
ALGORITHMS FOR TWO - DIMENSIONAL

CUTTING PROBLEMS

Eleni A. Hadjiconstantinou

BSc. in Statistics and Computer Science

Thesis submitted for the degree of

Doctor of Philosophy

of the University of London

and for the

Diploma of Imperial College

July 1987

Imperial College of Science and Technology

(University of London)

Department of Management Science

To my parents

Ill

ABSTRACT

The constrained two-dimensional cutting problem is the problem of cutting a

number of small rectangular pieces from a single stock rectangle. Each piece has a

given size, value and an upper bound on the number of that type of piece that is

required. The objective is to maximise the value of the pieces cut (or minimise the

waste).

In this thesis a literature survey of various cutting stock problems is given.

Two versions of these problems are discussed, namely guillotine and general cutting

problems.

(i > Guillotine cutting problems: This type of problem restricts the cuts to be made

from one edge of the rectangle to the opposite edge, parallel to the two remaining

edges. A solution method is described based on a tree-search algorithm with the

search limited by the use of an upper bound obtained from the state-space relaxation

of a dynamic programming recursion for the original problem. An interactive

system using computer graphics and capable of solving guillotine cutting problems

manually is also described. Computational results are given for the exact algorithm

and for the manual experiments enabling comparisons to be made for a number of

medium - size problems.

(ii) General cutting problems: This is the problem of finding optimal cutting

patterns of rectangles which are not restricted to be of the " guillotine " type.

Bounds based on linear programming relaxations of some mixed integer and zero -

one integer programming formulations of the problem are given. An exact

tree-search algorithm is described that uses a bound derived from a Lagrangean

relaxation of the problem with the Lagrangean problem being solved by a

subgradient optimisation procedure. The algorithm is shown to be capable of

optimally solving small to medium - size problems and extensive computational

results are presented.

IV

ACKNOWLEDGEMENTS

I have been fortunate in having received the assistance of a number of

people during the preparation of this thesis and it gives me pleasure to acknowledge

this.

My greatest indebtedness is to my supervisor, Professor Nicos Christofides

who provided me with sound advice, valuable criticism and guidance and maintained

a constant interest throughout the course of this research.

I am obliged to Professor Eilon, for the opportunity to carry out research in

his department.

I welcome the opportunity to record my thanks to the Science Research

Council for the financial support provided for this work.

The contribution of my colleagues of the Management Science Research

Unit is also greatly appreciated. Their friendship, helpful discussions and

encouragement made my task a lot easier.

Last but not least, I would like to express my sincere gratitude to my family

for the endless support and encouragement they have given me. It is no exaggeration

to say that without their help this thesis would not have been written.

Chapter 7 v

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

CHAPTER ONE: INTRODUCTION - A SURVEY OF CUTTING
STOCK PROBLEMS (C S P 's) 1

1.1 Introduction 1
1.2 The Computational Complexity of the CSP 3
1.3 Terminology 5
1.4 A Classification of CSP’s 8

1.4.1 The Dimension Parameter 8
1.4.2 The Stock Size Parameter 9
1.4.3 The Stock Constraint Parameter 9

1.5 Literature Survey 10
1.5.1 The One - Dimensional Knapsack Problem 10
1.5.2 The Constrained One -Dimensional Knapsack

Problem 12
1.5.3 The One - Dimensional Trim Problem 13
1.5.4 The Two - Dimensional Knapsack Problem 16
1.5.5 The Constrained Two - Dimensional

Knapsack Problem 21
1.5.6 The Two - Dimensional Trim Problem 25
1.5.7 The Two - Dimensional Bin Packing

Problem 27
1.6 Thesis Outline 30
1.7 Conclusions 32

CHAPTER TWO: TWO - DIMENSIONAL UNCONSTRAINED
GUILLOTINE CUTTING (UGC) 34

2.1 Introduction 34
2.2 Definition of the Unconstrained Problem 38
2.3 A Dynamic Programming (D P) Formulation of the

UGC Problem 39

Chapter 7 vi

2.3.1 Normal Patterns 42
2.3.2 The Dynamic Programming Procedure 45

2.4 Example for UGC - Problem 51

CHAPTER THREE: AN ALGORITHM FOR THE TWO -
DIMENSIONAL CONSTRAINED GUILLOTINE
CUTTING (CGC) PROBLEM 61
3.1 Introduction 61
3.2 Definition of the Constrained Problem 62
3.3 A Dynamic Programming (D P) Formulation

of the CGC Problem 63
3.4 State - Space Relaxation for the CGC Problem 66

3.4.1 Definition 66
3.4.2 Forms of the Mapping Function g(.) 69

3.5 A Bound from State - Space Relaxation
(SSR) 71
3.5.1 The Dynamic Programming

Procedure 74
3.5.2 An Example 81

3.6 State - Space Ascent (SSA) 88
3.6.1 Modification of the weights qj 39
3.6.2 SSA Procedure 91
3.6.3 Computational Results 92

3.7 An Enumerative Procedure for the CGC
Problem 103
3.7.1 Enumerative Procedure 104
3.7.2 Description of Enumerative

Algorithm 107
3.8 A Tree - Search Algorithm for the CGC

Problem 109
3.8.1 The Computation of Bound at the

initial node 110
3.8.2 The Computation of Bound at the

tree nodes 111
3.8.3 Node Selection Rule 114
3.8.4 Branching Rule 114

3.9 Computational Experience with the Algorithm 116

3.10 Conclusions 121

CHAPTER FOUR: TWO - DIMENSIONAL RECTANGULAR
LAYOUT GENERATION USING
MICROCOMPUTER GRAPHICS 122
4.1 Introduction 122
4.2 Computer Graphics 124
4.3 System Design 125

4.3.1 Background 125
4.3.2 Hardware 126
4.3.3 Software 127

4.4 User Interface Design 127
4.4.1 Problem Description 128
4.4;2 Interactive Solution Approach 130
4.4.3 Checking of Error Conditions 132
4.4.4 Display of Optimum Solution 133

4.5 Experimental Experience 133
4.5.1 Design of Experiments 134
4.5.2 Display Format 135
4.5.3 Experimental Procedure 135
4.5.4 Method of Response 136
4.5.5 Results of Experiments 137
4.5.6 Conclusions 139

CHAPTER FIVE: SOME INTEGER PROGRAMMING
FORMULATIONS AND BOUNDS FOR THE
NON - GUILLOTINE CUTTING (NGC)
PROBLEM 146
5.1 Introduction 146
5.2 A Mixed Integer Programming Formulation

for the NGC Problem (MIP - 1) 148
5.3 A Linear Programming (L P) Relaxation of

MIP -1 152
5.4 Cutting Planes 155

5.4.1 The Cutting - Plane Algorithm 156
5.4.2 Results 158
5.4.3 Conclusions 164

Chapter 7 vii

5.5 A second Mixed Integer Programming
Formulation (MIP - 2) 164

5.6 Two 0 -1 Integer Programming Formulations 167
5.6.1 Formulation IP - 1 169
5.6.2 Formulation IP - 2 172

5.7 A second set of 0 -1 Integer Programming
Formulations 173
5.7.1 Formulation IP - 3 174
5.7.2 Formulation IP - 4 176
5.7.3 Formulation P - 5 179

5.8 Computational Aspects of Bound Calculations 181
5.8.1 Computational Comparison 187
5.8.2 Conclusions 192

CHAPTER SIX: A LAGRANGEAN RELAXATION BOUND FOR
THE NGC PROBLEM IMPROVED BY
SUBGRADIENT OPTIMISATION AND
PROBLEM REDUCTION TESTS 193

6.1 Introduction 193
6.2 Lagrangean Relaxation 194

6.2.1 A Lagrangean Relaxation for the NGC
Problem 197

6.3 Problem Reduction 204
6.4 Subgradient Optimisation 219

6.4.1 Implementation of Subgradient Optimisation
for the NGC Problem 221

6.4.2 Computational considerations on the choice
of step - size 225

6.5 A General Procedure based on Subgradient
Optimisation and Reduction Tests 230

6.6 Computational Results with the general procedure 231
6.7 Conclusions 235

CHAPTER SEVEN: A TREE - SEARCH ALGORITHM FOR THE
NGC PROBLEM 237
7.1 Introduction 237

Chapter 7 viii

Chapter 7 IX

7.2 Description of the Problem 238
7.3 Enumerative Procedure 239

7.3.1 Tree - representation of the cutting
process 246

7.3.2 A selection rule in the sequential
placement of rectangles 249

7.3.3 Description of the Enumerative
Algorithm 252

7.3.4 Computational Results 259
7.3.5 Conclusions 264

7.4 The Tree - Search Algorithm 264
7.4.1 Node Selection Rule 266
7.4.2 Branching Rule 267
7.4.3 Bound Calculation 268
7.4.4 Computational Considerations 271

7.5 Computational Experience with the
Algorithm 273
7.5.1 Conclusions 283

APPENDIX A 284
APPENDIX B 289

CHAPTER EIGHT: CONCLUSION 294

REFERENCES 297

Chapter 1 1

CHAPTER 1

INTRODUCTION

- A SURVEY OF CUTTING STOCK PROBLEMS (CSP's) -

1.1 Introduction

Many materials used in industry and construction come in the form of whole

units (sheets of glass, tin-plate, wood, paper, roofing and sheet iron, logs, boards,

beams, reinforcing rods, forms, etc.). In using them directly or for making

semi-finished products, it is necessary to divide these units into parts of the required

dimensions. In doing this, scrap is usually formed and the materials actually utilised

constitute only a certain per cent of the whole quantity - the rest going into scrap.

The above problem can be stated in a more general form as the problem of

cutting a set Sq of one (or more) dimensional stock objects into a set Sp of

smaller, one (or more) dimensional pieces of specified dimensions, in such a way

as to minimise wastage or maximise the value of the pieces cut. This has become

Chapter 1 2

known as the trim loss or cutting stock problem.

The Cutting Stock Problem (CSP) firstly appeared in the Operational

Research Literature in 1957, when Eisemann considered the one-dimensional

problem of minimising trim loss when slitting rolls of material for the supplying of

customer orders. Much of Eisemann's material had however already been anticipated

by Kantorovich [1960] in his paper presented in Russian at Leningrad State

University in 1939. To our knowledge, Kantorovich was the first to formulate and

propose a solution to the CSP; he considered a number of problems concerned with

the minimisation of scrap and formulated them mathematically in a form later to be

known as integer linear programs.

Since 1957, there has been a growing interest in cutting stock problems.

This interest is motivated by the fact that the problem can be used to model a variety

of problems in the real world. Specific applications are related to :

- steeL . b a r s (Eilon [1960], Tilanus and Gerhardt [1976], Stainton

[1977])

- paper industry (Pierce [1964], Marconi [1971])

- glass industry (Dyson and Gregory’ [1974], Chambers and Dyson [1976])

- garment making (Art [1966])

- time tabling

- multi-program (batch) scheduling (Short [1973])

-scheduling commercial television advertising spots (Brown [1971]).

This interest is also a consequence of the appearance of the high speed

digital computer and the development of such computer oriented optimisation

techniques as linear and dynamic programming. This is especially true for those

applications involving only a limited class of shape types, such as rectangles. In the

Chapter 1 3

area under consideration, there are relatively few algorithmic methods available for

providing exact solutions (i.e.methods that are guaranteed to produce optimal

results); they basically involve dynamic programming (e.g. Gilmore and Gomory

[1966], Beasley [1985]) and tree search techniques (e.g. Christofides and Whitlock

[1977], Greenberg and Hegerich [1970], Herz [1972]). An algorithm may not be

available, or the computational cost of using the best available algorithm may be

prohibitive. In general, a heuristic method is highly "domain dependent", that is, it

uses information about the particular problem for which it is developed in order to

find good solutions. This is reflected in a variety of papers (e.g. Pierce [1964],

Pauli and Walter [1955], Metzger [1958], Pauli [1956]) dealing with practical

problems. A survey of approaches to the problem can be found in Hinxman [1980]

and Golden [1976].

In this chapter, we first describe the nature of the CSP in terms of

computational complexity. We then go on to describe and classify the various types

of the problem. Some of the methods available for their solution are briefly

surveyed. The two-dimensional CSP is examined in greater detail ; new exact

solution methods for this problem are developed and described in the following

chapters of the thesis.

1.2 The Computational Complexity of the CSP

Recent results in complexity theory (Karp [1972], Cook [1971]) indicate

that many combinatorial optimisation problems are indeed very difficult to solve in

the sense that a prohibitive amount of computation is required to construct optimal

solutions for all but very small cases. If there exists an algorithm for a given

Chapter 1 4

problem whose rate of computational increase with problem size is bounded above

by some polynomial function of problem size, then this particular problem belongs

to a class of problems denoted by P (for polynomial). Another class of problems,

called the NP (for non-deterministic polynomial) class, includes all the problems in

P but in addition contains problems for which the only known optimal algorithms

(tree-search procedures) exhibit a rate of increase with problem size that is

exponential. Cook [1971] showed that there exists a subclass of problems in the

NP class which have the property that all the problems in the NP class can be

transformed by an efficient (polynomially bounded) algorithm into any of the

problems in this subclass. Problems in this subclass are called NP-complete

problems.

The class NP includes an enormous number of practical problems that occur

in business and industry (Garey and Johnson [1979]). It has been proved

theoretically (Garey and Johnson [1979]) that the CSP is NP-complete. A proof

that an NP problem is NP-complete is a proof that the problem is not in P (does not

have a deterministic polynomial time algorithm) unless every NP problem is in P.

Cook showed that if any member of the NP-complete class can be solved in time

bounded by a polynomial in the size of the input, they all have such a polynomial

time solution.

With the current state of knowledge about NP-complete problems the only

optimal algorithms encountered in the literature are of the tree-search type with

attention focused upon the problem of generating efficient bounds that are of good

quality. In this thesis, we will concentrate on the design of such algorithms in an

attempt to develop exact solution methods for the CSP, capable of dealing

computationally with practical sized problems.

Chapter 1 5

1.3 Terminology

In this section, we describe the terminology to be used in this chapter.

CSP's have been categorised by dimension. Thus a one-dimensional problem is one

in which only one dimension of the stock and order pieces is significant to the

solution whilst a two-dimensional problem is one in which the stock is held as

rectangular sheets and the customer requirement is for rectangles of smaller

dimensions.

In a one-dimensional problem, there is a set Sq of n stock objects in total

which are referred to as "lengths", and their dimensions are L̂ , i = 1,..., n. The

term " lengths " also refers to the items produced by cutting up the stock into a given

set Sp of required " pieces The total number of pieces in Sp is m and their

dimensions are lj j = 1,..., m. The value of each piece to be cut is Dj, j = 1,..., m

(these values may or may not be proportional to the dimensions of the pieces).

There may be an upper bound on the number of lengths to be cut denoted by Qj,

j = 1, ..., m.

The two-dimensional case involves a total number of n stock objects (set

Sq), referred to as "rectangles" of width and length L̂ , i = 1,..., n. An order is

received for a set Sp of m smaller rectangular pieces of width wj and length lj,

j = 1, ..., m. The value of each piece is t)j, j = 1, ..., m and the upper bound

associated with each piece is Qj, j = 1,..., m.

A "cutting pattern" represents a set of instructions for dividing up a stock

object. It is generated in the following way : If aj is the number of piece j included

in a particular cutting arrangement for a stock item, then a "combination" is defined

Chapter 1 6

as any set of aj, j = 1,...» m such that the set of pieces represented by the aj can be

fitted within the stock item. The arrangement of a combination within the stock

object is termed a "pattern" and is denoted by a =[aj, a2, ...» aj] (J < m). For

most combinations there will be a number of patterns as illustrated in Figure 1.1.

Assuming that not all pieces of Sp can be cut from Sq the value of a pattern

a =[aj, a2, ...» aj] is given by:

. t v f
J = 1

The terminology used when discussing CSP's must be extended when

cutting restrictions are added to the standard problem. Considering the

two-dimensional problem, it may be the case that the cutting process consists of a

number of distinct steps in each of which a number of parallel cuts are made in

rectangles, resulting from the previous step, at right angles to the cuts in that

previous step. This is called "staged" two-dimensional cutting. Figure 1.2

illustrates four-stage cutting.

If there is no restriction on the number of cuts that can be made to obtain the

required pieces, but only a restriction that any cut should be parallel to a side of the

stock object, the problem is referred to as " orthogonal " two-dimensional. With

materials such as glass there is a restriction that any cut made must be a " guillotine "

cut, that is, it must extend the full width of the rectangle produced by previous cuts.

Guillotine and non-guillotine orthogonal cutting are illustrated in Figure 1.3.

Chapter 1 7

8
11

9 10

m
Pattern 1 Pattern 2

7
6

6
11 \

8

9 10

k

1 _3___ Z_

Pattern 3

Figure 1.1 Three Different Cutting Patterns for a Combination of

Eleven Pieces.

2
1

2

3
4

3

Figure 1.2 Four - stage cutting.

Figure 1.3 Guillotine and General Cutting Patterns.

Chapter 1 8

1.4 A Classification of CSP's

CSP's essentially consist of finding the best way of cutting a set Sq of stock

objects into a set Sp of smaller pieces of specified dimensions (order sizes). Such

problems can be classified in terms of a set of parameters such that each set of states

for these parameters uniquely describes a particular CSP.

1.4.1 The Dimension Parameter

We can differentiate

- one-dimensional and

- two-dimensional CSP's.

Typical examples for one-dimensional problems are to be found where

stocks of bars or rolls have to be cut into smaller pieces of the same cross section,

there only the length of the material is relevant to the solution of the CSP.

Two-dimensional problems exist in situations where flat material (e.g. metal

sheets, chipboard, panes of glass, textiles) have to be divided into smaller pieces.

One and two - dimensional problems have been considered in the literature.

However, the greater the dimension the more complex the problem. Very little work

has been done on two - dimensional problems (Gilmore and Gomory [1965]).

Chapter 1 9

1.4.2 The Stock Size Param eter

In normal CSP's the size of the stock to be cut is known. However, in

some cases, only a subset of object sizes are stocked because of storage or

manufacturing limitations, economies of scale in production or storage and because

of the costs associated with holding different sizes in stock. The objective then is to

select the optimum number and size of the stock objects from some restricted set so

as to minimise production (stockholding and wastage) costs. This is known in the

literature as the " assortment problem

Furthermore, there is a two-dimensional case where stock comes in the

form of a number of continuous lengths of material of known width. The objective

then is to minimise the length of material required to meet customer demands. This

problem belongs to the class of problems known in the literature as " bin packing "

problems.

1.4.3 The Stock Constraint Parameter

In certain types of CSP’s, the various stock sizes are considered to be

available in unlimited supply and it is desired to find the optimal cutting pattern that

will at least satisfy demand. These are known in the literature as " trim-loss

problems ".

Another type of CSP is the ” knapsack problem ". In this case, not all order

pieces can be cut from a stock object (the stock to be cut is considered to be a

limited resource). Hence the objective is to maximise the total value of pieces

produced in a way that at most satisfies demand - this is known as the constrained

Chapter 1 10

knapsack problem. It is also possible to formulate problems of the knapsack type in

which there is no demand and it is simply required to find the optimum cutting

pattern for a stock object (unconstrained knapsack problem).

1.5 L iterature Survey

Using the classification parameters that have been described in the previous

sections, we now define some of the CSP's that exist in the literature. For each type

of problem, we will provide a comprehensive survey of the available solution

approaches ; these can either be exact or heuristic. Very often, the methods

developed for the CSP, rely upon the technological characteristics of the situation

being modelled.

The survey will describe in greater detail the existing approaches to

two-dimensional problems. Bin packing problems, which are considered to be

special cases of CSP's, will be dealt with separately, as a result of the particular type

of analysis applied to the performance of the algorithms developed for these

problems.

1.5.1 The One-Dimensional Knapsack Problem

This is the simplest form of CSP. In such a problem each of the order

lengths lj, j = 1,..., m is given a value \)j and the objective is to maximise the total

value of items cut from one stock length L. The problem can be formulated by

defining aj as the number of lengths of size j cut from L as:

Chapter 1 11

m
maximise z =

J=i

subject to the condition that [aj, a2> ..., am] corresponds to a feasible cutting

pattern.

The above problem has been studied by a great many authors and it is of

considerable importance to mathematical programming. In particular, it is closely

related to trim-loss problems.

Gilmore and Gomory [1966] develop the idea of the one-dimensional

knapsack function from lengths l] , ..., lm of given values “Dj, ..., a)m by the

equation

F(x) = max { \) ̂x^ + ... + v ; x. non-negative integers and

l j xj + ... + lm xm < x ; x non-negative integer }.

Clearly, if a function Fq(x) is defined such that

Fq(x) = max { 0, Dj I L < x)

then F(x) satisfies

F(x) = max { Fq(x), F(x j) + F(x?) I x > x^+ ^ 0 < x ̂^ ^)•

From this definition of F(x), Gilmore and Gomory have developed a dynamic

programming formulation for solving the one-dimensional knapsack problem. Their

Chapter 1 12

method suffers from the main disadvantage of dynamic programming i.e that for

large scale programs, a large amount of storage is required. Thus, much better tree-

search algorithms have been developed since, but will not be discussed here since

they are not generalisable to two or more dimensions. A comprehensive survey on

the problem is given by Salkin and Dekluyver [1975] and Martello and Toth

[1979].

A variation on the knapsack problem has been referred to in the literature as

the multidimensional 0-1 knapsack problem. This term has been used to describe a

knapsack problem in which there is more than one set of constraints (see, for

example, Weingartner and Ness [1967]). To avoid confusion, knapsack

problems concerned with the design of cutting patterns in two-dimensional

Euclidean space will be referred to, in this thesis, as two-dimensional knapsack

problems ; problems where the dimensionality refers to the vector of parameters for

each piece, will be referred to as multiparameter knapsack problems. The main

method that has been used to solve thiis problem is branch and bound (Weingartner

and Ness [1967], Ghare and Waiters [1968]).

1.5.2 The Constrained One-Dimensional knapsack Problem

This problem is formulated in a way similar to the unconstrained version

with the addition of specified demands on the maximum number of each type of

piece that is to be produced. That is, it may be required that aj < Qj, j = 1,..., m for

some set of integers [Q], ..., Qm). A variety of approaches - similar to the

unconstrained case - exist for this problem (Gilmore and Gomory [1966], Martello

and Toth [1979]).

Chapter 1 13

1.5.3 The One-Dimensional Trim Problem

Kantorovich [1960] produced a mathematical formulation for this problem

in 1939 but this was not published in English for another twenty-one years.

Meanwhile, mostly approximate methods had been developed, including linear

programming together with rounding up or down to provide an integer solution and

various other heuristics.

The simple form of the basic formulation (see Eilon [1960], Metzger

[1958], Pauli [1956], Vajda [1958]) is given below:

An unlimited number of standard lengths Lj, i = 1,...» n of some material is

held in stock from which lengths are to be cut to fill orders. An order consists of a

request for some number Qj of pieces of length lj, j = 1, ..., m. For each stock

length there will be a large number of combinations - say N - (Section 1.3) for

cutting the required lengths. Define ajj, as the number of pieces of length lj to be

cut by the kth combination or cutting pattern and as the number of times the kth

combination is used. Also associate with each combination k a cost c^ representing

the cost of the stock length that the combination uses. Then the general

one-dimensional trim problem is given by

N

= x
k=l

minimise z = 7 . c ̂Xj,

subject to

Chapter 1 14

N

X aj k xk - Qj ’
k=l J J

j = 1, m

xk~ xk inteSer’ k = *> •> N-

It is noted that there are two factors contributing to make this integer linear program

impractical for real size problems. Firstly, the number of variables (cutting patterns)

is enormous so that it is impossible to obtain an integer solution and secondly the

practicality of using the normal simplex method, for solving the corresponding large

linear program (LP) in order to obtain bounds for tree-search methods of solution is

limited.

A significant contribution to this problem was due to Gilmore and Gomory

[1961,1963]. In their method, an initial basic feasible solution is found by an ad

hoc method, then the LP is set up using as variables only the cutting patterns that

occur in the initial solution. In order to find a new pattern that will improve the

solution, a useful column is generated by solving an auxiliary problem at each pivot

of the simplex method. The auxiliary problem to be solved is the unconstrained

one-dimensional knapsack problem, described in section 1.5.1. Gilmore and

Gomory also observed that towards the end of computation considerable time was

required to achieve small improvements. For this reason, a heuristic method was

introduced by terminating the LP if a certain number of consecutive pivots do not

produce at least a certain percentage improvement in the optimal solution.

The algorithm of Gilmore and Gomory has been applied successfully to a

broad class of cutting problems. However, it is only appropriate in cases in which

minimising the trim loss is the only objective. There are many practical problems

which are too large to be solved by this method or have a special structure due to

Chapter 1 15

additional conditions with respect to production. These additional restrictions may

involve using only a few distinct cutting patterns (Haessler [1971], Coverdale

andMharton [1976]), limiting production from a cutting machine, using only a

fixed number of cutting knives etc. As a result, a number of authors have developed

heuristic methods to the problem.

Eisemann [1957] considered the one-dimensional CSP for the case in

which two cutting machines are in use. Pierce [1964,1966], studying problems in

the paper industry, was the first author to decide that heuristic methods must be

adopted; he considered the economic balance between exact procedures (which tend

to be computationally expensive) and heuristic ones (which are usually relatively

cheap). Haessler [1971,1975], also examining problems associated with the paper

industry developed a similar heuristic approach; his solution procedure deals with

the more commonly occuring case in which there is a fixed charge in changing the

slitting patterns, thus reducing the total number of cutting patterns used. Coverdale

and Wharton [1976] presented an improved heuristic pattern enumeration technique

for solving Haessler’s trim problem. The problem involving the cutting of steel

reinforcement bars was investigated by Stainton [1977]; in this case a heuristic

solution was developed considering the possible utilisation of wastage. Finally,

heuristics which use the cutting pattern that is best in terms of an evaluation (this

evaluation procedure assigns heuristically determined penalties to patterns that can

only be used a small number of times) are employed by Marconi [1971] in paper

cutting problems. Value heuristics have also been used by Tilanus and Gerhardt

[1976] in a problem arising when steel slabs have to be cut as they are

manufactured.

Chapter 1 16

1.5.4 The Two-Dimensional Knapsack Problem

The unconstrained problem in which the value of the rectangular pieces cut

from a single plane rectangular stock object is maximised, without limits being

placed on the number of pieces of each type used, is termed by Gilmore and

Gomory [1965, 1966] as the "two-dimensional knapsack problem". The related

problem of minimising the amount of waste produced by the cutting can be

converted into this problem by making the value of all pieces equal to their areas.

Various methods of solution for this problem have been proposed in the

literature, each with differed assumptions on the allowable cutting patterns. In

almost all the methods used, it has been assumed that the cuts made on the stock

rectangle can only lie in the two orthogonal directions parallel to its edges, resulting

in an "orthogonal" pattern. Otherwise, a cutting pattern is called "non-orthogonal".

It is interesting to remark that the restriction to orthogonal cutting patterns can

prevent the optimal arrangement of the required rectangles in the stock object from

being obtained, as it was pointed out by Erdos and Graham [1975] and by DeCani

[1978]. However, there do not seem to be any computational studies on the use of

non-orthogonal cutting. An example of non-orthogonal cutting is shown in Figure

1.4.

Waste
material

Figure 1.4 Example of a non-orthogonal cutting pattern.

Chapter 1 17

A special case of the two-dimensional cutting problem restricts any cuts

made to be of guillotine type (Section 1.3) - Gilmore and Gomory observe that this

restriction occurs very often in practice, for example in the cutting of paper or glass.

All of the CSP's that yield to this treatment are ones in which the cutting is done in

" stages " (Section 1.3); if the rectangle to be cut is being processed along a

production line, there may be a number of cutting machines along the line each

corresponding to a stage.

The generalised two-dimensional problem, which is related to cutting

problems of non-guillotine type, has been considered by few authors in the

literature. A number of heuristic procedures have been developed for the well

known bin-packing (Section 1.5.7) and pallet loading (Section 1.5.5) problems

which are special cases of the non-guillotine cutting problem.

In this section, the problem to be discussed will be the two-dimensional

knapsack problem with guillotine cuts imposed.

There have been two optimal methods developed to solve this problem,

using dynamic programming (Gilmore and Gomory [1966], Beasley [1985a])

and tree-search techniques (Herz [1972]).

In the paper by Gilmore and Gomory, two methods are described. Since

the second method has been shown to be incorrect (Hertz [1972]) the first one is

presented below:

Gilmore and Gomory introduce a knapsack function F (x, y) which is

defined as follows:

Given m rectangular pieces (lj, w j), [with non-negative values Uj associated with

Chapter 1 18

them], and which are required to be cut from a single stock rectangle (L, W), then

m
F (x , y) = max ^ tU j.

j = 1

In this equation, are non-negative integers such that there exists a way

of cutting any rectangle (x, y) (x < L and y <> W) into rectangles (lj, w j) for

j = 1, m using only guillotine cuts. The function F (x, y) has the following

properties:

(i) F (x, y) > 0

(i i) F (xi+ x2, y) > F (x h y) + F (x2, y)

F (x, yi + y2) ^ F (x, yj) + F (x, y2)

(iii) F (lj, w j) >\)j , j = 1, m

A dynamic program based on the above properties can be developed for

calculating F (x, y). The recursive formula used is given below:

F(x, y) = max { Fq(x, y), F(Xj, y) + F(x2, y), F(x, y^) + F(x, y2);

x > Xj + x2, 0 < Xj < x2, y > yj + y2 and 0 < y^ < y2)

where

Fn(x, y) = max { 0, *u-11 . < x and w. < y, j = 1,...» m }.
j J J J

Essentially, this formula defines the value of a rectangle (x, y) at any point

by considering it as a whole, as two pieces created by making a vertical cut or as two

pieces created by a horizontal cut. The result for the demanded rectangle is built up

Chapter 1 19

iteratively from the value of smaller rectangles. The algorithm requires two

functions l (x, y) and w (x, y) to record how the value F (x, y) is achieved (i.e.

to give the associated cutting pattern). These functions are defined as follows:

l (x, y) = min { xj, x I 0 < x1 < x - x j, F (x, y) = F (xj, y) + F (x - xj , y))

w(x , y) = min { yx, y I 0 < y j < y - y j , F(x , y) = F(x , yx) + F (x , y - y 1))

Once the value of the best cutting pattern has been determined, the process

backtracks to determine the actual cutting positions using a special binary tree

structure.

Herz [1972] presents a recursive procedure for the same problem, but

reduces the number of patterns which need to be considered. He achieves this by

restricting potential cutting positions to those which are an integral combination of

piece lengths or widths from a given edge. He refers to these as canonical

dissections. Upper bounds on the values of each sub-rectangle are introduced when

they can be calculated easily, as a means of speeding up the computation. If the

value of each piece is equal to its area, this bound is simply the area of the

sub-rectangle.

Herz compares his algorithm to that of Gilmore and Gomory's and

concludes that the use of true recursion, canonical dissections and the upper bound

result in a more efficient procedure. Beasley [1985a] describes a similar iterative

procedure.

Gilmore and Gomory [1965] consider CSP's in which there are two stages

of cutting. This means the corresponding generalised knapsack problem is of the

Chapter 1 20

form: maximise D^a^ + x>2 + — + % ^ subject to condition that [aj, ^

..., a jJ corresponds to a two-stage guillotine pattern. They develop two methods

for this problem, one using dynamic programming and the other using linear

programming.

The first method is carried out in two stages:

(i) For all widths Wj calculate Dj*, the optimum value obtainable by fitting

rectangles (lj, wj) where wj < ŵ , end to end into a strip of width Wj and length

L. For each i this is a one-dimensional Knapsack problem.

(i i) The optimal value of the objective function \) ja^ + + — + ^m am *s

then obtained by solving one more knapsack problem:

maximise v ^ a i ' + U2* a2' + ... + ,orns(t am’ subject to W £ wj a j' + ... +wm am'

and subject to aj\ i = 1,..., m being nonnegative integers.

The knapsack problems of (i) above can all be solved together by a

dynamic program similar in structure to a program for the one-dimensional problem

of section 1.5.1. The same program can also be used to solve the knapsack problem

of (i i).

The second method to the two-stage guillotine problem involves a two-stage

linear programing formulation of the problem with the first stage corresponding to

the process of slitting the stock rectangle into strips with widths corresponding to the

widths of the demanded rectangles and with the second stage corresponding to the

process of chopping the strips into the demanded lengths. Gilmore and Gomory’s

approach is a mixture of their LP approach they used for the one-dimensional CSP

[1961] and the decomposition of Dantzig and Wolfe [I960].

Chapter 1 21

Hahn [1968] shows how the above procedure can be extended to more than

two stages. She considers three-stage problems where any cuts at the third stage

produce pieces of identical dimensions and there are defects in the rectangle being

cut. The values are of the form aAp + pAp^ where Ap is the area of a piece. The

method was designed for the glass industry and a dynamic programming algorithm

is used to produce a cutting pattern in which the sums of heuristic values are

maximised.

Related to the two-dimensional Knapsack problem, is the so-called template

layout problem, in which the pieces to be cut are not rectangular. Here there is a

demand for an unlimited number of various two-dimensional pieces and the

objective is to cut the most valuable combination of pieces from a single sheet of

stock material. Haims and Freemans [1970] approach to the solution of this

problem is to enclose the irregular pieces into rectangular areas (modules) from

which they are to be cut. A dynamic programming algorithm is then used to lay out

the resulting modules in the rectangular stock sheet.

A number of heuristic or partially heuristic solution approaches involving

the methods mentioned above for staged cutting have also been applied to some

unconstrained cutting problems in the glass industry. Such problems have been

discussed by Dyson and Gregory [1974], Chambers and Dyson [1976], Madsen

[1979] and Farley [1983a, 1983b] (section 1.5.7).

1.5.5 The Constrained Two-Dimensional Knapsack Problem

In practice, cutting problems appear in a constrained form, the most usual

constraint being the one that restricts the maximum number of pieces of each type to

Chapter 1 22

be cut. The version of the problem stated in the previous section, when this

restriction is added, is known as the constrained two-dimensional knapsack

problem. There have been two optimal tree-search algorithms developed to solve

this problem; one method deals with guillotine cuts and was developed by

Christofides and Whitlock [1977], the other method deals with non-guillotine cuts

and was developed by Beasley [1985b].

Christofides and Whitlock present a tree-search procedure to solve the

constrained problem of cutting the most valuable combination of demanded

rectangles from a stock rectangle. Their method generates all possible cutting

patterns without duplication in the stock rectangle. All of these patterns can be

represented in the form of a tree in which, each node is defined by a set of cut

rectangles together with the next cutting position in each and branchings

corresponding to guillotine cuts. Like Herz, they reduce the number of posssible

positions through canonical dissections, called in this case"normal cuts". By using

the Gilmore and Gomory [1966] unconstrained two-dimensional knapsack solution,

obtained by dynamic programming and a transportation routine, an upper bound on

the value of layouts derived from any node can be determined. This upper bound is

incorporated into a branch-and-bound procedure in order to limit the amount of

search necessary to obtain the optimal layout of demanded rectangles on the stock

rectangle. It is reported that the method can be used to solve practical problems of

medium size (twenty pieces in the order list).

The work of Beasley [1985b] provides an exact solution to non-guillotine

problems in which the objective is to find a layout of the pieces in the stock rectangle

that has the highest possible total value. He formulates the problem as an integer

program as follows:

Chapter 1 23

Let aipqrs = 1 if a piece of type i overlaps co-ordinates (r, s) when cut with its

bottom-left hand comer at (p, q)

= 0 otherwise

and

xipq = 1 i f a piece of type i is cut with its bottom-left hand comer at (p, q)

= 0 otherwise

Then the optimal layout of the pieces on the stock rectangle (L, W) is given by:

m L-l W-l

Max 1 1 I v
i=l p=0 q=0 ipq

subject to

m L-l W-l

X X X -A—U 1
i=l p=0 q=0

lpqrs lpq

L-l W-l

pi s X X xinQs Qi- i - 1' - m
p=0 q=0

xipq £ { 0, 1 }, i = 1 , m, p = 0, ..., L and q = 0, W

where Pj and Qj represent the minimum and maximum number of pieces of type i

that can be cut from (L, W), respectively.

The size of the program is then reduced by restricting the values of p and q

to normal cutting positions. Lagrangean relaxation of the given formulation and

Chapter 1 24

subgradient optimisation are used to obtain a good upper bound to the problem and a

heuristic, based upon random placings, is used to obtain an initial lower bound.

When these do not coincide, a tree search procedure is initiated and the upper bound

is recalculated at each node. Results are reported for random problems which

involve up to ten types of pieces (the number of pieces of each type being one, two

or three) to be cut from stock rectangles of up to thirty units square.

The algorithms for the constrained two-dimensional knapsack problem

mentioned above, are not generally suitable for solving problems of large size which

are often met in applications. A number of heuristic or partially heuristic solution

methods have been published, which appear to be particularly effective when the

number of pieces to be packed or cut from the stock rectangle is large. For example,

Wang [1983] approaches the problem in the following way: instead of enumerating

all possible cuts that can be made on the stock rectangle (Christofides and Whitlock

[1977]), he builds guillotine cutting patterns by successively adding sub-rectangles

to each other. For any pair of current rectangles, a new rectangle is obtained by

joining them in either a horizontal or vertical build. The number of possible

combinations is reduced by placing an upper bound on the acceptable percentage of

waste they create. The algorithm determines error bounds that measure the

closeness of the best patterns to the optimal solution.

A special case of the two-dimensional CSP, is the pallet loading problem

with only one size of rectangular piece to be cut and with the objective of

maximising the number of cut pieces. In cases where packaged material shipped in

trucks, railcars aircraft and ships is packed on a pallet or in some other bulk

container, the packing problem can be stated simply as trying to pack as many

packages as possible into a container. Recently, a number of solution techniques

have been developed to cater specifically for packing problems. Steudel [1979]

Chapter 1 25

observes that in solving such problems, practical experience suggests that

considerable advantage in terms of the utilisation of the pallet often can be gained by

employing loading patterns which could not be obtained with guillotine type cuts

(see Appendix B of Chapter 7). Smith and DeCani [1980], Bischoff and

Dowsland [1982], Dowsland [1982], Hodgson [1982] and Hodgson et al [1983]

have developed heuristic procedures for this problem of non-guillotine type.

1.5.6 The Two-Dimensional Trim Problem

The general two-dimensional trim problem, where there are n stock

rectangles and a minimum demand Qj on all the pieces (lj, mj), j = 1,..., m to be

cut, is too complicated to solve optimally and only certain subproblems with extra

constraints have been considered in the literature by using heuristics. Gilmore and

Gomory [1965] formulate this problem in a similar manner to the one-dimensional,

with the complication that the cutting patterns are now for rectangular objects. It is

noted that the difficulty in solving this problem as an ordinary LP problem is the

immense number of columns in the constraint matrix. Applying a column generating

technique of the type first presented in their paper of 1961 (see section 1.5.3)

produces a generalised two-dimensional knapsack problem of the form:

maximise Oja^ + *0232 +...+ *umam subject to the condition that [aj, ^ —» anJ

corresponds to an acceptable pattern. In their paper of 1966, they present a

dynamic programming algorithm to solve this problem for the case in which all the

cuts are restricted to be guillotine (Two-stage guillotine cutting patterns - see section

1.5.4). Alternatively, the technique of Herfz [1972] can be applied to the auxiliary

knapsack problem. Essentially, the linear programming method is the most

powerful algorithm available for finding an aproximate solution to the

two-dimensional trim problem provided an efficient technique exists to solve the

Chapter 1 26

auxiliary knapsack problem.

