ALGORITHMS FOR TWO - DIMENSIONAL
CUTTING PROBLEMS

Eleni A. Hadjiconstantinou

BSc. in Statistics and Computer Science

Thesis submitted for the degree of
Doctor of Philosophy
of the University of London
and for the

Diploma of Imperial College

July 1987

Imperial College of Science and Technology
(University of London)

Department of Management Science

To my parents

iii
ABSTRACT

The constrained two-dimensional cutting problem is the problem of cutting a
number of small rectangular pieces from a single stock rectangle. Each piece has a
given size, value and an upper bound on the number of that type of piece that is
required. The objective is to maximise the value of the pieces cut (or minimise the
waste).

In this thesis a literature survey of various cutting stock problems is given.
Two versions of these problems are discussed, namely guillotine and general cutting
problems.

(i) Guillotine cutting problems: This type of problem restricts the cuts to be made
from one edge of the rectangle to the opposite edge, parallel to the two remaining
edges. A solution method is described based on a tree-search algorithm with the
search limited by the use of an upper bound obtained from the state-space relaxation
of a dynamic programming recursion for the original problem. An interactive
system using computer graphics and .capable of solving guillotine cutting problems
manually is also described. Computational results are given for the exact algorithm
and for the manual experiments enabling comparisons to be made for a number of
medium - size problems.

(ii) General cutting problems: This is the problem of finding optimal cutting
patterns of rectangles which are not restricted to be of the " guillotine " type.
Bounds based on linear programming relaxations of some mixed integer and zero -
one integer programming formulations of the problem are given. An exact
tree-search algorithm is described that uses a bound derived from a Lagrangean
relaxation of the problem with the Lagrangean problem being solved by a
subgradient optimisation procedure. The algorithm is shown to be capable of
optimally solving small to medium - size problems and extensive computational

results are presented.

iv
ACKNOWLEDGEMENTS

I have been fortunate in having received the assistance of a number of
people during the preparation of this thesis and it gives me pleasure to acknowledge

this.

My greatest indebtedness is to my supervisor, Professor Nicos Christofides
who provided me with sound advice, valuable criticism and guidance and maintained

a constant interest throughout the course of this research.

I am obliged to Professor Eilon, for the opportunity to carry out research in

his department.

I welcome the opportunity to record my thanks to the Science Research

Council for the financial support provided for this work.

The contribution of my colleagues of the Management Science Research
Unit is also greatly appreciated. Their friendship, helpful discussions and

encouragement made my task a lot easier.

Last but not least, I would like to express my sincere gratitude to my family
for the endless support and encouragement they have given me. It is no exaggeration

to say that without their help this thesis would not have been written.

Chapter 7 \

TABLE OF CONTENTS

ABSTRACT iii
ACKNOWLEDGEMENTS ‘ iv
TABLE OF CONTENTS v

CHAPTER ONE: INTRODUCTION - A SURVEY OF CUTTING

STOCK PROBLEMS (CSP's) 1
1.1 Introduction 1
1.2 The Computational Complexity of the CSP 3
1.3 Terminology 5
1.4 A Classification of CSP's 8
1.4.1 The Dimension Parameter 8
1.4.2 The Stock Size Parameter 9
1.4.3 The Stock Constraint Parameter 9
1.5 Literature Survey 10

1.5.1 The One - Dimensional Knapsack Problem 10
1.5.2 The Constrained One -Dimensional Knapsack

Problem 12
1.5.3 The One - Dimensional Trim Problem 13
1.5.4 The Two - Dimensional Knapsack Problem 16
1.5.5 The Constrained Two - Dimensional

Knapsack Problem 21
1.5.6 The Two - Dimensional Trim Problem 25

1.5.7 The Two - Dimensional Bin Packing
Problem 27
1.6 Thesis Outline 30
1.7 Conclusions 32

CHAPTER TWO: TWO - DIMENSIONAL UNCONSTRAINED

GUILLOTINE CUTTING (UGC) 34
2.1 Introduction 34
2.2 Definition of the Unconstrained Problem 38

2.3 A Dynamic Programming (DP) Formulation of the
UGC Problem 39

Chapter 7

24

CHAPTER THREE:

2.3.1
2.3.2

Normal Patterns
The Dynamic Programming Procedure

Example for UGC - Problem

AN ALGORITHM FOR THE TWO -
DIMENSIONAL CONSTRAINED GUILLOTINE
CUTTING (CGC) PROBLEM

3.1
3.2
3.3

3.4

3.5

3.6

3.7

3.8

3.9

Introduction
Definition of the Constrained Problem

A Dynamic Programming (DP) Formulation

of the CGC Problem

State - Space Relaxation for the CGC Problem

3.4.1 Definition

3.4.2 Forms of the Mapping Function g(.)

A Bound from State - Space Relaxation

(SSR)

3.5.1 The Dynamic Programming
Procedure

3.5.2 AnExample

State - Spécc Ascent (SSA)

3.6.1 Modification of the weights q;

3.6.2 SSA Procedure

3.6.3 Computational Results

An Enumerative Procedure for the CGC

Problem

3.7.1 Enumerative Procedure

3.7.2 Description of Enumerative
Algorithm

A Tree - Search Algorithm for the CGC

Problem

3.8.1 The Computation of Bound at the

initial node

3.8.2 The Computation of Bound at the

tree nodes
3.8.3 Node Selection Rule
3.8.4 Branching Rule

vi

42
45
51

61
61
62

63
66
66
69

71

74
81
88

89
91

92

103
104

107

109

110

111

114
114

Computational Experience with the Algorithm 116

Chapter 7

CHAPTER FOUR:

CHAPTER FIVE:

3.10 Conclusions

TWO - DIMENSIONAL RECTANGULAR
LAYOUT GENERATION USING
MICROCOMPUTER GRAPHICS
4.1 Introduction
4.2 Computer Graphics
4.3 System Design
43.1 Background
43.2 Hardware
4.3.3 Software
4.4 User Interface Design
4.4.1 Problem Description
4.4.2 Interactive Solution Approach
4.4.3 Checking of Error Conditions
4.4.4 Display of Optimum Solution
4.5 Experimental Experience
4.5.1 Design of Experiments
4.5.2 Display Format
4.5.3 Experimental Procedure
4.5.4 Method of Response
4.5.5 Results of Experiments
4.5.6 Conclusions

SOME INTEGER PROGRAMMING
FORMULATIONS AND BOUNDS FOR THE
NON - GUILLOTINE CUTTING (NGC)
PROBLEM
5.1 Introduction
5.2 A Mixed Integer Programming Formulation
for the NGC Problem (MIP - 1)
5.3 A Linear Programming (LP) Relaxation of
MIP -1
5.4 Cutting Planes
5.4.1 The Cutting - Plane Algorithm
5.4.2 Results
5.4.3 Conclusions

vii

121

122
122
124
125
125
126
127
127
128
130
132
133
133
134
135
135
136
137
139

146
146

148

152
155
156
158
164

Chapter 7

CHAPTER SIX:

6.1
6.2

6.3
6.4

6.5

6.6
6.7

CHAPTER SEVEN:

5.5

5.6

5.7

5.8

viii

A second Mixed Integer Programming

Formulation (MIP-2) 164
Two 0 - 1 Integer Programming Formulations 167
5.6.1 FormulationIP - 1 169
5.6.2 FormulationIP -2 172
A second set of 0 - 1 Integer Programming

Formulations 173
5.7.1 FormulationIP - 3 174
5.7.2 FormulationIP - 4 176
5.7.3 FormulationIP - 5 179
Computational Aspects of Bound Calculations 181
5.8.1 Computational Comparison 187
5.8.2 Conclusions 192

A LAGRANGEAN RELAXATION BOUND FOR
THE NGC PROBLEM IMPROVED BY
SUBGRADIENT OPTIMISATION AND

PROBLEM REDUCTION TESTS 193
Introduction 193
Lagrangean Relaxation 194
6.2.1 A Lagrangean Relaxation for the NGC

Problem 197
Problem Reduction 204
Subgradient Optimisation 219
6.4.1 Implementation of Subgradient Optimisation

for the NGC Problem 221
6.4.2 Computational considerations on the choice

of step - size 225
A General Procedure based on Subgradient
Optimisation and Reduction Tests 230
Computational Results with the general procedure 231
Conclusions 235

A TREE - SEARCH ALGORITHM FOR THE
NGC PROBLEM 237

7.1

Introduction 237

Chapter 7

CHAPTER EIGHT: CONCLUSION

REFERENCES

7.2 Description of the Problem
7.3 Enumerative Procedure
7.3.1 Tree - representation of the cutting
process
7.3.2 A selection rule in the sequential
placement of rectangles
7.3.3 Description of the Enumerative
Algorithm
7.3.4 Computational Results
7.3.5 Conclusions
7.4 The Tree - Search Algorithm
7.4.1 Node Selection Rule
7.4.2 Branching Rule
7.4.3 Bound Calculation
7.4.4 Computational Considerations
7.5 Computational Experience with the
Algorithm
7.5.1 Conclusions
APPENDIX A
APPENDIX B

ix

238
239

246

249

252

259

264
264

1266

267
268
271

273
283
284
289
294

297

Chapter 1 , 1

CHAPTER 1

INTRODUCTION
- A SURVEY OF CUTTING STOCK PROBLEMS (CSP's) -

1.1 Introduction

Many materials used in industry and construction come in the form of whole
units (sheets of glass, tin-plate, wood, paper, roofing and sheet iron, logs, boards,
beams, reinforcing rods, forms, etc.). In using them directly or for making
semi-finished products, it is necessary to divide these units into parts of the required
dimensions. In doing this, scrap is usually formed and the materials actually utilised

constitute only a certain per cent of the whole quantity - the rest going into scrap.

The above problem can be stated in a more general form as the problem of
cutting a set S of one (or more) dimensional stock objects into a set Sp of
smaller, one (or more) dimensional pieces of specified dimensions, in such a way

as to minimise wastage or maximise the value of the pieces cut. This has become

Chapter 1 2
known as the trim loss or cutting stock problem.

The Cutting Stock Problem (CSP) firstly appeared in the Operational
Research Literature in 1957, when Eisemann considered the one-dimensional
problem of minimising trim loss when slitting rolls of material for the supplying of
customer orders. Much of Eisemann's material had however already been anticipated
by Kantorovich [1960] in his paper presented in Russian at Leningrad State
University in 1939. To our knowledge, Kantorovich was the first to formulate and
propose a solution to the CSP; he considered a number of problems concerned with
the minimisation of scrap and formulated them mathematically in a form later to be

known as integer linear programs.

Since 1957, there has been a growing interest in cutting stock problems.
This interest is motivated by the fact that the problem can be used to model a variety
of problems in the real world. Specific applications are related to :
-steel barg - (Eilon [1960], Tilanus and Gerhardt [1976), Stainton
[1977])
- paper industry (Pierce [1964], Marconi [1971])
- glass industry (Dyson and Gregory [1974], Chambers and Dyson [1976])
- garment making (Arz [1966])
- time tabling |
- multi-program (batch) scheduling (Short [1973])

-scheduling commercial television advertising spots (Brown [1971]).

This interest is also a consequence of the appearance of the high speed
digital computer and the development of such computer oriented optimisation
techniques as linear and dynamic programming. This is especially true for those

applications involving only a limited class of shape types, such as rectangles. In the

Chapter 1 3

area under consideration, there are relatively few algorithmic methods available for
providing exact solutions (i.e.methods that are guaranteed to produce optimal
results); they basically involve dynamic programming (e.g. Gilmore and Gomory
[1966], Beasley [1985]) and tree search techniques (e.g. Christofides and Whitlock
[19771, Greenberg and Hegerich [1970], Herz [1972]). An algorithm may not be
available, or the computational cost of using the best available algorithm may be
prohibitive. In general, a heuristic method is highly "domain dependent”, that is, it
uses information about the particular problem for which it is developed in order to
find good solutions. This is reflected in a variety of papers (e.g. Pierce [1964],
Paull and Walter [1955], Metzger [1958], Paull [1956]) dealing with practical
problems. A survey of approaches to the problem can be found in Hinxman [1980]

and Golden [1976].

In this chapter, we first describe the nature of the CSP in terms of
computational complexity. We then go on to describe and classify the various types
of the problem. Some of the methods available for their solution are briefly
surveyed. The two-dimensional CSP is examined in greater detail ; new exact
solution methods for this problem are developed and described in the following

chapters of the thesis.

1.2 The Computational Complexity of the CSP

Recent results in complexity theory (Karp [1972], Cook {1971]) indicate
that many combinatorial optimisation problems are indeed very difficult to solve in
the sense that a prohibitive amount of computation is required to construct optimal

solutions for all but very small cases. If there exists an algorithm for a given

Chapter 1 4

problem whose rate of computational increase with problem size is bounded above
by some polynomial function of problem size, then this particular problem belongs
to a class of problems denoted by P (for polynomial). Another class of problems,
called the NP (for non-deterministic polynomial) class, includes all the problems in
P but in addition contains problems for which the only known optimal algorithms
(tree-search procedures) exhibit a rate of increase with problem size that is
exponential. Cook [1971] showed that there exists a subclass of problems in the
NP class which have the property that all the problems in the NP class can be
transformed by an efficient (polynomially bounded) algorithm into any of the
problems in this subclass. Problems in this subclass are called NP-complete

problems.

The class NP includes an enormous number of practical problems that occur
in business and industry (Garey and Johnson [1979]). It has been proved
theoretically (Garey and Johnson [1979]) that the CSP is NP-complete. A proof
that an NP problem is NP-complete isa proof that the problem is not in P (does not
have a deterministic polynomial time algorithm) unless every NP problem is in P.
Cook showed that if any member of the NP-complete class can be solved in time
bounded by a polynomial in the size of the input, they all have such a polynomial

time solution.

With the current state of knowledge about NP-complete problems the only
optimal algorithms encountered in the literature are of the tree-search type with
attention focused upon the problem of generating efficient bounds that are of good
quality. In this thesis, we will concentrate on the design of such algorithms in an
attempt to develop exact solution methods for the CSP, capable of dealing

computationally with practical sized problems.

Chapter 1 5

1.3 Terminology

In this section, we describe the tcrminélogy to be used in this chapter.
CSP's have been categorised by dimension. Thus a one-dimensional problem is one
in which only one dimension of the stock and order pieces is significant to the
solution whilst a two-dimensional problem is one in which the stock is held as
rectangular sheets and the customer requirement is for rectangles of smaller

dimensions.

In a one-dimensional problem, there is a set Sqy of n stock objects in total
which are referred to as "lengths”, and their dimensions are Li,i=1,..n. The
term " lengths " also refers to the items produced by cutting up the stock into a given
set Sp of required " pieces ". The total number of pieces in Sp is m and their
dimensions are \j’j =1, ..., m. The value of each piece to be cutis v;,j=1, .., m
(these values may or may not be proportional to the dimensions of the pieces).

There may be an upper bound on the number of lengths to be cut denoted by Qj,

ji=1, .., m

The two-dimensional case involves a total number of n stock objects (set
Sq), referred to as "rectangles” of width W; and length L, i=1, ..., n. An order is

received for a set Sp of m smaller rectangular pieces of width w; and length 1

J y
j=1, ..., m. The value of each piece is v;, j =1, ..., m and the upper bound

associated with each piece is Qj, ji=1,..,m

A "cutting pattern” represents a set of instructions for dividing up a stock
object. It is generated in the following way : If 3 is the number of piece j included

in a particular cutting arrangement for a stock item, then a "combination” is defined

Chapter 1 6

as any set of ajs j=1, ..., m such that the set of pieces represented by the 3j can be
fitted within the stock item. The arrangement of a combination within the stock
object is termed a "pattern" and is denoted by a =[ay, ap, ..., aj] (J<m). For

most combinations there will be a number of patterns as illustrated in Figure 1.1.

Assuming that not all pieces of Sp can be cut from Sy the value of a pattern

a =[aj, ay, ..., aj] is given by:
EJ:
V. a..
=1 JJ

The terminology used when discussing CSP's must be extended when
cutting restrictions are added to the standard problem. Considering the
two-dimensional problem, it may be the case that the cutting process consists of a
number of distinct steps in each of which a number of parallel cuts are made in
rectangles, resulting from the previous step, at right angles to the cuts in that
previous step. This is called "ste;ged" two-dimensional cutting. Figure 1.2

illustrates four-stage cutting.

If there is no restriction on the number of cuts that can be made to obtain the
required pieces, but only a restriction that any cut should be parallel to a side of the
stock object, the problem is referred to as " orthogonal " two-dimensional. With
materials such as glass there is a restriction that any cut made must be a " guillotine "
cut, that is, it must extend the full width of the rectangle produced by previous cuts.

Guillotine and non-guillotine orthogonal cutting are illustrated in Figure 1.3.

Chapter 1

7
6 1 ; 6 1019 7 g
8 / 8 4
10 —— 1 ; 1
6 6 z B¢
7 9110 |
|2 LR sk
1121 3 213 11 113 12
Pattern 1 Pattern 2 Pattern 3

Figure 1.1 Three Different Cutting Patterns for a Combination of

Eleven Pieces.

Figure 1.2 Four - stage cutting.

OONNNNNNN

Ll Ll

Figure 1.3 Guillotine and General Cutting Patterns.

Chapter 1 8

1.4 A Classification of CSP's

CSP's essentially consist of finding the best way of cutting a set S of stock
objects into a set Sp of smaller pieces of specified dimensions (order sizes). Such
problems can be classified in terms of a set of parameters such that each set of states

for these parameters uniquely describes a particular CSP.

1.4.1 The Dimension Paramecter

We can differentiate
- one-dimensional and

- two-dimensional CSP's.

Typical examples for one-dimensional problems are to be found where
stocks of bars or rolls have to be cut into smaller pieces of the same cross section,

there only the length of the material is relevant to the solution of the CSP.

Two-dimensional problems exist in situations where flat material (e.g. metal

sheets, chipboard, panes of glass, textiles) have to be divided into smaller pieces.

One and two - dimensional problems have been considered in the literature.
However, the greater the dimension the more complex the problem. Very little work

has been done on two - dimensional problems (Gilmore and Gomory [1965]).

Chapter 1 9

1.4.2 The Stock Size Parameter

In normal CSP's the size of the stock to be cut is known. However, in
some cases, only a subset of object sizes are stocked because of storage or
manufacturing limitations, economies of scale in production or storage and because
of the costs associated with holding different sizes in stock. The objective then is to
select the optimum number and size of the stock objects from some restricted set so
as to minimise production (stockholding and wastage) costs. This is known in the

literature as the " assortment problem ".

Furthermore, there is a two-dimensional case where stock comes in the
form of a number of continuous lengths of material of known width. The objective
then is to minimise the length of material required to meet customer demands. This
problem belongs to the class of problems known in the literature as " bin packing "

problems.

1.4.3 The Stock Constraint Parameter

In certain types of CSP's, the various stock sizes are considered to be
availablein unlimited supply and it is desired to find the optimal cutting pattern that
will at least satisfy demand. These are known in the literature as " trim-loss

problems ".

Another type of CSP is the " knapsack problem ". In this case, not all order
pieces can be cut from a stock object (the stock to be cut is considered to be a
limited resource). Hence the objective is to maximise the total value of pieces

produced in a way that at most satisfies demand - this is known as the constrained

Chapter 1 10

knapsack problem. It is also possible to formulate problems of the knapsack type in
which there is no demand and it is simply required to find the optimum cutting

pattern for a stock object (unconstrained knapsack problem).

1.5 Literature Survey

Using the classification parameters that have been described in the previous
sections, we now define some of the CSP's that exist in the literature. For each type
of problem, we will provide a comprehensive survey of the available solution
approaches ; these can either be exact or heuristic. Very often, the methods
developed for the CSP, rely upon the technological characteristics of the situation

being modelled.

The survey will describe in greater detail the existing approaches to
two-dimensional problems. Bin packing problems, which are considered to be
special cases of CSP's, will be dealt with separately, as a result of the particular type

) of analysis applied to the performance of the algorithms developed for these

problems.

1.5.1 The One-Dimensional Knapsack Problem

This is the simplest form of CSP. In such a problem each of the order
lengths l;, j =1, ..., mis given a value Y; and the objective is to maximise the total
value of items cut from one stock length L. The problem can be formulated by

defining 3j as the number of lengths of size j cut from L as:

Chapter 1 11

m

imise z= V. a.
maximise z J; i 4

subject to the condition that [ay, ay, ..., a;,] corresponds to a feasible cutting

pattern.

The above problem has been studied by a great many authors and it is of
considerable importance to mathematical programming. In particular, it is closely
related to trim-loss problems.

Gilmore and Gomory [1966] develop the idea of the one-dimensional
knapsack function from lengths 1y, ..., I, of given values vy, ..., v by the
equation

F(x) = max { VyXp+o vV X xj non-negative integers and
<y w - : 3
L] Xy .+l X $X; X non-negative integer }.

Clearly, if a function Fy(x) is defined such that

Fo(x)=max{0,ujl ljSX}

then F(x) satisfies

F(x) = max { FO(x), F(xl) +F(x,) I x 2x1+ X5, 0< X4 < X, }.

From this definition of F(x), Gilmore and Gomory have developed a dynamic

programming formulation for solving the one-dimensional knapsack problem. Their

Chapter 1 12

method suffers from the main disadvantage of dynamic programming i.e that for
large scale programs, a large amount of storage is required. Thus, much better tree-
search algorithms have been developed since, but will not be discussed here since
they are not generalisable to two or more dimensions. A comprehensive survey on
the problem is given by Salkin and Dekluyver [1975] and Martello and Toth
[1979].

A variation on the knapsack problem has been referred to in the literature as
the multidimensional 0-1 knapsack problem. This term has been used to describe a
knapsack problem in which there is more than one set of constraints (see, for
example, Weingartner and Ness [1967]). To avoid confusion, knapsack
problems concerned with the design of cutting patterns in two-dimensional
Euclidean space will be referred to, in this thesis, as two-dimensional knapsack
problems ; problems where the dimensionality refers to the vector of parameters for
each piece, will be referred to as multiparameter knapsack problems. The main
method that has been used to solve this problem is branch and bound (Weingartner

and Ness [1967], Ghare and Walters [1968]).

1.5.2 The Constrained One-Dimensional knapsack Problem

This problem is formulated in a way similar to the unconstrained version
with the addition of specified demands on the maximum number of each type of
piece that is to be produced. That is, it may be required that 3 < Qj, j=1, .., mfor
some set of integers {Q, ..., Q;,). A variety of approaches - similar to the
unconstrained case - exist for this problem (Gilmore and Gomory [1966], Martello

and Toth [1979]).

Chapter 1 13

1.5.3 The One-Dimensional Trim Problem

Kantorovich [1960] produced a mathematical formulation for this problem
in 1939 but this was not published in Englisﬁ for another twenty-one years.
Meanwhile, mostly approximate methods had been developed, including linear
programming together with rounding up or down to provide an integer solution and

various other heuristics.

The simple form of the basic formulation (see Eilon [1960], Metzger

[1958], Paull [1956), Vajda [1958]) is given below:

An unlimited number of standard lengths L;, i = 1, ..., n of some material is
held in stock from which lengths are to be cut to fill orders. An order consists of a
request for some number Qj of pieces of length l;, j = 1, ..., m. For each stock
length there will be a large number of combinations - say N - (Section 1.3) for
cutting the required lengths. Define ajk as the number of pieces of length ljto be
cut by the kth combination or cutting pattern and xj as the number of times the kth
combination is used. Also associate with each combination k a cost ¢ representing
the cost of the stock length that the combination uses. Then the general

one-dimensional trim problem is given by

N
minimise z= Z i Xk
k=1

subject to

Chapter 1 14

N

E a., x, 2Q., j=1,.,m
k “k
=1 J J

xkz 0, Xp integer, k =1, ..., N.

It is noted that there are two factors contributing to make this integer linear program
impractical for real size problems. Firstly, the number of variables (cutting patterns)
is enormous so that it is impossible to obtain an integer solution and secondly the
practicality of using the normal simplex method, for solving the corresponding large
linear program (LP) in order to obtain bounds for tree-search methods of solution is

limited.

A significant contribution to this problem was due to Gilmore and Gomory
[1961,1963]. In their method, an initial basic feasible solution is found by an ad
hoc method, then the LP is set up using as variables only the cutting patterns that
occur in the initial solution. In order to find a new pattern that will improve the
solution, a useful column is generated by solving an auxiliary problem at each pivot
of the simplex method. The auxiliary problem to be solved is the unconstrained
one-dimensional knapsack problem, described in section 1.5.1. Gilmore and
Gomory also observed that towards the end of computation considerable time was
required to achieve small improvements. For this reason, a heuristic method was
introduced by terminating the LP if a certain number of consecutive pivots do not

produce at least a certain percentage improvement in the optimal solution.

The algorithm of Gilmore and Gomory has been applied successfully to a
broad class of cutting problems. However, it is only appropriate in cases in which
minimising the trim loss is the only objective. There are many practical problems

which are too large to be solved by this method or have a special structure due to

Chapter 1 15

additional conditions with respect to production. These additional restrictions may
involve using only a few d{stinct cutting patterns (Haessler [1971], Coverdale
and Wharton [1976]), limiting production from a cutting machine, using only a
fixed number of cutting knives etc. As a result, a number of authors have developed

heuristic methods to the problem.

Eisemann [1957] considered the one-dimensional CSP for the case in
which two cutting machines are in use. Pierce [1964,1966], studying problems in
the paper industry, was the first author to decide that heuristic methods must be
adopted; he considered the economic balance between exact procedures (which tend
to be computationally expensive) and heuristic ones (which are usually relatively
cheap). Haessler [1971,1975], also examining problems associated with the paper
industry developed a similar heuristic approach; his solution procedure deals with
the more commonly occuring case in which there is a fixed charge in changing the
slitting patterns, thus reducing the total number of cutting patterns used. Coverdale
and Wharion [1976] presented an improved heuristic pattern enumeration technique
for solving Haessler 's trim problem. The problem involving the cutting of steel
reinforcement bars was investigated by Stainton [1977]; in this case a heuristic
solution was developed considering the possible utilisation of wastage. Finally,
heuristics which use the cutting pattern that is best in terms of an evaluation (this
evaluation procedure assigns heuristically determined penalties to patterns that can
only be used a small number of times) are employed by Marconi [1971] in paper
cutting problems. Value heuristics have also been used by Tilanus and Gerhardt
[1976] in a problem arising when steel slabs have to be cut as they are

manufactured.

Chapter1 16

1.5.4 The Two-Dimensional Knapsack Problem

The unconstrained problem in which the value of the rectangular pieces cut
from a single plane rectangular stock object is maximised, without limits being
placed on the number of pieces of each type used, is termed by Gilmore and
Gomory [1965, 1966] as the "two-dimensional knapsack problem". The related
problem of minimising the amount of waste produced by the cutting can be

converted into this problem by making the value of all pieces equal to their areas.

Various methods of solution for this problem have been proposed in the
literature, each with different assumptions on the allowable cutting patterns. In
almost all the methods used, it has been assumed that the cuts made on the stock
rectangle can only lie in the two orthogonal directions parallel to its edges, resulting
in an "orthogonal" pattern. Otherwise, a cutting pattern is called "non-orthogonal”.
It {s interesting to remark that the restriction to orthogonal cutting patterns can
prevent the optimal arrangement of the required rectangles in the stock object from
being obtained, as it was pointed out by Erdos and Graham [1975] and by DeCani
[1978]. However, there do not seem to be any computational studies on the use of

non-orthogonal cutting. An example of non-orthogonal cutting is shown in Figure

1.4.

Waste
material

Figure 1.4 Example of a non-orthogonal cutting pattern.

Chapter 1 17

A special case of the two-dimensional cutting problem restricts any cuts
made to be of guillotine type (Section 1.3) - Gilmore and Gomory observe that this
restriction occurs very often in practice, for example in the cutting of paper or glass.
All of the CSP 's that yield to this treatment are ones in which the cutting is done in
" stages " (Section 1.3); if the rectangle to be cut is being processed along a
production line, there may be a number of cutting machines along the line each

corresponding to a stage.

The generalised two-dimensional problem, which is related to cutting
problems of non-guillotine type, has been considered by few authors inA the
literature. A number of heuristic procedures have been developed for the well
known bin-packing (Section 1.5.7) and palle.t loading (Section 1.5.5) problems

which are special cases of the non-guillotine cutting problem.

In this section, the problem to be discussed will be the two-dimensional

knapsack problem with guillotine cuts imposed.

There have been two optimal methods developed to solve this problem,
using dynamic programming (Gilmore and Gomory [1966], Beasley [1985a])

and tree-search techniques (Herz [1972]).

In the paper by Gilmore and Gomory, two methods are described. Since
the second method has been shown to be incorrect (Hertz [1972]) the first one is

presented below:

Gilmore and Gomory introduce a knapsack function F (x, y) which is
defined as follows:

Given m rectangular pieces (| i Wi), [with non-negative values V; associated with

Chapter 1 18

them], and which are required to be cut from a single stock rectangle (L, W), then

In this equation, §j, ..., §,, are non-negative integers such that there exists a way
of cutting any rectangle (x,y)(x<Landy £ W) into Eaj rectangles (lj, vj) for
j =1, ..., m using only guillotine cuts. The function F (x, y) has the following
properties:
(i) F(xy)=20
(i) F(xy+xp,y) 2 F(xp,y)+F(x2y)

F(x,y1+y2) 2F(x,¥1)+F(x,¥2)
(ii1) F(l-,wj) Zuj, ji=1,.,m

A dynamic program based on the above properties can be developed for

calculating F (x, y). The recursive formula used is given below:
F(Xs Y) = max { FO(X’ Y), F(xla Y) + F(XZ’)’), F(X, yl) + F(x, y2)9

xle+x2,0<x1Sx2,y2y1+y2andO <y15y2]

where

Fo(x,y)=ma)Jg{O,Ujllj5x and wj.<_y, j=1,.,m}.

Essentially, this formula defines the value of a rectangle (x, y) at any point
by considering it as a whole, as two pieces created by making a vertical cut or as two

pieces created by a horizontal cut. The result for the demanded rectangle is built up

Chapter 1 19

iteratively from the value of smaller rectangles. The algorithm requires two
functions ! (X,y) and w (x, y) to record how the value F (x,y) is achieved (i.e.

to give the associated cutting pattern). These functions are defined as follows:
b(x,y)=min { X1, x| 0<x;<x-Xx, F(X,y)=F(x,y)+F(x-x1,¥))

w(x,y)=min{y,yl0<y;<y-y.F(xy)=F(xy1)+F(x,y-y1)}

Once the value of the best cutting pattern has been determined, the process
backtracks to determine the actual cutting positions using a special binary tree

structure.

Herz [1972] presents a recursive procedure for the same problem, but
reduces the number of patterns which need to be considered. He achieves this by
Testricting potential cutting positions to thdsc which are an integral combination of
piece lengths or widths from a given edge. He refers to these as canonical
dissections. Upper bounds on the values of each sub-rectangle are introduced when
they can be calculated easily, as a means of speeding up the computation. If the
value of each piece is equal to its area, this bound is simply the area of the

sub-rectangle.

Herz compares his algorithm to that of Gilmore and Gomory's and
concludes that the use of true recursion, canonical dissections and the upper bound
result in a more efficient procedure. Beasley [1985a] describes a similar iterative

procedure.

Gilmore and Gomory [1965] consider CSP 's in which there are two stages

of cutting. This means the corresponding generalised knapsack problem is of the

Chapter 1 20

form: maximise V3 + V3 ay + ... + U, 3, subject to the condition that [aj, ay,
... 85,] corresponds to a two-stage guillotine pattern. They develop two methods
for this problem, one using dynamic programming and the other using linear

programming.

The first method is carried out in two stages:
(1) For all widths w; calculate v;*, the optimum value obtainable by fitting
rectangles (lj, wj) where w: < wj, end to end into a strip of width w; and length

L. For each i this is a one-dimensional Knapsack problem.

(ii) The optimal value of the objective function Vja; + Vg ap + ... + U, 2y, is
then obtained by solving one more knapsack problem:
maximise Vj*a)'+ V¥ ag' + ... + V¥ a ' subject to W 2wy ap' + ... +wp, a’

and subject to aj', i=1, ..., m being nonnegative integers.

The knapsack problems of (i) above can all be solved together by a
dynamic program similar in structure to a program for the one-dimensional problem
of section 1.5.1. The same program can also be used to solve the knapsack problem

of (ii).

The second method to the two-stage guillotine problem involves a two-stage
linear programing formulation of the problem with the first stage corresponding to
the process of slitting the stock rectangle into strips with widths corresponding to the
widths of the demanded rectangles and with the second stage corresponding to the
process of chopping the strips into the demanded lengths. Gilmore and Gomory's
approach is a mixture of their LP approach they used for the one-dimensional CSP

[1961] and the decomposition of Dantzig and Wolfe [1960].

Chapter 1 21

Hahn [1968] shows how the above procedure can be extended to more than
two stages. She considers three-stage problems where any cuts at the third stage
produce pieces of identical dimensions and there are defects in the rectangle being
cut. The values are of the form aAp + BAp2 where Ap is the area of a piece. The
method was designed for the glass industry and a dynamic programming algorithm
is used to produce a cutting pattern in which the sums of heuristic values are

maximised.

Related to the two-dimensional Knapsack problem, is the so-called template
layout problem, in which the pieces to be cut are not rectangular. Here there is a
demand for an unlimited number of various two-dimensional pieces and the
objective is to cut the most valuable combination of pieces from a single sheet of
stock material. Haims and Freeman's [1970] approach to the solution of this
problem is to enclose the irregular pieces into rectangular areas (modules) from
which they are to be cut. A dynamic programming algorithm is then used to lay out

the resulting modules in the rectangular stock sheet.

A number of heuristic or partially heuristic solution approaches involving
the methods mentioned above for staged cutting have also been applied to some
unconstrained cutting problems in the glass industry. Such problems have been
discussed by Dyson and Gregory [1974], Chambers and Dyson {1976}, Madsen
[1979] and Farley [1983a, 1983b] (section 1.5.7).

1.5.5 The Constrained Two-Dimensional Knapsack Problem

In practice, cutting problems appear in a constrained form, the most usual

constraint being the one that restricts the maximum number of pieces of each type to

Chapter 1 22

be cut. The version of the problem stated in the previous section, when this
restriction is added, is known as the constrained two-dimensional knapsack
problem. There have been two optimal tree-search algorithms developed to solve
this problem; one method deals with guillotine cuts and was developed by
Christofides and Whitlock [1977], the other method deals with non-guillotine cuts

and was developed by Beasley [1985b].

Christofides and Whitlock present a tree-search procedure to solve the
constrained problem of cutting the most valuable combination of demanded
rectangles from a stock rectangle. Their method generates all possible cutting
patterns without duplication in the stock rectangle. All of these patterns can be
represented in the form of a tree in which, each node is defined by a set of cut
rectangles together with the next cutting position in each and branchings
- corresponding to guillotine cuts. Like Herz, they reduce the number of posssible
positions through canonical dissections, called in this case"normal cuts". By using
the Gilmore and Gomory [1966] unconstrained two-dimensional knapsack solution,
obtained by dynamic programming anda tranportation routine, an upper bound on
the value of layouts derived from any node can be determined. This upper bound is
incorporated into a branch-and-bound procedure in order to limit the amount of
search necessary to obtain the optimal layout of demanded rectangles on the stock
rectangle. It is reported that the method can be used to solve practical problems of

medium size (twenty pieces in the order list).

The work of Beasley [1985b] provides an exact solution to non-guillotine
problems in which the objective is to find a layout of the pieces in the stock rectangle
that has the highest possible total value. He formulates the problem as an integer

program as follows:

Chapter 1 23

Let 3jpqrs = 1 if a piece of type i overlaps co-ordinates (1, s) when cut with its
bottom-left hand comer at (p,q)
=0 otherwise
and
Xipq = 1 if a piece of type i is cut with its bottom-left hand corner at (p, q)

=0 otherwise

Then the optimal layout of the pieces on the stock rectangle (L, W) is given by:

subject to

m
Z ipgrs Xipg S » 7= 0o L and s =0, 0 W

x. € {0,1}, i=1,..,m p=0,..,L and q=0, ..., W

where P; and Q; represent the minimum and maximum number of pieces of type i

that can be cut from (L, W), respectively.

The size of the program is then reduced by restricting the values of p and q

to normal cutting positions. Lagrangean relaxation of the given formulation and

Chapter 1 | 24

subgradient optimisation are used to obtain a good upper bound to the problem and a
heuristic, based upon random placings, is used to obtain an initial lower bound.
When these do not coincide, a tree search procedure is initiated and the upper bound
is recalculated at each node. Results are reported for random problems which
involve up to ten types of pieces (the number of pieces of each type being one, two

or three) to be cut from stock rectangles of up to thirty units square.

The algorithms for the constrained two-dimensional knapsack problem
mentioned above, are not generally suitable for solving problems of large size which
are often met in applications. A number of heuristic or partially heuristic solution
methods have been published, which appear to be particularly effective when the
number of pieces to be packed or cut from the stock rectangle is large. For exampi-e,
Wang [1983] approaches the problem in the following way: instead of enumerating
all possible cuts that can be made on the stock rectangle (Christofides and Whitlock
[1977]), he builds guillotine cutting patterns by successively adding sub-rectangles
to each other. For any pair of current rectangles, a new rectangle is obtained by
joining them in either a horizontal or vertical build. The number of possible
combinations is reduced by placing an upper bound on the acceptable percentage of
waste they create. The algorithm determines error bounds that measure the

closeness of the best patterns to the optimal solution.

A special case of the two-dimensional CSP, is the pallet loading problem
with only one size of rectangular piece to be cut and with the objective of
maximising the number of cut pieces. In cases where packaged material shipped in
trucks, railcars aircraft and ships is packed on a pallet or in some other bulk
container, the packing problem can be stated simply as trying to pack as many
packages as possible into a container. Recently, a number of solution techniques

have been developed to cater specifically for packing problems. Sreudel [1979]

Chapter 1 25

observes that in solving such problems, practical experience suggests that
considerable advantage in terms of the utilisation of the pallet often can be gained by
employing loading patterns which could not be obtained with guillotine type cuts

(see Appendix B of Chapter 7). Smith and DeCani [1980), Bischoff and

Dowsland [1982], Dowsland [1982], Hodgson [1982] and Hodgson et al [1983]

have developed heuristic procedures for this problem of non-guillotine type.

1.5.6 The Two-Dimensional Trim Problem

The general two-dimensional trim problem, where there are n stock
rectangles and a minimum demand Qj on all the pieces (> 0y), j=1,..,m tobe
cut, is too complicated to solve optimally and only certain subproblems with extra
constraints have been considered in the literature by using heuristics. Gilmore and
Gomory [1965] formulate this problem in a similar manner to the one-dimensional ,
with the complication that the cutting patterns are now for rectangular objects. Itis
noted that the difficulty in solving this problem as an ordinary LP problem is the
immense number of columns in the constraint matrix. Applying a column generating
technique of the type first presented in their paper of 1961 (see section 1.5.3)
produces a generalised two-dimensional knapsack problem of the form:
maximise vjaj + V9ag +...t Uy subject to the condition that (a1, ap, -y am]
corresponds to an acceptable pattern. In their paper of 1966, they present a
dynamic programming algorithm to solve this I;rob]em for the case in which all the
cuts are restricted to be guillotine (Two-stage guillotine cutting patterns - see section
1.5.4). Alternatively, the technique of Herfz [1972] can be applied to the auxiliary
knapsack problem. Essentially, the linear programming method is the most
powerful algorithm available for finding an aproximate solution to the

two-dimensional trim problem provided an efficient technique exists to solve the

Chapter 1 26

auxiliary knapsack problem.

The Gilmore and Gomory LP approach using an example in the glass
industry is shown to be a simplification of the real problem which involves the
selection of the sequence in which the cutting patterns are to be processed. Dyson
and Gregory [1974] identify this as the pattern allocation problem. They developed
a two-stage heuristic approach to the solution of this problem; patterns are designed
by applying the LP technique of Gilmore and Gomory and the sequencing of these
patterns is treated as a problem of the travelling salesman type. An additional
restriction on the problem arising in the glass industry, is that of imposing
limitations on the positioning of cuts within the stock rectangle, relative to other
cuts. Farley [1983a, b] considered this problem and presented a heuristic based on
modifications to the Gilmore and Gomory [1965] algorithm. A glass cutting
problem occuring in a small firm was examined by Madsen [1979]; his heuristic
solution method resulted in approximately 50% reduction in waste compared to the

solution normally used by the company.

Not all applications of stock-cutting deal with rectangular pieces and
problems of packing non-rectangular shapes have been tackled in the garment and
shipbuilding industries : In ship-building the problem is usually called a nesting
problem. Adamowicz and Albano [1972] present a two-stage heuristic algorithm to
solve this problem, in which it is required to cut out a specified set of irregular
shapes from a number of rectangular stock sheets so as to minimise the amount of
waste. The first stage consists of forming clusterings of the irregular pieces and
then enclosing these clusterings into rectangular modules (Adamowicz and Albano
[1976a)). The second stage concerns the layout of the rectangular modules onto the
stock rectangle. Adamowicz and Albano [1976b] present a constrained dynamic

programming algorithm to lay out groups of rectangles called strips which are then

Chapter 1 27

packed within a rectangular enclosure. Albano and Orsini [1979] present an
improved and extended version of this heuristic which provides greater flexibility in

the use of strips.

1.5.7 The Two-Dimensional Bin Packing Problem

In this section, we consider one of the currently most active areas in the
operations research literature : the problem of packing a set L of rectangles, each of
given height hj and width Wi (j=1, .., m), into two-dimensional bins. The goal
is to pack them in a vertical strip of width C, so as to minimise the total height of the

strip needed.

The problem described above, is a fundamental one for which a broad
application in operations research is easily envisioned. The obvious interpretation of
bin packing corresponds to problems of efficient use of time and/or space, especially
problems in computer scheduling, where the items to be packed correspond to tasks.
The height of an item represents the amount of processing time it requires and its
width is the amount of contiguous memory it needs. The strip width C is then the
total memory available and the strip length the amount of time needed to schedule all

the items.

Further motivation for bin packing problems has been provided by the
obvious industrial applications in stock cutting. In the simplest industrial setting,
where the "raw" material involved comes in rolls, the objects required to be cut from
the rolls, are viewed as being rectangles. The possible wastage is then minimised if
we minimise the amount of roll (the strip length) used. The restriction of

orthogonality applies once again, as in many applications, the cutting is done by

Chapter 1 28

blades that must be either parallel or perpendicular to the strip.

It is readily verified that the bin-packing problem, or more precisely the
decision problem "Given C, L and an integer bound K, can L be packed into K or
fewer bins of capacity C? " (the classical one-dimensional bin-packing problem) is
NP-complete (section 1.2). By the theory elaborated in Garey and Johnson [1979]
and Karp [1972], this means that it is unlikely that efficient, (i.e. polynomial time)

optimisation algorithms can be found for this problem.

Bin-packing algorithms usually consist of a specified ordering of pieces and
a placement policy. In the simpler methods, the ordering is fixed at the start, while
dynamic orderings allow the choice of the next piece to be made at each step.
Christofides [1974] suggests that possibilities for fixed orderings include
descending length, width, area, perimeter, or maximum dimension. Variable
orderings are based on expected waste, which may be measured by the total waste to
the left of each piece, by the waste below a piece, or by the evenness of the edge of

the layout. Short [1973] has analysed the effects of some of these rules.

The evaluation procedure applied to the performance of the heuristic
algorithms is usually in the form of worst case analysis in which the ratio of the
actual solution to the optimal solution is examined. Two types of bounds are
defined. Let A (L) be the height used by algorithm A , for packing a list L of
rectangles and let OPT (L) be the height which would be used in an optimal
packing. If for all lists L, A (L) <o OPT (L) then o is called the absolute bound.
A second measure, the asymptotic bound is defined by: A(L)< o O_PT LY+BH
for all lists, L, of rectangles with maximum height H, where [is the asymptotic

bound.

Chapter 1 29

A number of authors have presented worst case evaluations of various
bin-packing heuristics (Garey, Graham and Ullman [1973]). Johnson's doctoral
thesis in 1973 has laid the theoretical groundwork for the worst-case analysis of the
class of heuristic algorithms known as any-fit. Summary of this work appears in
Johnson [1974]. A review of the literature for one-dimensional bin-packing
algorithms is beyond the scope of this thesis - however, the interested reader is
directed to reviews by Johnson, Demers, Ullman, Garey and Graham [1974], and
Garey and Johnson [1981]. Garey and Johnson also have in 1984 put together a
comprehensive paper incorporating both new and old results; as far as we are aware,
this is the most recent survey in the literature of approximation algorithms for bin

packing both in one and two-dimensions.

Baker, Coffman and Rivest [1980] consider a variety of strip packing
algorithms based on a "bottom up-left justified” (BL algorithm) placement policy
using a variety of orderings. The list of rectangles is packed such that each is placed
in turn as low as possible in the "bin" and then left-justified. They show that the
performance of such a placement procedure can be arbitrarily bad, but by ordering
pieces by decreasing width an absolute bound of 3.0 OPT (L) applies. They also
illustrate that with some problems, regardless of ordering applied, an optimal
solution cannot be obtained using a BL placement policy. Brown [1980] provides
‘an example where a BL packing requires at least 1.25 OPT (L), regardless of

ordering.

The search for algorithms with better asymptotic worst case ratios was taken
up by Coffman, Garey, Johnson and Tarjan [1980]. They propose three
level-oriented algorithms in which the rectangles to be packed are preordered by
non-increasing height and then placed at a series of "levels". The first level is

simply the bottom of the bin. Subsequent levels are defined by a line drawn

Chapter 1 | 30

horizontally through the top of the highest rectangle packed in the previous level.
The pieces are placed left-justified at a level which is determined by one of two basic
placement rules. The NFDH rule (next-fit decreasing height) uses the highest
existing level and the FFDH (first-fit decreasing height), the lowest suitable level.
Figure 1.5 illustrates an example of the application of these two rules to a set of 6
boxes labelled A-F. The analysis by Coffman et al shows that the asymptotic
performance bounds of NFDH and FFDH are 2.0 and 1.7, respectively.

1
ClE] _____ F level 3 E e 1
D A level 2 | D A
F B F| B
level 1 C
NFDH FFDH

Figure 1.5 An example of a NFDH and a FFDH packing.

