is semisimple x(r) can be determined by
its  homogeneous components in L(g,6) J@sd. These are
successively given by the requirement that the homogeneous
terms in the expansion of

exp(adx(r)). (6x+q+r-7\)
lie in 3(A). =

Corollary. For each v € c(3(1)) n L(g,6) kthe series
V(r) = exp ad(-x(r)).v
V(r) is the unique homogeneous series with leading term v

commuting with £.

Proof. Once again this is a straightforward extension of
the proof of proposition 1.3.7. Certainly V(r) commutes with
¥, 1its uniqueness is verified by looking at the equations
implicit in

[ax+q+r—~7t,v+vk.1+... l1=0

where vJ are the components of V of degree J in the grading
of type (so,.. .,sc). Looking at the homogeneous terms in the

expansion of this equation we find

av +[qv]l+¥lr ,v 1=1I[Av 1
X ) J n>0 -n  j+n J-1

where r_ is the component of degree -n in the grading above
(we have defined r € m_ed therefore it has no components of

non-negative degree). This determines the element vj_l,

given vy VJ+1’ etc, up to 1its component in 3(A). This
component is uniquely determined by the differential
equation for vj_1 , Since we require each coefficient to

consist of homogeneous differential polynomials. =

§3.6 Some examples.

Example 1. An interesting example comes from looking at
s[(3,C) with the principal grading. We write the spectral

operator as
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q -z 0
8 + |0 pq -z 3.6.1
b'd

-z 0 -p
which, in terms of the canonical generators for the loop
algebra, is

8, + qh + phz—z(eo+ e+ ez)

There are, up to equivalence, two possible gradings more
coarse than the principal grading on u2. They are the
standard grading (of type (1,0,0)) and the grading of type
(1,0,1).

In the latter grading the spectral operator has the

representation
q -1 0
8 + |0 p-q -z 3.6.2
X
-z 0 =-p
ConJjugating this by
1 0O
-9 1 O 3.6.3
0 0 1
yields
0O -1 o0 2
a_+ | r p -z r=q-q+qp 3.6.4
b's x
-z 0 -p

Therefore we expect zero curvature derivations from the
hierarchy with spectral operator 3.6.1 to preserve the
subalgebra C{p,r} of C{q,p}. One such derivation is defined
by the equations
3q,= (g~ a°), - 2(p~ p°+ ap), .
3p,= =(p~ P7), + 2(q,~ q°+ ap),
On the the subalgebra C{p,r} this gives

3p,= -p

XX * 2ppx * zrx

- _ _ .2 _ o2y _
Srt oy 2(px p )xx 2p(px p )x 2(pr)x 4pxr
In the standard grading the spectral operator 3.6.1 has

the representation
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qg -1 0

a_+ |0 pq -1 3.6.7

b 4
-z 0 -p

We already know from §3.3 that the Miura transformation in

this case can be obtained from the sequence of field

extensions

C<u,v> < C<q,p> ¢ c<¢d|p1,w2> 3.6.8

where wo’ ""1' 1,02 span the kernel of the operator

3
8x+V6x+u 3.6.9

and are chosen to be compatible with its factorization into
(éix —p)(c‘:?x +p -q)(¢‘3x +q) 3.6.10

The variables u, v are

2 2
u=(q-q), *+aqlp-p+ qp)

3.6.11

2
v=(p- p2) + (q,~ g+ qp)

The zero curvature equation 3.6.5 on C€<q,p> induces the

equations
Up = Uyx ~ gvxxx - §Wx
3.6.12
Ve = Ve + 21.1x
on C<u,v>. These equations also have a Lax pair
representation, as expected
Lt = [P,L]
L=32+va +u P=2a2+ 2y 613
X x ! x 3

Remark. The system 3.6.12 contains the Boussinesq equation

(see e.g. Fordy & Gibbons (1981)). The corresponding zero
curvature equation 3.6.5 has been dubbed the “modified

Boussinesq" equation by Fordy & Gibbons. The change of
variables
=1 =g -
Q=_;(g+p) , S 2@ - p)
simplifies 3.6.5 to
Q, =S, - 2(Qs)

2 2
3s,=-q + (4 2Q7)
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An equivalent system (using different choices for the
variables) was constructed by Sokolov & Shabat (1980) as

part of their investigations into "modifying" Lax equations.