The Gilmore and Gomory LP approach using an example in the glass

industry is shown to be a simplification of the real problem which involves the

selection of the sequence in which the cutting patterns are to be processed. Dyson

and Gregory [1974] identify this as the pattern allocation problem. They developed

a two-stage heuristic approach to the solution of this problem; patterns are designed

by applying the LP technique of Gilmore and Gomory and the sequencing of these

patterns is treated as a problem of the travelling salesman type. An additional

restriction on the problem arising in the glass industry, is that of imposing

limitations on the positioning of cuts within the stock rectangle, relative to other

cuts. Farley [1983a, b] considered this problem and presented a heuristic based on

modifications to the Gilmore and Gomory [1965] algorithm. A glass cutting

problem occuring in a small firm was examined by Madsen [1979]; his heuristic

solution method resulted in approximately 50% reduction in waste compared to the

solution normally used by the company.

Not all applications of stock-cutting deal with rectangular pieces and

problems of packing non-rectangular shapes have been tackled in the garment and

shipbuilding industries : In ship-building the problem is usually called a nesting

problem. Adamowicz and Albano [1972] present a two-stage heuristic algorithm to

solve this problem, in which it is required to cut out a specified set of irregular

shapes from a number of rectangular stock sheets so as to minimise the amount of

waste. The first stage consists of forming clusterings of the irregular pieces and

then enclosing these clusterings into rectangular modules {Adamowicz and Albano

[1976a]). The second stage concerns the layout of the rectangular modules onto the

stock rectangle. Adamowicz and Albano [1976b] present a constrained dynamic

programming algorithm to lay out groups of rectangles called strips which are then

Chapter 1 27

packed within a rectangular enclosure. Albano and Orsini [1979] present an

improved and extended version of this heuristic which provides greater flexibility in

the use of strips.

1.5.7 The Two-Dimensional Bin Packing Problem

In this section, we consider one of the currently most active areas in the

operations research literature : the problem of packing a set L of rectangles, each of

given height hj and width wj (j = 1,..., m), into two-dimensional bins. The goal

is to pack them in a vertical strip of width C, so as to minimise the total height of the

strip needed.

The problem described above, is a fundamental one for which a broad

application in operations research is easily envisioned. The obvious interpretation of

bin packing corresponds to problems of efficient use of time and/or space, especially

problems in computer scheduling, where the items to be packed correspond to tasks.

The height of an item represents the amount of processing time it requires and its

width is the amount of contiguous memory it needs. The strip width C is then the

total memory available and the strip length the amount of time needed to schedule all

the items.

Further motivation for bin packing problems has been provided by the

obvious industrial applications in stock cutting. In the simplest industrial setting,

where the "raw” material involved comes in rolls, the objects required to be cut from

the rolls, are viewed as being rectangles. The possible wastage is then minimised if

we minimise the amount of roll (the strip length) used. The restriction of

orthogonality applies once again, as in many applications, the cutting is done by

Chapter 1 28

blades that must be either parallel or perpendicular to the strip.

It is readily verified that the bin-packing problem, or more precisely the

decision problem "Given C, L and an integer bound K , can L be packed into K or

fewer bins of capacity C? " (the classical one-dimensional bin-packing problem) is

NP-complete (section 1.2). By the theory elaborated in Garey and Johnson [1979]

and Karp [1972], this means that it is unlikely that efficient, (i.e. polynomial time)

optimisation algorithms can be found for this problem.

Bin-packing algorithms usually consist of a specified ordering of pieces and

a placement policy. In the simpler methods, the ordering is fixed at the start, while

dynamic orderings allow the choice of the next piece to be made at each step.

Christofides [1974] suggests that possibilities for fixed orderings include

descending length, width, area, perimeter, or maximum dimension. Variable

orderings are based on expected waste, which may be measured by the total waste to

the left of each piece, by the waste below a piece, or by the evenness of the edge of

the layout. Short [1973] has analysed the effects of some of these rules.

The evaluation procedure applied to the performance of the heuristic

algorithms is usually in the form of worst case analysis in which the ratio of the

actual solution to the optimal solution is examined. Two types of bounds are

defined. Let A (L) be the height used by algorithm A , for packing a list L of

rectangles and let OPT (L) be the height which would be used in an optimal

packing. If for all lists L, A (L) < a OPT (L) then a is called the absolute bound.

A second measure, the asymptotic bound is defined by: A (L) < a OPT (L) + (3 H

for all lists, L, of rectangles with maximum height H, where (3 is the asymptotic

bound.

Chapter 1 29

A number of authors have presented worst case evaluations of various

bin-packing heuristics (Garey, Graham and Ullman [1973]). Johnson’s doctoral

thesis in 1973 has laid the theoretical groundwork for the worst-case analysis of the

class of heuristic algorithms known as any-fit. Summary of this work appears in

Johnson [1974]. A review of the literature for one-dimensional bin-packing

algorithms is beyond the scope of this thesis - however, the interested reader is

directed to reviews by Johnson, Demers, Ullman, Garey and Graham [1974], and

Garey and Johnson [1981]. Garey and Johnson also have in 1984 put together a

comprehensive paper incorporating both new and old results; as far as we are aware,

this is the most recent survey in the literature of approximation algorithms for bin

packing both in one and two-dimensions.

Baker, Coffman and Rivest [1980] consider a variety of strip packing

algorithms based on a "bottom up-left justified” (BL algorithm) placement policy

using a variety of orderings. The list of rectangles is packed such that each is placed

in turn as low as possible in the "bin" and then left-justified. They show that the

performance of such a placement procedure can be arbitrarily bad, but by ordering

pieces by decreasing width an absolute bound of 3.0 OPT (L) applies. They also

illustrate that with some problems, regardless of ordering applied, an optimal

solution cannot be obtained using a BL placement policy. Brown [1980] provides

an example where a BL packing requires at least 1.25 OPT (L), regardless of

ordering.

The search for algorithms with better asymptotic worst case ratios was taken

up by Coffman, Garey, Johnson and Tarjan [1980]. They propose three

level-oriented algorithms in which the rectangles to be packed are preordered by

non-increasing height and then placed at a series of "levels". The first level is

simply the bottom of the bin. Subsequent levels are defined by a line drawn

Chapter 1 30

horizontally through the top of the highest rectangle packed in the previous level.

The pieces are placed left-justified at a level which is determined by one of two basic

placement rules. The NFDH rule (next-fit decreasing height) uses the highest

existing level and the FFDH (first-fit decreasing height), the lowest suitable level.

Figure 1.5 illustrates an example of the application of these two rules to a set of 6

boxes labelled A-F. The analysis by Coffman et al shows that the asymptotic

performance bounds of NFDH and FFDH are 2.0 and 1.7, respectively.

level 3

level 2

C E E

D A D A

F B
level 1

F B
3 .

NFDH FFDH

Figure 1.5 An example of a NFDH and a FFDH packing.

We should note that level-by level packings have a special significance

stemming from their relation to guillotine cuts (Gilmore and Gomory [1965]). The

3-stage guillotine cuts corresponding to level-by-level packings such as Figure 1.5

involve first a set of horizontal guillotine cuts, then a set of vertical cuts and finally

another set of horizontal "trim” cuts.

1.6 Thesis Outline

The remainder of this thesis is presented in seven chapters. In Chapter 2 the

two-dimensional unconstrained guillotine cutting problem is solved using the

method of dynamic programming. The solution method is illustrated by an example.

Chapter 1 31

A tree-search algorithm for the two-dimensional constrained guillotine

cutting problem is described in Chapter 3. A tight bound, derived from the

state-space relaxation of a dynamic programming recursion given for the original

problem, is used to limit the search. The bound is improved by state-space ascent

methods. The computational performance of the algorithm is presented for a number

of randomly generated problems with constraints of varying " tightness".

Chapter 4 presents an interactive system with graphical input-output for

generating rectangular layouts manually for the problem of Chapter 3. The structure

and the main features of an experimental version of the system are described and the

results of manual experiments are discussed.

In Chapter 5 we discussed the cutting problems in which the optimal cutting

patterns are not restricted to those with the guillotine property. Two mixed integer

programming formulations of the problem are presented and a possible method of

solution based on the use of cutting planes is investigated. Five 0-1 integer

programming formulations of the same problem are also given and upper bounds are

derived from the linear programming relaxations. The five bounds developed are

evaluated and compared on a number of small randomly generated non-guillotine

cutting problems.

In Chapter 6 the Lagrangean relaxation technique is used for a 0-1 integer

programming formulation of the problem of Chapter 5. The resulting upper bound

is improved by a subgradient optimisation method. Problem reduction tests derived

from both the original problem and the Lagrangean relaxation are given. The final

bound produced is evaluated on a number of test problems.

A tree-search procedure for solving the non-guillotine problem is the subject

Chapter 1 32

of Chapter 7. The process of generating a finite number of orthogonal cutting

patterns of rectangles is described. The algorithm incorporates into the tree-search

the bound produced for the problem in Chapter 6. Computational results for a

number of randomly generated problems are given.

Finally, Chapter 8 provides a summary of the main findings and

achievements of this thesis.

1.7 Conclusions

The cutting stock problem is a large scale combinatorial problem

encountered in a variety of industrial applications. In this chapter, the various types

of this problem and solution methods have been presented, with emphasis being

placed on the area of two-dimensional cutting. The combinatorial nature of the

problems has often led to heuristic methods being adopted. However, it is clear that

there is no generally applicable heuristic algorithm which can be applied to cutting

problems in two-dimensions.

We have seen that much of the early work in this area is based on guillotine

cuts. Christofides and Whitlock have solved optimally the constrained guillotine

cutting problem. The class of general cutting problems has been considered by

relatively few authors in the literature and as far as we are aware, the only exact

solution procedure for this problem that exists in the literature is due to Beasley. In

the case of these two exact methods, the computational experience quoted by their

authors suggests that their application is limited to problems of moderate size.

Chapter 1 33

Although the theory of computational complexity might well mean that we

will never be able to guarantee obtaining an optimal solution to the CSP without

resorting to an exponentially increasing algorithm (such as a tree-search procedure),

this does not mean that such solutions cannot be obtained relatively quickly for many

large sized problems.

Chapter 2 34

CHAPTER 2

TWO - DIMENSIONAL UNCONSTRAINED GUILLOTINE

CUTTING (UGC)

2.1 Introduction

The general two - dimensional cutting problem is the problem of cutting a

number of smaller rectangular pieces, each of a given size and value, from a large

rectangular stock plate, so as to maximise the value of the pieces cut. By taking the

value of a piece to be proportional to its area, the value maximisation problem

becomes one of minimising the amount of waste produced by the cutting.

In a great many industrial situations, a cut in a piece of material must begin

on one side of the material and traverse the material in a straight line to the other

side. This is the kind of cut made by many types of machinery. One example is the

guillotine cutter used in cutting paper sheets and for this reason this type of cut is

referred to as a " guillotine " cut. In this special case of problems, the cutting is

Chapter 2 35

performed as follows: one first performs a guillotine cut on the stock plate and then

proceeds in the same way with the two resulting rectangles. Restricting the

permissible cuts to be of " guillotine " type, severely limits the permissible cutting

patterns, a pattern being defined as a cutting arrangement of a combination of pieces

within the stock - plate. For example, the pattern of Fig. 2.1 cannot be produced by

guillotine cuts. Fig. 2.2 shows a possible cutting pattern using guillotine cuts

where the cuts are numbered in the order in which they could be made, although

other sequences are obviously also possible.

A further restriction common in the literature is to limit the cutting that

occurs to a number of " stages Regarding any two adjacent edges of the rectangle

to be cut as x and y axes, as shown in Fig. 2.3, then the cuts are restricted to be

made parallel to the x and y axes alternatingly. Fig. 2.3 illustrates the same

cutting pattern presented in Fig. 2.2 generated in four stages, with the number by

the cuts indicating the stage at which the cut is made. Thus, the cut direction at the

first stage is parallel to the y - axis; at the second stage parallel to the x - axis; at

the third stage parallel to the y - axis and at the fourth stage parallel to the x - axis.

Whilst the general two - dimensional cutting problem has been considered

by relatively few authors in the literature, the restricted versions of the problem

given above - guillotine and stage cutting - have been considered by a number of

authors. This is in part due to the important role these problems play in practical

applications as well as the development of such computer oriented optimization

techniques as linear and dynamic programming. Gilmore and Gomory [1961, 1963,

1965, 1966] made effective use of both techniques to handle the one two - and

three - dimensional rectangular cutting-stock problems when the cutting of the pieces

was restricted to two - or three - stage guillotine cuts. The results they obtained

when their algorithms were tested on a number of representative cutting problems

Chapter 2

Figure 2.1 A cutting pattern infeasible with
guillotine cuts.

1 5

2
6

4

Figure 2.2 A guillotine cutting pattern.

2

1

2

UJ

3

Figure 2.3 Four - Stage cutting.

Chapter 2 37

were surprisingly good. It is shown that when cutting is done in stages, a

generalised knapsack problem can be efficiently solved as a subproblem. Hahn

[1968] considered three - stage problems where any cuts at the third stage produced

pieces of identical dimensions and there were defects in the rectangle being cut. She

used an extension of the approach for two - stage cutting that Gilmore and Gomory

[1965] developed. Herz [1972] was also able to obtain multistage guillotine cut

solutions using a recursive search approach which was shown to be an improvement

over the exhaustive iterative type approach. The algorithm, however, is not an

efficient procedure for solving problems of even medium size.

We note here that virtually all the approaches in the literature for two

dimensional guillotine cutting involve the use of dynamic programming (see also

Haims and Freeman [1970], Beasley [1985]). With most of these approaches it

was assumed that there was no bound on the number of occurrences of any

particular type of piece in the solution. Christofides and Whitlock [1977],

however, presented a tree - search algorithm for guillotine cutting problems in which

there is a constraint on the maximum number of each type of piece that is to be

produced. The results reported in this paper indicate that the algorithm is an

effective procedure for solving cutting problems of medium size.

In this chapter, we develop a new dynamic programming recursion for

unconstrained two - dimensional guillotine cutting. The idea of normal cutting

patterns, as defined by Christofides and Whitlock [1977], is used to improve

computationally the basic recursion.

The use of dynamic programming is illustrated by an example presented in

the last section of this chapter.

Chapter 2 38

2.2 Definition of the Unconstrained Problem

The unconstrained two - dimensional guillotine cutting problem P j can be

defined as follows: Let a large rectangle Aq = (a q, Pq) (i. e. of length Oq and

width Pq) be given, together with a set R of m smaller rectangular pieces, R =

{ (ocj, P i), (0C2> P2)> •••> (a m» Pm)) » eac^ piece in R having associated

with it a value Dj. The problem is to construct a guillotine cutting pattern for Aq

having the maximum value of pieces cut from Aq. Note here that there are no

constraints on the number of pieces produced and that any piece cut from Aq that is

not of size (ctj, p j) for some j (j = 1,..., m) is taken to be of value zero.

In order to distinguish between the given pieces in set R and the rectangles

produced by the cuts on Aq at any stage during the cutting process, we will refer to

the former as " pieces " and the latter as " rectangles

We will make the following assumptions for problem :

(i) All dimensions (ctj, P j) for i = 0,1,...» m are integers and the cuts on the

rectangles are to be made in integer steps along the x or y axes. Let L={ 1,2,...,

cxq -1 } and W = { 1,2 ,..., Pq -1 } represent the sets of all possible lengths and

widths, respectively, for guillotine cuts on Aq

(i i) The orientation of the pieces is considered to be fixed, i. e. a piece of length l

and width w is not the same as a piece of length w and width l (l * s). Problem

Pj, as described above, will be referred to as the Unconstrained Guillotine Cutting

(UGC) problem.

Chapter 2 39

2.3 A Dynamic Programming (DP) Formulation of the UGC Problem

For several decades, dynamic programming has been proposed as an

effective method of solving combinatorial problems of a sequential nature. It is

considered to be computationally advantageous to use dynamic programming since

the concept can provide convergence to an optimum solution without total

enumeration.

In the development of dynamic programming recursion formulae, the

problem is decomposed into stages which are evaluated independently . In the case

of the UGC problem, a stage in the dynamic programming recursion corresponds to

a stage in the process of generating a cutting pattern. In this problem, the cuts

alternate at each stage between being parallel to the y-axis and being parallel to the

x-axis. Hence, we can associate with each stage a cut direction. Note, however,

that we do not require a cut to be made at each stage.

To formulate the problem we define (x, y) as the maximum value

obtained at the k - stage cut of a rectangle of size (x, y) when the first - stage cut

direction is parallel to the y - axis and (x, y) as the maximum value of a k -

stage cut of a rectangle of size (x, y) when the first - stage cut direction is parallel

to the x - axis. Thus, the size (x, y) of a rectangle to be cut at the kth stage of the

cutting process, will correspond to a state in our DP formulation. A value of zero

for k, corresponds to the fitting of one piece into rectangle (x, y) and hence

f0 (x’ y) = max (v i 1 a i - x> Pi - y>1 = 1. •••» m)
i

a)

Chapter 2 40

Note that F q (x, y) = G g (x, y) for any rectangle of size (x, y) - See Fig.

2.4 (a) .

For an optimal k - stage cut of a rectangle (x, y) , where the first - stage

cut direction is parallel to the y - axis, there are only two alternatives:

(a) There is at least one first - stage cut parallel to the y - axis at some x' e L - as

in Fig. 2. 4 (b).

(b) There are no first - stage cuts parallel to the y - axis but at least one second -

stage parallel to the x - axis (at some y' 8 W) - as in Fig. 2 .4 (c). In this case

we have a cutting pattern where the first - stage cut direction is parallel to the x -

axis and there are (k - 1) stages to the cutting pattern.

Hence, the DP recursion of the UGC problem can be stated as follows:

Equations (2) and (3) are the basic dynamic programming recursions for the

optimal k - stage cutting of a rectangle and they apply for any k ^ 1 and any

rectangle (x, y). Equation (1) provides initial conditions for the recursion.

Fn (a 0 » Po) or Gn (Po) Sives us the value 3X1 °Ptimal n - stage cutting

Fk(x, y) = m ax[Gk_i(x,y); max { Fk(x', y
x' < x
x ' e L

) + Gk_i(x-x\ y)}]

(2)

A similar argument to the one given above can be used to show that

y ' eW (3)

Chapter 2 41

y

Piece

0 x

(Q)

0 x

Figure 2.4 (a) Trim one piece (k = 0).
(b) First - stage cut parallel to the y - axis.
(c) No first - stage cut, but a second - stage cut

parallel to the x - axis.

Chapter 2 42

pattern for Ag, depending upon the first - stage cut direction specified. If, however,

n is not known, the number of stages we perform in the cutting process is equal to

that value of k (i. e. n = k) for which F^ (ocg, pg) = + j (ocg, pg) and

Gk (a 0» Po) = ^ k + 1 (a 0» Po)• *n titis case optimal value of the n - stage

pattern is given by max [Fn (ocg , Pg), Gn (otg, Pg)] if the first - stage cut

direction is unspecified. It should be noted that when Fn (ag, p g) and Gn (ctg,

Pg) have been computed, so have F^ (x, y) and G^ (x, y) for all k, 0 ^ k < n,

all x e L and yeW.

2.3.1 Normal Patterns

Normal patterns were used by Hertz [1972] (who called them canonical

dissections) and Christofides and Whitlock [1977]. According to their definition

of normal patterns, any cutting pattern can be normalised such that any piece cut has

its left - hand edge and its bottom edge adjacent to other cut pieces or to the edges of

Ag as shown in Fig. 2.5. For any pattern there is a normal equivalent. A

consequence of this is that the set L of possible lengths for any cuts parallel to the

y - axis given in section 2. 2 can be restricted to the following:

m
L = { x I x = X ®ia i ; 1 ^ x < 0Cq , 0. > 0 and integer V i = 1, ..., m)

1=1 (4)

Equation (4) essentially says that if x e L there exists a set of pieces whose

lengths add up to x. The equivalent definition for W is:

Chapter 2 43

(Q)

(b)

Figure 2.5 (a) An unnormalised cutting pattern.
(b) A normalised cutting pattern.

Chapter 2 44

m
W= { y I y = t. , 1 < y < p , tj > 0 and integer V i = 1, m }

i=1 ° (3)

Note that normality is a property of a cutting pattern that is relative to the set of

pieces in R available for cutting from Aq. Sets L and W are easily calculated

(Christofides and Whitlock [1977]).

Normal patterns as described above can be used to improve computationally

the basic dynamic programming recursion given by equations (2) and (3) in the

following way:

Let l (x) represent the length nearest to x in the normalised set of lengths L

[l (x) < x] for any x e L, l (x) being equal to zero if no such length exists.

Similarly, we define w (y) as the width nearest to y in the normalised set of

widths W [w (y) < y] for any y e W , w (y) being equal to zero if no such

width exists. Note that l (cxq) = ocq and w (Pq) = Pq may not be strictly

necessary since, for example, there may not exist a set of piece lengths which add to

ocq (and similarly for Pq). Thus, we define:

t (x) = max [0 , x' I x '< x, x' e L] (6) and

w (y) = max [0 , y ' I y '<y, y ' e W] (7)

We claim that we may calculate Fk (l (x) , w (y)) instead of Fk (x, y)

since the optimal k - stage guillotine cutting pattern for (x, y) can be normalised

into a k - stage pattern for (l (x), w (y)) so that

Fk (l (x), w (y)) = Fk (x, y) (8)

Chapter 2 45

A similar argument holds for Gj^ x, y), namely Gk(l (x), w (y)) = G^ (x, y).

(9)

Equation (2) can now be modified to be

Fk(x, y) = max [Gk4(x, y); max { Fk(x \y) + Gk l (i (x-x'),y) }]
X ^ X
x' £ L

Vk>l , xeLandyeW (10)

In a similar fashion, we can modify the recursion for G^ (x, y) [equation (3)]

to be:

Gk(x, y) = max [Fk l (x, y); max (G.(x, y') + F. ,(x, w(y-y')))]
y’ <y k
y’eW

Vk> 1, xeLandyeW (1 1)

Equations (10) and (11) are used in calculating Fn (ocq, Pq) and Gn (ocq

Pq). It is now clear that, it is not necessary to calculate Fk (x, y) and G^ (x, y)

for all values of x and y, but it is sufficient to restrict attention to x e L and y e W.

This is so since any optimal k - stage cutting pattern has its normal equivalent.

Thus, the modified recursion given above is computationally more effective than the

recursion given previously [equations (2) and (3)]. To clarify the application

of equations (10) and (11) we give in the next section a detailed procedure for,

solving the UGC problem.

2.3.2 The Dynamic Programming Procedure

Although the application of the above recursion [equations (8) and (9)]

produces the optimal value, there still remains the question of finding the nature of

Chapter 2 46

the cutting pattern associated with i t . To do this we require four memory grids:

Fk (x, y) , Gk (x, y) , 3>k (x, y) and (x, y). The grids 3>k (x, y) and

(x> y) are used to record how the values Fk (x, y) and Gk (x, y) are

achieved. When the computation is completed i.e. when Fk (x, y) = Fn (ocq, (3q)

and Gk (x, y) = Gn (ocq, Pq), 3>k (x, y) and T'k (x, y), being used for

backtracking, are defined as follows: If the value Fj, (x, y) has been achieved by

cutting a rectangle (x, y) at some normalised length x ' eL giving two rectangles

of sizes (x\ y) and (x - x \ y), 3>K (x, y) = x'; if no such cut is made,

<Dk (x, y) = 0. Formally, we define:

3>k (x> y) = x' if x’ < x, x' e L, Fk (x, y) = Fk (x\ y) + Gk _i (l (x - x’), y)

= 0 otherwise

and, similarly:

'j'k (x> y > = y’ if y’ <y. y’ e W , G k (x , y) = Gk (x, y')+ Fk . ! (x,w (y - y’))

= 0 otherwise.

To help in describing the procedure, let xj, ^ •••» xp be the elements of L in

order of increasing lengths and yj, y2, y q be the elements of W in order of

increasing widths.

Initialisation.

1. 1. Set k = 0.

1. 2. Set F o (xs, yt) = G0 (xs, yt) = max (I cq < xs, p̂ < yt, i = 1, m)

for all s = 1, 2,..., p and t = 1, 2,..., q.

1. 3. Set k = 1

1. 4. Set s = 1, t = 1.

Chapter 2 47

First - stage cut parallel to the v - axis.

2. 1. Set s* = 1.

2. 2. If s’ < s and Fk (xs, yt) < Fk (xg.f yt) + Gk_i (l (xs- xg.), Yt)’

set Fk (xs, yt) = Fk (xs'» y t) + Gk-i (l (x$- xs*), yt) and Ok (xs» y t)

= xs* and go to 2. 3. If s' < s then go to 2. 3 ; else go to 2. 4.

2. 3. Set s' = s' + 1 and go to 2. 2.

2. 4. If Gk_ i (xs, yt) < Fk (xs, yt) go to 2. 5 ; otherwise set Fk (xs, y t) =

Gk-i (xs, yt) , Ok (xs, yt) = 0 and continue.

2. 5. If s < p then set s = s + 1 and go to 2. 1; otherwise, if t < q>

set t = t + 1, s = 1 and go to 2. 1, else go to 3. 1.

First - stage cut parallel to the x - axis.

3. 1. Set s = 1, t = 1.

3.2. Set t' = l.

3. 3. If t’ < t and Gk (xs, y t) < Gk (xs, yt<) + Fk_j (xg, w (yt - Yt'))>

set Gk (xs, yt) = Gk (xs, yt.) + Fk. \ (xs, w (yt - yt*) and ^ (xs,

yt) = yt' and go to 3. 4. If t' < t then go to 3. 4 ; else go to 3. 5.

3. 4. Set t' = t’ + 1 and go to 3. 3.

3.5. If F k - i (xs, yt)< Gk (x s, yt) goto 3.6; otherwise, set Gk (xs, yt)

= Fk.i (xs* Yt) > (xs» y t) = 0 and continue.

3.6. If t < q then set t = t + 1 and go to 3. 2.; otherwise, if s < p,

set s = s + 1, t = 1 and go to 3. 2., else go to 4. 1.

End of optimal k-stage cutting,

4. 1. If Fk (xs, yt) = Fk-1 (xs, yt) and Gk (xs, yt) = Gk-1 (xs, yt) then

set n = k - 1 , optimal value = max (Fn (xs, yt) , Gn (xs, yt)) and

stop; otherwise, set k = k + 1 and to to 1. 4.

At the end of the above procedure max (Fn (ocq, Pq), Gn (ocQ’ Pq)) is the

value for the optimal n - stage guillotine cutting of ((Xq, Pq). If this value is given

Chapter 2 48

by Fn (cxq, Pq) then we have also calculated Fn (xs, yt) for all s = 1 , 2 , p

and t = 1,2,..., q being the value for the optimal guillotine cutting of a rectangle

of size (xs, qt). Note here that from equation (8) we have obtained Fn (x, y)

for all rectangles of size (x, y) where 0 < x < ocq and 0 < y < Pq. In this case,

(x> y) can be used to determine how Fn (x, y) is achieved for any x and y.

Similarly, (x, y) can be used to determine how Gn (x, y) is achieved for any

x and y. Backtracking to find the structure of an optimal k - stage pattern (i. e.

the guillotine cuts that are to be made) for a rectangle (x, y) can be carried out by

determining a special tree - structure as illustrated in Fig. 2.7. This is a binary tree

in which each node has either no other nodes below it in the tree (a terminal node)

or has a left node or exactly two nodes immediately below it. A node labelled F^

(x, y) with nodes below it labelled F^ (xj, y) and (x-xj, y) means that

the rectangle (x, y) should be divided by a k-stage cut into two rectangles (xj, y)

and (x - xj, y). Similarly, if a node labelled G^ (x, y) has nodes labelled G^

(x, y j) and F ^ (x, y - yj) immediately below it then the rectangle (x, y)

should be divided into two rectangles (x, y ^) and (x, y - y^) at the stage of

the pattern. A node G^ (x, y) or F^ (x, y) with only one node labelled Fĵ j C x,

y) or G ^ (x, y), respectively, below it means that no k - stage cuts are made on

rectangle (x, y). Finally, a node labelled F^ (x, y) or G^ (x, y) is a terminal

node if the rectangle (x, y) is not cut any further but a piece rj in R can be

allocated to it such that j = max { V: I oq < x, p; < y, i = 1,..., m }.
i

Thus, the 3-stage pattern for a rectangle (x, y) shown in Fig. 2.6, can be

represented by the binary tree presented in Fig. 2.7. A convenient data structure

representing a binary tree is to name the nodes 1, 2,..., N and to assign an arrow

of records to them, each consisting of two fields corresponding to the left and right

node deriving from node i. A value of 0 in either field indicates the absence of a

left or right descendent node respectively. The binary tree of Fig. 2.7 can be

Chapter 2 49

Figure 2.6 An optimal 3 - stage cutting pattern of rectangle
(x, y) .

Figure 2.7 Tree - representation of pattern shown in Fig. 2.6.

Chapter 2 50

left node right node

1 2 3
2 4 0
3 5 6
4 0 0
5 7 0
6 8 9
7 0 0
8 10 0
9 1 1 0
10 0 0
11 0 0

Table 2.1 Representation of the binary tree shown in Figure 2.7

NR XD YD CR AR

1 X y x i
0

2
x i y 0 r i

3 (x - X j) y ■ * i
0

4 (x - X j) 0
r 2

5 (x - X j) (y - y *) X2
0

6
X2 C y - y p 0

r 3

7 (x - X j - x 2) (y - y p 0
r 4

Table 2.2 Representation of pattern shown in Figure 2.6

Chapter 2 51

represented as shown in Table 2.1.

The structure described below can represent a list of rectangles produced by

a cutting pattern. Consider each rectangle q with its lower left comer referred to by

the coordinates (0, 0). Using this referencing method, each rectangle q is

described with the following entries:

(1) XDj represents the dimension of rectangle q parallel to the x - axis.

(2) YD ̂ represents the dimension of rectangle q parallel to the y - axis.

(3) CRj is the coordinate of the cut which divides rectangle q into two further

rectangles: positive, if the cut is perpendicular to the x - axis (x - cut) , negative, if

peipendicular to the y - axis (y - cut) and zero if the rectangle is not cut.

(4) ARj is the label of the piece rj in R of maximum value that can be allocated

to rectangle q when this is not cut any further.

The pattern shown in Fig. 2.6 would be represented by the list of

rectangles shown in Table 2.2, using NR to head the column representing the

number of the rectangle. The list begins with the large rectangle (x, y) to be cut.

In this list, it can be seen that every rectangle is either (i) cut into two smaller

rectangles or (i i) filled by one of the initial pieces given in R (a piece may not fit

exacdy in a cut rectangle since waste is not cut away by the Dynamic Programming

procedure).

2.4 Example for UGC Problem

Consider the problem of cutting a stock plate Aq of size (15, 10) into a

number of smaller rectangles in set R with sizes and values as given below:

Chapter 2

Piece i sizei value i

1 (8 , 4) 66

2 0 , 7) 35

3 (8, 2) 24

4 (3 , 4) 17

5 (3 , 3) 11

6 (3 , 2) 8

7 (2, 1) 2

We will use the Dynamic Programming Procedure described in section

2.3.2 to compute an optimal cutting pattern for this problem.

Firstly, we compute the normalised sets of lengths and widths to be

L = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) and W = (1, 2, 3, 4, 5, 6, 7,

8,9, 10) respectively. The initial values for F q (x, y) = G q (x, y) are given

in Table 2. 3, for all x e L and y e W. Any entry in this table, for instance,

F o (6 ,7) is computed as follows:

Fq (7) = max (^ *04, *05, ”05, \)j) = max (35, 17, 11, 8, 2) =35

We will use the value of cutting stage k to index the iterations of recursion (10)

and (11) i. e. we will call iteration 1 the iteration which computes all F^(x, y)

and Gj (x, y) , iteration 2 the iteration which computes F2(x, y) and G2(x,y).

e. t. c.

Iteration l f k = 1)

The values of Fj (x, y) and Gj (x, y) are given in Tables 2.4a and 2.4c

Chapter 2 53

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 8 8 8 8 8 24 24 2 4 24 24 24 24 2 4

3 2 11 11 11 11 11 24 24 2 4 24 24 24 24 24

4 2 17 17 17 17 17 6 6 66 6 6 66 66 66 66 6 6

5 2 17 17 17 17 17 6 6 66 6 6 66 66 6 6 6 6 6 6

6 2 17 17 17 17 17 66 66 66 66 66 66 6 6 6 6

7 2 35 35 3 5 3 5 35 6 6 6 6 66 66 66 66 6 6 6 6

8 2 35 3 5 35 35 35 66 66 66 66 66 66 6 6 6 6

9 2 35 35 35 35 35 6 6 66 66 66 66 66 6 6 6 6

10 2 35 3 5 35 35 35 66 66 66 6 6 66 66 6 6 66

Table 2.3 Initial values of the DP recursion
for the UGC problem of example 2.4.

Chapter 2 54

respectively, for all x e L and y £ W. The length x' at which a cut was made on a

rectangle (x, y) to produce (x, y) and the width y' at which a cut was made

on a rectangle (x, y) to produce G j (x, y) are also presented in Tables 2.4b

and2 4d, respectively.

Iteration! (k = 2)

Values F2 (x, y) , d>2 (x, y) , G2 (x, y) and *P2 (x, y) are presented in

Tables 2.5a - 2. 5d, respectively.

Iteration 3 (k = 3)

Values F3 (x, y) , O3 (x, y) , G3 (x, y) and ¥ 3 (x, y) are presented in

Tables 2.6a- 2.6d, respectively.

Iteration 4 (k = 41

Values F4 (x, y) , <$4 (x, y) , G4 (x, y) and ¥ 4 (x, y) are presented in

Tables 2.7a - 2.7d, respectively.

Iteration 51 k = 5)

Values F5 (x, y) , O5 (x, y) , G5 (x, y) and ¥ 5 (x, y) are presented in

Tables 2.8a- 2.8d, respectively.

It can be seen from Tables 2.7a, 2.7c, 2.8a and 2.8c, that F$(15, 10) =

F4 (15, 10) and G5 (15, 10) = G4 (15, 10) . Thus, no more iterations are

performed and the optimal value is given by F4 (15,10) = G4 (15,10) = 249.

By backtracking through the given tables ,we obtain the binary tree corresponding to

the optimal cutting pattern of (15,10) associated with the above value of 249 as

shown in Fig. 2.8. The nodes in this tree are generated in the sequence indicated by

the numbers written within the circles. The nature of the optimal pattern is

determined by traversing the above tree in a M preorderej way. The structure of the

pattern is given in Table 2.9 and a diagrammatic presentation of it in Fig. 2.9.