We should note that level-by level packings have a special significance
stemming from their relation to guillotine cuts (Gilmore and Gomory [1965]). The
3-stage guillotine cuts corresponding to level-by-level packings such as Figure 1.5
involve first a set of horizontal guillotine cuts, then a set of vertical cuts and finally

another set of horizontal "trim" cuts.

1.6 Thesis Qutline

The remainder of this thesis is presented in seven chapters. In Chapter 2 the
two-dimensional unconstrained guillotine cutting problem is solved using the

method of dynamic programming. The solution method is illustrated by an example.

Chapter 1 31

A tree-search algorithm for the two-dimensional constrained guillotine
cutting problem is described in Chapter 3. A tight bound, derived from the
state-space relaxation of a dynamic programming recursion given for the original
problem, is used to limit the search. The bound .is improved by state-space ascent
methods. The computational performance of the algorithm is presented for a number

of randomly generated problems with constraints of varying " tightness".

Chapter 4 presents an interactive system with graphical input-output for
generating rectangular Jayouts manually for the problem of Chapter 3. The structure
and the main features of an experimental version of the system are described and the

results of manual experiments are discussed.

In Chapter 5 we discussed the cutting problems in which the optimal cutting
patterns are not restricted to those with the guillotine property. Two mixed integer
programming formulations of the problem are presented and a possible method of
solution based on the use of cutting planes is investigated. Five 0-1 integer
programming formulations of the same problem are also given and upper bounds are
derived from the linear programming relaxations. The five bounds developed are
evaluated and compared on a number of small randomly generated non-guillotine

cutting problems.

In Chapter 6 the Lagrangean relaxation technique is used for a 0-1 integer
programming formulation of the problem of Chapter 5. The resulting upper bound
is improved by a subgradient optimisation method. Problem reduction tests derived
from both the original problem and the Lagrangean relaxation are given. The final

bound produced is evaluated on a number of test problems.

A tree-search procedure for solving the non-guillotine problem is the subject

Chapter 1 32

of Chapter 7. The process of generating a finite number of orthogonal cutting
patterns of rectangles is described. The algorithm incorporates into the tree-search
the bound produced for the problem in Chapter 6. Computational results for a

number of randomly generated problems are given.

Finally, Chapter 8 provides a summary of the main findings and

achievements of this thesis.

1.7 Conclusions

The cutting stock problem is a large scale combinatorial problem
encountered in a variety of industrial applications. In this chapter, the various types
of this problem and solution methods have been presented, with emphasis being
placed on the area of two-dimensional cutting. The combinatorial nature of the
problems has often led to heuristic methods being adopted. However, it is clear that
there is no generally applicable heuristic algorithm which can be applied to cutting

problems in two-dimensions.

We have seen that much of the early work in this area is based on guillotine
cuts. Christofides and Whitlock have solved optimally the constrained guillotine
cutting problem. The class of general cutting problems has been considered by
relatively few authors in the literature and as far as we are aware, the only exact
solution procedure for this problem that exists in the literature is due to Beasley. In
the case of these two exact methods, the computational experience quoted by their

authors suggests that their application is limited to problems of moderate size.

Chapter 1 33

Although the theory of computational complexity might well mean that we
will never be able to guarantee obtaining an optimal solution to the CSP without
resorting to an exponentially increasing algorithm (such as a tree-search procedure),

this does not mean that such solutions cannot be obtained relatively quickly for many

large sized problems.

Chapter 2 34

CHAPTER 2

TWO - DIMENSIONAL UNCONSTRAINED GUILLOTINE
CUTTING (UGC)

2.1 Introduction

The general two - dimensional cutting problem is the problem of cutting a
number of smaller rectangular pieces, each of a given size and value, from a large
rectangular stock plate, so as to maximise the value of the pieces cut. By taking the
value of a piece to be proportional to its area, the value maximisation problem

becomes one of minimising the amount of waste produced by the cutting.

In a great many industrial situations, a cut in a piece of material must begin
on one side of the material and traverse the material in a straight line to the other
side. This is the kind of cut made by many types of machinery. One example is the
guillotine cutter used in cutting paper sheets and for this reason this type of cut is

referred to as a " guillotine " cut. In this special case of problems, the cutting is

Chapter 2 35

performed as follows: one first performs a guillotine cut on the stock plate and then
proceeds in the same way with the two resulting rectangles. Restricting the
permissible cuts to be of " guillotine " type, severely limits the permissible cutting
patterns, a pattern being defined as a cutting arrangement of a combination of pieces
within the stock - plate. For example, the pattern of Fig. 2.1 cannot be produced by
guillotine cuts. Fig. 2.2 shows a possible cutting pattern using guillotine cuts
where the cuts are numbered in the order in whfch they could be made, although

other sequences are obviously also possible.

A further restriction common in the literature is to limit the cutting that
occurs to a number of " stages ". Regarding any two adjacent edges of the rectangle
to be cutas x and y axes, as shown in Fig. 2.3, then the cuts are restricted to be
made parallel to the x and y axes alternatingly. Fig. 2.3 illustrates the same
cutting pattern presented in Fig. 2.2 generated in four stages, with the number by
the cuts indicating the stage at which the cut is made. Thus, the cut direction at the
first stage is parallel to the y - axis; at the second stage parallel to the x - axis; at

the third stage parallel to the y - axis and at the fourth stage parallel to the x - axis.

Whilst the general two - dimensional cutting problem has been considered
by relatively few authors in the literature, the restricted versions of the problem
given above - guillotine and stage cutting - have been considered by la number of
authors. This is in part due to the important role these problems play in practical
applications as well as the development of such computer oriented optimization
techniques as linear and dynamic programming. Gilmore and Gomory [1961, 1963,
1965, 1966] made effective use of both techniques to handle the one -, two - and
three - dimensional rectangular cutting-stock problems when the cutting of the pieces
was restricted to two - or three - stage guillotine cuts. The results they obtained

when their algorithms were tested on a number of representative cutting problems

Chapter 2

ANANNNNANNY

(Ll Ll Ll il

AUTT.S

Figure 2.1 A cutting pattern infeasible with
guillotine cuts.

3

Figure 2.2 A guillotine cutting pattern.

Figure 2.3 Four — Stage cutting.

36

Chapter 2 37

were surprisingly good. It is shown that when cutting is done in stages, a
generalised knapsack problem can be efficiently solved as a subproblem. Hahn
[1968] considered three - stage problems where any cuts at the third stage produced
pieces of identical dimensions and there were defects in the rectangle being cut. She
used an extension of the approach for two - stage cutting that Gilmore and Gomory
[1965] developed. Herz [1972] was also able to obtain multistage guillotine cut
solutions using a recursive search approach which was shown to be an improvement
over the exhaustive iterative type approach. The algorithm, however, is not an

efficient procedure for solving problems of even medium size.

We note here that virtually all the approaches in the literature for two
dimensional guillotine cutting involve the use of dynamic programming (see also
Haims and Freeman [1970], Beasley [1985]). With most of these approaches it
was assumed that there was no bound on the number of occurrences of any
particular type of piece in the solution. Christofides and Whitlock [1977],
however, presented a tree - search algorithm for guillotine cutting problems in which
there is a constraint on the maximum number of each type of piece that is to be
produced. The results reported in this paper indicate that the algorithm is an

effective procedure for solving cutting problems of medium size.

In this chapter, we develop a new dynamic programming recursion for
unconstrained two - dimensional guillotine cutting. The idea of normal cutting
patterns, as defined by Christofides and Whitlock [1977], is used to improve

computationally the basic recursion.

The use of dynamic programming is illustrated by an example presented in

the last section of this chapter.

Chapter 2 38

2.2 Definition of the Unconstrained Problem

The unconstrained two - dimensional guillotine cutting problem Pj can be
defined as follows: Let a large rectangle Ag= (0o, Bg) (i.e. oflength ay and
width BO) be given, together with a set R of m smaller rectangular pieces, R =
{(a1,B1) (a9, B2), «., (0, By)}, each piece in R having associated
with it a value v;. The problem is to construct a guillotine cutting pattern for Ag
having the maximum value of pieces cut from A. Note here that there are no
constraints on the number of pieces produced and that any piece cut from A thatis

not of size (oL, Bj) forsome j (j=1,..,m) is taken to be of value zero.

In order to distinguish between the given pieces in set R and the rectangles
produced by the cuts on A at any stage during the cutting process, we will refer to

the former as " pieces " and the latter as " rectangles ".
We will make the following assumptions for problem Py:

(i) All dimensions (o, B;) for i=0, 1, ..., m are integers and the cuts on the
rectangles are to be made in integer steps along the x or y axes. Let L=(1, 2, ..,
ag-1} and W= {1,2,..,Bp-1} represent the sets of all possible lengths and

widths, respectively, for guillotine cuts on Ag

(ii) The orientation of the pieces is considered to be fixed, i.e. a piece of length |
and width w is not the same as a piece of length w and width L (l#s). Problem
Py, as described above, will be referred to as the Unconstrained Guillotine Cutting

(UGC) problem.

Chapter 2 39

2.3 A Dynamic Programming (DP) Formulation of the UGC Problem

For several decades, dynamic programming has been proposed as an
effective method of solving combinatorial problems of a sequential nature. It is
considered to be computationally advantageous to use dynamic programming since

the concept can provide convergence to an optimum solution without total

enumeration.

In the development of dynamic programming recursion formulae, the
problem is decomposed into stages which are evaluated independently . In the case
of the UGC problem, a stage in the dynamic programming recursion corresponds to
a stage in the process of generating a cutting pattern. In this problem, the cuts
alternate at each stage between being parallel to the y-axis and being parallel to the
x-axis. Hence, we can associate with each stage a cut direction. Note, however,

that we do not require a cut to be made at each stage.

To formulate the problem we define Fj (x,y) as the maximum value
obtained at the k - stage cut of a rectangle of size (X, y) when the first - stage cut
direction is parallel to the y - axis and Gy (x,y) as the maximum value of a k -
stage cut of a rectangle of size (x,y) when the first - stage cut direction is parallel
to the x - axis. Thus, the size (x,y) of arectangle to be cut at the kth stage of the
cutting process, will correspond to a state in our DP formulation. A value of zero

for k, corresponds to the fitting of one piece into rectangle (x, y) and hence

Fo(x,y)=mgx (vil ain,BiSy, i=1,..,,m)

1
(1)

Chapter 2 40

Note that Fg(x,y)= G(x,y) for any rectangle of size (x,y) - See Fig.
24 (a).

For an optimal k - stage cut of a rectangle (x,y), where the first - stage

cut direction is parallel to the y - axis, there are only two alternatives:

(a) There is at least one first - stage cut parallel to the y - axis at some x'€ L - as

inFig. 2.4 (b).

(b)) There are no first - stage cuts parallel to the y - axis but at least one second -
stage parallel to the x - axis (at some y'e W) - asinFig. 2.4 (c). In thiscase
we have a cutting pattern where the first - stage cut direction is parallel to the x -

axis and there are (k- 1) stages to the cutting pattern.

Hence, the DP recursion of the UGC problem can be stated as follows:

F (x,y)=max[G,_,(x,y) max x{ F(x,y)+G ;(xx,y)}]
x'e L (2)

A similar argument to the one given above can be used to show that

G (x,y)=max[F_,(x,y); ;T'lixy{ G (xy)+F _;(xyvy)}]
yeWwW (3)

Equations (2) and (3) are the basic dynamic programming recursionsfor the
optimal k - stage cutting of a rectangle and they apply for any k 21 and any
rectangle (x,y). Equation (1) provides initial conditions for the recursion.

F, (g, Bp) or G (o, Bg) gives us the value of an optimal n - stage cutting

Chapter 2 41

Y
(a)
Piece
0 X
v
Cut (b)
0 X' X
Y
(c)
Cut
y'
0 X

Figure 2.4 (a) Trim omne piece (k = 0).
(b) First - stage cut parallel to the y - axis.
(¢) No first - stage cut, but a second - stage cut

parallel to the x - axis.

Chapter 2 42

pattern for A, depending upon the first - stage cut direction specified. If, however,
n is not known, the number of stages we perform in the cutting process is equal to
that value of k (i.e. n=k) for which Fy (o, Bg)=Fy 4 1 (o, By and
Gy (e, By) =Gy 4 1 (g, B). In this case the optimal value of the n - stage
pattern is given by max [F, (og,Bg), Gy (o, Bg) 1 if the first - stage cut
direction is unspecified. It should be noted that when F; (o, BO) and G, (o,
BO) have been computed, so have Fy (x,y) and Gy (x,y) forall k,0<k<n,
all xeL and yeW.

2.3.1 Normal Patterns

Normal patterns were used by Hertz [1972] (who called them canonical
dissections) and Christofides and Whitlock [1977]. According to their definition
of normal patterns, any cutting pattern can be normalised such that any piece cut has
its left - hand edge and its bottom edge adjacent to other cut pieces or to the edges of
Aq as shown in Fig. 2.5. For any pattern there is a normal equivalent. A
consequence of this is that the set L of possible lengths for any cuts parallel to the

y - axis given in section 2. 2 can be restricted to the following:

m
L=(xlx=), 6;0;; 1SxS0y,0,20andinteger Vi= 1, .., m)
&
(4)

Equation (4) essentially says that if x € L there exists a set of pieces whose

lengths add upto x. The equivalent definition for W is:

7//////

////////

Chapter 2 44

m
W={yl y=2tiBi,ISySBO,tiZOandintcgerVi= 1,..,m]}
i=1 (5)

Note that normality is a property of a cutting pattern that is relative to the set of
piecesin R available for cutting from Aq. Sets L and W are easily calculated

(Christofides and Whitlock [1977]).

Normal patterns as described above can be used to improve computationally
the basic dynamic programming recursion given by equations (2) and (3) inthe
following way:

Let | (x) represent the length nearest to x in the normalised set of lengths L
[L(x) € x] forany x€L, | (x) being equal to zero if no such length exists.
Similarly, we define w (y) as the width nearest to y in the normalised set of
widths W{[w(y) £ y] forany y eW,w (y) being equal to zero if no such
width exists. Note that | (o) =0g and w (Bg) = Bg may not be strictly
necessary since, for example, there may not exist a set of piece lengths which add to

o (and similarly for B). Thus, we define:

l(x) =max[0, x' I x'<x,x'eL] (6) and

w(y)=max[0,y I y'<y, yeW] (7)
We claim that we may calculate Fy (1 (x), w(y)) instead of Fy (x,y)

since the optimal k - stage guillotine cutting pattern for (x, y) can be normalised

intoa k - stage pattern for (1 (x), w (y)) so that

Fe (1 (x), w(y)) = Fe(x,y) (8)

Chapter 2 45

A similar argument holds for Gy(x,y), namely Gp(} (x), w(y)) =Gy (x,y).
(9)

Equation (2) can now be modified to be

F (% y)=max[G {(xy) I)I(lai x{ F(x,y)+Gy (1 (x-x)y) }]

X €& L
Vk=>1,xeLandyeW (10)

In a similar fashion, we can modify the recursion for Gy (x,y) [equation (3)]

to be:

Gk(X, y) = max [Fk-l(X, ¥) ;{la(xy{ Gk(X,y)+Fk-1(x, w(yy'))}1]
yeWw
Vk21l,xeLandyeW (11)

Equations (10) and (11) are used in calculating F, (oq, Bg) and Gy, (o,
[30). Itis now clear that, it is not necessary to calculate Fy (x,y) and Gy (x,Y)
for all values of x and y, but it is sufficient to restrict attentionto x € L and y e W.
This is so since any optimal k - stage cutting pattern has its normal equivalent.
Thus, the modified recursion given above is computationally more effective than the
recursion given previously [equations (2) and (3)]. To clarify the application
-of equations (10)and (11) we give in the next section a detailed procedure for

solving the UGC problem.

2.3.2 The Dynamic Programming Procedure

Although the application of the above recursion [equations (8) and (9)]

produces the optimal value, there still remains the question of finding the nature of

Chapter 2 46

the cutting pattern associated with it . To do this we require four memory grids:
Fi (%,¥),G(X,y), P (x,y) and ¥y (X,y). The grids @ (x,y) and
Wy (x,y) are used to record how the values Fy (x,y) and Gy (x,y) are
achieved. When the computation is completed i.e. when F (x,y)=F, (o, Bg)
and Gy (x,y) =G, (0q,Bg), Py (x,y) and ¥y (X, y), being used for
backtracking, are defined as follows: If the value Fj (x,y) has been achieved by
cutting arectangle (x,y) at some normalised length x'e L giving two rectangles
of sizes (x,y) and (x-x,y), ®(x,y)=x" if nosuch cut is made,

Dy (x,y)= 0. Formally, we define:

(Dk(x,y)=x‘ if x'<x,x'8L,Fk(x,y)=Fk(x',y)+Gk_1(l(x-x'),y)

=0 otherwise
and, similarly:

Y (x,y)=y"if y'<y, VeW, G (x,y)=G (x, y)+F .1 (x,w (y-¥))

=(0 otherwise.

To help in describing the procedure, let x1, Xy, ..., Xp be the elements of L in

order of increasing lengths and yy,ys, ..., ¥q be the elements of W in order of

increasing widths.

Initialisation.

1. 1. Set k=0.

1.2. Set Fo(xs,yt)=G0(xS,yt)=m?x(\)i | ains,BiSyt, i=1,..,m)
forall s=1,2,.,p and t=1,2,..4q.

1.3. Set k=1

1.4. Set s=1, t=1.

Chapter 2 47

First - stage cut parallel to the y - axis.

2.1. Sets' =1

2.2. If s'<s and Py (X5 ;)< Fy (xg,y;) + Gp.q (} (xg- Xg')» Yt)

set Fi (X5, ¥p) =Fy (xg,y¢) + Gy 1 (1 (xg-%¢), y;) and Dy (Xgr yt)
=xg and goto 2.3. If s' < s thengoto 2.3; else goto 2.4

2.3. Set s'=s'+1 andgoto 2.2.

2.4, If G 1 (x5 y) < Fe(xgy.)goto 2.5; otherwise set Fy (Xg)=
Gi.1 (X5 ¥t)» P (X5, ¥;) =0 and continue.

2.5. 1If s<p thenset s=s+1 and goto 2. 1; otherwise, if t<q,
set t=t+1, s=1 andgoto 2.1, else goto 3.1.

3.1, Set s=1, t=1

3.2, Set t'=1.

3.3. If <t and Gy (Xg ¥y) <Gy (Xg, yp) + Foq (x5, W (¥ - ¥t)
set Gy (xg ¥) =Gy (Xg, ¥) + Fe_1 (Xg, W (y; - yp) and ¥ (X,
V¢)=yy andgoto 3.4. If ' < t thengoto 3.4; elsegoto 3.5.

3.4, Set t=t'+1 and goto 3. 3.

3.5, If Fi1 (Xg ¥) < G (%g, ;) goto 3.6; otherwise, set Gy (Xg, ¥y)
=Fp.1 (X5 ¥t)» Wi (xgye) = 0 andcontinue.

3.6. If t<q thenset t=t+1 and goto 3.2.; otherwise, if s <p,
set s=s+1, t=1 and goto 3.2, elsegoto 4. 1.

4. 1. If Fi (Xg,¥t) =Fp1 (X5 ¥¢) and Gy (xg, ¥y) =Gy.1 (Xg ¥y) then
set n=k-1, optimal value = max (Fj (x, yt) » Gp (Xg Yt)) and

stop; otherwise, set k=k+1 andtoto 1.4.

At the end of the above procedure max (Fj (g, By), Gy (0q,Bg)) is the

value for the optimal n - stage guillotine cutting of (o, By). If this value is given

Chapter 2 48

by F, (00, Bg) then we have also calculated Fj (xgy;) forall s=1,2,..,p
and t=1,2,..,q being the value for the optimal guillotine cutting of a rectangle
of size (xg, q;). Note here that from equation (8) we have obtained Fj (x,y)
for all rectangles of size (x,y) where 0<x<ag and 0<y<]30. In this case,
@) (x,y) can be used to determine how F, (x,y)is achieved for any x and y.
Similarly, ¥} (X, y) can be used to determine how G (x,y)is achieved for any
x and y. Backtracking to find the structure of an optimal k - stage pattern (i. e.
the guillotine cuts that are to be made) for a rectangle (x,y) can be carried out by
determining a special tree - structure as illustrated in Fig. 2.7. This is a binary tree
in which each node has either no other nodes below it in the tree (a terminal node)
or has a left node or exactly two nodes immediately below it. A node labelled Fy
(%, y) with nodes below it labelled Fy (xj,y)and Gy_j (x-X1, y) means that
the rectangle (x,y) should be divided by a k-stage cut into two rectangles (X1, y)
and (x-xp,y). Similarly, if a node labelled Gy (x, y) has nodes labelled Gy
(x,y1) and Fy_1 (X,y-yp) immediately below it then the rectangle (x,y)
should be divided into two rectangles (X,y;) and (x,y-yj) at the kth stage of
the pattern. A node Gy (x,y) or F (x,y) with only one node labelled Fy_{(x,
y)or Gk-l (x,y), respectively, below it means that no k - stage cuts are made on
rectangle (x,y). Finally, a node labelled Fy (x,y) or Gy (x,y) is a terminal
node if the rectangle (x, y) is not cut any further but a piece r; in R can be

]
allocated toitsuch that j=max { v; | o <x, f; <y, i=1.,m}.
{

Thus, the 3-stage pattern for a rectangle (X, y) shown in Fig. 2.6, can be
represented by the binary tree preseénted in Fig. 2.7. A convenient data structure
representing a binary tree is to name the nodes 1, 2, ..., N and to assign an arrow
of records to them, each consisting of two fields corresponding to the left and right
node deriving from node i. A value of 0 in either field indicates the absence of a

left or right descendent node respectively. The binary tree of Fig. 2.7 can be

Chapter 2 49

y A/ 1/,

e |

0 * X

Figure 2.6 An optimal 3 - stage cutting pattern of rectangle

(x, v).

G-3 (g vy B (X% =% y=vy)

Figure 2.7 Tree - representation of pattern shown in Fig. 2.6.

Chapter 2

left node right node
1 2 3
2 4 0
3 5 6
4 0 0
5 7 0
6 8 9
7 0 0
8 10 0
9 11 0
10 0 0
11 0

Table 2.1 Representation of the binary tree shown in Figure 2.7

NR XD YD CR AR
1 X y X, N
2 X, y 0 r,
4 (x—xl) v 0 r,
7 (x-x]-xz) (y-yl) T,

Table 2.2 Representation of pattern shown in Figure 2,6

Chapter 2 51

represented as shown in Table 2.1.

The structure described below can represent a list of rectangles produced by
a cutting pattern. Consider each rectangle r; with its lower left corner referred to by
the coordinates (0, 0). Using this referencing method, each rectangle rj is
described with the following entries:
(1) XD; represents the dimension of rectangle r; parallel to the x - axis.
(2) YD; represents the dimension of rectangle r; parallel to the y - axis.
(3) CR; is the coordinate of the cut which divides rectangle r; into two further
rectangles: positive, if the cut is perpendicular to the x - axis (x - cut) , negative, if
perpendicular to the y - axis (y - cut) and zero if the rectangle is not cut.
(4) AR; is the label of the piece r; in R of maximum value that can be allocated

J
to rectangle r; when this is not cut any further.

The pattern shown in Fig. 2.6 would be represented by the list of
rectangles shown in Table 2.2, using NR to head the column representing the
number of the rectangle. The list begins with the large rectangle (x, y) to be cut.
In this list, it can be seen that every rectangle is either (i) cut into two smaller
rectangles or (ii) filled by one of the initial pieces given in R (a piece may not fit
exactly in a cut rectangle since waste is not cut away by the Dynamic Programming

procedure).

2.4 Example for UGC Problem

Consider the problem of cutting a stock plate Ag of size (15, 10)into a

number of smaller rectangles in set R with sizes and values as given below:

Chapter 2 | 52

Piecei size i value i
1 (8,4) 66
2 (3,7) 35
3 (8,2) 24
4 (3,4) 17
5 (3,3) 11
6 (3,2) 8
7 (2,1) 2

We will use the Dynamic Programming Procedure described in section

2.3.2 to compute an optimal cutting pattern for this problem.

Firstly, we compute the normalised sets of lengths and widths to be
L=(23456,738,9,10,11,12,13,14,15) and W=(1,2,3,4,5,6,7,
8,9,10) respectively. The initial values for F(x,y)= G (x,y) are given
in Table 2. 3, forall x€¢ L and y € W. Any entry in this table, for instance,

F o (6,7) is computed as follows:

Fg (6,7) = max (09, Vg, Vs, Vg, V7) = max (35, 17, 11, 8,2) =35

We will use the value of cutting stage k to index the iterations of recursion (10)
and (11) i. e. we will call iteration 1 the iteration which computes all F{(x,y)
and Gy (x,y), iteration 2 the iteration which computes Fa(x,y)and Gy(xy).

e.t.cC.

Iteration 1 (k=1)

The values of Fq (x,y) and Gy (x, y) are given in Tables 2.4a and 2.4c

Chapter 2

2 3 4 5 6 7 8 9101112131415

<

22 222 222222222
2 8 8 8 8 8246246 24 2626 262424
2 11 11 F1 11 11 24 24 24 24 24 24 24 24
217 17 17 17 17 66 66 66 66 66 66 66 66
217 17 17 17 17 66 66 66 66 66 66 66 66
2 17 17 17 17 17 66 66 66 66 66 66 66 66
2 35 35 35 35 35 66 66 66 66 66 66 66 66
2 35 35 35 35 35 66 66 66 66 66 66 66 66
2 35 35 35 35 35 66 66 66 66 66 66 66 66
2 35 35 35 35 35 66 66 66 66 66 66 66 66

U @ NN W N -

)

Table 2.3 Initial values of the DP recursion

for the UGC problem of example 2.4.

Chapter 2 54

respectively, forall x e L and y € W. The length x' at which a cut was made on a
rectangle (x,y) to produce F 1 (x,y) and the width y' at which a cut was made
on arectangle (x,y) toproduce G (X,y) arealso presented in Tables 2.4b
and 2 4d, respectively. |

Iteration2 (k=2)

Values Fy(x,y), P2(x,¥), Gy (x,y) and ¥, (x,y) are presented in
Tables 2.5a - 2. 5d, respectively.

Iteration 3(k=3)

Values F3(x,y), ®3(x,y), G3(x,y) and ¥3 (x, y) are presented in
Tables 2.6a- 2.6d, respectively.

Iteration4 (k=4)

Values Fg(x,y), ®4(x,¥), Gg(x,y) and ¥4 (x,y) are presented in
Tables 2.7a - 2.7d, respectively.

Iteration 5(k=35)

Values F5(x,y), ®5(x,y), G5(x,y) and W5 (x,y) are presented in
Tables 2.8a- 2.8d, respectively.

It can be seen from Tables 2.7a, 2.7c, 2.8a and 2.8c, that F5(15,10) =
F4(15,10) and Gg(15,10) =Gy (15, 10) . Thus, no more iterations are
performed and the optimal value is given by F4 (15, 10) =Gy (15, 10) =249,
By backtracking through the given tables ,we obtain the binary tree corresponding to
the optimal cutting pattern of (15, 10) associated withthe above value of 249 as
shown in Fig. 2.8. The nodes in this tree are generated in the sequence indicated by
the numbers written within the circles. The nature of the optimal pattern is
determined by traversing the above tree in a " preordered'way. The structure of the

pattern is given in Table 2.9 and a diagrammatic presentation of it in Fig. 2.9.

Chapter 2 55

v 12 3 4 s 6 7 8 9 10 11 12 13 14 15 , 12 3 4 5 6 7 8 9101112131415
tl2 2 4 4 6 6 8 8 10 10 12 12 14 14) o 2 2 2 4 4 6 6 8 810101212
212 & 8 10 16 16 24 26 26 32 32 36 40 40 2 /1003 23306 23356 6
302 11 11 13 22 22 26 33 33 35 44 44 46 S5 3 10 0 3 2 335 66 3 9 9 612
4 |2 17 17 19 3 34 66 66 68 83 83 85 100 100 4 0003 233081233566
s |2 17 17 19 36 34 66 66 68 83 83 85 100 100 s o 0 3233082333566
6 |2 17 17 19 36 34 66 66 68 83 83 85100100{| 6 {0 0 3 2 3 3 0 8 2 3 3 5 6 &
7 |2 35 35 37 70 70 72 105 105 107 140 140 142 175{) 7 {0 0 3 2 3 3 5 6 6 8 9 9 1112
8 |2 35 35 37 70 70 72105105107 140 140 142 175|} 8 [0 0 3 2 3 3 5 6 6 8 9 911 12
9 |2 35 35 37 70 70 .72 105105 107 140 140 162 175| | 9 [0 0 3 2 3 3 5 € 6 8 9 91112
10 |2 35 35 37 70 70 72 105 105 107 140 140 142 175 L0 |0 0 3 2 3 3 5 6 6 8 91011 12

Table 2.4a F (x,y) Table 2.%4b & (x,y)

T2 3 4 5 6 7 8 9 10 11 1z 13 16 15]) 123 64 5 6 7 8 9101112131415
112 2 2 2 2 2 2 2 2 2 2 2 2 2 t {000 0000G0GO0O0COOGOC
2 |4 8 8 R 8 B8 26 26 26 26 26 2 2 2 2 |1 0000000O0OGOQOQOOC O
3 [6 11 11 11 11 11 26 26 26 26 26 26 26 26 3 12000001 1111111
4 |8 17 17 17 17 17 66 66 66 66 66 66 66 66 4 |3 0000000000000
5 [10 19 19 19 19 19 68 68 68 68 68 68 68 68 s |4 1 11t 1
6 [12 25 25 25 25 25 90 90 90 90 90 90 90 90 6 |5 2 2222222222122
7 |16 35 35 35 35 35 92 92 92 92 92 92 92 92 7 |6 0000033333333
8 {16 37 37 37 37 37 132 132 132 132 132 132 132 132 g8 |7 1 1 1 11 4 4 4 4 4 6 & &
9 |18 43 43 43 43 43 136 134 134 134 134 134 134 134 9 |8 2 222 25555655655
10 [20 46 46 46 46 46 156 156 156 156 156 156 156 156] (10 [9 3 3 3 3 6 6 6 6 6 6 6 6

Table 2.4c G](x,y) Table 2.4d ?](x,y)

*l2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 23 4 5 6 7 8 9101112131415
1 2 2 4 &4 6 6 8 8 10 10 12 12 14 14 10 22 24 4668 810101212
2 |4 8 8 12 16 16 26 24 28 32 32 36 40 40 2002 233062333566
3 6 11 12 17 22 23 28 33 36 39 44 45 50 55 3 /00 223456 78 9101112
& |8 17 17 25 3 34 66 66 74 83 83 91 100 100 4 o0 323308233566
s (10 19 20 29 38 39 68 68 78 87 88 97 106 107 5002 2340382134567
6 (12 25 25 37 50 50 90 90102 115115127 140 140(| 6 {0 0 3 2 3 3 0 8 2 3 3 5 6 6
7 |14 35 35 49 70 70 92 105 106 127 140 141 162 175 7 (003 23306 23295 612
8 (16 37 37 53 74 74 132 132 148 169 169 185 206 206{| 8 |0 0 3 2 3 3 0 8 2 3 3 5 6 6
9 |18 43 43 61 86 86 134 134 152 177 177 195220 220]) 9 |0 0 3 2 3 3 0 8 2 3 3 5 6 6
10 |20 46 46 66 92 92 156 156 176 202 202 222 248 248| |10 J0 0 3 2 3 3 0 8 2 3 3 5 6 6

Table 2.5a F7(x,y) Table 2.5b bz(x,y)

y‘ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 y‘z 34 5 6 7 8 9101112131415
1l2 2 4 4 6 6 8 8 10 10 12 12 14 14 1/o 0o 600000000 0G0GO0OQO
214 8 8 10 16 16 26 26 26 32 32 36 40 40 2|1 61 00 00000000O0TGO
316 11 12 14 22 22 32 33 36 42 44 46 54 55 3201t 111 101111110
4|8 17 17 20 34 3% 66 66 68 83 83 85 100 100 4300200000000 GO0aQ0
5 {10 19 21 26 40 40 74 76 78 93 95 97 114 114 546 1 1 3 U 1 1t 111111
6 12 25 25 30 sn 50 90 90 94 115 115 119 140 140 61s 2 2 4 2 2 2 2 2 2 2 2 2 2
7 |14 35 35 37 70 70 98 105 105 125 140 140 156 175 716 0000030030030
8 {16 37 39 41 76 76 132 132 136 166 166 170 200 200 8 17 1 1 1 1 1 4 & 4 & & & & &
9 [18 43 43 47 86 86 140 140 146 176 178 182 214 215 9 [8 2 2 2 2 2 55 5 5 5 5 5 2
10 120 46 47 51 92 92 156 156 162 198 198 204 240 240 10 [2 3 3 3 3 3 6 6 6 6 6 6 6 6

Table 2.5c Gz(x.y) Table 2.5d Wz(x,v)

Chapter 2

23 4 5 6 7 8 910 11 12 13 16 15 Nj2 34 567 8 9101112131415
2 2 4 4 6 6 8 8 10 10 12 12 14 16|) 10 2 2 2 2 2 2 2 2 2 2 2 2 2
2|4 8 8 12 16 16 26 26 28 32 32 36 40 40| 2f0 0 2 2 3 3 03 2 3 3 2 3 3
306 11 12 17 22 23 32 33 38 43 4 49 56 SS|| 300 0 2 2 3 3 0 3 2 3 3 5 6 3
4] 8 17 17 25 34 34 66 66 74 83 83 91100100][4|0 0 3 2 3 3 08 2 3 3 2 3 3
s|10 19 21 29 40 40 76 74 8 93 95103 116 114 5[0 0 0 2 0 3 0 8 2 3 4 2 6 3
6112 25 25 37 S50 SO 90 90102 115115127 140 140|| 6 |0 0 3 2 3 3 0 8 2 3 3 2 3 3
714 35 35 49 70 70 98 105 112 133 140 147 168 175 710 0 3 2 3 3 0 3 2 3 3 5 6 3
8|16 37 39 53 76 76 132132148 169 171 185208 208 || 8 [0 0 0 2 0 3 0 8 2 3 4 5 & 6
9|18 43 43 &1 86 86 140 140 158 183 183 201 226 226 || 9 [0 0 3 2 3 3 0 8 2 3 3 5 6 6
10 |20 46 47 66 92 93 156 156 176 202 203 222 248 249 [|10 0 0 0 2 3 3 0 8 2 3 4 5 6 7
Table 2.6a F3(x,y) Table 2.6b d’_,)(x,y)
y"23455739m,.,2,3,4,5 yx236567891011l213 15
112 2 4 4 6 6 8. 8 10 10 12 12 14 14| 1|0 0 0 000 0O OGO O OGOQO
2|4 8 8 12 16 16 26 24 28 32 32 36 40 40| 2|t 0 1 6 00 0 00 QOO0 OO
36 11 12 17 22 23 32 33 38 42 4 48 56 S5{| 3L o1 01 0 1 0O 11110
48 17 17 25 34 36 66 66 74 83 83 91100 100(| 4 /1 0 0 0 0 0 0 0 0 0 G O 0 O
5 10 19 21 29 40 40 74 74 84 93 95103 14 14| s o1 ot o1 1 1 1 1 1 1 11l
6 12 25 25 37 50 S0 90 90102 115 115127 140 140 || 6 |1 2 2 2 2 2 2 2 2 2 2 2 2 2
7 [14 35 35 49 70 70 98 105 112127 140 141 162175|] 7 /i 0 0 0 0 0 1 0 1 0 0 O 0 O
8 116 37 39 53 76 76 132 132 148 169 169 185206 206 || 8 1 1+ 1 1 1 1 4 & 4 0 0 0 0 O
9 [18 43 43 61 86 86 140 140 158 179 181 197220220 9 f1 2 2 2 2 2 T 1 1 1 1 1 1 1
10 (20 46 47 66 92 93 156 156 176 202 202 222 248 248 | 1o 1 3 1 3 1 3 2 2 2 0 0 O 0 O
Table 2.6c G,(x,y) : Table 2.6d ?3(x,y)
W[z 3 ¢ 5 6 7 8 90z 3 1 5IIKH2 3 45 6 7 8 9101012131615
Y |2 2 4 4 6 6 8 B 10 10 12 12 14 14|] 1 j0 2 2 2 2 2 2 2 2 2 2 2 2 2
2|4 8 8 12 16 16 24 26 28 32 32 36 40 4ofl 2 lo 0 2 2 3 2 03 23 2 2 3 2
3|6 11 12 17 22 23 32 33 38 43 44 49 S6 55|03 [0 0 2 2 3 2 0 3 2 3 2 3 6 3
4 |8 17 17 25 3% 36 66 66 74 83 83 91100100{} 4 0o 0 3 2 3 3 0 8 2 3 3 2 3 3
s 10 19 21 29 40 40 74 74 84 93 95103 114 114|] 5 [0 0 0 2 0 3 0 8 2 3 4 2 6 3
6 12 25 25 37 50 50 90 90 102 115 115127 140 140{| 6 o 0 3 2 3 3 0 8 2 3 3 2 3 3
7 14 35 35 49 70 70 98 105 112 133 140 147 168 175|{ 7 j0o 0 3 2 3 3 0 3 2 3 3 3 6 3
8 16 37 39 53 76 76132132 148 169 171 185208 208/| 8 [0 0 0 2 0 3 0 8 2 3 4 2 6 4
9 f18 43 43 61 86 86 140 140 158 183 183 201 226 226/| 9 |0 0 3 2 3 3 0 8 2 3 3 3 6 6
10 RO 46 47 66 92 93 156 156 176 202 203 222 248 249{[10 |0 0 0 2 3 3 0 8 2 3 4 2 3 &
Table 2.7a F4(x,y) Table 2.7b ¢4(x,y)
NJ2 3 4 s 6 7 8 910 11 1213 1 os Njz 3 e s 678 902131618
112 2 4 4 6 6 8 8 10 10 12 12 14 14|/ 1[0 0 0 0 0 0 0 0 0 0 0 0 0 0
204 8 8 12 16 16 26 26 28 32 32 36 40 40| | 2|1 0 1 0 0 0 0 0 0 0 O0 OO O
36“12172223323338434649545531010!0[0]0!010
418 17 17 25 3 36 66 66 74 83 83 91100100/ | 4 {1 0 0 0 0 0 0 0000 O 0O
5 {10 19 21 29 40 40 74 74 84 93 95 103 114 114 SHr o1ttt LT
6 l12 25 25 37 50 50 90 90102 115115127 140140} | 6 {1 2 1 2 2 2 2 2 2 2 2 2 2 2
7 {14 35 35 49 70 70 98 105 112133 140 147 168 175| | 7 j1 0 0 0 0 0 | 0 1 0 O 0 O O
8 {16 37 39 53 76 76 132 132 148 169 171 185208 208{ [8 {1 1 1 1 1 1 4 4 &4 0 0 0 0 O
9 118 43 43 61 86 86 140 140 158 183 183201 226 226/ | 9 |1 2 1 2 2 2 1 1 1 0 1 0 O O
10 [20 46 47 66 92 93 156 156 176 202 203 222 248 249) (10 [V 3 1 3 1 3 2 2202 0 20

Table 2.7c Ga(x,y) Table 2.7d ‘%‘4(x.y)

Chapter 2 57

v 2 3 4 5 6 7 8 9 10 t1 12 13 16 15 ’ *12 03 4 5 6 7 8 910 11 12 13 14 15
1 {2 2 4 &4 6 6 8 8 10 10 12 12 14 14 1 [0 2 2 2 2222222222
2 |4 8 8 12 16 16 26 26 28 32 32 36 40 40 2 o002 2320323 223.:2
3)6 11 12 17 22 23 32 33 38 43 44 49 54 S5 3 /o 0223203232232
4 |8 17 17 25 34 3% 66 66 74 83 83 91100100|| 4 |0 0 3 2 3 3 0 8 2 3 3 2 3 3
5 |10 19 21 29 40 40 74 74 84 93 95103 114 114 5 [0 00 2 0308 234263
6 |12 25 25 37 SO S50 90 90 102 115115127 140 140|! 6 [0 0 3 2 3 3 0 8 2 3 3 2 3 3
7 {164 35 35 49 70 70 98 105 112 133 140 147 168 175 7 [0 03 23303233233
8 |16 37 39 53 76 76 132 132 148 169 171 185 208 208 8 [0 0020308234263
9 |18 43 43 61 86 86 140 140 158 183 183 201 226 226 9 [0 03 23308 233233
10 120 46 47 66 92 93 156 156 176 202 203 222 248 249 | |10 [0 0 0 2 3 3 0 8 2 3 4 2 3 3
Téble 2.8a Fs(x,y) Table 2.8b ¢5(x,y)

XZJ 4 5 6 7 8 9 10 It 12 13 114 15 yx23456789lOlX12131415
)4

12 2 4 4 6 6 8 8 10 10 12 12 14 4]} 1/0 0 0 0 0 0 O O 0 0 00O
214 8 8 12 16 16 26 26 28 32 32 36 40 40f| 21 0 1 06 0 0 0 O 0000 O
306 11 12 17 22 23 32 33 38 43 44 49 54 S5{| 3|1 0 1 0 010101010
4|8 17 17 25 3 3% 66 66 76 83 83 91100 100{| 4|1 0 0 O 0 0000O0O0OO0O
S {10 19 21 29 40 40 74 74 84 93 95 103 114 114 St | A S TR S A TS A S |
6 {12 25 25 37 50 S0 90 90102 115115127 140 140)f 6 f1 2 1 2 2 2 2 2 2 2 2 2 2 2
7 |14 35 35 49 70 70 98 105 112 132140 147 168 175|) 7 |1 0 0 0 0O 0 1 0 1 0 0 O O O
8 [16 37 39 53 76 76132132 148169 171185208208 8/t 1 1 1 1 1 &4 4 4 0 0 0 0 O
9 {18 43 43 61 86 86 140 140 158 183 183 201 226 226|| 9 |t 2 1 2 2 2 1 1 1 0 1 0 0 O
10 {20 46 47 66 92 93 156 156 176 202 203 222 248 249 {10 |1 3 1 3 1 3 2 2 2 0 2 0 2 O

Table 2.8c Gs(x,y) Tahle 2.8d Ws(x,y)

F, 115.10) 0
F(6101(2) (3)Gyl.100
63(4,10) @ (11,10)

Gyt (5 (6)F(t9) (20)E13.10 (21)G, (8,10)

G4(3,10)

RUN (TY BBI@Y GUIGL) (@2 QUGB (26)G(86)
R0 (8) 6za(9) GiBds) qBA23) () @)Gsa {29)Fyie)

7 Iadey)

Fy(37)
612 (2 ® @er D @ @
(2.1 L EE) Ry (8.2
()
R12.1) Ry 3.2

Figure 2,8 Tree - representation 6f optimal pattern for rectangle

(15, 10) of example 2.4,

8¢

Chapter 2 _ 59

NR XD YD CR AR
1 15 10 4 0
2 4 10 -1 0
3 4 I 2 0
4 2 1 7
5 2 1 0 7
6 4 9 0
7 3 9 -2 0
8 3 2 6
9 3 7 2
10 11 10 0
11 3 10 -3 0
12 3 3 5
13 3 7 2
14 8 10 -6 0
15 8 6 -2 0
16 8 2 3
17 8 4 I
18 8 4 1

Table 2.9 Representation of the optimal cutting pattern

for example 2.4.

10

7 adeyD)

Z 0.4
% (8,4

Figure 2.9 Optimal cutting pattern for example 2.4.

15

Chapter 3 61

CHAPTER 3

AN ALGORITHM FOR THE TWO - DIMENSIONAL CONSTRAINED
GUILLOTINE CUTTING (CGC) PROBLEM

3.1 Introduction

Dynamic Programming can be used to solve the Two - Dimensional
Constrained Guillotine Cutting (CGC) Problem . This problem involves upper
bounds on the maximum number of pieces of each size to be cut from a large stock
rectangle. A dynamic programming procedure is then used, that introduces these

constraints into additional state variables in the state vector.

The modified DP recursion, even for small size problems, requires too
much storage and time. Thus, instead of obtaining an optimal solution to the
problem, an upper bound is computed by solving the DP recursion on a smaller set
of states. This corresponds to an idea recently developed and called " state - space

relaxation " (SSR) in Christofides et al [1981a] where it is used for the vehicle

Chapter 3 62

routing problem. State space relaxation is a generalisation of Lagrangean relaxation,
and, hence, can be embedded in a tree - search procedure in order to solve optimally

the original problem.

In this chapter, the application of SSR to the CGC problem is developed.
" State Space Ascent " (SSA) methods are given for minimizing the resulting upper
bound and are investigated computationally. A tree - search algorithm is then
describéd for the solution of the CGC probem that uses the bound derived from SSR
and improved by SSA methods. The computational performance of the algorithm
is illustrated by tests performed on a number of randomly generated problems with

constraints of varying " tightness ".
3.2 Definition of the Constrained Problem

The two - dimensional CGC problem can be defined as follows:

Let a large rectangle Ag = (0y, B() be given, together with a set R of m
smaller rectangular pieces R= {(a1, B1), (09, B2), e (0, By) }» €ach
piece in R having associated with it a value of v; and a maximum number Q; of

pieces of type i that can be cut from Ap Let
m
M= z;‘ Q
1=

be the total number of pieces in R. The problem is to construct a guillotine cutting

pattern for Ag with the highest possible total value

m
z= Z 5%
i=1

Chapter 3 63

so that §; pieces of type i in R can be cut from A where & < Q; forall

i=1,..,m
We will make the following assumptions for problem P:

(i) All dimensions (05, Bj) for i=0, 1, .., m are integers and the cuts on the
rectangles (we refer to those pieces in set R that are produced by the cuts on Aps

at any stage during the cutting process, as " rectangles ") are to be made in integer
steps along the x or y axes. Let L={1,2,..,09-1}and W={1,2,., 8
- 1} represent the sets of all possible lengths and widths, respectively, at which
guillotine cuts can be performed on Ay

(ii) The orientation of the pieces is considered to be fixed.

As it has been explained in chapter 2, the n-stage guillotine cutting
problem, where the number of stages involved in the cutting process is unknown,
can be regarded as a non-staged guillotine cutting problem, with the optimal value of
the former being expected to attain the optimal value of the latter as n increases.
Therefore, in order to solve the general CGC problem, we start by developing a
dynamic programming recursion for the k-stage constrained cutting problem which

is presented in the following section.