There is a remarkable connection between the field
C<p,r> and the sequence 3.6.8. We find that C<p,r> is the
subfield of C<wo,w1,w2> fixed by the paraboloic subgroup P1
of SL(3,C) of matrices of the form

= x =
* » =* | e SL(3,C)
0O 0O *

This subgroup fixes the flag of vector spaces
"% ER NS
This flag can be identified with the partial factorization

2 2
(6x -p)(«‘Jx + pax *q-qF qp) 3.6.14

of the operator 3.6.9. Therefore the invariants of the
action of P1 are generated by p and r.v Consequently the
equations 3.6.6 fit into the scheme

X — SI.'/B+ — fI/P1 — X/SL(3,C) 3.6.15
where X is defined much the same as the similar space
described in §3.4. Using the substitution

u=r, -pr , v=rp, —p2 +r 3.6.16

the equations 3.6.6 can be transformed into the equations
3.6.12.

It is by no means clear that the Miura- Drinfel’d-
Sokolov transformation between the operators 3.6.2 and 3.6.4
should produce the invariants of P1. In the first place
there is no factorization of the scalar operator 8i+v6x+u
implicit in the representation 3.6.2.

In the language of §3.4 the two choices of gradings of
type (1,0,1) and (1,0,0) correspond to two different spaces
X’ and X with proJjections

X — x'/P_'_ — X’'/A
X — iI'/B+ — X/SL(3,C)
Here A = SL(2,®)®C‘, represented as the group of matrices of

the form
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*0O O

P
= »
0O O

By . construction fI'/P+ and :x/3+ must both have the
coordinates q and p. What is striking is that both X’/A and

] € SL(3,C)

fI/P1 have the same coordinates p and r. I will not pursue
this further in this thesis, aside from pointing out that

o -1 o]
8 _+|r p -1
X -z 0 -p

is the unique operator of the type

0O -1 o
a_+ | * * -1
X -z 0 *

in the orbit of the spectral operator 3.6.7 under the gauge

action of the group of matrices of the form

1 0 O
a 1 0 where a € C<q, p>
0O o 1

Example 2. Recall from §1.5 of chapter 1 that we

derived the system of equations

q,= —3(pr)x

_ - _ .2 _ 2
p=3(p,, - Pq, - Pq P 12-) 3.6.17
r,= —3(rxx trq -rq -r p)

If we make the substitution
u-= q2 - q_+ pr
X
pq - P, 3.6.18
w=r

v

then the equations 3.6.17 transform into

u, = —S(W)x

v, = 3(v__ - uv) 3.6.19
t XX

w, = —:3(wxx - uw)

This substitution was obtained by the following

Miura-Drinfel’ d-Sokolov transformation:
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qg p -1 o 0 -1
a +|r 0 O —d8_+|w O 0]
X x
-z 0 -q u-zv O
This is possible because the matrix

0 0 1
A=]0 0 O
-z 0 O

satisfies properties (i) and (ii) of proposition 3.5.3. In

this case m_ is the set of matrices of the form

['0 0 0)
0O 0 0| e sl(3,C)
* » 0
and p_ is the set of matrices of the form
( = * )
* * 0| e sl(3,C)
»* » »

~ o

In this example the grading on L(uz,e) is the grading of
type (1,0,1) and the coarser grading is the standard grading
(of type (1,0,0)).

It is a surprising fact {(brought to my attention by
Drs.J.D.Gibbon and J.Gibbons) that if we replace x by ix, t
by -it and set

A=w=v , B=u
(where the bar denotes the complex conjugate) then we obtain
from 3.6.19 a set of equations used to model Langmuir waves
LAt = 3(Axx - AB)
B, = -6(141%)
for which Yajima & Oikawa (1978) discovered a curious

inverse scattering problem.

Example 3. For our last example, let us look at an example
where the conditions of proposition 3.5.3 do not hold.
Recall from §2.2 in chapter 2 that three spectral operators
were given, corresponding to the three distinct
(specialized) hierarchies admitted by the grading of type
(1,0,1) on c;”.