Chapter 2 55

\ X
y \

2 3 4 5 6 7 8 9 10 11 12 13 14 15

j 2 2 4 4 6 6 8 8 10 10 12 12 14 14

2 2 8 a 10 16 16 24 2 4 2 6 3 2 3 2 3 4 4 0 4 0

3 2 11 11 13 2 2 22 24 33 3 3 35 4 4 4 4 4 6 55

4 2 17 17 19 3 4 34 6 6 6 6 6 8 S 3 8 3 8 5 1 00 100

5 2 17 17 19 3 4 3 4 6 6 6 6 6 8 8 3 8 3 8 5 1 0 0 10 0

6 2 17 17 19 3 4 34 6 6 6 6 6 8 8 3 83 8 5 1 00 1 00

7 2 35 3 5 3 7 7 0 7 0 7 2 1 05 1 0 5 10 7 1 4 0 1 4 0 1 4 2 175

8 2 3 5 3 5 3 7 7 0 7 0 72 105 1 0 5 1 07 1 4 0 1 4 0 1 4 2 175

9 2 35 35 3 7 7 0 7 0 72 105 1 05 10 7 1 4 0 1 40 1 42 1 7 5

10 2 35 35 37 70 7 0 72 105 1 05 107 1 4 0 1 4 0 1 42 175

Table 2.4a F, (3 C .7)

K 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

i 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 4 8 8 8 8 8 24 24 2 4 24 2 4 2 4 2 4 24

3 6 11 11 11 11 1 1 26 26 2 6 26 2 6 26 2 6 26

4 3 17 17 17 17 17 6 6 66 6 6 6 6 6 6 6 6 66 6 6

5 10 19 19 19 19 19 68 68 6 8 6 8 6 8 6 8 68 6 8

6 12 25 2 5 2 5 2 5 2 5 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0

7 14 3 5 3 5 35 3 5 35 9 2 9 2 9 2 9 2 9 2 9 2 92 92

8 16 3 7 3 7 3 7 3 7 3 7 132 132 132 132 132 132 1 32 1 3 2

9 18 4 3 4 3 4 3 4 3 4 3 134 13 4 134 13 4 134 1 3 4 134 134

10 2 0 4 6 4 6 4 6 4 6 4 6 156 156 156 156 156 1 5 6 156 156

Table 2.4c
G ,

(x,y)

X 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 ' 2 4 4 6 6 8 8 10 10 12 12 14 14

2 4 8 8 12 16 16 2 4 24 2 8 32 3 2 36 4 0 4 0

3 6 11 12 17 2 2 23 2 8 33 3 4 39 4 4 4 5 5 0 5 5

4 8 17 17 25 3 4 3 4 6 6 6 6 74 83 8 3 91 1 00 10 0

5 10 19 2 0 2 9 3 8 3 9 68 68 78 8 7 8 8 9 7 106 107

6 12 2 5 2 5 3 7 5 0 5 0 9 0 9 0 102 1 15 115 1 27 1 40 140

7 14 35 35 49 7 0 7 0 9 2 1 05 106 127 1 40 141 162 175

8 16 3 7 3 7 5 3 7 4 74 13 2 1 3 2 148 16 9 1 6 9 1 8 5 2 0 6 2 0 6

9 18 4 3 4 3 61 8 6 8 6 134 1 34 152 177 1 77 195 2 2 0 2 2 0

10 2 0 4 6 4 6 66 9 2 9 2 156 156 176 2 0 2 2 0 2 2 2 2 2 4 8 2 4 8

X 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15

1 0 2 2 2 4 4 6 6 8 8 10 10 12 12

2 0 0 3 2 3 3 0 6 2 3 3 5 6 6

3 0 0 3 2 3 3 5 6 6 3 9 9 6 12

4 0 0 3 2 3 3 0 8 2 3 3 5 6 6

5 0 0 3 2 3 3 0 8 2 3 3 5 6 6

6 0 0 3 2 3 3 0 8 2 3 3 5 6 6

7 0 0 3 2 3 3 5 6 6 8 9 9 11 1 2

8 0 0 3 2 3 3 5 6 6 8 9 9 U 12

9 0 0 3 2 3 3 5 6 6 8 9 9 11 12

10 0 0 3 2 3 3 5 6 6 8 9 10 11 12

\ X

yN\
2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 'o 2 2 2 4 4 6 6 8 8 10 10 12 12

2 0 0 2 2 3 3 0 6 2 3 3 5 6 6

3 0 0 2 2 3 4 5 6 7 a 9 10 11 12

4 0 0 3 2 3 3 0 8 2 3 3 5 6 6

5 0 0 2 2 3 4 0 8 2 3 4 5 6 7

6 0 0 3 2 3 3 0 8 2 3 3 5 6 6

7 0 0 3 2 3 3 0 6 2 3 9 5 6 12

8 0 0 3 2 3 3 0 8 2 3 3 5 6 6

9 0 0 3 2 3 3 0 a 2 3 3 5 6 6

10 0 0 3 2 3 3 0 8 2 3 3 5 6 6

Table 2.5a F?(x,y) Table 2.5b *2(x,y>

\ X
y \

2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 1 0 0 0 0 0 0 0 0 0 0 0

3 2 0 1 1 1 1 1 0 l l l 1 1 0

4 3 0 0 2 0 0 0 0 0 0 0 0 0 0

5 4 1 1 3 1 1 I 1 I 1 1 1 1 I

6 5 2 2 4 2 2 2 2 2 2 2 2 2 2

7 6 0 0 0 0 0 3 0 0 3 0 0 3 0

8 7 1 1 1 1 1 4 4 4 4 4 4 4 4

9 8 2 2 2 2 2 5 5 5 5 5 5 5 2

10 9 3 3 3 3 3 6 6 6 6 6 6 6 6

\ X
y \

2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 2 2 4 4 6 6 3 8 10 10 12 12 14 14

2 4 8 8 10 16 16 2 4 24 26 3 2 3 2 3 4 4 0 4 0

3 6 11 12 14 2 2 2 2 3 2 33 36 4 2 4 4 4 6 5 4 55

4 8 17 17 2 0 34 3 4 6 6 66 68 8 3 83 8 5 1 0 0 1 00

5 10 19 21 2 4 4 0 4 0 7 4 74 78 9 3 95 9 7 1 14 114

6 12 25 2 5 ’ 3 0 5 0 5 0 9 0 9 0 9 4 1 15 115 1 19 1 40 1 40

7 14 3 5 3 5 3 7 7 0 7 0 98 105 105 1 25 14 0 1 4 0 154 175

3 16 37 3 9 41 7 6 7 6 1 32 132 136 1 66 166 1 7 0 2 0 0 2 0 0

9 18 4 3 4 3 4 7 8 6 8 6 140 140 146 1 76 17 8 1 8 2 2 1 4 2 1 5

10 2 0 4 6 4 7 51 9 2 92 1 56 156 162 198 198 2 0 4 2 4 0 2 4 0

Table 2.5c G2(x.y) Table 2.5d Y2(x,v)

Chapter 2 56

x
y \

2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 0 2 2 2 2 2 2 2 2 2 2 2 2 2

2 0 0 2 2 3 3 0 3 2 3 3 2 3 3

3 0 0 2 2 3 3 0 3 2 3 3 5 6 3

A 0 0 3 2 3 3 0 8 2 3 3 2 3 3

5 0 0 0 2 0 3 0 8 2 3 4 2 6 3

6 0 0 3 2 3 3 0 8 2 3 3 2 3 3

7 0 0 3 2 3 3 0 3 2 3 3 5 6 3

8 0 0 0 2 0 3 0 8 2 3 4 5 6 6

9 0 0 3 2 3 3 0 8 2 3 3 5 6 6

10 0 0 0 2 3 3 0 a 2 3 4 5 6 7

y \
2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 2 2 4 4 6 6 8 a 10 10 12 12 14 14

2 4 8 8 12 16 16 24 24 28 3 2 3 2 36 4 0 4 0

3 6 11 12 17 2 2 23 3 2 33 3 8 43 4 4 49 54 55

4 8 17 17 2 5 3 4 3 4 6 6 6 6 74 8 3 8 3 91 1 00 1 00

5 10 19 21 2 9 4 0 4 0 74 7 4 84 9 3 9 5 103 114 114

6 12 2 5 2 5 37 5 0 5 0 9 0 9 0 1 02 1 15 1 1 5 1 2 7 1 4 0 1 40

7 14 3 5 3 5 4 9 7 0 70 9 8 1 05 11 2 133 1 40 147 1 68 1 75

8 16 3 7 3 9 5 3 76 76 132 1 32 1 4 8 1 6 9 171 1 85 2 0 8 2 0 8

9 18 4 3 4 3 61 8 6 8 6 1 4 0 1 4 0 1 58 1 8 3 183 201 2 2 6 2 2 6

10 20 4 6 4 7 6 6 9 2 9 3 156 1 56 1 7 6 2 0 2 2 0 3 2 2 2 2 4 8 2 4 9

T a b l e 2 . 6 a F ^ (x , y) T a b l e 2 . 6 b $ ^ (x , y)

\ X
2 3 4 5 6 7 8 9 t o 11 12 13 14 15

i 2 2 4 4 6 6 8 8 10 10 12 12 14 14

2 4 8 8 12 16 16 2 4 24 2 8 3 2 3 2 3 6 4 0 4 0

3 6 11 12 17 2 2 23 3 2 33 3 8 4 2 4 4 4 8 54 5 5

4 8 17 17 25 3 4 3 4 6 6 6 6 74 8 3 8 3 91 100 100

5 10 19 21 29 4 0 4 0 74 7 4 8 4 9 3 9 5 103 114 114

6 12 25 2 5 37 5 0 5 0 9 0 9 0 1 0 2 115 115 127 140 1 40

7 14 35 3 5 4 9 7 0 7 0 9 8 105 1 1 2 1 2 7 1 40 141 162 175

8 16 3 7 39 5 3 7 6 7 6 1 3 2 1 32 1 48 1 6 9 1 6 9 18 5 2 0 6 2 0 6

9 18 4 3 4 3 61 8 6 8 6 1 4 0 1 40 1 58 1 7 9 181 19 7 2 2 0 2 2 0

10 20 4 6 4 7 6 6 9 2 93 1 56 1 56 1 76 2 0 2 2 0 2 2 2 2 2 4 8 2 4 8

\ X
y \

2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 I 0 1 0 0 0 0 0 0 0 0 0 0 0

3 1 0 1 0 l 0 1 0 1 1 1 1 1 0

4 1 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 I 1 l 1 1 1

6 1 2 2 2 2 2 2 2 2 2 2 2 2 2

7 1 0 0 0 0 0 1 0 1 0 0 0 0 0

8 1 1 1 1 1 1 4 4 4 0 0 0 0 0

9 1 2 2 2 2 2 1 1 I I 1 1 l 1

10 1 3 1 3 1 3 2 2 2 0 0 0 0 0

T a b l e 2 . 6 c G ^ (x , y) ; T a b l e 2 . 6 d ' ? ^ C x , y ')

\ x
7 \

2 3 4 5 6 7 8 9 10 11 12 13 14 15 \ X
y \

2 3 4 5 6 7 8 9 10 11 12 13 14 15

t 2 2 4 4 6 6 8 8 10 10 12 12 14 14 i 0 2 2 2 2 2 2 2 2 2 2 2 2 2

2 4 8 8 12 16 16 24 24 28 32 32 36 40 40 2 0 0 2 2 3 2 0 3 2 3 2 2 3 2

3 6 11 12 17 22 23 32 33 38 43 44 49 54 55 3 0 0 2 2 3 2 0 3 2 3 2 3 6 3

4 3 17 17 25 34 34 66 66 74 83 83 91 100 100 4 0 0 3 2 3 3 0 8 2 3 3 2 3 3

5 10 19 21 29 40 40 74 74 84 93 95 103 114 114 5 0 0 0 2 0 3 0 8 2 3 4 2 6 3

6 12 25 25 37 50 50 90 90 102 115 115 127 140 140 6 0 0 3 2 3 3 0 8 2 3 3 2 3 3

7 14 35 35 49 70 70 98 105 112 133 140 147 168 175 7 0 0 3 2 3 3 0 3 2 3 3 3 6 3

8 16 37 39 53 76 76 132 132 148 169 171 185 208 208 8 0 0 0 2 0 3 0 8 2 3 4 2 6 4

9 18 43 43 61 86 86 140 140 158 183 183 201 226 226 9 0 0 3 2 3 3 0 8 2 3 3 3 6 6

10 20 46 47 66 92 93 156 156 176 202 203 222 248 249 10 0 0 0 2 3 3 0 8 2 3 4 2 3 4

T a b l e 2 . 7 a F ^ (x , y) T a b l e 2 . 7 b $4(x,y)

\ X
y \

2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 1 0 0 0 0 0 0 0 0 0 0 0

3 1 0 1 0 I 0 1 0 1 0 I 0 1 0

4 1 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 l 1 1 1 1

6 1 2 1 2 2 2 2 2 2 2 2 2 2 2

7 1 0 0 0 0 0 1 0 I 0 0 0 0 0

a 1 1 1 1 1 1 4 4 4 0 0 0 0 0

9 1 2 1 2 2 2 1 1 1 0 1 0 0 0

10 1 3 I 3 1 3 2 2 2 0 2 0 2 0

\ ^ c
y \

2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

i 2 2 4 4 6 6 8 8 10 10 12 12 14 14

2 4 a 8 12 16 16 24 24 28 3 2 3 2 36 4 0 4 0

3 6 i i 12 17 22 23 3 2 33 3 8 4 3 4 4 4 9 54 55

4 a 17 17 25 34 34 6 6 66 74 8 3 83 91 1 00 100

5 10 19 21 29 4 0 4 0 74 74 8 4 9 3 9 5 103 1 14 114

6 12 2 5 25 3 7 5 0 5 0 9 0 9 0 1 02 115 115 12 7 1 4 0 140

7 14 3 5 3 5 4 9 7 0 7 0 9 8 1 05 1 1 2 13 3 1 4 0 147 168 175

8 16 37 39 5 3 76 76 132 132 1 4 8 169 171 18 5 2 0 8 2 0 8

9 18 43 43 61 8 6 86 140 1 40 1 58 1 8 3 183 201 2 2 6 2 2 6

10 20 4 6 47 66 9 2 93 1 56 156 1 7 6 2 0 2 2 0 3 2 2 2 2 4 8 2 49

T a b l e 2 . 7 c G (x , y)
4

T a b l e 2 . 7 d ^ (x . y)

Chapter 2 57

\ X 2 3 4 5 6 7 a 9 10 11 12 13 14 15

i 2 2 4 4 6 6 8 8 10 10 12 12 14 14

2 4 8 8 12 16 16 24 24 28 3 2 3 2 36 4 0 4 0

3 6 11 12 17 22 23 3 2 33 3 8 4 3 4 4 4 9 5 4 55

4 8 17 17 2 5 3 4 34 6 6 6 6 74 8 3 8 3 91 1 0 0 100

5 10 19 21 2 9 4 0 4 0 74 74 8 4 9 3 9 5 1 03 114 1 14

6 12 2 5 25 3 7 5 0 5 0 9 0 9 0 1 0 2 1 1 5 11 5 127 1 4 0 1 4 0

7 14 3 5 3 5 4 9 7 0 70 9 8 105 112 1 33 1 4 0 147 16 8 175

8 16 3 7 3 9 5 3 76 7 6 132 1 3 2 148 169 171 185 2 0 8 2 0 8

9 18 4 3 4 3 61 8 6 8 6 1 4 0 1 4 0 1 58 1 8 3 18 3 201 2 2 6 2 2 6

10 2 0 4 6 4 7 6 6 92 93 1 56 156 176 2 0 2 2 0 3 2 2 2 2 4 8 2 4 9

X 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 2 2 2 2 2 2 2 2 2 2 2 2 2

2 0 0 2 2 3 2 0 3 2 3 2 2 3 2

3 0 0 2 2 3 2 0 3 2 3 2 2 3 2

4 0 0 3 2 3 3 0 8 2 3 3 2 3 3

5 0 0 0 2 0 3 0 8 2 3 4 2 6 3

6 0 0 3 2 3 3 0 8 2 3 3 2 3 3

7 0 0 3 2 3 3 0 3 2 3 3 2 3 3

8 0 0 0 2 0 3 0 8 2 3 4 2 6 3

9 0 0 3 2 3 3 0 8 2 3 3 2 3 3

10 0 0 0 2 3 3 0 8 2 3 4 2 3 3

Tdble 2.8a F^(x,y) Table 2.8b $^(x,y)

\ X

y \

2 3 4 5 6 7 8 9 10 1 1 12 13 14 15
\ X

y \
2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

l 2 2 4 4 6 6 8 8 1 0 1 0 12 12 1 4 1 4 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 4 8 8 12 16 16 24 2 4 28 3 2 3 2 3 6 4 0 4 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0

3 6 11 12 17 2 2 23 3 2 3 3 3 8 4 3 4 4 4 9 5 4 5 5 3 1 0 i 0 1 0 1 0 1 0 1 0 1 0

4 8 17 17 2 5 34 34 6 6 6 6 7 4 83 83 91 10 0 1 00 4 I 0 0 0 0 0 0 0 0 0 0 0 0 0

5 10 19 21 29 4 0 4 0 74 7 4 8 4 9 3 9 5 1 0 3 1 14 114 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 12 25 2 5 37 5 0 5 0 9 0 9 0 1 0 2 1 1 5 1 1 5 1 27 1 4 0 1 40 6 1 2 1 2 2 2 2 2 2 2 2 2 2 2

7 14 3 5 3 5 4 9 70 7 0 98 1 0 5 1 1 2 1 3 2 1 4 0 1 47 1 6 8 1 75 7 1 0 0 0 0 0 1 0 1 0 0 0 0 0

8 16 3 7 39 53 76 76 1 3 2 1 3 2 1 4 8 1 6 9 171 1 8 5 2 0 8 2 0 8 a 1 1 1 1 1 1 4 4 4 0 0 0 0 0

9 18 4 3 4 3 61 8 6 86 1 4 0 1 40 1 5 8 1 83 1 8 3 201 2 2 6 2 2 6 9 1 2 1 2 2 2 1 1 1 0 1 0 0 0

10 2 0 4 6 4 7 66 92 93 156 1 56 1 76 2 0 2 2 03 2 2 2 2 4 8 2 4 9 10 I 3 1 3 1 3 2 2 2 0 2 0 2 0

Table 2.8c G,-(x,y) Table 2.8d vy^(x,y)

29) Fq (8,4)

Figure 2.8 Tree - representation of optimal pattern for rectangle
(15, 10) of example 2.4. C/ioo

C
hapter 2

Chapter 2 59

NR XD YD CR AR

1 15 10 4 0
2 4 10 -1 0
3 4 1 2 0
4 2 1 0 7
5 2 1 0 7
6 4 9 3 0
7 3 9 -2 0
8 3 2 0 6
9 3 7 0 2
10 1 1 10 3 0
n 3 10 -3 0
12 3 3 0 5
13 3 7 0 2
14 8 10 -6 0
15 8 6 -2 0
16 8 2 0 3
17 8 4 0 1
18 8 4 0 1

Table 2.9 Representation of the optimal cutting pattern
for example 2.4.

s

C
hapter 2

Chapter 3 61

CHAPTER 3

AN ALGORITHM FOR THE TWO - DIMENSIONAL CONSTRAINED

GUILLOTINE CUTTING (CGC) PROBLEM

3.1 Introduction

Dynamic Programming can be used to solve the Two - Dimensional

Constrained Guillotine Cutting (CGC) Problem . This problem involves upper

bounds on the maximum number of pieces of each size to be cut from a large stock

rectangle. A dynamic programming procedure is then used, that introduces these

constraints into additional state variables in the state vector.

The modified DP recursion, even for small size problems, requires too

much storage and time. Thus, instead of obtaining an optimal solution to the

problem, an upper bound is computed by solving the DP recursion on a smaller set

of states. This corresponds to an idea recently developed and called " state - space

relaxation " (SSR) in Christofides et al [1981a] where it is used for the vehicle

Chapter 3 62

routing problem. State space relaxation is a generalisation of Lagrangean relaxation,

and, hence, can be embedded in a tree - search procedure in order to solve optimally

the original problem.

In this chapter, the application of SSR to the CGC problem is developed.

" State Space Ascent" (SSA) methods are given for minimizing the resulting upper

bound and are investigated computationally. A tree - search algorithm is then

described for the solution of the CGC probem that uses the bound derived from SSR

and improved by SSA methods. The computational performance of the algorithm

is illustrated by tests performed on a number of randomly generated problems with

constraints of varying " tightness ".

3.2 Definition of the Constrained Problem

The two - dimensional CGC problem can be defined as follows:

Let a large rectangle Aq = (cxq, Pq) be given, together with a set R of m

smaller rectangular pieces R = { (a^, P j) , ((X2, P2)> — > (a m, pm) }, each

piece in R having associated with it a value of Uj and a maximum number Qj of

pieces of type i that can be cut from Aq Let

i=l

be the total number of pieces in R. The problem is to construct a guillotine cutting

pattern for Aq with the highest possible total value

m

m
M = X Qi

i=l

Chapter 3 63

so that §i pieces of type i in R can be cut from Aq where ^ for all

i = 1, m.

We will make the following assumptions for problem P:

(i) All dimensions (04,) for i = 0, 1 , m are integers and the cuts on the

rectangles (we refer to those pieces in set R that are produced by the cuts on Aq,

at any stage during the cutting process, as " rectangles ”) are to be made in integer

steps along the x or y axes. Let L = { 1,2,..., ocq - 1 } and W = { 1, 2,..., (3q

- 1 } represent the sets of all possible lengths and widths, respectively, at which

guillotine cuts can be performed on Aq.

(i i) The orientation of the pieces is considered to be fixed.

As it has been explained in chapter 2, the n-stage guillotine cutting

problem, where the number of stages involved in the cutting process is unknown,

can be regarded as a non-staged guillotine cutting problem, with the optimal value of

the former being expected to attain the optimal value of the latter as n increases.

Therefore, in order to solve the general CGC problem, we start by developing a

dynamic programming recursion for the k-stage constrained cutting problem which

is presented in the following section.

3.3 A Dynamic Programming (DP) Formulation of the CGC Problem

In this section, we will modify the basic DP recursion given in chapter 2

[equations (2) and (3)] for the k-stage unconstrained cutting problem in order to

include the constraints on the number of pieces of type i in R that can be cut from

Chapter 3 64

Aq (for all i = 1,..., m).

Define a feasible set SXy of rectangles produced by a guillotine cutting

pattern for a rectangle (x, y) where 1 < x < <Xq and 1 < y < Pq , as a subset of the

set of all M pieces in R (i. e. SXyC R) by

SXy = { i I 5i ^ Qi i ^ x* Pi ^ y> i = l..», m } (1)

Thus, the size (x, y) of a rectangle to be cut and an associated feasible set SXy

will correspond to a state vector in our DP formulation. For a state vector (x, y,

SXy) we define (x, y, SXy) as the maximum value of a k-stage cut of a

rectangle of size (x, y) using any set S'C SXy of rectangles when the first-stage

cut direction is parallel to the y-axis. Similarly, we define (x, y, SXy) as the

maximum value of a k-stage cut of a rectangle (x, y) using any set S'C SXy of

rectangles when the first-stage cut direction is parallel to the x-axis. The recursive

function Fk (x, y, SXy) can be stated as follows:

Fk (x ,y ,S) = max[Gk j (x, y, S); max {Fk (x',y,S')
y y x'<x, x'eL, S£Sxy

+ Gk-1 (x x > y» SXy ■ S') }] f°r k > 1 (2)

This follows from the fact that the pattern yielding the value Fk (x, y,

S YV), k > 1, either does or does not perform a first-stage cut on a rectangle (x, y)xy
parallel to the y-axis at some x' e L. If such a first-stage cut is performed, then

Fk (x,y, S)= max { Fk (x \ y, S ') + Gk l (x-x', y, S -S')}.
x'<x, x'eL, S'cSxy

Chapter 3 65

If there are no first-stage cuts parallel to the y-axis but at least one second-stage cut

parallel to the x-axis at some y 'eW then Fj, (x, y, Sxy) = (x, y, Sxy). A

similar argument to the one given above can be used to show that

(x, y, S) = max [Fk l (x, y, S); max { G
y<y, y’eW, S’<SYVxy

+ (x, y-y\ Sxy-S’)}] fork> 1

k (x, y\ S’)

(3)

Equations (2) and (3) are the basic dynamic programming recursions for the

optimal k-stage constrained cutting of a rectangle (x, y) and they apply for any

k > 1, 1 < x < ocq, 1 < y < Pq and Sxy. Initial conditions for the above recursion

are provided by

Fq (x, y, Sx y) = max (u. |. i 8 Sxy , i = 1,..., m)

and

G0 (x ’ y- Sx y } = F0 (x’ y- Sxy }

for all x e L , y e W and Sxy. Then max { Fn (ag, Pq, R), Gn (ag, pg, R))

gives us the value of an optimal n-stage cutting pattern for Ag subject to the

constraints on the number of rectangles produced, if the first-stage cut direction is

unspecified. Note that when Fn (ccg, Pg, R) and Gn (ag, pg, R) have been

computed, so have Fk (x, y, Sxy) and G^ (x, y, Sxy) for all 0 < k < n,

1 < x < ag, 1 < y < pg and Sxy.

The computational problem encountered in the direct application of the

above basic recursion to solving the CGC problem is the problem of dimensionality

Chapter 3 6 6

of state variable SXy. An optimum policy for cutting a rectangle (x,y) into a set

SXy of rectangles at the k ^ stage of the cutting process consists of either

performing a cut on (x,y) parallel to the x - or y - axis or performing no cutet that

particular stage. However, the computer storage requirements increase rapidly since

the third state variable Svv of the basic recursion refers to combinations of

rectangles that can be produced by cutting a rectangle (x,y), i.e. involves all

subsets of SXy. This explosive increase in the state space dimension is critical to

the computational efficiency of the given DP recursion.

In the present chapter we are not concerned with the exact solution of this

recursion but with associated recursions based on relaxations of the state variable

SXy in order to reduce the state space dimension of the dynamic program. Such a

relaxation procedure is presented in the next section

3.4 State Space Relaxation for the CGC Problem

3.4.1 Definition

In this section, we develop a general relaxation procedure whereby the state

- space associated with the DP recursion given for the CGC problem in section 3.3

[equations (2) and (3)] is relaxed in such a way that the solution to the relaxed

recursion provides a bound which could be embedded in a branch - and - bound

scheme for the solution of the CGC problem. This state space relaxation (SSR)

method is analogous to Lagrangean relaxation in integer programming. A survey of

this new methodology is given in Christofides et al [1981a] where valid state space

relaxations are presented for the travelling salesman problem (TSP), the time

Chapter 3 67

constrained TSP and vehicle routing problem (VRP). A more detailed survey of

the above prodedure can be found in Christofides et al [1981b].

Let us consider then the DP formulation for the CGC problem defined by

equations (2) and (3). Now, let A (SXy) denote the set of all possible states

S'C SXy associated with the cutting of a rectangle (x, y). Let g (.) be the

mapping function from the domain of (x, y, SXy) to some other vector space

(x, y, g (SXy)) and let Q (g (SXy)) be a set satisfying the condition:

if S ' e A (S) then g (S’) e Q (g (S)) (4)
A y Ky

Recursion (2) and (3) can now be written as:

Fk (x ’ y’ * V) = IM X[° k - i (x*y>8(s x y) ,m ax , (Fk(x’, y, g(S’))x <x, x £ L
g(S’)e n (g (s xy))

+ Gk.1(x-x’, y,g(Sxy-S '))H V k > ! (5)

Gk (x' y- s(Sxy>) = maxt Fk -l(x’ y- §(Sxy) m a x , f Gk (x, / , g(S'))
y <y» y £w

g(S')en(g(S))

+ Fk-1 (X’ y'y'’ g(Sxy-S ')))] V k > l (6)

where

Chapter 3 68

From the above it is clear that:

Fk (x’ y> g<Sx y)) - Fk (x ’ y’ Sxy)

Gfc (x. y. g(Sx y)) 5 Gk (x, y, Sx y) (8)

for all x e L, y e W and 0 < k < n. Note that max { Fn (x, y, g(SXy)) ,

Gn (x, y, g(SXy)) } (from (8) above) can produce bounds which can be

embedded into any tree search for solving the original CGC problem.

The state - space relaxation which produced recursion (5) and (6) is

useful only if the function g (.) is such that set Q (g (Sxy)) can be computed

easily from (4) above. This condition is satisfied if g (.) is chosen to be a

separable function, so that given g(Sxy) and g(S'), g(Sxy - S’) can be computed.

In this case, (5) and (6) become:

Fk (x > y> S(Sxy)) = max [G^jCx, y, g(S)); max { F (x'_ y> t)
3 3 x <x, x'eL K

+ Gk-1 (x~x ’ y> g(^xy)' 1)) 1 V f c > l (9)

Gk (x’ y- ^ Sxy)) = m ax[Fk l (x , y, g(S)); max (G. (x, y', t)
3 y<y. yew k

t e n (g(sxy))

+ Fk- 1 (X.y-y'. g(s xy) - 1) } l V k s i (10)

where t = g(S') and S' £ A (SXy).

Chapter 3 69

In the following section, we will illustrate some possible useful forms of the

function g (.) .

A diagrammatic illustration of state - space relaxation is shown in Fig. 3.1.

3.4.2 Forms of the Mapping Function g (.)

As suggested by Fig. 3.1, the state - space relaxation is defined by g and

Q. The function g can be any separable function. A suitable form of the mapping

function is presented below:

Let us associate a non - negative integer weight with every piece i in set

R (i = 1,..., m) and define

(q - path relaxation) S S R
i e Sxy

i eS xy

Equations (9) and (10) are then modified as follows:

Figure 3.1 Graphical presentation of State-Space Relaxation

o

C
hapter 3

Chapter 3 71

Fk (x, y, q) = max t Gfc1 (x, y, q); max { F, (x\ y, q’)
x'<x, x'eL K

q’=0, q

+ Gk-i (x"x'»y.q-q’) J] v k > 1

G k (X, y, q) = max [F . , (x, y, q); max { G, (x, y\ q')
y'<y, y'eW
q - 0, q

+ (x, y-y’.q-q*) }] V k > 1

and initialised by

F0 (x, y, q) = max (0). I <x, ^ < y, < q, i = 1, m)

G0 (x, y, q) = Fq (x, y, q)

The above recursion applies for all x e L, y e W and q = 0 , Q where

m

Q = £ < i iQ i -
i=l

3.5 A Bound from State Space Relaxation (SSR)

(1 4)

(15)

(16)

It is clear from (8) that the state space relaxation* of the DP recursion of

the CGC problem can be used to obtain upper bounds on the value of the solution

to this problem. In this section, we will describe how such a bound can be derived

Chapter 3 72

from the relaxed recursion given by equations (14) to (16) [SSR].

We must note that Z jjg = max [(Fn (ocq, Pq, Q)» Gn (^ Po Q)1

represents the optimal value of an n-stage cutting pattern for the stock rectangle Aq

generated by using pieces in set R when the first - stage cut direction is

unspecified. (Note that Q is the maximum value that state variable q can take

relative to a given set of weights q̂ 's). The value Zjjg provides an upper bound

on the solution of the CGC problem and is obtained from the relaxed DP

recursion given by equations (1 4) to (1 6) , this recursion being enhanced

computationally in the following way:

Let sets L and W of possible lengths and widths for any cuts to be

performed on Aq be modified as described by equations (4) and (5) of chapter

2, respectively, to represent the normal sets relative to the set of pieces in R

available for cutting. Sets L and W can be reduced even further for the constrained

problem, by limiting the normal cuts to be performed at any point x or y, such that

there exists a feasible set of pieces in R whose lengths add up to x, or whose widths

add up to y, respectively; namely, these sets are redefined by:

m
L = { x I x = ^ 0. a-, 1 < x < <Xq, 0 < 0. < Q. and

i = 1

0. integer V i = 1,..., m }

and

m

W = { y l y = X tiPi> ^ y ^ P o ’ ° - ti - Qi ^
i = 1

t- integer V i = 1, ..., m }

Chapter 3 73

Also, let l (x) and w (y) be defined by equations (6) and (7) of chapter 2,

respectively. Using the normality property (section 2.3.1 of chapter 2), we claim

that we may calculate Fk (l(x), w (y), q) instead of Fk (x, y, q) , since

Fk (l(x), w (y), q) = Fk (x, y, q). Equation (14) then becomes:

Fk (x, y, q) = max [Gk l (x, y, q); max { F, (x\ y, q’) +
x'<x, x'eL
q - 0, ..., q

Gk-1 ^1 (x_x')’ y» ^)) 3 V k > 1 (17)

Here, we have modified the second term in the recursion, arising from the optimal k

- stage cutting pattern of (x, y) with a first - stage cut being made at some x' 8 L,

so that the pattern for the two resulting rectangles of sizes (x', y) and (x - x', y)

can be normalised. In a similar fashion, we modify equation (15) to be:

Gk (x, y, q) = max [F, . (x, y, q); max { G, (x, y', q’) +
y'<y> y'eW
q= 0, ..., q

Fk-i (x»w (y - A q-q’)) 3 v k > 1 (i s)

It is now clear that Fk (x, y, q) and Gk (x, y, q) are calculated only for

those values of x and y that belong to the normalised sets L and W respectively

(i. e. x e L and y e W) and for all values of q (i.e. q = 0, 1,..., Q). Equations

(17) and (18) form the relaxed DP recursions used to obtain the value of bound

ZUB relative to a given set of qj ' s . Initialisation conditions for the recursions

are given by equation (16).

Chapter 3 74

3.5.1 The Dynamic Programming Procedure

Once the value of bound Z jjg is found by solving the relaxed DP

recursion given by equations (1 6) to (1 8) in section 3.5, backtracking to

discover the nature of the associated cutting pattern is necessary. The full sets of

maximum value functions and their corresponding optimal decisions are stored as

soon as they are computed and retrieved at the time of backtracking. Thus, six

matrices are used, namely, Fk (x, y, q), Gk (x, y, q), Ok (x, y, q) , yk (x,

y, q), *Fk (x, y, q) and 8k (x, y, q). When the computation is completed Fk (

x, y, q) = Fn ((X0, p0, Q) and Gk (x, y, q) = Gn ((Xq, Pq, Q). The four

remaining matrices are defined as follows :

(x’ y» q) = x’> Yk (x» y» q) = q ' if pk (x> y» q) = Fk (x’> y> q ') +

Gk_i (l (x-x*), y, q -q ')

d>k (x’ y» T) = Yk (x» y» q) = 0 otherwise (19)

and

^ k (x» y» 9) = y’> 5k (x» y» q) = q' if Gk (X, y, q) = Gk (x, y\ q’) +

Fk_i (x, w (y-y '), q -q ')

'Fk (x, y, q) = 0 , 8k (x, y, q) = 0 otherwise (2 0)

To help in describing the procedure for calculating Zjjg and finding the

associated cutting pattern, let x^, X2, ..., xu be the elements of the normalised set L

in order of increasing lengths and yj, y2» ...yv be the elements of W in order of

increasing widths.

Chapter 3 75

Initialisation

1.1 Set k = 0.

1. 2 Set Fq (xs, yt, q) = Gq (x$, yt, q) - m x̂ (d- | oq < xs, Pj < yt , qj < q,

i = 1, ..., m) for all s = 1, u, t = l , v and q = 0 , Q.

1.3 Set k = 1.

1. 4 Set s = 1, t = 1, q = 0.

First - stage cut parallel to the v - axis.

2. 1 Set s’ = 1.

2. 2 Set q' = 0.

2. 3 If q’ < q and Fk (xs, yt, q) < Fk (xss yt, q') + Gk_t (l (xs- xs»), yt,

q - q ') then set Fk (xs, yt, q) = pk (XsS yt> q*) + (l (xs - xs-),

Yt> ^ " Q)»7k (xs» yt* ^ ^ and go to 2. 4. If q' < q then go to 2. 4 ;

else go to 2. 5.

2. 4 Set q’ = q’ + 1 and go to 2. 3.

2 .5 Set qmax - max (0, 7k (x s,y t, q))

2. 6 If s’ < s and Fk (xs> yt, q) < Fk (XsS yt> qmax) + Gk. j (l (xs- xs0,

yt » <1' ^max) then set Fk (xs> yt, q) = Fk (xgs yt, qmax) + Gk_ j

(l (xs ' xs ')» yt’ Q ‘ Qmax)» (*s, yt, q) = xs* and go to 2. 7.

If s' < s then go to 2. 7 ; else g0 to 2. 8.

2. 7 Set s’ = s' + 1 and go to 2. 6.

2. 8 If Gk_i (xs, yt, q) < Fk (XS’ yt> q) go to 2. 9 ; else set Fk (xs, yt, q)

= ^k-1 (xs’ yt’ Q) ’ ^ k (XS’ yt5 q) = 0, yk (xs, yt, q) = 0 and go to 2. 9.

2 .9 If q < Q thenset q = q + l and goto 2 .1; else if s< u then set

s = s + 1, q = 0 and go to 2. 1 ; else if t < v then set t = t + 1, s = 1,

q = 0 and go to 2. 1 ; else go to 3. l.

Chapter 3 76

First - stage cut parallel to the y-avic

3. 1 Set s= 1, t= 1, q = o.

3. 2 Set t' = 1 , q’ = 0.

3 .3 If q ' < q and Gfc (xs. yt> q) < Gk (xs, yt,, q’) + (xs, w (yt - yt-),

q • q') then S6t ° k (xs- yt-1) = Gk (xs. yt, q-) + (xs,w (yt - yt0.

q - q ’) , 5 k (x s,y t>q) = q' and go to 3. 4. If q' < q then go to 3. 4 ;

else go to 3. 5.

3. 4 Set q' = q' + 1 and go to 3. 3.

3. 5 Set qmax = max (0, 5k (xs, yt, q))..

3 .6 If t* < t and Gk (xs> yt, q) < Gk (xs, ytS qmax) + pk l (Xs, w (yt

' yt’)’ <1 - ^max then set Gk (xs, yt, q) = Gk (xs, ytS qmax)+

(xs, w (yt - yt»), q - qmax) , *Pk (xs, yt, q) = yt. and go to 3. 7.

If t* < t then go to 3. 7 ; else go to 3. 8.

3. 7 Set t’ = t’ + 1 and go to 3. 6.

3. 8 If Fk-1 (xs5 yp 9) < Gk (xs» yp 9) g° to 3. 9 ; else set Gk (xs,y t , q)

= Fk-1 (xs» yt» 9)» ^ k (xs, yt, q) = 0, 5k (xs, yt, q) = 0 and go to 3. 9.

3. 9 If q < Q thenset q = q + l and go to 3 .2; elseif t <v then set

t = t + 1, q = 0 and go to 3. 2 ; else if s < u then set s = s + 1, t = 1,

q = 0 and go to 3. 2 ; else go to 4. 1.

End of optimal k - stage cutting

4. 1 If Fk (xs> yt» 9) = Fk-l (xs> yt> 9) Gk (xs »yp 9) = Gk. j (xs^

yt, q) then set n = k - 1, value of bound ZUB = max (Fn (cxq, pQ, Q),

Gn (ocq, Pq, Q)) and stop ; else set k = k + 1 and go to 1. 4.

At the end of the above procedure, max (Fn((Xq, Pq, Q), Gn(ccq, Pq, Q))

is the value of bound ZjjB corresponding to the optimal n - stage guillotine cutting

of Aq relative to a given set of weights (q j ' s) associated with the pieces in set R.

Chapter 3 77

Note that values F^CXg, yt, q) and G ^ x ^ yt, q) have also been calculated for

all 0 < k £ n, s = 1, 2, u, t = 1, 2 , v and q = 0, 1,...» Q.

(x, y, q) and (x, y, q) can then be used to indicate for each set (x, y, q)

the terms in the relaxed recursion that led to the value (x, y, q). Similarly,

(x» y» q) and 8^ (x, y, q) can be used to determine how G^ (x, y, q) is

achieved for any set (x, y, q). Thus, discovering the nature of an optimal k -

stage pattern requires the use of a binary tree, having a similar structure to the tree

that has been used by the backtracting procedure of section 2. 3. 2 (See Fig. 2.7).

The structure of this tree is described by the following three characteristics :

(i) A node labelled F^ (x, y, q) or Gj. (x, y, q) with exacdy two nodes

immediately below it represent a k - stage cut made on rectangle (x, y)

parallel to the y - or the x - axis, respectively, using a set of rectangles SXy

in R such that

(i i) A node labelled F^ (x, y, q) or G^ (x, y, q) with only a left node

below it, labelled Gk- 1 (X, y, q) or F ^ (x, y, q) respectively,

imply that no cut is performed on rectangle (x, y) at the k1*1 stage

of the cutting process.

(iii) A terminal node (i.e. a node that has no other nodes below it in the tree)

labelled F^ (x, y, q) or G^ (x, y, q) represents a rectangle (x, y)

that is not cut any further and a piece j in R can be allocated to it such

that j = max { I oq < x, Pj < y, q̂ < q, i = 1,..., m }.

Chapter 3 78

The 3 - stage cutting pattern for the rectangle (x, y), shown in Fig. 3.2,

associated with the optimal value (x, y, q) can be represented by the binary tree

shown in Fig. 3.3. A convenient way for describing this tree is presented in Table

2.1 of Chapter 2.

A " preorder " traversal of the binary tree is used to determine the sequence

of cuts performed on Aq. A data structure, as described in section 2.3.2, is

employed to represent the list of rectangles produced during the cutting process.

Two additional entries are now included for each rectangle q in the list which are

given below:

(i) indicates the " weight" of the set of pieces in R used to cut rectangle q

(i i) q^ is the " weight" of a subset of the above set of pieces, associated with

the cutting of rectangle q into two further rectangles (q̂ f < q^).

The pattern shown in Fig. 3.2 would then be represented by the list of

rectangles shown in Table 3.1, using NR to head the column corresponding to the

number of rectangle. The list begins with cutting Aq. In this list, every rectangle is

either cut into smaller rectangles or filled by one of the initial pieces given in R

(waste is not cut out by the relaxed DP procedure).

Generating the above list of rectangles, we obtain the number q of pieces

of type i that have been used by the DP solution in cutting Aq. If q < Qj for all

types i in R (i. e. i = 1, ..., m) (i.e. a feasible solution is found) then the

optimal solution to the CGC problem has been obtained. Otherwise, the value

Zjjb °f the associated n - stage pattern, serves as an upper bound on the solution of

the original problem.

Chapter 3 79

yi (q/ ’

Figure 3.2 An optimal 3-stage cutting pattern of rectangle (x,y)

Figure 3.3 Tree representation of pattern shown in Figure 3.2

Chapter 3 80

NR XD YD q CR q' AR

1 X y q x i
X 0

2
v y

X
ll 0 0 r i

3 (x - X j) y (q - q *) - y i 0

4 (x - X j) y i 0 0 r 2

5 (x - x]) (y - y j) C q - q K > x 2
X

q 2 0

6
X2 (y - y j)

X
q 2 0 0 r3

7 (x - X j - x 2) (y - y j)
i x y x .(q-qfq, q2) 0 0 r4

Table 3.1 Representation of pattern shown in Figure 3.2

Chapter 3 81

3.5.2 An Example

Consider the CGC problem whose set R of pieces available to be cut

from a stock rectangle Aq of size (10,10) is as given below :

piece i sizei value i constraint i

1 (2, 2) 5 1

2 (5 , 3) 15 3

3 (6 , 7) 52 2

4 (4 , 7) 44 2

5 (2 , 4) 12 1

We will use the state - space relaxation [(equations (16) - (18)] to

compute an upper bound to the value of the optimal solution to this CGC problem.