3.3 A Dynamic Programming (DP) Formulation of the CGC Problem

In this section, we will modify the basic DP recursion given in chapter 2
[equations (2) and (3)] for the k-stage unconstrained cutting problem in order to

include the constraints on the number of pieces of type i in R that can be cut from

Chapter 3 64

Ag (forall i=1,.,m).

Define a feasible set Sxy of rectangles produced by a guillotine cutting
pattern for a rectangle (x,y) where 1<x<agand 1<y <f, as a subset of the

setof all M piecesin R (. e. SxyC R) by
Sxy=1{i 1 §;<Qj; 05sx, Bj<y, i=1..,m} (1)

Thus, the size (x,y) of a rectangle to be cut and an associated feasible set Sxy
will correspond to a state vector in our DP formulation. For a state vector (x,y,
Sxy) we define Fy (x,y, Sxy) as the maximum value of a k-stage cut of a
rectangle of size (x, y) using any set S'C Sxy of rectangles when the first-stage
cut direction is parallel to the y-axis. Similarly, we define Gy (x,y, Sxy) as the
maximum value of a k-stage cut of a rectangle (x, y) using any set S'C Sxy of
rectangles when the first-stage cut direction is parallel to the x-axis. The recursive

function Fy (x,y, Sxy) can be stated as follows:

F (%5, 8,)=max[Gy ; (x,y,S,); ~ max {F (x\.y,§")
x'<x, x'eL, S'<Sxy

+ Gk_l(x-x',y,sxy-s')}] fork>21 (2)

This follows from the fact that the pattern yielding the value Fy (x,y,
S xy), k > 1, either does or does not perform a first-stage cut on a rectangle (X,y)

parallel to the y-axis at some x'€ L. If such a first-stage cut is performed, then

Fk(X, Y, Sxy)= max { Fk(x', y,S')+ Gk—l(x-X', Y, Sxy-S') }.
x'<x, x'eL, S'CSxy

Chapter 3 65

If there are no first-stage cuts parallel to the y-axis but at least one second-stage cut
parallel to the x-axis at some y'€ W then Fy (x,y, Sxy)=Gy_1(x,y,S xy). A
similar argument to the one given above can be used to show that

Gk(x,y,Sxy)=max[Fk_1(x,y,S), max {G (x,¥,8")

X
yy<y, YEW, S'csxy

+ F 1 (%5, Sxy-S')}] fork>1 (3)

Equations (2) and (3) are the basic dynamic programming recursions for the
optimal k-stage constrained cutting of a rectangle (X, y) and they apply for any
k21,1sx<0g 1<y<Bgand Sxy' Initial conditions for the above recursion
are provided by

FO x,y, Sxy)= ma)ic (Dil“ieSxy,i

and

GO(Xa Yy Sxy)=F0 (X, y: Sxy)

forall xeL,yeW and Sy,. Then max { Fy (¢, Bo, R), Gy (g, Bg, R))
gives us the value of an optimal n-stage cutting pattern for A() subject to the
constraints on the number of rectangles produced, if the first-stage cut direction is
unspecified. Note that when F, (oy, Bg. R) and G, (g, Bg, R) have been
computed, so have Fy (x,y, Sxy) and Gy (x,Y, Sxy Jforall 0<k<n,
lsxsap, 1<y<Bp and Sy,

The computational problem encountered in the direct application of the

above basic recursion to solving the CGC problem is the problem of dimensionality

Chapter 3 66

of state variable Sxy° An optimum policy for cutting a rectangle (x,y) into a set
Sxy of rectangles at the kth stage of the cutting process consists of either
performing a cut on (x,y) parallel to the x - or y - axis or performingno cuta that
particular stage. However, the computer storage requirements increase rapidly since
the third state variable Sxy of the basic recursion refers to combinations of
rectangles that can be produced by cutting a rectangle (x,y), i.e. involves all
subsets of Sxy° This explosive increase in the state space dimension is critical to

the computational efficiency of the given DP recursion.

In the present chapter we are not concerned with the exact solution of this
recursion but with associated recursions based on relaxations of the state variable
Sxy in order to reduce the state space dimension of the dynamic program. Such a

relaxation procedure is presented in the next section

3.4 State Space Relaxation for the CGC Problem

3.4.1 Definition

In this section, we develop a general relaxation procedure whereby the state
- space associated with the DP recursion given for the CGC problem in section 3.3
[equations (2) and (3)] isrelaxed in such a way that the solution to the relaxed
recursion provides a bound which could be embedded in a branch - and - bound
scheme for the solution of the CGC problem. This state space relaxation (SSR)
method is analogous to Lagrangean relaxation in integer programming. A survey of
this new methodology is gi\;en in Christofides et al [1981a] where valid state space

relaxations are presented for the travelling salesman problem (TSP), the time

Chapter 3 67

constrained TSP and vehicle routing problem (VRP). A more detailed survey of

the above prodedure can be found in Christofides et al [1981b].

Let us consider then the DP formulation for the CGC problem defined by
equations (2) and (3). Now,let A(Sxy) denote the set of all possible states
S'¢ Sxy associated with the cutting of a rectangle (x,y). Let g (.) be the
mapping function from the domain of (x,y, Sxy) to some other vector space

(x,v,8(Sxy)) andlet Q (g(Sxy)) be a set satisfying the condition:

if S'eA(Sxy) then g(S')eQ(g(Sxy)) (4)

Recursion (2) and (3) can now be written as:

Fe (%, 8(5,)) =max [Gy 1 (x, y, 8(5,.)):x,rg:’xx,e lLFk (x, y, &(8))

8(S") e Q(g(sxy))

+Gy) (xX, ¥, 88, $)) 1] Vk2y (5)

G (% ¥ 88yy)) = max [Fye (% v, 8(5,) s max LGy (x, 5, 8(5))
g(8") e Q(g(Sxy))

+F (3, 88,5011 V k21 (6)

where

S'SA(Sxy) (7)

Chapter 3 68
From the above it is clear that :

Fie (%5, 865,,)) < F (x%,8,0)

Xy

Gy (% ¥, 884)) < G (x5, 5,0) (8)

forall xeL, ye W and 0<k<n. Notethat max { F, (x,y, g(Sxy)),
Gp (x, Y, 8(8xy)) } (from (8)above) can produce bounds which can be

embedded into any tree search for solving the original CGC problem.

The state - space relaxation which produced recursion (5)and (6) is
useful only if the function g (.) is such thatset Q (g (Sxy)) can be computed
easily from (4) above. This condition is satisfied if g (.) is chosen to be a

separable function, so that given g(Sxy) and g(S", g(Sxy - S') can be computed.
In this case, (5) and (6) become:

Fy (x5, 88,) =max [Gy_(x, y, g(Sy,));x'rg?,xx'e IE F (X, y,t)

teQ(g(Sxy))

TG (x%,y, 868,) -] Vi (9)

G (x,y, 85,))=max [F_. (x,y, g,)) max '
k Xy k-1 xyt y;.?é’ y'e\{va (x,y,t)
€ g(Sxy))

PRy e) -0 Vs (10

where t=g(S') and S'e A (Sxy).

Chapter 3 69

In the following section, we will illustrate some possible useful forms of the

function g(.).

A diagrammatic illustration of state - space relaxation is shown in Fig. 3.1.

3.4.2 Forms of the Mapping Function g (.)

As suggested by Fig. 3.1, the state - space relaxation is defined by g and
Q. The function g can be any separable function. A suitable form of the mapping

function is presented below:

g(Sxy)= Z‘ q; & (g-pathrelaxation)S SR

lesxy

Let us associate a non - negative integer weight q; with every piece i in set

R (i=1,..,m)and define

==, &3
i eSxy

Equations (9) and (10) are then modified as follows:

¢ 1adey)

ol =—-- —- ’ ﬂ(g(sxy))

-~ — .
- —

~
- -

——
—

_____ TZ=zl=0g(S4)
o TN E PP N Rl ol Infviaind efadeted-3= @ Q(Sz)

R e e oY N

. — S ———=
—p o — —_————— = ==
— badert =i=

Figure 3.1 Graphical presentation of State—Space Relaxation

0L

Chapter 3 ‘ 71

F (x,y,q)=max[G, ,(X,y,q)max {F, (x,y,q)
k k-1 X'<x, x'eL k
q=0, ..., q

+ Gy (xx,y,04q)}] Vk21 (14)

Gy (x,y,q)=max[F_;(x,y,q)max (G, (xY.q)
y'<y, yeW
q=0, ..., q

+F 1 (%yyaq)}] Vi1 (15)
and initialised by
Fo(x,y,q)=miaX(uil o <x,B, <y, q;<q i=1,..,m)

Go (% ¥,q)=Fy(x,y,q) (16)

The above recursion applies forall xeL, yeW and q=0,...,Q where

3.5 A Bound from State Space Relaxation (SSR)

It is clear from (8) that the state space relaxations of the DP recursion of
the CGC problem can be used to obtain upper bounds on the value of the solution

to this problem. In this section, we will describe how such a bound can be derived

Chapter 3 72

from the relaxed recursion given by equations (14)to (16)[SSR].

We must note that Zyyg = max [(F, (o, Bg» Q) » Gy (g, Bg. Q)1

represents the optimal value of an n-stage cutting pattern for the stock rectangle A
generated by using pieces in set R when the first - stage cut direction is

unspecified. (Note that Q is the maximum value that state variable q can take |
relative to a given set of weights q; 's). The value Zyyg provides an upper bound
on the solution of the CGC problem and is obtained from the relaxed DP
recursion given by equations (14) to (16), this recursion being enhanced

computationally in the following way :

Let sets L and W of possible lengths and widths for any cuts to be
performed on Ag be modified as described by equations (4)and (5) of chapter
2, respectively, to represent the normal sets relative to the set of pieces in R
available for cutting. Sets L and W can be reduced even further for the cons.trained
problem, by limiting the normal cuts to be performed at any point x or y, such that
there exists a feasible set of pieces in R whose lengths add up to x, or whose widths

add up to y, respectively; namely, these sets are redefined by:

m
L={XIX=Zeiai’ ISxSaO, OSGiSQi and
i=1

Gi integer V i=1,..,m}

and

m
W={yly= tB, 1Sy<py 0<t<Q and
=1

t integer V i=1,..,m}

Chapter 3 73

Also, let | (x)and w (y) be defined by equations (6) and (7) of chapter 2,
respectively. Using the normality property (section 2.3.1 of chapter 2), we claim
that we may calculate Fy (1(x), w (y), q) instead of Fj (x,y,q), since

Fi (1(x), w(y),q)= F (x,y,q). Equation (14) then becomes:

Fk(x,y,q)=ma.X[Gk_1(X,Y,Q)i max [Fk(x"y’q')-*-
x'<x, X'eL.
q=0, .., q

G 1 G (xX),y,0q)}] Vk21 (17)

Here, we have modified the second term in the recursion, arising from the optimal k
- stage cutting pattern of (X, y) with a first - stage cut being made at some x'eL,
so that the pattern for the two resulting rectangles of sizes (x',y) and (x-X,y)

can be normalised. In a similar fashion, we modify equation (15) to be:

Gk(X,y,Q)’-'max[Fk_l(x,y’Q);max {Gk(xay"q')-'-
Y<y, y'eEW
q=0, .., q

Fp (6w (yy)haq))}] Vkzl (18)

It is now clear that Fy. (x,y,q) and Gy (X,y,q) are calculated only for
those values of x and y that belong to the normalised sets L and W respectively
(i.e. xeL and ye W) and for all values of q(i.e.q=0,1,.., Q). Equations
(17) and (18) form the relaxed DP recursions used to obtain the value of bound
Zyp relativetoa given setof gq; 's. Initialisation conditions for the recursions

are given by equation (16).

Chapter 3 74

3.5.1 The Dynamic Programming Procedure

Once the value of bound Zyp is found by solving the relaxed DP
recursion given by equations (16) to (18) in section 3.5, backtracking to
discover the nature of the associated cutting pattern is necessary. The full sets of
maximum value functions and their corresponding optimal decisions are stored as
soon as they are computed and retrieved at the time of backtracking. Thus, six
matrices are used, namely, Fi. (x,y,9), G (x,¥,9), P (X, y,9), Y (X
¥.9), ¥k (x,y,q) and 81((X, y,q). When the computation is completed F)(
x,y,q)=Fn(aO,BO,Q) and Gy (x,y,q) =Gy (09, Bg, Q). The four

remaining matrices are defined as follows :

<I>k(x,y,q)=x', “{k(x,y,q)=q'if Fk(x,y,q)=Fk(x',y,q')+

Gy-1 (1 (xx"),y,9-q")
Dy (X,¥,9)=0, *{k(x‘,y,q)=0 otherwise (19)

and

‘I’k(x,y,q)=y', Sk(x,y,q)=q' ika(x,y,q)=Gk(x,y',q')+

Fk-]_ (x, W(Y'y')s q'q')
Wi (%,¥,9)=0, 8 (x,y,9)= 0 otherwise (20)

To help in describing the procedure for calculating Zy;g and finding the
associated cutting pattern, let x1, X, ..., X,; be the elements of the normalised set L

in order of increasing lengths and yq, 5, ...y, be the elements of W in order of

increasing widths.

Chapter 3

75
Initialisation
1.1 Set k=0.
1.2

1.3

1.4

Set Fo (x5 ¥69) =G (X5, ¥4, q) = max (vloy €% B 4,954,
i

i=1,.,m)forall s=1,.,ut=1 .

Set k=1.

.»vandq=0,..Q.

Set S=1, t=1’ q=0'

First - stage cut parallel to the vy - axis,

2.
2.
2.

1
2
3

Set s'=1.

Set q'=0.

If g<qand F (x5y9)< Fk(xs" Yp 4) + G (1 (Xg- X'), ¥
q-q') thenset Fy (Xg, ¥p q)zpk(xs., Ve @) + Gy (1 (xg - xg),

Ypq-9), % (X5 ¥ 4) =q and goto 2.4. Ifq'< q then got0 2. 4 :
else goto 2.5.

Set ¢'=q'+1 and goto 2. 3.

Set agmax = max (0, Y (% %y q)),

If s'<s and Fy (X, ¥, q) < Fy (Xsh Yo Amax) + Gi.1 (1 (X~ Xg),
Yt» - dmax) thenset Fi (X5, y,, q) = Fy (xg, ¥y Qag) + Ok

(l(xS-XS'),YpQ'qmax)’(bk(xs,yt,q)=xsv andgoto 2.7.
If s'<s thengoto 2.7; else gotg 2. 8.

Set s'= s'+1 and goto 2. 6.

If Gy (X Yp‘l)<Fk(Xsa Y qQ) goto 2.9; else set Fie (Xg Yo @)
=Gk-1(XS’yt’q)’(Dk(xs’yt’q)zos"{k(xs,yt,q)=0andgot02.9,
If q<Q thenset q=q+1 andgoto 2.1; elseif s< u then set

s=s+1, q=0 andgot0 2. 1; else if t<v then set t=t+1,s=1,

q=0 andgoto 2.1; elsegoto 3 1,

Chapter 3 16

First - stage cut parallel to the x-axis.
3.1 Sets=1,t=1, gq=0.

3.2 Sett=1,q=0.

3. 3 If q'<q and Gk(xS$ yt,C{)<Gk(XS, ytl,q')-{—Fk_l (xs,w(ytoytc),

q-q') thenset Gy (xg y.0) = Gy (g, yp, @) + Fy_g (xgW (V5~ Yes
1-9), % (X5 ¥ 9)=q andgoto 3.4. If q'< q thengoto3.4;
else go to 3. 5.

3.4 Set =q'+1 and goto 3.3,

3.5 Set g =max (0, & (xg,y,,q))..

3.6 Ifr<tand Gk(xs’yt’q)<Gk(xs'yt"Qmax)+Fk-l(xs’w(yt

- ¥)» 4 - Amax)» then set Gy (X ¥ q) = Gy (Xg ¥t Gax)+ Fi-1

(xs,w(yt'Yt')’q-qmax)9\Pk(xsy}’t,q)=yt' andgoto3.7.
If t <t thengoto3.7; elsegoto 3.8.

3.7 Sett'=t+1 andgoto 3.6.

3.8 If Fr1 (X5 ¥ 9) <G (X, ¥,,q) 2010 3.9 ; else set Gy (X5 ¥:,9)
=Fr1 (X5 ¥p Q) P (X, ¥ q) = 0,8 (X5, ¥pq)=0and goto 3. 9.

3.9 Ifq<Qthenset q=q+1 andgoto 3.2; elseif t <v then set
t=t+1, q=0 andgoto3.2; elseif s<u then set s=s+1,t=1,

q= 0 andgoto 3.2;else goto 4. 1.

" End of optimal k - stage cutting

4.1 If Fie (X, ¥, q) =Fp1 (X, ¥, q) and Gk(xs’yt'q)=Gk-1 (xs,
Yi-q) thenset n=k - 1, value of bound Zyg =max (F (o, Bo Q),
G, (20, B, Q)) and stop; elseset k=k+1 and goto 1.4.

At the end of the above procedure, max (Fp(&g, Bg, Q), Gy(o, B, Q))
is the value of bound ZUB corresponding to the optimal n - stage guillotine cutting

of Agrelative to a given set of weights (g;'s) associated with the pieces in set R.

Chapter 3 77

Note that values Fy (xg, ¥ q) and Gy (X, ¥, q) have also been calculated for
al 0 £k <ns=12.,ut=1,2,..,vand q=0, 1,.., Q.

D (x,¥,q) and ¥ (x,y,q) can then be used to indicate for each set (x,y,q)
the terms in the relaxed recursion that led to the value F (X, y,q). Similarly,

Yk (x,y,q) and 8 (x,y,q) can be used to determine how Gy (x,y,q) is
achieved for any set (x,y, q). Thus, discovering the nature of an optimal k -
stage pattern requires the use of a binary tree, having a similar structure to the tree
that has been used by the backtracting procedure of section 2. 3. 2 (See Fig. 2.7).

The structure of this tree is described by the following three characteristics :

(i) A node labelled F (x,y,q)or G (x,y,q) with exactly two nodes
immediately below it represent a k - stage cut made on rectangle (x,y)
parallel to the y - or the x - axis, respectively, using a set of rectangles Sxy

in R such that

Z 94§ =a

ieSxy

(ii) A node labelled Fr (%,¥,q) or G (x,y,q) withonly a left node
below it, labelled Gy_1 (X,y,q) or F_1 (%, y,q)respectively,
imply that no cut is performed on rectangle (x,y) at the kth stage

of the cutting process.

(iil) A terminal node (i.e. a node that has no other nodes below it in the tree)
labelled F (x,y,q) or G (x,y,q) represents a rectangle (x,y)
that is not cut any further and a piece j in R can be allocated to it such

that j=max {v; | ;<x, Bi<y, qj<q,i=1,.., m}.
i

Chapter 3 78

The 3 - stage cutting pattern for the rectangle (X, y), shown in Fig. 3.2,
associated with the optimal value Fj (x,y, q) can be represented by the binary tree
shown in Fig. 3.3. A convenient way for describing this tree is presented in Table

2.1 of Chapter 2.

A " preorder " traversal of the binary tree is used to determine the sequence
of cuts performed on Ag. A data structure, as described in section 2.3.2, is
employed to represent the list of rectangles produced during the cutting process.
Two additional entries are now included for each rectangle r; in the list which are

given below :

(i) q; indicates the " weight " of the set of pieces in R used to cut rectangle 5
(i) qj is the " weight " of a subset of the above set of pieces, associated with

the cutting of rectangle r; into two further rectangles (q;' < g;).

The pattern shown in Fig. 3.2 would then be represented by the list of
rectangles shown in Table 3.1, using NR to head the column corresponding to the
number of rectangle. The list begins with cutting Aq. In this list, every rectangle is
either cut into smaller rectangles or filled by one of the initial pieces givenin R

(' waste is not cut out by the relaxed DP procedure).

Generating the above list of rectangles, we obtain the number c; of pieces
of type i that have been used by the DP solution in cutting Ag. If ¢; < Qj for all
types i in R (i.e. i=1,.., m) (ie. afeasible solution is found) then the
optimal solution to the CGC problem has been obtained. Otherwise, the value
Zyyp of the associated n - stage pattern, serves as an upper bound on the solution of

the original problem.

Chapter 3 79

, /0227

w_l
P-,

Y
~ y#q1)

Figure 3.2 An optimal 3-stage cutting pattern of rectangle (x,y)

= -nX
fqy.a OqPX%y.4-07)

Fiea=%4.y-, 4=~ q"
G jalxq.7.8¢)

L AR

O 9774 a-9y7 -3 -4

_-x X Y- -q)-aX_g¥
Gy 30405 Pl XX =¥;.8-97 -9 - 91

Figure 3.3 Tree representation of pattern shown in Figure 3.2

Chapter 3

NR XD YD q CR q' AR
1 X y q X, qT 0
X
2 X, y q; 0 0 T,
3 (x=x,) y (q-qf) <Y, Cﬁ 0
4 (x=x,) vy, ‘qy 0 0 r

1 1 1 2
_ - T X X
5 (x=x)) | (y=y) | (a=qj-q))| x, a4, 0
6 x (y=y,) a 0 0 r
2 1 2 3
— = - P, SP SR
7 (=%, =%,) | (y=y,) fg-dpaj-q;)| O 0 T,
Table 3.1 Representation of pattern shown in Figure 3.2

80

Chapter 3

3.5.2 An Example

81

Consider the CGC problem whose set R of pieces available to be cut

from a stock rectangle Agof size (10, 10) is as given below :

piece i

size i

(2,2)
(5,3)
(6,7)
(4,7)
(2,4)

valuei constrainti

5
15
52
44
12

1

NNW

p—

We will use the state - space relaxation [(equations (16)-(18)1to

compute an upper bound to the value of the optimal solution to this CGC problem.

Let us choose (arbitrarily) a set of weights q; to apply to the pieces i=1, ..., 5.

Let these weights be given by :

piecei 1
qj 0
and hence
5
Q= 2; Qq=1
1=

The normalised sets of lengths and widths are givenby L=1{2,4,5, 6, 7,

8,910}and W=1{2 3,45, 6,7, 8, 910}respectively. From (16) the

Chapter 3 82

initialisation is given in Table 3.2,

We will use the value of k to index the iterations of recursion (17) and
(18) i.e. we will call iteration 2 the iteration which computes all F5 (x,y,q)
and G, (X, Yy, q), iteration 3 the iteration which computes all F3 (x,y,q) and

G3(x,y,q)e.tc.

Thus, four iterations (n =4) are performed until F4 (10, 10,1)=F3

(10, 10, 1) and G4 (10, 10, 1) = G3 (10, 10, 1) providing us with a value of
Zyg =135 (=F3(10,10,1)=(G3 (10, 10, 1)). The values of Fy (x,y,q),

Dy (x,y,9) and g (X,Y,q), as defined in section 3.5.1, for all values of x €L,
y €W and q=0, 1 are presented in Tables 3.3,3.5 and 3.7 for k=1,2 and 3
respectively. Similarly, the values of Gy (x,y,q), ¥ (x,y,q) and O (x,y,
q) are given in Tables 3.4, 3.6 and 3.8 for k=1,2 and 3 respectively. By
backtracking through the given tables we obtain the cutting pattern of (10, 10)
associated with the above value of 135. The structure of this pattern is shown in
Table 3.9. (Note that the backtracking procedure, as described in section 3.5.1,

starts with the value G3 (10, 10, 1)) and a diagrammatic presentation of it in Fig.

3. 4.

Generating the above pattern for the given CGC problem, a list of rectangles
is produced given by {7,0,0, 2, 1 }. Clearly, this is not a feasible solution to the
problem since the number of pieces of type 1 that have been used by the current
DP solution in cutting A (cq = 7) exceeds the corresponding availability
constraint for this type (Qp =1). Thus, Zyyg = 135 is an upper bound on the
solution of the problem. Note that this value happens to be the optimal, as shown in

the Table 3.10 of computational results of section 3.6.3 (Problem 1).

for the CGC Problem of Fxample 3.5.2.

4 10
0] 0 1 0 | 0 1 0 1 0 | 0 1 0 l
2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3 5 5 |15 15 |15 15 |15 15] 15 15 15 15 15 15 | 15 15
4 5 12 5 12 [15 15 [15 15 [15 15 15 15 15 15 | 15 15
5 5 12 5 12 15 15 15 15 I5 15 15 15 15 15 15 15
6 5 12 12 115 15 |15 15 115 15 jJ 15 15} 15 15 15 15
7 5 12 | 44 44 | 44 44 | B2 52 | 52 52 | 52 52 | 52 52 | 52 52
8 5 12 | 44 44 | 44 44 | 52 52 | 52 52 | 52 52 | 52 52 | 52 52
9 5 12 | 44 44 | 44 44 | 52 52 | 52 52 | 52 52 | 52 52 | 52 52
10 5 12 |44 44 | 44 44 | 52 52 | 52 52 | 52 52) 52 52 | 52 52
Table 3.2 1Initial Values of the DP relaxed recursion

¢ 1dey)d

£8

84

Chapter 3

00 OO0 O=-— O— O~ O- O— O— O —

(=]
- WM NN NI NI NI TWOW PO O WO
N OO0 ON ON ON VO WO WO vwOo
NN MO M M O OO O OO o O
OO0 OO0 O—~ O~ O~ OO0 OO0 OO0 OO0
o WO 2 T T FT T T DT T T T
OO VI NN NN NN o o O O W
NN NN Ny NeY NN 00D oD 000
0O OO0 O— O~ O~ OO0 OO0 OO OO
© WWW & ANy NN NN 3T S ST T
OO0 OO0 O~ O~ O DM W O o
NN NN NN NN NN D00 DD OO o
OO0 OO0 O~ O~ O~ O~ O— O~ O —
™~ T NN NN NN NN O 0N O O
N OO0 O~ O O NW tNW NW N
—e— NN NN NN NN NV N NN NN
OO0 OO OO0 OO0 OO0 O— O— O~ O —
o T2 T ITI T II ON ON ON O
VI N NN NN NA NWY NY NWOY N
e e = N~ N — N NI Y N Ny
OO0 OO0 OO OO OO OO OO OO OO
vy NN OO ON ON ON T3 T T3 T3
OO VN N NN VTN 37 33 33 39
Ll et 2 AR 2R SRR BN NPT JPeS
OO0 OO OO OO0 O OO0 OO OO0 OO
-~ NN NN NN NN NN O OO0 OO0 OO
OO0 OO Ot O~ O 33 33 93 33
i AT R R T S0 TR S 3
OO0 OO OO OO OC OO0 OO DO OO
[OO0 OO OO0 OO OO OO0 OO0 OO OO
MINn Ny N Ny N N N o noee oy
® O— O— O— O— O~ O~ O=-=- O=— O—
<
N Laal ~t Cal ') ~ o o -

Table 3.3 Fl(x,y,q), ®|(x.y,q), Yl(x,y,q) ¥ x,y,q

WO OO0 OD OO0 OO OO DO OO
=loWw NN MM MMM N N O e

o
— VI OOy OV IS SIS NN NS NS
VNN 32 VY DO OO VW WO O
©“wlO0O OO OO OO0 OO OO OO OO
MO NN NN NN NN NN NN SN

o
ON OO OO0 NN NI NN NN NS
OINN I3 T3 N NV NN NV NN
“WlOO0O OO0 OO OO OO OO OO OO
E R T R A e T S N N S N R N N A

©
ON T3 T3 NN NN NN NN NN
VOl v 33 NN NN NN N NN
OO0 OO OO0 OO0 OO OO OO OO
>l N OO OO OO0 OO0 OO OO OO

~
NN 33 T3 N NN NN NN NN
OVl——= T TF 1NN NN nin nun nn
W00 OO0 OC OO0 OO0 OO0 OO OO
N PN O MO N N O e

o
nn~ N~ OO0 OO0 OO OO OO OO
O|l—— == €O M M OO O o
WO~ O— OO0 OO0 OO0 OO0 OO QO
Bl N NN NN NN NN NN NN

n
oN ON OO OO0 OO OO OO OO0
O|l—— —= NN NN NN NN NN '
WIOO OO0 OO0 OO0 OO0 OO OO OO
=|lNO NO oM MO OO OO0 MM M

~
. C™N ON NN NN NN NN NN NN
CiOD OO OO0 OO0 OO0 OO OO ©O
NN NN OO0 OO OO OO OO OO

™
Olnnn tin N N N NN NN nNn
CIO0 OO OO OO0 OO OO OO0 OO

[N
»|OO OO OO OO OC OO OO OO
VN i NN NN NI N NN NN
> o|O— O~ O— O~ U—~ O~—- O~— O—
o
o~ - vy Y=} ~ © o —

¥ x,v.,q

¥, (x,y,9), 8, (x,¥,q)

Table 3.4 G_l (x,y¥,9),

85

Chapter 3

OO OC OO OO OC O— O~ O~—~ OO

o
- ©[{Wo NN WO WO MWD VWO WO VWO o
N 00 ON ON NN M OO0 O N~
BW|iNN A NN NN NN OO0 O— =N NN
OO OO OO O— O~ OO OO OO O~
o €V O TT VWO VI TITT ITT I3 3T 9
OO0 NN ON ON ON W WE WO G —
WlONN NN 33 93 OO OO OO A0 O~
> OO OO OO0 OO OO OO ©CO OO OO
L] V| WO NN VW VW WO FIF TF TT VOO
WOO OO0 ON ON ON oD W oD ON
NN NN 33 T VO OO O O OO
OO OO0 OO O—- O~ O— O~ O~ O~—
~ VT T NN T3 NN NN NN NN NN NN
Wlnin OO0 ON ON NI~ he= TW MW IO
—— NN MM MM 3T NW VWO O
OO0 OO OO0 OO OO O— O—- O~ OO
o V|l TT I TT TT T NN NN NN T
WwWlnnin NN O ON N~ V= ID O~ Nt
—e— e = MM MM 3T NO OO O~ N~
OO0 OC OC OO0 OO0 OO OO OO OO
n SINN OO NN NN NN 993 93 393 OO0
WlOO NN ON ON ON I3 I3 Oh— OO
—_— — = NN NN MM FT IF O~ NN
OO OO0 OO OO OO OO OO0 OC OO
< BlNN NN NN NN NN OO0 OO OC NN
KOO OOC ON ON ON 33 93 OO0 ON
—_— — = NN NN OM IT T T T T N
>OO0O OO OO OO OO OO OO O©C OO
o~ OO0 OO0 OO0 OO OO0 OO0 ©OO OO OO
Witmin NN O ON N N~ ON ON N~
—e m e em e e NN NN NN
® | O— O~ O= O-= O— W= O O - O~—
~ 2] = [Ta) Y] ~ ® o [=]

Table 3.5 Fz(x.y,q). @2(X.Y'q)y YZ(X,Y.Q) Y X,¥,q

VIO OO OO0 OO0 OO OO0 OO OO

o
- W NN MM O M NN MM M
N~ 93 OO0 N NWYW O MM VO
VOl NN N <~ I~ OO0 —— NM
W00 OO0 OO OO0 OO OO OO OO
o Blw NN NN NN NN NN NN NN
ON I F r™~=— INN— W W —\
QNN i NN O~ O~ OO OO NN
©WClOO0O OO OO0 OO0 OO0 OO OO OO
o] IO T NS NN VW VWO NN NS OV
ON I3 I3 OO0 OO0 W® ®® OO
O|lNN 99 93 VO VWL @D WO OO
WIOO0O OO0 OO0 OO0 OO0 OO0 OO0 OO
~ N OO OO OO OO OO OO OO
Ol @99 39 o oW Do O VO
—_— a3 I3 N WO OO OO
“ClOO0O OO0 OO0 OO0 OO OO OO OO
Y] H TN T M TIT TSI I ITF TS
Cijvn~s OO OO0 VN NN OO CO0 wvnwn
—_—— MM MM FT ITIT VO OO N~
IO~ OO0 OO OO OO OO ©OO OO
wn Bl NN NN NN NN NN NN NN
OjloN OO "M OO0 VN OO0 NN nun
—— NN NN MM MM I 2T NN
WO OO0 OO OO0 OO0 OO OO0 OO
3 INO NN NN NN NN NN NN NN
OjloN OO OC OC OO0 OO OO0 OO
—_—— NN NN MM MM 33 3T NN
“WIOD OO0 OO OO OO0 OO OO OO
™ HINN NN OO0 NN OO0 NN OO0 OO
Vinn OO0 "inn NN OO0 OO0 vinn OO
—__— e m= NN NN NN MO
WIDO OO OC OO0 OO OO0 OO OO
o~ »|OOC OO OO OO OO OO0 OO OO
Vjrnin OO0 OO nin N OO0 OO0 wvwn
_ —_—— = e = NN NN N
»}JVvrilo—- o- o—- 00— 00— O— O— O~
% [} = w0 Vel ~ -] o [=}

X,¥,9

¥

Bz(x:y’q)

Table 3.6 G,(x,v,q), ¥5(x,5,9) .

86

Chapter 3

0O OO0 O— OO0 O~ O— O—= ©O— O —
m NN N NN OO0 NN NN NN NN e
Q% 28 2% 2R 2k 95 82 88 2%
OO0 OO0 O—~ O—~ O— OO OO0 OO0 OO
o NN NN NN NN NN 3T TS T
2% 9% 9T 95 8% 33 83 88 o0
00O OO0 O~ O— O— OO0 OO OO0 OO
2] NN NN NN NN NN 33 T 3T 3
%2 R% ST $Y 8T 82 23 38 23
00 OO0 O— O— O— O~ O~ O~ O~
~ NN NN NN NN NN NN NN N NN
o1 2 88 8K 95 83 2B 2233
00 OO0 O~ Om= O— O—~ O~ O— O ~—
0 NN NN NN NN NN NN NN N NN
oo v 28 2% 95 BE I8 IL 2s
OO0 OO0 OO0 OO OO0 OO OO0 OO0 OO
Lal NN OO0 NN OO0 NN 33 23 22 OO
22 or R 8% 2% I3 II AA 83
OO0 OO0 OO OO0 OO0 OO OO0 OO OO
< NN NN NN NN NN OO0 OO OO OO
22 22 RN QN 2 II II AR 23
©OO0 OO0 OO0 OO OO OO OO OO OO
o~ 00 CO OO0 OO0 OO0 OO0 OO0 OO0 OO
i w0 oo me v QY IY QN
® ©oO— 00— O— O— O— O~ O— O~— O-—
o~ [aa] ~ Lal 0 ~ © o m

736y, ¥ x,y.q

45(x,y,4),

Table 3.7 Fa(x.y,Q),

«© OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO

m D o~ NN M o~ o~ o0 N~ 3 -2 oo~
olQR 23 22 25 38 883 20 2y
VIO OO0 OO0 OO0 OO OO0 OO OO

o ad o~ o™~ o~ o N o~ o~ o~ oo~ o~
N A S A - - -]

haed oo o0 OO oo OO0 OO0 OO0 [eNe]

o0 gl oo~ ™~ ~ ™~ r~ o0 el] ~ ~ ~ r~ (o Ne)
o/2Y I3 $T3 28 28 38 88 8°
WCWIOO0O OO0 OO OO OO0 OO0 OO OO

~ FIlNN OO0 OO OO0 OO OO0 OO OO
o2 I3 3% 25 23 22 38 398
WCIOO0O OO0 OO OO OO OO0 OO OO

O B o~ o~ o~ o~ o~ oo o~ o~ o~ oo~
|2 88 83 95 95 8% 22 ©on
WIOoO— O— OO0 O~ OO0 O—~ OO0 OO

wy 2. o™ - ~ ~N o~ o~ 3 o~ o~ o~ 3 o~ (2t o
|22 8] 1Y 28 ¥Y 2Y 1Y 1n
“wolo o OO0 OO o N) o0 OO o0 OO

~ >l N NO NO NO NO NO NO ~N O
0|29 28 9¥ 2y 2% 2% 2% !
“CloOo OO OO0 O0C OO0 OC OO OO

[2a] HlNN NN OO0 NN OO NN OO OO
ofnin oo nn N 99 99 VY 928
IO OO0 OO0 OO0 OO0 OO0 OO OO

o~ 100 OO0 OO0 OO0 OO OO0 OO OO
Olvrnwnm OO0 OO0 Nn inn OO OO0 nuwn

— — — — —_—— —— [SUN V] o~ o~ o~ o~

> O— O~ O—- O— O= O— O=— O~
o~ -3 wn Vel ~ o o o

83(x,y,0) ¥ x,y,q

ty(x,y,9),

Table 3.8 G3(X,Y:Q).

Chapter 3

N | x0 | W| q | cR| q' | AR
1 10 10| 1| =210 0
2 | 10 2] o 8| 0 0
3 8 2| o 6 [O 0
4 6 21 0 41 0 0
5 4 2| o 2| 0 0
6 2 2| o 0] o 1
7 2 2] 0 0| o 1
8 2 2| o 0| o 1
9 2 2| o 0| o 1
10 2 2|1 0 o o 1
1 10 8 | 1 6 | 1 0
12 6 8 | 1 2 |1 0
13 2 8| 1 | -4| o0 0
14 2 41 0 | -21]o0 0
15 2 2| o 0| o 1
16 2 2| o0 0] o 1
17 2 4] 1 0o} o 5
18 4 8| o |-7] 0 0
19 4 71 o 0| o 4
20 4 8| o | -7] o0 0
21 4 71 o | of o 4

Table 3.9 Representation of the cutting pattern
corresponding to the value of 135
for Example 3.5.2

10 Wi Y

0 10

Figure 3.4 3-stage cutting pattern for Example 3.5.2

87

Chapter 3 88

3.6 State Space Ascent (SSA)

In section 3.4, we described the form of the function g (.) which
- produces a valid state -space relaxation for the CGC problem, and in section 3.5 a
bound on the solution of this problem which is derived from this relaxation. In this
section we describe how a procedure can be used to decrease the resulting upper

bound (Zyp) obtained by SSR using state - space modifications.

The general objective in this approach is to force the solution of the relaxed
recursion closer to feasibility, and naturally improve the upper bound. The form of
the mapping function used and the respective relaxation (SSR) are described in

Section 3. 4. 2:

(SSR) g(S,))= z q; &
ieS y
where q; is a non - negative weight chosen to be associated with a piece of type 1

in set Sxy (Sxy € R).

In choosing the function g (.) to be as given above, nothing has been said
about the choice of the parameters q; . Denoting by f (q) the upper bound
produced by SSR (bound Zyp of equations (17) - (18)) for a given vector q

(=qj), the new problem to be dealt with is

f(q*)=minf(q) (21)
q20

subject to

Chapter 3 89

D, 40,5 Q (22)
ieR

The procedure for minimising f (q) in the above expression is referred to
as state - space ascent. This minimisation is, in general, difficult since f(q) isa
discontinuous function of q. However, simple ways for performing the

minimisation, are described and tested computationally in the following sections.

3.6.1 Modification of the weights q;

Four different formulae are presented in this section, for modifying the
weights q; as part of the procedure used to solve problem (21) - (22). The
modification of the weights q; is based on the following idea: Let c; be the number
of pieces of type i that have been used by a DP solution [equations (16) to (18)]
in cutting A, for a given vector q. If ¢ is feasible for the original CGC problem
(ie.c; £ Q V i=1,.., m),then the problem has been solved ; otherwise, it
would be reasonable to try to reduce the number of pieces used for any type i for
which ¢; > Q; in order to move toward feasibility. A straightforward way to
perform state space modifications is then to increase the value of the g
corresponding to any type i for which ¢; > Q; and at the same time, decrease the
weight for the pieces for which the associated constraints are satisfied. One hopes,
that by increasing the weight for a piece of type i such that ¢; > Q;, fewer pieces of

type 1 will be used by the modified DP solution.

In the first three formulae adopted, weights q; are modified accordingly by

fixed amounts (independently of I ¢; - Q; I). However, the last formula provides a

Chapter 3

general procedure for modifying the weights in a normal " subgradient " fashion.

Formula A
Set gj=q;+1 v i s.t. ¢>Q, i=1,.,m

g=qi-1 VvV i st ¢>0, ¢;<Q-5,i=1.,m

Formula B
Set gj=q;+2 V i s.t. ¢>Q; i=1,..,m

qi=¢qj-1 vV i s.t. q;>0, ¢ =Q, i=1,..,m

Formula C

Let i* be that type i for which (¢; - Q;) is maximum. Trying to reduce

the

. kL. : .
number of pieces used for type i , it is reasonable to increase the corresponding

weight by the largest amount compared to the other weights, since this would

produce the largest step toward feasibility. Thus, weights q; are modified as

follows :

Set qy=gqj+3, i=i" st (Cjs- Q) =max {(¢;-Q)I>Qpi=1,.,m)

. . TN
gg=q+1 V i st ¢>Q;, i#i’, i=1,.,m

gi=qj-1 V i st ¢;>0, ¢;<Q;,i=1..,m

Formula D

A subgradient method is used to determine the values of the weights at iteration

number j as follows:

0 .
Set g =g+t /(ci’-Qi) Vi st ¢>Q i=l..m
= max(0,q; - /(Qi-cij)) Vi st ¢ <Q,i=1l, .

, M

Chapter 3 91

where tJ is a positive scalar step size. A formula for tJ that has been proved

effective in practice is given by:

j L
- Z1g)

m .
2. (Q-¢)
=1

]
j E(ZUB

In this formula, the parameter nlis initially set equal to 2.0 for a fixed number of
consecutive iterations (6) being reduced to half of its value every 3 iterations until
the resulting =J falls below 0.06. Z; g is the value of a feasible solution to the
CGC problem obtained by the manual heuristic described in chapter 4 using
interactive graphics. Z;g J is the value of the upper bound obtained by SSR at the
jth iteration. Note that if ZUBj = Z R, then the SSA procedure is terminated with

Z; p being the optimum solution.

3.6.2 SSA Procedure

In this section we present the complete procedure used in an attempt to
minimize the upper bound Zyyg [equations (17)-(18)] obtained from the SSR
of the CGC problem (section 3. 4)i. e. to solve problem (21)-(22). The

SSA procedure is then as follows :

(1) Choose initial values for the weights q;. No good indication exists on how to

determine good starting values - we used q;=0 V i=1,..,m

(2) Solve the relaxed DP recursion [equations (16) - (18)] to obtain the

Chapter 3 92

optimal value Zyjp relative to the current set of qi' s , by performing the DP

procedure of section 3.5.1.

(3) Check if the DP solution ¢ (=c;) is a feasible solution to the original
problem, i. e. if ¢; £Q; V i=1,..,m If yes, stop ; otherwise continue. If

ZyB < Zpyj, (the minimum upper bound obtained so far) then update Zp,;, with
Zinin =ZyB-

(4) Modify the set of q;' s using one of the four Formulae of section 3.6.1.

(5)Goto (2) toresolve the relaxed dynamic program with this new set of

weights unless a sufficient number of SSA iterations has been performed.

At the end of the SSA procedure, the optimal solution to the original CGC
problem may have been found (Step 3), but if not the best bound (Zy,;,) on the
problem has been obtained which can then be used in a tree search procedure to

solve the problem (Note that £(q*) = Z,;, in problem (21)-(22)).

3.6.3 Computational Results

In implementing the DP recursion given for the relaxed CGC problem
[equations (16) - (18)] on a computer, the strategies for generating the states as
well as for sequencing of recursive computations will significantly affect the
memory and processing time. The approach proposed for the implementation is

based on a trade off between time and space requirements.

Once F (o, Bp. Q) and G (o, By, Q) are found at the end of a SSA

Chapter 3 93

iteration, backtracking to obtain the generated cutting pattern for A can be done
easily when the full sets of maximum value functions and their corresponding
optimal decisions are stored in RAM. However, our empirical results suggest that
only small - size CGC problems can be solved using this computer implementation,
since a DP solution memory space is almost always the dominating limiting factor.
One possible alternative to circumvent the difficulty, is to store the value and the
optimal decision for each set (x, y, Sxy) on a peripheral device when F(x,y,
Sxy)and G (x, y, Sxy) are computed and retrieve them at the time of
backtracking. In this case, we consider the increase in processing time for
backtracking be well worth its cost. Note that reading from and writing to a

secondary storage device can be computationally very costly.

The computer code for the SSA procedure described in Section 3.6.2 has
been written in FORTRAN and tested computationally on a variety of problems run
on a CYBER - 855 machine. In the DP implementation, the six memory grids Fy
(%99), P (X,¥.9), Y (% ¥, q), G (X,¥,9), ¥ (X, ¥,q) and &
(x,Y,q), defined in section 3.5.1, are stored on a secondary storage device for all

k = 0,1,..,n foraparticular SSA iteration .

Tables 3.10 and 3.11 present the computational comparison of the four
Formulae given in section 3.6.1 for the modification of the weights q;. The SSA
procedure was applied on a set of 9 test problems randomly generated, including up

to 20 types of pieces in R required to be cut from a large rectangle of size

(40,70).