Miura-Drinfel’ d-Sokolov transformation when we fix the

We will look at the prospects of finding a

coarser grading to be the standard grading (of type
(1,0,0)). In this case the subalgebra L(g,e)0 has the
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triangular decomposition
o —
L(g,8)" =m_ + L(g,e)0 +m

where
mo= <<E42’ E41+ Esa’ Ea1>>
8 = €, H,, E = Eg Ep~ B2
m = <C‘F‘.za,’ E14+ Eza’ EIS»

and Eij’ H1 have been defined in §2.2. This is more clearly

represented as

[oNe]

0
0

|
OO0 + +
OO + +

since L(g,e)o ®c,
Look at the operator

o p O O
r q 0 -z
ax * 0O 0 0 -r
0 -z -p -q
which corresponds to case (iii) in example 2.2.4. In the
standard grading its semisimple element A splits into

7\0 + Al = E24 + 2542

A Miura-Drinfel’ d-Sokolov transformation cannot be applied
in this case since [E ,E . ] = 0 therefore A_is not
24 31 0
injective on m_.
However, one can check that the other two cases, with

the respective spectral operators

[ 2q 3p+r 0 ) [ 0 2 0)
Oy ¥ | 3T -2q r-3p | A2 0 0
L o g s ) Lo o]
for case (i), and
(g p 0 | - . 0 1)
Bx + r gq g -r “2 g 1 1 0
L e, 4 ) lro o
for case (ii), do admit Miura - Drinfel’d - Sokolov
transformations. These transformations predict the
substitution
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2r - 3p
q, * 2q° + r2- 6pr + 9p°

3px—rx+3pq+rq+3ps—rs

y=sx+9p2-r2+s2
for the hierarchy in case (i), and the substituion
B=r, - Z;cr
¥ = qx - q - pr
8=p, - 2pq

for the equations in the hierarchy given by case (ii). I
leave it to the interested reader to compute the (new ?)
"integrable" systems of p.d.e’'s obtained by applying these
substitutions to the systems given in example 2.2.4.
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Conclusion.

It should be clear to readers of Drinfel’d & Sokolov
(1885) that this thesis has made substantial use of their
ideas, which prove to be quite robust in that the
fundamental principles lend themselves easily to
generalization.

No significant effort was needed to prove the following
result:

to each periodically graded semisimple Lie algebra
(g,08) admitting a semisimple element in 8, there corresponds
a hierarchy of integrable equations; the equations are
indexed by the abelian subalgebra c(3(zA)) of L(g,0).

It seems quite reasonable to refer to these equations
as "integrable". In every case the equation possesses an
inverse scattering problem which can, in principle, be
solved for certain classes of potential. In particular,
soliton solutions can always be constructed.

Naturally we wish to know when (g,0) admits a hierarchy
of equations. I would 1like to tender the following
conjecture which 1is wholly consistent with the results
obtained in chapter 2 (and other results I have neglected to

include).

Con,jecture: A periodically graded semisimple Lie algebra
(8,08) possesses a non-trivial Cartan subspace (i.e. has a
non-zero semisimple element in 31) if and only if the
collection of affine roots of degree one for L(g,0) contains

a collection of affine type.

From a practical point of view it is unlikely that
" anyone will feel the need to compute =zero curvature
equations when the rank of g is large. One must bear in mind

that the number of variables is at least equal to the rank
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and at most equal to the dimension of g (although in the
latter case at least rank(g) many variables will be
stationary with respect to all flows since the dimension of

3(A) is at least equal to the rank of g)

Perhaps the most interesting result in this thesis is
the description of the Miura-Drinfel’d-Sokolov (M.D.S.)
transformation. One point which has not been investigated is
the extent to which it can be used, that is to say, for
which (g,0) does there exist an element A satisfying the
conditions under which the transformation holds? A similar
question arises if we try to find a concrete description
of the scheme of Wilson’s, that the M.D.S transformation is
only part of a series of transformations obtained by
dividing out by the action of a Lie group. Conceptually we
have viewed this scheme as the sequence

X — /P — X/A

The interesting problem is to make sense of this scheme.
Essentially it is a problem of "coordinates", that is to
say, determining whether or not each space in this sequence
corresponds to a freely generated differential field.
Moreover, the space X/P should provide the coordinates for
the zero curvature equations. The M.D.S. transformation
should describe the coordinates on X/A. So the problem is to
find a sensible description of the "space" X on which a Lie
group A acts (on the right) which fits in with the previous

two conditions.
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