Let us choose (arbitrarily) a set of weights qj to apply to the pieces i = 1,...» 5.

Let these weights be given by :

piece i 1 2 3 4 5

0 0 0 0 1

and hence

5

q = X O i o r i .
i=l

The normalised sets of lengths and widths are given by L = { 2, 4, 5, 6, 7,

8, 9,10} and W = { 2, 3, 4, 5, 6, 7, 8, 9,10}respectively. From (16) the

Chapter 3 82

initialisation is given in Table 3.2.

We will use the value of k to index the iterations of recursion (17) and

(18) i. e. we will call iteration 2 the iteration which computes all F2 (x, y, q)

and G2 (x, y, q), iteration 3 the iteration which computes all F3 (x, y, q) and

G3 (x, y, q) e.t.c.

Thus, four iterations (n = 4) are performed until F4 (10, 10, 1) = F3

(10, 10, 1) and G4 (10, 10, 1) = G3 (10, 10, 1) providing us with a value of

ZUB = 135 (= F3 (10, 10, 1)*(G3 (10, 10, 1)) . The values of Fk (x, y, q) ,

Ok (x» y> q) and Yk (x* y> q)> as defined in section 3.5.1, for all values of x e L,

yeW and q = 0 ,1 are presented in Tables 3.3, 3.5 and 3.7 for k = l , 2 and 3

respectively. Similarly, the values of G^ (x, y, q), ^ (x, y, q) and 8^ (x, y,

q) are given in Tables 3.4, 3.6 and 3.8 for k = 1, 2 and 3 respectively. By

backtracking through the given tables we obtain the cutting pattern of (10, 10)

associated with the above value of 135. The structure of this pattern is shown in

Table 3.9. (Note that the backtracking procedure, as described in section 3.5.1,

starts with the value G3 (10 ,10 ,1)) and a diagrammatic presentation of it in Fig.

3. 4.

Generating the above pattern for the given CGC problem, a list of rectangles

is produced given by { 7, 0, 0, 2, 1 }. Clearly, this is not a feasible solution to the

problem since the number of pieces of type 1 that have been used by the current

DP solution in cutting Aq (c^ = 7) exceeds the corresponding availability

constraint for this type (Qj =* 1). Thus, Z jjg = 135 is an upper bound on the

solution of the problem. Note that this value happens to be the optimal, as shown in

the Table 3.10 of computational results of section 3.6.3 (Problem 1).

\ X
v \

2 4 5 6 7 8 9 10
\ q 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3 5 5 15 15 15 15 15 15 15 15 15 15 15 15 15 15
4 5 12 5 12 15 15 15 15 15 15 15 15 15 15 15 15
5 5 12 5 12 15 15 15 15 15 15 15 15 15 15 15 15
6 5 12 5 12 15 15 15 15 15 15 15 15 15 15 15 15
7 5 12 44 44 44 44 52 52 52 52 52 52 52 52 52 52
8 5 12 44 44 44 44 52 52 52 52 52 52 52 52 52 52
9 5 12 44 44 44 44 52 52 52 52 52 52 52 52 52 52
10 5 12 44 44 44 44 52 52 52 52 52 52 52 52 52 52

Table 3.2 Initial Values of the DP relaxed recursion
for the CGC Problem of Example 3.5.2.

ooUi

C
hapter 3

Chapter 3 84

Table 3.4 Gj (x,y,q), >KJ(xfy,q), 6j(x,y,q) V x,y,q

Chapter 3 85

y

h

2 3 4 5 6 7 8 9 10

G Y 6 G Y 6 G Y 6 G Y 6 G Y 6 G Y 6 G Y 6 G Y 6 G Y 6

T 0 5 0 0 5 2 0 1 0 2 0 1 0 2 0 15 4 0 15 4 0 2 0 6 0 2 0 6 0 25 8 0
1 5 0 0 5 2 0 1 2 0 0 1 2 4 1 17 2 0 17 2 0 2 2 4 0 2 2 4 0 27 6 0

4 0 1 0 0 0 1 0 2 0 2 0 2 0 2 0 2 0 3 0 4 0 44 0 0 44 7 0 54 2 0 54 2 0
1 1 0 0 0 1 0 2 0 2 0 2 0 2 0 2 0 3 0 4 0 4 4 0 0 4 4 7 0 54 2 0 54 2 0

5 0 1 0 0 0 15 0 0 2 0 2 0 25 2 0 3 0 3 0 4 4 0 0 4 4 7 0 5 4 2 0 5 9 3 0
1 10 0 0 15 0 0 2 0 2 0 2 5 2 0 3 0 3 0 44 0 0 44 7 0 54 2 0 5 9 3 0

5 0 15 0 0 15 2 0 3 0 2 0 3 0 2 0 4 5 4 0 5 2 0 0 60 6 0 67 2 0 75 8 0
1 15 0 0 15 2 0 3 0 2 0 3 0 2 0 4 5 4 0 56 0 0 6 0 6 0 71 2 0 75 8 0

7 0 15 0 0 2 0 0 0 3 0 2 0 35 2 0 4 5 4 0 52 0 0 6 0 6 0 67 2 0 75 8 0
1 15 0 0 2 0 0 0 30 2 0 35 2 0 4 5 4 0 5 6 0 0 60 6 0 71 2 0 76 3 0

3 0 2 0 0 0 2 0 2 0 4 0 2 0 4 0 2 0 6 0 4 0 88 0 0 88 7 0 108 2 0 108 2 0
1 2 0 0 0 2 0 2 0 4 0 2 0 4 0 2 0 6 0 4 0 88 0 0 88 7 0 108 2 0 108 2 0

9 0 2 0 0 0 25 0 0 4 0 2 0 4 5 2 0 6 0 4 0 8 8 0 0 88 7 0 108 2 0 113 3 0
1 2 0 0 0 25 0 0 4 0 2 0 4 5 2 0 6 0 4 0 88 0 0 88 7 0 108 2 0 113 3 0

1 0
0 25 0 0 3 0 0 0 5 0 2 0 55 2 0 75 4 0 9 6 0 0 1 0 0 6 0 1 2 1 2 0 126 3 0
1 25 0 0 3 0 0 0 5 0 2 0 5 5 2 0 75 4 0 1 0 0 0 0 1 0 0 6 0 125 2 0 1 30 3 0

Table 3.6 G2(x,y,q), Y2(x,y,q). 62(x,y,q) V x,y,q

Chapter 3 8 6

Table 3.8 G3(x,y,q), '^(x.y.q), ^(x.y.q) V x,y,q

Chapter 3 87

NR XD YD q CR q' AR
1 10 10 1 -2 0 0
2 10 2 0 8 0 0
3 8 2 0 6 0 0
4 6 2 0 4 0 0
5 4 2 0 2 0 0
6 2 2 0 0 0 1
7 2 2 0 0 0 1
8 2 2 0 0 0 1
9 2 2 0 0 0 1
10 2 2 0 0 0 1
11 10 8 1 6 1 0
12 6 8 1 2 1 0
13 2 8 1 -4 0 0
14 2 4 0 -2 0 0
15 2 2 0 0 0 1
16 2 2 0 0 0 1
17 2 4 1 0 0 5
18 4 8 0 -7 0 0
19 4 7 0 0 0 4
20 4 8 0 -7 0 0
21 4 7 0. 0 0 4

Table 3.9 Representation of the cutting pattern
corresponding to the value of 135
for Example 3.5.2

0 10

Figure 3.4 3-stage cutting pattern for Example 3.5.2

Chapter 3 88

3.6 State Space Ascent (SSA)

In section 3.4, we described the form of the function g (.) which

produces a valid state -space relaxation for the CGC problem, and in section 3.5 a

bound on the solution of this problem which is derived from this relaxation. In this

section we describe how a procedure can be used to decrease the resulting upper

bound (ZjjQ) obtained by SSR using state - space modifications.

The general objective in this approach is to force the solution of the relaxed

recursion closer to feasibility, and naturally improve the upper bound. The form of

the mapping function used and the respective relaxation (SSR) are described in

Section 3. 4. 2:

(SSR) g (S x y) = X qj*.

i e S xy

where qj is a non - negative weight chosen to be associated with a piece of type i

in set Sxy (Sxy C R).

In choosing the function g (.) to be as given above, nothing has been said

about the choice of the parameters . Denoting by f (q) the upper bound

produced by SSR (bound Z jjg of equations (17) - (18)) for a given vector q

(= q^), the new problem to be dealt with is

f (q*) = min f (q) (21)
q > 0

subject to

Chapter 3 89

<22>
ie R

The procedure for minimising f (q) in the above expression is referred to

as state - space ascent. This minimisation is, in general, difficult since f (q) is a

discontinuous function of q. However, simple ways for performing the

minimisation, are described and tested computationally in the following sections.

3.6.1 Modification of the weights qj

Four different formulae are presented in this section, for modifying the

weights qj as part of the procedure used to solve problem (2 1) - (2 2) . The

modification of the weights qj is based on the following idea: Let Cj be the number

of pieces of type i that have been used by a DP solution [equations (16) to (18)]

in cutting Aq, for a given vector q. If c is feasible for the original CGC problem

(i.e. Cj < Qj V i = 1,..., m), then the problem has been solved ; otherwise, it

would be reasonable to try to reduce the number of pieces used for any type i for

which Cj > Qj in order to move toward feasibility. A straightforward way to

perform state space modifications is then to increase the value of the qj

corresponding to any type i for which Cj > Qj and at the same time, decrease the

weight for the pieces for which the associated constraints are satisfied. One hopes,

that by increasing the weight for a piece of type i such that Cj > Qj, fewer pieces of

type i will be used by the modified DP solution.

In the first three formulae adopted, weights qj are modified accordingly by

fixed amounts (independently of I Cj - Qj I). However, the last formula provides a

Chapter 3 90

general procedure for modifying the weights in a normal" subgradient" fashion.

Formula A

Set qj = qj + 1 V i s. t. ci> Qi, i = l , ...» m

<ii= qi - 1 V i s. t. qj > 0 , Cj £ Qj - 5 , i = 1,..., m

Formula B

Set qj = qj + 2 V i s. t. ci > Qj, i = 1,...» m

q i = qi - 1 V i s. t. qj > 0, Cj £ Q j , i = 1,..., m

Formula C

Let i* be that type i for which (Cj - Q j) is maximum. Trying to reduce the

number of pieces used for type i , it is reasonable to increase the corresponding

weight by the largest amount compared to the other weights, since this would

produce the largest step toward feasibility. Thus, weights qj are modified as

follows:

Set qj = qj + 3 , i = i* s.t. (Cj* - Qj*) = max { (Cj - Q j) I Cj > Qj, i = 1,..., m }

qi = qj + 1 V i s.L Cj > Q j, i * i *, i = 1,...» m

q j = q j - 1 V i s.t q j > 0 , Cj £ Q j, i = 1,..., m

Formula D

A subgradient method is used to determine the values of the weights at iteration

number j as follows:

Set qj"+1= q/ + t̂ v » s-t <^>0;. i=1.... m

= max (0, - 1̂ (Qi - cj*)') Vi s.t. Cj < Qj, i = 1......m

Chapter 3 91

where t J is a positive scalar step size. A formula for t J that has been proved

effective in practice is given by:

In this formula, the parameter k J is initially set equal to 2.0 for a fixed number of

consecutive iterations (6) being reduced to half of its value every 3 iterations until

the resulting k J falls below 0.06. Zj^g is the value of a feasible solution to the

CGC problem obtained by the manual heuristic described in chapter 4 using

interactive graphics. Zjjg J is the value of the upper bound obtained by SSR at the

jth iteration. Note that if Z jjgJ = Zj^g, then the SSA procedure is terminated with

ZlB being the optimum solution.

3.6.2 SSA Procedure

In this section we present the complete procedure used in an attempt to

minimize the upper bound Zjjg [equations (17) - (18)] obtained from the SSR

of the CGC problem (section 3. 4) i. e. to solve problem (21) - (22). The

SSA procedure is then as follows :

(1) Choose initial values for the weights qp No good indication exists on how to

determine good starting values - we used qj = 0 V i = 1,..., m.

(2) Solve the relaxed DP recursion [equations (1 6) - (1 8)] t o obtain the

Chapter 3 92

t
optimal value Zjjb relative to the current set of qj s , by performing the DP

procedure of section 3.5.1.

(3) Check if the DP solution c (= Cj) is a feasible solution to the original

problem, i. e. if Cj < V i = 1,..., m. If yes, stop ; otherwise continue. If

Zu b < niinimum upper bound obtained so far) then update Zm|n with

^min = ^UB*

(4) Modify the set of s using one of the four Formulae of section 3.6.1.

(5) Go to (2) to resolve the relaxed dynamic program with this new set of

weights unless a sufficient number of SS A iterations has been performed.

At the end of the SSA procedure, the optimal solution to the original CGC

problem may have been found (Step 3), but if not the best bound (Zmjn) on the

problem has been obtained which can then be used in a tree search procedure to

solve the problem (Note that f (q *) = Zmjn in problem (2 1) - (22)).

3.6.3 Computational Results

In implementing the DP recursion given for the relaxed CGC problem

[equations (16) - (18)] on a computer, the strategies for generating the states as

well as for sequencing of recursive computations will significantly affect the

memory and processing time. The approach proposed for the implementation is

based on a trade off between time and space requirements.

Once F (ocq, Pq, Q) and G ((Xq , Pq, Q) are found at the end of a SSA

Chapter 3 93

iteration, backtracking to obtain the generated cutting pattern for Aq can be done

easily when the full sets of maximum value functions and their corresponding

optimal decisions are stored in RAM. However, our empirical results suggest that

only small - size CGC problems can be solved using this computer implementation,

since a DP solution memory space is almost always the dominating limiting factor.

One possible alternative to circumvent the difficulty, is to store the value and the

optimal decision for each set (x, y, SXy) on a peripheral device when F (x, y,

SXy) and G (x, y, SXy) are computed and retrieve them at the time of

backtracking. In this case, we consider the increase in processing time for

backtracking be well worth its cost. Note that reading from and writing to a

secondary storage device can be computationally very costly.

The computer code for the SSA procedure described in Section 3.6.2 has

been written in FORTRAN and tested computationally on a variety of problems run

on a CYBER - 855 machine. In the DP implementation, the six memory grids F^

(x, y, q) , Ok (x, y, q) , (x, y, q), Gk (x, y, q) , *Fk (x, y, q) and 8k

(x, y, q), defined in section 3.5.1, are stored on a secondary storage device for all

k = 0,1, . . . , n for a particular SSA iteration .

Tables 3.10 and 3.11 present the computational comparison of the four

Formulae given in section 3.6.1 for the modification of the weights q^. The SSA

procedure was applied on a set of 9 test problems randomly generated, including up

to 20 types of pieces in R required to be cut from a large rectangle of size

(40,70).

The first five columns in Tables 3.10 and 3.11 give details about the test

problems. These details include for each problem: the size of Aq, the number of

types of pieces in R, the sizes of the normal sets and value of the optimal solution,

Problem Details of Test Problems 1 Results of Rule 1 Results of Rule 2 Results of Rule 3
Optimal best Number Time best Number Time best 'lumber Time

Number (V V m II lul solution Upper of Q(Ubl) to Upper of Q(Ub2) to Upper of Q(UD3) to
(Z - > bound Itera- obtain bound Itera- obtain bound Itera- obtainopt (UBI) tions Ubl (Ub2) tions Ub2 (Ub3) :ion8 UD3

1 (10,10) 5 8 9 135 135* 2 2 0.5 135* 2 A 0.7 *135 2 A 0.8
(15,10) * /5 A *2 7 12 10 2AA 2AA A 3.A 2AA 3 6 3.2 2AA 2 5 1.6

3 (20,20) 7 17 17 500 517 20 A8 680 517 20 IA 280. A 517 20 36 862.7
A *4 (20,30) 10 11 23 1755 1755 A 3 A.8 1755 3 3 A.3 1755 3 5 6.3

5 (30,30) 7 23 15 I07A 1 1 I7b 17 47 1177 1117 20 30 1114./ 1117b 18 47 1305.6
6 (30,A0) 8 26 17 1351 IA2la 19 A1 1500 1 AAAa 17 36 1500 I435a 16 36 1500
7 (30,50) 10 26 17 1653 1716 20 27 1037 .5 1790 20 16 613.8 1761 20 17 72A. 1
a (A0,70) 10 29 56 2892 2902a 7 19 1500 2902a 5 20 1500 2893a 5 19 1500
9 (A0,70) 20 25 55 I860 I860* 9 20 1500 !9A0b 5 23 787.2 194 0b A 17 A0A.9

a
b

Table 3.10 The State Space Ascent (SSA) Procedure Using Three Different
Formulae for the modification of the weights

*

Time Limit
Q attained its maximum value allowed for the computation of bound
Optimum solution found by the SSA Procedure

VO•t*

C
hapter 3

Problem Details of Test Problems Results of Rule 4

Number (a0,80) m N |w| Optimal
Solution

(z .)opt

Best Upper
Bound
(UB4)

Lower
Bound
(ZLB>

Duality
gap (r)

%

No. of
SSA iters

Q(UB4) Time in
CYBER-855
seconds

1 (10,10) 5 8 9 135 k135 135 - 2 2 0.2
2 (15,10) 7 12 10 244 k244 244 - 5 3 3.6
3 (20,20) 7 17 17 500 517 467 3.4% 20 11 152.3
4 (20,30) 10 11 23 1755 k1755 1755 - 8 13 63.4
5 (30,30) 7 23 15 1074 1117 1020 4.0% 20 21 555.8
6 (30,40) 8 26 17 1351 1445a 1351 6.9% 15 36 1500.0
7 (30,50) 10 26 17 1653 1 720a 1643 4.0% 17 31 1500.0
8 (40,70) 10 29 56 2892 2893a 2698 0.0% 6 35 1500.0
9 (40,70) 20 25 55 1860 1860* 1860 - 3 15 214.2

a

Table 3.11 The State Space Ascent (SSA) Procedure Using a Subgradient
Method for the modification of the weights q^.

Time Limit
Optimum solution found by the SSA Procedure

voOi

C
hapter 3

Chapter 3 96

this being found by the exact algorithm described in the following section of this

chapter, which solves the CGC problem. To form an idea of the computational

performance of each formula for modifying the weights, we also give for each

problem, the best upper bound (Zm[n) obtained from the SSA procedure (let

UB1, UB2, UB3 and UB4 represent the value of Zmjn when Formulae A, B, C

and D are used respectively), the number of iterations required and the time taken to

reach this value (the time is given in CYBER - 855 seconds) and the maximum

value of Q attained during the SSA procedure
m

(Q - X Qi V -
i=l

(For the " subgradient " type formula, the value of the feasible solution - Zj^g -

used is also given for each problem).

A maximum number of 20 iterations and a time limit of 25 minutes (

CYBER 855 - FTN5 compiler) were imposed. A maximum value of Q was also

set for each test problem, depending on its size, as a result of limiting memory

requirements. Whenever the SSA procedure succeded in finding the optimal

solution, a star (*) is added to the value of Zmjn. A label (a) or (b) added to

the value of Zm n̂ mean that the respective SSA procedure is terminated by a

preset time limit or the maximum value of Q allowed for the computation of the

bound is attained, respectively.

From Table 3.10 it is clear that the first three formulae perform very well

for the 9 problems. The quality of the bound is the same for the first five problems.

For the four largest problems, the best out of the three values is always within 5 %

of the optimal solution. In particular, the SSA procedure found the optimal

solution for problems 1, 2 and 4 using either of the three formulae. For problems

6, 7 and 9, UB1 performed considerably better than UB2 and UB3, namely the

Chapter 3 97

value of UB1 is nearer to the optimum solution by approximately 4 % and 3 % on

average, than the corresponding values of UB2 and UB3, respectively, for these

problems.

To test these formulae even further, we need to compare the rate of

convergence and number of SSA iterations performed. Figures 3.5- 3.13 plot

the various bounds obtained by the SSA procedure for all test problems using the

four formulae, one at a time, as a function of the number of iterations in the ascent

procedure. These plots clearly show that UB1 and UB4 converge much earlier than

UB2 or UB3, particularly for problems 3, 5, 6, 7 and 9. As a result of better

convergence, Formula A and D are more likely to require a lower computational

cost. Furthermore, the figures suggest that for most of the problems, the largest

step towards optimality is achieved during the first few iterations (4 to 5)

indicating quick convergence of the SSA procedure.

The above results suggest that a " subgradient" type formula would work

better than the first three. Indeed, from Table 3.11 it is clear that UB4 performed

better than UB1. The quality of these two bounds is almost the same for all

problems. However, the number of iterations in the ascent procedure is smaller for

the last four problems when Formula D is used, resulting in quicker convergence of

UB4. Furthermore, the subgradient method requires lower computational cost,

particularly for problems 3, 5 and 9. The maximum value of Q required for the

computation of UB4 is lower for 5 out of the 9 problems tested, meaning that the

SSA procedure is more likely to solve larger CGC problems when Formula D is

used (as a result of limiting memory requirements). Note that the value of Q

obtained at consecutive SSA iterations, when UB1 is used, can be expressed as a

monotonically increasing function of the number of iterations.

Chapter 3

145

t 143
-,::,
c
::::l

m 141

139

137

Zopt
135~--------~~--------------------~/-----

"'0
c
::::l

0

249

2~8

0 1. 47 al

246

245

2 3 4 5 SSA Iterations ___.

Figure 3~5 State-Space Ascent for Problem 1

\
\
\
\
\

' UB3 \ UB'Z
\.;
\
\
\
\
\
\
\
\
\

' \
\

\VB+ ·:;
\
\
\

\
\
\ Zopt

244~--------~~--~~--~~--~~---/~-----

0 2 3 4 S SA I te ration s

Figure 3.6 State-Space Ascent for Problem 2

98

Chapter 3

560

550

530

5 'ZO

510

j~
n~~
if \\
• I \1
II I

I ,I
. I \1
/

1 I

: \\ 'I I

I: \\ ., I

/I . ~
· I \I
/' . I
.I \l
I: ·I

I \1 'I I I I
. I

I
I

9.
i\
i \
i \
. \ I .
. \ I .
. \
I l I I . \ I .

. \
I i

Q

!\
1\ ,.
I \
. \
I \ I .
. \ I . . \ I . . \
I \ U83
i \/
. \ I .
i \

99

Zopt
/

500~---

o

't:l
c

2900

s 2600
OJ

r 2300

2000

17

0

4 6 8 1'Z 14 16 1S 'ZO
- SSA Itaro.tions

Figure 3.7 State-Space Ascent for Problem 3

6 8

---. SSA ·Iterations

Figure 3.8 State-Space Ascent for Problem 4

Chapter 3 1 0 0

Figure 3.9 State-Space Ascent for Problem 5

Figure 3.10 State-Space Ascent for Problem 6

Chapter 3 101

Figure 3.11 State-Space Ascent for Problem 7

Figure 3.12 State-Space Ascent for Problem 8

Bo
un

d

Chapter 3

Figure 3.13 Stated-Space Ascent for Problem 9

Chapter 3 103

The computational experience derived from the results of the SS A procedure

applied to the problems presented above, shows that this method finds high quality

bounds for medium-sized CGC problems, provided an efficient way of modifying

the weights assigned to the pieces in R can be found. Formulae A or D seemed to be

a good choice for satisfying this requirement.

For problems, in which the optimal solution has not been found by the

procedure described so far in this chapter, the bounds obtained can be embedded in a

tree - search algorithm used to solve these problems exactly. Such an algorithm is

developed in the following sections.

3.7 An Enumerative Agorithm for the CGC Problem

An enumerative algorithm is a method guaranteed to find an optimal solution

to a problem by reducing it to a finite number of solvable problems within a finite

computation enabling us to use a branch - and - bound approach. In any branch -

and - bound procedure the calculation of bounds on the value of the solution to a

remaining problem (at some node of the tree) is of the utmost importance to the

efficiency of the algorithm.

In the following sections, we apply such a solution procedure to the CGC

problem as it has been defined in section 3.2. First we describe a tree - search

procedure that generates all possible cutting patterns of the rectangles on Aq without

duplication. This enumerative algorithm is based on the procedure used by

Christofides and Whitlock [1977] for solving the constrained two - dimensional

guillotine cutting problem. We then show how a bound can be incorporated into the

Chapter 3 104

above tree so as to limit the amount of search necessary in order to solve the CGC

problem. A bound derived from the SSA procedure in the way described in

section 3.6.2 is used during the search.

3.7.1 Enumerative Procedure

The process of cutting rectangles of various sizes from Aq and allocating to

them pieces in set R, can be recorded in terms of a tree, which is described below.

Branchings in this tree represent cuts on a rectangle. Thus, the branches emanating

from the root - node of the tree correspond to all possible cuts on Aq, and each node

at the end of a branch represents the rectangles produced by the corresponding cut

on Aq. Each node n represents a state of rectangle Aq after cutting has taken

place. This is described by the list F of rectangles produced by the sequence of cuts

corresponding to the path that leads from the root of the tree to node n . In List F

each rectangle is identified by a four - part label (x, y, r, s) where (x, y) are the

dimensions of the rectangle and r and s are integers representing the lengths and

widths, respectively, at which cuts can be made on rectangle (x, y). A rectangle

is then selected from list F , used to represent a node n, and branching occurs from

this node by making all possible cuts on the chosen rectangle.

Let a rectangle e with label (x, y, r, s) be chosen for cutting by the

enumerative procedure at a particular node n. Then the sets of " all possible cuts "

that can be performed on rectangle e parallel to the y - and x - axis are given by L'

= {0 , 1 , 2 , . . . , x - 1 } and W = { 0, 1, 2,..., y - 1 } respectively, i. e. r e L’

and s e W\ To generate all possible patterns, we must include an artificial cut,

referred to as the " 0 - cut ", that leaves the rectangle intact. (Note that a rectangle

that has been " cut " by a 0 - cut must not be a candidate for future cutting and must

Chapter 3 105

- from that node onward - be considered fixed). If all X-cuts at any position r e L'

and Y - cuts at any position s e W' are made, producing (x + y - 1) branches,

then the sets of rectangles represented at successive nodes will be duplicated at

several nodes because of the appearance of symmetrical cutting patterns. These

duplications can easily be removed in a way that is best shown by the simple

example illustrated in Fig. 3.14. Let the chosen rectangle (x, y) be cut into

smaller rectangles, A and B by an X - cut at r = a (e L'). When the cut is made

at r = x - a ((x - a) e L ') , which is symmetrically opposite to the cut at r = a with

respect to (x, y), the second pattern shown is produced. (Although this example

appears simple it becomes far more complex when rectangles A and B are also cut

further). In this case, duplication can be avoided without missing any unique

cutting pattern by limiting the set of X - cuts to L' = { 0 , 1 , 2, ..., [x / 2] }

where [x / 2] means " the greatest integer not greater than ". Similarly, set W'

of the Y - cuts can be redefined to be W' = { 0,1,2,...» [y / 2] }.

Central to the enumerative procedure is the concept of cut ordering. This is

best shown by the example illustrated in Fig. 3.15. Let the chosen rectangle (x, y)

be cut into two smaller rectangles (a, y) and (x - a, y) by an X - cut at r = a

(e L '). A second X - cut performed on (x - a, y) a t r = b (e L’) such that a <

b < [(x - a) / 2] at some successor node results in producing three rectangles A,

B and C. The same set of rectangles is generated by the second pattern shown

where the numbers next to the X - cuts indicate the order in which the cuts are

made. This type of duplication can obviously be removed without missing any

unique cutting patterns by introducing an arbitrary cut ordering so that if a rectangle

(x, y) is cut at, say , r = a , then all subsequent X - cuts on the two resultant

rectangles must be greater than or equal to a.

The restrictions imposed by both the symmetry and cut ordering effects on

Chapter 3 106

B A

0 X-Q x

Figure 3.14 Effect of Symmetry

1 2
y

2 1

A B C A B c

O a b x Q a b x

Figure 3.15 Effect of Cut Ordering

Chapter 3 107

the cutting patterns produced by cutting a rectangle (x, y) into two smaller

rectangles (a , y) and (x - a , y), imply that for the larger of the two resultant

rectangles, (x - a, y), the range of X - cuts is now limited to a < r £ [(x - a)/2]

and, in particular, if [(x - a) / 2] < a no further X - cut on that rectangle need

be made. For the smaller of the two resultant rectangles, (a, y), the restriction

imposed by the cut ordering implies that no further X - cut is possible. A similar

kind of restriction can be imposed on the Y - cuts.

The consequence of symmetry and cut ordering, as explained above, is to

eliminate from explicit consideration different sequences of cuts when these lead to

the same final cutting pattern. The search involved in the enumerative procedure is

limited further by the use of the idea of Normal Patterns as these are explained in

section 2.3.1 of chapter 2. Thus, without any loss of generality, we redefine the

sets L' and W described above to be given by L = { r I r e L', r e L } and W

= { s I s e W ' , s e W } respectively, where L and W represent the sets of

Normal cuts as these are defined in section 3.5 of this chapter.

3.7.2 Description of Enumerative Algorithm

In this section we present the implementation of the enumerative procedure

as described in section 3.7.1. The data structure employed, is based on the

representation of a rectangle (x, y) produced during the search at node n by a four

- part label (x, y, r, s). The meaning of r and s, where, r e L and s e W, is as

follows:

If l ^ r < [x / 2] , then the next cut to be considered on rectangle (x, y) -

if this rectangle is chosen for cutting - is an X - cut at position r. If r = [x / 2] + 1

and l ^ s < [y / 2] then the next cut to be made on (x, y) is a Y - cut at position

Chapter 3 108

s. I f r = [x / 2] + l and s = [y / 2] + 1, all feasible X - cuts and Y - cuts on

rectangle (x, y) have been performed and the next cut to be made is a 0 - cut. If r

= 0, we infer that a 0 - cut on (x, y) has been made and this rectangle is not to be

cut further by any branching following node n. Note that only one rectangle is cut

at a node.

The state of the search procedure in the tree is described by the List F of

four part labels corresponding to rectangles produced by the cuts so far. This list is

updated for forward and backward branchings. Let a rectangle (xj, y j) from list F

be chosen for cutting at node j, then two more values x j and y j are added to the

vector associated with node j, where x j and y j represent future X - or Y - cuts

on (xj , y j) being obtained as explained earlier.

The algorithm, based on an exhaustive search as a result of the introduction

of the 0-cut, is then described as follows :

(1) Set LEVEL = 1 and F = { (Oq , p0)}.

(2) If there is a rectangle in F which has not been cut by a 0 - cut, then call it

E and remove it from F ; otherwise if LEVEL = 1 stop, else go to 4.

(3) Forward branching : Set LEVEL = LEVEL + 1, perform next cut on

E and add the resulting rectangles into F. Go to 2.

(4) Backtracking: Set LEVEL = LEVEL -1, remove the rectangles produced

by the last cut on E from List F . If the last cut made was a 0 - cut then

go to (5) ; otherwise go to (3) .

(5) Add rectangle E back into F since all cuts on E have been completed,

and call the rectangle cut at level (LEVEL -1) of the tree the new E.

Go to (4) .

Chapter 3 109

3.8 A Tree - Search Algorithm for the CGC Problem

Section 3.7 gave an enumerative algorithm for the CGC problem that

could generate all normal cutting patterns for rectangle Aq with respect to a given

set R = { (oq,), i = 1,...»m } requiring at most Qj pieces of type i (i = 1,...»

m) to be cut from Aq. The algorithm generates all cutting patterns without

symmetric duplications and without explicitly considering different sequences of

cuts when these lead to the same cutting pattern. However, in this algorithm no

special consideration has yet been given to the fact that the CGC problem has been

formulated as a dynamic program described by recursion (1 6) - (1 8) o f section

3.5. The purpose of this section is to develop a tree search algorithm, that limits the

enumerative search necessary to determine an optimum solution to the CGC

problem, by using the bound derived from the SS A procedure described in section

3.6.2.

A description of the proposed algorithm is presented below :

(a) Perform the SSA procedure at the initial tree node obtaining an upper

bound Zmjn on the solution of the problem to be considered.

(b) Choose a node of the tree and pick an uncut piece associated with this node

to branch on - i.e.we will investigate making all possible cuts on the

chosen rectangle. Note that if no tree node can be found the search is

terminated.

(c) Calculate an upper bound Z for the optimal completion of each new node

in the tree.
He(d) If a new feasible solution is found at step (c) with value Z greater than

the value Z of the highest feasible solution currently available, then an

improved solution has been obtained; Z* can then replace Z and

Chapter 3 1 1 0

backtracking can occur.
3$r

(e) Discard any nodes in the tree that have an associated upper bound Z less

than Z and go to (b).

3.8.1 The computation of Bound at the initial node

The SSA procedure described in section 3.6.2 is carried out at the initial

node of the tree using Formula A for the modification of the weights q̂ . Let N be

the number of SSA iterations performed. Also, let ZjjgJ and p) = { qjl I i = 1,

..., m } represent the value of the upper bound obtained by SSR at the j1*1 SSA

iteration and the associated set of weight q̂ ’s, respectively. Then

m

Q, = S q] Q i
i=l

denotes the largest value that state q can take in the relaxed DP recursion [equation

(16) - (18)] at the j**1 iteration (j = 1,...» N).

If no optimal solution to the CGC problem is found at the completion of

the N iterations, the procedure determines the best upper bound on the solution by:

z mm = n3in (ZUB* 1 j = 1. N-}

Note that in case of more than one upper bound being equal to the minimum value,

we choose the one associated with the smaller value of Ql. The set P* of weights

that gave 'Z ^ n is then recalled to be used in the calculation of the minimum upper

bound

Chapter 3 111

m

(Q * = X w
i=l .
q . e p*

Once Fn (ccq, Pq, Q *) and Gn (ocq, Pq, Q *) are computed for this iteration, a

single dynamic programming table Vc (x,y) is constructed in the following way :

Vc (x , y) = Fn (x, y, Q*) if Zmin = Fn («j Q *)

= Gn(x,y’Q ^min =)

Vc (x, y) represents an upper bound on the constrained solution to any rectangle

(x, y), 1 < x < cxq and 1 < y < Pq. The four memory grids (x, y, q),

7k (x, y, q), 'Pfc (x, y, q) and 8^ (x, y, q) associated with stored on a

secondary device for all x e L, y e W, q = 0,...» Q and k = 0, 1,...» n are

retrieved by the DP procedure of section 3.5.1 to discover the nature of the cutting

pattern associated with any Vc (x, y) value. Thus, a matrix Rect (x, y, i) is

generated for all x e L, y e W and i = 1,..., m to represent the number of pieces q

of type i in R required to cut any rectangle (x, y). All the entries for this matrix

are obtained /romthe solution calculated for the initial rectangle Aq. Note that tables

Vc and Rect are written to RAM so that they are available for later use.

3.8.2 The computation of the Bound at the Tree nodes

The state of the search procedure at a tree node n (as mentioned earlier)

is described by the List F of rectangles produced by the sequence of cuts

corresponding to the path that leads from the root of the tree to node n. Let those

Chapter 3 1 1 2

rectangles that have had a 0 - cut made on them form the subset HqQ F. The

rectangles in Hq will not be cut at any node below the current node n and in the

final pattern will have some piece from the set R fitted in them - there is exactly one

piece from set R fitted into each rectangle in Hq - because the " waste " is not cut

away by the algorithm itself. The allocation of pieces in R to rectangles in Hq can

be done in an optimal fashion as follows:

Form a matrix [] with m rows corresponding to the pieces in R and

u columns corresponding to the u (say) rectangles (x^, y ^) in Hq. Set =

if 04 ^ xjj. and Pj < y^ and a ^= otherwise.

The best feasible allocation of pieces to rectangles is then given by a

solution to the transportation problem:

u m

k=l i=l

subject to

m

X zik * 1
i=l

u

k=l

Chapter 3 113

The solution to this problem is made very simple by the special structure of

the [a ^] matrix, and the problem can be solved by an efficient transportation

routine (Christofides and Whitlock [1977]). V'p then represents the value of the

transportation solution for all rectangles in Hg and 8 ̂the number of pieces of type
tt

i in R (=I!Zi|<) used by the above solution. Note that at a terminal node (i. e. a
k* l

node at which all rectangles in the List F have had 0 - cuts made on them), V j is

the value of the cutting pattern corresponding to that node.

The rectangles in F that have not had 0 - cuts made on them are liable, at

future branchings, to be cut further into smaller rectangles and, hence, may be

allocated several pieces from R in the final solution. It is, therefore, not possible to

use the transportation routine to calculate an upper bound for these rectangles, as this

only allocates one piece per rectangle. Thus, Vc (x, y), derived from the solution

for the initial rectangle Aq and calculated only once at the initial tree node, as

described in section 3.8.1., serves as an upper bound on the value obtainable from

each rectangle (x, y) in F - H q .

The procedure for calculating an upper bound at a node n is, therefore, to

solve the transportation problem for all rectangles in Hq and to use table Vc (x, y)

to obtain directly the constrained solutions for all other rectangles. The value of the
*

upper bound Z is then given by :

VT + X V x-y>-
(x,y)eF-H0

The solution associated with Z* is feasible to the original CGC problem, if the

number of pieces of any type i (i = l , . . . , m) used by the current solution does not

exceed the maximum number available in R, i.e

Chapter 3 114

5j + ^ Rect (x, y, i) < Q;
(x,y)eF-H0

V i = 1, ...» m.

Note that the major part of the computation of the upper bound at a tree node is the

solution of the transportation problem and this solution need take place only at nodes

resulting from some 0 - cut, i.e. only when the set Hq of rectangles changes.

3.8.3 Node Selection Rule

We decided to develop the tree - search using a depth - first strategy,

starting with the leftmost branch, progressively developing the top to bottom

branches and working from left to right, slowly building up all complete normalised

cutting patterns in A q. By going to the lowest level in the tree as rapidly as possible,

although at the expense of temporarily ignoring potentially more promising

branches en route, feasible solutions are generated at early stages in the search,

which can then be used to prune the tree and hence reduce the area of search

necessary.

3 .8 .4 Branching Rule

The choice of which rectangle from the List F of available rectangles at a

particular node n is to be cut has been left unspecified. Three possible ways in

which this rectangle can be chosen are given below:

(i) One simple method is to select the " smallest " rectangle produced at node n

using the following procedure: first pick that rectangle rj with minimum x-dimension

Chapter 3 115

xj and if more than one such rectangles exist, then choose among these the one with

the smallest y-dimension y j . Similarly, the" largest" rectangle could be chosen.

(ii) An alternative method is to select that rectangle (x, y) for which the

constrained DP solution gives the highest Vc(x, y) value; this is a simple and

computationally inexpensive method since this value is used in the calculation of

bounds.