The first five columns in Tables 3.10 and 3.11 give details about the test
problems. These details include for each problem: the size of Ag, the number of

types of pieces in R, the sizes of the normal sets and value of the optimal solution,

Problem Details of Test Problems l Results of Rule | Results of Rule 2 Results of Rule 3
Optimal "Best Number Time Best Number Time |[Best Number Iime
Number (aO,BO) m |L| le solution [JUpper of Q(UB1)| to) Upper of Q(uB2)| to |Upper of |Q(UB3) to)
(2) | Bound |Itera- obtain | Bound Itera- obtain [Bound [itera- obtain
°pt ~ f (wsl) [tions uBl (UB2) |cions us2 |(uB3) fions UB3
I (10,1005 | 8 9 135 135% | 2 2 |o.5 135* 2 0.7 |3s*| 2 4 |o.8
2 (15,10)} 7 12 10 244 244* 4 s |3.4 244* 3 6 3.2 244* 2 5 1.6
3 (20,2007 |17 17 500 517 | 20 48 |680 517 20 1 | 2804517 | 20 | 56 | 862.7
4 20,30 10} 11 23 1755 1755° | 4 3 4.8 1755" 3 "3 | 4.3 |arssT| 3 5 |6.3
5 (30,30)] 7 23 15 1074 ||l7b 17 47 1177 1117 20 30 1114.7 I|l7b 18 47 1305.6
6 (30,40)| 8 |26 17 1351 14212] 19 41 |1500 1aas? | 36 1500 | 1435%] 16 | 36 1500
7 (30,50)} 10] 26 17 1653 1716 20 27 1037 .5 1790 20 16 613.8] 1761 20 17 724,
8 (40,70)[10| 29 56 2892 2902° 19 {1500 2902 5 20 | 1500 | 2893 s | ;9 1500
9 40,70f 20 25 55 1860 1860"| 9 20 [1s00 | 1940 s 23 | 187.2) 1940®] 4 |47 | 404.9
Table 3.10 The State Space Ascent (SSA) Procedure Using Three Different

a Time Limit

b Q attained its maximum value allowed for the computation of Bound

Formulae for the modification of the weights q;

*¥ Optimum solution found by the SSA Procedure

¢ 1adeyd

¥6

Problem Details of Test Problems Results of Rule 4
Number (aO,BO) m ||L] |w| | Optimal Best Upper | Lower | Duality |No. of |Q(UB4) | Time in
Solution Bound Bound | gap (r) | SSA iters CYBER-855
z_) (UB4) (z..) yA seconds
opt LB
*
1 (10,10) 5 8 9 135 135 135 - 2 2 0.2
*
2 (15,10) 7112 10 244 244 244 - 5 3 3.6
3 (20,20) 7117 17 500 517 467 3.47% 20 11 152.3
*
4 (20,30) 10 {11 23 1755 1755 1755 - 8 13 63.4
5 (30,30) 7123 15 1074 l|l7. 1020 4.0% 20 21 555.8
6 (30,40) 8 126 17 1351 14452 1351 6.97 15 36 1500.0
7 (30,50) | 10 |26 17 1653 17202 1643 4,07 17 31 1500.0
8 (40,70) | 10 |29 56 2892 28932 2698 0.0% 6 35 1500.0
*
9 (40,70) | 20 |25 55 1860 1860 1860 - 3 15 214.2
Table 3.11 The State Space Ascent (SSA) Procedure Using a Subgradient

a Time Limit

Method for the modificati~n of the weights q; -

Optinum solution found by the SSA Procedure

¢ wdey)

$6

Chapter 3 96

this being found by the exact algorithm described in the following section of this
chapter, which solves the CGC problem. To form an idea of the computational
performance of each formula for modifying the weights, we also give for each
problem, the best upper bound (Z,;,) obtained from the SSA procedure (let
UB1, UB2, UB3 and UB4 represent the value of Z ;, when Formulae A, B, C
and D are used respectively), the number of iterations required and the time taken to
reach this value (the time is given in CYBER - 855 seconds) and the maximum

value of Q attained during the SSA procedure

m
(Q=Z Qiqi)‘
i=1

(For the " subgradient " type formula, the value of the feasible solution - Zj g -

used is also given for each problem).

A maximum number of 20 iterations and a time limit of 25 minutes (
CYBER 855 - FIN5 compiler) were imposed. A maximum value of Q was also
set for each test problem, depending on its size, as a result of limiting memory
requirements. Whenever the SSA procedure succeded in finding the optimal
solution, a star (*) is added to the value of Z,;,. Alabel (a)or (b) addedto
the value of Z,,;,, mean that the respective SSA procedure is terminated by a
preset time limit or the maximum value of Q allowed for the computation of the

bound is attained, respectively.

From Table 3.10 itis clear that the first three formulae perform very well
for the 9 problems. The quality of the bound is the same for the first five problems.
For the four largest problems, the best out of the three values is always within 5 %
of the optimal solution. In particular, the SSA procedure found the optimal
solution for problems 1, 2 and 4 using either of the three formulae. For problems

6, 7 and 9, UB1 performed considerably better than UB2 and UB3, namely the

Chapter 3 97

value of UBI is nearer to the optimum solution by approximately 4 % and 3 % on
average, than the corresponding values of UB2 and UB3, respectively, for these

problems.

To test these formulae even further, we need to compare the rate of
convergence and number of SSA iterations performed. Figures 3.5 - 3.13 plot
the various bounds obtained by the SSA procedure for all test problems using the
four formulae, one at a time, as a function of the number of iterations in the ascent
procedure. These plots clearly show that UB1 and UB4 converge much earlier than
UB2 or UB3, particularly for problems 3,5, 6,7 and 9. As a result of better
convergence, Formula A and D are more likely to require a lower computational
cost. Furthermore, the figures suggest that for most of the problems, the largest
step towards optimality is achieved during the first few iterations (4 to 5)

indicating quick convergence of the SSA procedure.

The above results suggest that a " subgradient " type formula would work
better than the first three. Indeed, from Table 3.11 it is clear that UB4 performed
Better than UB1. The quality of these two bounds is almost the same for all
problems. However, the number of iterations in the ascent procedure is smaller for
the last four problems when Formula D is used, resulting in quicker convergence of
UB4. Furthermore, the subgradient method requires lower computational cost,
particularly for problems 3, 5 and 9. The maximum value of Q required for the
computation of UB4 is lower for 5 out of the 9 problems tested, meaning that the
SSA procedure is more likely to solve larger CGC problems when Formula D is
used (as a result of limiting memory requirements). Note that the value of Q
obtained at consecutive SSA iterations, when UB1 is used, can be expressed as a

monotonically increasing function of the number of iterations.

Chapter 3

145
I 143
o
[=
3
o 1M
139t
137
Zopf
135 -
0 1 2 3 4 S SSAlterations
—p
Figure 3.5 State-Space Ascent for Problem |
249
I 248
- :
\
m 247 UB1 \ UB4
V4
\
26 '-\
245 \
\
3 Zopt
244 3; =
0 1 2 3 b —§+ SSA TIterations
Figure 3.€

State-Space Ascent for Problem 2

98

Chapter 3

5601
5501
540 4
530
520
510 1
/zop?
500
2
0 2 L § 8] 1 1% 16 B 20
— SSA [terations
Figure 3.7 State-Space Ascent for Problem 3
2900
a
c
3 26001
[19]
I 23001
2000
.,Z opt
170
=~
0 Z 4 6 8

—SSA Iterations

Figure 3.8 State—~Space Ascent for Problem 4

Chapter 3 100

1300

150

100

1050

1000

1650

1600

——

1550

Bound

1500

1450

4

P 3 I3 8 10 12 14 16 18 2
' —= SSA [terations

Figure 3.9 State-Space Ascent for Problem 5

v Zopt

2 o 6 8 10 1 14 16 18 0
—— SSA lterations

Figure 3.10 State-Space Ascent for Problem 6

Chapter 3 101
2100

2000

Bound ——

1900

1800

1700

0 2 A [) 8 10 12 1% 16 18 20
——= SSA [terations

Figure 3.11 State-Space Ascent for Problem 7

2990
2970
2950
2930

29%

Zopt
(/ P

2890

0 1 2 3 & 5 6 7 8 9 10
——o SSA lterations

Figure 3.12 State-Space Ascent for Problem 8

102

Chapter 3
23004
22004
-
c
3 1w
2000
1900
1800
?
0 1 2 3 4 S 6 7 8 9
~—» SSA [terations

Figure 3.13 State-Space Ascent for Problem 9

Chapter 3 103

The computational experience derived from the results of the SSA procedure
applied to the problems presented above, shows that this method finds high quality
bounds for medium-sized CGC problems, provided an efficient way of modifying
the weights assigned to the pieces in R can be found. Formulae A or D seemed to be

a good choice for satisfying this requirement.

For problems, in which the optimal solution has not been found by the
procedure described so far in this chapter, the bounds obtained can be embedded in a
tree - search algorithm used to solve these problems exactly. Such an algorithm is

developed in the following sections.

3.7 An Enumerative Agorithm for the CGC Problem

An enumerative algorithm is a method guaranteed to find an optimal solution
to a problem by reducing it to a finite number of solvable problems within a finite
computation enabling us to use a branch - and - bound approach. In any branch -
and - bound procedure the calculation of bounds on the value of the solution to a
remaining problem (at some node of the tree) is of the utmost importance to the

efficiency of the algorithm.

In the following sections, we apply such a solution procedure to the CGC
problem as it has been defined in section 3.2. First we describe a tree - search
procedure that generates all possible cutting patterns of the rectangles on Ag without
duplication. This enumerative algorithm is based on the procedure used by
Christofides and Whitlock [1977] for solving the constrained two - dimensional

guillotine cutting problem. We then show how a bound can be incorporated into the

Chapter 3 104

above tree so as to limit the amount of search necessary in order to solve the CGC
problem. A bound derived from the SSA procedure in the way described in

section 3.6.2 is used during the search.

3.7.1 Enumerative Procedure

The process of cutting rectangles of various sizes from A() and allocating to
them pieces in set R, can be recorded in terms of a tree, which is described below.
Branchings in this tree represent cuts on a rectangle. Thus, the branches emanating
from the root - node of the tree correspond to all possible cuts on A, and each node
at the end of a branch represents the rectangles produced by the corresponding cut
on Aq. Eachnode n represents a state of rectangle Ag after cutting has taken
place. This is described by the list F of rectangles produced by the sequence of cuts
corresponding to the path that leads from the root of the tree to node n. InList F
each rectangle is identified by a four - part label (x, y, r, s) where (x,y) are the
dimensions of the rectangle and r and s are integers representing the lengths and
widths, respectively, at which cuts can be made on rectangle (x,y). A rectangle
is then selected from list F, used to represent a node n, and branching occurs from

this node by making all possible cuts on the chosen rectangle.

Let a rectangle e with label (x, y, r, s) be chosen for cutting by the
enumerative procedure at a particular node n. Then the sets of " all possible cuts "
that can be performed on rectangle e parallel to the y - and x - axis are given by L'
={0,1,2,..,x-1} and W' = {0, 1,2,..,y-1} respectively,i.e. re L’
and s € W'. To generate all possible patterns, we must include an artificial cut,
referred to as the " 0 - cut ", that leaves the rectangle intact. (Note that a rectangle

that has been " cut " by a 0 - cut must not be a candidate for future cutting and must

Chapter 3 105

- from that node onward - be considered fixed). If all X-cuts at any position reL'
and Y - cuts at any position s € W' are made, producing (x +y - 1) branches,
then the sets of rectangles represented at successive nodes will be duplicated at
several nodes because of the appearance of symmetrical cutting patterns. These
duplications can easily be removed in a way that is best shown by the simple
example illustrated in Fig. 3.14. Let the chosen rectangle (x, y) be cut into
smaller rectangles, A and B byan X-cutat r = a (€L'). When the cut is made
at r=x-a((x-a)eL"), which is symmetrically opposite to the cut at r=a with
respect to (X, y), the second pattern shown is produced. (Although this example
appears simple it becomes far more complex when rectangles A and B are also cut
further). In this case, duplication can be avoided without missing any unique
cutting pattern by limiting the set of X -cutsto L'={0,1,2,..,[x/2]}
where [x/2] means " the greatest integer not greater than ". Similarly, set W'

of the Y - cuts can be redefinedtobe W'={0,1,2,.., [y/2]]}.

Central to the enumerative procedure is the concept of cut ordering. This is
best shown by the example illustrated in Fig. 3.15. Let the chosen rectangle (x, y)
be cut into two smaller rectangles (a,y) and (x-a,y)byan X-cutat r=a
(eL"). A second X - cutperformedon (x-a,y) at r=b (€L') such that a<
b <[(x-a)/2] at some successor node results in producing three rectangles A,
B and C. The same set of rectangles is generated by the second pattern shown
where the numbers next to the X - cuts indicate the order in which the cuts are
made. This type of duplication can obviously be removed without missing any
unique cutting patterns by introducing an arbitrary cut ordering so that if a rectangle
(x,y)iscutat, say, r=q, then all subsequent X - cuts on the two resultant

rectangles must be greater than or equal to o.

The restrictions imposed by both the symmetry and cut ordering effects on

Chapter 3

Figure 3.14 Effect of Symmetry

Figure 3.15 Effect of Cut Ordering

Chapter 3 107

the cutting patterns produced by cutting a rectangle (x, y) into two smaller
rectangles (o ,y) and (x-0,y), iinply that for the larger of the two resultant
rectangles, (X - o, y), the range of X - cuts is now limitedto o< r <[(x - a0)/2]
and, in particular, if [(x-a)/2]< a no further X - cut on that rectangle need
be made. For the smaller of the two resultant rectangles, (¢,y), the restriction
imposed by the cut ordering implies that no further X - cut is possible. A similar

kind of restriction can be imposed on the Y - cuts.

The consequence of symmeitry and cut ordering, as explained above, is to
eliminate from explicit consideration different sequences of cuts when these lead to
the same final cutting pattern. The search involved in the enumerative procedure is
limited further by the use of the idea of Normal Patterns as these are explained in
section 2.3.1 of chapter 2. Thus, without any loss of generality, we redefine the
sets L' and W' described above to be given by L= {rlreL, reL} and w
={sl seW, se W } respectively, where L and W represent the sets of

Normal cuts as these are defined in section 3.5 of this chapter.

3.7.2 Description of Enumerative Algorithm

In this section we present the implementation of the enumerative procedure
as described in section 3.7.1. The data structure employed, is based on the
representation of a rectangle (x, y) produced during the search at node n by a four
- part label (x,y,r,s). The meaningof r and s, where, reL and s e\TV, is as
follows :

If 1<r<[x/2], then the next cut to be considered on rectangle (x,y) -
if this rectangle is chosen for cutting - isan X -cutatposition r. If r=[x/2] +1

and 1<s<[y/2] thenthe nextcuttobe madeon (x,y)isa Y -cut at position

Chapter 3 108

s. fr=[x/2]+1 and s=[y/2]+1,all feasible X - cutsand Y - cuts on
rectangle (x,y) have becn performed and the next cut to be madeisa O - cut. Ifr
= 0, we infer thata 0 - cuton (x,y) has been made and this rectangle is not to be
cut further by any branching following node n. Note that only one rectangle is cut

at a node.

The state of the search procedure in the tree is described by the List F of
four part labels corresponding to rectangles produced by the cuts so far. This list is
updated for forward and backward branchings. Let a rectangle (x;, ¥) from list F
be chosen for cutting at node j, then two more values x'j and y'j are added to the
vector associated with node j, where x'j and y'j represent future X - or Y- cuts

on (Xj > Yj) being obtained as explained earlier.

The algorithm, based on an exhaustive search as a result of the introduction

of the 0-cut, is then described as follows :

(1) Set LEVEL=1 and F= { (0g,Bp) }.

(2) Ifthereis arectangle in F which has not been cut by a 0 - cut, then call it
E and remove it from F; otherwise if LEVEL =1 stop, else go to 4.

(3) Forward branching : Set LEVEL = LEVEL + 1, perform next cut on
E and add the resulting rcctangles into F. Goto 2.

(4) Backtracking : Set LEVEL = LEVEL - 1, remove the rectangles produced
by the lastcuton E from List F.If the last cut made was a 0 - cut then
goto (5); otherwise goto (3).

(5) Addrectangle E backinto F since all cuts on E have been completed,
and call the rectangle cut at level (LEVEL - 1) of the tree the new E.
Goto (4).

Chapter 3 109

3.8 A Tree - Search Algorithm for the CGC Problem

Section 3.7 gave an enumerative algorithm for the CGC problem that
could generate all normal cutting patterns for rectangle A with respect to a given
set R={ (0o, B;), i=1,..,m} requiring at most Q; pieces of type i (i=1, ...,
m) to be cut from Ag. The algorithm generates all cutting patterns without
symmetric duplications and without explicitly considering different sequences of
cuts when these lead to the same cutting pattern. However, in this algorithm no
special consideration has yet been given to the fact that the CGC problem has been
formulated as a dynamic program described by recursion (16) - (18) of section
3.5. The purpose of this section is to develop a tree search algorithm, that limits the
enumerative search necessary to determine an optimum solution to the CGC
problem, by using the bound derived from the SSA procedure described in section

3.6.2.

A description of the proposed algorithm is presented below :

(a) Perform the SSA procedure at the initial tree node obtaining an upper
bound Z;,, on the solution of the problem to be considered.

(b) Choose a node of the tree and pick an uncut piece associated with this node
to branch on - i.e.we will investigate making all possible cuts on the
chosen rectangle. Note that if no tree node can be found the search is
terminated.

(c) Calculate an upper bound Z* for the optimal completion of each new node
in the tree.

(d) If anew feasible solution is found at step (c) with value vAl greater than
the value Z of the highest feasible solution currently available, then an

improved solution has been obtained; Z* can then replace Z and

Chapter 3 110

backtracking can occur.
(e) Discard any nodes in the tree that have an associated upper bound Z" less

than Z and goto (b).

3.8.1 The computation of Bound at the initial node

The SSA procedure described in section 3.6.2 is carried out at the initial
node of the tree using Formula A for the modification of the weights q;. Let N be
the number of SSA iterations performed. Also, let ZUBj and Pl = { qij li=1,
..., m } represent the value of the upper bound obtained by SSR at the jth SSA

iteration and the associated set of weight g;'s, respectively. Then

denotes the largest value that state q can take in the relaxed DP recursion [equation

(16)-(18)]atthe jth iteration (j=1, .., N).

If no optimal solution to the CGC problem is found at the completion of

the N iterations, the procedure determines the best upper bound on the solution by:
Zmin=min { Zygl | j=1,.,N.}

Note that in case of more than one upper bound being equal to the minimum value,
we choose the one associated with the smaller value of QJ. The set P* of weights
that gave Z,;, is then recalled to be used in the calculation of the minimum upper

bound

Chapter 3 111

m
(Q*= Zl qi Qi)
cllzeP*

Once F, (ag, Bo. Q*) and G, (o, Bo. Q*) are computed for this iteration, a
single dynamic programming table V, (x,y) is constructed in the following way :

Vc(x’}')‘:Fn'(x’y’Q*) if Zrnin = Fn(“O»BO’Q*)
=Gy (x,¥,Q")if Zpi, = Gy (e:o,go,Q*)

V¢ (x,y) represents an upper bound on the constrained solution to any rectangle

(x,y), 1< x <0y and 1 <y < B The four memory grids Py (x,y,q),

W (%Yy.9) ¥(x,y,q) and & (x,y, q) associated with Z.,, stored ona
secondary device for all xeL, yeW,q=0, .., Q* and k = 0,1,..,n are
retrieved by the DP procedure of section 3.5.1 to discover the nature of the cutting
pattern associated with any V. (X, y) value. Thus, a matrix Rect (x,y, i) is
generated forall x e L,y € W and i = 1, ..., m to represent the number of pieces c;
of type i in R required to cut any rectangle (x, y). All the entries for this matrix
are obtained fromthe solution calculated for the initial rectangle A). Note that tables

V. and Rect are written to RAM so that they are available for later use.
3.8.2 The computation of the Bound at the Tree nodes
The state of the search procedure at a tree node n (as mentioned earlier)

is described by the List F of rectangles produced by the sequence of cuts

corresponding to the path that leads from the root of the tree to node n. Let those

Chapter 3 112

rectangles that have had a 0 - cut made on them form the subset Hp<F. The
rectangles in Hg will not be cut at anj' node below the current node n and in the
final pattern will have some piece from the set R fitted in them - there is exactly one
piece from set R fitted into each rectangle in H - because the " waste " is not cut
away by the algorithm itself. The allocation of pieces in R to rectangles in Hg can

be done in an optimal fashion as follows :

Form a matrix [a;] with m rows corresponding to the pieces in R and
u columns corresponding to the u (say) rectangles (xy, yj) in Hp. Set aj =v;

if oy < x and B; < yy and aj = -eo otherwise.

The best feasible allocation of pieces to rectangles is then given by a

solution to the transportation problem:

m

u
Max Vo= 3 A Zik

k=1 i=

subject to

m
Z Zy <1
i=1

Chapter 3 113

The solution to this problem is made very simple by the special structure of
the [a;)] matrix, and the problem can be solved by an efficient transportation
routine (Christofides and Whitlock [1977]). V- then represents the value of the
transportation solution for all rectangles in Hpy and §; the number of pieces of type
iin R (=%z ik) used by the above solution. Note that at a terminal node (i.e.a
node at whli(zli all rectangles in the List F have had 0 - cuts made on them), Vis

the value of the cutting pattern corresponding to that node.

The rectangles in F that have not had 0 - cuts made on them are liable, at
future branchings, to be cut further into smaller rectangles and, hence, may be
allocated several pieces from R in the final solution. It is, therefore, not possible to
use the transportation routine to calculate an upper bound for these rectangles, as this
only allocates one piece per rectangle. Thus, V. (x,y), derived from the solution
for the initial rectangle Ag and calculated only once at the initial tree node, as
described in section 3.8.1., serves as an upper bound on the value obtainable from

each rectangle (x,y) in F-Hp.

The procedure for calculating an upper bound at a node n is, therefore, to
solve the transportation problem for all rectangles in Hy) and to use table V. (x,y)
to obtain directly the constrained solutions for all other rectangles. The value of the

~ upper bound Z" is then given by :

Vet D, Vo(xy).
(x,y)eF—HO

The solution associated with Z* is feasible to the original CGC problem, if the
number of pieces of any type i(i=1, .., m) used by the current solution does not

exceed the maximum number available in R, i.e

Chapter 3 ' 114

5 + Z Rect(x,y,i) €£Q Vi=1.,m

Note that the major part of the computation of the upper bound at a tree node is the
solution of the transportation problem and this solution need take place only at nodes

resulting from some 0 - cut, i.e. only when the set Hy) of rectangles changes.

3.8.3 Node Selection Rule

We decided to develop the tree - search using a depth - first strategy,
starting with the leftmost branch, progressively developing the top to bottom
branches and working from left to right, slowly building up all complete normalised
cutting patterns in Ay, By going to the lowest level in the tree as rapidly as possible,
although at the expense of te@pormly ignoring potentially more promising
branches en route, feasible solutions are generated at early stages in the search,
which can then be used to prune the tree and hence reduce the area of search

n'ecessary.
3.8.4 Branching Rule

The choice of which rectangle from the List F of available rectangles at a
particular node n is to be cut has been left unspecified. Three possible ways in

which this rectangle can be chosen are given below:

(i) One simple method is to select the " smallest " rectangle produced at node n

using the following procedure: first pick that rectangle 5 with minimum x-dimension

Chapter 3 115

X and if more than one such rectangles exist , then choose among these the one with

the smallest y-dimension ¥ - Similarly, the " largest " rectangle could be chosen.

(ii) An alternative method is to select that rectangle (x, y) for which the
constrained DP solution gives the highest V.(x, y) value; this is a simple and
computationally inexpensive method since this value is used in the calculation of

bounds.

(iii) A slightly more complex branching strategy that aims to obtain a feasible

solution early on in the search is as follows. At node n, it is obvious that

8i+ Z Rect(x,y,i) > Q

(x,y) e F-H

for at least one i=1, ..., m ; otherwise no branching would have been possible since

a feasible solution would have been obtained. Let i* be that piece i for which

6i+ 2 Rect(x,y,1) - Q

(Xy)’) € F'HO

is maximum. Then by reducing the number of pieces used for type i*, the largest
step forward feasibility would be produced. With this in mind, one could then
choose to cut the rectangle that uses the largest number of pieces of type i* in the

constrained solution.

Chapter 3 116

3.9 Computational Experience with the Algorithm

We tested the effectiveness of the tree-search algorithm, described in section
3.8, on 15 randomly generated problems using:
BOUNDS: The bound of DP recursion given by equations (16) - (18) with the
State-Space Ascent described in section 3.6 (Note that formula A for modifying the
weights in the SSA procedure is used).

BRANCHING: Branch selection rule (iii) of section 3.8.4.

The random problems were produced as follows: The dimensions ¢; and
B; of each piece in R were generated by sampling two numbers from the uniform
distributions [1, 0.750p Jand [1, 0.75[30], respectively. The value of each piece
v; was calculated using the formula v; = k; o B; where k; is a uniformly
distributed random number in the range 1 to 1.5. Finally, the constraints Q; on each
piece in R were sampled from the uniform distribution [1,3]. All values o, Bi, V4

and Q; were then rounded upward to the nearest integers.

The computer program used to produce the computational results was coded
in FORTRAN and run on a CYBER 855 computer, under the FTNS compiler. All

computing times shown are in CP seconds.

Table 3.12 describes the performance of the tree-search algorithm on the 15
CGC problems. The first 9 problems have already been used to test the SSA
procedure of section 3.6 (Tables 3.10 and 3.11). The table shows, for each
problem, the size of the stock rectangle A, the number of types of pieces in Rand
the sizes of the normal sets L and W, being calculated once at the beginning of the

solution procedure. The best upper bound Z,,,;, obtained for each problem, by the

Chapter 3 117

SSA procedure performed at the root node of the tree is given, together with the
number of iterations required and the time taken to reach this value; the value of the
optimum solution Zopt is also given as well as the number of nodes generated in
the search and the total time required to solve the problem (the total time recorded
includes the time spent at the initial node of the tree). A measure of the gap
between the value Z ;. and the optimum is calculated for each problem. Asa
means of comparison, Table 3.13 shows the results obtained, by applying the
algorithm described in chapter 2, to these 15 test problems when no constraints are
placed on the maximum number of pieces to be cut (UGC problems). Note that the
normal sets L and W are expected to be of larger sizes in the case of unconstrained

cutting.

As described in section 3.6.3 of computational results obtained by the SSA
procedure, a maximum number of 20 iterations was imposed and a maximum value
of Q was set by the SSA procedure, for each test problem, as a result of limiting
memory requirements. Time limits of 1500 and 800 seconds were imposed at the
root node for Problems 1 to 9 and 10 to 15, respectively. The restriction for the
second set of problems, of spending less time at the root node was based on the
observation that a very fast ascent in the bound occurs within the first few SSA
iterations and a small improvement in the value of the bound may be achieved during
later iterations at the expense of extra computational cost (the results shown in

figures 3.5 to 3.13 are typical of all the problems tested).

From Table 3.12, it is clear that most of the time required to solve a problem
optimally, is spent at the root node of the tree. In other words, the major part of the
computational cost is used by the SSA procedure, to obtain a good upper bound on
the solution of the problem. In fact, 4 out of the 15 problems tested, were solved

optimally without requiring any branching, namely Problems 1, 2, 4 and 9. In order

Chapter 3 118

to compare these results with the performance of the tree search algorithm due to
Christofides and Whitlock [1977], we ran the code for their algorithm on the
CYBER 855 computer for Poblems 1 to 7. The optimum solutions for Problems 1,
2 and 4 were obtained by generating a tree search of 253, 3794 and 988 nodes, for
each problem, in 2.3, 69.8 and 27.8 CP seconds, respectively. Furthermore, using
the same algorithm, Problems S, 6 aﬁd 7 required 58609, 93178 and 43919 nodes
each, to be generated in 1430.5, 2519.4 and 1320 CP seconds, respectively,
compared to 12067, 22556 and 23315 tree nodes obtained by our algorithm, in
1202.1, 1613.3 and 1270.1 CP seconds for each problem. Only in Problem 3, the
SSA procedure required approximately 215 CP seconds more, to generate a bound
within 3.4% of the optimum, than the overall time needed by their tree-search

algorithm to find the optimal solution for the problem.

From the above results, it is clear that the SSA procedure is an efficient
method for producing good upper bounds on the optimal solution of CGC
problems. Clearly, the quality of the bound (described by the duality gap) depends
on the size of the problem. For larger problems, the number of SSA iterations,
performed at the root node, tends to be smaller as a result of limiting memory
requirements and high computational cost, and the number of nodes generated in the

search tree larger.

An example of the data and the optimum solution for a CGC problem
(Problem 8) obtained by the tree-search algorithm, described in this chapter, is

presented in the last section of chapter 4.

Problem Prublem Data Initial Tree Node Tree Search
Number ' Upper | Duality | Number Time Optimum Number of | Total time
Bound | gap (r) | of SssA Q(UBlP CYBER-855 | solution Tree CYBER-855
(ag,8,) [m [1L] W]
0’0 Zoia % Iters seconds yA Nodes seconds
opt_

v oo, [s 8 of 1asy]| - 2| 2| o 135 - 0.5
2 (15,10) 7112 10| 244 - 4 5 3.4 244 - 3.4
2 220,20) 7147 17| 517, 13.42 20 48 680 500 4976 695.7
20,30) 10 {11 23 11755 - 4 3 4.8 1755 - 4.8

5 (30,30) 7123 15 lll7b 47 17 47 1177 1074 12067 1202.1
6 (30,40) 8126 17114212 |5.12 19 41 1500 1351 22556 1613.3
7 (30,50) 10126 17 {1716 3.8% 20 27 1037.5 1653 23315 1270.1
8 (40,70) 10 129 56 2902i 0.37 7 19 1500 2892 31755 2101.4
9 (40,70) | 20 {25 55 {1860 - 9 20 | 1500 1860 - 1500.
10 (40,60) 5112 13 {2513 27 20 20 86.1 2462 14 94.7
11 (50,70) 8 |43 35 4238: 3.6% 6 16 800 4091 303,435 1552.3
12 (70,80) | 8 |54 38 [6740% | 4y 5 1 13| 800 6478 138,697 1444.0
13 (60,80) 10 {52 38 |5957% |6.3% 5 16 800 5604 421,593 2170.7
14 (70,90) 10 |54 38 |7710? 17 5 17 800 7200 171,801 1321.8
15 (80,100) | 10 |64 38 {98112 8y 4 13 800 9077 135,485 1653.7

a

*

Time limit at Root node
b Q attained its maximum value allowed for the computation of Bound

Optimum solution found at Root node

Table 3.12 Computational Results of Tree Search Algorithm

¢ 1adey)

611

Chapter 3

Problem Problem Data Optimum Total Time
Number Solution | CYBER-855
(ao,eo) m | |L] |w] Zopt seconds

1 (10,10)] 5 8 9 145 0.2

2 (15,1001 7 [14 10 249 0.4

3 (20,20)| 7 |17 18 559 0.9

4 (ZQ,BO) 10 113 23 3920 0.6

5 (30,30)| 7 |23 21 1275 1.0

6 (30,40)| 8 |26 .26 1650 1.7

7 (30,50)(10 {26 30 2025 2.0

8 (40,70)[10 {29 56 3076 - 7.6

9 (40,70){20 |26 55 2240 4.7

10 (40,60)| 5|16 28 2910 1.3

11 (50,70)] 8 |50 50 4698 15.3
12 (70,80)| 8 |70 53 7616 37.9

13 (60,80)|10 |60 53 6282 39.6

14 (70,90)|10 {70 58 8526 42,7

15 (80,100){10 |80 61 10689 58.8

Table 3.13 Unconstfained Results for Problems | to 15

of Table 3.12.

120

Chapter 3 121

3.10 Conclusions

In this chapter, we studied the application of the State-Space Relaxation
technique to the CGC problem. A state space ascent method was used to optimise
the bounds derived from it, which were then embedded into a tree-search algorithm
developed to solve the problem optimally. The computational experience of the

algorithm, shows that:
(i) SSR performs reasonably well for CGC problems of medium size.
(ii) The algorithm is an effective procedure capable of producing a considerable

improvement on the results obtained by the algorithm presented in Christofides and

Whitlock [1977].

Chapter 4 | 122

CHAPTER 4

TWO-DIMENSIONAL RECTANGULAR LAYOUT GENERATION
USING MICROCOMPUTER GRAPHICS

4.1 Introduction

A graphics problem of great interest to industry is that of optimum
two-dimensional layout. In many practical applications, an operator is given a
number of rectangular sheets and an order for a specified number of smaller
rectangular pieces. The objective is to cut the pieces out of the sheets in such a way
as to minimise the amount of waste produced and thus the number of sheets used.
Such problems appear in the cutting of steel, wood or glass sheets. A generalised
version of the above problem involves cutting from a number of large rectangles an
order for a specified number of smaller pieces, each of given size and value, the

objective being to maximise the total value of the pieces cut. If the " value " of a

{
piece is proportional to its area, then " value" maximisation is equivalent to waste

minimisation. In this chapter we will consider only cutting problems with a single

Chapter 4 123

stock rectangle. Depending on the technological process involved in cutting and on
the nature of the material to be cut, certain applications require the cut to be made
along a straight line from one edge of the sheet to another. Such cuts, referred to as
“ guillotine cuts ", are always required in the case of cutting glass and quite often in

the case of cutting wood or thin metals.

The increasing use of powerful interactive microcomputer systems allows a
much wider use of graphics. In this chapter, we present an interactive system with
graphical input-output for generating rectangular layouts for the Two-Dimensional
Guillotine Cutting Problem (GCP) described in chapter 3. The structure and the
main features of the system are described in this chapter. An experimental version
of the system, referred to as the Graphical Layout Generator has been designed and
implemented on an IBM-PC computer with a Colour Graphics Adapter and Screen.
For testing the effectiveness of the package we carried out the following two

experiments.

(i) A sample of 10 operators were required to solve 3 GCP's using the Graphical
Layout Generator, each problem involving 10 types of pieces to be cut from a stock
rectangle. The total time taken and the quality of the solution obtained by each

operator were recorded.

(ii) Two more experienced operators were asked to solve 9 GCP's using the
Graphical Layout Generator. The results recorded were compared with the
computational results obtained by applying the algorithm, described in chapter 3, to

the same set of test problems.

Before describing the proposed system, we present some basic

characteristics of interactive computing using graphics terminals.

Chapter 4 124

4.2 Computer Graphics

All use of computers can be regarded as a dialogue between a person and a
machine - information is requested by a computer user and results are returned by
the program, control parameters are changed and different results are returned and so
on. This dialogue is shown below as a communication cycle, together with the time

delays associated with the different processes in the cycle.

/—‘ Thinking ‘\

Tthink
Output Input
Tout Iin
_ Compﬁ'ﬁng ‘__/
Tcompute

This model applies equally to interactive or batch systems. The total time taken for

an idea to circulate round this loop is given by

T = Tihink + Tin * Tcompute * Tout

and the reciprocal of this is a measure of the speed at which the ideas are being

developed.

The user's time is divided into four phases - absorbing the information
returned by the computer, applying specialist knowledge to the problem, expressing

the idea in the form required by the computer program and waiting for the results to

Chapter 4 125

be returned. The computer system can assist the user in absorbing its results by
suitable presentation and can speed the expression of new ideas by allowing the user

freedom and flexibility in the language used.

The human operator has many peripheral devices for the reception and
transmission of data. Although this task is carried out by the use of natural
language, a wider view of communication with the computer can be achieved by
returning results from the computer as pictures and allowing the user to present ideas

by more general signals than simple typing.

Taking this brief introduction as a justification of computer graphics as a
desirable means to enhance the environment of a computer user, we give an outline

of the basic hardware and software available for use by an application program.

4.3 System Design

4.3.1 Background

Graphical methods were being used to illustrate the behaviour of O.R.
models in the early 1960's. During the 1970's the major development in computer
graphics was vector displays; these had a major impact on geometric applications
such as computer aided design; however they had little impact on O.R. It was only
with the arrival of raster displays (section 4.3.2) in the late 1970's and early 1980's
that there was a significant growth in the number of O.R. graphics applications.
This growth was motivated by the reduction in cost, increased speed, improved

software and physical portability of colour raster display graphics devices -

Chapter 4 126

especially when controlled by microcomputers.

4.3.2 Hardware

Firstly, a distinction is drawn between vector scan and raster scan output
devices. Vector scan devices display a series of lines as if they had been drawn by a
set of differently coloured pens, whereas raster scan devices generate solid blocks of
coloured areas. Secondly, we can distinguish between hard copy and refreshed

devices.

Since the Graphical Layout Generator application package was designed for
computer screens making use of colour, as an aid in manipulating and interpreting
the graphical data, in this section we will present the basic characteristics of a raster
scan display. The underlying idea is to divide the image space into a uniform grid of
small rectangles (called pixels), each of which is filled with a single colour. The
smaller the size of these pixels the higher the resolution of the displayed image. The
chromatic resolution is the number of different colours that can be put into an

individual pixel.

An IBM-PC, having an attached device driver that supports the IBM Color
/ Graphics Monitor Adapter (CGA), was used for the implementation of the
Graphical Layout Generator package. The graphical output on the IBM monitor, is
buffered in an array of 320 pixels across (pixel columns) by 200 pixels down (pixel
rows), with 4 bits per pixel producing the possibility of using 4 colours out of a

total possible number of 16 (Medium Resolution Mode of the CGA).

Chapter 4 127

4.3.3 Software

The past few years have seen the presentation of various graphics standards
for graphical input and output. The design for manipulating the graphical data used
by a GCP was based on an implementation of the Graphical Kernel System - GKS.
This system restricts its attention to two-dimensional images. Its use renders the
following structure: Picture components are specified using a model coordinate
system; the procedure is then to clip the image to a specified window, store
intermediate pictures in some device independent code, transform this to screen
coordinates for display and allow several independent viewpoints to be maintained

on a single screen.

It is possible to arrange the software that handles interactive graphics in
such a way that an application program receives the information in a standard way,
independently of the actual hardware used. The use of GKS, providing device
independent graphics, led to an efficient design of the Graphical Layout Generator
package; its implementation on the IBM-PC allows for various types of graphics

devices to interface to the system.
In the following section, we will describe the structure and the main features
of the Graphical Layout Generator package.

4.4 User Interface Design

The Graphical Layout Generator is an interactive graphics package for the

two-dimensional Guillotine Cutting Problem (GCP). Its purpose is to facilitate

Chapter 4 128

generating non-algorithmic solutions by having an interactive system with graphic
input-output to assist in the tedious and time-consuming manual method of trying to
cut optimally a stock rectangular sheet into a number of smaller rectangular pieces.
The manual process becomes more time-consuming and prone to errors as the
number of shapes to be cut from a sheet increases. The objective of the user
interface design is to retain the flexibility of the manual system, whilst exploiting the

processing power and methods of interaction offered by the computer.
The structure of the package is described below:

(i) The system displays the data for a particular problem.

(ii) The user gives information to the system interactively for generating a layout.

Once an input command is executed by the system, the displayed result can not be

modified while generating the current layout and the user can then only restart from

the beginning if he wishes.

(iii) The system checks for possible error conditions during the generation of the

current layout.

(iv) Once the solution procedure is terminated, the system calculates the total value

associated with the generated layout and informs the user of the amount of deviation
of his solution from optimality. The optimal solution is then displayed on the

graphics screen.
4.4.1 Problem Description
The Graphical Layout Generator is designed to handle only rectangular

shapes. The data for a particular problem is displayed on the screen and is described

as follows (see Fig. 4.1): A large rectangular sheet A(, described by its length oy

Chapter 4 129

and its width B is given together with a set R of m types of smaller rectangular
pieces R={ (o, By), ... (s By) } that can be cut from Ag. A type of piece
is identified by a number, representing the order in which it is presented; this
identification number will be used in the interactive stage. Every piece of type i in
R is described by its length o and width §; ; the reference point of a rectangular
shape is assumed to be its lower lefthand corner. Two more integer numbers are
associated with each type i, namely its value v; and the constraint Q; on the number
of pieces of this type that can be cut from Ap. An illustrative example of the
graphical data is presented in Figure 4.1. The objective for the operator is then to
construct a guillotine cutting pattern for A with the highest possible total value

using pieces from set R.

In order to distinguish between the given pieces in R and the rectangles
produced by the cuts on A at any stage during the cutting process, the former are
henceforth referred to as ' pieces ' and the latter as 'rectangles . To solve a given

problem, the operator must have in mind the following assumptions:

(i) A coordinate system is introduced, for convenience, with x-axis along the
bottom edge and y-axis along the left edge of the large sheet Ajy. In this way the
lower left-hand comer of A is referenced as the point (0,0). Using this referencing
method, cuts on the rectangles can be made in integer steps (all dimensions (o, Bi),
i =0, ..., mare integers) along the x of y axes. All cuts must be guillotine cuts (a
cut goes from one edge to the opposite one). There are no constraints on the
sequence of cutting.

(ii) The pieces are not allowed to rotate (90 degrees) i.e. the orientation of the
pieces is fixed.

(iii) The value of a piece is not necessarily proportional to its area.

(iv) Not all pieces available need to be used.

Chapter 4 130

4.4.2 Interactive Solution Approach

Once data for a particular GCP is displayed on the screen, the operator is
looking for a method of generating a layout having value as high as possible. The
apparently simple problem of cutting in the most efficient manner is, in fact,
extremely complicated to solve optimally. The operator is immediately faced with a
huge set of possible layouts, although restricting the permissible cuts to be of
'guillotine’ type, drastically reduces the number of available combinations. The
choice of a method for generating a layout clearly depends on the operator ; it can be
intuitive in nature, since. we are unable to characterise the optimum or near-optimum
layouts. An experienced user, having a better insight of the GCP, may develop a
more effective heuristic approach. However, the mechanisms that guide the search
for an efficient method must be derived from the problem environment. Heuristic

schemes are very dependent on the particular problem being solved.

The procedure available to the operator for the cutting of rectangles and the
allocation of pieces using the Graphical Layout Generator package consists of the
following three stages: rectangle generation (a rectangle is cut into two smaller
rectangles), piece allocation (a rectangle is filled by one of the required pieces given
in R) and termination of the current layout.. Each course of action is described
below in conjunction with the command language used in the conversational process
to carry out the relevant action. The notation used for the commands is simple.
Each command is entered by the user through an input device (keyboard). Once it
has been executed, the system displays its output and returns to a 'waiting state'

ready to execute another command.

A. Rectangles Generation : At any stage of the cutting process on Ag, at most three
parts can be distinguished : A part that is already filled during the allocation process,

Chapter 4 131

a part that has been discarded as waste and a part still to be examined. The current
part under examination consists of a number of rectangular shapes, each being
identified by a unique label (single letter) assigned to it as soon as it is generated.
The user then has to decide (i) which type to cut next, (ii) the type of guillotine
cut to be performed (i.e. parallel to the x-axis or to the y-axis) and (iii) the

position of the cut.

The format of the command used to input such a decision is given by

"St C" where
(1) S represents the label of the rectangle chosen for cutting.
(ii) t describes the type of cut made along a straight line from one edge of the
rectangle to the other: t = v if the cut is vertical, t = h if the cut is horizontal with
respect to the coordinate axes.
(iii) C is the co-ordinate of the cut which divides rectangle S into two further
rectangles. Note that the coordinate system described in section 4.4.1 is used. C
can take values in the range {1, ..., ag- 1} or {1, ..., By - 1 }. An example of the
command input by the user in order to generate two new rectangles by making a
vertical cut on a rectangle A, at a point lying 15 units away from its bottom left hand
comer, is given by " Av 15" . Inresponse to this command, the current drawing

on the screen is modified to display the new rectangles resulting from the cutting of

rectangle A which are automatically assigned identification labels by the system.

B. Piece Allocation : Once a rectangle has been generated and labelled, the user
then has to decide whether to cut it further or to fill it by one of the initial pieces
given in R. In the latter case, the system allows the user to allocate a piece by
inputting the command " S =i " where i is the identification number of the piece

and S the identification label of the rectangle.

Chapter 4 , 132

The generated rectangles can only be filled one at a time, and only one piece
can be allocated per rectangle. If a rectangle and its allocated piece are of different
sizes, then the unfilled area of the rectangle is discarded as waste and need not be
cut away by the user. dnce a rectangle has been through the allocation process, it is

excluded from further consideration during the generation of the current layout.

C. Termination of the current layout : The user may terminate the generation of the
current layout at any point in the interactive stage by inputting the command STOP
when the system is in a 'waiting state' ready to execute acommand. Termination is
requested by the user in two cases :

(1) when the generation of the current layout is actually completed i.e. no more
rectangles can be generated or there are no more pieces to be allocated or

(ii) when a modification of the curent drawing on the screen is desirable. In this

case, the user has to regenerate the current layout from the beginning.

4.4.3 Checking of Error Conditions

The design of the Graphical Layout Generator calls a command interpreter
routine in the interactive stage in order to handle the user commands and detect error
conditions in their processing. When one of the following errors occurs a relevant

message is displayed on the screen :

Rectangles generation : (i) The format of the i nput command is not correct.
(ii) The input identification label for the cut rectangle is
wrong.
(iii) The coordinate of the input cut is out of the permissible

range (infeasible cut).

Chapter 4 133

Piece allocation : (i) The format of the input command is not correct.
(ii) Allocation is not possible because of a mismatch between the
required piece and rectangle.
(iii) Allocation is not possible because there are no more pieces of

the requested type available to be allocated.

4.4.4 Display of Optimum Solution

Once a complete interactive solution has been produced for a GCP, the
system computes the total value associated with the generated layout and gives the
value and the percentage deviation of this value from optimality. The optimal layout
for the given problem is then displayed on the graphics monitor. The value and the
structure of the optimal solution for a given GCP are obtained using the exact

algorithm, described in chapter 3.

4.5 Experimental Results

In this chapter, a system has been described to produce interactively
guillotine cutting patterns of two - dimensional rectangular shapes on larger
rectangular sheets. The present program was designed so that an experimental
version of th¢ system would be available for demonstrative and educational
purposes. An efficient operational package was then developed by implementing
the Graphical Layout Generator on an IBM-PC computer in IBM FORTAN 2.00.
The package was organised so that it éan handle a GCP involving at most up to 10

different types of pieces to be cut from a single stock-plate of up to 100 units of size

Chapter 4 134

in x and y dimensions.

Two types of experiments were performed using the package, allowing
conclusions to be drawn on the quality of graphically generated solutions to GCP's.
The first experiment examined the human performance in producing optimal
solutions to three such problems. The second experiment evaluated the performance

of two more experienced operators on a sequence of test problems.

4.5.1 Design of Experiments

The test problems used in both experiments have been randomly generated
as described in section 3.9 of chapter 3 and the optimal solutions to these problems

are given in Table 3.12 of computational results of the same chapter.

In the first experiment, 10 operators were tested. Each operator was asked
to solve successively three GCP's of different complexity, each problem being
attempted only once. These problems. deal with stock-rectangles of sizes 30 by 50
units, 40 by 70 units and 70 by 90 units, respectively. Each problem involves 10
different types of pieces that can be used for cutting the given stock rectangle; there
are 1, 2 or 3 pieces of a particular type available. The three test problems chosen

were Problems 7, 8 and 14 of Table 3.12 (Chapter 3).

In the second experiment, each of two operators was asked to solve a set of
9 problems. The number of different types of pieces involved in each problem vary
from 5 to 10 and the stock-rectangle sizes range from 10 by 10 units to 70 by 80

units. The 9 test problems chosen were Problems 1to 6 and 11 to 13 of Table 3.12.

Chapter 4 135

4.5.2 Display Format

The main objective of an effective display design is the display of the
qualitative and quantitative type of information being coded at a level suited to the
viewer's needs, without allowing display complexity to interfere with the viewer's

performance. The use of colour aids in coding the displayed information.

The same display format was used for all GCP's and a typical example is
shown in Figure 4.1. A message " CUT: " followed by a black cursor is placed
below the stock rectangle to prompt the operator for a response. As the operator
types an input command to a 'waiting' state of the system, the response appears as

white text in the black cursor.

4.5.3 Experimental Procedure

The operators tested were all volunteers. The group was drawn from
Imperial College and consisted of academic staff as well as post-graduate students.
7 out of the 10 operators tested in the first experiment were familiar with computers.
3 out of these 7 had a considerable amount of experience in the field of combinatorial
optimisation and O.R. techniques whereas the other 4 were involved in the fields of
Engineering and Finance. The remaining 3 operators not familiar with computers

were from the Behavioural Sciences.

The operators tested in the second experiment both carried out research in
the area of O.R. Itis obvious that the selection of operators in this case was biased.
Indeed, the original intention was to obtain the best possible graphical solutions to a

given set of test problems using the Graphical Layout Generator, so that the

Chapter 4 136

effectiveness of an interactive graphical approach in solving GCP's can be

evaluated. The above selection seemed to offer an expected improved performance.

Each experiment began with an introduction given by the experimenter
(author) explaining what the operator had to do. The operator was then presented
with a practical example used to establish the method of responding to the Graphical
Layout Generator. Whilst the tests were being performed, the experimenter's role
was not to interfere with the solution procedure but to offer assistance if needed. The
operator was not restricted to solve a particular test problem within a certain period
of time and each problem was attempted only once. The experimenter was interested
in the overall performance of the operator as well as in the performance with time.
Thus, time was divided into intervals of S minutes and the quality of a graphical
solution generated by the operator was recorded for the first 3 time intervals. Oncea
solution procedure for a given problem is terminated, the operator's performance is
evaluated based mainly on two figures: the % within optimality of the solution value

attained and the total time taken.

During the tests, the experimenter recorded any comments the operator

made regarding the test and his solution approach.

4.5.4 Method of Response

The operator indicated when a response has been selected by pressing the
"ENTER" key. Prior to this a 'backspace’ key allowed the operator to delete a
displayed response without the computer executing the command. After "ENTER"
was pressed, the system displayed the result (either a new cut was generated or a

piece was allocated into a cut rectangle) on the screen and was then ready for the

Chapter 4 137

next response.

If an operator realised an undesired response had been typed after pressing
"ENTER" the package did not provide any facility for backtracking to the previous
prompt to revise the response (this is an interesting improvement to be

implemented).

4.5.5 Results of Experiments

The combined results for all 10 operators of experiment 1 are summarised in
Table 4.1. The results obtained for the 9 test problems of the second experiment by

2 operators are given in Table 4.2.

Average Sol. Time (mins) = Total Sol. Time (mins) / 10
Average % deviation from optimality = 100% * (1 - Sum of all Sol. Values /
(10 * Opt. Sol. Value))
Diff between Best & Worst Solutions (Range) = 100% * (Highest Sol. Value -
Lowest Sol. Vaifue) / Opt. Sol. Value

Results of the first experiment show that Problem 8 was clearly the most
complicated of all three with an average solution value being 16.9% away from the
optimum and requiring 5 more minutes on average to achieve. We must note that in
the data of this problem, most of the given pieces are relatively small compared to
the stock-rectangle. As the number of small pieces increases, a considerably larger
number of combinations of using them in cutting the large rectangular sheet are

available to the user, thus making the problem more difficult.

Chapter 4 : 138

The average performance for all problems indicates the following:

(i) There was a delay of 5 minutes for 70% of the operators for each of the 3
problems tested, between the time the operator was initially given the problem until
he actually started generating a solution. This interval of time was mainly spent by
the user in thinking about the various combinations of cutting the pieces or which
particular cuting policy to follow.

(ii) The three following types of solution approach to a GCP were adopted by the
users:

(a) First the pieces of larger area were considered for cutting. The operator
using this policy was basically interested in minimising the total amount of waste
produced. However, minimising the waste by cutting a large rectangle into smaller
pieces, or maximising the total value of the pieces produced will not necessarily lead
to the same optimum cutting pattern. For example, as can be seen from Table 4.2,
operator 1 obtained the optimum solution for test problem 1 with an associated waste
rate of 2%. Operator 2 generated a graphical solution for the same problem with a
value 6.7% away from optimality. In this case full utilisation of the stock rectangle
was made.

(b) Guillotine cuts were generated in a sequence that allowed the pieces of
larger value per unit area to be cut first i.e pieces were chosen in decreasing order of
the ratio of the value of a piece over its area.

(¢) Guillotine cuts were performed in a sequence that allowed pieces to be
cut from the larger rectangle in decréasing order of value. This approach was
applied successfully by operator 2 to solve all 9 test problems of the second
experiment. The results show that 3 of these problems were solved optimally and
the average solution value obtained for all problems is 3% away from the optimum.

Clearly this heuristic prc;vcd to be the most efficient in solving graphically GCP's.

In general, the results of the first experiment show that the average solution

Chapter 4 139

value obtained for a problem involving 10 types of pieces to be cut from a single
stock rectangle (of up to size 100 by 100) is expected to be at least 9% away from
optimality. The expected time taken by a user to generate such a solution using the

Graphical Layout Generator is approximately 14 minutes.

An example (problem 8) is used to illustrate how the Graphical Layout
Generator. package works. The displayed data for the illustrative example is
described in Figure 4.1. Figure 4.2 shows how an interactive solution to the
problem is developed by presenting the various drawings on the screen (working
display) of the large stock rectangle A after a user command is input to the system.
17 commands in total were required to produce a feasible solution to the problem.
Each displayed layout results from the execution of the command shown
underneath. The identification of a rectangle by a letter indicates that it is available
for further cutting; identification by a number implies that a piece has already been
allocated to it. The number next to a cut indicates the point of cutting. Waste is not
cut away by the user; it is represented by the shaded area. The last layout represents
the structure of the generated solution with an associated value being 8% away from

optimality. The structure of the optimal layout for the problem is shown in Fig. 4.3.

4.5.6 Conclusions

A system has been described to produce solutions to two-dimensional
GCP's using interactive graphics. No particular effort was made to design the
program so that it can be available for specific applications. The effectiveness of an
experimental version of the system was tested using a small sample of operators.
Results show that the package developed seems to be sufficient for interesting

interactions. However, experience and applications to real problems may suggest

Chapter 4 140

both command extensions and modifications in the implementation of the interactive
part of the package (the package may need to be oriented to specific industrial

requirements).

Chapter 4

141

Problem |Problem Data | Ave Time |Ave % devia- |Diff between Best
tion from
Number (a ,‘BO) m (minutes) optimality & Worsz ;O;UtLOHS
7 (30, 50);{ 10 12.2 4,47 18.77%
8 (40, 70)| 10 17.8 16.9% 33.67%
14 (70, 90)| 10 12.7 8.17 20.37%
Average Figures over
Problems 7, 8 and 14 14.2 9.87 24,27

Table 4.1

Results of Experiment 1I.

Resuits obtained by .

Problem | Problem Data Results obtained by
Operator | Operator 2
Ndmber (ao, BO) m |Total Tim Ave 7% Total Time Ave 7
. deviation deviation
- (minutes) | from optim} (minutes) {from optim
! (10, 10)] 5 2 0.0% 3 6.7%
2 (15, 10)| 7 6 11.97 8 0.07
3 (20, 20)(7 3 6.67% 8 9.27
4 (20, 30)|10 5 5.7% 5 0.07
5 (30, 30)| 7 6 7.7% 5 5.1%
6 (30, 40)| 8 8 8.47 7 0.07
11 (50, 70)| 8 6 1.47% 8 1.47
12 (70, 80)| 8 9 4,27 8 1.9%
13 (60, 80)|10 13 7.47 10 2.0%
Average Figures over
All Problems 6.4 5.9% 6.9 2.97

Table 4.2 Results of Experiment 2.

Chapter 4 142

lity

+— Value
«— Value

|

AN

I

4 Availability

g P
e HI

= S
]

A

ﬁﬂ
il
"
e,
“ 4~ Availabi

wn
* i

lese

P,
e iz (o = Eol
A= =3 ==-.=3
ey) 2 Lllm‘ =1 "=
pio s T P &5 i E=. == ..“.m
= 4 i == = L

™
"

3
|
B R

].

ll
o

i

X

P’}
= R i73
Lay =g il ==, -
= TP pre———— i =3
== zhm P WM-
Fe 3 3
et == —d
L] T 3

STOCK

i
Figure 4,1 Display Format of Data for Illustrative ExamPk (Problem 8).

I
ut

Chapter 4 143

a0 N
Ah35 Cut:f=

g

Lyl
Fo T de TN ™
L K . g Rrriv, 245800

Figure 4.2 An Interactive Solution to Illustrative
Example - Problem 8.

(continues on next page)

Chapter 4 144

el
u" .-
i1l fiLient}
il
i \'
-
7
a
]
-
R

Figure 4.2 continued

Figure 4.3

e;g!
== ==
=

e

2l

I

8% I ——=

ii
L5-80

oo e [e i W P
A A X S
T; ””.
“ iR e, il "‘l';flh . “a PANIRE . e {ln“
LI ISR § "!P:alll e ﬁ,:#!sl P L
L L

A
N

1 %

il

5

a0
lx o

i

+— Value

uat <—Availability

+— Value

<+ Availability

Optimal Cutting Pattern for Illustrative Example (Problem 8),

y 1dey)

194!

Chapter 5 146

CHAPTER §

SOME INTEGER PROGRAMMING FORMULATIONS AND
BOUNDS FOR THE NON-GUILLOTINE CUTTING
(NGC) PROBLEM

5.1 Introduction

In this chapter, we consider the following two-dimensional cutting problem,

P. We are given a set of rectangular pieces R = (Ry, ..., R, I R; is arectangle of

M
length oy and width f3; } that may be cut out of a large rectangle A of length oy
and width B. Each piece (oy, B;) in R has associated with it a value v;. We

assume that R contains M pieces in total, with each piece being cut from Ag at
most once. If a piece may be cut more than once, it is repeated in R as many times
as necessary and given different labels, even though their dimensions are the same.

We then require to find a cutting pattern of rectangles that maximises the value of

the pieces cut from A).

Chapter 5 147

In order to distinguish between the given pieces in set R and the rectangles
produced by the cuts on A(at any stage during the cutting process, we will refer to
the former as " pieces " and the latter as " rectangles ". We define a cutting pattern
to be " orthogonal " if each rectangle R; has each pair of edges parallel to the sides of
A and we place the restriction of only allowing orthogonal cutting patterns of the

required rectangles on the stock rectangle.

As . has already been explained in chapter 2, a guillotineable cutting pattern
is an orthogonal pattern with the additional restriction that each cut made on a
rectangle must start at one of its sides and then run parallel to an edge until it reaches
the opposite side. In this chapter, we consider cutting patterns which may be of
"non-guillotine" type. The potential direct applications of these more general
problems are those which allow the cutting tool to turn within the material to be cut.
Two examples are the cutting of carpet rolls and the sawing of wood plates to

produce furniture.

We will make the following assumptions for problem P:
(i) All dimensions (;, Bi) fori =0, ..., M are integers and the cuts on the
rectangles are to be made in integer steps along the x or y axes.

(ii) Rotation (by 90°) of the pieces in R is not permitted.

These two limitations are not critical. It is clear that, in practice, the actual

dimensions can be scaled up and truncated to integers.

Problem P, as described above, will be referred to as the Non-Guillotine

Chapter 5 148

Cutting (NGC) problem. We underline that problem P is NP-hard and is a special
case of the well-known bin-packing problem. It has been considered by relatively
few authors in the‘ literature who have proposed heuristic methods and
approximation algorithms with worst-case performance bounds to solve various
special cases of the problem (see Introduction and references Baker et al [1981],
Coffman et al [1980], Biro and Boros [1984], Smith [1980]), Bischoff and
Dowsland [1982] and Dow sland [1982]). Beasley [1985b]developed an exact

tree-search procedure to solve this type of problem .

In this chapter, we first present two Mixed Integer Programming (MIP)
formulations of the NGC problem, and investigate a possible method of solution
based on the use of cutting planes. Five zero-one Integer Programming (IP)
formulations of the same problem are also given and bounds are derived from their
Linear Programming (LP) relaxations. These bounds are computationally evaluated
on a number of randomly generated NGC problems of small size and results are

presented in the last section.

5.2 A Mixed Integer Programming Formulation for the NGC
Problem (MIP-1)

Leti and j represent two pieces in R and let the coordinates of their centres
in a placement into A be (x;,y;) and (xj,yj), respectively (taking the bottom left
hand corner of A as the origin - see Figure 5.1). The non-overlap conditions .

between i and j are given by:

Chapter 5

149

By Rectangle A,
Bi[™ Piece j
(% y:)
B Piece 1 7])"
.z
(xi ,y.,) X;
%
0 %0
Figure 5.1 Non - overlapping conditions between pieces

i and j.

Chapter 5 150

where 85 = (o5 + aj) /2 and bij =B+ Bj) /2. These constraints are not in a very
suitable form for optimisation by mathematical programming techniques and we

need to define the following 0-1 integer variables:

Let 8j = 1if piece j is chosen to be cut out from Ay,
= (otherwise.
T = 1 if piece j is cut to the right of piece i (x;2x;),
= (0 otherwise.

Hij = 1 if piece j is cut above piece i (¥ 2yi)
= (otherwise.
zjj = 1 if pieces i and j are cut from Ab in such a way that j lies either totally
to the right or totally to the leftof i (| Xj - X 4 2y),
= 0 otherwise.
ws: = 1 if piecesiand j are cut frpm A so that j lies totally above or totally
below i (lyj¢yil2bij),

= (otherwise.

The NGC problem can then be expressed as:

Problem Pl

M
Mx Z= Y, .3, (5.1)

subject to:

Chapter 5 151

-0 + z..sx.-xi-aonijs Tk Vij>iij=L..M (52)

%55

-ﬂ0+bijwijSYj-yi-ﬁouijs-bijwij Vij>i ij=1,..., M (53)

+8 -1 z+wy VYV j>iij=1..M (5.4)
5 o /25x,S8 (0g-0/2) Vi=1.,M (5.5)
5 B,/2<y;<8 (By-B;/2) Vi=1.,M (5.6)

8.€(0,1} Vi=1,.,M
Ty Wi 2 Wi € (0, 1) V j >0 i, =1, M (5.7

The explanation of the formulation is as follows. Constraints (5.2) and (5.3) are

the non-overlap conditions for rectangles i and j. (5.2) ensures that if:

zj; = 1 and T = 1, then X 2 X+
zjj = 1 and mj = 0, then x; 2 Xj +
zj5 = 0 and m = 1, then X 2 X
zj = 0 and mj = 0, then x; 2 X

Similarly for (5.3). (5.4) is an artificial constraint to ensure that if both pieces i and
j are chosen to be cut from Ag (§; =1 and 8j = 1), then at least one of Zjj, Wjj must

be 1. (5.5) and (5.6) are the constraints regarding non-intersection of the rectangles

Chapter 5 152

cut from Ay with the edges of the stock rectangle (note that if piece k is not cut from

A, then (xy.,yg) is at (0,0)). (5.7) are the integrality constraints.

The above is a mixed integer program (MIP-1) whose size clearly depends
on the number of pieces in R (it involves M (2M+1) integer and 2M continuous
variables and (SM (M-1)/2 + 4M) constraints). It is well known that, in general,
large problems of this type can be solved by the use of tree search procedures.
Such procedures depend for their effectiveness on the use of bounds to limit the
search (Branch and Bound). In the next section, we discuss how an upper bound
on the optimal objective value of the NGC problem can be derived from

formulation (5.1) to (5.7).

5.3 Alinear Programming (LP) Relaxation of MIP-1

A problem (PR) is said to be a relaxation of a maximising problem (P) if the
feasible region of (P) is included in the feasible region of (PR) and the optimal value
of (PR) is larger than or equal to the optimal value of (P). In selecting between
alternative types of relaxation for a given problem, there are two main criteria to be
considered. On the one hand, it is desirable for the relaxed problem to be
significantly easier to solve than the original. On the other hand, one would like
(PR) to yield an optimal solution of (P) or, failing that, the value of (PR) should be
as close as possible to that of (P). Usually, selecting a relaxation involves a
trade-off between these two properties; sharper bounds require more time to

compute.

The most popular type of relaxation for an integer or mixed integer linear

Chapter 5 153

program is to drop all integrality requirements on the variables. The resulting
ordinary linear program is often a good compromise between the two criteria

mentioned above.

To obtain an LP relaxation of formulation (5.1) to (5.7), we simply relax

the integrality conditions (5.7) to:

0_<_8i$1 vVi=1,..M
OSﬂ:ijSI,OSuijSI Vij>ii=1.,M

0<z;<1, 0<w<1 Vij>i i=1,..M (5.8)

The Linear Program described by equations (5.1) to (5.6) and (5.8) has the same
number of variables and constraints as MIP-1. However, we can also include the
following area constraints in the above LP (Note that these constraints are redundant

for the MIP-1 formulation):

M i-1
j—%lmBz +Za JJl S (og-0) B8 Vi=1,..,M

(5.9)

Z o B, wi; + Z o B wy < (By-B)ogd, Vi=1, ..M

j=i+1

(5.10)
M
j—zl aj B} Sj < 4] ﬁo (5.11)

Having generated the above LP, our task is to solve it and more significantly, to

Chapter 5 154

solve the associated mixed integer program. The idea is to solve the LP and then to
use this solution as a basis to obtain a solution to the MIP. Several methods are
available to achieve this. Best known among them is Gomory's cutting plane

algorithm for solving LP's with integer variables.

In order to solve the LP described by equations (5.1) to (5.6) and (5.8) to
(5.11), we used an LP package called XMP, written by Marsten [1981] of the
University of Arizona. XMP is a hierarchically structured library consisting of 38
subroutines for performing the various functions involved in solving LP's. It is
written in FORTRAN and is capable of solving problems of reasonable size that are
encountered in a research and development context. The size of the problems that
XMP solves on any given computer is limited by the amount of main memory si)acc

available.
In solving the above LP, we utilised the following characteristics of XMP:

(i) Because of the size of the problem involved, we had to use condensed
data structures. XMP stores the simplex matrix by columns with the zero entries
removed.

(ii) We made use of the dual rather than the primal simplex algorithm in
view of the possibility of adding extra constraints to the LP solution if necessary.
The design of XMP enables it to be incorporated as part of a large program, where
we cannot only get information, but can also add new information into the LP and

perform more simplex iterations each time a new constraint is added.

Examination of early computational results showed that the optimal
solutions to the integer variables of the LP were fractional. Consequently, we

implemented the approach described in the next section based on cutting planes.

Chapter 5 155

5.4 Cutting Planes

Historically, the cutting plane method was the first general approach used to
solve integer and mixed integer programs. The foundations were laid by Gomory
in a series of well-known papers through the 1960's ([1958, 1963]). A
culmination of these efforts is found in Trauth and Woosley [1969] that compared
the five leading codes in use at that time, all of which used cutting planes. Several
shortcomings in these codes were pointed out, as even small problems had cases

where the method failed to converge in a reasonable time.

" Cutting planes " are linear constraints. The general idea is that if the
linear program does not produce an integer answer to the integer variables, perhaps
by adding valid additional constraints, we can eventually reach an integer solution.
To be useful, however, these extra constraints must have certain desirable

properties:

(i) Each new cut must properly tighten the previous relaxation, i.e.
eliminate the previously found LP solution, and yet still yield a valid relaxation of
the original problem. In other words, each new cut must cut off some of the
feasible region of the current linear program without also cutting off any feasible

integer solutions of the original integer program.

(ii) At most, a finite number of cuts should be necessary in order to find an
optimal solution of the given problem or discover that none exists (Garfinkel and
Nemhauser [1972]). Quite often, the earlier cuts have more impact on the value
of the objective function than do later cuts, since there is a "flattening out" of the

feasible space around the optimal point as successively thinner slices are cut off.

Chapter 5 156

Almost all of the computational experience with cutting algorithms reported
in the literature has been confined to relatively small problems. One of the
recognised difficulties is their poor track record on the rate of convergence, or the
number of iterations required to reach an optimal solution. Thus, in our attempts to
use cutting planes in solving the NGC problem, we developed an algorithm tailored
to the structure of the prpblcm and with a facility for obtaining intermediate results if
it seemed that the problem was not going to converge quickly enough. This
algorithm can provide us with either the optimum mixed integer solution or a much
improved bound on the value of the solution than the LP could give with the greatest
rate of progress being made during the early iterations. This bound can then be
incorporated into a branch and bound algorithm, hopefully having a better
performance than if just the LP relaxation were used, bﬁt with little extra cost in

terms of time if the cutting plane procedure were to be terminated early.

5.4.1 The Cutting Plane Algorithm

The algorithm we developed using the dual simplex method is presented
below (for further details on cutting plane methods, see Gomory [1963]):

(1) Choose a row of the optimal LP tableau for constructing a cutting plane
by picking a basic variable with fractional part in the LP solution but one that is
required to have an integer value in the optimum MIP solution.

(2) Calculate the cut by determining its fractional parts in terms of the
current basis and produce an cxpressién of an original constraint corresponding to
the cut.

(3) Insert the new cut in the problem data structure and make the

corresponding slack variable basic.

Chapter 5 157

(4) Resolve the LP using the dual simplex procedure starting from the
current basis.
(5) Go to (1) unless one of the following conditions is satisfied, in which
case the algorithm terminates:
(i) An optimal solution to the MIP problem has been found.
(i) The number of cutting iterations has exceeded a constant value.

(iii) The rate of convergence is too low.

Explanation of the algorithm

Step (1) is perhaps an important part of the algorithm in terms of
determining the rate of convergence towards the mixed integer solution. There are
many ways of choosing cuts. One possible approach is to select the row with the
greatest fractional part to the RHS, thus obtaining a reasonably large simplex pivot
ratio. Another possibility is to generate a Gomory cut for the integer variable whose
fractional part is closest to 0.5. In a cutting plane code written by Wolfe [1984] to
solve a class of scheduling problems, the variety of choices of cuts were

investigated.

The method we employed was to choose to cut first on the §;'s - the
subset of rectangles cut from A - if their values were not integer, and then on the
position variables: ﬁij's, p.ij's, zij's and wij's. We picked a 6; with the largest
fractional part and a position variable whose fractional part was closest to 0.5. This
procedure of performing cuts is based on the observation that the values of any of
the T, W, z or w variables are largely dependent on the number of rectangles cut from
Aq (i.e. the ;s are the most important decision variables of the problem). Thus,

the addition of extra linear constraints on §;'s is likely to be more noticeable in its

effect on the objective function value and the solution as a whole.

Chapter 5 158

At steps (2) and (3), the algorithm calculates the coefficient of the cut
chosen at (1) in terms of the current basis and gives the expression of an original
constraint corresponding to the cut which is then inserted in the problem data
structure in this form. This is because the only data stored in the memory of the
XMP package are the original data of the problem and the current inverse of the

basis matrix.

5.4.2 Results

The cutting plane algorithm was programmed in FORTRAN and run on a
CYBER-855 machine using some of the subroutines of the XMP. In order to
evaluate this algorithm computationally, four randomly generated problems of small
size were solved (maximum number of pieces in R was 5). Table 5.1 gives the
exact details of these four problems, inpluding the sizes and the values of the pieces
in R (note that only one piece of each type can be used). Table 5.2 summarises the
performance of the algorithm, giving for each problem the value of the LP
relaxation, together with the associated computation time in CYBER-855 seconds,
and the value of the solution obtained after cutting planes are added, together with
the number of cuts anci time required. We also give the optimal mixed integer
solution for each problem, this being found by using the exact tree search procedure
described in chapter 7 which solves the NGC problem. The optimum solutions for

all problems are shown diagrammatically in Figure 5.2.

The four test problems of Table 5.1 are of two types: those for which

the sum of the areas of pieces in R, i.e.

M
z o; B;
i=1

Chapter 5 159

is less than the area of A, i.e. agB (note that not all of these pieces can

necessarily be cut from Ay), and those for which

M
2. B > % By

i=1

It can be seen from Table 5.1 that the first three test problems are of the first type

and problem 4 is of the second type.

From Table 5.2, we notice that for problems 1, 2 and 3, the value of the
corresponding LP bound is equal to the sum of the values of all pieces given in R,
thus this bound has the largest possible value it can ever take for each problem. As
aresult, in each one of these LP solutions, the values of all 8i variables are equal to
1. With this upper bound being so far from the optimum value and all §;'s - the
most significant variable to cut on - having integer values, the cutting planes were of
almost no value at all. Indeed, in our attempts to cut only on position variables with
fractional parts, the results have shown that the initial Gomory cuts had no effect at
all on the objective function of these problems, failing to reduce the gap between the

LP bound and the optimum solution of the problem.

In the case of problem 4, the LP relaxation provided us with a bound whose
value is 11% away from the optimum solution. Note that in this LP solution, the
area constraints (5.9) to (5.11) were active, and some of the §; variables had
non-integer values in the LP solution. This allowed us to add cuts(always on 33,
since this variable had the largest fractional part in each solution.) The bound
obtained after adding 30 cuts to the LP solution was improved by only 1.5% over
the bound derived from the LP relaxation. Figure 5.3 shows the very slow rate of

convergence in the value of this bound as the first 30 cuts were added. As a result,

Chapter 5 160

~ -~

Problem 1: M = 3, (ap,Bp) = (4,4), IL] =2, |W] =2,
optimal solution = 100

o 72N A B
1 2 2 40
2 3 2 60
3 2 3 . 50

Problem 2: M = 5, (ap,8p) = (6,6), |L| = 4, W] =6,
-optimal solution = 31

&
PN

TN TR
N~ OW R
S WN
o 00 O O &~ (\.c

Problem 3: M =5, (ay,8,) = (10,10),]Z] =7, l&] =7,
optimal solution = 116

A a. R. V.

A A A
1 2 2 5
2 5 3 15
3 6 7 52
4 4 7 44
5 2 4 12

~ -~

Problem 4: M =5, (@p,8p) = (20,30), |L]| =2, |w| = 3,
optimal solution = 680

L a; BL Vi
1 19 10 200
2 18 10 300
3 17 10 180
4 11 10 130
5 10 10 90
Table 5.1 Details of Test Problems ! to 4 with given Set

of Pieces R.

Chapter 5

LP Bound Cutting Planes Optimal

Problem .
Numb . Numb . Solution

umber | yalue |Tl®e | value éﬂn €T | Time | vyalye

CPsecs of Cuts ppgecs

1 150 0.9 | 150 10 1.2 100

2 35 1.2 35 10 1.5 31

3 128 1.5 | 128 10 1.8 116

4 757.205 | 0.4 |'747.023 30 1.3 680

Table 5.2 Performance of Algorithm using Formulation
MIP - 1.

161

Chapter 5

10
' 61 |
J
“laa 7 Ly 7
= ///; 33) 2(2'“ g 53 |4
0 T ; 0 10
Problem1 Problem 2 Problem 3
30 %
7
Z
(1810) %
%
/4
é
(19,10) g
%
%
7
0 Problem & 20

Figure 5.2 Optimal Solutions for Problems ! to 4 of

Table 5.2.

162

Chapter 5 163

760 ;
~ LP Bound

752

——— Value of Bound

736%

728

720

712

704

696

688+t
Optimal Value

7

0 L 8 12 16 20 24 28
— Number of Cuts

680

Figure 5.3 Results of the use of Cutting Planes for Problem 4.

Chapter § 164

there did not seem to be much to be gained from adding more cutting planes as the

greatest rate of progress is expected to be made during the early iterations.

5.4.3 Conclusions

From the results of Table 5.2, we conclude the following:

(i) The quality of the bound derived from the LP relaxation of formulation
MIP-1 is poor (the bound is about 20% away from the optimum solution on
average).

(ii) The performance of the cutting plane algorithm is very poor. It failed to
improve the LP bound for the first three problems or it converged very slowly in the

case of Problem 4.

In the next section, we present another mixed integer programming

formulation of the NGC problem using a different set of variables.

5.5 A Second Mixed Integer Programming Formulation (MIP-2)

The formulation presented here is based on similar ideas as formulation
MIP-1. The continuous variables (x;,y;) and the 0-1 integer variables Si used by
MIP-1 are also defined in the same way, so they are not repeated here. The position

variables, however, are interpreted differently.

Chapter 5

165
Let F;l = if piece j is cut totally to the right of piecei (x; 2 x. +a..)
j i S ||
= otherwise
2 e e .
éij =1 if piece j is cut totally to the left of piece i (xj X - aij)
=0 otherwise -
1 e o
Wij =1 if piece j is cut totally above piece i (yj > i+ bij)
=0 otherwise
2 e .. .
Wij =1 if piece j is cut totally below piece i (yj <Y;- bij)
=0 otherwise
The NGC problem is then formulated as follows:
Problem Py
M
M Z= . 0. 12
x PIRES (5.12)
=1
subject to:
! > Viji>i i,j=1 M 5.13
xj-xi-aoﬁij_aij-ao ji>i, iLj=1, .., (5.13)
2 . s es
-xj.g.xi-ao éij > aij‘“O Vi>i ij=1,.,. M (5.19)

Chapter 5 166

1 T
yj—yi-BOWij Z bij‘BO VJ>1, I,J—l, ...,M (5.15)
2> b..-B Vi>i i,j=1 M (5.16)
‘Yj'*'yi'ﬁo‘l’ij— i~ Fo J>L 1)=1, .., .
1 .2 1 2 el . e
aij+§ij+wij+“’ij 28i+8j-1 Vi>iij=1,..M (517)
Si(ao-ai/Z) > X, 2 5iai/2 V,i=1’ e M (5.‘18)
8([50 [3/2)_y1 8[5/2 Vi=1,..M (5.19)

Sie[O,l} Vi=1,.,M

§u§ w ws{Ol] Vi>i, ij=1,..,M (5.20)

Constraints (5.13) to (5.16) express the non-overlap conditions between any
two rectangles i and j cut from Ag. Variables gijl' éijz, Wijl and \yijz can be
considered as switches. If they take the value 0, the constraint is off, i.e.
redundant. Constraint (5.17) ensures that if both pieces i and j are to be cut from
Aq, then at least one of &ijl, ‘gij2’ \yijl, \yijz must be 1. Constraints (5.18) and
(5.19) are similar to constraints (5.5) and (5.6) of MIP-1. (5.20) are the integrality

constraints.

The above model is a mixed integer program (MIP-2) of similar size to
MIP-1. To investigate this formulation computationally, we followed exactly the
same approach as we did for formulaton MIP-1, namely, we computed the bound

from the LP relaxation of MIP-2 and then applied the cutting plane algorithm of

Chapter 5 | 167

section 5.4.1 to improve this bound. Using this procedure, we tried to solve the
four test problems of Table 5.1. The results obtained are presented in Table 5.3.
Clearly, they are almost identical to the ones presented in Table 5.2, leading us to the

same conclusions mentioned in section 5.4.3 for formulation MIP-2.
5.6 Two 0-1 Integer Programming Formulations

In this section, we formulate the NGC problem as a zero-one integer
programming problem. First, we make some assumptions and define a set of

variables which are used by the two formulations of the problem presented below:

(i) the given set of rectangular pieces R contains m types of pieces with
P; and Q; being the minimum and maximum number of pieces of type i that can be

cut from AO

m
(R contains M pieces in total, where M = Z Qi).
i=1

(ii) the cuts on A are performed at integer steps. We define L = {01,
2,.,091}andW={0,1,2,.., BO-I }to be the sets of points on Ap where cuts
can be made parallel to the y-axis and the x-axis, respectively. Note that we do not
regard the top edge and the right hand edge of a piece as cutting points. Similarly,
wedefineL; = (11l e Landi Sop-oy) and W= {wlwe Wand w<Bg- ;)
to be the sets of lengths and widths on A achieved by piece i.

Chapter 5

LP Bound Cutting Planes .
Optimal
Problem -
Number T4 Number | Ti Solution
Value | ™€ | value imeé | vyalue
CPsecs of Cuts [CPsecs
1 150 0.9 | 150 10 1.2 100
2 35 1.2 35 10 1.5 31
3 128 1.4 | 128 10 1.7 116
4 757.2 | 0.4 | 747.0 30 1.3 680

168

Table 5.3 Performance of Algorithm using Formulation MIP - 2.

Chapter 5 169

5.6.1 Formulation IP-1

Define Xipq = 1 if a piece of type i is cut with its bottom left hand corner
at (p,q) of Ag, where 0<p<og-oyand 0<g<By- B;
(see Figure 5.4),

= (otherwise.
Then, the first formulation is as follows:

Problem P3

m
Max Z=2 v, Z 2 Xinq (5.21)

1=
qQeW, pel

subject to:

m s-1 ,

r-1
Z Z 2 Xipg < 1 V {ri(r-1)eL), {sl(s-1) e W}

=1 g=s-; proy
qe€ Wi PE Li (5.22)
<Y) K SQ Visle.m (5.23)
qQeW. pelL.
i BFH
xipqs (0,1} Vi=1,..,m, peLi, qui (5.24)

Constraint (5.22) expresses the non-overlap conditions between any

Chapter 5 170

B
0 Rectangle A
Bl piece |
S b e e = — - - - - -
|
|
[
[
q k- [
0} B
| !
| [
| [
I [
l |
1 !
0 p r %

Figure 5.4 Piece i is cut with its bottom left-hand

corner at position (p,q).

Chapter 5 171

rectangles in R cut from A by ensuring that any point (1, s) on A is cut out by at
most one rectangle. Constraint (5.23) expresses the fact that the number of pieces
of type i cut out from A lies within the required range. Constraints (5.24) are the

integrality constraints.

The above is a large 0-1 integer programming formulation of the NGC
problem (IP-1). It is similar to one given by Beasley [1985b] who developed a tree
search procedure based upon a Lagrangean relaxation of his formulation to solve

moderate sized non-guillotine problems.

Formulation (IP-1) involves approximately

m
ZILiIIWil variables and (1L 11W |+m) constraints.
=

However, the size of this program can be reduced by using the idea of "normal”
cutting patterns (Christofides and Whitlock [1979]). As it has been explained in
chapter 2, normal patterns rely on the observation that in a given cutting pattern, any

cut piece can be moved to the left and/or down until its left hand edge and its bottom
edge both touch other cut pieces (or the edges of Ag). Without any loss of

optimality, we can replace sets L and W by:

m
L=(1li=), n o, 0Si<[og-min(oli=1,..,m)],
=1

OSni SQi » Ty integer, i=1,..,m}

m
W= {wiw=D t.B,0Sws[By-min(B;li=1,..m)],
)

0<<Q;, ¢, integer, i=1,..,m}.

Chapter 5 172

Similarly, sets il andG—Vi deﬁnedby-f.i={l Il e Land | <op-o;) and

= {wlw eWandw< BO - B; } can be used instead of sets L; and W; for all
i=1,..,m. Itiseasy to show that constraint (5.22) need be only applied for the
restricted sets L, W, L and W; (i = 1, ..., m), leading to a significant reduction in

the size of formulation (5.21) to (5.24).

5.6.2 Formulation IP-2

Using the same definition of x; .'s given in section 5.6.1, we formulate the

1pq

second 0-1 integer programming formulation of the NGC problem as follows:

Problem P4

m
Max Z Z (5.25)
El eW,

m
:-'l

subject to
s+P.-1 r+a. -1
i 2 Xipg S 1% Vizh iDi=l..m
q=s-p;+1 Pp=r-o;+1 rs‘ij,sswj (5.26)

qeW,; p eT.i

Chapter 5 173

P.< Z_ Z_xipq <Q Vi=l ..m (527)
qui peLi
xipqe{O,l} Vi=l, ...,m,p&:Li,qt-:Wi (5.28)

Constraint (5.26) expresses the non-overlap conditions between any two
rectangles i and j in R cut from Ap. If’le.s = 1, then the corresponding constraint is
active, otherwise it is redundant. Constraint (5.27) ensures that the number of
pieces of type i cut out from A() lies within the required range. Constraints (5.28)

are the integrality constraints.

The restriction of the cuts on Ag) to have the property of normal patterns can
also be applied to the above formulation. Thus, IP-2 involves the same number of

variables as formulation IP-1 given by :

m

.Zlf.illv—\}il.

1=

The number of constraints, however, is larger and is given by (m (m-1) ILI I\?}l +m).

5.7 A second Set of 0 - 1 Integer Programming Formulations

The three formulations presented below hold when in the set of rectangular

pieces R we have at most one piece of type i available to cut from A(). However, if

Chapter 5 174

at most Q; pieces of typei (i =1, ..., m) are required to be cut, then these pieces are
included in R with different labels but the same dimensions (the total number of

pieces in R is given by M =ETQ1).
I=

Normal cutting patterns are also used to reduce the size of the problem. We

define the following variables used by the three formulations:

Let Xip = 1 if piece i is cut with its bottom left hand corner at position x = p,

where p € Li,

0 otherwise.

Yig 1if piece i is cut with its bottom left hand comer at positiony =q,
where q € VT’-,

0 otherwise.

5.7.1 Formulation IP-3

Formulation IP-3 also involves the following variables:

Let z,¢ = 1if point (r, s) on A is free so that any piece in R can be
cut with its bottom left hand corner at (r,s), wherere L
andse W,
= 0 otherwise.
Problem Ps
M
Max Z =Z u 2% (5.29)

Chapter 5 175

subject to:

s=q r=p

Vi=1,..,M peL, qeW, (5.30)
> xpS 1 Visl..M (531)
pelL

Yoxp= XYy VishooM (532)

pel; qe W,

xipe{O,l} Vi=1,.,M, pel
yiqe[O,l} Vi=1,.., M, qe\’iri (5.33)
zrse{O,I] VreLl, seW

(5.30) ensures that any point (p, q) on A is cut out by at most one piece.
(5.31) and (5.32) express the fact that each piece is cut at most once from A,

(5.33) are the integrality conditions.

The above is a complete formulation involving approximately (2M +' =}31 l-f.i I
I Wi) constraints and (o [30 +§i(lii | +1 Wi |)) integer variables. Clearly, the
size of IP-3 depends on the total number of pieces (M) given in R, whereas the sizes
of IP-1 and IP-2 depend on the number of types of pieces (m) given in R. This
difference in size between formulations IP-1 and IP-3 can be illustrated by the use of

an example.

Chapter 5 176

Suppose we are given a test problem in which 20 types of pieces (one of
each type, i.e. Q; = 1 for alli = 1, ..., 20) can be cut from a stock rectangle A of
size (50,50). Formulating this problem as IP-1, involves about 50,000 variables
whereas formulating it as IP-3, we would use only 4,500 variables. Itis clear that
unless Qj's are large (the size of IP-1 is independent of Q;'s), formulation IP-3 is

much smaller than IP-1.

IP-1 might be more suitable for formulating problems in which the
dimensions of the pieces to be cut have small absolute values. Note that the
expression giving the number of variables for IP-3 involves the extra term oy B, as
it is shown in Table 5.4which compares the sizes of all 0-1 integer programming

formulations of the NGC problem presented in this chapter.

5.7.2 Formulation IP-4

This formulation uses z¢ variables defined in the following way:

Let z.; = 1 if point (r, s) on A is covered by any piece i in R
which is cut with its bottom left hand corner at location
(P, q), wherer-o;<p<rands-Bj<q<s(re L
andse W)

= 0 otherwise.

Then, IP-4 is given by:

Formulation Number of Variables Number of Constraints
m - - ~ -~
-1 11, L@+ m
4=1
m - - - o~
IP-2 1 |Li||wL.| m(m-1) |L]|w] + m
£=1
AR Afl*n”l
1P-3 a, B, * (.l + |w.|) M + L.]{W.
0 70 i1 4 e i-1 L4
M . -
IP-4 ap By * L‘Z’ (gl + lw) M (o, 8y + 2)
- M - - - . M.
IP-5 I w] + &___X_’ (Ll + lw)ALl + fwl + 2M + &,ZI L1 w,

Table 5.4 Sizes of the five IP Formulations for the NGC Problem presented

in sections 5.6 and 5.7.

¢ 1ndey)

LLy

Chapter 5

Problem P6

i=1
pEL,
subject to
r-1 s-1
erZ Z xip + 2 qu -1

p=r1-0; q=5s-p;

~ 1 L |

peLi qe W,

xipe{O,l} Vi=l,
zrse{O,l} V reL,

wey M, pe'f,l
v M, qs'\-’;’i
SsEW

Vi=1,.., M,
rel, seW

178

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

Constraint (5.35) expresses the fact that any point (,s) on A can be cut out

by at most one piece. If a piece i is cut with its bottomn left hand corner at a location

(p,q) on Aq such that (r,s) is cut out by piece i, then the corresponding constraint is

active; otherwise it is redundant.

Constraints (5.36) and (5.37) ensure that each piece is cut at most once from Aq

Chapter 5 179

Constraints (5.38) express the integrality conditions.

The above formulation involves the same number of variables as IP-3 but a
larger number of constraints given f)y M (09 Bg +2). Itis clear that applying the
restriction of the cuts on A to have the property of normal patterns does not reduce
the size of IP-4. This means that formulating even a small-sized NGC problem as

IP-4, we have a problem with a very large number of constraints to solve.

5.7.3 Formulation IP-5

Formulation IP-5 uses z¢ variables in a different way. These are now

defined as follows:

Let z.¢ 1 if any piece i is cut with its bottom left hand corner at

(r,s), wherer € Landse \'?-V,

0 otherwise.

Then the problem is expressed as follows:

Problem P7
M
i=1 peL;

subject to:

Chapter 5 -

q+[3i+1 p+a.- 1

Z 2 Zg - 2 <€ (2-x

Pq
=q-mi) r=p-min o.+1
s=q ml?) BJ+1 %
SEW rgi

180

I(ai"'min.aj'l)(5i+m§?dﬂj-l)-l]}

JA

Vi=1,.,M peL, qe W

2 Yis = Z_ Z VseW
rel

ie{ilseW,)

xpe (0.1} Vi=1., M, pel;
Yig€ (01} Vi=1.. M, qeW,
z €{0,1} VreL, seW

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

Chapter 5 181

(5.40) are the non-overlap conditions. (5.43) and (5.44) express the
number of rectangles cut with their bottom left hand comers at a particularx =r (re

L) and y=s(s€ W), respectively. (5.45) are the integrality conditions.

oo M
The above formulation (IP-4) involves (ILI IWI + Zi('Lil + W)
i=

-~ o~ M_
variables and (IL| + IWI|+2M + leLiI IW;1) constraints.
i=

5.8 Computational Aspects of Bound Calculations for the 0 - 1

IP Formulations

In Sections 5.6 and 5.7, five different 0-1 integer programming
formulations for the NGC problem were presented, namely, IP-1, IP-2, IP-3, IP-4
and IP-5. In order to obtain upper bounds on the optimum solution of the problem,
we relax these formulations by dropping the integrality conditions. Let UBI and
UB2 be the upper bounds derived from the linear relaxation of formulations IP-1
and IP-2, respectively. In the LP relaxations of IP-3, IP-4 and IP-5, we add the
following constraints in order to obtain tighter bounds (note that these constraints are

redundant for IP-3, IP-4 and IP-5).

Additional Constraints to Formulation [P-3

M T
z B Xip ¥ 2 z, =By VreL (5.46)
i=1 p=r-0;+1 seEW

peLi

Chapter 5

M s
iZI % 2 Yigq + Z %s = % VseW
= q .

=s-[3i+1 reL
qe w,

Additional Constraints to Formulation IP-4

M .
z B D Xp = >z, Vrel
iy

M s
Z o z Yig = 2 Z VseW

peLi
M s
Z o Z qu < % VseW
i=1 q=s-f;+1

qz~:Wi

182

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

Constraints (5.46), (5.48) and (5.50) ensure that if k pieces overlap such

k
thatiziai > B, they cannot all be cut with their bottom left hand corners at the same

length. Similarly, (5.47), (5.49) and (5.51) ensure that if | pieces overlap such that

Chapter 5 ' 183

l
1;‘, ?1 > 0y, they cannot all be cut with their bottom left hand corners at the same

width,

Let UB3, UB4 and UBS5 be the upper bounds derived from the linear
relaxation of IP-3, IP-4 and IP-5, respectively, including the above additional
constraints. Bounds UB1 to UBS were obtained by using the XMP package
described in Section 5.3. Because of the large number of variables and constraints
involved in the formulations, we were forced by the memory limitations of the XMP
package to solve only test problems of small size. Thus, eight problems involving
up to seven pieces in R and three problems involving up to seven types of pieces in
R have been randomly generated and run on a CYBER-855 machine. Details of
these problems shown in Tables 5.1, 5.5 and 5.6 include, for each problem, the size
of Ay, the sizes (05,B;) and values (v;) of the given pieces, the maximum number of
pieces of each type (Q;) in R and the size of sets of normal cuts (IC! and IW1). The
value of the integer optimal solution is also given for each problem, this being found
by the exact tree search procedure described in Chapter 7 which solves the NGC
problem. The optimal solutions for the first four problems are shown in Figure 5.2

and for the other seven problems in Figure 5.5.

Problems 1 to 4 have been described in Section 5.4.2 and bounds derived
from formulation MIP-1 have been presented for these problems in Table 5.2. In
problems S to 8, which have been randornly generated, at most one piece of each
type in R is available to be cut from A(j. Problems B1, B4 and B5 have been taken
from Beasley [1985b]; they correspond to problems 1, 4 and 5 in the table of
computational results presented in the paper by Beasley. These problems are also
randomly generated with the data being drawn from uniform distributions and Q;

have integer values between 1 and 3.

Chapter 5

-~ ~

Problem 5: M = 4, (ap,8p) = (7,9), [L] =3, |w] =9,
optimal solution = 54

A a»(: 8’(" U,{:
1 7 4 28
pA 6 3 18
3 5 5 25
4 4 1 8

Problem 6: M =5, (x4,8p) = (8,6), [Z’ =6, I&I = 4,
optimal solution = 85

L Cﬁl‘: B/(" U’é
I 3 3 15
2 5 2 20
3 7 3 40
4 2 6 30
5 4 4 35

Problem 7: M = 7, (ag,8p) = (10,10), |L| = 9, |w| = 10,
optimal solution = 198

Sl A 7 A B
1 1 10 28
2 3 3 40
3 9 3 63
4 6 1 13
5 3 8 31
6 4 1 10
7 7 3 44

Problem 8: M = 7, (a5,8,) = (15,10, |L| = 7, |w| = 10,
optimal solution = 262

A GL B'{: U":
1 10 3 34
2 9 3 48
3 12 2 72
4 11 3 91
5 12 3 37
6 11 1 15
7 2 10 36

Table 5.5 Details of Test Problems 5 to 8 with given set

of pieces R.