(i i i) A slightly more complex branching strategy that aims to obtain a feasible

solution early on in the search is as follows. At node n, it is obvious that

Rect (x, y, i) >
(x,y) e F-H0

for at least one i= l , ..., m ; otherwise no branching would have been possible since

a feasible solution would have been obtained. Let i* be that piece i for which

5{ + X Rect (x, y, i) -
(x,y) e F-Hq

is maximum. Then by reducing the number of pieces used for type i*, the largest

step forward feasibility would be produced. With this in mind, one could then

choose to cut the rectangle that uses the largest number of pieces of type i* in the

constrained solution.

Chapter 3 116

3.9 Computational Experience with the Algorithm

We tested the effectiveness of the tree-search algorithm, described in section

3.8, on 15 randomly generated problems using:

BOUNDS: The bound of DP recursion given by equations (16) - (18) with the

State-Space Ascent described in section 3.6 (Note that formula A for modifying the

weights in the SS A procedure is used).

BRANCHING: Branch selection rule (iii) of section 3.8.4.

The random problems were produced as follows: The dimensions oq and

of each piece in R were generated by sampling two numbers from the uniform

distributions [1, 0.75aQ] and [1, 0.75pQ], respectively. The value of each piece

aq was calculated using the formula \q = lq oq p ̂ where kj is a uniformly

distributed random number in the range 1 to 1.5. Finally, the constraints Qj on each

piece in R were sampled from the uniform distribution [1,3] . All values oq, pj, oq

and Qj were then rounded upward to the nearest integers.

The computer program used to produce the computational results was coded

in FORTRAN and run on a CYBER 855 computer, under the FTN5 compiler. All

computing times shown are in CP seconds.

Table 3.12 describes the performance of the tree-search algorithm on the 15

CGC problems. The first 9 problems have already been used to test the SSA

procedure of section 3.6 (Tables 3.10 and 3.11). The table shows, for each

problem, the size of the stock rectangle Aq, the number of types of pieces in R and

the sizes of the normal sets L and W, being calculated once at the beginning of the

solution procedure. The best upper bound Zmjn obtained for each problem, by the

Chapter 3 117

SSA procedure performed at the root node of the tree is given, together with the

number of iterations required and the time taken to reach this value; the value of the

optimum solution ZQpt is also given as well as the number of nodes generated in

the search and the total time required to solve the problem (the total time recorded

includes the time spent at the initial node of the tree). A measure of the gap

between the value Zmjn and the optimum is calculated for each problem. As a

means of comparison, Table 3.13 shows the results obtained, by applying the

algorithm described in chapter 2, to these 15 test problems when no constraints are

placed on the maximum number of pieces to be cut (UGC problems). Note that the

normal sets L and W are expected to be of larger sizes in the case of unconstrained

cutting.

As described in section 3.6.3 of computational results obtained by the SSA

procedure, a maximum number of 20 iterations was imposed and a maximum value

of Q was set by the SSA procedure, for each test problem, as a result of limiting

memory requirements. Time limits of 1500 and 800 seconds were imposed at the

root node for Problems 1 to 9 and 10 to 15, respectively. The restriction for the

second set of problems, of spending less time at the root node was based on the

observation that a very fast ascent in the bound occurs within the first few SSA

iterations and a small improvement in the value of the bound may be achieved during

later iterations at the expense of extra computational cost (the results shown in

figures 3.5 to 3.13 are typical of all the problems tested).

From Table 3.12, it is clear that most of the time required to solve a problem

optimally, is spent at the root node of the tree. In other words, the major part of the

computational cost is used by the SSA procedure, to obtain a good upper bound on

the solution of the problem. In fact, 4 out of the 15 problems tested, were solved

optimally without requiring any branching, namely Problems 1,2, 4 and 9. In order

Chapter 3 118

to compare these results with the performance of the tree search algorithm due to

Christofides and Whitlock [1977], we ran the code for their algorithm on the

CYBER 855 computer for Poblems 1 to 7. The optimum solutions for Problems 1,

2 and 4 were obtained by generating a tree search of 253, 3794 and 988 nodes, for

each problem, in 2.3, 69.8 and 27.8 CP seconds, respectively. Furthermore, using

the same algorithm, Problems 5, 6 and 7 required 58609, 93178 and 43919 nodes

each, to be generated in 1430.5, 2519.4 and 1320 CP seconds, respectively,

compared to 12067, 22556 and 23315 tree nodes obtained by our algorithm, in

1202.1, 1613.3 and 1270.1 CP seconds for each problem. Only in Problem 3, the

SSA procedure required approximately 215 CP seconds more, to generate a bound

within 3.4% of the optimum, than the overall time needed by their tree-search

algorithm to Find the optimal solution for the problem.

From the above results, it is clear that the SSA procedure is an efficient

method for producing good upper bounds on the optimal solution of CGC

problems. Clearly, the quality of the bound (described by the duality gap) depends

on the size of the problem. For larger problems, the number of SSA iterations,

performed at the root node, tends to be smaller as a result of limiting memory

requirements and high computational cost, and the number of nodes generated in the

search tree larger.

An example of the data and the optimum solution for a CGC problem

(Problem 8) obtained by the tree-search algorithm, described in this chapter, is

presented in the last section of chapter 4.

Problem Problem Data Initial Tree Node Tree Search
Number Upper Duality Number Time Op t imum Number of Total time

(v V m |L| |u| Bound
(Z •) m m

gap (r)
%

of SSA
Iter a

Q(UB1) CYBER-855
seconds

solution
Zopt

Tree
Nodes

CYBER-855
seconds

1 (10,10) 5 8 9 *
l35* - 2 2 0.5 135 0.52 (15,10) 7 12 10 244 - 4 5 3.4 244 — 3.43 (20,20) 7 17 17 517* 3.4% 20 48 680 500 4970 695.74 (20,30) 10 11 23 1755 - 4 3 4.8 1755 — 4.85 (30,30) 7 23 15 1117^ 4% 17 47 1177 1074 12067 1202.16 (30,40) 8 26 17 14 21a 5.1% 19 41 1500 1351 22556 1613.37 (30,50) 10 26 17 1716 3.8% 20 27 1037.5 1653 23315 1270.18 (40,70) 10 29 56 2902a 0.3% 7 19 1500 2892 31755 2101.49 (40,70) 20 25 55 I860 — 9 20 1500 1860 - 1500.

10 (40,60) 5 12 13 2513 2% 20 20 86.1 2462 14 94.7
1 1 (50,70) 8 43 35 4238a 3.6% 6 16 800 4091 303,435 1552.312 (70,80) 8 54 38 6740a 4% 5 13 800 6478 138,697 1444.013 (60,80) 10 52 38 5957a 6.3% 5 16 800 5604 421,593 2170.714 (70,90) 10 54 38 7710a 7% 5 17 800 7200 171,801 1321 .815 (80,100) 10 64 38 981 Ia 8% 4 13 800 9077 135,485 1653.7

Table 3.12 Computational Results of Tree Search Algorithn
a Time limit at Root node
b Q attained its maximum value allowed for the computation of Bound
* Optimum solution found at Root node

v©

C
hapter 3

Chapter 3 120

Problem
Number

Problem Data Optimum
Solution
Z „ opt

Total Time
CYBER-855
seconds(ct0 > V m |i| |w|

1 (10,10) 5 8 9 145 0.2
2 (15,10) 7 14 10 249 0.4
3 (20,20) 7 17 18 559 0.9
4 (20,30) 10 13 23 3920 0.6
5 (30,30) 7 23 21 ' 1275 1.0
6 (30,40) 8 26 .26 1650 1.7
7 (30,50) 10 26 30 2025 2.0
8 (40,70) 10 29 56 3076 - 7.6
9 (40,70) 20 26 55 2240 4.7
10 (40,60) 5 16 28 2910 1 .3
11 (50,70) 8 50 50 4698 15.3
12 (70,80) 8 70 53 7616 37.9
13 (60,80) 10 60 53 6282 39.6
14 (70,90) 10 70 58 8526 42.7
15 (80,100) 10 80 61 10689 58.8

Table 3.13 Unconstrained Results for Problems 1 to 15
of Table 3.12.

Chapter 3 121

3.10 Conclusions

In this chapter, we studied the application of the State-Space Relaxation

technique to the CGC problem. A state space ascent method was used to optimise

the bounds derived from it, which were then embedded into a tree-search algorithm

developed to solve the problem optimally. The computational experience of the

algorithm, shows that:

(i) SSR performs reasonably well for CGC problems of medium size.

(i i) The algorithm is an effective procedure capable of producing a considerable

improvement on the results obtained by the algorithm presented in Christofides and

Whitlock [1977].

Chapter 4 1 2 2

CHAPTER 4

TW O-DIM ENSIONAL RECTA N GU LAR LAYO UT GEN ERATIO N

USING M ICROCOM PUTER GRAPHICS

4.1 Introduction

A graphics problem of great interest to industry is that of optimum

two-dimensional layout. In many practical applications, an operator is given a

number of rectangular sheets and an order for a specified number of smaller

rectangular pieces. The objective is to cut the pieces out of the sheets in such a way

as to minimise the amount of waste produced and thus the number of sheets used.

Such problems appear in the cutting of steel, wood or glass sheets. A generalised

version of the above problem involves cutting from a number of large rectangles an

order for a specified number of smaller pieces, each of given size and value, the

objective being to maximise the total value of the pieces cut. If the " value " of a
\

piece is proportional to its area, then " value" maximisation is equivalent to waste

minimisadon. In this chapter we will consider only cutting problems with a single

Chapter 4 123

stock rectangle. Depending on the technological process involved in cutting and on

the nature of the material to be cut, certain applications require the cut to be made

along a straight line from one edge of the sheet to another. Such cuts, referred to as

" guillotine cuts ”, are always required in the case of cutting glass and quite often in

the case of cutting wood or thin metals.

The increasing use of powerful interactive microcomputer systems allows a

much wider use of graphics. In this chapter, we present an interactive system with

graphical input-output for generating rectangular layouts for the Two-Dimensional

Guillotine Cutting Problem (GCP) described in chapter 3. The structure and the

main features of the system are described in this chapter. An experimental version

of the system, referred to as the Graphical Layout Generator has been designed and

implemented on an IBM-PC computer with a Colour Graphics Adapter and Screen.

For testing the effectiveness of the package we carried out the following two

experiments.

(i) A sample of 10 operators were required to solve 3 GCP's using the Graphical

Layout Generator, each problem involving 10 types of pieces to be cut from a stock

rectangle. The total time taken and the quality of the solution obtained by each

operator were recorded.

(i i) Two more experienced operators were asked to solve 9 GCP's using the

Graphical Layout Generator. The results recorded were compared with the

computational results obtained by applying the algorithm, described in chapter 3, to

the same set of test problems.

Before describing the proposed system, we present some basic

characteristics of interactive computing using graphics terminals.

Chapter 4 124

4.2 Computer Graphics

All use of computers can be regarded as a dialogue between a person and a

machine - information is requested by a computer user and results are returned by

the program, control parameters are changed and different results are returned and so

on. This dialogue is shown below as a communication cycle, together with the time

delays associated with the different processes in the cycle.

Thinking

V̂hink
Output Input

ôut * in

Computing

"̂ compute

This model applies equally to interactive or batch systems. The total time taken for

an idea to circulate round this loop is given by

T = ^think + ^in + ^compute + ̂ out

and the reciprocal of this is a measure of the speed at which the ideas are being

developed.

The user's time is divided into four phases - absorbing the information

returned by the computer, applying specialist knowledge to the problem, expressing

the idea in the form required by the computer program and waiting for the results to

Chapter 4 125

be returned. The computer system can assist the user in absorbing its results by

suitable presentation and can speed the expression of new ideas by allowing the user

freedom and flexibility in the language used.

The human operator has many peripheral devices for the reception and

transmission of data. Although this task is carried out by the use of natural

language, a wider view of communication with the computer can be achieved by

returning results from the computer as pictures and allowing the user to present ideas

by more general signals than simple typing.

Taking this brief introduction as a justification of computer graphics as a

desirable means to enhance the environment of a computer user, we give an outline

of the basic hardware and software available for use by an application program.

4.3 System Design

4.3.1 Background

Graphical methods were being used to illustrate the behaviour of O.R.

models in the early 1960's. During the 1970’s the major development in computer

graphics was vector displays; these had a major impact on geometric applications

such as computer aided design; however they had little impact on O.R. It was only

with the arrival of raster displays (section 4.3.2) in the late 1970's and early 1980's

that there was a significant growth in the number of O.R. graphics applications.

This growth was motivated by the reduction in cost, increased speed, improved

software and physical portability of colour raster display graphics devices -

Chapter 4 126

especially when controlled by microcomputers.

4.3.2 Hardware

Firstly, a distinction is drawn between vector scan and raster scan output

devices. Vector scan devices display a series of lines as if they had been drawn by a

set of differently coloured pens, whereas raster scan devices generate solid blocks of

coloured areas. Secondly, we can distinguish between hard copy and refreshed

devices.

Since the Graphical Layout Generator application package was designed for

computer screens making use of colour, as an aid in manipulating and interpreting

the graphical data, in this section we will present the basic characteristics of a raster

scan display. The underlying idea is to divide the image space into a uniform grid of

small rectangles (called pixels), each of which is filled with a single colour. The

smaller the size of these pixels the higher the resolution of the displayed image. The

chromatic resolution is the number of different colours that can be put into an

individual pixel.

An IBM-PC, having an attached device driver that supports the IBM Color

/ Graphics Monitor Adapter (CGA), was used for the implementation of the

Graphical Layout Generator package. The graphical output on the IBM monitor, is

buffered in an array of 320 pixels across (pixel columns) by 200 pixels down (pixel

rows), with 4 bits per pixel producing the possibility of using 4 colours out of a

total possible number of 16 (Medium Resolution Mode of the CGA).

Chapter 4 127

4.3.3 Software

The past few years have seen the presentation of various graphics standards

for graphical input and output The design for manipulating the graphical data used

by a GCP was based on an implementation of the Graphical Kernel System - GKS.

This system restricts its attention to two-dimensional images. Its use renders the

following structure: Picture components are specified using a model coordinate

system; the procedure is then to clip the image to a specified window, store

intermediate pictures in some device independent code, transform this to screen

coordinates for display and allow several independent viewpoints to be maintained

on a single screen.

It is possible to arrange the software that handles interactive graphics in

such a way that an application program receives the information in a standard way,

independently of the actual hardware used. The use of GKS, providing device

independent graphics, led to an efficient design of the Graphical Layout Generator

package; its implementation on the IBM-PC allows for various types of graphics

devices to interface to the system.

In the following section, we will describe the structure and the main features

of the Graphical Layout Generator package.

4.4 User Interface Design

The Graphical Layout Generator is an interactive graphics package for the

two-dimensional Guillotine Cutting Problem (GCP). Its purpose is to facilitate

Chapter 4 128

generating non-algorithmic solutions by having an interactive system with graphic

input-output to assist in the tedious and time-consuming manual method of trying to

cut optimally a stock rectangular sheet into a number of smaller rectangular pieces.

The manual process becomes more time-consuming and prone to errors as the

number of shapes to be cut from a sheet increases. The objective of the user

interface design is to retain the flexibility of the manual system, whilst exploiting the

processing power and methods of interaction offered by the computer.

The structure of the package is described below:

(i) The system displays the data for a particular problem.

(i i) The user gives information to the system interactively for generating a layout.

Once an input command is executed by the system, the displayed result can not be

modified while generating the current layout and the user can then only restart from

the beginning if he wishes.

(i i i) The system checks for possible error conditions during the generation of the

current layout.

(iv) Once the solution procedure is terminated, the system calculates the total value

associated with the generated layout and informs the user of the amount of deviation

of his solution from optimality. The optimal solution is then displayed on the

graphics screen.

4.4.1 Problem Description

The Graphical Layout Generator is designed to handle only rectangular

shapes. The data for a particular problem is displayed on the screen and is described

as follows (see Fig. 4.1): A large rectangular sheet Ag, described by its length otg

Chapter 4 129

and its width Pq is given together with a set R of m types of smaller rectangular

pieces R = { (a^, p^),..., (a m, Pm) } that can be cut from Aq. A type of piece

is identified by a number, representing the order in which it is presented; this

identification number will be used in the interactive stage. Every piece of type i in

R is described by its length oq and width p j ; the reference point of a rectangular

shape is assumed to be its lower lefthand corner. Two more integer numbers are

associated with each type i, namely its value and the constraint Qj on the number

of pieces of this type that can be cut from Aq. An illustrative example of the

graphical data is presented in Figure 4.1. The objective for the operator is then to

construct a guillotine cutting pattern for Aq with the highest possible total value

using pieces from set R.

In order to distinguish between the given pieces in R and the rectangles

produced by the cuts on Aq at any stage during the cutting process, the former are

henceforth referred to as ’ pieces ' and the latter as ' rectangles '. To solve a given

problem, the operator must have in mind the following assumptions:

(i) A coordinate system is introduced, for convenience, with x-axis along the

bottom edge and y-axis along the left edge of the large sheet Aq. In this way the

lower left-hand comer of Aq is referenced as the point (0,0). Using this referencing

method, cuts on the rectangles can be made in integer steps (all dimensions (04, Pj),

i = 0,..., m are integers) along the x of y axes. All cuts must be guillotine cuts (a

cut goes from one edge to the opposite one). There are no constraints on the

sequence of cutting.

(i i) The pieces are not allowed to rotate (90 degrees) i.e. the orientation of the

pieces is fixed.

(iii) The value of a piece is not necessarily proportional to its area.

(i v) Not all pieces available need to be used.

Chapter 4 130

4 .42 Interactive Solution Approach

Once data for a particular GCP is displayed on the screen, the operator is

looking for a method of generating a layout having value as high as possible. The

apparendy simple problem of cutting in the most efficient manner is, in fact,

extremely complicated to solve optimally. The operator is immediately faced with a

huge set of possible layouts, although restricting the permissible cuts to be of

'guillotine* type, drastically reduces the number of available combinations. The

choice of a method for generating a layout clearly depends on the operator; it can be

intuitive in nature, since, we are unable to characterise the optimum or near-optimum

layouts. An experienced user, having a better insight of the GCP, may develop a

more effective heuristic approach. However, the mechanisms that guide the search

for an efficient method must be derived from the problem environment. Heuristic

schemes are very dependent on the particular problem being solved.

The procedure available to the operator for the cutting of rectangles and the

allocation of pieces using the Graphical Layout Generator package consists of the

following three stages: rectangle generation (a rectangle is cut into two smaller

rectangles), piece allocation (a rectangle is filled by one of the required pieces given

in R) and termination of the current layout.. Each course of action is described

below in conjunction with the command language used in the conversational process

to carry out the relevant action. The notation used for the commands is simple.

Each command is entered by the user through an input device (keyboard). Once it

has been executed, the system displays its output and returns to a 'waiting state'

ready to execute another command.

A. Rectangles Generation : At any stage of the cutting process on Ag, at most three

parts can be distinguished: A part that is already filled during the allocation process,

Chapter 4 131

a part that has been discarded as waste and a part still to be examined. The current

part under examination consists of a number of rectangular shapes, each being

identified by a unique label (single letter) assigned to it as soon as it is generated.

The user then has to decide (i) which type to cut next, (i i) the type of guillotine

cut to be performed (i.e. parallel to the x-axis or to the y-axis) and (i i i) the

position of the cut

The format of the command used to input such a decision is given by

" S t C " where

(i) S represents the label of the rectangle chosen for cutting.

(i i) t describes the type of cut made along a straight line from one edge of the

rectangle to the other: t = v if the cut is vertical, t = h if the cut is horizontal with

respect to the coordinate axes.

(i i i) C is the co-ordinate of the cut which divides rectangle S into two further

rectangles. Note that the coordinate system described in section 4.4.1 is used. C

can take values in the range {1,..., otg - 1} or {1,..., (3q -1 }. An example of the

command input by the user in order to generate two new rectangles by making a

vertical cut on a rectangle A, at a point lying 15 units away from its bottom left hand

comer, is given by " A v 15 " . In response to this command, the current drawing

on the screen is modified to display the new rectangles resulting from the cutting of

rectangle A which are automatically assigned identification labels by the system.

B. Piece Allocation : Once a rectangle has been generated and labelled, the user

then has to decide whether to cut it further or to fill it by one of the initial pieces

given in R. In the latter case, the system allows the user to allocate a piece by

inputting the command " S = i " where i is the identification number of the piece

and S the identification label of the rectangle.

Chapter 4 132

The generated rectangles can only be filled one at a time, and only one piece

can be allocated per rectangle. If a rectangle and its allocated piece are of different

sizes, then the unfilled area of the rectangle is discarded as waste and need not be

cut away by the user. Once a rectangle has been through the allocation process, it is

excluded from further consideration during the generation of the current layout.

C. Termination of the current layout: The user may terminate the generation of the

current layout at any point in the interactive stage by inputting the command STOP

when the system is in a 'waiting state' ready to execute a command. Termination is

requested by the user in two cases:

(i) when the generation of the current layout is actually completed i.e. no more

rectangles can be generated or there are no more pieces to be allocated or

(i i) when a modification of the curent drawing on the screen is desirable. In this

case, the user has to regenerate the current layout from the beginning.

4.4.3 Checking of Error Conditions

The design of the Graphical Layout Generator calls a command interpreter

routine in the interactive stage in order to handle the user commands and detect error

conditions in their processing. When one of the following errors occurs a relevant

message is displayed on the screen:

Rectangles generation : (i) The format of the i uput command is not correct.

(ii) The input identification label for the cut rectangle is

wrong.

(iii) The coordinate of the input cut is out of the permissible

range (infeasible cut).

Chapter 4 133

Piece allocation : (i) The format of the input command is not correct

(ii) Allocation is not possible because of a mismatch between the

required piece and rectangle.

(iii) Allocation is not possible because there are no more pieces of

the requested type available to be allocated.

4.4.4 Display of Optimum Solution

Once a complete interactive solution has been produced for a GCP, the

system computes the total value associated with the generated layout and gives the

value and the percentage deviation of this value from optimality. The optimal layout

for the given problem is then displayed on the graphics monitor. The value and the

structure of the optimal solution for a given GCP are obtained using the exact

algorithm, described in chapter 3.

4.5 Experimental Results

In this chapter, a system has been described to produce interactively

guillotine cutting patterns of two - dimensional rectangular shapes on larger

rectangular sheets. The present program was designed so that an experimental

version of the system would be available for demonstrative and educational

purposes. An efficient operational package was then developed by implementing

the Graphical Layout Generator on an IBM-PC computer in IBM FORTAN 2.00.

The package was organised so that it can handle a GCP involving at most up to 10

different types of pieces to be cut from a single stock-plate of up to 100 units of size

Chapter 4 134

in x and y dimensions.

Two types of experiments were performed using the package, allowing

conclusions to be drawn on the quality of graphically generated solutions to GCP's.

The first experiment examined the human performance in producing optimal

solutions to three such problems. The second experiment evaluated the performance

of two more experienced operators on a sequence of test problems.

4.5.1 Design of Experiments

The test problems used in both experiments have been randomly generated

as described in section 3.9 of chapter 3 and the optimal solutions to these problems

are given in Table 3.12 of computational results of the same chapter.

In the first experiment, 10 operators were tested. Each operator was asked

to solve successively three GCP's of different complexity, each problem being

attempted only once. These problems., deal with stock-rectangles of sizes 30 by 50

units, 40 by 70 units and 70 by 90 units, respectively. Each problem involves 10

different types of pieces that can be used for cutting the given stock rectangle; there

are 1, 2 or 3 pieces of a particular type available. The three test problems chosen

were Problems 7, 8 and 14 of Table 3.12 (Chapter 3).

In the second experiment, each of two operators was asked to solve a set of

9 problems. The number of different types of pieces involved in each problem vary

from 5 to 10 and the stock-rectangle sizes range from 10 by 10 units to 70 by 80

units. The 9 test problems chosen were Problems lto 6 and 11 to 13 of Table 3.12.

Chapter 4 135

4.5.2 Display Format

The main objective of an effective display design is the display of the

qualitative and quantitative type of information being coded at a level suited to the

viewer's needs, without allowing display complexity to interfere with the viewer’s

performance. The use of colour aids in coding the displayed information.

The same display format was used for all GCP's and a typical example is

shown in Figure 4.1. A message " CUT: " followed by a black cursor is placed

below the stock rectangle to prompt the operator for a response. As the operator

types an input command to a 'waiting' state of the system, the response appears as

white text in the black cursor.

4.5.3 Experimental Procedure

The operators tested were all volunteers. The group was drawn from

Imperial College and consisted of academic staff as well as post-graduate students.

7 out of the 10 operators tested in the first experiment were familiar with computers.

3 out of these 7 had a considerable amount of experience in the field of combinatorial

optimisation and O.R. techniques whereas the other 4 were involved in the fields of

Engineering and Finance. The remaining 3 operators not familiar with computers

were from the Behavioural Sciences.

The operators tested in the second experiment both carried out research in

the area of O.R. It is obvious that the selection of operators in this case was biased.

Indeed, the original intention was to obtain the best possible graphical solutions to a

given set of test problems using the Graphical Layout Generator, so that the

Chapter 4 136

effectiveness of an interactive graphical approach in solving GCP’s can be

evaluated. The above selection seemed to offer an expected improved performance.

Each experiment began with an introduction given by the experimenter

(author) explaining what the operator had to do. The operator was then presented

with a practical example used to establish the method of responding to the Graphical

Layout Generator. Whilst the tests were being performed, the experimenter’s role

was not to interfere with the solution procedure but to offer assistance if needed. The

operator was not restricted to solve a particular test problem within a certain period

of time and each problem was attempted only once. The experimenter was interested

in the overall performance of the operator as well as in the performance with time.

Thus, time was divided into intervals of 5 minutes and the quality of a graphical

solution generated by the operator was recorded for the first 3 time intervals. Once a

solution procedure for a given problem is terminated, the operator's performance is

evaluated based mainly on two figures: the % within optimality of the solution value

attained and the total time taken.

During the tests, the experimenter recorded any comments the operator

made regarding the test and his solution approach.

4.5.4 Method of Response

The operator indicated when a response has been selected by pressing the

"ENTER" key. Prior to this a ’backspace’ key allowed the operator to delete a

displayed response without the computer executing the command. After "ENTER"

was pressed, the system displayed the result (either a new cut was generated or a

piece was allocated into a cut rectangle) on the screen and was then ready for the

Chapter 4 137

next response.

If an operator realised an undesired response had been typed after pressing

"ENTER" the package did not provide any facility for backtracking to the previous

prompt to revise the response (this is an interesting improvement to be

implemented).

4.5.5 Results of Experiments

The combined results for all 10 operators of experiment 1 are summarised in

Table 4.1. The results obtained for the 9 test problems of the second experiment by

2 operators are given in Table 4.2.

Average Sol. Time (mins) = Total Sol. Time (mins) / 10

Average % deviation from optimality = 100% * (1 - Sum of all Sol. Values /

(10* Opt. Sol. Value))

Diff between Best & Worst Solutions (Range) = 100% * (Highest Sol. Value -

Lowest Sol. Value) / Opt. Sol. Value

Results of the first experiment show that Problem 8 was clearly the most

complicated of all three with an average solution value being 16.9% away from the

optimum and requiring 5 more minutes on average to achieve. We must note that in

the data of this problem, most of the given pieces are relatively small compared to

the stock-rectangle. As the number of small pieces increases, a considerably larger

number of combinations of using them in cutting the large rectangular sheet are

available to the user, thus making the problem more difficult.

Chapter 4 138

The average performance for all problems indicates the following:

(i) There was a delay of 5 minutes for 70% of the operators for each of the 3

problems tested, between the time the operator was initially given the problem until

he actually started generating a solution. This interval of time was mainly spent by

the user in thinking about the various combinations of cutting the pieces or which

particular cutling policy to follow.

(i i) The three following types of solution approach to a GCP were adopted by the

users:

(a) First the pieces of larger area were considered for cutting. The operator

using this policy was basically interested in minimising the total amount of waste

produced. However, minimising the waste by cutting a large rectangle into smaller

pieces, or maximising the total value of the pieces produced will not necessarily lead

to the same optimum cutting pattern. For example, as can be seen from Table 4.2,

operator 1 obtained the optimum solution for test problem 1 with an associated waste

rate of 2%. Operator 2 generated a graphical solution for the same problem with a

value 6.7% away from optimality. In this case full utilisation of the stock rectangle

was made.

(b) Guillotine cuts were generated in a sequence that allowed the pieces of

larger value per unit area to be cut first i.e pieces were chosen in decreasing order of

the ratio of the value of a piece over its area.

(c) Guillotine cuts were performed in a sequence that allowed pieces to be

cut from the larger rectangle in decreasing order of value. This approach was

applied successfully by operator 2 to solve all 9 test problems of the second

experiment. The results show that 3 of these problems were solved optimally and

the average solution value obtained for all problems is 3% away from the optimum.

Clearly this heuristic proved to be the most efficient in solving graphically GCP's.

In general, the results of the first experiment show that the average solution

Chapter 4 139

value obtained for a problem involving 10 types of pieces to be cut from a single

stock rectangle (of up to size 100 by 100) is expected to be at least 9% away from

optimality. The expected time taken by a user to generate such a solution using the

Graphical Layout Generator is approximately 14 minutes.

An example (problem 8) is used to illustrate how the Graphical Layout

Generator package works. The displayed data for the illustrative example is

described in Figure 4.1. Figure 4.2 shows how an interactive solution to the

problem is developed by presenting the various drawings on the screen (working

display) of the large stock rectangle A after a user command is input to the system.

17 commands in total were required to produce a feasible solution to the problem.

Each displayed layout results from the execution of the command shown

underneath. The identification of a rectangle by a letter indicates that it is available

for further cutting; identification by a number implies that a piece has already been

allocated to it. The number next to a cut indicates the point of cutting. Waste is not

cut away by the user, it is represented by the shaded area. The last layout represents

the structure of the generated solution with an associated value being 8% away from

optimality. The structure of the optimal layout for the problem is shown in Fig. 4.3.

4.5.6 Conclusions

A system has been described to produce solutions to two-dimensional

GCP's using interactive graphics. No particular effort was made to design the

program so that it can be available for specific applications. The effectiveness of an

experimental version of the system was tested using a small sample of operators.

Results show that the package developed seems to be sufficient for interesting

interactions. However, experience and applications to real problems may suggest

Chapter 4 140

both command extensions and modifications in the implementation of the interactive

part of the package (the package may need to be oriented to specific industrial

requirements).

Chapter 4 141

Problem

Number

Problem Data Ave Time

(minutes)

Ave % devia
tion from
optimality

Diff between Best

& Worst Solutions
(%)

(aQ, Bq) m

7 (30, 50) 10 12.2 4.4% 18.7%

8 (40, 70) 10 17.8 16.9% 33.6%

14 (70, 90) 10 12.7 8.1% 20.3%

Average Figures over

Problems 7, 8 and 14 14.2 9.8% 24.2%

Table 4.1 Results of Experiment 1 .

Problem Problem Data Results obtained by Results obtained by

Operator 1 Operator 2

Number (aQ, SQ) m Total Time Ave %
deviation

Total Time Ave %
deviation

(minutes) from optim .(minutes) from opting
1 (10, 10) 5 2 0.0% 3 6.7%

2 (15, 10) 7 6 11.9% 8 0.0%

3 (20, 20) 7 3 6.6% 8 9.2%

4 (20, 30) 10 5 5 . 7 % 5 0.0%
5 (30, 30) 7 6 7.7% 5 5.1%

6 (30, 40) 8 8 8.4% 7 0.0%
11 (50, 70) 8 6 1.4% 8 1 .4%

12 (70, 80) 8 9 4.2% 8 1 .9%

13 (60, 80) 10 13 7.4% 10 2.0%

Average Figures over
All Problems 6.4 5.9% 6.9 2.9%

Table 4.2 Results of Experiment 2

STOCK

70

t ;wi U?£?$$1{$ i|K ?J&Jt$|i?J

i > 0 Jj-IO j! i! fii :9-ll ;3n[) 4— Value
> i ,3 “;j/- ■*:u ■4-Availability

C u t :

Figure 4.1 Display Format of Data for Illustrative Example (Problem 8). 4̂K>

C
hapter 4

t*&&sss§Sz£&1

70

sasi ̂ acsssaisss5̂
WKfctiSssssBSS

DiSai£̂s33fc*“e23:

g^fe3g£3&&S£»

HUCut:A v09
TrgawwtaiMMM
»*'Uj ff̂ ywî P; îî â ĝiTrrjgaoSr̂ g?!

.70

HO
Cut:Ah35

.*—!5?9KS¥f̂
s*at>2?f̂ 5̂ 3Sa I agggggays^,H ^ ^ ^ assess

HOCut:c=93
HO

Cut:Bhl3

%£SA X&ZS&sitsZXiL
|® 8I g J | |p l£
eS jmI ie^ b siy ^^& crS .HJ4=i §̂ e*9B3̂ -3̂ z: »3&35 r^a^S*g.wi

*Sf3

-- îSattt£Z£5S±
?15=?*̂ 3f05£̂ 5 , £̂»_»- '* "--" "̂ “*̂'1

;53IŜ Ŝ «i5Saa^g»iasg»3S-is:

HOCut:A=93
__ ££5̂3

'3 jgggggi^
III::!:':1

, ^sSSKi !"%*• ssafi&teflggaSggSi
""Hi") ia a > < s ris^ ? » ^ g ^ % 3#!":'!* g££3SggS!5%Rgi
i,T. |®w«SiS6«ii
-*

;!‘m";I:
lili,ii:;;;
iiiiiifiji ;ii; iiih i!!i!!i!^:;r!:ii', Hi:

HOCut:B=02
-r̂ gagg^ jggg

■Ŝ)tS3ffSISr*SS|
•> zyr***r~,> J r . ^ i

_. S **5 ?3

e ^ M ^ ^ r 33?5fê .-S55̂ i »?5 '̂ S?'55igJ £?r _
■*̂ 55523 5®
■sâ ysefiasiflK {p£ easr

HU
C u t : D u 2 1

’i.'iii:;! Sa^S îSa
- 1 * - * 3 ^ v £ ^ i• | ?^&*5XS3 £*&$S3S*!*
- s s a i S p t s■ sfc.'iSSjSSs^

zL ■ hjHy-*“1 st̂ -a:̂ rfes1

n i . , t v i . n i n
^ , U «. , l / / I C . < f ,

HU
Z ' . . X. • "TV _ V S J
V U V • X J — i r j '

An Interactive Solution to Illustrative
Example - Problem 8.
(continues on next page)

Figure 4.2

Chapter 4 144

qn
Cut:Fv09 Cut:Gh24

qn
Cut:G=84

qn
Cut:H=09

I I I

'3,

ijjiqii'i.

—

: |:

jiilljii;;

i

n gp2Sl

Siiii.•iiiiiC'

,3

■, • - ,

qn
Cut:Eh24

Figure 4,2 continued

mm

2±Q 4— Value
2 Availability

*— Value

•*— Availability

Figure 4.3 Optimal Cutting Pattern for Illustrative Example (Problem 8),

C
hapter 4

Chapter 5 146

CHAPTER 5

SOME INTEGER PROGRAMMING FORMULATIONS AND

BOUNDS FOR THE NON-GUILLOTINE CUTTING

(NGC) PROBLEM

5.1 Introduction

In this chapter, we consider the following two-dimensional cutting problem,

P. We are given a set of rectangular pieces R = { R ^ , R ^ I Rj is a rectangle of

length oq and width P^} that may be cut out of a large rectangle Aq of length (Xq

and width Pq. Each piece (oq, Pj) in R has associated with it a value We

assume that R contains M pieces in total, with each piece being cut from Aq at

most once. If a piece may be cut more than once, it is repeated in R as many times

as necessary and given different labels, even though their dimensions are the same.

We then require to find a cutting pattern of rectangles that maximises the value of

the pieces cut from Aq.

Chapter 5 147

In order to distinguish between the given pieces in set R and the rectangles

produced by the cuts on Aq at any stage during the cutting process, we will refer to

the former as " pieces " and the latter as " rectangles We define a cutting pattern

to be " orthogonal" if each rectangle Rj has each pair of edges parallel to the sides of

Aq and we place the restriction of only allowing orthogonal cutting patterns of the

required rectangles on the stock rectangle.

As has already been explained in chapter 2, a guillotineable cutting pattern

is an orthogonal pattern with the additional restriction that each cut made on a

rectangle must start at one of its sides and then run parallel to an edge until it reaches

the opposite side. In this chapter, we consider cutting patterns which may be of

"non-guillotine" type. The potential direct applications of these more general

problems are those which allow the cutting tool to turn within the material to be cut.

Two examples are the cutting of carpet rolls and the sawing of wood plates to

produce furniture.

We will make the following assumptions for problem P:

(i) All dimensions (ctj, P^) for i = 0, M are integers and the cuts on the

rectangles are to be made in integer steps along the x or y axes.

(i i) Rotation (by 90°) of the pieces in R is not permitted.

These two limitations are not critical. It is clear that, in practice, the actual

dimensions can be scaled up and truncated to integers.

Problem P, as described above, will be referred to as the Non-Guillotine

Chapter 5 148

Cutting (NGC) problem. We underline that problem P is NP-hard and is a special

case of the well-known bin-packing problem. It has been considered by relatively

few authors in the literature who have proposed heuristic methods and

approximation algorithms with worst-case performance bounds to solve various

special cases of the problem (see Introduction and references Baker et al [1981],

Coffman et al [1980], Biro and Boros [1984], Smith [1980]), Bischoff and

D ow sland [1982] and Do w stand [1982]). Beasley [1985t>]developed an exact

tree-search procedure to solve this type of problem .

In this chapter, we first present two Mixed Integer Programming (MIP)

formulations of the NGC problem, and investigate a possible method of solution

based on the use of cutting planes. Five zero-one Integer Programming (IP)

formulations of the same problem are also given and bounds are derived from their

Linear Programming (LP) relaxations. These bounds are computationally evaluated

on a number of randomly generated NGC problems of small size and results are

presented in the last section.

5.2 A Mixed Integer Programming Formulation for the NGC

Problem (MIP-1)

Let i and j represent two pieces in R and let the coordinates of their centres

in a placement into Aq be (xpyj) and (xj,yj), respectively (taking the bottom left

hand comer of Aq as the origin - see Figure 5.1). The non-overlap conditions

between i and j are given by:

1 xj ‘ xi 1 - aij and 1 yj ' yi 1 - bij

Chapter 5 149

Rectangle An

0 « 0

Figure 5.1 Non - overlapping conditions between pieces
i and j.

Chapter 5 150

where ay = (otj + a p / 2 and by = (|3j + pj) / 2. These constraints are not in a very

suitable form for optimisation by mathematical programming techniques and we

need to define the following 0-1 integer variables:

U t 5 j =

=

*ij =

1 if piece j is chosen to be cut out from Aq,

0 otherwise.

1 if piece j is cut to the right of piece i (xj >),

0 otherwise.

1 if piece j is cut above piece i (yj > y^),

0 otherwise.

1 if pieces i and j are cut from Aq in such a way that] lies either totally

to the right or totally to the left of i (I xj - I ^ ay),

0 otherwise.

1 if pieces i and j are cut from Aq so that j lies totally above or totally

below i (I yj - yj I > by),

0 otherwise.