184

Chapter 5
Problem Bl: m =5, (ap,8p) = (10,10), |L|
optimal solution = 164
Llec Bl vl %
1 8 2 | 40 | 2
2 2 | 10 | 43 | 2
3 3 7 | 35 | 2
4 | 10 2 | 27 | 1
5 5 4 | 23 | 3
Problem B4: m = 5, (ag,89) = (15,10), |L|
optimal solution = 268
Sl Bl e | %
1 8 | 3 | 71| 1
2 | 15 .2 | 61 | 2
3 15| 1| 1] 1
4 71 3 |27] 1
5 | 15| 2 | 36 | 2

Problem B5: m = 7, (aj,8y) = (15,10), |L]
optimal solution = 358

~

Lol | 8 v | %
1 12 2 72 3
2 11 3 91 1
3 2 10 36 1
4 9 3 48 1
5 11 1 15 3
6 10 3 34 2
7 12 3 37 3

-~

7, |w]

10,

185

Table 5.6 Details of Test Problems Bl, B4 and B5 with given

set of pieces R.

Chapter 5 186

. 10 BT 777,
(&1) /é (7.3) /
CE 7 B 7 _ 7 /

/ (4,) 2 % S (53 7
%(zs)/ 1
(7.4) % 03)
5,2 4 (9,

0 7 0 3 0 10
Problem S Problem 6 Problem 7

10 777077777, / a 10 777,

(9,3) / /1 (5,4)
777 5
(1,3) N7 (5.4
(12,2)) 4 (8,2)
0 Problem 8 15 O problem Bt 0
10 10 (111 7
(2,3) (7.3) % Z
(11,3) 2 f
N % /
(15,2) (122) : (210)4
(15.2) (12,2) é
(15.2) (12,2) f
0 Problem Bk 13 0 Problem BS 15

Figure 5.5 Optimal Solutions for Problems 5 to 8 of Table 5.5 and
Problems Bl, B4 and B5 of Table 5.6.

Chapter 5 187

Tables 5.7 to 5.11 describe the performance of the five bounds UB1 to
UBS obtained for the above eleven test problems, respectively. For each problem,
we give the value of the corresponding bound, together with the associated
computation time in CYBER-855 CP seconds. We also give the number of
variables and constraints (including the redundant constraints for formulations IP-3,
IP-4 and IP-5 given in this section) involved in all formulations for each problem.
(Because of the large number of non-zero entries per ¢olumn in the matrix
representation of the simplex tableau - greater than 100 - the XMP package could not
solve problems 7, B1 and BS using formulation IP-2 and problems 4, 7, 8, B1, B4

and B5 using formulation IP-4.)

In order to compare the quality of the various bounds, the following

performance ratio is used:

_ Upper Bound - Optimal Value (%)
- Optimal Value ?

5.8.1 Computational Comparison

From the tables of computational results, we can see that the value of bound
UB2 differs significantly from the values of the other bounds for problems 3, 4, 5
and 8 (the quality of UB2 for these problems is poorer by 8%, 11%, 15% and
5.8%, respectively). in particular, UB2 has the same poor performance as the
bounds derived from the two mixed integer formulations of Sections 5.2 and 5.5 for
problems 2, 3, and 4 (Table 5.2). Furthermore, because of the large number of
constraints and non-zero entries in the simplex tableau involved in formulation IP-2,

we are limited to solve NGC problems of very small size. Hence, UB2 has been

Chapter 5 188
emer | Velse | iw | oap | Jumerof | e o
CP secs|
1 125 0.06 25% 8 7
2 35 0.3 13% 60 29
3 119 0.9 2% 143 54
4 680 0.1 - 18 11
5 59 0.1 9% 23 12
6 100 0.4 17% 44 29
7 218 8.4 107 210 97
8 274 0.9 47 109 77
Bl 205 0.8 25% 60 53
B4 271 0.4 1Z 68 35
BS 359 2.0 0.3% 233 84
Table 5.7 Performance of Bound UBY,

Problem Value T%me 28 Num?er of Number.of
Number Cplzpcq Variables Constraints
1 113 0.1 13% 8 20
2 35 2.6 13% 60 246
3 128 4.4 107% 143 578
4 757 0.3 117 18 78
5 67 0.4 24% 23 74
6 101 1.4 18% 44 182
8 301 5.3 9.8% 109 662
Bl 271 1.9 17 68 278

Table 5.8 Performance of Bound UB2.

Chapter 5

Problem Value T%me e Number of Number of
Number in ? Variables Constraints
CP _secs
1 131 0.1 31% 26 22
z 35 0.7 13% 73 82
3 119 1.9 2% 152 173
4 680 0.5 - 621 78
5 59 - 0.7 9% 90 47
6 101 0.9 187 80 68
7 218 3.7 107 184 244
8 274 3.4 4% 221 148
Bl 206 3.7 257 186 174
B4 271 2.4 1% 222 125
BS 359 6.9 0.3% 297 286
Table 5.9 Performance of Bound UB3.
Problem Value T%me o Number of Number of
Number in ¢ Variables Constraints
CP secs
1 129 0.5 29% 26 62
2 35 3.2 13% 73 202
3 119 19.9 2% 152 530
5 59 6.1 9% 90 276
6 101 6.6 18% 80 264

Table 5.10 Performance of Bound UB4.

Chapter 5

190
ime
iéisi:? Value Tin " g:f?:il:i ngzzszigis
CP_secs
1 134 0.1 34% 14 23
2 35 0.9 137 61 91
3 119 1.8 27 101 182
4 680 0.2 - 27 39
5 59 0.4 9% 35 50
6 101 0.8 18% 56 75
7 ‘218 4.4 10% 174 263
8 274 2.0 47 141 158
Bl 206 2.7 257 134 183
B4 271 1.8 17 102 127
BS 359 3.5 0.3% 217 296
Table 5.11 Performance of Bound UBS.

Chapter 5 191

excluded from further investigation.

The value of bounds UB3 and UB4 has basically the same performance
ratio for problems 1, 2, 3, 5 and 6. However, the results for this set of test
problems show that UB3 requires a coﬁsiderably lower computational cost since the
size of the problems formulated as IP-3 is much smaller than the size of the same
problems being formulated as IP-4 (the number of variables involved in both
formulations for a particular problem is the same). Hence, UB4 has been excluded

from further investigation.

The three bounds UB1, UB3 and UBS are basically compared with respect
to their performance ratio r and their computational time. There is not any clear
indication for better quality of bound, since the corresponding duality gaps
computed for all eleven problems are basically the same (note that for problem 4, all
three bounds find the optimal solution). However, the results for this set of test
problems show that UB1 is comput.ationally less expensive with the exception of
problem 7. In this case, the use of normal patterns had very poor effect on reducing
the problem being formulated as IP-1 (for problems in which ILI and IWI are
relatively large compared to 0,y and B, respectively, UB3 is expected to have better
performance than UB1). On the other hand, for problem 4, UB3 requires a large
number of variables (621) compared to only 18 and 27 variables required by UB1
and UBS, respectively. This happens because of the reduction in the number of
variables resulting from the small size of the normal sets obtained in problem 4 for
formulation IP-3 (rf,l and IW! have values of 2 and 3 compared to o and fB, being
20 and 30, respectively).

Chapter 5 192

5.8.2 Conclusions

Based on the computational results presented in Tables 5.7 to 5.11, it
is not very obvious which is the best bound for the NGC problem. Overall
formulation IP-3 seems to be slightly better and hence we choose this formulation in
order to develop a method to solve optimally NGC problems. In the next chapter,
we present bounds derived from a Lagrangian relaxation of IP-3 with computational
results obtained for medium-sized problems. These bounds can then be embedded

in a tree search procedure that solves NGC problems exactly (Chapter 7).

Chapter 6 193

CHAPTER 6

A LAGRANGEAN RELAXATION BOUND FOR THE NGC
PROBLEM IMPROVED BY SUBGRADIENT OPTIMISATION AND
PROBLEM REDUCTION TESTS

6.1 Introduction

In this chapter we consider the NGC problem of section 5.1, which was
defined as follows: we are given a rectangular sheet of stock material Ag having
dimensions (0,B) and a number (m) of types of pieces in R having dimensions
(o;,B;) and values v; foralli=1, ..., m. Then using no more than Q; pieces of
each type i in R, we require to find an orthogonal non-guillotine cutting pattern of
pieces on A that has the highest possible total value. No pair of cut rectangles are
allowed to overlap and no cut rectangle may overlap the edges of Ag. Each piece in

R is considered to have a fixed orientation (Total number of pieces in R is given by

m
M=), Q)
=1

Chapter 6 ~ 194

In our attempt to solve the above problem optimally, we use a 0-1 integer
programming formulation for this problem, presented in Chapter 5, namely
formulation IP-3. In this chapter, we develop a Lagrangean Relaxation of this
formulation to provide us with an upper bound on the problem. Subgradient
optimisation is used to optimise the bound derived from the Lagrangean Relaxation.
Problem reduction tests derived from both the original problem and from the
Lagrangean Relaxation are given. Using the subgradient method together with the
reduction tests we present a general procedure used to obtain the best bound and the
greatest reduction of the problem. If the opimal solution is not found using this
procedure, then the bound obtained can be incorporated into a tree-search procedure

that solves the problem optimally (Chapter 7).

Computational experience with the general procedure is presented in the last

section of this chapter.

6.2 Lagrangean Relaxation

In the last decade, Lagrangean Relaxation has growh from a successful but
largely theoretical concept to a tool that is the backbone of a number of large-scale
applications. It is based on the observation that many difficult integer programming
problems can be modelled as a relatively easy problem complicated by a set of side
constraints. Replacing the complicating constraints with a penalty term in the
objective function that involves the amount of violation of the constraints, we create
a Lagrangean problem that is easy to solve and whose optimal value is an upper
bound (for a maximisation problem) on the optimal value of the original problem.

The Lagrangean problem can thus be used in place of a linear programming

Chapter 6 195

relaxation to provide bounds in a branch-and-bound algorithm.

We first explain the Lagrangean Relaxation concept in general terms

and then apply it to the NGC problem.

Let (P) be the following integer linear problem:

Z = maximise cx (61)
X
subject to
Ax<b (6.2)
Dx<£d (63)
x > 0 and integer _ (64)

where b,c and d are vectors and A and D are matrices. We assume that the
constraints of (P) have been partitioned into the two sets (6.2) and (6.3) so that (P)
is relatively easy to solve if the constraint set (6.2) is removed. The Lagrangean
relaxation of (P) relative to (6.2) and with a non-negative multiplier vector A (A 2 0)

is defined as problem (PR) given by:

Z{ L) = Maximise cx+A (b- Ax) (6.5)
X

subject to

Chapter 6 196

Dx <d (66)

x20 (67)

It is clear that the optimal value of problem (PRy) for A fixed at a non-negative value
is an upper bound on Z because we have merely added a non-negative term to the
objective function (6.1) and dropped some constraints. Geoffrion [1974] has
shown that the potential usefulness of relaxation (PRj) is large{ydeterrrﬁned by the
gap between the value of its optimal solution and that of (P). This is known as the
"duality gap" and it gives a criterion by which to measure the "quality"” of a particular

choice of A. In particular, the program

(D) minimise v (PR)
A0 A

gives the best possible upper bound to the original problem (P) where
v (PRy,) is the optimal value of problem (PR;).

Relaxing a problem (P) using the Lagrangean approach offers a number of

important advantages:

(i) With careful choice of which constraints to relax, the relaxation can
make the problem significantly easier to solve. Typically, one will construct several
alternative relaxations and evaluate them, both empirically and analytically based on
the quality of bounds obtained. Lagrangean Relaxation, having the ability to exploit
special problem structure, often is the only hope for coping with large scale real
problems.

(ii) Clearly, the effectiveness of a bound is the most important parameter

that determines the efficiency of a branch-and-bound algorithm. Choice of good

Chapter 6 197

Lagrangean multipliers can provide us with the tightest bound on the problem, so
that results can be significantly superior to LP based branch-and-bound.

(iii) Practical experience with the method has indicated that the resulting
duality gap is often very small, so that a very good bound can be obtained for use in

a tree-search procedure.

The use of Lagrangean Relaxation has led to dramatically improved
algorithmg for a number of important problems, namely the Travelling Salesman
Problem (Held and Karp [1971}), scheduling problems (Fisher [1973]), location
problems and set covering problems. A A recent survey of Lagrangean Relaxation

and its applications has been produced by Shapiro [1979].

621 A Lagrangeah Relaxation for the NGC Problem

In section 571we have given the 0-1 integer programming formulation

(IP-3) of the NGC problem as presented below:

Problem P

m
Max Z=) > Xip (6.8)

subject to

2 X n oy VisloM pel; e,
$=q =p

6.9)

Chapter 6 198

Z Xip <1 Vi=1, . ,M (6.10)
pel,

gl Visl ..M 6.11)
qe W,

leﬁ{o,l} \4 i=1, wes M, psi:i
Yt 01 Vi=1, ..M qeW,

] (6.12)
2 (0,1} V reL, seW

The following set of constraints which were redundant in the original
formulation but .~ helped in generating tighter bounds in its Linear Programming

Relaxation (section 5.8) can be added:

M r
.2 B D, o * D 2. =B, VreL 6.13)
i=1 p=r-0.+1 SEW

PEL,

M S
Z o«) Yig * Yz =ay Vsew (6.14)

We relax the above program by introducing Lagrange multipliers Uipg =0)
Vi=1.,Mp efi and q€ W‘i relative to the non-overlapping constraints (6.9),
multipliers e, V ré€ L for constraints (6.13) and multipliers fg V s eW for

constraints (6.14) to give us the following Lagrangean problem (LR):

Chapter 6 199

Mz

ZD(u,e f)=max {

va +ZZ %V

PEL; i=1 f

i
p—

i

(204, - e - 0By - D IR
§=q =p
M r
Eer(BO'ZBi 2 Xip ers)+
reL = p=r-0.+1 seW
peL

subject to (6.10), (6.11) and (6.12).

After rearrangement we get:

Problem LR

M
Z (uef)= max[z ZG,p ip - 2 Z~Hiqyiq'

i=1 peL, 1= qeW;

M

2 Z rsrs Zaiﬂi Z_ zuipq
PEL; q

rel seW i=1 eW

i

Chapter 6

reL SEW
where
pta.-1
Glp=n - oyB; Z Yipq - B; -
qQeEW, =p
q’*’Bi'l
Hiq= aiBi . uipq+ai Z f and
peL, §=
M T s
Irs=°r+fs+z Z Z uipq
i= =q.
p=r-a+1 g=s Ej+1
peL, qeW,
subject to

200

(6.15)

(6.16)

6.17)

(6.18)

Chapter 6 201

xipe{O, 1} Vi=1,..., M, peLi

%101} Vi=1,...M, qe¥ (6.19)

zrse{O,l} V rel, seW

The optimal value of problem (LR) for any set of non-negative Uipq
multipliers is an upper bound on the optimal value of the original NGC problem (P).
The Lagrangean problem (LR) can be solved optimally using the following
observation. Considering a piece i in R, we can extract the terms in the above
program associated with it to form a corresponding subproblem. Thus we can

obtain m separate subproblems of the following type:

Subproblem LRp

Find variables Xip and Yiq that satisfy

Zp =max] Z. Cip¥ip - z.. Hig¥iq

peL, qQeW,

subject to

M oM
< S
) <
A IA
— L

xip’ yips{O,l } V peLi, qssWi

Chapter 6 202

Subproblem (LRP) picks the best position for cutting out piece i from Ag
removing from the original NGC problem any restriction that the pieces cut should

not overlap.

It is easy to solve subproblem (LRp) if the Lagrangean multipliers Ujpq &re
fixed at some nonnegative values. All (Gip - Hiq) values are computed forallp €
t’i andq e Wi- Note that if any of these values is not positive, we can set the
corresponding pair of variables to (. Otherwise, we set a pair of variables (xip, Yiq)
with the largest (Gjp- Hjg) valueto1l provided that this value is non-negative
([Gjr - Hjg] say) and set the remaining Xip and Yiq (p #r1, q# s) variables to
zero. Let (Xip'Yiq) represent the optimal values of (Xip Yiq) in the solution of
the Lagrangean problem (LR).

Solution values to variables z; can be obtained by inspection from problem
(LR). Its solution sets the z.g with positive objective coefficients L to 1 and the
remaining z.¢ to zero. Let (Z¢) represent the optimal values of (z,5) in the
solution of problem (LR). Then the optimal value of the Lagrangean objective
function Zp (u, ¢, f) is an upper bound Zyjg on the optimal objective value of the

original NGC problem. . This bound is given by:

M M
Zyp= 2 Z_ C'ipXip) z ‘ HiYiq - 2 Z TrZes
i=1 pELi i=1 qsti rel seW

+ 2

1

—

psLi qui rel SEW

M
=1

0B Z g + Bo Doty Dt (620

Now we consider the relative sharpness of this bound. Ideally, the

Chapter 6 203

Lagrangean multipliers should solve the following dual problem:
Zp=min Zp(u,e,f), u20

Let Z p denote the upper bound obtained from the solution of the LP relaxation of
problem (P) (Zj p is another notation for bound UB3 of chapter 5). An analytic
result given by Geoffrion [1974] allows us to compare Zpy with Z p. The result
states that in general Zp < Zj p. '

In the lagrangean problem (LR) we observe that the optimal values of the
variables will be integer whether we require it or not. Thus Zp(u,e,f) is not
degreased by removing the integrality restrictions on the variables from the
constraints of problem (LR). Geoffrion calls this the " integrality property ". The
implication of the property is fairly immediate and can be given by the following:

THEOREM 1: Let the LP relaxation be feasible and let the Lagrangean relaxation

have the integrality property. Then the maximum value of the Lagrangean

relaxation is equal to the value of the LP relaxation.

Since (LR) possesses the integrality property, by Theorem 1 its maximum
value equals the value of the LP relaxation of (P), i.e Zp =Zp p. The best choice of
approximating the Lagrangean multiplier values u, e and f for (LR) is then the
optimal values of the dual multipliers from the LP relaxation of (P). However, a
nice feature of the Lagrangean method is that it is not necessary to solve the dual
problem which is generally a large LP even for small size NGC problem (chapter 5).
The method used to optimise Zpy(u, ¢, f), called subgradient optimisation, is more

powerful than methods available for solving the large scale LP relaxation of (P).

Chapter 6 204

Our purpose in section 6.4, is to show how subgradient optimisation used
in conjunction with Lagrangean relaxation is successfully used to provide us with
bounds for small to medium sized NGC problems which can then be embedded in a
tree-search procedure used to solve these problems. First, some reduction tests

derived from both problems (P) and (LR) are presented in the next section.

6.3 Problem reduction

As the optimal value Zyjg to the Lagrangean problem (LR) is always (for
any set of Uipq (20), e; and f) an upper bound to the optimal solution of the
original problem (P), a feduction in the problem can be achieved, if the enforcement |
of a set of conditions in (LR) results in an optimal value Z;yg below some
(previously determined) lower bound Zj g to (P). We then know that this set of
conditions can never be satisfied at the optimal solution to the original problem e.g if
forcing Q; pieces of type i in R to be cut from Ay takes the corresponding solution
value below Zj g then we know that Q; pieces of this type can never be produced
by the optimal solution, leading us to consider at most Q;-1 pieces of type i as

candidates for cutting.

Let P; and Q; be the minimum and maximum number of pieces of type i

that can be cut fromAg (0< P; < Q; forall i=1,...,m).

The first three reduction tests presented below are derived from the original
problem (P).

Chapter 6 205

(1) Overlapping pieces

We can update Q;, the maximum number of pieces of any type i in R that

can be cut out of A (i = 1, ..., m), in the following way:

Consider any two types of pieces in R, (i* and j* say), that overlap such
that o + x> 0 ; i.e a piece of type i* and a piece of type j* cannot both be
cut from A with their bottom left-hand corners at the same width. Let
by = [_Pj* /Lag/ aj*J] Bj* denote the amount of Bp that is taken up with -
cutting out Pj* pieces of type j*, where L#* | denotes the largest integer less than or
equal to ** and [**] denotes the smallest integer greater than or equal to **. Then
the maximum number of pieces of type i* that can be cut out using the remainder of

Aqis given by

Qjx= Log/ ox] [(Bo-bjx)/ By (6:21)

If 61* < Qj* then Q;« can be updated and set equal to Gi*- Applying this
reduction test to the example shown in figure 6.1, we find that at most two pieces of
type i* can be cut out of A() (note that three pieces of the same type are giveninR),

since at least one piece of type j* has to be cut (types i* and j* overlap).

Using a similar argument, the maximum number of pieces of type j* can be

updated by

Qjx =min (Qjx, Lot/ o] LB~ [Pyx/ Log/ oyl 1B) /Bl) (622)

Equation (6.22) is derived by considering how much of A is taken up with cutting

out P« pieces of type i* and using the remainder of Ay to cut out pieces of type j*.

Chapter 6

Piece j*
Piece i
(5,4)
(7,3)
(5,4)
(7,3)
(5,4)
(7,3)
Qe =3 %»ﬂ,Qf=3
10 ;
(7,3) E
e !
(7,3) |
——i
(5,4)
0 10

Figure 6.1 Reduction Test 1

¢ Overlapping Pieces.

206

Chapfcr 6 207

Expressions like (6.21) and (6.22) also hold for types of pieces for which Bjx +
B_]* > [30 .

(2) Free Area
Q; can also be updated for any type inR (i =1, ..., m) as follows:

Consider a certain type in R (i* say), with minimum number of pieces

required to be cut from Ay given by P;x. Let

A= D,

P. a. B.

m
1JJJ
*

.

represent the area of A that is cut out by Pj pieces of each type j (j#i*) in R.
Then the maximum number of pieces. of type i* that can be cut out using the

remainder of A is given by

Qji = P+ (o9 B - A) / (o Bi) .

If Qj* <Qj+ then Qjx can be updated and set equal to Qjx .

(3) Knapsack area program

Define tjj=1 if the jth piece of type iiscutfromAg (j=1,.., Q)

= otherwise

Chapter 6 208

Then the best set of rectangles in R that are cut from A limited by its area is

given by:
Problem KNAP1
m Qi
max 2 D Y (6.23)
i=l j=1
subject to
Q
Pi < tﬁ Vi=1,..,m (6.24)
=1
m Ql
2 o. B1 t1J < aO BO (6.25)
i=1 j=1

tie(0,1) Vi=l,.om, j=1,..Q (6.26)

This program can be viewed as a knapsack problem which is easily solved
by the standard dynamic programming algorithm for the Knapsack problem (Sahni
and Horowitz [1979]). Its solution value is clearly an upper bound on the optimal
solution to problem (P). A reduction test is derived from this program which is
used to update both P; and Qj of typeiforall i=1, .., m. We can estimate a
penalty value that results from forcing exactly rj+ pieces of a particular type i* to
be cut from A where Pjx <rjx < Qj*. The method outlined below is used to

obtain penalty values for a particular type i* inR.

Chapter 6 209

Let Zg (1j%) be the upper bound obtained from (KNAP1) by forcing
rj* pieces of type i* to be in the solution of problem (KNAP1) and Z; g be some

(previously determined) lower bound to problem (P). Let

m m

J#i* i

represent the area of A() that is taken up with cutting out Pj pieces of each type j

(j#i*) in R and the associated total value of the pieces cut, respectively. The

procedure is then described as follows:
(a) Set T = Pi*

(b) Solve the following Knapsack problem:

subject to
m
Z aj B_] tjk s %) BO - ke ﬁi* Lo - Ai*

C_ . _ .
tjks{O,I] Vi=1.,m(jFi*), k l,...,QJ

Chapter 6 210
Then Zgn (Tj*)= Zg + Vi* + Vjk Ik
(c) Set rjx = rju+ 1. If rj%< Qi+ gotostep(b); otherwise continue.

(d) By investigating all values of rjx where Pjs Srjx <Qjx, we obtain a set
of upper bounds Zgp (rjx) which are then compared with Zj g in order to

update Pjx and Q; according}y.

Updating of Pix:

If we find that cutting ;s (Pjx < 1j% < Q) pieces of type i* from A produces
an upper bound below Z; g , then Pjx can be set equal to (rjx + 1) in the optimal
solution of problem (P); otherwise Pj« is set equal to rjx. Thus P;x can be updated

by

Pjx = max (Pjx, 1 + max { rj# | Pjx <rjx S Qpx , ZgnN (1j%) < Z1 g)).

(Note that if Pjx > Qjx then the current solution to (P) is infeasible.)

Updating of Q;x:
If the upper bound Zy; (Qj*) obtained when forcing Q;x pieces of type i* to be
cut from A is less than Z g , then we can reduce Q; by one. Thus Q;x can be

updated by
Qi* = min (Qi*’ min { I'i* | l'i* = Qi* s (Qi;k-l), ey (Qi*'Pi*) and

ZgN(rj*) < ZLB}-I)

(Note that if Q j* <P;* then the current solution to (P) is infeasible.)

The following four tests are derived from the Lagrangean problem (LR) by

Chapter 6 211

estimating the decrease in the upper bound Z;g that may result from forcing a set of

variables to be in the solution of (LR).

(4) Free Value

A reduction test similar to Test (2), can be used to update Q; for any type i

in R in ﬂle following way:

Consider a certain type in R (i* say) with minimum number of pieces

required to be cut from A() given by Pi*. Let
m
Vix= sz B0
JE*

represent the total value associated with Pj pieces of each type j (j#i*) in R being

cut out of Ag. Then the maximum number of pieces of type i* that can be

considered for cutting is given by
Qjx =Py« + | (Zyg - Vi*) / V% |

where Zyjp is an upper bound on the optimal solution to problem (P). If Qi* < Qj
then Q; can be updated and set equal to Q;x.

(5) Penalties on the Number of Cut Pieces

It is clear from the structure of the Lagrangean program (LR), that we can

Chapter 6 212

calculate an upper bound on the solution obtained with exactly r; pieces of type i cut
from Ag (i=1, .., m). Thus, a reduction test is derived from (LR) in order to
update both P; and Q; of typeiforall i=1, .., m using the method outlined
below (Note that the Knapsack area program of Test 3 is also used to update P; and

Q).

Consider a particular type in R (i* say). Let Zj g (rjx) denote the
penalty value obtained from (LR) by forcing r;x pieces of type i* to be in the
solution of problem (LR) and Zj g denote (some previously determined) lower
bound to problem (P). Let Si*j* represent the largest (Gj*p - Hj*q) value
associated with the j* th piece of type i* (pe f.l* andqe Wi*) in the Lagrangean
solution; then the upper bound Zy p (1j*) is given by

Qi* T
ZUB_ z (2 Gj*pX'*p - 2 Hj*qu*q)+ ng Si*j* (6.27)

—

where Zyjp is an upper bound on the optimal solution to problem (P). The second
term, in the above expression, represents the cost of removing all pieces of type i*
obtained by the Lagrangean solution and the third term, the cost of forcing rjx

pieces of this type to be in the solution.

By investigating all values of rjx where Pjx <rjx < Qi+ and using (6.27),
we obtain a set of upper bounds Zj g (rj*). These values are then compared with
Z; g sothat Py« and Q;x can be updated as follows:

Updating of Pjx:
Pj% = max (Pjx, 1 + max { rjx| Pjx < rj%« <Qj« and Zy g (1%) < Zyg })

Chapter 6 213

e.g if the upper bound obtained when rj = P;x is less than Zj g, then we can

increase P;« by one.

Updating of Ojx:
Q;* = min (Qjx, min { rjx| rjx = Qjx , (Qj*-1), ..., (Qj*-Pjx) and
Zir(rx) <Zigl-1)
e.g if the upper bound obtained when rj% = Q;x is less than Zj g then we reduce

Q; by one.

(Note that if updating of Pjx and Qi results in Pjx > Qj» then the current

solution to problem (P) is infeasible).

(6) Penalties on Cut Positions

This reduction test is derived from the Lagrangean program (LR) and is
used to calculate penalties for setting variables Xip and Yjq toone (or zero) in the
Lagrangean solution (i.e forcing piece j to be cut with its bottom left-hand corner at

position (p,q) on Ag (or not)) for all piecesinR (j=1, ..., M).

Consider a particular piece in R (j* say). First, we distinguish two
separate cases for cutting this piece with its bottom left-hand corner at a specified

location on AO.

(a) Setting Xjkp = 1 (where the corresponding Lagrangean value is zero i.e

Xj*p =0); p 8tj*. The penalty in setting Xj¥p to one in the solution of problem

(LR), denoted by Z;(j*, p), is given by:

Chapter 6 214

-(Gup -H.p) - - +
ZyB ~ (Gjur - Hyug = =

Giop-Hing) 1f D, Xp=1and D Yp= 1 (628)
qu*,qjés keT,, 1eW*

) otherwise - (6.29)

Equations (6.28) and (6.29) preserve the condition that piece j* may be included in
the Lagrangean solution at most once. Location (1,s) on Ag [equation (6.28)] is
picked by the Lagrangean solution as the best possible position such that piece j* can
be cut with its bottom left-hand corner at (r,s). Then, the second term of equation
(6.28) represents the cost of replacing location (r,s) in the Lagrangean solution by
another location (p,q) on A which is determined by the maximisation term in both
equations. This term represents the cost of cutting piece j* with its bottom left-hand
comer at some location (p,q) in the modified solution of problem (LR) (i.e with (
r,s) replaced by (p,q)). If the penalty value Z;(j*, p) islessthan Zjg,a
lower bound on problem (P) corresponding to a feasible solution, then we cannot set

Xj*p to one in the optimal solution and so Xj¥p can be deleted from problem (LR).

(b) Setting Yj*q = 1 (where the corresponding Lagrangean solution Yj*q =0);
qe V~Vj*. The penalty in setting Yj#q to one in the solution of problem (LR),

denoted by Z1(j*, q), is given by:

-(Gig. - Hep) ~ ~ +
Zyg ~ (Gjur - Hiag Xisg =1 Yiu=l, T €Ly, s € Wy

Chapter 6 215

max (G- Hiye) if > Xjy=1 and Y Y =1 (630)

eL p;érj*p T &
p j*' k € Lj* 1€ W]*
+ max_ (Gj*p - Hj*q) otherwise (6.31)
P SLj*

These penalties are derived in the same way as equaﬁon§ (6.28) and (6.29). If

Z1(*,q) is less than Zj g, then Yj*q can be deleted from problem (LR).

It is clear from the Lagrangean problem that a penalty value can also be
calculated for not cutting piece j* with its bottom left-hand corner at a specified
location ((p,q) say)on Ag. Let Zgy (j*, p, q) denote the penalty in setting both
Xj*p and Yj*q to zero (where Xj*p =1 and Yj*q =1); pe Lj* and q¢ Wj*.
Let (r*,s*) represent the best location (on Ay) in the Lagrangean solution picked
for cutting piece j* (if piece j* has to be in the Lagrangean solution). Then the cost
of removing location (p,q) from the solution is represented by (Gj*p - Hj*q) and
the cost of bringing locatiop (r,s) into the solution by (Gj*r* - Hj *gk) where

G.

o il Hj*s* =m { Gj*r - Hj*s)-

ax ~—
TE Lj*’ SE Wj*’ T#p, s#q

Thus Zg (j*, p, q) is given by:

ZUB - (Gj*i) - Hj*q) +(Gj*r* - Hj*s*)

it X=1 and Y., =1 (632)

=M

Chapter 6 216

ZU-B - (Gj*p - HJ*q) +max { (Gj*r* - Hj*s*), 0) otherwise (633)

Equations (6.32) and (6.33) preserve the condition that piece j* may be included in
the Lagrangean solution at most once. If Zg (j*, p, q) is less than Zj g, then we
can cut piece j* with its bottom left-hand corner at location (p,q) in the optimal

solution and so both Xj*p and Yj*q can be set to one in problem (LR).

(7) Knapsack problem based on the Lagrangean solution

A knapsack area program can be written similar to problem (KNAP1)
(equations (6.23) to (6.26)], with the difference that the objective function
coefficients are values obtained from the Lagrangean problem (LR). Thus we

define

tij=1 if the jth pieceof atypeiin Riscutfrom Ag (j=1, ..., Q)

= (0 otherwise.

Also we define Sij to be the largest (Gjp - qu) value associated with the jth piece
of typei(p eii and q € Wi) in the Lagrangean solution; then the best set of

rectangles in R that are cut from A limited by its area is given by:

Problem KNAP2

m Qi
ZKN=max Z Z Sijtij

i=l j=1

Chapter 6 217

subject to

Q

m
Z o B tl] < ag By
i=1 j=1

tije {0,1} Vi=1l,.,m j=1,‘..,Qi

This program can be viewed as a knapsack problem which is easily solved. Its
solution value is clearly an upper bound on the optimal solution to problem (P). A
reduction test is derived from this proém which is used to update both P; and Q;
of typeiforalli=1, .., m. We can estimate a penalty value that results from
forcing exactly rjx pieces of a particular type i* to be cut from A where Pjx <
rj* £ Q;j*. The method outlined below is used to obtain penalty values for a

particular type i* in R.

Let Zgp (1j%) be the upper bound obtained from (KNAP2) by forcing r;*
pieces of type i* to be in the solution of problem (KNAP2) and Zj g be some

(previously determined) lower bound to problem (P). Let

m m g
A= lZ'l" Pj o, Bj and 1=21 &
JEI* JEI*

represent the area of A() that is taken up with cutting out PJ pieces of each type j

(#i*) in R and the associated total value of the pieces cut, respectively. Zgn (Tjx)

Chapter 6 218
is then given by

T.
i*

m
ZB+Vi*+ZSi*j+2j=Zl aij Z Z u

peT.j qeW

B D e+ O 2 - D, D

relL seW rel seW

where Zp is the solution to the following knapsack problem:

subject to

tee (01} Vi=l.,m (j#i*), k=1..Q

By investigating all values of rj«x where Pjx < rj < Q% and comparing the
corresponding upper bounds Zg (1) obtained with Zj g, we can update Pjx

and Q; accordingly (see Reduction Test 3).

Chapter 6 219

6.4 Subgradient Optimisation

As mentioned in section 6.2, once Lagrangean Relaxation has been applied
to a general integer linear problem [equations (6.1) to (6.4)] we must then
determine the value of the Lagrange multipliers A* that will optimise the upper
bound on the problem. We are then interested in finding the vector A* which

provides the tightest bound by solving the dual problem

(D): Zp, (M) =min Zpy (A%)
A

where Zpy (A) is the upper bound obtained by the Lagrangean problem (PR))
[equations (6.5) to (6.7) 1.

Finding A* is not a simple task; however A* can be approximated by
using a subgradient optimisation procedure. This is an approach for approximating
the minimum of certain piecewise linear convex functions. It has been effective in
handling some difficult large scale combinatorial problems and has already been
applied to the generalized assignment problem, travelling salesman problem and
multicommodity maximum flow problem with successful results. Computational
performance and theoretical convergence properties of the subgradient method are

discussed in Held, Wolfe and Crowder [1974].

The method basically involves the application of a gradient method to
minimisation of Zp (A) with some adaptation at the points where this linear
function is nondifferentiable. In general, the gradient of Zp (A) at differentiable
points is given by Ax - b. At nondifferentiable points, the subgradient method

chooses arbitrarily from the set of alternative optimal Lagrangean solutions to (PR))

Chapter 6 220

and uses the vector Ax - b for this solution as though it were the gradient of
Zp(A). The result is a procedure that determines a sequence of values for A by

applying the formula

Ak+l = max (0, AK- g (b-AxK)). (6.35)

In this formula, t; is a positive scalar step size and xK is an optimal solution to

(PRKk), the Lagrangean problem with dual variables set to AK.

The above multiplier updating procedure requires an initial vector A0 to
start with; A0 =0 is a natural choice. Itis possible, however, to generate a better
initial vector using an observation which is applicable to a particular type of

problem.

Equation (6.35) also uses a stepsize tj in a different way than it is
normally set in a gradient method. A fundamental theoretical result given in Held,

Wolfe and Crowder [1974] states that

k

ask — oo, e = and thi—)“
1=

then Zp (7Lk) converges to its optimal value Zp (A*). A formula for tj that

has been proved effective in practice is given by:

X |
t, (Z (A)-)
- k ZD.) Z1y 636)
S

Chapter 6 221

In this formula, Zj g is the objective value of the best known feasible solution to
(P), my is a scalar satisfying 0 < =« K <2 and IS I is any norm of the

subgradient vextor (b- Ax)e.g

m n k 2
Z (b; - Z 4%) -
=1 =

The initial lower bound Zj g can be obtained by applying a heuristic to problem (P).
Frequently, the sequence { 7k } is determined by starting with m =2 and
reducing m, by a factor of two whenever Zp (lk) has failed to improve in a

specified number of iterations.

Justification of formula (6.36) as well as many other interesting results on
the subgradient method is given in Held, Wolfe and Crowder [1974]. Unless we
obtaina AK for which Zp (ak)= Z; g , there is no way of proving optimality
in the subgradient method. To resolve this difficulty, the method is usually

terminated upon reaching a specified iteration limit.

6.4.1 Implementation of Subgradient Optimisation for the NGC

Problem

In this section we present a subgradient optimisation procedure used in an
attempt to minimise the upper bound Zy;g (6.20) obtained from the Lagrangean
Relaxation of the NGC problem (section 6.2.1). The procedure incorporating

some of the reduction tests mentioned in section 6.3 is as follows:

(1) Choose initial values for the multipliers . No good indication exists on how

Chapter 6 222

to determine good starting values - we used

Ujpg=0 V i=l,..M , peLl; and qeW; (6.37)

e,=0 VreL and wg=0V seW (6.38)

Determine an initial value for Z; g - the lower bound on the problem. This can be

done using any heuristic for the NGC problem (Chapter 7).

(2) Solve the Lagrangean program (LR) [equations (6.15) to (6.19)] with the
current set of multipliers obtaining the optimal objective value Zyyg [equation

(6.20)] and the associated variable values Xip’ Yiq’ Z.

(3) Check if the Lagrangean solution (Xip’ Yiq) and (Z) is a feasible
solution to the original problem (P) [equations (6.8) to (6.12)]. If feasible, then if
ZyB > Z B > update Z; g with Z; g =Zyg and STOP; else STOP. If not

feasible, then if Zyg < Zin, (the minimum bound obtained so far), update Z,;,

with Z .. = ZUB and continue; else continue.

(4) Stopif Z,;, =7 g i-e the best Lagrangean upper bound and the lower

bound (corresponding to a feasible solution) coincide; else goto (5).

(5) Perform the reduction tests of section 6.3 based on overlapping pieces, free

area, free value, the number of cut pieces and the cut positions.

(6) Define the subgradient vectors U, E and F by:

Chapter 6 223

Uipg = 2% Bi~ % By Xip - % B; Yig - 2 Dz
s=q r=p

Vi=1..M, peL, qeW, (639

=l perog+ seW
p eLi
M s
F = a- 2 o Y- X %y VseW (6.41)
i=1 q=s-p;+1 reL
qeW

(7) Stopif Uipq=0 (foralli,pandq), E,=0(forallr)and Fg=0 (forall

s); else goto step (8)-

(8) Calculate the step size t for use in updating the Lagrange multipliers by

=“(ZUB'ZLB)

t 2
nsi

(6.42)

where 0< m<2and

Chapter 6 224

(9) Update the multipliers by :

Ujpq = max (0, Ujpq - t Uipq) forall i=1,..,M, p e‘i:i, qe Wi

er=cr-tEr forallreLL

fS=fS-tFS forallse W
(6.44)

(10) Goto (2) to resolve the Lagrangean program with this new set of multipliers
unless one of the following conditions is satisfied:

(i) a sufficient number of subgradient iterations has been peformed

(ii) w falls below a very small positive value

in which case STOP.

At the end of the subgradient procedure, the optimal solution to the original
NGC problem (P) may have been found (step 4), but if not, the best Lagrangean
bound on the problem has been obtained which can then be used in a tree-search

procedure to solve the problem (Chapter 7).

Solving the Lagrangean problem (LR) (step 2) for a given set of multiplier
values Ujpq 2 0, e; and fg, we may obtain a solution (Xip’Yiq Yand (Zyg)
which is feasible to the original problem (P). In general, this occurs rarely in
practice. However, it is not uncommon that the Lagrangean solution will be nearly
feasible and can be made feasible with some modifications. For example, we can
often obtain feasibility by solving different Lagrangean relaxations of (P) in which
certain variables are preset to fixed values or a large number of variables are

eliminated from the optimal solution, thus enabling smaller sized problems to be

Chapter 6 225

solved. Such relaxations can be obtained at various nodes of a tree-search used to
solve optimally the NGC problem (Chapter 7), providing us with good lower
bounds on (P).

6.4.2 Computational considerations on the choice of step size

No good indication exists on how to determine a good sequence { 7y }
which is used in the computation of the scalar step size t).. For certain choices of
Ty , the number of iterations needed to reach optimality or the proof of infeasibility
of (P) will probably be higher. To gain insight into a more sensible procedure, we
have tried a number of ways for setting such a sequence. We present two rules

used in our computations.

In Rule 1, the sequence { my } was determined by setting g =2 and
halving m whenever ZUBk has failed to decrease in some fixed number of
iterations (3 in our case). The subgradient procedure was terminated in a finite
number of iterations (400) unless the scalar tj dropped below 5 E-6 at an earlier

stage.

In Rule 2, we followed the approach of Held et al [1974] in setting =2
for 2n iterations (where n is a measure of the problem size). In our case, n is
taken to be equal to the sum of the sizes of the normal sets which are relative to a
particular NGC problem i.e n=ILI+1WI. Then, we were successively halving
both the value of m and the number of iterations until the number of iterations
reached a threshold value of five; ® was then halved every five iterations until the

resulting . fell below 0.005 .

Chapter 6 226

Rules 1 and 2 have been tested on twelve problems (B1-B12) drawn from
the literature (Beasley [1985H). We solved them using the subgradient method as
described in section 6.4.1 without performing any reductions tests (i.e excluding
step 5 of the subgradient procedure). The results of this experiment are found in
Table 6.1 . In this Table we give, for each problem, a description of the data, the
value of the integer optimal solution, the best lower bound Z; g (corresponding to
a feasible solution), this being obtained from the table of computational results

given in Beasley [1985b]and the number of variables involved.

To form an idea of the convergence of each Rule for 7y , we also give for
each problem, the best upper bound (Z,,;,) obtained from the subgradient
procedure, the number of iterations required and the time taken to reach this value.
In both cases, m) converges to 0, with each successive value equal to half the value
on the previous iteration. The results show that the quality of the bounds obtained
using both rules is generally the same. They both converge to a value which is on
average 5% away from the optimal solution (note that only in Problem B1, the
duality gap is round 27% and in Problem B7, the optimal solution is found at the
first iteration). However, the rate of convergence differs drasﬁcally. When Rule 2
is applied, the subgradient method converges in a considerably smaller number of
iterations. Only in Problems B4 and B11, Rule 2 requires 5 and 17 iterations more
to reach bounds which are nearer to the optimal solution by 1.5% and 0.9%
respectively. As a result of better convergence, Rule 2 generally has a much lower
computational cost. Figure 6.2 plots every twenty iterations, the least value found
during the previous twenty iterations of the upper bound Z.,;,, for Problem B9
using both Rules 1 and 2 (curves Zminl and Zmin2 respectively). This plot
clearly shows the linear convergence of ZUBk to Zp (A*) which is virtually
assured by our step - size choices. It is also clear that using Rule 1, m starts

converging at a much later stage. Since computational results showed that Rule 2

Chapter 6 227
Details of Test Problems
~ - Optimal | Lower
Sembor, | G0280) | m [IL]| 161 | solueion | Bound | gZhE,C.
opt) | 18
Bl (10,10) 5 7 6 164 164 186
B2 (10,10) 71 10 10 230 230 310
B3 (10,10) | 10 9 10 247 246 369
B4 (15,10) 5 3 10 268 268 222
B5 (15,10) 7 6 10 358 358 297
B6 (15,10) | 10| 13 10 289 289 386
B7 (20,20) 5] 14 20 430 430 606
B8 (20,20) 7 6 20 834 834 655
B9 (20,20) | 10| 18 17 924 924 817
B10O (30,30) 5 7 7 1452 1452 1127
Bll (30,30) 71 18 27 1688 1688 1325
B12 (30,30) | 10| 27 30 1865 1770 1659
Results of Rule 1 Results of Rule 2
Problem | Upper Time to | Upper Time to
Number Bound Number of | Obtain Bound Number of Obtain
1 Iterations 1 2 Iterations 2
(Zmin) zmin (Zmén) Zmin
Bl 208 123 1.3 209 79 1.2
B2 257 218 4.5 258 100 2.6
B3 262 166 3.6 261 96 2.7
B4 275 70 0.7 271 75 0.7
B5 362 128 5.0 365 89 3.6
B6 317 178 5.2 317 110 4.5
B7 430 1 2.8 430 1 2.8
B8 919 400 18.6 922 122 8.9
B9 947 400 47.3 946 160 16.7
B10 1523 200 22.2 1533 133 23.3
Bll 1818 176 39.2 1803 193 40.8
B12 1972 400 104.3 1964 240 120.7

Table 6.1 The Subgradient Method using two different

Rules for setting T

9 1adey)

-)
51160
(@]
(e8]
5
S1110
(=]
> L
11050-
990 -
]
930
. . Lopt
0 40 80 120 160 200 240 280 320 360 400

— Number of Iterations

8CT

Figure 6.2 Descent of the Lagrangean Bound for Problem 9

using Rules | and 2.

Chapter 6 229

performed better than Rule 1, we applied the former to compute the sequence { t }.

The denominator of formula (6.42) includes basically any norm of the
subgradient vectors U, E and F. In our computations, we used an expression
which involved the sum of squares of these vectors [equation (6.43)]. Note thatin
the sum of squares of vector U, we included only those Uipq for which the
corresponding multipliers Ujpq Were stricfly greater than zero. This choice was
based on the observation that only very few Uipq multipliers ~ at most as many as

the piecesin R i.e
m
29
i=1

~ are nonzero among all Uipq 's obtained at any iteration

m

~(= X LW, 1)~

i=1

allowing us to compute a total sum of squares of vector U of much smaller value.
Having obtained a small value for the denominator of formula (6.42), a sequence

{ i } was generated that did not converge to zero very quickly. On the other hand,
summing over all Uipq 's, would lead us to a choice of step size tj that would still
converge to zero, but more quickly. In general, if the step size converges to zero too
quickly, then the subgradient method may converge to a point other than the optimal
solution, provided convergence happens at all. This observation has been confirmed
in a result given in Held, Wolfe and Crowder [1974] (also mensioned in section
6.4). Therefore, we used formulae (6.42) and (6.43) to compute { t) } which
performed well on a variety of probléms. The results are shown in the section

dealing with computational results.

Chapter 6 230

6.5 A General Procedure based on Subgradient Optimisation and

Reduction Tests

Before carrying out the subgradient optimisation procedure of section 6.4.1,
for any NGC problem, we use some of the problem reduction tests described in
section 6.3. Thus we develop a more general approach to solve a problem, at the
end of which either the optimal solution is found or a good upper bound on the
problem is obtained. In the latter case, a reduction in the size of the problem may be
achieved, because the reduction tests may exclude some pieces from cutting, identify
others as neccessary to be cut or eliminate a number of variables. A tree-search
procedure for the NGC probelm can then be used to obtain the optimal solution

(Chapter 7). The general procedure is as follows:

(1) Reduction: Carry out the first three reduction tests of section 6.3, namely the
tests based on overlapping pieces and free area to reduce Q; and then the Knapsack

area program reduction test to update both P; and Q; for all i=l, ..., m.

(2) Normal Patterns: The sets of normal cuts L and W, T‘i and VVi for all i=1, ...,

m are calculated for the reduced problem of step (1).

(3) Subgradient Procedure: Carry out the subgradient procedure as described in
section 6.4.1. If at any iteration, one of the following conditions is satisfied, then
the problem is solved optimally and the general procedure is terminated with Zj g

being the value of the optimal solution:

m
(1) min (Z Qv Zyg) =ZiR
=1

Chapter 6 . 231

m
(it)) Pyo; B> ag By
=

m
(iii) zpi“i>ZUB
i=1

If no optimal solution is found at the end of the subgradient procedure, the
set of Lagrange multipliers that gave the minimum upper bound (me) are recalled.

Let u*, e* and f* denote this set of multipliers.

(4) Reduction: The reduction tests of step S of the subgradient procedure are
performed using u*, e* and f*. In addition, we carry out the two Knapsack area
program reduction tests 1 and 7. Typically, these reductions remove a large number
of the possible cutting patterns. If no reduction is made at this step, we terminate
the general pfocedure; otherwise a further 30 iterations (arbitrarily chosen) of the
subgradient procedure are performed, using the above three termination criteria (

step 4), in order to see if any advantage can be taken from the problem reduction.
6.6 Computational Results with the given Procedure

The general procedure described in the previous section was coded in
FORTRAN and was tested on a Cyber-855 computer. It was investigated
computationally on twelve problems which were randomly generated by Beasley
[1985%) (Bl-Bl.Z). The method of data generation used is the following: m real

numbers rj for i=1, .., m arerandomly generated from the uniform distribution

Chapter 6 232

U0, agBg/4]. The dimension o of each piece is generated from the integer
U[1,0p] and the dimension B; is obtained by setting B; = Ir;/ ;1. An

integer value v; for each piece, is set equal to o;f3; multiplied by a real random
number drawn from U [1,3] and rounded down. A maximum number Q; of
pieces of type i that can be cut from A is generated from the integer range U[1,3]

(note that P; =0 foralli=l, ..., m).

The twelve NGC test problems, included five, seven or ten types of pieces
in R to be cut from stock rectangles A of sizes (10,10), (15,10), (20,20) or (
30,30). Table 6.2 gives details of the problems solved.

To obtain a measure of the effectiveness of the reduction tests, we use a

reduction percentage 100 (1 - D5/Dy), where D5 and Dy represent the value of

m
D, (-
i=1

at the start and at the end of the general procedure respectively. In probleins where
the optimal solution is found by the general procedure, the reduction percentage is
set to 100%. Otherwise, the larger this value the greater the reduction that has been
achieved. The amount of reduction produced by the procedure in problem size is

shown in Table 6.2 .

In that table we give, for each problem, the size of the sets L and W
obtained for the reduced problem and the number of variables left after reduction.
We also give the number of Lagrangean multipliers involved in the relaxed problem,
together with the associated computation time required to obtain Z,,;, . Times are

given in CYBER-855 seconds excluding time for input-output and the first reduction

Chapter 6 233

step of the general procedure. The value of the integer optimal solution (Zopt)
obtained for each problem by the algorithm of Chapter 7, used to solve optimally
NGC problems, is presented in Table 6.2. Zop
of Zin by calculating the following percentage ratio:

¢ allows us to evaluate the quality

=100 (Zppip - Zopt)/zopt

The values of the initial lower bounds for each problem, shown in Table 6.2, were
taken from Beasley [1985b] who developed a heuristic procedure capable of finding
good feasible solutions from any Lagrangean solution. In many cases the lower

bounds obtained were optimal.

From Table 6.2, we can see that for five out of the twelve test problems,
our general procedure found the optimal solution. The initial values of Zj g, used
by the procedure for Problems B4 and B7, were verified to be optimal by solving
the associated Knapsack area program of reduction test 3 (section 6.3). In the
case of Problems B5, B9 and BI10, the general procedure found the optimal
solutions by performing 53, 43 and 1 subgradient iterations respectively. This
does not necessarily imlpy that the linear programming relaxation of problem (P)
gives an integer solution for these problems (since we do not use the simplex
method , we do not necessarily discover integrality when a problem is solved).
However, it can be seen from Table 6.1, that for these problems, the gap between
the best upper bound (Zmin2) obtained by applying the subgradient procedure of
section 6.4.1 (Rule 2 is used for the choice of step size) to the original problem and
the integer optimum is very small. In particular, it is estimated to be 1.1, 1.9,

2.4, 5.6 and 0 % for Problems B4, B5, B9, B10 and B7 respectively.

The computational results of the general procedure shown in Table 6.2,

Problem Data

Reduction | Upper | Lower | Duality | Number of | Time in CDC 5::::;125 NumI;er of
Problem . . Optimal %) Bound | Bound Gap’ (1) | Subgradient | CYBER-855 Left After |Multipliers
Number (00,80) mi{|L] |w] Scz%utit)m (1-02/01) (Zm/in) (ZLB) %) Iterations seconds Reduction
opt

Bl (10,10) 5 7 6 164 30 194 164 18.2 75 1.6 163 113

B2 (10,10) 7] 10 10 230 11 257 230 11.7 100 2.8 288 502

B3 (10,10) | 10 9 10 247 38 261 246 5.6 96 2.5 280 538

B4 (15,10) 5 - 268 100 268 . 268 - - 0.04 - -

B5 (15,10) 7 6 10 358 100 358 358 - 53 1.2 234 157

B6 (15,10) { 10| 13 10 289 20 317 289 9.6 110 4.5 370 769

B7 (20,20) 5 - 430 100 430 430 - - 0.04 - -

B8 (20,20) 7 6 20 834 15 921 834 10.4 122 7.13 638 675

B9 (20,20) {10 | 18 17 924 100 924 924 - 43 5.2 714 1833

B10 (30,30) 5 7 7 1452 100 1452 1452 - 1 1.5 962 160

Bll (30,30) 71 18 27 1688 13 1798 1688 6.5 198 33.5 1301 2110

B12 (30,30) {10 | 27 30 1865 9 1963 1770 5.2 240 96.9 1630 5281

Table

6.2 Performance of the general procedure on 12 problems from the Literature.

9 dey)

1474

Chapter 6 235

demonstrate that a large reduction in problem size ¢malf number of variables left after
reduction) is achieved by the reduction tests leading to a better performance in the

subgradient optimisation (fewer . . iterations, less computational cost, tighter
upper bound). An observation drawn from the computational experience is that
time increases with problem size. For the two largest problems that we solved, B11
and B12, each involving 1301 and 1630 variables - after being reduced by 13
and 9 % respectively - the computing time reached the values of 33.5 and 96.9

seconds respectively.

Bounds on problems B1 - B12 have also been obtained by Beasley
[198SL). They are derived from a Lagrangean relaxation of a 0-1 integer
programming formulati'on of the NGC problem. Comparing with his results, we
notice that our procedure has a better performance on the larger problems, e.g the
bounds we obtained for Problems B11 and B12 are nearer to the integer optimum

by 3.7 and 1 % respectively, with no additional computational cost.

6.7 Conclusions

We applied Lagrangean relaxation to a 0-1 integer programming
formulation of the NGC problem. Subgradient optimisation was used to optimise
the bounds derived from it. Tests for problem reduction, both before the
subgradient procedure and at each subgradient iteration, were given and shown to

produce a large reduction in problem size.

Computational experience of the method on a number of problems of

differing size was presented.

Chapter 6 236

For problems, in which the optimal solution has not been found by the
procedure described in this chapter, the bounds obtained can be embedded in a
tree-search procedure used to solve these problems exaclty. Such a procedure is

developed in the following chapter.

Chapter 7 237

CHAPTER 7

A TREE - SEARCH ALGORITHM FOR THE NGC PROBLEM

7.1 Introduction

In this chapter, we apply a tree-search procedure to the NGC problem as it
has been defined in Section 6.1. First we describe how a finite number of
orthogonal cutting patterns of the cut rectangles on A can be generated. From
amongst these we choose the highest value pattern of demanded rectangles. We then
show how the process of obtaining such a most valuable orthogonal pattern of
rectangles can be considered as a tree - search. Certain conditions are derived and
imposed in order to limit the size of this tree - search. A bounding procedure is then
incorporated into the above tree so as to reduce the amount of search necessary
before the optimum solution is obtained. The Lagrangean bound on the solution of

the problem obtained in the way described in Chapter 6 is used during the search.

The computational performance of the algorithm is illustrated by tests

Chapter 7 . 238

performed on randomly generated problems. Results are given in the last section of

this chapter.
7.2 Description of the problem

We are given a rectangular stock-plate A of length 0y and width By and a
demand for Pj rectangles of dimensions (aj, Bj) and value Y; foreach j=1,..,m.

Suppose that the total number of given rectangles is equal to M, so that
m
M = e
2.9
i=1
We denote this set of pieces by R = {1y, rp, ..., r)q }. The problem is then to
obtain an orthogonal layout of all of the demanded rectangles in the stock plate if one

exists. Otherwise, a set of rectangles is to be cut from Aq that has the highest

possible total value, subject to the constraints on the number of pieces cut.

If K is the number of rectangles of type j included in a particular cutting
arrangement for Ag), then a "combination” is defined as any set of K ,j=1,...,m
such that all Ky are non-negative integers and the set of rectangles represented by
the i; can be fitted within the stock-plate. We define the number of rectangles of
type j included in the kth combinatién by Hig - The problem is then to find a

combination k such that
m

Masgise 2= 2, vy
=t

subject to

Chapter 7 239
Pjsukj SQJ v j=1,...,m

The arrangement of a combination k within the stock plate is termed a
"pattern” (my). For most combinations there will be a number of such cutting
patterns. These are produced by using a cutting process that involves restrictions
upon positioning of cuts in Ag. Only orthogonal patterns are considered so that
each of the edges of the cut rectangles is parallel to an edge of A(). However, many

of these orthogonal patterns are not necessarily guillotineable.

In the following section, a procedure referred to as the "Enumerative
Procedure" is presented which is used to generate all possible patterns
corresponding to all combinations of rectangles in R. Then we describe how these

patterns can be implicitly enumerated as a general tree search.

7.3 Enumerative Procedure

We assume that each rectangle r;in R has a fixed orientation i.c length oy
and width B;. Then we arbitrarily choose some ordering for the set R of oriented
rectangles. One way of evaluating the contribution of each rectangle in the final
solution is using the ratio of each value v; over its area o;B;. Assume that a
possible sequence ry, ..., 1) is chosen by placing the rectangles in decreasing
order of the ratio v; / @;B;. Using this ordering we describe a method of generating
a finite number of orthogonal patterns corresponding to all possible combinations of

the demanded rectangles in Ag,.

The cutting process used for generating a pattern involves a heuristic

Chapter 7 | 240

sequential placement of rectangles in R in the large stock-plate A(. A rectangle r;
is selected according to some criterion and then packed optimally with respect to
those already placed. The logic of the placement process follows a single rule which
may be described as "left-most downward placement” using the following
referencing method. The lower left hand corner of the stock-plate Ag will be
referenced as the point (0, 0). The rectangle selected for packing next is placed
with its bottom left hand corner (b. 1. h. c.) at a location in A which firstly
minimises the X co-ordinate of the placement of the rectangle and secondly (if
more than one such location is possible) at a location which minimises the Y
co-ordinate of the placement. This process results in placing the selected rectangles
as far to the left of A(y as possible and then moved as far as possible downward. It
is implicit in this procedure that, within a particular pattern a rectangle is packed
optimally with respect to those already placed but without regard for those remaining

i.e once arectangleis placed it is fixed until the end of the pattern.

Short [1973] explored in detail various heuristics and interactive techniques
for solving a variation of the problem stated in section 7.2. He supposed that the
length oy of the stock-plate was effectively infinite. His aim was to obtain a layout
of the demanded rectangles on the stock strip that would minimise the length of the

strip. A heuristic sequential placement procedure for solving this problem was
presented using the rule of "left-most downward placement"” of rectangles on the
stock strip. This procedure was tested in a number of test problems. The results
obtained were not satisfactory because of the lack of consideration of the
consequences of a particular placement on the remaining subproblem. So, it would
be desirable to incorporate some facility whereby the cutting process could
"back-track" and alter the selection and placement of some of the fixed rectangles
enabling us to generate different patterns. In this case we would have to determine

what criteria might be used when a back-track should take place, how far it should

Chapter 7 241

go, what the changes to the selection and placement process should be and how the
various patterns could be processed and recognised. The method we describe
below, based on an extension of the left-most downward sequential placement
procedure described by Short [1973] and DeCani [1979], carries out the above

functions allowing us to develop an exact approach for solving the NGC problem.

It will be convenient to illustrate the concepts involved using an example.
We consider the problem of cutting five rectangles from a stock-plate Ag of size

(8, 6) using the dimensions and values of rectangles in R as shown in Figure 7.1.

The first rectangle in R, 1y, is placed in the b.Lh.c. of the stock-plate Ay,
This placement is illustrated for the éxample in Figure 7.2 by the second layout.
Fig. 7.2 shows all possible layouts of rectangles of set R in A(. A layoutcan be
characterised by E(k, i), where & is the identification number (the order in which
the layout is produced), k is the identification number of the completed cutting
pattern corresponding to the layout & and | is the number of rectangles cut by the
kth pattern. When a layout is identified by & only, this means that the current
~ layout does not correspond to any completed pattern e.g. -17- represents the 17th
layout produced by the method in the process of generating a possible pattern
corresponding to a combination of rectangles including rectangles ry and ry from
set R. One such possible pattern is described by 18 (9, 3) representing the 9th

pattern generated by the method resulting in three rectangles being cut from Ag.

Once we placed rectangle ry at position (0,0) in A, we then consider
allowable positionings for the rest of rectangles in R. According to a selection
process which will be described later in the chapter, we first pick rectangle r3. The
only allowable positionings for rg3 are those in which it has one of its edges

collinear with an edge of r; and where no further vertical-downwards or

Chapter 7 242

6
Ao
0 8
=15 V,=20
3 2
I
2
|'1
0 5
0 3
V4=30
Vs =35
Vs=40
3 A
r
5
5
0 7 0 2] 4

Figure 7.1 Stock - plate and pieces in R used for Illustrative

Example.

Chapter 7 243

horizontal-leftwards movement of rg is possible. The resulting feasible layout is
the only one allowable for the rectangles ry and r3 and it is illustrated in Fig. 7.2
by layout 3. Similarly, layouts 5 and 7 represent the two allowable layouts of
rectangles r; and 19 with 1y being the second possible rectangle (according to
the selection process) to consider for placement once rq has already been placed.
Thus, the set of all allowable combinations of] with only one other rectangle in R,
when the former is placed at the b. 1. h. c. of Ay, is given by {3, 5,7,9 (4,2),
10}. This set represents all allowable combinations resulting from layout 2 in the

way described above and is denoted by T (2).

To each layout & of the above set (& € T), corresponds another set T (&)
of allowable layouts obtained by placing each one rectangle in turn, of those in R
not included in the current layout, at all allowable positions in &. For example, we
consider an allowable layout of rectangles r; and rp represented by 5. The only
allowable positionings for r4 are those obtained by applying the left-most
downward placement rule to layout 5. The resulting feasible layout is the only one
allowable for the rectangles ry,ry and r4 corresponding to layout 5, and it is
illustrated in Fig. 7.2 by layout 6 (2, 3). Neither of rectangles r3 and r5 can fit
in layout 5, so no further layouts are produced corresponding to layout 5. As a
result, T'(S) = { 6 (2, 3) } represents all allowable layouts resulting from layout 5,

with each rectangle in R being tested in turn for placement in A).

In general then, for each of the allowable layouts (& say) of (i-1)
rectangles in A(), the only allowable positionings for the ith rectangle are those in
which it has at least one of its edges collinear with an edge of at least one of the (i-1)
rectangles and where no further vertical-downwards or horizontal-leftwards
movement of the ith rectangle is possible. The resulting feasible layouts are the only

ones produced from layout &.

Chapter 7 244

We carry out the above procedure to generate all possible layouts of
rectangles in Ay starting with placing each rectangle of R, in turn at location (0,0)
of Ag i.e. initially, we obtain sets T (12), T (24), T (29) and T (37) by placing
19,13,T4 and r5 atthe b.Lh.c. of Ay, respectively. All resulting layouts in our

example are shown in Fig. 7.2.

For certain layouts (& say) of (i-1) rectangles, there is no allowable
position into which any ith rectangle can be feasibly fitted. Such layout & of (i- 1)
rectangles is then referred to as a " terminal layout ". This means that a complete
cutting pattern (k say) is generated corresponding to the layout & of (i-1)
rectangles in Ag, which is thus identified as layout § (k,i-1). A layout of all M
rectangles in A() is also conventionally taken to be a terminal layout. All terminal
layouts of rectangles in Agy should be determined by the eénumerative procedure,
producing a set of cutting patterns for Aq which is referred to as the " Basic
Pattern Set ". This set consists of all possible patterns corresponding to the various
combinations of rectangles in A, with each pattern k satisfying the following
conditions:

(1) No furtherrectangle can be added in Ay,

(ii) No rectangle in the layout representing the pattern can be moved in

either a vertical-downwards or a horizontal-leftwards direction.

Each pattern k, contained within the Basic Pattern Set, has a total value Vj

for its cut rectangles given by:

Vk=2 v

i=1

where | represents the number of rectangles produced by the pattern. The

245

Chapter 7

37 38 39(203) 40(21,3) LY222) 42(23,2)

2 l 2 | 2

s s s [, 5 ‘ s [, s |°
31116,3) 32 33(173) 34(18,3) 35 36(19,3)
4 : " o 3 aof ? 4 P :

1=l R RS 5
25 26014 3) 27 22(15,3) 29 30

1 1 3 7] 3 I \ ‘

3 3 3 3 !
19(10,3) 20 21(11,3) 22(12,2) 23(13,2) 24

1 ‘ 2 3 .

2 2 ! 2 ! 7| z 3
13 14(6,3) 15(73) 16(2,3) 17 12(9,3)
s 5 s [, s .) Tl s
7] 2 ! z |) 7] z]|

7 e(3,3) 9(4,2) 10 11(5, 3) 12
;) =]
1 3 1 3 1 1| S 1 § ——7—7
1 2 3 41,3) 5 6(2,3)
3 3 l ——7—1 3)

Illustrative Example of section 7.3.

Figure 7.2 All allowable layouts of rectangles in the

Chapter 7 246

enumerative procedure then continues by choosing from amongst all patterns in the
Basic Pattern Set one having the higheét total value Vj. This results in an optimum
pattern of all M rectanglesin Ay if one exists. Otherwise, the described procedure

determines a most valuable orthogonal pattern of rectangles in - Ag.

In the Illustrative Example, the Basic Pattern Set consists of 23 patterns as
shown in Fig. 7.2. The optimum value occurs at layouts 16 (8, 3),33 (17, 3),
36(19,3) and 40 (21, 3) giving four patterns corresponding to the combination

of rectangles 19,14 and 15 in A,

7.3.1 Tree representation of the cutting process

The enumerative method for generating all possible patterns in A, as
described in section 7.3, involves two main processes: the selection and the
cutting. The former will be described in the next section. The cutting process,
involving the sequential placement of rectangles, can be recorded in terms of a tree

which is described below.

All possible patterns in the Basic Pattern Set can be generated by developing
a tree, where a branching represents placement of a rectangle in A, using the rule
of "left-most downward placement”. Thus, the branches emanating from the root
node of the tree correspond to the plabement of all rectangles at the b.l.h.c. of Ag
and each node at the end of a branch represents a pattern of the rectangles produced

with the corresponding rectangle being placed at the b.L.h.c. of A.

The tree corresponding to the Example presented in section 7.2 is shown in

Fig. 7.3. Each node in the tree corresponds to a layout of rectangles in A, shown

/
1,1

L 191dey)

37

@@0@@@@
o)

\

\ 22012 23(13)

6122 42(23)

1
'
]
]
]
]
\
i

L) 6(2) S(3)

() 6) 6)) 6) ()
1(5)

1W6) 15(7) 168) 18(9) 1910) 21(11)

2604) 29(5) 3116) AT 3419 3419) 39200 40(21)
Figure 7.3 Representation of the Enumerative Procedure by a Tree for the

Illustrative Example of section 7.3

LyT

Chapter 7 248

in Fig. 7.2 and is given two labels:

(i) a number n representing the identification number of the node

(ii) a pair of integers (|, v) shown within each circle, indicating the level (1) in
the tree in which node n lies and the order (v) in which it is derived from its parent
node. (Each node n in the tree has a unique parent node from which it is derived.
This is shown in Figure 7.3 by the use of an arrow originating from the parent and

pointing to node n).

A node n with label (1, v) in row | of the tree corresponds to an allowable
layout & (n =&) of | rectangles in Ag. A terminal node with label (1, V)
corresponds to a terminal layout & (k, |) representing the kth pattern in the Basic
Pattern Set which produces | rectangles from A and is denoted by n (k). Thus

the Basic Pattern Set is represented by all terminal nodes of the tree.

The notation (|, v) assigned to node n which is derived from a parent node
(1 -1, V") should be interpreted as meaning that the allowable layout of | rectangles
corresponding to node n has been obtained by placing any rectangle at an allowable
position to the layout of (| - 1) rectangles corresponding tonode (| — 1, v'). The
aggregate of all resulting nodes (1, v) taken over all v corresponds to all allowable
~ placements of only one rectangle in R to the layout of (| — 1) rectangles generated
atnode (1 — 1, v'). For example, nodes 3, 5,7, 9 (4) and 10 of the tree shown in
Figure 7.3 correspond to all allowable layouts obtained by placing in turn only one

rectangle from Set R to the layout corresponding to node (1, 1).

We, therefore, see that the procedure for generating all patterns, as
presented in section 7.3, is equivalent to determining all terminal nodes
corresponding to the above tree. The determination of the maximum value pattern

can, therefore, be thought of as searching the tree for the corresponding terminal

Chapter 7 249

node.

Thus, the dotted lines, as shown in Fig. 7.3, indicate the paths leading to

the four optimum patterns produced for the Illustrative Example.

7.3.2 A selection rule in the sequential placement of rectangles

The enumerative procedure, as described in section 7.3, requires the
development of a selection rule to determine the next rectangle to be placed in an
allowable position to a layout & of | rectanglesin A(so that an allowable
layout &' of (l+1) rectangles is produced. This selection rule represents the
branching rule used to generate a node n', representing layout &', from parent

node n representing layout &.

Short [1973] investigated a number of selection rules in developing
heuristic methods to solve the problem of Optimal Batch Execution on a
Multi-processing computer (Two-Dimensional Packing Problem). The first
approach he examined, was based on ranking the rectangles according to some
feature; either length, area, maximum dimension, perimeter length or diagonal
length (packing rectangles in pre-determined order). It is apparent from the results
that no one criterion was superior to all others in every case (a number of trial
problems was tested with the different selection rules). He then tried a hierarchy of
criteria, including minimizing a measure of " probable waste " obtaining some
improvement in his results. Our selection process is based on the rule that uses the

. measure of " probable waste ".

Since the problem of " value " maximisation is closely related to the problem

Chapter 7 250

of " waste " minimisation, it is desirable to generate cutting patterns of rectangles in
A of high value that also have high utilisation factors (the utilisation factor
indicates the percentage of the surface area of A used by a cutting pattern). It
would then appear reasonable to minimise the waste caused by selection and
placement of each rectangle. The problem is to determine a measure for waste which
can be attributed to a rectangle (it is the sum of areasin Ag likely to be unfilled

after placing a rectangle in a particular position to the current layout).

The measure of " probable waste " used in the sequential placement of
rectangles of the enumerative procedure is a combination of two types of waste. It is
either the current value for total waste (if the rectangle is placed in a position such
that it projects beyond the right-hand end of the current layoutin Ag), or the waste
to the left of the trailing edge of the rectangle when placed. This measure effectively
truncates rectangles sucil that for evaluation purposes they do not project beyond the

right-hand end of the current layout in Ag. It represents the current waste which

1 "

will be unusable later. This interpretation of " probable waste " is then
incorporated in the selection process of the enumeration algorithm described in the

next section.

Two possible measures of " probable waste " are illustrated in Fig. 7.4.
Consider nodes 13 and 32 shown in Fig.7.3 for the Illustrative Example of
section 7.3. Node 13 represents a layout &; of rectangles ry and r5 in Ag
and node 32 represents a layout &, of rectangles ro and r4. The waste attributed
to rectangle r; by placing it in positions (4,2) and (2,2) in Ay to layouts

€1 and &, respectively, is shown in Fig. 7.4.

Chapter 7 251

NODE 13

b e e o o o o b o

NODE 32

2%

1

e e e - o = can e —

Figuire 7.4 leasures of "Probable Waste"

Chapter 7 252

7.3.3 Description of the Enumerative Algorithm

Whichever technique is employed to implement the enumerative procedure
described in Section 7. 3, a critical feature is the data structure used to represent a
cutting pattern, The structure used must be such that it is simple to test if different
sequences of placements of rectangles lead to the same pattern and to rearrange the
structure when transforming one pattern into another. To achieve these requirements

for all types of patterns the structure described below is adopted.

The state at a node n in level | of the enumerative tree is described by four
lists L1, Ly, L3 of rectangles and list S of locations in Agy. Lj is the list of |
rectangles placed in Ay along the path that leads from the root of the tree to node n.
It represents a layout denoted by & or & (k,1) of | rectanglesin Ag, with eight
entries (T;, T} Oj, Pj» Qj» @ Bj) for each rectangle r; (i=1,..,M)
where
?i represents the last rectangle placed in A(y in the current layout € before adding
rectangle 1
ji is the type of rectangle t;

Oj represents the number of rectangles of type j included in the current layout after
placement of 1
pj» qj representthe X and Y co-ordinates of the b. 1. h. ¢ of rectangle r;

oy, B; represent the length and width of rectangle ;.

L, is the list of rectangles such that by placing any one of them in an
allowable position to the allowable layout of | rectangles represented by list Ly, an
allowable layout of (| + 1) rectangles can be obtained representing a node
derived from node n. Inlist L, eachrectangle r; is represented by a six - part

label (1, jj» Pj» Gy @ Bj) where all five entries have the same meaning as

Chapter 7 253

above.

L3 is the list of rectangles such that none of them is ever placed in any
allowable position in the layout of | rectangles corresponding to node n. Each
rectangle r; in this list is represented by a four - part label (rj, j;, o, Bj) with

these notations being interpreted as above.

Let the number of rectangles included in lists L, L, and Lj3
corresponding to a node n be denoted by | L1, Ly | and 1L3 | respectively.
| Lq | represents the level in which node n lies and | L, | represents the number of
nodes in the tree emanating from the current node n. Clearly there is no overlapping
between the three lists. If 1Ly | = O then node n is a terminal node at which a

pattern n in the Basic Pattern Set is produced.

The state at node 32 after nodes 33 and 34 have been generated, shown in
Fig. 7. 3 for the Illustrative Example of Section 7.3 would be described by the
lists of rectangles shown in Table 7.1, using i to head the column representing the

number of the rectangle.

The state at a node n is not fully described by lists Ly, Ly and L3 of
rectangles. It is necessary to maintain a full list S of allowable positions in A in
the layout corresponding to node n for possible placements of rectangles. Since the
rule of left - most downward placement is applied by the cutting process, the task of
generating possible locations (points at which the b. 1. h. c. of a rectangle might be
placed) is relatively simple. Each time a rectangle is placed, two addifimal locations
are formed. One of these lies on the top edge of the rectangle projected back as far
as possible to the left. The other location lies on the right - hand edge of the
rectangle projected as far as possible downward. In list S, each location is

represented by (p,q) wherep and q areits X and Y coordinates respectively.

Chapter 7

List L

1 T S Ji e_] P q; & B;
1 Ay 4 4 1 0 0 2 6
2 4 2 2 1 2 0 5 2
List Ly

1 I Ji Pi qj o B

1 5 5 2 2 4 4

2 1 1 2 2 3 3

List L3

i i 4 B

1 3 3 7 3

Table 7.1 Lists L1, L2 and L3 of rectangles corresponding to node 32
of Fig. 7.3.

254

Chapter 7 4 255

The Set of allowable locations in Ag at node 32, shown in Fig. 7. 3
(before nodes 33 and 34 are generated), would be described by S={ (7, 0),
(2,2)}.

Before describing the enumerative algorithm that generates all possible

patterns for A, important points need to be noted.

Suppose that a set of rectangles has been placed in A in the ordered
sequence of rq,T1p, ..., Tj, ..., T| producing a pattern k of | rectangles, with a
rectangle r; being placed withits b. 1 h. c. atlocation (pj, q;). Let this layout 13
(k, 1) be described by List L (). Considering the same combination of |
rectangles, it is possible that the enumerative procedure will produce layouts which
are identical to & (k,|) by placing the | rectangles in any other ordered sequence
in which each rectangle rjx (rj% =r;) is placed withits b. 1. h. c. atlocation (pj,
g;)in Ag. This results in duplicated patterns of the same set of rectangles. An

example of identical patterns is presented in Fig. 7.5 (layouts 4 and 6).

Central to the enumerative procedure is the concept of " equivalent "
~ patterns. This is best shown by an example illustrated in Fig. 7.6. Consider
patterns 5 and 9 represented by layouts 11 (5,3) and 18 (9, 3), respectively,
of rectangles ry, rp and rg in A with reference to the illustrative Example of
Fig. 7. 2. Patterns 5 and 9 corresponding to the same combination of rectangles
are clearly not identical. It can be seen from Fig. 7. 6 that two closed v;'asted areas
are produced by each pattern (these areas are denoted by W and W, for the sth
pattern and W;' and W5’ for the gth pattern) . Each wasted area resulting from
cutting A(by an orthogonal pattern corresponds to a closed space bounded by

straight lines which are orthogonal to each other. If we detach the four wasted areas

Chapter 7

1

Layout 1 Layout 2 Layout 3
3
1 " 1 ; 1 5
Layout & Layout S Layout 6
Figure 7.5 Identical Patterns.
7, 7AWAg .
2 % 2 7
o /s 1 ?2
;W g é
5 .
1 % 2 VW//
/] /// //‘

Layout 11(53)

Layout 18(93)

Figure 7.6 Equivalent Patterns.

256

Chapter 7 257

from both layouts, we notice that area Wy fits exactly in area W', Similarly, by
taking the image of area Wp with respect to the horizontal axis we obtain an
orthogonal shape that can be mapped exactly on area W5'. This means that cutting
a combination of rectangles from A using different patterns may result in identical
wasted areas which can be used for further processing in exactly the same way. The

patterns of rectangles producing identical waste are referred to as " equivalent ".

Four pairs of equivalent patterns are shown in Fig. 7.2 represented by
layouts {3,251}, {21(11,3), 28(15,3)},{33(17,3),36(19,3)))
and { 16 (8,3),40(21,3) } respectively.

The number of both identical and equivalent patterns is relatively large
compared to the total number of layouts produced by the enumerative procedure
(Section 7.3.5 of Computational Résults). It is therefore, desirable to generate
patterns of rectangles which are essentially distinct by eliminating from explicit
consideration layouts of rectangles when these lead to identical or equivalent

patterns. These duplications can be removed as follows:

Let node n represent a layout & of | rectanglesin A and r; be the
rectangle chosen by the selection process to be provisionally placed with its b.Lh.c.
at position (p;, g;) to the current layout § producing a new layout of (| +1)

rectangles (&' say). Let the provisional layout &' be described by List L (§').

The algorithm checks whether by provisionally placing rectangle r; at
position (p;, g;), a distinct pattern is generated or not. This test is performed by
comparing lists L of all patterns corresponding to the same combination of (1+1)
rectangles with L; (&'). Clearly, an identical pattern can be easily identified. If

L, (§') represents a duplicated pattern, then rectangle r; is never added to layout

Chapter 7 258

€ at position (p;,q;)-
By implementing the procedure described above, it is possible to

considerably reduce the size of the tree generated by the enumerative procedure.

In Chapter 6, we used the concept of " normal cuts " to enhance the
formulation of the NGC problem. The same concept is used by the enumerative
procedure in the following way. If a rectangle (o,) is placed with its b.Lh.c.
at some position (p,q)in Aq, then in the final cutting pattern there must be some
combination of the lengths «; of the available rectangles whose sum must be
exactly p and some combination of the widths B; of the available rectangles
whose sum must be exactly q. This pattern is called " normal " and it is apparent
that for any pattern there is a normal equivalent. Normality is a property of a cutting

pattern that is relative to the set of pieces available for cutting.

L and W are the normal sets of X and Y - coordinates and have already
been defined in Chapter 5. Sets 11 and gVi have also been defined to include the
X and Y-coordinates of locationsin A() at which rectangle r; can be placed. Itis
clear that using the rule of left - most downward placement of rectangles, the

enumerative procedure always generates normalised cutting patterns.

A few comments on the mechanics of the search procedure are necessary

before the enumerative algorithm is described:
The state of the search at level | in the tree is represented by:
(a) The list L of eight - part labels corresponding to the current layout of |

rectangles placed in A() so far.

(b) Thelist Ly of six - part labels corresponding to the rectangles which have

Chapter 7 259

been added so far to the current layout in Ay so that an allowable layout of (1 +1)
rectangles is produced by placing each one of these rectangles in turn in Ag. List
L, may include rectangles which, when provisionally placed in Agq resulted in
identical or equivalent patterns. It may also include the same rectangle placed in
different allowable positions.

(c) Thelist L3 of four - part labels corresponding to the rectangles which have so
far been rejected by the algorithm to be placed to the current layout in Ay).

(d) Thelist S of locationsin A(available for placement of rectangles in the

current layout.

All above lists are updated for forward and backward branchings. Note that
forward branching takes place when [Ljl+ [Lyl+ L3l < M. A diagramatic
description of the algorithm is shown in Fig. 7. 7. A detailed description is given in

Appendix A.

7.3.4 Computational Results

This Section presents the results obtained when the enumerative algorithm
described in Section 7.3.3 was applied to twelve test problems involving up to
seven types of pieces in R. The data for the first ten problems is fully presented in
Tables 5.1, 5.5 and 5.6 of Chapter 5. The last two problems have been taken from
Beasley [1985b]; they correspond to problems 7 and 10 in the table of

computational results presented in his paper.

The algorithm was coded in FORTRAN and run on a CYBER - 855
computer. Table 7.2 describes its performance on the twelve randomly generated

test problems. It shows the data given for each problem, the value Zopt of the

Chapter 7

Imitialisation

Place the first rectangie in R
at location (0.0) o Ag-Call it
E and put it into List L4
Set LEVEL=0 and obtain Ust S.

260

Y

Are there
any rectangles inR
that have not heen placed
on Aqg such that
T‘aﬂ-qglﬂ.m-

Call this rectangle &
and cdd it ‘o List

Determine the amount
of probable waste
obtained and note

ractangle [if this
has minimum vdue

so far.

YES

A

NO

STOP

-
Backtrack

Remove rectangle E from|
List 4 and all rectanges
Tand £ cerresoending

to LEVEL from Lists L,

and Lyreso. Modify LS.

LCQH one of these recrangles |

ayout praoduced idenrRal
or equivalent to ancther

pattern obtcined

Call this rectangle £ and
add it to List L,

y

Ls.er LEVEL=LEVEL-1 j

Add rectangle £ to List™l

Figure

Cal this recangle E

and add

it to "L Ly

Forward Y Branching

Sef LEVEL= LEVEL T
Add rectangle £ *o List
L, and modify List S

7.7 Flowchart of the Enumerative Algorithm.

Chapter 7 261

optimum solution, the number of nodes in the tree as well as the number of the
essentially distinct patterns generated by the algorithm and finally the total time

needed to solve the problem.

The computational effort involved in solving the test problems by the
algorithm is described in terms of the number of nodes in the tree - search as well as
in terms of computing time. From Table 7.2 we can see that there is a high
correlation between the number of nodes in the tree search and the total time needed
to solve each problem. The time needed to solve a problem strongly depends on the
number of duplicated patterns obtained for the problem. The number of nodes
generated by the tree search for a particular problem is obtained when (i) equivalent
patterns are generated in the search and (ii) when such patterns are eliminated from

explicit consideration.

The above observation is illustrated by the results obtained when problems
7 and 8 are solved by the tree - search procedure performed in both ways for each
problem. In the case of problem 7, the computer program took about 24.8
seconds on the CYBER - 855 to produce a tree of 1606 nodes without testing for the
existence of equivalent patterns (identical patterns are not generated) compared to
1017 nodes obtained in 64.7 seconds corresponding to clearly distinct patterns. In
the case of problem 8, the same program took about 17.2 seconds on the same
computer to obtain 1190 nodes compared to 861 produced, including pattern
equivalence testing, in 35.4 seconds. Finally, the computer program took about
52 minutes on the same computer to generate 7679 patterns corresponding to the
combination of seven rectanglesina (16, 16) stock plate as presented in Fig. 7. 8
(this problem is Problem No. 2 in Appendix B of this chapter). Almost double the

time was required to generate 5678 essentially distinct patterns for this problem.

Chapter 7

262

Problem - Optimum | Number| Number Total time
Number (QO’ 60) L] fwl solution| of of in
Zopt Tree | distinct| CYBER-855
nodes| patterns| seconds

1 (4,4) 2 2 100 6 4 0.02

2 (6,6) 4 6 31 106 59 0.9

3 (10,10) 7 7 116 208 122 6.5

4 (20,30) 2 3 680 56 35 0.7

5 (7,9 3 9 54 24 12 0.04

6 (8,6) 6 4 85 37 21 0.08

7 (10,10) 9 10 198 1017 600 64.7

8 (15,10) 7 10 262 861 477 35.4

Bl (10,10) 8 6 164 203 93 1.7

B4 (15,10) 3 10 268 531 282 15.7

B7 (20,20) 14 20 430 9] 0.05

BI1O (30,30) 9 20 1452 963 470 42.0

Table 7.2 Results of the Enumerative Algorithm.

Chapter 7 263

16

6 7
// .
5 7
2 3 77

IR
1

0 16

Figure 7.8 A non-guillotine cutting pattern
of seven rectangles in A,

(Problem 2 of Appendix B)

Chapter 7 264

7.3.5 Conclusions
Based on the results presented in the last section we conclude the following:

(i) The procedure for recognising equivalent patterns in most cases takes up about
half of the computational time needed to solve a problem. However, this extra cost
is outweighed by reducing the tree length by 1/4. (Here we can emphasize the

possibility of improving the pattern recognition procedure currently used).

(ii) The computational effort required to solve a problem largely depends on the
number of pieces in R (It also depends on the dimensions of the available

rectangles relative to the dimensions of A() i. e. sizes of normal sets).

It is clear that the enumerative algorithm of Section 7.3.3 can solve
optimally small size NGC problems. It will be shown in the following Section
how a Branch and Bound Procedure can be used to limit the tree search necessary in

order to determine an optimum solution allowing larger NGC problems to be solved.

Problem & of Table 7.2 optimally solved by the algorithm described in
Section 7.3.3 is fully worked out in Figures 7.2 and 7.3, being used as the

[llustrative Example throughout this Chapter.

7.4 The Tree - Search Algorithm

As discussed in Chapter 6, in the event that, the subgradient procedure

Chapter 7 265

together with the problem reduction tests being used in a procedure as described in
Section 6.5., does not optimally solve the problem a reduction in the size of the
problem will have been achieved. The optimal solution to the reduced problem is
then obtained by developing a tree - search algorithm. A description of this

algorithm is presented below:

(a) Perform the procedure described in Section 6.5 at the initial tree node effecting

a reduction in the size of the problem to be considered.

(b) Select a node of the tree using a specified selection rule and pick an unplaced
rectangle associated with this node to branch on . Using the selection rule described
in Section 7.3.2 arectangle rj is chosen to be placed with its bottom left - hand
corner at some position (p,q)in Ag (the left - most downward placement
described in Section 7.3 is used) , such that the pattern of rectangles placed along
the branch emanating from the initial tree node to the current node forms a
normalized cutting pattern for Ag. We investigated placing rectangle rj at (p,q)
in Ag by setting variables Xip » Yiq to one and
Z_ Xir Z, Yis

rz-:Li seWi
T#p s#q

to zero at the current node. Note that if no tree can be found the tree search is

finished.

(c) Perform the subgradient procedure at each tree node - it is clear from the
Lagrangean program described in Section 6.2.1 that we can calculate an upper
bound for the optimal completion of each tree node as that program is easily adapted
to cope with the setting of (Xip» Yiq) to specific values in the tree. Each node is

then labelled by the minimum upper bound Z,;, found during the subgradient

Chapter 7 266

iterations for that node.
(d) If a new feasible solution is found at (¢) - the conditions for feasibility are
given in Section 6.4.1. - update the largest lower bound Zj g (Z_g corresponds to

a feasible solution) obtained so far accordingly.

(e) Discard any node in the tree that has an associated upper bound Z;; , less than

Z; g (i. e. backtrack) and gotostep (b).

7.4.1 Node Selection Rule

We decided to develop the tree search using a depth - first rather than a
breadth - first search strategy allowing us to select the tree nodes along branches
extending from the first to lowest levels. Thus, we can regard the tree, starting with
the leftmost branch, progressively developing the top to bottom branches and
working from left to right, as slowly building up all complete normalised cutting
patterns in A with each pattern being generated in the same way as in the
enumerative algorithm. By going to the lowest level in the tree as rapidly as
possible, although at the expense of temporarily ignoring potentially more promising
branches en route, feasible solutions (complete patterns) are generated at early
stages in the search. Once a pattern (k) in the Basic Pattern Set (Section 7.3)
is generated, its value Vj constitutes a bound on the optimal solution of the problem
which can be used to prune the tree and hence reduce the area of search necessary.
Furthermore, if computer time is restricted, the best feasible solution (Vy say,)

generated to date may be adopted.

A depth - first strategy was chosen for our problem since it was easily

implemented computationally (less computer storage and less book-keeping routines

Chapter 7 267

are required than the corresponding amounts involved in the use of a strategy of

always branching from the tree node with the current largest upper bound).

7.4.2 Branching Rule

At any tree node, the state of search is represented by Lists L, Ly, L3 and
S as they have been defined in Section 7.3.3. Let n be the tree node (excluding
the initial tree node) that has been currently picked by the node selection rule to
branch on. Let Ly={reéRI rje L{, jj# Ly ULy} represent the set of
unplaced rectangles associated with node n from which a rectangle r; must be
chosen to branch on . Set L4 is computed as follows. Consider any rectangle r;
of type j; in Set R that is not included in the current layoutin Agy represented by
L;. Rectangle r; is excluded from further consideration if any other rectangle of the
same type has been already either placed in allowable positions to the current layout
to produce other layouts or found impossible to be placed. Once such a rectangle 1
is found, it is then tested whether by provisionally placing it in all allowable
locations (p,q) €S available in the current layout, a new layout is produced which
is either identical or equivalent to a pattern generated so far. If the new layout is
essentially distinct, the corresponding probable waste (Section 7.3.2) is noted

and rectangle r; belongs to Set Ly,

If Set L4 is empty, then no branching from node n is possible; otherwise

a rectangle r; € Ly with minimum probable waste is picked to branch on.

Chapter 7 268

7.4.3 Bound Calculation

Once a rectangle r; is chosen to be placed with its b. 1. h. c. at position

(p,q) in Ag atnode n-level | - variables Xj, and Yjq are set to one and both

2 Xir and Z Yiq

reL, r#p seW, s#q

summations

to zero in the current Lagrangean solution. The placement of rectangle r; at (p, q)

also requires the setting of

pro a+P;

Y 2 %
r=p s=q

- represents the area at A taken up by rectangle r; - to zero. The Lagrangean

bound (Section 6.2.1.) becomes tighter by imposing necessary conditions on
some variables in the Lagrangean solution derived from the amount of " essential
waste " associated with the current layout of rectangles on Ag. The amount of

" essential waste " is computed as follows:

Let Ly represent the current layout of | rectanglesin Ap at node n.
Since only (M - 1) rectangles remain to be placed, the essential waste (W) for
this layout may be taken as the sum of the areas of the waste regions corresponding
to L; into which none of the (M -1) rectangles can fit. Let Q denote the set of
locations (r,s) that lie within these regions of essential waste. Since no rectangle
can be placed with its b. l. h. ¢. at any location (r,s) €& Q, we can set the

corresponding variable Z¢ to one in the current Lagrangean solution.

Thus, in the Illustrative Example of Section 7.3, consider layout 10 of

rectangles ry and rg as given in Fig. 7.2., with rectangles ry,r3 and 14

Chapter 7 269

t

q

TN

Figure 7.9 Layout of Rectangles r, and r

(see Fig. 7.2).

5

Chapter 7 270

remaining to be placed. This layout and the remaining unplaced rectangles are

reproduced in Fig. 7.9.

The shaded regions in Fig. 7.9 are essential waste regions, since it is
impossible for either of rectangles rp,r3 orry to be placed in Agy so that they
cover these regions. The essential waste corresponding to this layout is equal to 3 +
4 = 7, the sum of the areas of these essential waste region and set of locations
isgivenby {(0,4), (1,4), (2,4), (7,0), (7,1), (7,2), (7,3)}.
Thus, in the Lagrangean program solved at the tree node corresponding to the layout

of Fig. 7.9., variables Z ¢ such that (r,s)€ Q are set to one.