The NGC problem can then be expressed as:

Problem

M
Max Z = V: 5- (5.1)-r-f J J

j= i

subject to:

Chapter 5 151

a 0 +a ijzi js Y V a 0 V - aij zy V j > i, i,j = 1,...» M

po+b i j V yr yi - |V i j - - bijwij v i > l y - 1 - - M

8j + 8. -1 < z- + w - V j > i, i,j = 1,.... M

8j a. /2 Sxj <8- (<Xq- otj/2) V i = l , M

8£ pj / 2 ̂yj S Sj O 0 - Pi / 2) V i = lM

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

Sj e { 0,1) V i = 1..... M

Jtjj, Zy, Wy e { 0,1 } V j > i, i, j =1,..., M (5.7)

The explanation of the formulation is as follows. Constraints (5.2) and (5.3) are

the non-overlap conditions for rectangles i and j. (5.2) ensures that if:

Zij

*ij

= 1 and îj = 1, then X j* xi

= 1 and 7qj = 0, then xi s xj
= 0 and Tty = 1, then Xj> xi

= 0 and TCjj = 0, then X (-l- IV xj

Similarly for (5.3). (5.4) is an artificial constraint to ensure that if both pieces i and

j are chosen to be cut from Aq (8j = 1 and 8j = 1), then at least one of zy, wy must

be 1. (5.5) and (5.6) are the constraints regarding non-intersection of the rectangles

Chapter 5 152

cut from Aq with the edges of the stock rectangle (note that if piece k is not cut from

Aq, then (xk,yk) is at (0,0)). (5.7) are the integrality constraints.

The above is a mixed integer program (MIP-1) whose size clearly depends

on the number of pieces in R (it involves M (2M+1) integer and 2M continuous

variables and (5M (M-l)/2 + 4M) constraints). It is well known that, in general,

large problems of this type can be solved by the use of tree search procedures.

Such procedures depend for their effectiveness on the use of bounds to limit the

search (Branch and Bound). In the next section, we discuss how an upper bound

on the optimal objective value of the NGC problem can be derived from

formulation (5.1) to (5.7).

5.3 A lin e a r Programming (LP) Relaxation of MIP-1

A problem (Pp) is said to be a relaxation of a maximising problem (P) if the

feasible region of (P) is included in the feasible region of (Pp) and the optimal value

of (Pp) is larger than or equal to the optimal value of (P). In selecting between

alternative types of relaxation for a given problem, there are two main criteria to be

considered. On the one hand, it is desirable for the relaxed problem to be

significantly easier to solve than the original. On the other hand, one would like

(Pp) to yield an optimal solution of (P) or, failing that, the value of (Pp) should be

as close as possible to that of (P). Usually, selecting a relaxation involves a

trade-off between these two properties; sharper bounds require more time to

compute.

The most popular type of relaxation for an integer or mixed integer linear

Chapter 5 153

program is to drop all integrality requirements on the variables. The resulting

ordinary linear program is often a good compromise between the two criteria

mentioned above.

To obtain an LP relaxation of formulation (5.1) to (5.7), we simply relax

the integrality conditions (5.7) to:

The Linear Program described by equations (5.1) to (5.6) and (5.8) has the same

number of variables and constraints as MIP-1. However, we can also include the

following area constraints in the above LP (Note that these constraints are redundant

for the MIP-1 formulation):

(><5^1 V i = 1,..., M

OSic-Sl , 0 < * i y < l V j > i, i = 1,..., M

0 < z.. < 1, 0 < w.. < 1 V j > i, i = 1,..., M
J J

(5.8)

M i-1

j=i+l j=i
(5.9)

M i-1

j=i+i p i
(5.10)

M

(5.11)

Having generated the above LP, our task is to solve it and more significantly, to

Chapter 5 154

solve the associated mixed integer program. The idea is to solve the LP and then to

use this solution as a basis to obtain a solution to the MIP. Several methods are

available to achieve this. Best known among them is Gomory's cutting plane

algorithm for solving LP’s with integer variables.

In order to solve the LP described by equations (5.1) to (5.6) and (5.8) to

(5.11), we used an LP package called XMP, written by Marsten [1981] of the

University of Arizona. XMP is a hierarchically structured library consisting of 38

subroutines for performing the various functions involved in solving LP's. It is

written in FORTRAN and is capable of solving problems of reasonable size that are

encountered in a research and development context. The size of the problems that

XMP solves on any given computer is limited by the amount of main memory space

available.

In solving the above LP, we utilised the following characteristics of XMP:

(i) Because of the size of the problem involved, we had to use condensed

data structures. XMP stores the simplex matrix by columns with the zero entries

removed.

(ii) We made use of the dual rather than the primal simplex algorithm in

view of the possibility of adding extra constraints to the LP solution if necessary.

The design of XMP enables it to be incorporated as part of a large program, where

we cannot only get information, but can also add new information into the LP and

perform more simplex iterations each time a new constraint is added.

Examination of early computational results showed that the optimal

solutions to the integer variables of the LP were fractional. Consequently, we

implemented the approach described in the next section based on cutting planes.

Chapter 5 155

5.4 Cutting Planes

Historically, the cutting plane method was the first general approach used to

solve integer and mixed integer programs. The foundations were laid by Gomory

in a series of well-known papers through the 1960's ([1958, 1963]). A

culmination of these efforts is found in Trauth andWoosley [1969] that compared

the five leading codes in use at that time, all of which used cutting planes. Several

shortcomings in these codes were pointed out, as even small problems had cases

where the method failed to converge in a reasonable time.

" Cutting planes " are linear constraints. The general idea is that if the

linear program does not produce an integer answer to the integer variables, perhaps

by adding valid additional constraints, we can eventually reach an integer solution.

To be useful, however, these extra constraints must have certain desirable

properties:

(i) Each new cut must properly tighten the previous relaxation, i.e.

eliminate the previously found LP solution, and yet still yield a valid relaxation of

the original problem. In other words, each new cut must cut off some of the

feasible region of the current linear program without also cutting off any feasible

integer solutions of the original integer program.

(ii) At most, a finite number of cuts should be necessary in order to find an

optimal solution of the given problem or discover that none exists {Garfinkel and

Nemhauser [1972]). Quite often, the earlier cuts have more impact on the value

of the objective function than do later cuts, since there is a "flattening out" of the

feasible space around the optimal point as successively thinner slices are cut off.

Chapter 5 156

Almost all of the computational experience with cutting algorithms reported

in the literature has been confined to relatively small problems. One of the

recognised difficulties is their poor track record on the rate of convergence, or the

number of iterations required to reach an optimal solution. Thus, in our attempts to

use cutting planes in solving the NGC problem, we developed an algorithm tailored

to the structure of the problem and with a facility for obtaining intermediate results if

it seemed that the problem was not going to converge quickly enough. This

algorithm can provide us with either the optimum mixed integer solution or a much

improved bound on the value of the solution than the LP could give with the greatest

rate of progress being made during the early iterations. This bound can then be

incorporated into a branch and bound algorithm, hopefully having a better

performance than if just the LP relaxation were used, but with little extra cost in

terms of time if the cutting plane procedure were to be terminated early.

5.4.1 The Cutting Plane Algorithm

The algorithm we developed using the dual simplex method is presented

below (for further details on cutting plane methods, see Gomory [1963]):

(1) Choose a row of the optimal LP tableau for constructing a cutting plane

by picking a basic variable with fractional part in the LP solution but one that is

required to have an integer value in the optimum MIP solution.

(2) Calculate the cut by determining its fractional parts in terms of the

current basis and produce an expression of an original constraint corresponding to

the cut.

(3) Insert the new cut in the problem data structure and make the

corresponding slack variable basic.

Chapter 5 157

(4) Resolve the LP using the dual simplex procedure starting from the

current basis.

(5) Go to (1) unless one of the following conditions is satisfied, in which

case the algorithm terminates:

(i) An optimal solution to the MIP problem has been found.

(ii) The number of cutting iterations has exceeded a constant value.

(iii) The rate of convergence is too low.

Explanation of the algorithm

Step (1) is perhaps an important part of the algorithm in terms of

determining the rate of convergence towards the mixed integer solution. There are

many ways of choosing cuts. One possible approach is to select the row with the

greatest fractional part to the RHS, thus obtaining a reasonably large simplex pivot

ratio. Another possibility is to generate a Gomory cut for the integer variable whose

fractional part is closest to 0.5. In a cutting plane code written by Wolfe [1984] to

solve a class of scheduling problems, the variety of choices of cuts were

investigated.

The method we employed was to choose to cut first on the 8j's - the

subset of rectangles cut from Aq - if their values were not integer, and then on the

position variables: 7tjj's, py’s, zy's and Wjj's. We picked a 8j with the largest

fractional part and a position variable whose fractional part was closest to 0.5. This

procedure of performing cuts is based on the observation that the values of any of

the 7t, p., z or w variables are largely dependent on the number of rectangles cut from

Aq (i.e. the 8j's are the most important decision variables of the problem). Thus,

the addition of extra linear constraints on Sj's is likely to be more noticeable in its

effect on the objective function value and the solution as a whole.

Chapter 5 158

At steps (2) and (3), the algorithm calculates the coefficient of the cut

chosen at (1) in terms of the current basis and gives the expression of an original

constraint corresponding to the cut which is then inserted in the problem data

structure in this form. This is because the only data stored in the memory of the

XMP package are the original data of the problem and the current inverse of the

basis matrix.

5.4.2 Results

The cutting plane algorithm was programmed in FORTRAN and run on a

CYBER-855 machine using some of the subroutines of the XMP. In order to

evaluate this algorithm computationally, four randomly generated problems of small

size were solved (maximum number of pieces in R was 5). Table 5.1 gives the

exact details of these four problems, including the sizes and the values of the pieces

in R (note that only one piece of each type can be used). Table 5.2 summarises the

performance of the algorithm, giving for each problem the value of the LP

relaxation, together with the associated computation time in CYBER-855 seconds,

and the value of the solution obtained after cutting planes are added, together with

the number of cuts and time required. We also give the optimal mixed integer

solution for each problem, this being found by using the exact tree search procedure

described in chapter 7 which solves the NGC problem. The optimum solutions for

all problems are shown diagrammatically in Figure 5.2.

The four test problems of Table 5.1 are of two types: those for which

the sum of the areas of pieces in R, i.e.

M

Chapter 5 159

is less than the area of Aq, i.e. ccq(3q (note that not all of these pieces can

necessarily be cut from A q), and those for which

M

X “ i Pi > «o Po-
i=l

It can be seen from Table 5.1 that the first three test problems are of the first type

and problem 4 is of the second type.

From Table 5.2, we notice that for problems 1,2 and 3, the value of the

corresponding LP bound is equal to the sum of the values of all pieces given in R,

thus this bound has the largest possible value it can ever take for each problem. As

a result, in each one of these LP solutions, the values of all 8j variables are equal to

1. With this upper bound being so far from the optimum value and all 8j's - the

most significant variable to cut on - having integer values, the cutting planes were of

almost no value at all. Indeed, in our attempts to cut only on position variables with

fractional parts, the results have shown that the initial Gomory cuts had no effect at

all on the objective function of these problems, failing to reduce the gap between the

LP bound and the optimum solution of the problem.

In the case of problem 4, the LP relaxation provided us with a bound whose

value is 11% away from the optimum solution. Note that in this LP solution, the

area constraints (5.9) to (5.11) were active, and some of the 8j variables had

non-integer values in the LP solution. This allowed us to add cuts(always on 83,

since this variable had the largest fractional part in each solution.) The bound

obtained after adding 30 cuts to the LP solution was improved by only 1.5% over

the bound derived from the LP relaxation. Figure 5.3 shows the very slow rate of

convergence in the value of this bound as the first 30 cuts were added. As a result,

Chapter 5 160

Problem

Problem

Problem 3:

Problem 4

Table 5. 1

: M . 3, (a0,e„) = (4,4), |L| = 2, |W| = 2,
optimal solution 3 100

1 a .
A,

v .
A.

1 2 2 40
2 3 2 60
3 2 3 50

: M 3 5, (c^Sg) 3 (6,6), |L| * 4, |Ci/| 3 6,
optimal solution 3 31

l
^A.

v .
A.

1 2 2 4
2 3 3 9
3 6 1 6
4 4 2 8
5 2 4 8

M - 5, (a 0 , B 0) - (10,10), |I| = 7, |W| = 7,
optimal solution 3 116

l
^A.

v .
A.

1 2 2 5

2 5 3 15
3 6 7 52
4 4 7 44
5 2 4 12

: M - 5, (a g , 3 g) « (20,30), |L| = 2, |W| = 3,
optimal solution 3 680

A, a -
A.

\J.
A.

1 19 10 200
2 18 10 300
3 17 10 180
4 11 10 130
5 10 10 90

Details of Test Problems 1 to 4 with given Set
of Pieces R.

Chapter 5 161

Problem
Number

LP Bound Cutting Planes Optimal
Solution
ValueValue Time

CPsecs
Value Number

of Cuts
Time
3Psecs

1 150 0.9 150 10 1.2 100

2 35 1.2 35 10 1.5 31

3 128 1.5 128 10 1.8 116

4 757.205 0.4 747.023 30 1.3 680

Table 5.2 Performance of Algorithm using Formulation
MIP - J.

Chapter 5 162

4

0
Problem!

___ m _____
(4,2)

(2,4)
(3,3)

£

Problem 2

Figure 5.2 Optimal Solutions for Problems 1 to 4 of
Table 5.2.

Va
lue

 of
 B

oun
d

Chapter 5 163

Figure 5.3 Results of the use of Cutting Planes for Problem 4.

Chapter 5 164

there did not seem to be much to be gained from adding more cutting planes as the

greatest rate of progress is expected to be made during the early iterations.

5.4.3 Conclusions

From the results of Table 5.2, we conclude the following:

(i) The quality of the bound derived from the LP relaxation of formulation

MIP-1 is poor (the bound is about 20% away from the optimum solution on

average).

(ii) The performance of the cutting plane algorithm is very poor. It failed to

improve the LP bound for the first three problems or it converged very slowly in the

case of Problem 4.

In the next section, we present another mixed integer programming

formulation of the NGC problem using a different set of variables.

5.5 A Second Mixed Integer Programming Formulation (MIP-2)

The formulation presented here is based on similar ideas as formulation

MIP-1. The continuous variables (x^yj) and the 0-1 integer variables 8j used by

MIP-1 are also defined in the same way, so they are not repeated here. The position

variables, however, are interpreted differently.

Chapter 5 165

if piece j is cut totally to the right of piece i (Xj > x. + a-j)

otherwise

= 0

if piece j is cut totally to the left of piece i (xj < x. - a-)

otherwise

1
\|/-j = 1 if piece j is cut totally above piece i (yj > y. + b-j)

= 0 otherwise

2

= 0

if piece j is cut totally below piece i (yj < y. - b-j)

otherwise

The NGC problem is then formulated as follows:

Problem P2

M
Max Z = T \).8. (5.12)

j=i J J

subject to:

xj ' xi ' a0 îj “ aij' a 0 V j > i, ij = 1 , M (5.13)

xj + xi - a0 2 aij- ao v J > >. iJ = !» M (5.14)

Chapter 5 166

yj-yi-PoVij 5 bij-P0 V j > i , i j = l M (5.15)

■ Yj + Yj ■ Pq Vjj 2 bi j " Po V j > i , i j = 1,..., M (5.16)

+ ̂ + + " 5i + 5j ' 1 V j > i , i,j = 1, ...,M (5.17)

^ (a Q - a j / 2) > Xj > 5 ^ / 2 V i = lM (5.18)

^ (P q - ^ / 2) > y. > 5-P-/2 V i = 1 , M (5.19)

5t e { 0 ,1} V i = l , ...,M

^j* v ij' Vy e { 0, 1 } V j > i, i,j = 1, ..., M (5.20)

Constraints (5.13) to (5.16) express the non-overlap conditions between any

two rectangles i and j cut from Aq. Variables £y*, £y^, \|/y* and \|fy^ can be

considered as switches. If they take the value 0, the constraint is off, i.e.

redundant. Constraint (5.17) ensures that if both pieces i and j are to be cut from

Aq, then at least one of £y^, \j/yl, \|/y2 must be 1. Constraints (5.18) and

(5.19) are similar to constraints (5.5) and (5.6) of MIP-1. (5.20) are the integrality

constraints.

The above model is a mixed integer program (MIP-2) of similar size to

MIP-1. To investigate this formulation computationally, we followed exactly the

same approach as we did for formulaton MIP-1, namely, we computed the bound

from the LP relaxation of MIP-2 and then applied the cutting plane algorithm of

Chapter 5 167

section 5.4.1 to improve this bound. Using this procedure, we tried to solve the

four test problems of Table 5.1. The results obtained are presented in Table 5.3.

Clearly, they are almost identical to the ones presented in Table 5.2, leading us to the

same conclusions mentioned in section 5.4.3 for formulation MIP-2.

5.6 Two 0-1 Integer Programming Formulations

In this section, we formulate the NGC problem as a zero-one integer

programming problem. First, we make some assumptions and define a set of

variables which are used by the two formulations of the problem presented below:

(i) the given set of rectangular pieces R contains m types of pieces with

Pj and Qj being the minimum and maximum number of pieces of type i that can be

cut from Aq

(ii) the cuts on Aq are performed at integer steps. We define L = { 0,1,

2,..., ocq-1 } and W = { 0, 1, 2,..., Pq-1 }to be the sets of points on Aq where cuts

can be made parallel to the y-axis and the x-axis, respectively. Note that we do not

regard the top edge and the right hand edge of a piece as cutting points. Similarly,

we define Lj = { 111 e L and l < cxq - oq } and Wj = {w I w e W and w < Pq - p j }

to be the sets of lengths and widths on Aq achieved by piece i.

m
(R contains M pieces in total, where M =

i=l

Chapter 5 168

P r o b l e m
N u m b e r

LP B o u n d C u t t i n g P l a n e s
O p t i m a l

S o l u t i o n
V a l u eV a l u e T i m e

C P s e c s
V a l u e

N u m b e r
o f C u t s

T i m e
C P s e c s

1 1 5 0 0 . 9 1 5 0 1 0 1 . 2 1 0 0

2 3 5 1 . 2 3 5 1 0 1 . 5 3 1

3 1 2 8 1 . 4 1 2 8 1 0 1 . 7 1 1 6

4 7 5 7 . 2 0 . 4 7 4 7 . 0 3 0 1 . 3 6 8 0

T a b l e 5 . 3 P e r f o r m a n c e o f A l g o r i t h m u s i n g F o r m u l a t i o n M IP - 2 .

Chapter 5 169

5.6.1 Formulation IP-1

Define x ^ = 1 if a piece of type i is cut with its bottom left hand comer

at (p,q) of Aq, where 0 < p < (Xq - 04 and 0 < q < Pq " Pi
(see Figure 5.4),

= 0 otherwise.

Then, the first formulation is as follows:

Problem P3

M® Z= £ I xipq
qeW. p e l-

subject to:

m s-1 r-1I I X xipq 5 1 V { r 1(r - l) e L), { si1 (s-1) e W }
i=l q=s-Pj p=r-aj

qeWj peL j (5.22)

P. < 1 I X xipq 5 Qi V i =1, ..., m (5.23)
qeWj peLj

Xipqe (0,1) V i = 1, m, p e L ^ q e W i (5.24)

Constraint (5.22) expresses the non-overlap conditions between any

Chapter 5 170

F i g u r e 5 . 4 P i e c e i i s c u t w i t h i t s b o t t o m l e f t - h a n d

c o r n e r a t p o s i t i o n (p , q) .

Chapter 5 171

rectangles in R cut from Aq by ensuring that any point (r, s) on Aq is cut out by at

most one rectangle. Constraint (5.23) expresses the fact that the number of pieces

of type i cut out from Aq lies within the required range. Constraints (5.24) are the

integrality constraints.

The above is a large 0-1 integer programming formulation of the NGC

problem (IP-1). It is similar to one given by Beasley [19851] who developed a tree

search procedure based upon a Lagrangean relaxation of his formulation to solve

moderate sized non-guillotine problems.

Formulation (IP-1) involves approximately
m

y , IL. 11 Wj I variables and (IL11WI + m) constraints.
i=l

However, the size of this program can be reduced by using the idea of "normal"

cutting patterns (Christofides and Whitlock [1979]). As it has been explained in

chapter 2, normal patterns rely on the observation that in a given cutting pattern, any

cut piece can be moved to the left and/or down until its left hand edge and its bottom

edge both touch other cut pieces (or the edges of Aq). Without any loss of

optimality, we can replace sets L and W by:

m
L = { 111 = ^ , 0 < i < [a Q - min (I i = 1,..., m)],

i=l

0 < < Qi , rij integer, i = 1,..., m }

m
W = { w 1 w = ^ t- p- , 0 < w < [ftn - min (P- I i = 1,...» m)],

i=l

0 < tj < Qi , tj integer, i = 1,..., m }.

Chapter 5 172

Similarly, sets Lj and Wj defined by Lj = { l I l e X and l < (Xq - } and

Wj = {w I w eW and w < (3q - p- } can be used instead of sets Lj and Wj for all

i = 1 , m. It is easy to show that constraint (5.22) need be only applied for the

restricted setsX, W, 1 ̂and Wj (i = 1, m), leading to a significant reduction in

the size of formulation (5.21) to (5.24).

5 .6 .2 Formulation IP-2

Using the same definition of x ^ 's given in section 5.6.1, we formulate the

second 0-1 integer programming formulation of the NGC problem as follows:

Problem P/j

M ax (5.25)

subject to

S + P j - l

i
q = s-P L+ l

qeWj

r+ a. -1

p = r - a-+ 1
petj

1 - X-
jrs V j* i, i, j)i= 1......m

rEL-.seW. (5.26)
J «l

Chapter 5 173

(5.27)
qeWj p sL i

xipqe { °»1 J V i = 1, m, p 8 Li , q 8 W. (5.28)

Constraint (5.26) expresses the non-overlap conditions between any two

rectangles i and j in R cut from Aq. If xjrs = 1, then the corresponding constraint is

active, otherwise it is redundant. Constraint (5.27) ensures that the number of

pieces of type i cut out from Aq lies within the required range. Constraints (5.28)

are the integrality constraints.

The restriction of the cuts on Aq to have the property of normal patterns can

also be applied to the above formulation. Thus, IP-2 involves the same number of

variables as formulation IP-1 given b y :

The number of constraints, however, is larger and is given by (m (m-1) ILIIWI + m).

5.7 A second Set of 0 - 1 Integer Programming Formulations

The three formulations presented below hold when in the set of rectangular

pieces R we have at most one piece of type i available to cut from Aq. However, if

m

i = 1

Chapter 5 174

at most Qj pieces of type i (i = 1, m) are required to be cut, then these pieces are

included in R with different labels but the same dimensions (the total number of

Normal cutting patterns are also used to reduce the size of the problem. We

define the following variables used by the three formulations:

Let Xjp = 1 if piece i is cut with its bottom left hand comer at position x = p,

where p e L̂ ,

= 0 otherwise.

= 1 if piece i is cut with its bottom left hand comer at position y = q,

where q e Wj,

= 0 otherwise.

5.7.1 Formulation IP-3

Formulation IP-3 also involves the following variables:

Let Zj.s = 1 if point (r, s) on Ag is free so that any piece in R can be

cut with its bottom left hand comer at (r,s), where r e L

and s e W,

= 0 otherwise.

Problem Pg

Max (5.29)

Chapter 5 175

subject to:

q + Pj-l P+«i-l
X X zrs 2 ̂ 2 - xi o ' ^

s = q r= p
ip 'iq

V i= 1 , M, p e l . , q e ^ (5.30)

2II♦ H>v-HVIX

kl (5.31)

peLj

X xip = X V i = 1 , M (5.32)
peLj qeWj

x- e { 0,1 } V i = lM, p e l-

y . e { 0 , l } V i = 1 , M, qeWj (5.33)

zrse f 1 1 V reL> seW

(5.30) ensures that any point (p, q) on Aq is cut out by at most one piece.

(5.31) and (5.32) express the fact that each piece is cut at most once from A q.

(5.33) are the integrality conditions.

The above is a complete formulation involving approximately (2M + ZI Lj I
~ M ~ ~ <=1

I Wj I) constraints and ((Xq Pq + Z (I Lj I + I Wj I)) integer variables. Clearly, the

size of IP-3 depends on the total number of pieces (M) given in R, whereas the sizes

of IP-1 and IP-2 depend on the number of types of pieces (m) given in R. This

difference in size between formulations IP-1 and IP-3 can be illustrated by the use of

an example.

Chapter 5 176

Suppose we are given a test problem in which 20 types of pieces (one of

each type, i.e. Qj = 1 for all i = 1,...» 20) can be cut from a stock rectangle Aq of

size (50,50). Formulating this problem as IP-1, involves about 50,000 variables

whereas formulating it as IP-3, we would use only 4,500 variables. It is clear that

unless Qj's are large (the size of IP-1 is independent of Qj’s), formulation IP-3 is

much smaller than IP-1.

IP-1 might be more suitable for formulating problems in which the

dimensions of the pieces to be cut have small absolute values. Note that the

expression giving the number of variables for IP-3 involves the extra term o q (3q , as

it is shown in Table 5.4which compares the sizes of all 0-1 integer programming

formulations of the NGC problem presented in this chapter.

5 .7 .2 Formulation IP-4

This formulation uses Zj.s variables defined in the following way:

Let Zj.s = 1 if point (r, s) on Aq is covered by any piece i in R

which is cut with its bottom left hand comer at location

(p, q), where r - otj < p < r and s - p j < q < s (r e L

and s e W)

= 0 otherwise.

Then, IP-4 is given by:

Formulation Number of Variables Number of Constraints

IP-1
m

l U j l w j
i = i -1 *

|L||W| + m

IP-2
m

I 1 ^ 1■i=/ *■
m (m - 1) |L||W| + m

IP-3 “0 h + I <1^1 + .KI'X™ /

M . .
2M + l |L.||W.|

1 = 1 *■ *■

IP-4 “o h + J , ♦ |WJ) M (a^ 3^ + 2)

IP-5 lillwl + l i|L| + |W:|)
X = 1

M _ .
\L\ * |W| + m * l U;I|W:|

1 =)

Table 5.4 Sizes of the five IP Formulations for the NGC Problem presented
in sections 5.6 and 5.7.

C
hapter 5

Chapter 5 178

Problem

M
Max Z = X Vj X xip

1-1 peLi
(5.34)

subject to

r-1

zr s - X xip
P = T_- Oj

peLj

s - 1

+ X ^iq
q = i - P i
qeWj

V i = 1......M,

r eL , s e W (5.35)

£ x *1 V i = lM (5.36)
peLj

X X- -ip X yjq

rHII• H

>

(5.37)
peL. qeWj

XjpE { 0 , 1 } V i = l , ..., M, p e L

yiqe { o, 1) V i= 1, M, qeW. (5.38)

zrs e { 0» 1) V r e L , s e W

Constraint (5.35) expresses the fact that any point (r,s) on Aq can be cut out

by at most one piece. If a piece i is cut with its bottom left hand comer at a location

(p,q) on Aq such that (r,s) is cut out by piece i, then the corresponding constraint is

active; otherwise it is redundant.

Constraints (5.36) and (5.37) ensure that each piece is cut at most once from Aq

Chapter 5 179

Constraints (5.38) express the integrality conditions.

The above formulation involves the same number of variables as IP-3 but a

larger number of constraints given by M (cxq Pq + 2). It is clear that applying the

restriction of the cuts on Aq to have the property of normal patterns does not reduce

the size of IP-4. This means that formulating even a small-sized NGC problem as

IP-4, we have a problem with a very large number of constraints to solve.

5 .7 .3 Formulation IP-5

Formulation IP-5 uses Zj.s variables in a different way. These are now

defined as follows:

Let Zj.s = 1 if any piece i is cut with its bottom left hand comer at

(r,s), where r € L and s e W,

= 0 otherwise.

Then the problem is expressed as follows:

Problem Vj

M
Max Z = X Vj X xip

i= l peLj
(5.39)

subject to:

Chapter 5 180

q+Pj+i p+Olj-l

I / z - z < (2 4-t rs pq v
s=q-min p.+l r=p-min a.+l

j*i J J* J
seW re L

[(a. + min a. -1) (p. + min p.
j*i J 1 j * J

V i = 1, ..., M, p e L , q e ^

y x. <
>p

I—* < II H-k s

peLj

,M X II X yiq V i = 1, M
p e L qeWj

X xi r = X zns V r e L
ie{ ilreL-} seW

I yis = I ‘rs V s £ W
ie{ i l s e W .) reL

xipe { 0,1} V i= 1 , M, peL-

V f °> 1 J V i= 1, M, qeWj

zTSe{ 0 ,1} V reL, s e W

ip ^lq

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

Chapter 5 181

(5.40) are the non-overlap conditions. (5.43) and (5.44) express the

number of rectangles cut with their bottom left hand comers at a particular x = r (r s

L) and y = s (s e W), respectively. (5.45) are the integrality conditions.

5.8 Computational Aspects of Bound Calculations for the 0 - 1

IP Formulations

In Sections 5.6 and 5.7, five different 0-1 integer programming

formulations for the NGC problem were presented, namely, IP-1, IP-2, IP-3, IP-4

and IP-5. In order to obtain upper bounds on the optimum solution of the problem,

we relax these formulations by dropping the integrality conditions. Let UB1 and

UB2 be the upper bounds derived from the linear relaxation of formulations IP-1

and IP-2, respectively. In the LP relaxations of IP-3, IP-4 and IP-5, we add the

following constraints in order to obtain tighter bounds (note that these constraints are

redundant for IP-3, IP-4 and IP-5).

Additional Constraints to Formulation IP-3

The above formulation (IP-4) involves (ILI IWI + £ (IL̂ I + IŴ l))
isa i=t

M

_ - M _ _
variables and (ILI + IWI + 2M + £ IL;I IW;I) constraints.

i»l

M r
V re L

p = r - a. + 1 seW
p e l .

(5.46)

Chapter 5 182

M s

X ^iq + X zrs = “ 0
V seW (5.47)

i = 1 q = s_-Pi + l reL
qeWi

Additional Constraints to Formulation IP-4

M r

X* X -l —l ip = X zrs V r£L (5.48)
i = 1 p = r - a. + 1 seW

peLj

M s

X a i X ^iq = I s V seW (5.49)

* “ * q = s - p - + l r e L
qeWi

Additional Constraints to Formulaton IP-5

M r

X*
i = 1

X xiP s p0 v ret
p = r - a- + 1

(5.50)

peLj

M s

I-H X ?iq * a 0 V s £ ™ (5.51)
i = 1 q = s_-Pj+l

qeWi

Constraints (5.46), (5.48) and (5.50) ensure that if k pieces overlap such
k

that E Pj > po, they cannot all be cut with their bottom left hand comers at the same
i=i

length. Similarly, (5.47), (5.49) and (5.51) ensure that if l pieces overlap such that

Chapter 5 183

l
£ (Xj > ocq, they cannot all be cut with their bottom left hand comers at the same

width.

Let UB3, UB4 and UB5 be the upper bounds derived from the linear

relaxation of IP-3, IP-4 and IP-5, respectively, including the above additional

constraints. Bounds UB1 to UB5 were obtained by using the XMP package

described in Section 5.3. Because of the large number of variables and constraints

involved in the formulations, we were forced by the memory limitations of the XMP

package to solve only test problems of small size. Thus, eight problems involving

up to seven pieces in R and three problems involving up to seven types of pieces in

R have been randomly generated and run on a CYBER-855 machine. Details of

these problems shown in Tables 5.1,5.5 and 5.6 include, for each problem, the size

of Aq, the sizes (0Cj,(3j) and values (\)j) of the given pieces, the maximum number of

pieces of each type (Q)̂ in R and the size of sets of normal cuts (ILI and IWI). The

value of the integer optimal solution is also given for each problem, this being found

by the exact tree search procedure described in Chapter 7 which solves the NGC

problem. The optimal solutions for the first four problems are shown in Figure 5.2

and for the other seven problems in Figure 5.5.

Problems 1 to 4 have been described in Section 5.4.2 and bounds derived

from formulation MIP-1 have been presented for these problems in Table 5.2. In

problems 5 to 8, which have been randomly generated, at most one piece of each

type in R is available to be cut from Aq. Problems B1, B4 and B5 have been taken

from Beasley [1985b]} they correspond to problems 1, 4 and 5 in the table of

computational results presented in the paper by Beasley. These problems are also

randomly generated with the data being drawn from uniform distributions and Qj

have integer values between 1 and 3.

Chapter 5 184

Problem

Problem

Problem 7:

Problem 8:

Table 5.5

: M - 4, (a 0 , g 0) = (7,9), |L| = 3, [W| = 9,
optimal solution * 54

' i v .
A,

1 7 4 28
2 6 3 18
3 5 5 25
4 4 1 8

: M » 5, (ci05Sfl) * (8,6), |l| » 6, |W| =■ 4,
optimal solution * 85

L a -
A.

1 3 3 15
2 5 2 20
3 7 3 40
4 2 6 30
5 4 4 35

M =■ 7, (a 0 ,S„) =* (10,10), |I| = 9, |W| - 10,
optimal solution =*198

Z
a A, S-0 1/./C

1 1 10 28
2 5 3 40
3 9 3 63
4 6 1 13
5 3 8 31
6 4 1 10
7 7 3 44

M = 7, (ctfl.Bg) = (15,10), |Z| = 7, |W| = 10,
optimal solution = 262

A Cl * v .
A,

1 10 3 34
2 9 3 48
3 12 2 72
4 11 3 91
5 12 3 37
6 11 1 15
7 2 10 36

Details of Test Problems 5 to 8 with given set
o f p i e c e s R .

Chapter 5 185

Problem Bl: m = 5, » (10,10), |Z[
optimal solution = 164

8, |W| = 6,

z a .<L v .

1 8 2 40 22 2 10 43 2
3 3 7 35 2
4 10 2 27 1
5 5 4 23 3

Problem B4: m = 5, (a0,e0) = (15,10), |l| = 3, |W| = 10,
optimal solution = 268

l a •

1 8 3 71 1
2 15 . 2 61 2
3 15 1 14 1
4 7 3 27 1
5 15- 2 34 2

Problem B5: m = 7, (a Q , $ 0) = (15,10), \L \ =7, |W| = 10,
optimal solution - 358

Z a -X. v .

1 12 2 72 3
2 11 3 91 1
3 2 10 36 1
4 9 3 48 1
5 11 1 15 3
6 10 3 34 2
7 12 3 37 3

Table 5.6 Details of Test Problems Bl, B4 and B5 with given
set of pieces R.

Chapter 5 186

Problem 5

<4,M
1 (2,6)

7

1
(5,2)

o a
Problem 6

(3,7)

(5, A)

(2,10
(5, A)

(8,2)

Problem B1 ^

Problem BA-

(11.1)
* /

i

p
p

1

(11,3)

(12,2) (210)

(12,2)

(12,2)

Problem B5

Figure 5.5 Optimal Solutions for Problems 5 to 8 of Table 5.5 and
Problems B1, B4 and B5 of Table 5.6.

Chapter 5 187

Tables 5.7 to 5.11 describe the performance of the five bounds UB1 to

UB5 obtained for the above eleven test problems, respectively. For each problem,

we give the value of the corresponding bound, together with the associated

computation time in CYBER-855 CP seconds. We also give the number of

variables and constraints (including the redundant constraints for formulations IP-3,

IP-4 and IP-5 given in this section) involved in all formulations for each problem.

(Because of the large number of non-zero entries per column in the matrix

representation of the simplex tableau - greater than 100 - the XMP package could not

solve problems 7, B1 and B5 using formulation IP-2 and problems 4, 7, 8, B l, B4

and B5 using formulation IP-4.)

In order to compare the quality of the various bounds, the following

performance ratio is used:

r
Upper Bound - Optimal Value

Optimal Value (%)

5 .8 .1 Computational Comparison

From the tables of computational results, we can see that the value of bound

UB2 differs significantly from the values of the other bounds for problems 3,4, 5

and 8 (the quality of UB2 for these problems is poorer by 8%, 11%, 15% and

5.8%, respectively). In particular, UB2 has the same poor performance as the

bounds derived from the two mixed integer formulations of Sections 5.2 and 5.5 for

problems 2, 3, and 4 (Table 5.2). Furthermore, because of the large number of

constraints and non-zero entries in the simplex tableau involved in formulation IP-2,

we are limited to solve NGC problems of very small size. Hence, UB2 has been

Chapter 5 188

Problem
Number Value Time

in
CP secs

Number of
Variables

Number of
Constraints

1 125 0.06 25% 8 7
2 35 0.3 13% 60 29
3 119 0.9 2% 143 54
4 680 0.1 - 18 11
5 59 0.1 9% 23 12
6 100 0.4 17% 44 29
7 218 8.4 10% 210 97
8 274 0.9 4% 109 77
B1 205 0.8 25% 60 53
B4 271 0.4 1% 68 35
B5 359 2.0 0.3% 233 84

Table 5.7 Performance of Bound UB\.

Problem
Number Value Time

in
C P SPP c;

Number of
Variables

Number of
Constraints

1 113 0.1 13% 8 20
2 35 2.6 13% 60 246
3 128 4.4 10% 143 578
4 757 0.3 11% 18 78
5 67 0.4 24% 23 74
6 101 1.4 18% 44 182
8 301 5.3 9.8% 109 662
B1 271 1.9 1% 68 278

Table 5.8 Performance of Bound UB2.

Chapter 5 189

Problem
Number Value Time

in
CP sprs

Number of
Variables

Number of
Constraints

1 131 0.1 31% 26 22
r
i. 35 0.7 13% 73 82
3 119 1.9 2% 152 173
4 680 0.5 - 621 78
5 59 ■ 0.7 9% 90 47
6 101 0.9 18% 80 68
7 218 3.7 10% 184 244
8 274 3.4 4% 221 148
B3 206 3.7 25% 186 174
B4 271 2.4 1% 222 125
B5 359 6.9 0.3% 297 286

Table 5.9 Performance of Bound UB3.

Problem
Number Value Time

in
CP secs

H.%
Number of
Variables

Number of
Constraints

1 129 0.5 29% 26 62
2 35 3.2 13% 73 202
3 119 19.9 2% 152 530
5 59 6.1 9% 90 276
6 101 6.6 18% 80 264

Table 5.10 Performance of Bound UB4

Chapter 5 190

Problem
Number Value

Time
in

CP secs

—
Number of
Variables

—
Number of
Constraints

1 134 0.1 34% 14 23
2 35 0.9 13% 61 91
3 119 1.8 2% 101 182
4 680 0.2 - 27 39
5 59 0.4 9% 35 50
6 101 0.8 18% 56 75
7 218 4.4 10% 174 263
8 274 2.0 4% 141 158
B1 206 2.7 25% 134 183
B4 271 1.8 1% 102 127
B5 359 3.5 0.3% 217 296- - <

Table 5.11 Performance of Bound UB5.

Chapter 5 191

The value of bounds UB3 and UB4 has basically the same performance

ratio for problems 1, 2, 3, 5 and 6. However, the results for this set of test

problems show that UB3 requires a considerably lower computational cost since the

size of the problems formulated as IP-3 is much smaller than the size of the same

problems being formulated as IP-4 (the number of variables involved in both

formulations for a particular problem is the same). Hence, UB4 has been excluded

from further investigation.