The essential waste associated with a particular node increases as we move
from the top to bottom branches in the tree. The essential waste attributed to a
pattern of rectangles in the Basic Pattern Set is conventionally taken to be the total

waste area of the corresponding pattern i.e

W=0gBy - D, By
ritsLl

Once a tree node is found to be terminal, all X and Y variables associated
with the rectangles that are not in the current pattern should be eliminated from the
corresponding Lagrangean program. In the case of a non - terminal node, certain
X;p and/or Yiq variables associated with any yet unplaced rectangle r; to the
current layout L should also be eliminated if, by placing rectangle r; withits b. L
h. c. atalocation with an X - coordinate equal to p ora Y- coordinate equal to g,

it overlaps A or any other rectangle in L.

Chapter 7 271

7.4.4 Computational Considerations

In this Section we present the computational implementation of the tree -

search algorithm as described in Sections 7.4.1 t0 7.4.3.

At the initial tree node, a procedure based on the subgradient procedure and
problem reduction tests was carried out in the way described in Section 6.5., so it
will not be repeated here. An initial value for Zj g used by the procedure - a value
of a feasible solution to the problem - was very easily obtained - it was taken to be
equal to the value V7 of the first complete pattern in the Basic Pattern Set generated

by the tree - search.

If no optimal solution was found at the initial node then the set of
Lagrangean multipliers that gave the minimum upper bound Z,;, were recalled
--let u*, e* and f* denote this set of multipliers -- to be used in the calculation of
the Lagrangean bounds at all nodes emanating from the initial node. Also, the
minimum and maximum requirements on the number of rectangles of each type that
can be cut from A were noted -- let P; and Qj denote these requirements

J
Vi=1,..,m

A. The tree-search nodes. Each node n of the tree has associated with it a vector

of size four, namely the generation number of its parent node - & (n), the label of
the rectangle placed in A at the current node - r; and the coordinates of the

location where rectangle rj is placed - (p, q).

Each level | of the tree has associated with it three vectors u (l),e(1)
and f (1) that contained the best set of u, e and f Lagrangean multipliers

(Section 6.2.1) for this level (i. e. the set associated with the lowest upper bound

Chapter 7 272

found at the most recently visited node of level |) and two further vectors, each of
size m that contained the minimum and maximum number of rectangles of type j
required fobe cut by the Lagrangean solution obtained at the most recently visited

node of level |. The latter vectors are denoted by P (1) and Q (1) respectively.

Three vectors that contained information on which variables were set to one
or zero or which ones were free at a Lagrangean solution corresponding to any tree
node and a further vector that stored all allowable locations in Ay for placement of
rectangles at the current node, were used throughout the search and updated for
forward and backward branching accordingly. The three former vectors were
denoted by X,Y,and Z and the latter by S.

All the above vectors were kept in RAM when a tree node was generated so

that they were available if a branch were later to take place from the node .

Ateach node n of level | the following procedure was carried out:
(a) Reduction. Reduction tests 1 and 2 based on overlapping pieces and free
area described in Section 6.3 were used in order to update Qj () forall j=1, ..., m.
The knapsack area program reduction test 3 was also performed in order to update

Pj(1) and Qj(|) forall j types of rectangles.

(b) Bound. The subgradient procedure as described in Section 6.4.1.was carried

out until either 50 iterations were pe;formed or « fell below 0.005. (Rule 2 of
Section 6.4.2. was used in the step - size calculation starting with ®=2). The
initial set of Lagrange multipliers used was associated with the trée node at level
(} - 1) from which branching was taking place-u (l-1),e(l-1)andf(1-1).
Similarly, the initial P (1) and Q(|) were thefinal P(1-1) and Q(1l-1) at

Chapter 7 | 273

the predecessor tree node except that P (1) was updated at each forward branch to
take account of the rectangles placed in Ag. The state of the variables in the

Lagrangean program was described by vectors X, Y and Z.

(¢) Backtracking. We can backtrack in the tree if any of the following conditions

is satisfied:

m
(i) min{ Y, Q) Z 1 SZp
=t

m
(ii) JZ:I(PJ(I)"'BJ)U]BJ >a0[30

where Gj represents the number of j rectangles included in the layout Ly

corresponding to the current node (Section 7.3.3).

m
(iii) jzl (Pj(l)+(~)j)nj >ZUB

7.5 Computational Experience with the Algorithm

The complete tree - search algorithm described in Section 7.4 was
programmed in FORTRAN and run on a CYBER - 855 machine for a number of
randomly generated problems. The algorithm was tested as a whole on 3 sets of

problems that we now describe. Each problem in the first and third sets is denoted

Chapter 7 274

by two numbers. The first number is the set to which the problem belongs, the
second one distinguishes the problems within the same set. Thus, 3.2 is the

second problem in Set 3.

Sets 1 and 2, containing 8 and 12 problems respectively, have already
been used as test problemsvin Chapters 5 and 6 respectively. The data for all
problems in Set 1 is presented in Tables 5.1 and 5.5 of Chapter 5. All problems
in Set 2 are from Beasley [1985b](each one is denoted by the letter B and a
number that distinguishes it within the Set).

Finally, Set 3 contains 18 problems, each randomly generated in the
following way. The dimensions o and PB; of each rectangle were generated by
sampling two integers from the uniform distributions [1,3 0p/4] and [1, 3Bp/4]
respectively. The integer value of each rectangle v; was generated by multiplying
a; B; by areal random number drawn from the uniform distribution [0.5,1.5]

and rounding up. P;= 0 and Q;=1 forall i=1,..,m.

Tables 7.3, 7.4 and 7.5 describe the performance of the tree - search
algorithm on the 38 test problems of Sets 1,2 and 3 respectively. Each table
shows the size of the stock - rectangle A and the number of rectangles in R to be
cut from Ag for each problem. It also gives the size of the normal Sets L and ;V
being calculated once the original problem has been reduced in size by applying to it
the first three reduction tests of Section 6.3. The amount of reduction produced is
shown as a reduction percentage 100 (1 - Dy/D1) where Dy and D are defined
in Section 6.6. Furthermore, each table shows the best upper bound Z,;, and the
best lower bound Zj g corresponding to a feasible solution before the algorithm
first branches; the value of the optimum solution Z opt and the number of nodes

generated in the search and finally, the total time and the time spent at the initial tree

Initial Tree node

Tree-Search

Problem (“0’ By | ™ |L| |w Reduction Upper | Lower | Duality| Time to | Optimum {Number | Total time
Number percentage bound | bound gap obtain solution| of CYBER-855
(I-DZ/D‘)IOO Zmin Z g yA Z in Zopt tree seconds
(CP secs) nodes

1.1 (4,4) 3 2 2 | 100% 100 100 - 0.02 100 - 0.02

1.2 (6,6) 5 4 6 | 607 35 27 12.97 0.4 31 18 1.3

1.3 (10,10)| 5 7 7 1007 116 116 - 0.9 116 - 0.9

1.4 (20,30) | 5 2 3 1007 680 680 - 0.5 680 - 0.5

1.5 (7,9) 4 1 8 || 252 58 51 13.77% 0.5 54 0.8

1.6 (8,6) 5 6 4 - 102 85 207 0.4 85 8 0.8

1.7 (10,10) | 7 9 10 - 219 198 10.67 3.2 198 70 10,1

1.8 (15,10) | 7 7 10 - 275 205 57 3.0 262 48 8.8

a Time limit exceeded

b Best solution found before exceeding time limit

Table

7.3

Tree — Search Algorithm on 8 problems of Chapter 5.

L 1@dey)

SLT

Initial Tree node

Tree-Search

Problem T ﬁl Reduction Upper | Lower | Duality| Time to | Optimum |Number of | Total time
Number (ao, BO) ! M percentage |Bound | Bound gap obtain | solutionjtree nodes| CYBER-855
(I-Dz/Dl)IOO Zmin ZLB A Zmin Zopt seconds
(CP secs)
Bl (10,10)| 5 7 6 307 194 164 18.27 1.6 164 31 4.5
B2 (10,10) 10 10 117 257 230 11.7% 2.8 230 2500 652.8
B3 (10,10) | 10 9 10 38% 261 246 5.67% 2.5 247 399 40.5
B4 (15,10) - - 1007 268 268 - 0.04 268 - 0.04
B5 (15,10) 6 10 100% 358 | 358 - 1.2 358 - 1.2
B6 (15,10){ 10 | 13 10 207 317 289 9.67 4.5 289 357 45.0
B7 (20,20) - - 1007 430 430 - 0.04 430 - 0.04
B8 (20,20) 6 20 157 921 834 10.47% 7.13 834 2400 748.1
B9 (20,20)| 10 18 17 1007 924 924 - 5.2 924 - 5.2
B1D (30,30) 7 7 1007 1452 | 1452 - 1.5 1452 - 1.5
B112 (30,30) 18 27 137% 1798 | 1688 6.5% | 33.5 1688° 343 800
B12% (30,30)} 10 | 27 30 9% 1963 | 1770 5.2% | 96.9 185lb 257 800

a Time limit exceeded

Table 7.4 Tree — Search Algorithm on 12 problems from literature.

b Best solution found before exceeding time linmit.

LI1dey)

9Lt

Initial Tree node

Tree-Search

Problem . . |l Reduction Upper | Lower | Duality | Time to| Optimum | Number | Total time
Number (co, 80) n lLl IWI percentage |Bound | Bound gap obtain solution | of tree | CYBER-855
(1-p,/p)100| Z . Z s 4 Znin Zopt nodes seconds
(Cp_gecs)

3.1 (10,10) 5 7 7 1007 911 91l - 0.7 911 - 0.7
3.2 (10,10) 7 7 8 - 119 83 5.3% 1.5 13 145 12,2
3.3 (10,10) | 10 | 10 8 - 1051 869 12,17 3.3 937 499 58.0
3.4 (10,10) 15 110 8 100% 1307 1307 - 0.3 1307 - 0.3
3.5 (15,15) 5 7 9 807 4115 4016 2,47 3.9 4016 34 9.5
3.6% (15,15) | 10 } 14 13 - 4982 3953 20,67 12.5 4128° 1650 800
3.7 (15,15) | 15 14 13 1007 5827 5827 - 3.2 5827 - 3.2
3.8 (20,20) 5 9 10 80% 6914 6771 2,12 10.5 6771 70 64.1
3.9 (20,20) 10 [19 15 - 8262 6517 19,372 31.9 69247 801 800
3.10% | (20,20) 15 {19 15 867 10362 | 10287 0.7% 3t.5 10287b 558 800
3.11 (30,30) 5 8 10 1007 31974 | 31974 - 12.6 31974 - 12.6
3.12 (30,30) 7118 13 28.57 1237 1178 5% 41,6 1178 358 531.9
3.132 (30,30) | 10 | 26 14 - 40323 | 31530 24,27 86.8 321052b 271 800
3.14% | (30,30) 15 | 27 15 207 1325 1270 4,37 94,2 1270° 262 800
3.15 (40,40) 5 110 10 807 2522 2401 5% 40,1 2401 74 285.1
3.162 | (40,40) 7 118 13 28.5% 2720 2487 9.3%7 78.5 2487° 181 800
3.172 (40,40) | 10 [32 14 207 2738 2517 8.87% 149.6 2517b 104 800
3.18 (40,40) | 15 |35 21 1007 2949 2949 - 65,2 2949 - 65.2

a Time limit exceeded

Table 7.5 Tree - Search Algorithm on 18 problems.

b Best solution found before exceeding time limit.

L 1xdey)

LLT

Chapter 7 278

node. A measure of the gap between the value Z,;, obtained before first

branching and the optimum is also given for each problem.

The 38 test problems solved by the algorithm are of two types: those for
which at most one rectangle of each type j is required to be cut from A (Qj =1
forall j=1, ..., m) and those for which there is an upper bound (Qj <3)onthe
number of pieces of type j that can be cut. Problems in Sets 1 and 3 are of the
first type and problems in Set 2 are of the second type. All problems contain

between 30 and 2000 variables with 20 to 5000 constraints approximately.

An overall evaluation of the computational results reveals some interesting
features. Two out of the 8 problems in Set 1, five out of the 12 problems in Set
2 and five out of the 18 problems in Set 3, did not require any branching. Note
that convergence to optimality was achicvcd without the tree - search being required
in the case of three of the largest problems being solved, involving 15 types of
rectangles each, namely problems 3.4, 3.7 and 3.18 . Out of the 26 remaining
problems, optimality is obtained in 17 problems; the other 9 problems could not
be solved within the time limit of 13 minutes and 20 seconds. In these problems,
the algorithm found goc;d feasible solutions, with a bound on the distance from the

optimum.

Thus, the best solutions found for problems B11 and B12, with values
1688 and 1851 respectively, are at most 0.23 and 0.86% worse than the
optimum, since < 1692 > and < 1867 > are the best valid upper bounds obtained
by the search within the allowed time limit for each problem. Similarly, the best
feasible solutions found for problems 3.6, 3.9, 3.10, 3.13, 3.14, 3.15 and
3.16 with the corresponding values shown in Table 7.5 are at most 0.5, 0.6,

0.3, 2.0, 0.6, 1.8 and 5% respectively, worse than the optimum for each

Chapter 7 279

problem.

Tables 7.2 and 7.3 both present the results obtained by solving all 8
problems in Set 1 with the enumerative algorithm (Section 7.3.3.) and the tree -
search algorithm respectively. We can see that all these problems were solved by the
second algorithm with a considerably less computational effort, in terms of the
number of tree nodes, as well as in terms of computing time. In particular,
problems 3 and 4 were optimally solved at the initial tree node. In both cases
there was a 100% reduction in problem size produced by applying the reduction
tests of the tree search algorithm on the original problems. However, the optimum
solution for problem 8 was found by the same algorithm in 8.8 seconds by
generating 48 tree nodes only, although no reduction on the original problem was
possible, compared to 600 nodes obtained by the enumerative search in 64.7

seconds.

The computational effort needed by the tree-search algorithm to solve a
problem strongly depends on the gap between the best upper bound obtained at the
root node of the tree and the optimum. There is a high positive correlation between
the value of this gap (expressed in percentage) and the number of nodes in the
search tree. For problem B2, the best bound obtained at the root node was away
from the optimum by 11.7% requiring 2500 nodes to be generated in 652
seconds compared to 399 tree nodes obtained in 40 seconds for problem B3 with

an initial bound on the solution being at most 5.6% worse than the optimum.

The total time needed to solve a problem strongly depends on the number of
variables left after reduction before one has to branch. For instance, for problem
3.15 involving 1666 variables before branching, the search generated only 74
nodes in 285 seconds compared to 145 nodes obtained in 12.2 seconds for

problem 3.2 which had 177 variables left for branching (in both problems, the

Chapter 7 280

best upper bound obtained at the initial tree node was about 5% away from the

optimum).

All problems in Set 2 have also been solved by Beasley [1985b].
Comparing his results with the ones shewn in Table 7.4. obtained by our algorithm
we conclude that for problems for which m is small (Qj is also small), Beasley's
results may involve less computational effort. On the contrary, we expect our tree -
search algorithm to perform better on problems (Sets 1 and 3) in which the
number of types of rectangles in R is larger (e.g. one rectangle for each type

available).

Fig. 7.10 gives the complete tree for the Illustrative Example of Section
7.3 (problem 1.6 of Table 7.3) generated by our tree - search algorithm (the tree
generated for the same problem by the enumerative algorithm is presented in Fig. 7.
3). InFig. 7.10, the order in which each node is generated is denoted by the one -
digit integer number written outside the node at the top left or right hand side of it.
The state of search at each node is represented by three numbers written within each
circle. The first of these numbers indicates the label of rectangle that is placed in A
at the current node with its b. 1. h. c. at the location represented by the following
pair of numbers. The best upper bound obtained at each node is denoted by the
number written at the bottom left hand side or below each node. This problem was
solved with a value of an initial feasible solution equal to 85. No better feasible

solution was found by the algorithm, so the initial solution was the optimal one.

In Appendix B, the data and the optimum cutting patterns (both guillotine
and non-guillotine) are presented for a number of constrained cutting problems.

The computational results of these problems are given in Table 7.6.

Figure 7.10 The Tree - Search cbtained for the Illustrative Example of

Section 7.3.

L 1deyd

182

Chapter 7 282
Guillotine Solution
Problem Initial Tree Node Tree - Search
Upper | Duality| Number| Time in Optimum | Number| Total
Number| Bound|Gap |[of SSA | CYBER-855 | Solution |of Tree | Timein
Zmin (%) |lters CP seconds Zopy |Nodes | CPsecs
1 48 17.0% | 20 29.7 41 649 32.1
2 253 10.4% | 20 128.3 229 749 134.3
3 370 3.0% | 20 577.9 359 5855 593.5
4 |675% | 9.4%| 16 1500 617 71000 | 1850.0
5 8532 82% | 14 1500 788 63700 | 1911.4
Non - Guillotine Solution
Problem Initial Tree Node Tree - Search
Reductior] Upper | Lower | Duality] Time in | Optimum| Number] Total
Number | Pecentage|Bound| Bound| Gap | CPsecs| Solution {of Tree | Time
Zoin |Z1B |(%) Zopt Nodes | CPsecs
1 100% |47 47 - 0.02 47 - 0.02
2 100% 245 |[245 - 0.03 245 - 0.03
3 100% {360 |360 - 0.04 360 - 0.04
4 20% |673 |642 |4% 23.7 647 2671 1500
5 20% |898 856 4% 33.7 856° 728 1500

3 Time limit atrootnode P Best Solution found before exceeding time limit

Table 7.6 Computational Results of the problems in Appendix B.

Chapter 7 283

7.5.1 Conclusions

In this Chapter, we developed a new exact method for solving the NGC
problem. In order to limit the search necessary to find the optimum solution, we
embedded in the algorithm bounds, obtained from the Lagrangean relaxation of a
0 - 1 integer programming formulation of the problem (Chapter 5) with the
Lagrangean problem being solved by subgradient optimisation (Chapter 6). The
algorithm has been tested on a number of randomly generated test problems of small
to medium size. The largest problem solved includes 15 types of rectangles (one

rectangle for each type) to be cut from a stock - plate of size (40, 40).

As can be seen from the computational experience presented in Section 7.5,
the algorithm we adopted is a reasonably reliable, efficient tool for solving medium
size NGC - problems, as well as for finding very good approximate solutions to

problems that involve a lot of computational effort to be solved exactly.

Chapter 7 284

APPENDIX A

We are givenaset R={ (a, Bj), j=1,..,m} ofrectangles to be cut
from a stock rectangle Ag = (&, Bg). Each rectangle j in R is associated with a
value Y, and an upper bound Qj on the number of rectangles of that type required

tobecut. Let
m
M= .
j; k

denote the total number of rectangles available.

Let Pj (1) and Qj (t) be the minimum and maximum number of
rectangles of type j thatcan be cut by the most recent Lagrangean solution in level -
| - ofthetree. Letu(l),e(l) and f(!) represent the set of Lagrangean

multipliers associated with the current solution.

The state of the search in the tree is described by the lists L (1), Ly (1),
L3 (1) and S which are updated for forward and backward branching. Each
node n in the tree has a unique parent node denoted by m (n). The total number
of nodes generated by the search is denoted by " no. of nodes ". The description of

the complete tree-search algorithm, including the calculation of bounds is then as

follows:

Initialisation

1.1 Setn=l,l=O,L1(0)=(},I_Q(O)={ },L3(0)={},S={), u(0)=0,
e(0)=0,£(0) =0, no. of nodes =1, P; (0) =Pjand Q; (0) = Q;
for allj=1, .., m

Chapter 7 , 285

Calculation of bound at initial tree node

2.1 Perform problem reduction tests 1, 2 and 3 (Section 6.3).

2.2 Calculate normal sets T, W, L; and VVj for all types j =1, ..., m and an initial
value for the lower bound Zj g.

2.3 Perform the subgradient procedure (Section 6.4.1) to calculate the value of
Zmin-

24 If Zmin=ZLB or
m m
jZIPjajﬂJ»aOBO or Z‘ i >Z oo

stop; Zp g is the optimal solution.

2.5 Recall the set of multipliers U in, € min, and £ pip associated with Z, .
and update Pj (0)and Qj (0) accordingly.

2.6 Resolve the Lagrangean probiem with U oo, € mins £ min and perform
problem reduction tests 1 to 7. If no reduction is achieved, go to 2.7;
otherwise perform a further 30 subgradient iterations to achieve further
reduction. Setu(0)=u1in.€(0)=¢€ 1in, £(0)=£ ip. Update Pj (0)
and Qj (0) and continue.

2.7 Place the first rectangle in R atlocation (0,0)in Ag. Call this rectangle 4
(of typen) and go to 5.1.

Calculation of bound at node -n-in level - | -,

3.1 PC“)>0, setP§(1)=P§(l)- 1.

3.2 Since rectangle 4 is actually placed at location (p, q) in A, set the
corresponding variables in the Lagrangean solution to fixed values i.e. set
e

p1= 1, ch'= 1 and

Chapter 7 286

p’+0tC q’+BC
Y x -0 Y, =0 Y Y z-o
p"'-f‘z;,p#p'C q8~z;,q¢q' & r=p° s=q

3.3 Compute set Q of locations corresponding to the amount of essential waste -
- obtained at the current node and set Z,=1 forall (r,s)€Q.

34 If

weogBy- X, b
rieLl(t)

then the current node n becomes a terminal node, so set Qj (1)= Qj (1)- Oj
('see Section 7.3.3) if a rectangle r; (of typej)€Lq (1), Qj (1)=0
otherwise, and goto 3.7. |
3.5 Perform problem reduction tests 1 and 2 in order to update Qj (1) for all
i=1,.,m
3.6 Eliminate any X;; and/or Yjq variables associated with any rectangler; & L1(})
from the Lagrangeé.n solution if it is not possible to place rj at any location (r,q)
forallqe \TVi or location (p, s) for all p e‘ii.
3.7 Perform problem reduction 3 in order to update Pj (1) and Qj (1)forall j=
1, ..,m
3.8 Set no.of iterations = 50 and obtain u(1)=u(i-1),e(!)=¢(1-1) and
f(H)=£0-1).
3.9 Perform the subgradient procedure to calculate the value of Z,ip-
3.10 If Z; > Z1 g and Ziy;, is such that the Lagrangean solution is feasible to
the original problem (Section 6.4.1), set Z| g = Z,;, and go t0 6.1; if

Chapter 7 287

m m
min (), Q (1), Z 1SZp 5 or D, Bj(1) 0B > g By
i=1 j=1

m
ox'.z1 Pj(l)uj>Zrnin
J:

then go to 6.1; otherwise, recall the set of multipliers u ., € min and f oq
associated with Z ;.. set u(l)=upin,e(l) =e i, and £(1)=£ 0,

update Qj (1) and Pj (1) accordingly and continue.

Selection of a rectangle for placement

4.1 Choose arectangle r; fromset R such that r; & Ly UL, U L3 and it has not
been tested for placement. Let this rectangle be ry of type J and go to 4.2. If
none exists, check whether a rectangle rp ¢ Ly UL, U L3 having minimum
value of problable waste has been found for actual placement at (p', q') in Aq.

Call this rectangle I, (of type M) and go to 5.1; otherwise go to 6.1.

42 If

op By < oy By - 2 o B;
rieLl(l)

then check if rectangle ry can be provisionally placed with its b. I. h. c. at any
allowable location in S; otherwise go to 4.3. If none of the following
conditions is satisfied for a particular (p',q') € S,
(i) rectangle ry overlaps boundary of A

(ii) rectangle ry overlaps arectangle r; € Lg

then rectangle ry can be provisionally placed at(p',q') and go to 4.4;

Chapter 7 288

otherwise continue.
4.3 Set L3 (1)=L3 (1)U {r,J 0Py} and goto4.1.
4.4 If by provisionally placing rectangle ry at (p', q') to the current layout of |
rectangles represented by L (1), a new layout is produced which is identical
or equivalent to another pattern obtained so far, then set Ly (1) =Ly (1)U
{rpJp P A o By) and goto4.l;
otherwise determine the amount of " probable waste " generated, note rectangle

ry if this has minimum value so far and go to 4.1.

Forward branching
51 Set Ly(1)=Lo(1)U(e Mg p'c, q‘g;, o BC }.
52 Set | =! + 1, no.of nodes = no. of nodes + 1, ® (no. of nodes) =n, n = no.
ofnodesande(l)=Pj(l-1),Qj(l)=Qj(l-1) forall j=1,..,m.
53 Set Ly(1)=Ly(1-1)U {?’C, e, N LS p’c, q't;, o, ﬁC } and modify
S accordingly.
5.4 If IL;{ (1) !=Mstop (all rectanglesin R have been placed in Ag);

otherwise go to 3.1.

Backtracking
6.1 If | =0, stop; all normal cutting patterns have been generated; the optimum
solution is given by the current value of Z g.
6.2 To remove rectangle ¢ (of typen) placed at (p',q')in Ag atnode n, level
Lset I=t-l,n=m(n), Ly (1)=Ly(})-{1g 1z, Mg, Oy PG> A O
Bg } and modify S.
6.3 If rectangle Iy can be placed at an allowable location (r,s) €S such that

r#p and s#q,setp' =r,q =s and goto5.1; otherwise go to 4.1.

289

Chapter 7
APPENDIX B
PROBLEM 1
A
3 3
L 5
2 1
0 5 0 2 2 0
Value: 12 12 6 7
Constraint: 1 1 1
6
3 T 1 3
6
0 1 0 2 0
Value: 2 A
Constraint:1 1
STOCK STOCK
7 104 vV ‘
1
L 'O,
3
g 2
3
2 b > 16 1
0 ' 7 0 7

Optimal non - guillotine

cutting pattern

(Opt. Sol. Value=47)

Optimal guillotine

cutting pattern

(Opt Sol. Value=141)

Chapter 7 290

PROBLEM 2
8
7
A z A 4 3
1 3 5
0 0 0 6 0 & 0 6 0
Value: 40 48 16 42 21
Constraint 1 1 1 1 1
5
b 7
6
0 8 0 8
Value: 32 40
Constraint: 1 1
STOCK STOCK
16 16 (2777777
6 7 7 Z
/) /
5 /
2 / 6 /
4/,
3
1
L 4
1 /
s |,
0 16 0 16
Optimal non-guillotine Optimal gquillotine
cutting pattern cutting pattern

(Opt. Sol. Value=245) (Opt. Sol. Value=229)

Chapter 7

291
PROBLEM 3
10 10
9 8|
2 3 4 5
3[4
0 P 0 12 0 8 0 7 0
Value: 35 100 85 60 20
Constraint: 1 1 1 2 1
"
9
7
0 2 0 &
Value: 19 21
Constraint: 1 1
STOCK STOCK
20 772272227777 // 20 m V
4 L / A /
5/ 3 |6 /
/
7,
/A V) 1
z 7
3 W 2
1 /
0 20 0 20

Optimal non- quillotine
cutting pattern
{Opt. Sol. Value=360)

Optimal guillotine
cutting pattern
(Opt. Sol. Value=359)

Chapter 7

292
PROBLEM &
13
1 7 8 7 ?
2 3 A 5
0 20 0 6 0 0 1 0 9
Value: 200 40 60 65 90
Constraint: 1 1 1 1 1
9
6 6
5 ‘
6 7 8 J 4—91 10
0 4 0 14 0 1 0 0 1
Value: 23 T4 95 25 100
Constrairt: 1 1 1 1 1
STOCK STOCK
24 : 24
9 / 8 6: 7
vz 2/
2 .
" s s 7
: Z l‘:
1 1
10 10
-0 30 0 30

Optimal non- guillotine
cutting pattern

(Opt. Sol. Value= 647)

Optimal guillotine
cutting pattemn

(Opt. Sol. Vdue =617)

Chapter 7 293

PROBLEM S
16
9 2 7
1 Y — 31—
0 2 0 10 0 17 0 7 0 &
Value: 216 160 102 21 28
Cons traint: 1 1 1 1 1
27'7
gl 17
9
5 g §| o[7 | 10
0 ¥ 0 02 0 0 2
Value: 95 12 SL 69 168
Constmint: 1 1 1 1 1
ST OCK STOCK
30 g S0T 7 B /7 gameiameas
> s| 7
ﬁ 2
3
2 3
8 8
" /
1 9 1 /
A 6 /]
0 30 0 30
Optimal non- guillotine Optimal guillotine
cutting pattern cutting pattern

(Opt. Sol. Vdue=856) (Opt. Sd. Value=788)

Chapter 8 294

CHAPTER 8

CONCLUSION

In this thesis we have considered orthogonal two-dimensional constrained
cutting stock problems that are encountered in a variety of industrial applications.
Two versions of these problems hé.ve been examined, namely guillotine and general
cutting problems. The restriction of guillotine cuts is made in the general
two-dimensional problem because many important practical situations require this
limitation. Problems of glass - cutting, cutting thin sheet metal and paper sheets fall
in this category. Problems in which the optimal cutting patterns of rectangles are
not restricted to those with the guillotine property e.g. cutting thick metal sheets, are

much harder to solve.

New exact algorithmic procedures have been presented for solving both

types of cutting problems based on the development of mathematical programming
formulations and their exploitation by relaxation techniques to produce bounds for
Branch - and - Bound algorithms. The formulation of the Constrained Guillotine

Cutting problem as a dynamic program was followed by the examination of a

Chapter 8 205

method to provide upper bounds, namely the State Space relaxation. Subsequently
a State Space Ascent procedure was investigated computationally for minimising the
resulting upper bounds. This method proved to be efficient in providing high
quality bounds for medium - sized problems, which were embedded in a tree -
search procedure used to solve these problems exactly. We have shown that CGC
problems of practical size can be solved in reasonable computing time using this
algorithm. The design of an effective interactive system allowed us to produce
solutions to guillotine problems manually using microcomputer graphics.
Comparisons were made between manually produced and exact solutions derived

from the Branch - and - Bound algorithm.

For solving the Non - Guillotine Cutting problem, two mixed integer
programming formulations of the problem were investigated followed by the
examination of two methods to provide. upper bounds, namely linear programming
relaxation and the cutting plane algorithm. Subsequently, five linear problems were
investigated; these problems were based on various 0 - 1 integer programming
formulations of the NGC problem. Computational experience is available for
cutting problems of small size only as a result of the large dimensionality of the
NGC integer programs. This led to the investigation of a Lagrangean problem
based on the best of the 0 - 1 integer programming formulations of the NGC
problem. Subgradient optimisation was used to optimise the resulting upper
bounds. Reductions derived from both the original NGC problem and the
Lagrangean relaxation produced substantial computational gains in the problem and,
in several instances, the optimal solution. The Lagrangean upper bound was
incorporated in a depth - first tree - search algorithm used to solve the NGC problem
optimally. The effectiveness of such a procedure (measured by the size of the
problem it can tackle as well as the running time) depends mainly on the sharpness

of the upper bound used, the branching strategy employed and the quality of the

Chapter 8 296

lower bound used. The computational results obtained using the algorithm indicate
that it is a reasonably reliable tool for obtaining exact solutions fo problems of small
to medium size. The largest problem solved includes 15 types of rectangles (one
rectangle for each type) to be cut from a stock - plate of size (40, 40). In addition,
this algorithm is perfectly capable of providing very good approximate solutions to

large problems that involve too great a computational effort to be solved exactly.

297

REFERENCES

Adamowicz M. and Albano A. [1972] "A Two-Stage Solution of the Cutting Stock
Problem", Inf. Processing 71, (Proc. IFIP Congress 71), Amsterdam,
North-Holland Publishing Company, pp 1086-1091.

Adamowicz M. and Albano A. [1976a] "Nesting two-dimensional shapes in
rectangular modules”, Computer Aided Design, Vol 8, pp 27-33.

Adamowicz M. and Albano A. [1976b] " A solution of the rectangular cutting stock

problem", IEEE Transactions on Systems, Man and Cybernetics, SMC6, pp
302-310.

Albano A. and Orsini R. [1979] "A heuristic solution of the rectangular stock
problem", Computer Journal, Vol 23, pp 338-343.

Art R. C. [1966] "An approach to the Two-Dimensional, Irregular Cutting Stock
Problem", IBM Cambridge Scientific Center, Report No. 320-2006.

Baker B., Coffman E. and Rivest R. [1980] "Orthogonal packing in two
dimensions", SIAM Journal of Computing, Vol 9, No. 4, pp 846-855.

Baker B., Brown D. and Katseff H. [1981] "A 5/4 algorithm for two-dimensional
packing", Journal of Algorithms, Vol 2, pp 348-368.

Baker B. and Schwartz J. [1983] “Shelf algorithms for two-dimensional packing
problems"”, STAM Journal of Computing, Vol 12, No. 3, pp 508-525.

Beasley J.E. [1985a] "Algorithms for Unconstrained Two-Dimensional Guillotine

Cutting", Journal of the Operational Research Society, Vol 36, pp 297-306.

Beasley J.E. [1985b] "An Exact Two-Dimensional Non-Guillotine Cutting
Tree-Search Procedure", Operations Research, Vol 33, pp 49-64.

Beckman M. J. [1968] "Dynamic Programming of Economic Decisions", Springer,
New York.

298

Bellman R. E. and Dreyfus S. E. [1962] "Applied Dynamic Programming",
Princeton University Press, Princeton, New Jersey.

Biro M. and Boros E. [1984] "Network flows and non-guillotine cutting patterns",
European Journal of Operations Research, Vol 16, No. 2, pp 215-221.

Bischoff E. and Dswsland E. B. [1982] "An application of the Micro to Product

Design and Distribution”, Journal of the Operational Research Society, Vol 33, pp
271-280.

Brown A. R. [1971] "Optimum Packing and Depletion", American Elsevier, New
York.

Brown D. J. [1980] "An improved BL bound", Information Processing Letters, Vol
11, No. 1, pp 37-39.

Chambers M. L. and Dyson R. G. [1976] "The Cutting Stock Problem in the flat
glass industry - selection of stock sizes", Operational Research Quarterly, Vol 27,
pp 949-957.

Christofides N. [1974] "Optimal'cutting of two-dimensional rectangular plates",
CAD 74 Proc. (Int. Conf. on computers in engineering and building design), IPC
Business Press-Microfiche.

Christofides N. and Whitlock C. [1977] "An algorithm for Two-Dimensional
Cutting Problems", Operations Research, Vol 25, pp 30-44.

Christofides N., Mingozzi A. and Toth P. [1981a]" State-Space Relaxation
Procedure for the computation of Bounds to Routing Problems", Networks, Vol 11,
pp 145-164.

Christofides N., Mingozzi A. and Toth P. [1981k]"Exact algorithms for the Vehicle
Routing Problem, based on Spanning Tree and Shortest Path Relaxations",
Mathematical Programming, Vol 20, pp 255-282.

Chung F. R., Garey M. and Johnson D. [1982] "On packing two-dimensional
bins", SIAM Journal of Algor. and Discrete Methods, Vol 3, pp 66-76.

299

Coffman E. G., Garey M., Johnson D. and Tarjan R. [1980] "Performance bounds
for level-oriented two-dimensional packing algorithms", SIAM Journal of
Computing, Vol 9, No. 4, pp 808-826.

Coffman E. G., Garey M. R. and Johnson D. S. [1984] "Approximation
Algorithms for Bin-packing - An Updated Survey", Bell Laboratories, New Jersey.

Cook S. A. [1971] "The Complexity of theorem proving procedures”, Proceedings
of the third ACM Symposium on theory of computing, pp 151-158.

Coverdale L. and Wharton F. [1976] "An improved heuristic procedure for a
non-linear cutting stock problem", Management Science, Vol 23, pp 78-86.

Dantzig G. B. and Wolfe P. [1960] "The Decomposition Principle for Linear
Programs"”, Operations Research, Vol 8, pp 101-111.

De Cani P. [1978] "A note on the Two-Dimensional Rectangular cutting stock
problem", Journal of the Operational Research Society, Vol 29, pp 703-706.

De Cani P. [1979] " Packing Problems in Theory and Practice ", PhD Thesis,
Department of Engineering Production, University of Birmingham.

Dowsland K. A. [1982] "Two-dimensional Rectangular Packing" , MSc Thesis,
Department of Management Science, University of Wales, Swansea, Wales.

Dyson R. G. and Gregory A. S. [1974] " The cutting stock problem in the flat glass
industry”, Operational Research Quarterly, Vol 25, pp 41- 53.

Eilon S. [1960] " Optimising the shearing of steel bars", Journal of Mechanical
Engineering Science, Vol 2, pp 129 -142.

Eilon S. and Christofides N. [1971] "The loading problem", Management Science,
Vol 17, pp 259 - 268.

Eisemann K. [1957] " The Trim Problem", Management Science, Vol 3, No. 3, pp
279 - 284.

]

Erdos P. and Graham R. L. [1975] "on Packing Squares with Equal Squares",

300

Journal of Combinatorial Theory, Series (A), Vol 19, pp 119-123.

Farley A. [1983a] "Trim-Loss pattern arrangement and its relevance to the flat-glass
industry”, European Journal of Operations Research, Vol 14, pp 386-392.

Farley A. [1983b] "A note on modifying a two-dimensional trim-loss algorithm to

deal with cutting restrictions", European Journal of Operations Research, Vol 14, pp
393-395.

Fisher M.L. [1973] "Optimal solution of scheduling problems using Lagrangean
multipliers", Part I, Operations Research, Vol 21, pp 1114-1127.

Fisher M. L. [1981] " The Lagrangian Relaxation method for solving integer
programming problems", Management Science, Vol 27, No. 1, pp 1-18.

Fox B. L., Lenstra J. K., Rinnoy K. and Schrage L. E. [1978] "Branching from the

largest upper bound", European Journal of Operations Research, Vol 2, No. 3, pp
191-194.

Garey M., Graham R. L. and Ullman J. D. [1973] "An Analysis of some Packing

Algorithms" in Combinatorial Algorithms, edited by R. Rustin, Algorithmic Press,
pp 39-48.

Garey M. R. and Johnson D. [1979] " Computers and Intractability : A guide to the
Theory of NP completeness ", W. H. Freeman, San Francisco.

Garey M., and Johnson D. [1981] " Approximation algorithms for bin-packing
problems - a survey ", pp 147-172 in Ausiello G., Lucertini M., ed. Analysis and
Design of Algorithms in Combinatorial Optimisation, Springer Verlag, New York.

Garfinkel R. S. and Nemhauser G. L. [1972] "Integer Programming", John Wiley
& Sons.

Geoffrion A. M. [1974] "Lagrangean Relaxation and its uses in integer
programming", Mathematical Programming Study, Vol 2, pp82-114.

Ghare P. M. and Walters L. E. [1968] " A Branch and Bound Algorithm for the
multidimensional knapsack Problem", presented at a joint meeting of the 33rd

301

national meeting of the Operations Research Society of America and American
meeting of the Institute of Management Science.

Gilmore P. C. and Gomory R. E. [1961] " A Linear Programming Approach to the
Cutting Stock Problem", Operations Research, Vol 9, pp 849-859.

Gilmore P. C. and Gomory R. E. [1963] " A Linear Programming Approach to the
Cutting Stock Problem - part IT ", Operations Research, Vol 11, pp 863-888.

Gilmore P. C. and Gomory R. E. [1965] " Multistage cutting stock problems of two
and more dimensions", Operations Research, Vol 13, pp 94-120.

Gilmore P. C. and Gomory R. E. [1966] " The Theory and Computation of
knapsack Functions ", Operations Research, Vol 14, pp 1045-1074.

Golden B. [1976] " Approaches to the cutting stock problem”, AIIE Transactions
Pp 265-274.

Gomory R. E. [1963] " An Algorithm for Integer Solutions to Linear Programs ',
in Graves R. L. and Wolfe P., eds., Recent Advances in Mathematical
Programming, McGraw - Hill, New York.

Greenberg H. and Hegerich R. L. [1970] " A Branch Search Algorithm for the
knapsack problem", Management Science, Vol 16, pp 327-332.

Haessler R. W. [1971] " A heuristic programming solution to a non-linear cutting
stock problem”, Management Science, Vol 17, B-p793-802.

Haessler R. W. [1975] " Controlling cutting pattern changes in one-dimensional trim
problems"”, Operations Research, Vol 23, pp 483-493.

Hahn S. G. [1968] " On the optimal cutting of defective sheets ", Operations
Research, Vol 16, pp 1100-1114.

Haifns M. J. and Freeman H. [1970] " A multistage solution of the Template-Layout

Problem" IEEE Transactions on Systems Science and Cybernetics ", Vol 55C-6,
No. 2, pp 145-151.

302

Held M. and Karp M. [1971] " The Travelling Salesman problem and Minimum
Spanning Trees", Part II, Mathematical Programming, Vol 1, pp 6-25.

Held M., Wolfe P. and Crowder H. P. [1974] " Validation of Subgradient
Optimisation ", Mathematical Programming, Vol 6, pp 62-88.

Hertz J. [1972] " Recursive computational procedure for two-dimensional stock
cutting ", IBM Journal of Research and Development, Vol 16, pp 462-469.

Hinxman A. [1980] " The Trim-loss and assortment problem - a survey ", European
Journal of Operations Research, Vol 5, pp 8-18.

Hodgson T. [1982] " A combined approach to the pallet loading problem ", IIE
Transactions, Vol 14, No. 3, pp 175-182.

Hodgson T., Hughes D. and Martin-Vega L. [1983] " A note on a combined
approach to the pallet loading problem ", IIE Transactions, Vol 15, No. 3, pp
268-271.

Johnson D. [1973] " Near Optimal Bin Packing Algorithms", Doctoral thesis,
M.LT.

Johnson D. [1974] " Fast Algorithms for Bin packing ", Journal of Comput.
Systems Sci. ", Vol 8, pp 272-314.

Johnson D., Demers A., Ullman J., Garey M. and Graham R. [1974] " Worst-Case
Performance Bounds for Simple One-Dimensional Packing Algorithms ", SIAM

Journal of Computing, Vol 3, pp 297-385.

Kantorovich L. V. [1960] " Mathematical methods of organising and planning
production ", Management Science, Vol 6, pp 366-422.

Karp R. M. [1972] " Reducibility among combinatorial problems ", Complexity of
Computer Computations, R. Miller and J. Thatcher eds, Plenum Press, N. Y., pp
85-104.

Lemke C. E. [1954] "The Dual method of solving the Linear Programming
Problem", Naval Research Logistics Quarterly, Vol 1, No. 1.

303

Madsen O. B. G. [1979] " Glass cutting in a small firm ", Mathematical
Programming, Vol 17, pp 85-90.

Marconi R. [1971] "Heuristic method for minimising trim loss in the paper
industry", IBM Technical Disclosure Bulletin, Vol 14, pp 325-327.

Marsten R. E. [1981] " The Design of the XMP Linear Programming Library ",
ACM Transactions on Mathematical Software ", Vol 7, No. 4, pp 481-497.

Martello S and Toth P. [1979] " The 0-1 Knapsack Problem ", Combinatorial
Optimisation, Christofides N., Mingozzi A., Toth P. and Sandi C. editors, John
Wiley & Sons, pp 237-279.

Metzger R. W. [1958] " Stock Slitting ", Chapter 8 of Elementary Mathematical
Programming, John Wiley & Sons Inc., New York.

Paull A. E. and Walter J. R. [1955] " The Trim Problem : an application of linear
programming to the manufacture of newsprint paper ", presented at Annual Meeting
of Econometric Society, Montreal, Sept 10-13, 1954, Abstract in Econometrica, Vol
23, p 336.

Paull A. E. [1956] " Linear programming : a key to optimum newsprint production”,
Pulp Paper Mag. Can. 57, pp 145-150.

Pierce J. F. [1964] " Some Large Scale Production Scheduling Problems in the
Paper Industry " (Prentice Hall, Englewood Cliffs, NJ).

Pierce J. F. [1966] " On the solution of Integer Cutting Stock Problems by
Combinatorial Programming - Part I ", IBM Cambridge Scientific Center, Report
No. 36, YO02.

Sahni S. and Horowitz E. [1979] " Fundamentals of Computer Algorithms ",
Pitman, London.

Salkin H. M. and Dekluyver C. A. [1975] " The Knapsack Problem : a survey ",
Naval Research Logistics Quarterly, Vol 20, pp 127-144.

Shapiro J. F. [1979] " A survey of Lagrangean techniques for discrete

304

optimisation", Annals of Discrete Mathematics, Vol 5, pp 113-138.

Short P. J. [1973] " Optimal Batch Execution on a Multi-Processing Computer (A
Two-Dimensional Packing Problem) ", MSc thesis, Department of Management
Science, Imperial College of Science and Technology, University of London.

Smith A. and De Cani P. [1980] " An Algorithm to Optimise the layout of Boxes in
Pallets ", Journal of the Operational Research Society, Vol 31, pp 573-578.

Stainton R. S. [1977] " The Cutting Stock Problem for the stockholder of steel
reinforcement bars ", Operations Research Quarterly, Vol 28, pp 139-149.

Steudel H. [1979] " Generating pallet loading patterns - a special case of the
two-dimensional cutting stock problem ", Management Science, Vol 25, No. 10, pp
997-1004.

Tilanus C. B. and Gerhardt C. [1976] " An application of cutting stock in the steel
industry ", in K. B. Harley (ed.), Operational Research 75 (North -Holland,
Amsterdam), pp 669-675.

Trauth C. A. and Woolsey R. E. [1969] " Integer Linear Programming : A study in
Computational Efficiency ", Management Science, Vol 15, No. 9, pp 481-493.

Vajda S. [1958] " Trim loss reduction ", Chapter 21 of Readings in Linear
Programming, Wiley, New York.

Wagner H. M. and Whitin T. M. [1958] " Dynamic version of the economic lot size
model ", Management Science, Vol 5, pp §9-96.

Wang P. Y. [1983] " Two algorithms for constrained two-dimensional cutting -
stock problems ", Operations Research, Vol 31, No. 3, pp 573-586.

Weingartner H. M. and Ness D. N. [1967] " Methods for the solution of the
Multi-Dimensional 0/1 knapsack problem ", Operations Research, Vol 15, pp
83-103.

White D. J. [1969] " Dynamic Programming ", Oliver and Boyd, Edinburgh.

305

Wolfe C. S. [1984] " Cutting Plane and Branch and Bound for solving a class of
Scheduling Problems ", IIE Transactions (US), Vol 16, pp 50-58.