The three bounds UB1, UB3 and UB5 are basically compared with respect

to their performance ratio r and their computational time. There is not any clear

indication for better quality of bound, since the corresponding duality gaps

computed for all eleven problems are basically the same (note that for problem 4, all

three bounds find the optimal solution). However, the results for this set of test

problems show that UB1 is computationally less expensive with the exception of

problem 7. In this case, the use of normal patterns had very poor effect on reducing

the problem being formulated as IP-1 (for problems in which ILI and IWI are

relatively large compared to <Xq and Pq, respectively, UB3 is expected to have better

performance than UB1). On the other hand, for problem 4, UB3 requires a large

number of variables (621) compared to only 18 and 27 variables required by UB1

and UB5, respectively. This happens because of the reduction in the number of

variables resulting from the small size of the normal sets obtained in problem 4 for

formulation IP-3 (ILI and IWI have values of 2 and 3 compared to (Xq and Pq, being

20 and 30, respectively).

excluded from further investigation.

Chapter 5 192

5.8.2 Conclusions

Based on the computational results presented in Tables 5.7 to 5.11, it

is not very obvious which is the best bound for the NGC problem. Overall

formulation IP-3 seems to be slightly better and hence we choose this formulation in

order to develop a method to solve optimally NGC problems. In the next chapter,

we present bounds derived from a Lagrangian relaxation of IP-3 with computational

results obtained for medium-sized problems. These bounds can then be embedded

in a tree search procedure that solves NGC problems exactly (Chapter 7).

Chapter 6 193

CHAPTER 6

A LAGRANGEAN RELAXATION BOUND FOR THE NGC

PROBLEM IMPROVED BY SUBGRADIENT OPTIMISATION AND

PROBLEM REDUCTION TESTS

6.1 Introduction

In this chapter we consider the NGC problem of section 5.1, which was

defined as follows: we are given a rectangular sheet of stock material Aq having

dimensions (ctQ.pQ) and a number (m) of types of pieces in R having dimensions

(oq,pj) and values \)j for all i= l , ..., m. Then using no more than Qj pieces of

each type i in R, we require to find an orthogonal non-guillotine cutting pattern of

pieces on Aq that has the highest possible total value. No pair of cut rectangles are

allowed to overlap and no cut rectangle may overlap the edges of Aq . Each piece in

R is considered to have a fixed orientation (Total number of pieces in R is given by

m
M = I Q i).

i=l

Chapter 6 194

In our attempt to solve the above problem optimally, we use a 0-1 integer

programming formulation for this problem, presented in Chapter 5, namely

formulation IP-3. In this chapter, we develop a Lagrangean Relaxation of this

formulation to provide us with an upper bound on the problem. Subgradient

optimisation is used to optimise the bound derived from the Lagrangean Relaxation.

Problem reduction tests derived from both the original problem and from the

Lagrangean Relaxation are given. Using the subgradient method together with the

reduction tests we present a general procedure used to obtain the best bound and the

greatest reduction of the problem. If the opimal solution is not found using this

procedure, then the bound obtained can be incorporated into a tree-search procedure

that solves the problem optimally (Chapter 7).

Computational experience with the general procedure is presented in the last

section of this chapter.

6.2 Lagrangean Relaxation

In the last decade, Lagrangean Relaxation has grown from a successful but

largely theoretical concept to a tool that is the backbone of a number of large-scale

applications. It is based on the observation that many difficult integer programming

problems can be modelled as a relatively easy problem complicated by a set of side

constraints. Replacing the complicating constraints with a penalty term in the

objective function that involves the amount of violation of the constraints, we create

a Lagrangean problem that is easy to solve and whose optimal value is an upper

bound (for a maximisation problem) on the optimal value of the original problem.

The Lagrangean problem can thus be used in place of a linear programming

Chapter 6 195

relaxation to provide bounds in a branch-and-bound algorithm.

We first explain the Lagrangean Relaxation concept in general terms

and then apply it to the NGC problem.

Let (P) be the following integer linear problem:

Z = maximise cx
x

(6.1)

subject to

A x 1 b (6 . 2)

Dx < d (6.3)

x > 0 and integer (6.4)

where b,c and d are vectors and A and D are matrices. We assume that the

constraints of (P) have been partitioned into the two sets (6.2) and (6.3) so that (P)

is relatively easy to solve if the constraint set (6.2) is removed. The Lagrangean

relaxation of (P) relative to (6.2) and with a non-negative multiplier vector X (X > 0)

is defined as problem (PR^) given by:

Zp/ X) = Maximise cx + X (b - A x) (6.5)
u x

subject to

Chapter 6 196

Dx < d (6.6)

x > 0 (6.7)

It is clear that the optimal value of problem (PR^) for X fixed at a non-negative value

is an upper bound on Z because we have merely added a non-negative term to the

objective function (6.1) and dropped some constraints. Geoffrion [1974] has

shown that the potential usefulness of relaxation (PR^) is largefy determined by the

gap between the value of its optimal solution and that of (P). This is known as the

"duality gap" and it gives a criterion by which to measure the "quality" of a particular

choice of X. In particular, the program

(D) minimise v> (PR)
X >0 X

gives the best possible upper bound to the original problem (P) where

D (PR^) is the optimal value of problem (PR^).

Relaxing a problem (P) using the Lagrangean approach offers a number of

important advantages:

(i) With careful choice of which constraints to relax, the relaxation can

make the problem significantly easier to solve. Typically, one will construct several

alternative relaxations and evaluate them, both empirically and analytically based on

the quality of bounds obtained. Lagrangean Relaxation, having the ability to exploit

special problem structure, often is the only hope for coping with large scale real

problems.

(i i) Clearly, the effectiveness of a bound is the most important parameter

that determines the efficiency of a branch-and-bound algorithm. Choice of good

Chapter 6 197

Lagrangean multipliers can provide us with the tightest bound on the problem, so

that results can be significantly superior to LP based branch-and-bound.

(iii) Practical experience with the method has indicated that the resulting

duality gap is often very small, so that a very good bound can be obtained for use in

a tree-search procedure.

The use of Lagrangean Relaxation has led to dramatically improved

algoritKins for a number of important problems, namely the Travelling Salesman

Problem (Held and Karp [1971]), scheduling problems (Fisher [1973]), location

problems and set covering problems. A recent survey of Lagrangean Relaxation

and its applications has been produced by Shapiro [1979].

6.2.1 A Lagrangean Relaxation for the NGC Problem

In section 5.7.1 we have given the 0-1 integer programming formulation

(IP-3) of the NGC problem as presented below:

Problem P

m

i=l p 8 Lj
(6.8)

subject to

q+P-l pMXj-1

I I ZK*<2-* M, peLj, qeWj
s=q r=p

(6.9)

Chapter 6 198

^ x i p S l V i = !M (6.10)
peLj

^ y i q S l V i = l, ...,M (6.11)
qeWj

xipe{0, 1} V i = 1, ..., M, peL

yiqe{0,1} V i = l H q e W j (6.12)

zis e (O’ 1) V reL, seW

The following set of constraints which were redundant in the original

formulation but helped in generating tighter bounds in its Linear Programming

Relaxation (section 5.8) can be added:

M r

Jpi X xiP + X zK = Po VreL
p=r-0Cj+l
peLj

(6.13)
seW

M s

X « i X y iq+ X zis = a0 V s e W
q=s-(3j+l reL

qeWj

(6.14)

We relax the above program by introducing Lagrange multipliers Ujpq (> 0)

V i = 1 , M, p e L̂ and q e Wj relative to the non-overlapping constraints (6.9),

multipliers er V r e L for constraints (6.13) and multipliers fs V s eW for

constraints (6.14) to give us the following Lagrangean problem (LR):

Chapter 6 199

M M

ZD (U, e , f) = m a x { ^ S V i p + X X X uipq
1=1 peLj 1=1 peLj qeWj

q+Pr l p+a;-l

(2a B-- a.p-x. -a-By- - ^ ^ z) +v iKi iKi ip l^Viq jLmi J—t rs '
s=q r=p

M

X er (P 0 - X Pi X xip
p=r-a.+l
p e L

r e L
X zrs> +

s e W

X fs (“O'
s e W

X yiq
q=s-Pj+l
q e ^

X zrs > >
r e L

subject to (6.10), (6.11) and (6.12).

After rearrangement we get:

Problem LR

M M

ZD (u >e , f) = m a x t X X G,p*ip ' X X V i
i=l p e L i i=l -L 1C1

q e W i

X X V,
r e L s e W qeWj

Chapter 6 200

where

subject to

+ fio I er + ao I fs]
reL seW

(6.15)

p+Otj-1

Gip = - aA X uipq ' Pi X V
qeWj

and

M r s

!rs = er+fs + Xf X X uipq
p=r-a-+l q=s-p^+l
p e L qeWj

(6.16)

► x. < 1
rL !P

peL
V i= l , M

X yiq
qeWj

V i= 1, M

(6.17)

(6.18)

Chapter 6 201

xip6 { 0» 1) v i= 1* peLj

yiqe{0, 1 } V i * lM, qeW (6.19)

zise { °’ 1) V r eL’ seW

The optimal value of problem (LR) for any set of non-negative Ujpq

multipliers is an upper bound on the optimal value of the original NGC problem (P).

The Lagrangean problem (LR) can be solved optimally using the following

observation. Considering a piece i in R, we can extract the terms in the above

program associated with it to form a corresponding subproblem. Thus we can

obtain m separate subproblems of the following type:

Subproblem LRp

Find variables Xjp and yjq that satisfy

Z = max
P

peLj qeW j

subject to

peL.

qeW;
I ^ i q -

xip. yip e { 0,1 } V p e Lp q e Wj

Chapter 6 2 0 2

Subproblem (LRp) picks the best position for cutting out piece i from Aq

removing from the original NGC problem any restriction that the pieces cut should

not overlap.

It is easy to solve subproblem (LRp) if the Lagrangean multipliers Ujpq are

fixed at some nonnegative values. All (Gjp - Hjq) values are computed for all p e

and q 8 W .̂ Note that if any of these values is not positive, we can set the

corresponding pair of variables to 0. Otherwise, we set a pair of variables (x^, yjq)

with the largest (G ^ - H ^) value to 1 provided that this value is non-negative

([Gjj. - Hjs] say) and set the remaining x ^ and yjq (P * r, q * s) variables to

zero. Let (Xjp,Yjq) represent the optimal values of (Xjp, y ^) in the solution of

the Lagrangean problem (LR).

Solution values to variables z c a n be obtained by inspection from problem

(LR). Its solution sets the z^ with positive objective coefficients IpS to 1 and the

remaining Zj.s to zero. Let (ZTS) represent the optimal values of (Zj.s) in the

solution of problem (LR). Then the optimal value of the Lagrangean objective

function Zp> (u, e, f) is an upper bound Zjjg on the optimal objective value of the

original NGC problem.. This bound is given by:

M M

M

I
 ̂ * no! no!!PEL. qeW.

P o l
reL seW

X fs (6-2°)

Now we consider the relative sharpness of this bound. Ideally, the

Chapter 6 203

Lagrangean multipliers should solve the following dual problem:

Zj) = min Zj)(u, e, f) , u > 0

Let ZLP denote the upper bound obtained from the solution of the LP relaxation of

problem (P) (Zj_p is another notation for bound UB3 of chapter 5). An analytic

result given by Geoffrion [1974] allows us to compare Zq with Z^p. The result

states that in general Zq <, Zjjp.

In the lagrangean problem (LR) we observe that the optimal values of the

variables will be integer whether we require it or not. Thus Zj}(u,e,f) is not

decreased by removing the integrality restrictions on the variables from the

constraints of problem (LR). Geoffrion calls this the " integrality property The

implication of the property is fairly immediate and can be given by the following:

THEOREM 1: Let the LP relaxation be feasible and let the Lagrangean relaxation

have the integrality property. Then the maximum value of the Lagrangean

relaxation is equal to the value of the LP relaxation.

Since (LR) possesses the integrality property, by Theorem 1 its maximum

value equals the value of the LP relaxation of (P), i.e Zp = Zjjp. The best choice of

approximating the Lagrangean multiplier values u, e and f for (LR) is then the

optimal values of the dual multipliers from the LP relaxation of (P). However, a

nice feature of the Lagrangean method is that it is not necessary to solve the dual

problem which is generally a large LP even for small size NGC problem (chapter 5).

The method used to optimise Z^(u, e, f), called subgradient optimisation, is more

powerful than methods available for solving the large scale LP relaxation of (P).

Chapter 6 204

Our purpose in section 6.4, is to show how subgradient optimisation used

in conjunction with Lagrangean relaxation is successfully used to provide us with

bounds for small to medium sized NGC problems which can then be embedded in a

tree-search procedure used to solve these problems. First, some reduction tests

derived from both problems (P) and (LR) are presented in the next section.

6.3 Problem reduction

As the optimal value Zjjg to the Lagrangean problem (LR) is always (for

any set of ujpq (> 0), er and fs) an upper bound to the optimal solution of the

original problem (P), a reduction in the problem can be achieved, if the enforcement

of a set of conditions in (LR) results in an optimal value Z jjg below some

(previously determined) lower bound Zjjg to (P). We then know that this set of

conditions can never be satisfied at the optimal solution to the original problem e.g if

forcing Qj pieces of type i in R to be cut from Aq takes the corresponding solution

value below Zj jj then we know that Qj pieces of this type can never be produced

by the optimal solution, leading us to consider at most Qj-1 pieces of type i as

candidates for cutting.

Let Pj and Qj be the minimum and maximum number of pieces of type i

that can be cut from Aq (0 < Pj < Qj for all i = 1,..., m).

The first three reduction tests presented below are derived from the original

problem (P).

Chapter 6 205

{ 1) Overlapping pieces

We can update Qj, the maximum number of pieces of any type i in R that

can be cut out of Aq (i = 1 , m), in the following way:

Consider any two types of pieces in R, (i* and j* say), that overlap such

that <Xj* + 0Cj* > <Xq ; i.e a piece of type i* and a piece of type j* cannot both be

cut from Aq with their bottom left-hand comers at the same width. Let

bj* = Pj* / [_oq / a,j*J "1 Pj* denote the amount of Pq that is taken up with

cutting out Pj* pieces of type j*, where L**J denotes the largest integer less than or

equal to ** and [**! denotes the smallest integer greater than or equal to **. Then

the maximum number of pieces of type i* that can be cut out using the remainder of

Aq is given by

Qi* = Lao/ 04*J L(Po - bj* > / Pi*J (6-21)

If (^* < Qi* then Qi* can be updated and set equal to Qi*. Applying this

reduction test to the example shown in figure 6.1, we find that at most two pieces of

type i* can be cut out of Aq (note that three pieces of the same type are given in R),

since at least one piece of type j* has to be cut (types i* and j* overlap).

Using a similar argument, the maximum number of pieces of type j* can be

updated by

Qj* = min (Q j* , Lao / a j* J LPo" Lcxq/ c4*j 1 Pi*) / Pj*J) (6.22)

Equation (6.22) is derived by considering how much of Aq is taken up with cutting

out Pi* pieces of type i* and using the remainder of Aq to cut out pieces of type j*.

Chapter 6 206

Piece i*

(7 , 3)

(7, 3)

(7 , 3)

Qj. = 3

Piece j*

(5 , 4)

(5 ,4)

(5, 4)

P:*=1, Qj*=3

Figure 6.1 Reduction Test 1 : Overlapping Pieces.

Chapter 6 207

Expressions like (6.21) and (6.22) also hold for types of pieces for which Pj* +

Pj* > Po •

£ 2) Free Area

Qj can also be updated for any type in R (i = 1 , ...»m) as follows:

Consider a certain type in R (i* say), with minimum number of pieces

required to be cut from Aq given by Pj*. Let

represent the area of Aq that is cut out by Pj pieces of each type j (j=£i*) in R.
Then the maximum number of pieces of type i* that can be cut out using the

remainder of Aq is given by

Qj* — Pj* +[_(cxq Pq - A j*) / ((Xj* Pj*) _J.

If Qj* < Qj* then Qj* can be updated and set equal to TJj* .

(3) Knapsack area program

Define ty = 1 if the jth piece of type i is cut from Aq (j - \ f })

m

J*i*

= 0 otherwise

Chapter 6 208

Then the best set of rectangles in R that are cut from Aq limited by its area is

given by:

Problem KNAP1

m Qi

ZKN = max £ X li jvi
i=l j= l

subject to

Qi

pi - X ‘j v 1= i ' •••’ m
j=l

m Qi

X X «iPilij 2 “oPo
i= l j = l

(6.23)

(6.24)

(6.25)

tyE { 0, 1) V i= 1, m, j = 1, ’Qi (6.26)

This program can be viewed as a knapsack problem which is easily solved

by the standard dynamic programming algorithm for the Knapsack problem (Sahni

and Horowitz [1579]). Its solution value is clearly an upper bound on the optimal

solution to problem (P). A reduction test is derived from this program which is

used to update both P̂ and of type i for all i = 1 , m. We can estimate a

penalty value that results from forcing exactly q* pieces of a particular type i* to

be cut from Aq where Pj* < rj* < Qj*. The method outlined below is used to

obtain penalty values for a particular type i* inR.

Chapter 6 209

Let ZjQyj (q*) be the upper bound obtained from (KNAP1) by forcing

q* pieces of type i* to be in the solution of problem (KNAP1) and Zgg be some

(previously determined) lower bound to problem (P). Let

represent the area of Aq that is taken up with cutting out Pj pieces of each type j

(j£i*) in R and the associated total value of the pieces cut, respectively. The

procedure is then described as follows:

(a) Set q* = P ^

(b) Solve the following Knapsack problem:

m m
and

Qrpi

j# *

subject to

Qrpi

J^i*

tjk e { 0, 1 } V j = 1 , m (j /= i*), k = 1 , Qj

Chapter 6 210

(c) Set q* = q* + 1. If q* < Q ^ go to step (b); otherwise continue.

(d) By investigating all values of q* where Pj* < r j* < Qi* , we obtain a set

of upper bounds Z ^ ^ (q*) which are then compared with Zj^g in order to

update P̂ * and Qj* accordingly.

Updating of Pj*:

If we find that cutting q* (P̂ * ^ q* £ Qi*) pieces of type i* from Aq produces

an upper bound below Z^g , then Pj* can be set equal to (q* + 1) in the optimal

solution of problem (P); otherwise P̂ * is set equal to q*. Thus P̂ * can be updated

by

Then Zjq ̂(q*) = Z g + V^* + q*

P̂ * = max (Pi*, 1 + max { q* 1 Pi* < q* < Qi* , Zjq^ (q*) ^ Zj^g))•

(Note that if Pi* > Qi* then the current solution to (P) is infeasible.)

Updating of Oj*:

If the upper bound Zj^q (Qi*) obtained when forcing Qi* pieces of type i* to be

cut from Aq is less than Zj^g , then we can reduce Qi* by one. Thus Qi* can be

updated by

Qi* = min (Q^, min { q* I q* = Qi* , (Qi*-1),..., (Qi*-Pi*) and

ZKN (ri*) - ZLB) “ 1)

(Note that if Q i* < Pj* then the current solution to (P) is infeasible.)

The following four tests are derived from the Lagrangean problem (LR) by

Chapter 6 211

estimating the decrease in the upper bound Zjjg that may result from forcing a set of

variables to be in the solution of (LR).

(4) Free Value

A reduction test similar to Test (2), can be used to update Qj for any type i

in R in the following way:

Consider a certain type in R (i* say) with minimum number of pieces

required to be cut from Aq given by P̂ *. Let

cut out of Aq. Then the maximum number of pieces of type i* that can be

considered for cutting is given by

where Zjjb is an upper bound on the optimal solution to problem (P). If (Jj* < Qj*

then Qj* can be updated and set equal to Qj*.

(5) Penalties on the Number of Cut Pieces

m

j£i*

represent the total value associated with Pj pieces of each type j (j£i*) in R being

Qi* = P̂ * + |_(Zjjb - Vj*) /\)i* J

It is clear from the structure of the Lagrangean program (LR), that we can

Chapter 6 2 1 2

calculate an upper bound on the solution obtained with exactly q pieces of type i cut

from Ag (i = l , m). Thus, a reduction test is derived from (LR) in order to

update both Pj and Qj of type i for all i = 1 , m using the method outlined

below (Note that the Knapsack area program of Test 3 is also used to update Pj and

Qi).

Consider a particular type in R (i* say). Let Zj^g (q*) denote the

penalty value obtained from (LR) by forcing q* pieces of type i* to be in the

solution of problem (LR) and Zj^g denote (some previously determined) lower

bound to problem (P). Let Sj*j* represent the largest (Gj*p - Hj*q) value

associated with the j* th piece of type i* (p 8 Lj* and q e Wj*) in the Lagrangean

solution; then the upper bound Zj^g (q*) is given by

Qj*

ZUB" X f (
j*=l

X Gj*pxj*p
P 6 L -*

X Hj*q Yj*q) + X Si*j*
qeWj* f =1

where Z jjg is an upper bound on the optimal solution to problem (P). The second

term, in the above expression, represents the cost of removing all pieces of type i*

obtained by the Lagrangean solution and the third term, the cost of forcing q*

pieces of this type to be in the solution.

By investigating all values of q* where Pj* < q* < Q^* and using (6.27),

we obtain a set of upper bounds ZgR (q*). These values are then compared with

ZLB so that Pi* and Qj* can be updated as follows:

Updating of Pj*:

Pj* = max (Pj*, 1 + max { q*[Pj* < q* < Qj* and ZgR (q*) ^ Zgg })

Chapter 6 213

e.g if the upper bound obtained when q* = Pj* is less than Zj^g, then we can

increase Pj* by one.

Updating of Oj*:

Qj* = min (Qj*, min { q*| q* = Qj* , (Qj*-1) , (Qj*-Pj*) and

ZLR (ri*) - ZLB) " 1)

e.g if the upper bound obtained when rj* = Qj* is less than Z^g then we reduce

Qj* by one.

(Note that if updating of Pj* and Qj* results in Pj* > Qj* then the current

solution to problem (P) is infeasible).

(6) Penalties on Cut Positions

This reduction test is derived from the LagraBgean program (LR) and is

used to calculate penalties for setting variables xjp and yjq to one (or zero) in the

Lagrangean solution (i.e forcing piece j to be cut with its bottom left-hand comer at

position (p,q) on Aq (or not)) for all pieces in R (j = 1 , ..., M).

Consider a particular piece in R (j* say). First, we distinguish two

separate cases for cutting this piece with its bottom left-hand comer at a specified

location on Aq.

(a) Setting xj*p = 1 (where the corresponding Lagrangean value is zero i.e

Xj*? = 0); p e Lj*. The penalty in setting xj*p to one in the solution of problem

(LR), denoted by Z j(j*, p), is given by:

Chapter 6 214

ZUB " ̂Gj* r" H

-Hf q) if X Xj*k=1 ^ X Yj*l= 1 (6'28)
keL.* teW.*

j* J

Zyg + max (G-* - H-*) otherwise
qeW|*

(6.29)

Equations (6.28) and (6.29) preserve the condition that piece j* may be included in

the Lagrangean solution at most once. Location (r,s) on Aq [equation (6.28)] is

picked by the Lagrangean solution as the best possible position such that piece j* can

be cut with its bottom left-hand comer at (r ,s). Then, the second term of equation

(6.28) represents the cost of replacing location (r,s) in the Lagrangean solution by

another location (p,q) on Aq which is determined by the maximisation term in both

equations. This term represents the cost of cutting piece j* with its bottom left-hand

comer at some location (p,q) in the modified solution of problem (LR) (i.e with (

r,s) replaced by (p,q)) . If the penalty value Z j(j*, p) is less than Zj^g , a

lower bound on problem (P) corresponding to a feasible solution, then we cannot set

xj*p to one in the optimal solution and so xj*p can be deleted from problem (LR).

(b) Setting yj*q = 1 (where the corresponding Lagrangean solution Yj*q = 0);

q e Wj*. The penalty in setting yj*q to one in the solution of problem (LR),

denoted by Zj(j*, q), is given by:

Z U Q ~ (Gj*r - H

Chapter 6 215

(Gj*p-Hj*q) if X Xj*k=1 and X Yj*l = 1 (6-3°)
P e Lj%> p^r k e L.* i e W*

Z[JB+ max^ (Gj*p ‘ Hj*q) otherwise
P e Lj*

(631)

These penalties are derived in the same way as equations (6.28) and (6.29). If

Zj(j*,q) is less than Zj^g, then yj*q can be deleted from problem (LR).

It is clear from the Lagrangean problem that a penalty value can also be

calculated for not cutting piece j* with its bottom left-hand comer at a specified

location ((p, q) say) on Aq. Let Zq (j*, p, q) denote the penalty in setting both

xj*p and yj*q to zero (where Xj*p = 1 and Yj*q = 1); p e Lj* and q e Wj*.

Let (r*,s*) represent the best location (on Aq) in the Lagrangean solution picked

for cutting piece j* (if piece j* has to be in the Lagrangean solution). Then the cost

of removing location (p,q) from the solution is represented by (Gj*p - Hj*q) and

the cost of bringing location (r ,s) into the solution by (Gj*r* - Hj*s*) where

G ^1 y p y -H. *c*r s
= max

r e Lp, s 8 Wj*, r£p, s#q
{ G.*i j*r H-*). J*s J

Thus Zq (j*, p, q) is given by:

Zu b “ (Gj*p " Hj*q ̂+ ̂Gj*r* " Hj*s* ^

if X Xj*k=1 md X Yj*t = 1
keL,» leWj*

(6.32)

Chapter 6 216

Z u B - ^ p - *) +max {(Gj*r* - Hj*s*), 0 } otherwise
(6.33)

Equations (6.32) and (6.33) preserve the condition that piece j* may be included in

the Lagrangean solution at most once. If Zq (j*, p, q) is less than Zy then we

can cut piece j* with its bottom left-hand comer at location (p,q) in the optimal

solution and so both xj*p and yj*q can be set to one in problem (LR).

(7) Knapsack problem based on the Lagrangean solution

A knapsack area program can be written similar to problem (KNAP1)

(equations (6.23) to (6.26)], with the difference that the objective function

coefficients are values obtained from the Lagrangean problem (LR). Thus we

define

ty = 1 if the jth piece of a type i in R is cut from Aq (j = 1 , Qy)

Also we define Sy to be the largest (Gjp - Hjq) value associated with the jth piece

= 0 otherwise.

of type i (p 8 Ly and q £ W j) in the Lagrangean solution; then the best set of

rectangles in R that are cut from Aq limited by its area is given by:

Problem KNAP2

ZjQyj — max

Chapter 6 217

subject to

m

m

E E «i Pi ii j s aoPo
i=i j= i

tjj e { 0, 1 } V i = 1,..., m j = 1,..., Q{

This program can be viewed as a knapsack problem which is easily solved. Its

solution value is clearly an upper bound on the optimal solution to problem (P). A

reduction test is derived from this program which is used to update both Pj and Qj

of type i for all i = 1, ..., m. We can estimate a penalty value that results from

forcing exactly rj* pieces of a particular type i* to be cut from Aq where Pj* <

q* < Qj*. The method outlined below is used to obtain penalty values for a

particular type i* in R.

Let (q*) be the upper bound obtained from (KNAP2) by forcing q*

pieces of type i* to be in the solution of problem (KNAP2) and Zj^g be some

(previously determined) lower bound to problem (P). Let

P.

> i*

m
and

j#i*

represent the area of Aq that is taken up with cutting out Pj pieces of each type j

(j#*) in R and the associated total value of the pieces cut, respectively. (r̂ *)

Chapter 6 218

is then given by

ri< m

ZB + Vi * + I V j + 2 I « j 0 j X X «ipq +
J-1 J-1 p e L. qeW .p e L j q - j

f l o X ^ X ^ X X ^ Zrs
r e L s e W r e L s e W

where Zb is the solution to the following knapsack problem:

max x x % %
j= l k=l

subject to

Q-P.
m 1 J

X X aj pj V - a 0 p0 ' V Pi
i=l k=l J J

-A.
j=l
J#*

tjk e { 0, 1 } V j = 1 , m (j £ i*), k = 1 , Q.

By investigating all values of q* where Pj* < rj* < Qj* and comparing the

corresponding upper bounds (rj*) obtained with Zk g, we can update Pj*

and Qj* accordingly (see Reduction Test 3).

Chapter 6 219

6.4 Subgradient Optimisation

As mentioned in section 6.2, once Lagrangean Relaxation has been applied

to a general integer linear problem [equations (6.1) to (6.4)] we must then

determine the value of the Lagrange multipliers X* that will optimise the upper

bound on the problem. We are then interested in finding the vector X* which

provides the tightest bound by solving the dual problem

(D): ZD (?i*) = min ZQ (X*)
X

where Z p (X) is the upper bound obtained by the Lagrangean problem (PR^)

[equations (6.5) to (6.7)].

Finding X* is not a simple task; however A,* can be approximated by

using a subgradient optimisation procedure. This is an approach for approximating

the minimum of certain piecewise linear convex functions. It has been effective in

handling some difficult large scale combinatorial problems and has already been

applied to the generalized assignment problem, travelling salesman problem and

multicommodity maximum flow problem with successful results. Computational

performance and theoretical convergence properties of the subgradient method are

discussed in Held, Wolfe and Crowder [1974].

The method basically involves the application of a gradient method to

minimisation of Zp (X) with some adaptation at the points where this linear

function is nondifferentiable. In general, the gradient of Zp (X) at differentiable

points is given by Ax - b . At nondifferentiable points, the subgradient method

chooses arbitrarily from the set of alternative optimal Lagrangean solutions to (PR^)

Chapter 6 2 2 0

and uses the vector Ax - b for this solution as though it were the gradient of

Zj)(A,). The result is a procedure that determines a sequence of values for X by

applying the formula

initial vector using an observation which is applicable to a particular type of

problem.

Equation (6.35) also uses a stepsize t^ in a different way than it is

normally set in a gradient method. A fundamental theoretical result given in Held,

Wolfe and Crowder [1974] states that

5lk+1 = max { 0, ^ (b - Ax^) }. (6.35)

In this formula, t^ is a positive scalar step size and x^ is an optimal solution to

(PR^k), the Lagrangean problem with dual variables set to A,X

The above multiplier updating procedure requires an initial vector AP to

start with; X® = 0 is a natural choice. It is possible, however, to generate a better

k

i = l

then Zd (A^) converges to its optimal value Zq (X*). A formula for that

has been proved effective in practice is given by:

nk (̂ ZD ^ ^_ZLB^

IIS II
2

(6.36)

Chapter 6 2 2 1

In this formula, ZLB is the objective value of the best known feasible solution to

(P), is a scalar satisfying 0 < 7C ̂< 2 and II S II is any norm of the

subgradient vextor (b - A x) e.g

m

I
i=l

n
(b;

j=l

k
ai j Xj

The initial lower bound Zj^g can be obtained by applying a heuristic to problem (P).

Frequently, the sequence { 7t|< } is determined by starting with 7tĵ = 2 and

reducing by a factor of two whenever Zp () has failed to improve in a

specified number of iterations.

Justification of formula (6.36) as well as many other interesting results on

the subgradient method is given in Held, Wolfe and Crowder [1974]. Unless we

obtain a a£ for which Zq () = Zj^g , there is no way of proving optimality

in the subgradient method. To resolve this difficulty, the method is usually

terminated upon reaching a specified iteration limit

6.4.1 Implementation of Subgradient Optimisation for the NGC

Problem

In this section we present a subgradient optimisation procedure used in an

attempt to minimise the upper bound Z ^g (6.20) obtained from the Lagrangean

Relaxation of the NGC problem (section 6.2.1). The procedure incorporating

some of the reduction tests mentioned in section 6.3 is as follows:

(1) Choose initial values for the multipliers . No good indication exists on how

Chapter 6 2 2 2

to determine good starting values - we used

Uipq = 0 V i = l , M , peL^ and q sW j (6.37)

er = 0 V r e L and ws = 0 V s e W (6.38)

Determine an initial value for ZLB - the lower bound on the problem. This can be

done using any heuristic for the NGC problem (Chapter 7).

(2) Solve the Lagrangean program (LR) [equations (6.15) to (6.19)] with the

current set of multipliers obtaining the optimal objective value Z jjg [equation

(6.20)] and the associated variable values X ^, Yjq, Zj.s.

(3) Check if the Lagrangean solution (X ^ ,) and (ZTS) is a feasible

solution to the original problem (P) [equations (6.8) to (6.12)]. If feasible, then if

Zjjjj > Zl b > update Zgg with Zgg = Z^jg and STOP; else STOP. If not

feasible, then if Z jjg < Zm \n (die minimum bound obtained so fa r), update Z j ^

with Zmin = ZUB and continue; else continue.

(4) Stop if Zm£n = Zgg i.e the best Lagrangean upper bound and the lower

bound (corresponding to a feasible solution) coincide; else go to (5).

(5) Perform the reduction tests of section 6.3 based on overlapping pieces, free

area, free value, the number of cut pieces and the cut positions.

(6) Define the subgradient vectors U, E and F by:

Chapter 6 223

U

q+Pj-i p+otj-i

ipq= 2 « i Pi - « i Pi Xip- a i Pi Y iq- X X Zrs
s=q r=p

V i = 1 , M, peLj , q e (6.39)

M r

Er = P0 - X Pi X xiP- X Zrs V r e L (6.40)
i=l p=r-a.+l

peLj
se W

M s

Fs = a 0 ' X “ i X V X Zrs V se W (6.41)
i=l q=s-p-+l re L

qeWj

(7) Stop if Ujpq = 0 (for all i, p and q) , Ej. = 0 (for a l l r) and Fs = 0 (forall

s) ; else goto step (8).

(8) Calculate the step size t for use in updating the Lagrange multipliers by

n (ZUB " ^LB *
~~ 2

IIS II
(6.42)

where 0 < n < 2 and

M

IISI|2 = X X .i=l n e TP eLi qeWj

2
 ̂^ipq \i. > 0lpq reL se W

(6.43)

Chapter 6 224

(9) Update the multipliers by :

uipq = max (0, Ujpq - 1 Uipq) for all i = 1,...»M, p e L*, q e Wj

ej. = ej. - 1 Ej. for all r e L

fs = fs - tF s for all s e W

(6.44)

(10) Go to (2) to resolve the Lagrangean program with this new set of multipliers

unless one of the following conditions is satisfied:

(i) a sufficient number of subgradient iterations has been peformed

(i i) k falls below a very small positive value

in which case STOP.

At the end of the subgradient procedure, the optimal solution to the original

NGC problem (P) may have been found (step 4), but if not, the best Lagrangean

bound on the problem has been obtained which can then be used in a tree-search

procedure to solve the problem (Chapter 7).

Solving the Lagrangean problem (LR) (step 2) for a given set of multiplier

values û pq > 0, er and fs, we may obtain a solution (X^p,Y^q) and (ZTS)

which is feasible to the original problem (P). In general, this occurs rarely in

practice. However, it is not uncommon that the Lagrangean solution will be nearly

feasible and can be made feasible with some modifications. For example, we can

often obtain feasibility by solving different Lagrangean relaxations of (P) in which

certain variables are preset to fixed values or a large number of variables are

eliminated from the optimal solution, thus enabling smaller sized problems to be

Chapter 6 225

solved. Such relaxations can be obtained at various nodes of a tree-search used to

solve optimally the NGC problem (Chapter 7), providing us with good lower

bounds on (P).

6.4.2 Computational considerations on the choice of step size

No good indication exists on how to determine a good sequence { }

which is used in the computation of the scalar step size t^. For certain choices of

Ttjj., the number of iterations needed to reach optimality or the proof of infeasibility

of (P) will probably be higher. To gain insight into a more sensible procedure, we

have tried a number of ways for setting such a sequence. We present two rules

used in our computations.

In Rule 1, the sequence { } was determined by setting tcq = 2 and

halving whenever Z jjgk has failed to decrease in some fixed number of

iterations (3 in our case). The subgradient procedure was terminated in a finite

number of iterations (400) unless the scalar t^ dropped below 5 E-6 at an earlier

stage.

In Rule 2, we followed the approach of Held et al [1974] in setting n = 2

for 2n iterations (where n is a measure of the problem size). In our case, n is

taken to be equal to the sum of the sizes of the normal sets which are relative to a

particular NGC problem i.e n = I L I + I WI . Then, we were successively halving

both the value of k and the number of iterations until the number of iterations

reached a threshold value of five; 71 was then halved every five iterations until the

resulting fell below 0.005 .

Chapter 6 226

Rules 1 and 2 have been tested on twelve problems (B1-B12) drawn from

the literature (Beasley [1985b]). We solved them using the subgradient method as

described in section 6.4.1 without performing any reductions tests (i.e excluding

step 5 of the subgradient procedure). The results of this experiment are found in

Table 6.1 . In this Table we give, for each problem, a description of the data, the

value of the integer optimal solution, the best lower bound Zjjq (corresponding to

a feasible solution), this being obtained from the table of computational results

given in Beasley [1985b]and the number of variables involved.

To form an idea of the convergence of each Rule for , we also give for

each problem, the best upper bound (Z j ^) obtained from the subgradient

procedure, the number of iterations required and the time taken to reach this value.

In both cases, converges to 0, with each successive value equal to half the value

on the previous iteration. The results show that the quality of the bounds obtained

using both rules is generally the same. They both converge to a value which is on

average 5% away from the optimal solution (note that only in Problem B l, the

duality gap is round 27% and in Problem B7, the optimal solution is found at the

first iteration). However, the rate of convergence differs drastically. When Rule 2

is applied, the subgradient method converges in a considerably smaller number of

iterations. Only in Problems B4 and B11, Rule 2 requires 5 and 17 iterations more

to reach bounds which are nearer to the optimal solution by 1.5% and 0.9%

respectively. As a result of better convergence, Rule 2 generally has a much lower

computational cost. Figure 6.2 plots every twenty iterations, the least value found

during the previous twenty iterations of the upper bound Zmjn for Problem B9

using both Rules 1 and 2 (curves Zmjn ̂ and Zm n̂^ respectively). This plot

clearly shows the linear convergence of to Zjy (X*) which is virtually

assured by our step - size choices. It is also clear that using Rule 1, starts

converging at a much later stage. Since computational results showed that Rule 2

Chapter 6 227

Details of Test Problems

Problem
Number (a0,60) m ill |w|

Optimal
Solution

Lower
Bound
< h s >

Number of
Variables

B1 (10,10) 5 7 6 164 164 186
B2 (10,10) 7 10 10 230 230 310
B3 (10,10) 10 9 10 247 246 369
B4 (15,10) 5 3 10 268 268 222
B5 (15,10) 7 6 10 358 358 297
B6 (15,10) 10 13 10 289 289 386
B7 (20,20) 5 14 20 430 430 606
B8 (20,20) 7 6 20 834 834 655
B9 (20,20) 10 18 17 924 924 817
BIO (30,30) 5 7 7 1452 1452 1127
Bll (30,30) 7 18 27 1688 1688 1325
B12 (30,30) 10 27 30 1865 1770 1659

Results of Rule 1 Results of Rule 2

Problem Upper Time to Upper Time to
Number Bound Number of Obtain Bound Number of Obtain

7 Iterations 7 n Iterations n
U .) Z . a L .) l 1 .

mAJL rru.n men rru.n

B1 208 123 1.3 209 79 1.2
B2 257 218 4.5 2 5 8 100 2.6
B3 262 166 3.6 261 96 2.7
B4 275 70 0.7 271 75 0.7
B5 362 128 5.0 365 89 3.6
B6 317 178 5.2 317 110 4.5
B7 430 1 2.8 430 1 2.8
B8 919 400 18.6 922 122 8.9
B9 947 400 47.3 946 160 16.7
B10 1523 200 22.2 1533 133 23.3
Bll 1818 176 39.2 1803 193 40.8
B12 1972 400 104.3 1964 240 120.7

Table 6.1 The Subgradient Method using two different
Rules for setting tt̂ .

Va
lu

e
of

B

o
u

n
d

♦ Number of Iterations

Figure 6.2 Descent of the Lagrangean Bound for Problem 9 tooo
using Rules 1 and 2.

C
hapter 6

Chapter 6 229

performed better than Rule 1, we applied the former to compute the sequence { t^ }.

The denominator of formula (6.42) includes basically any norm of the

subgradient vectors U, E and F. In our computations, we used an expression

which involved the sum of squares of these vectors [equation (6.43)]. Note that in

the sum of squares of vector U, we included only those Ujpq for which the

corresponding multipliers Ujpq were stricfty greater than zero. This choice was

based on the observation that only very few Ujpq multipliers ~ at most as many as

the pieces in R i.e

allowing us to compute a total sum of squares of vector U of much smaller value.

Having obtained a small value for the denominator of formula (6.42), a sequence

{ t^ } was generated that did not converge to zero very quickly. On the other fatvd,

summing over all Ujpq's, would lead us to a choice of step size t^ that would still

converge to zero, but more quickly. In general, if the step size converges to zero too

quickly, then the subgradient method may converge to a point other than the optimal

solution, provided convergence happens at all. This observation has been confirmed

in a result given in Held, Wolfe and Crowder [1974] (also mensioned in section

6.4). Therefore, we used formulae (6.42) and (6.43) to compute { t^ } which

performed well on a variety of problems. The results are shown in the section

dealing with computational results.

m

i=l

~ are nonzero among all Ujpq' s obtained at any iteration
m

i=l

Chapter 6 230

6.5 A General Procedure based on Subgradient Optimisation and

Reduction Tests

Before carrying out the subgradient optimisation procedure of section 6.4.1,

for any NGC problem, we use some of the problem reduction tests described in

section 6.3. Thus we develop a more general approach to solve a problem, at the

end of which either the optimal solution is found or a good upper bound on the

problem is obtained. In the latter case, a reduction in the size of the problem may be

achieved, because the reduction tests may exclude some pieces from cutting, identify

others as neccessary to be cut or eliminate a number of variables. A tree-search

procedure for the NGC probelm can then be used to obtain the optimal solution

(Chapter 7). The general procedure is as follows:

(1) Reduction: Carry out the first three reduction tests of section 6.3, namely the

tests based on overlapping pieces and free area to reduce Qj and then the Knapsack

area program reduction test to update both Pj and Qj for all i= l , ..., m .

(2) Normal Patterns: The sets of normal cuts L and W, and Wj for all i= l , ...»

m are calculated for the reduced problem of step (1).

(3) Subgradient Procedure: Carry out the subgradient procedure as described in

section 6.4.1. If at any iteration, one of the following conditions is satisfied, then

the problem is solved optimally and the general procedure is terminated with Zj j j

being the value of the optimal solution:

m

(l) m m (^ z \j -q ^ ZLB
i=l

Chapter 6 231

m

(H) 2 pi« iP j> «0 P0
i=l

(i ii)

m

I
i=l

Pi yi > Z UB

If no optimal solution is found at the end of the subgradient procedure, the

set of Lagrange multipliers that gave the minimum upper bound (Zjxnn) m recalled.

Let u*, e* and f* denote this set of multipliers.

(4) Reduction: The reduction tests of step 5 of the subgradient procedure are

performed using u*, e* and f* . In addition, we carry out the two Knapsack area

program reduction tests 1 and 7. Typically, these reductions remove a large number

of the possible cutting patterns. If no reduction is made at this step, we terminate

the general procedure; otherwise a further 30 iterations (arbitrarily chosen) of the

subgradient procedure are performed, using the above three termination criteria (

step 4), in order to see if any advantage can be taken from the problem reduction.

6.6 Computational Results with the given Procedure

The general procedure described in the previous section was coded in

FORTRAN and was tested on a Cyber-855 computer. It was investigated

computationally on twelve problems which were randomly generated by Beasley

[1985b] (B1-B12). The method of data generation used is the following: m real

numbers rj for i = 1,...» m are randomly generated from the uniform distribution

Chapter 6 232

U [0, cxqPo/4] . The dimension cxj of each piece is generated from the integer

U [1, ocq] and the dimension is obtained by setting Pj = P q / oq! . An

integer value for each piece, is set equal to cqPj multiplied by a real random

number drawn from U [1,3] and rounded down. A maximum number Qj of

pieces of type i that can be cut from Aq is generated from the integer range U [1,3]

(note that Pj = 0 for all i = l , ...»m).

The twelve NGC test problems, included five, seven or ten types of pieces

in R to be cut from stock rectangles Aq of sizes (10,10), (15,10), (20,20) or (

30,30). Table 6.2 gives details of the problems solved.

To obtain a measure of the effectiveness of the reduction tests, we use a

reduction percentage 100 (1 - D2/D j), where D2 and Dj represent the value of

m

X « V pi>
i=l

at the start and at the end of the general procedure respectively. In problems where

the optimal solution is found by the general procedure, the reduction percentage is

set to 100%. Otherwise, the larger this value the greater the reduction that has been

achieved. The amount of reduction produced by the procedure in problem size is

shown in Table 6.2 .

In that table we give, for each problem, the size of the sets L and W

obtained for the reduced problem and the number of variables left after reduction.

We also give the number of Lagrangean multipliers involved in the relaxed problem,

together with the associated computation time required to obtain Zmjn . Times are

given in CYBER-855 seconds excluding time for input-output and the first reduction

Chapter 6 233

step of the general procedure. The value of the integer optimal solution (Z0pt)

obtained for each problem by the algorithm of Chapter 7, used to solve optimally

NGC problems, is presented in Table 6-2. ZQpt allows us to evaluate the quality

of Zjjjjjj by calculating the following percentage ratio:

r = 100 (Zĵ jj - Z0pt) / ZQpt

The values of the initial lower bounds for each problem, shown in Table 6.2, were

taken from Beasley [1985b],who developed a heuristic procedure capable of finding

good feasible solutions from any Lagrangean solution. In many cases the lower

bounds obtained were optimal.

From Table 6.2, we can see that for five out of the twelve test problems,

our general procedure found the optimal solution. The initial values of Z^g, used

by the procedure for Problems B4 and B7 , were verified to be optimal by solving

the associated Knapsack area program of reduction test 3 (section 6.3). In the

case of Problems B5, B9 and BIO, the general procedure found the optimal

solutions by performing 53, 43 and 1 subgradient iterations respectively. This

does not necessarily imlpy that the linear programming relaxation of problem (P)

gives an integer solution for these problems (since we do not use the simplex

method , we do not necessarily discover integrality when a problem is solved).

However, it can be seen from Table 6.1, that for these problems, the gap between

the best upper bound () obtained by applying the subgradient procedure of

section 6.4.1 (Rule 2 is used for the choice of step size) to the original problem and

the integer optimum is very small. In particular, it is estimated to be 1.1, 1.9,

2.4, 5.6 and 0 % for Problems B4, B5, B9, BIO andB7 respectively.

The computational results of the general procedure shown in Table 6.2,

Problem Data
Reduction

(%)
0 -V2/Vj)

Upper
Bound
< W

Lower
Bound
(Z LB)

Duality
Gap (A.)

(%)

Number of
Subgradlent
Iterations

Time in CDC
CYBER-855
seconds

Number of
Variables
Left After
Reduction

Number of
MultipliersProblem

Number (Olfl.&fl) m III l«l
Optimal
Solution
«„pt>

B1 (10,10) 5 7 6 164 30 194 164 18.2 75 1.6 163 113
B2 (10,10) 7 10 10 230 11 257 230 11.7 100 2.8 288 502
B3 (10,10) 10 9 10 247 38 261 246 5.6 96 2.5 280 538
B4 (15,10) 5 - 268 100 268 • 268 - - 0.04 - -

B5 (15,10) 7 6 10 358 100 358 358 - 53 1.2 234 157
B6 (15,10) 10 13 10 289 20 317 289 9.6 110 4.5 370 769
B7 (20,20) 5 - 430 100 430 430 - - 0.04 - -

B8 (20,20) 7 6 20 834 15 921 834 10.4 122 7.13 638 675
B9 (20,20) 10 18 17 924 100 924 924 - 43 5.2 714 1833
BIO (30,30) 5 7 7 1452 100 1452 1452 - 1 1.5 962 160
Bll (30,30) 7 18 27 1688 13 1798 1688 6.5 198 33.5 1301 2110
B12 (30,30) 10 27 30 1865

9
1963 1770 5.2 240 96.9 1630 5281

Table 6.2 Performance of the general procedure on 12 problems from the Literature.

C
hapter 6

Chapter 6 235

demonstrate that a large reduction in problem size ($ma((number of variables left after

reduction) is achieved by the reduction tests leading to a better performance in the

subgradient optimisation (fewer iterations, less computational cost, tighter

upper bound). An observation drawn from the computational experience is that

time increases with problem size. For the two largest problems that we solved, B11

and B12, each involving 1301 and 1630 variables - after being reduced by 13

and 9 % respectively - the computing time reached the values of 33.5 and 96.9

seconds respectively.

Bounds on problems B1 - B12 have also been obtained by Beasley

[1985k]. They are derived from a Lagrangean relaxation of a 0-1 integer

programming formulation of the NGC problem. Comparing with his results, we

notice that our procedure has a better performance on the larger problems, e.g the

bounds we obtained for Problems B ll and B12 are nearer to the integer optimum

by 3.7 and 1 % respectively, with no additional computational cost.

6.7 Conclusions

We applied Lagrangean relaxation to a 0-1 integer programming

formulation of the NGC problem. Subgradient optimisation was used to optimise

the bounds derived from it. Tests for problem reduction, both before the

subgradient procedure and at each subgradient iteration, were given and shown to

produce a large reduction in problem size.

Computational experience of the method on a number of problems of

differing size was presented.

Chapter 6 236

For problems, in which the optimal solution has not been found by the

procedure described in this chapter, the bounds obtained can be embedded in a

tree-search procedure used to solve these problems exaclty. Such a procedure is

developed in the following chapter.

Chapter 7 237

CHAPTER 7

A TREE - SEARCH ALGORITHM FOR THE NGC PROBLEM

7.1 Introduction

In this chapter, we apply a tree-search procedure to the NGC problem as it

has been defined in Section 6.1. First we describe how a finite number of

orthogonal cutting patterns of the cut rectangles on A0 can be generated. From

amongst these we choose the highest value pattern of demanded rectangles. We then

show how the process of obtaining such a most valuable orthogonal pattern of

rectangles can be considered as a tree - search. Certain conditions are derived and

imposed in order to limit the size of this tree - search. A bounding procedure is then

incorporated into the above tree so as to reduce the amount of search necessary

before the optimum solution is obtained. The Lagrangean bound on the solution of

the problem obtained in the way described in Chapter 6 is used during the search.

The computational performance of the algorithm is illustrated by tests

Chapter 7 238

performed on randomly generated problems. Results are given in the last section of

this chapter.

7.2 Description of the problem

We are given a rectangular stock-plate Aq of length ocq and width Pq and a

demand for Pj rectangles of dimensions (ocj, Pj) and value \)j for each j = 1,..., m.

Suppose that the total number of given rectangles is equal to M, so that

m

M = X Qj.
j = l

We denote this set of pieces by R = { rj, r2, ...» rM)• The problem is then to

obtain an orthogonal layout of all of the demanded rectangles in the stock plate if one

exists. Otherwise, a set of rectangles is to be cut from Aq that has the highest

possible total value, subject to the constraints on the number of pieces cut.

IfHj is the number of rectangles of type j included in a particular cutting

arrangement for Aq , then a "combination" is defined as any set of P j , j =1,..., m

such that all pj are non-negative integers and the set of rectangles represented by

the pj can be fitted within the stock-plate. We define the number of rectangles of

type j included in the kth combination by p^j . The problem is then to find a

combination k such that

Maximise
k

subject to

Chapter 7 239

pj 5 Hkj 5 Qj v J = !> ••• • m

The arrangement of a combination k within the stock plate is termed a

"pattenT (). For most combinations there will be a number of such cutting

patterns. These are produced by using a cutting process that involves restrictions

upon positioning of cuts in Aq. Only orthogonal patterns are considered so that

each of the edges of the cut rectangles is parallel to an edge of Aq. However, many

of these orthogonal patterns are not necessarily guillotineable.

In the following section, a procedure referred to as the "Enumerative

Procedure" is presented which is used to generate all possible patterns

corresponding to all combinations of rectangles in R. Then we describe how these

patterns can be implicitly enumerated as a general tree search.

7.3 Enumerative Procedure

We assume that each rectangle q in R has a fixed orientation i.e length 04

and width (3̂ . Then we arbitrarily choose some ordering for the set R of oriented

rectangles. One way of evaluating the contribution of each rectangle in the final

solution is using the ratio of each value 'Oj over its area a ^ . Assume that a

possible sequence r ^ , ..., rj^ is chosen by placing the rectangles in decreasing

order of the ratio 0)j / oq(3j. Using this ordering we describe a method of generating

a finite number of orthogonal patterns corresponding to all possible combinations of

the demanded rectangles in Aq.

The cutting process used for generating a pattern involves a heuristic

Chapter 7 240

sequential placement of rectangles in R in the large stock-plate Aq. A rectangle rj

is selected according to some criterion and then packed optimally with respect to

those already placed. The logic of the placement process follows a single rule which

may be described as "left-most downward placement" using the following

referencing method. The lower left hand comer of the stock-plate Aq will be

referenced as the point (0 , 0). The rectangle selected for packing next is placed

with its bottom left hand comer (b. 1. h. c.) at a location in Aq which firstly

minimises the X co-ordinate of the placement of the rectangle and secondly (if

more than one such location is possible) at a location which minimises the Y

co-ordinate of the placement. This process results in placing the selected rectangles

as far to the left of Aq as possible and then moved as far as possible downward. It

is implicit in this procedure that, within a particular pattern a rectangle is packed

optimally with respect to those already placed but without regard for those remaining

i.e once a rectangle is placed it is fixed until the end of the pattern.

Short [1973] explored in detail various heuristics and interactive techniques

for solving a variation of the problem stated in section 7.2. He supposed that the

length ocq of the stock-plate was effectively infinite. His aim was to obtain a layout

of the demanded rectangles on the stock strip that would minimise the length of the

strip. A heuristic sequential placement procedure for solving this problem was

presented using the rule of "left-most downward placement" of rectangles on the

stock strip. This procedure was tested in a number of test problems. The results

obtained were not satisfactory because of the lack of consideration of the

consequences of a particular placement on the remaining subproblem. So, it would

be desirable to incorporate some facility whereby the cutting process could

"back-track" and alter the selection and placement of some of the fixed rectangles

enabling us to generate different patterns. In this case we would have to determine

what criteria might be used when a back-track should take place, how far it should

Chapter 7 241

go, what the changes to the selection and placement process should be and how the

various patterns could be processed and recognised. The method we describe

below, based on an extension of the left-most downward sequential placement

procedure described by Short [1973] and DeCani [1979], carries out the above

functions allowing us to develop an exact approach for solving the NGC problem.

It will be convenient to illustrate the concepts involved using an example.

We consider the problem of cutting five rectangles from a stock-plate Aq of size

(8 ,6) using the dimensions and values of rectangles in R as shown in Figure 7.1.

The first rectangle in R, r j, is placed in the b.l.h.c. of the stock-plate Aq.

This placement is illustrated for the example in Figure 7.2 by the second layout.

Fig. 7.2 shows all possible layouts of rectangles of set R in Aq. A layout can be

characterised by £(k, t), where % is the identification number (the order in which

the layout is produced), k is the identification number of the completed cutting

pattern corresponding to the layout t, and l is the number of rectangles cut by the

kth pattern. When a layout is identified by ^ only, this means that the current

layout does not correspond to any completed pattern e.g. -17- represents the 17th

layout produced by the method in the process of generating a possible pattern

corresponding to a combination of rectangles including rectangles r j and *2 from

set R. One such possible pattern is described by 18 (9, 3) representing the 9th

pattern generated by the method resulting in three rectangles being cut from Aq.

Once we placed rectangle r j at position (0 ,0) in Aq, we then consider

allowable positionings for the rest of rectangles in R. According to a selection

process which will be described later in the chapter, we first pick rectangle r^. The

only allowable positionings for x^ are those in which it has one of its edges

collinear with an edge of r^ and where no further vertical-downwards or

Chapter 7 242

6

0 6

Vi = 15 2̂=20

v4=30
6

^5=35

^3 = Z,0
A-

■a

i
r5

0 7 0 2 0 A-

Figure 7.1 Stock - plate and pieces in R used for Illustrative
Example.

Chapter 7 243

horizontal-leftwards movement of r3 is possible. The resulting feasible layout is

the only one allowable for the rectangles r j and and it is illustrated in Fig. 7.2

by layout 3. Similarly, layouts 5 and 7 represent the two allowable layouts of

rectangles r j and V2 with 12 being the second possible rectangle (according to

the selection process) to consider for placement once r^ has already been placed.

Thus, the set of all allowable combinations of r^ with only one other rectangle in R,

when the former is placed at the b. 1. h. c. of Aq, is given by (3, 5, 7, 9 (4, 2),

10}. This set represents all allowable combinations resulting from layout 2 in the

way described above and is denoted by T (2).

To each layout £ of the above set (£ e T), corresponds another set T (^)

of allowable layouts obtained by placing each one rectangle in turn, of those in R

not included in the current layout, at all allowable positions in For example, we

consider an allowable layout of rectangles r^ and r j represented by 5. The only

allowable positionings for r4 are those obtained by applying the left-most

downward placement rule to layout 5. The resulting feasible layout is the only one

allowable for the rectangles r j, V2 and r^ corresponding to layout 5, and it is

illustrated in Fig. 7.2 by layout 6 (2, 3). Neither of rectangles and r^ can fit

in layout 5, so no further layouts are produced corresponding to layout 5. As a

result, T'(5) = { 6 (2, 3) } represents all allowable layouts resulting from layout 5,

with each rectangle in R being tested in turn for placement in Aq.

In general then, for each of the allowable layouts (^ say) of (i-1)

rectangles in Aq, the only allowable positionings for the ith rectangle are those in

which it has at least one of its edges collinear with an edge of at least one of the (i-1)

rectangles and where no further vertical-downwards or horizontal-leftwards

movement of the ith rectangle is possible. The resulting feasible layouts are the only

ones produced from layout

Chapter 7 244

We carry out the above procedure to generate all possible layouts of

rectangles in Aq starting with placing each rectangle of R, in turn at location (0,0)

of Aq i.e. initially, we obtain sets T (12), T (24), T (29) and T (37) by placing

r2> r3» r4 r5 at the b.l.h.c. of Aq, respectively. All resulting layouts in our

example are shown in Fig. 7.2.

For certain layouts (^ say) of (i - 1) rectangles, there is no allowable

position into which any ith rectangle can be feasibly fitted. Such layout £ of (i -1)

rectangles is then referred to as a " terminal layout ". This means that a complete

cutting pattern (k say) is generated corresponding to the layout t, of (i -1)

rectangles in Aq, which is thus identified as layout \ (k, i-1). A layout of all M

rectangles in Aq is also conventionally taken to be a terminal layout. All terminal

layouts of rectangles in Aq should be determined by the enumerative procedure,

producing a set of cutting patterns for Aq which is referred to as the " Basic

Pattern Set ". This set consists of all possible patterns corresponding to the various

combinations of rectangles in Aq, with each pattern k satisfying the following

conditions:

(i) No further rectangle can be added in Aq.

(i i) No rectangle in the layout representing the pattern can be moved in

either a vertical-downwards or a horizontal-leftwards direction.

Each pattern k, contained within the Basic Pattern Set, has a total value

for its cut rectangles given by:

i = 1

where l represents the number of rectangles produced by the pattern. The

Chapter 7 245

37 39(20,3) 40121.3) 41(22,2) 42(23,2)

31(16,3) 32 33073) 34(18,3) 35 36(19,3)

25 26(14,3) 27 28(15,3) 29 30

19(10,3) 2 0 21(11,3) 22(12,2) 23 (13,2) 2 4

13 14(6,3) 15(7,3) 16(8,3) 17 18(9,3)

1 2

(3,3) 9(4,2) 10 11(5,3) 12

4(1,3) 6(2,3)

Figure 7.2 All allowable layouts of rectangles in the
Illustrative Example of section 7.3.

Chapter 7 246

enumerative procedure then continues by choosing from amongst all patterns in the

Basic Pattern Set one having the highest total value V^. This results in an optimum

pattern of all M rectangles in Aq if one exists. Otherwise, the described procedure

determines a most valuable orthogonal pattern of rectangles in Aq.

In the Illustrative Example, the Basic Pattern Set consists of 23 patterns as

shown in Fig. 7.2. The optimum value occurs at layouts 16 (8, 3), 33 (17, 3),

36 (19, 3) and 40 (21 ,3) giving four patterns corresponding to the combination

of rectangles ^ r ̂ and r^ in Aq.

7.3.1 Tree representation of the cutting process

The enumerative method for generating all possible patterns in Aq, as

described in section 7.3, involves two main processes: the selection and the

cutting. The former will be described in the next section. The cutting process,

involving the sequential placement of rectangles, can be recorded in terms of a tree

which is described below.

All possible patterns in the Basic Pattern Set can be generated by developing

a tree, where a branching represents placement of a rectangle in Aq, using the rule

of "left-most downward placement". Thus, the branches emanating from the root

node of the tree correspond to the placement of all rectangles at the b.l.h.c. of Aq

and each node at the end of a branch represents a pattern of the rectangles produced

with the corresponding rectangle being placed at the b.l.h.c. of Aq.

The tree corresponding to the Example presented in section 7.2 is shown in

Fig. 7.3. Each node in the tree corresponds to a layout of rectangles in Aq, shown

1

Figure 7.3 Representation of the Enumerative Procedure by a Tree for the
Illustrative Example of section 7.3. to

$

C
hapter 7

Chapter 7 248

in Fig. 7.2 and is given two labels:

(i) a number n representing the identification number of the node

(i i) a pair of integers (l, v) shown within each circle, indicating the level (l) in

the tree in which node n lies and the order (v) in which it is derived from its parent

node. (Each node n in the tree has a unique parent node from which it is derived.

This is shown in Figure 7.3 by the use of an arrow originating from the parent and

pointing to node n).

A node n with label (l, v) in row l of the tree corresponds to an allowable

layout £ (n = 2;) of l rectangles in Aq. A terminal node with label (l, v)

corresponds to a terminal layout ^ (k, l) representing the kth pattern in the Basic

Pattern Set which produces l rectangles from Aq and is denoted by n (k). Thus

the Basic Pattern Set is represented by all terminal nodes of the tree.

The notation (l, v) assigned to node n which is derived from a parent node

(l - 1, v ') should be interpreted as meaning that the allowable layout of l rectangles

corresponding to node n has been obtained by placing any rectangle at an allowable

position to the layout of (l - 1) rectangles corresponding to node (l - 1, v '). The

aggregate of all resulting nodes (l, v) taken over all v corresponds to all allowable

placements of only one rectangle in R to the layout of (l - 1) rectangles generated

at node (l - 1, v '). For example, nodes 3, 5, 7, 9 (4) and 10 of the tree shown in

Figure 7.3 correspond to all allowable layouts obtained by placing in turn only one

rectangle from Set R to the layout corresponding to node (1 ,1) .

We, therefore, see that the procedure for generating all patterns, as

presented in section 7.3, is equivalent to determining all terminal nodes

corresponding to the above tree. The determination of the maximum value pattern

can, therefore, be thought of as searching the tree for the corresponding terminal

Chapter 7 249

node.

Thus, the dotted lines, as shown in Fig. 7.3, indicate the paths leading to

the four optimum patterns produced for the Illustrative Example.

7.3.2 A selection rule in the sequential placement of rectangles

The enumerative procedure, as described in section 7.3, requires the

development of a selection rule to determine the next rectangle to be placed in an

allowable position to a layout £ of l rectangles in Aq so that an allowable

layout §' of (l + 1) rectangles is produced. This selection rule represents the

branching rule used to generate a node n', representing layout from parent

node n representing layout

Short [1973] investigated a number of selection rules in developing

heuristic methods to solve the problem of Optimal Batch Execution on a

Multi-processing computer (Two-Dimensional Packing Problem). The first

approach he examined, was based on ranking the rectangles according to some

feature; either length, area, maximum dimension, perimeter length or diagonal

length (packing rectangles in pre-determined order). It is apparent from the results

that no one criterion was superior to all others in every case (a number of trial

problems was tested with the different selection rules). He then tried a hierarchy of

criteria, including minimizing a measure of " probable waste " obtaining some

improvement in his results. Our selection process is based on the rule that uses the

measure of " probable waste ".

Since the problem o f" value " maximisation is closely related to the problem

Chapter 7 250

of " waste " minimisation, it is desirable to generate cutting patterns of rectangles in

Aq of high value that also have high utilisation factors (the utilisation factor

indicates the percentage of the surface area of Aq used by a cutting pattern). It

would then appear reasonable to minimise the waste caused by selection and

placement of each rectangle. The problem is to determine a measure for waste which

can be attributed to a rectangle (it is the sum of areas in Aq likely to be unfilled

after placing a rectangle in a particular position to the current layout).

The measure of " probable waste " used in the sequential placement of

rectangles of the enumerative procedure is a combination of two types of waste. It is

either the current value for total waste (if the rectangle is placed in a position such

that it projects beyond the right-hand end of the current layout in Aq), or the waste

to the left of the trailing edge of the rectangle when placed. This measure effectively

truncates rectangles such that for evaluation purposes they do not project beyond the

right-hand end of the current layout in Aq. It represents the current waste which

will be unusable later. This interpretation of " probable waste " is then

incorporated in the selection process of the enumeration algorithm described in the

next section.

Two possible measures of " probable waste " are illustrated in Fig. 7.4.

Consider nodes 13 and 32 shown in Fig.7.3 for the Illustrative Example of

section 7.3. Node 13 represents a layout ^ of rectangles r2 and r$ in Aq

and node 32 represents a layout £2 °f rectangles r2 and r4. The waste attributed

to rectangle r^ by placing it in positions (4, 2) and (2, 2) in Aq to layouts

and ^2 respectively, is shown in Fig. 7.4.

Chapter 7 251

NODE 13

Figure /.4 Measures of "Probable Waste

Chapter 7 252

7.3.3 Description of the Enumerative Algorithm

Whichever technique is employed to implement the enumerative procedure

described in Section 7. 3, a critical feature is the data structure used to represent a

cutting pattern. The structure used must be such that it is simple to test if different

sequences of placements of rectangles lead to the same pattern and to rearrange the

structure when transforming one pattern into another. To achieve these requirements

for all types of patterns the structure described below is adopted.

The state at a node n in level l of the enumerative tree is described by four

lists L j, L2, L3 of rectangles and list S of locations in Aq. L j is the list of l

rectangles placed in Aq along the path that leads from the root of the tree to node n.

It represents a layout denoted by £ or \ (k, l) of l rectangles in Aq, with eight

entries (7j, q, jj, 0j, pj, qj, 04, Pj) for each rectangle q (i = 1,...» M)

where

7j represents the last rectangle placed in Aq in the current layout £ before adding

rectangle q

jj is the type of rectangle q

0j represents the number of rectangles of type j included in the current layout after

placement of q

Pj, qj represent the X and Y co-ordinates of the b. 1. h. c of rectangle q

oq, Pj represent the length and width of rectangle q.

L2 is the list of rectangles such that by placing any one of them in an

allowable position to the allowable layout of l rectangles represented by list Lj, an

allowable layout of (l + 1) rectangles can be obtained representing a node

derived from node n. In list L2 each rectangle q is represented by a six - part

label (q, jj, pj, qj, oq, pj) where all five entries have the same meaning as

Chapter 7 253

above.

L3 is the list of rectangles such that none of them is ever placed in any

allowable position in the layout of l rectangles corresponding to node n. Each

rectangle rj in this list is represented by a four - part label (rp jp Op (3j) with

these notations being interpreted as above.

Let the number of rectangles included in lists L^, L2 and L3

corresponding to a node n be denoted by I L j I, IL2 I and IL3 I respectively.

I I represents the level in which node n lies and IL21 represents the number of

nodes in the tree emanating from the current node n. Clearly there is no overlapping

between the three lists. If I L2 I = 0 then node n is a terminal node at which a

pattern n in the Basic Pattern Set is produced.

The state at node 32 after nodes 33 and 34 have been generated, shown in

Fig. 7. 3 for the Illustrative Example of Section 7. 3 would be described by the

lists of rectangles shown in Table 7.1, using i to head the column representing the

number of the rectangle.

The state at a node n is not fully described by lists L j, L2 andL3 of

rectangles. It is necessary to maintain a full list S of allowable positions in Aq in

the layout corresponding to node n for possible placements of rectangles. Since the

rule of left - most downward placement is applied by the cutting process, the task of

generating possible locations (points at which the b. 1. h. c. of a rectangle might be

placed) is relatively simple. Each time a rectangle is placed, two additional locations

are formed. One of these lies on the top edge of the rectangle projected back as far

as possible to the left. The other location lies on the right - hand edge of the

rectangle projected as far as possible downward. In list S, each location is

represented by (p, q) where p and q are its X and Y coordinates respectively.

Chapter 7 254

List Lj

1 ri ri J'i ei Pi °4 f t

1 Aq 4 4 1 0 0 2 6

2 4 2 2 1 2 0 5 2

List L2

1 ri h Pi <ii «i pi

1 5 5 2 2 4 4

2 1 1 2 2 3 3

List L3

1 ri h «i pi

1 3 3 7 3

Table 7.1 Lists LI, L2 and L3 of rectangles corresponding to node 32

of Fig. 7.3.

Chapter 7 255

The Set of allowable locations in Aq at node 32, shown in Fig. 7. 3

(before nodes 33 and 34 are generated), would be described by S = { (7 , 0),

(2, 2) } .

Before describing the enumerative algorithm that generates all possible

patterns for Aq, important points need to be noted.

Suppose that a set of rectangles has been placed in Aq in the ordered

sequence of r j, ...»q , ..., r ̂ producing a pattern k of l rectangles, with a

rectangle q being placed with its b. 1. h. c. at location (pj, q j). Let this layout £

(k, l) be described by List L^ (£). Considering the same combination of l

rectangles, it is possible that the enumerative procedure will produce layouts which

are identical to £ (k, l) by placing the l rectangles in any other ordered sequence

in which each rectangle q* (q* = q) is placed with its b. 1. h. c. at location (pj,

q^) in Aq. This results in duplicated patterns of the same set of rectangles. An

example of identical patterns is presented in Fig. 7. 5 (layouts 4 and 6).

Central to the enumerative procedure is the concept of " equivalent "

patterns. This is best shown by an example illustrated in Fig. 7.6. Consider

patterns 5 and 9 represented by layouts 11 (5 ,3) and 18 (9, 3), respectively,

of rectangles rj, r2 and r^ in Aq with reference to the illustrative Example of

Fig. 7. 2. Patterns 5 and 9 corresponding to the same combination of rectangles

are clearly not identical. It can be seen from Fig. 7. 6 that two closed wasted areas

are produced by each pattern (these areas are denoted by and W2 for the 5 ^

pattern and W j' and W2 for the 9 ^ pattern) . Each wasted area resulting from

cutting Aq by an orthogonal pattern corresponds to a closed space bounded by

straight lines which are orthogonal to each other. If we detach the four wasted areas

Chapter 7 256

1

3

1

Layout 1 Layout 2 Layout 3

3

1
2

Layout U

Figure

T 2

3

1
2

Layout 5 Layout 6

7.5 Identical Patterns.

Figure 7.6 Equivalent Patterns.

Chapter 7 257

from both layouts, we notice that area W j fits exactly in area W j\ Similarly, by

taking the image of area W2 with respect to the horizontal axis we obtain an

orthogonal shape that can be mapped exactly on area This means that cutting

a combination of rectangles from Ag using different patterns may result in identical

wasted areas which can be used for further processing in exactly the same way. The

patterns of rectangles producing identical waste are referred to as " equivalent

Four pairs of equivalent patterns are shown in Fig. 7.2 represented by

layouts { 3, 25 } , { 21 (11, 3) , 28 (15, 3) } , { 33 (17, 3) , 36 (19, 3) }

and { 16 (8, 3) , 40 (21 ,3) } respectively.

The number of both identical and equivalent patterns is relatively large

compared to the total number of layouts produced by the enumerative procedure

(Section 7.3.5 of Computational Results). It is therefore, desirable to generate

patterns of rectangles which are essentially distinct by eliminating from explicit

consideration layouts of rectangles when these lead to identical or equivalent

patterns. These duplications can be removed as follows:

Let node n represent a layout £ of l rectangles in Aq and q be the

rectangle chosen by the selection process to be provisionally placed with its b.l.h.c.

at position (p̂ , q^) to the current layout ^ producing a new layout of (l + 1)

rectangles (Q say). Let the provisional layout be described by List Lj () .

The algorithm checks whether by provisionally placing rectangle q at

position (pj, q j), a distinct pattern is generated or not. This test is performed by

comparing lists L^ of all patterns corresponding to the same combination of (l+ l)

rectangles with Lj (Q). Clearly, an identical pattern can be easily identified. If

L} () represents a duplicated pattern, then rectangle q is never added to layout

Chapter 7 258

£ at position (pj, q j).

By implementing the procedure described above, it is possible to

considerably reduce the size of the tree generated by the enumerative procedure.

In Chapter 6, we used the concept of " normal cuts ” to enhance the

formulation of the NGC problem. The same concept is used by the enumerative

procedure in the following way. If a rectangle (a , p) is placed with its b.l.h.c.

at some position (p, q) in Aq, then in the final cutting pattern there must be some

combination of the lengths cq of the available rectangles whose sum must be

exactly p and some combination of the widths pj of the available rectangles

whose sum must be exactly q. This pattern is called " normal" and it is apparent

that for any pattern there is a normal equivalent Normality is a property of a cutting

pattern that is relative to the set of pieces available for cutting.

L and W are the normal sets of X and Y - coordinates and have already

been defined in Chapter 5. Sets Lj and Wj have also been defined to include the

X and Y-coordinates of locations in Aq at which rectangle rj can be placed. It is

clear that using the rule of left - most downward placement of rectangles, the

enumerative procedure always generates normalised cutting patterns.

A few comments on the mechanics of the search procedure are necessary

before the enumerative algorithm is described:

The state of the search at level l in the tree is represented by:

(a) The list L j of eight - part labels corresponding to the current layout of l

rectangles placed in Aq so far.

(b) The list L2 of six - part labels corresponding to the rectangles which have

Chapter 7 259

been added so far to the current layout in Aq s o that an allowable layout of (l + 1)

rectangles is produced by placing each one of these rectangles in turn in Aq. List

L>2 may include rectangles which, when provisionally placed in Aq resulted in

identical or equivalent patterns. It may also include the same rectangle placed in

different allowable positions.

(c) The list L3 of four - part labels corresponding to the rectangles which have so

far been rejected by the algorithm to be placed to the current layout in Aq.

(d) The list S of locations in Aq available for placement of rectangles in the

current layout.

All above lists are updated for forward and backward branchings. Note that

forward branching takes place when I I + I L2 I + I L3 I < M. A diagramatic

description of the algorithm is shown in Fig. 7. 7. A detailed description is given in

Appendix A.

7.3.4 Computational Results

This Section presents the results obtained when the enumerative algorithm

described in Section 7.3.3 was applied to twelve test problems involving up to

seven types of pieces in R. The data for the first ten problems is fully presented in

Tables 5.1, 5,5 and 5.6 of Chapter 5. The last two problems have been taken from

Beasley [1985LJ5 they correspond to problems 7 and 10 in the table of

computational results presented in his paper.

The algorithm was coded in FORTRAN and run on a CYBER - 855

computer. Table 7. 2 describes its performance on the twelve randomly generated

test problems. It shows the data given for each problem, the value Z0pt of the

Chapter 7 260

Initialisation

Figure 7.7 Flowchart of the Enumerative Algorithm.

Chapter 7 261

optimum solution, the number of nodes in the tree as well as the number of the

essentially distinct patterns generated by the algorithm and finally the total time

needed to solve the problem.

The computational effort involved in solving the test problems by the

algorithm is described in terms of the number of nodes in the tree - search as well as

in terms of computing time. From Table 7. 2 we can see that there is a high

correlation between the number of nodes in the tree search and the total time needed

to solve each problem. The time needed to solve a problem strongly depends on the

number of duplicated patterns obtained for the problem. The number of nodes

generated by the tree search for a particular problem is obtained when (i) equivalent

patterns are generated in the search and (i i) when such patterns are eliminated from

explicit consideration.

The above observation is illustrated by the results obtained when problems

7 and 8 are solved by the tree - search procedure performed in both ways for each

problem. In the case of problem 7, the computer program took about 24.8

seconds on the CYBER - 855 to produce a tree of 1606 nodes without testing for the

existence of equivalent patterns (identical patterns are not generated) compared to

1017 nodes obtained in 64.7 seconds corresponding to clearly distinct patterns. In

the case of problem 8, the same program took about 17.2 seconds on the same

computer to obtain 1190 nodes compared to 861 produced, including pattern

equivalence testing, in 35.4 seconds. Finally, the computer program took about

52 minutes on the same computer to generate 7679 patterns corresponding to the

combination of seven rectangles in a (16, 16) stock plate as presented in Fig. 7. 8

(this problem is Problem No. 2 in Appendix B of this chapter). Almost double the

time was required to generate 5678 essentially distinct patterns for this problem.

Chapter 7 262

Problem

Number (ao* V m 1*1 |h |
Optimum
solution
Zopt

Number
of

Tree
nodes

Number
of

distinct
patterns

Total time
in

CYBER-855
seconds

1 (4,4) 3 2 2 100 6 4 0.02
2 (6,6) 5 4 6 31 106 59 0.9
3 (10,10) 5 7 7 116 208 122 6.5
4 (20,30) 5 2 3 680 56 35 0.7
5 (7,9) 4 3 9 54 24 12 0.04
6 (8,6) 5 6 4 85 37 21 0.08
7 (10,10) 7 9 10 198 1017 600 64.7
8 (15,10) 7 7 10 262 861 477 35.4
B1 (10,10) 5 8 6 164 203 93 1.7
B4 (15,10) 5 3 10 268 531 282 15.7
B7 (20,20) 5 14 20 430 9 1 0.05
BIO (30,30) 5 9 20 1452 963 470 42.0

Table 7.2 Results of the Enumerative Algorithm.

Chapter 7 263

Figure 7.8 A non-guillotine cutting pattern
of seven rectangles in A0

(Problem 2 of Appendix B)

Chapter 7 264

7.3.5 Conclusions

Based on the results presented in the last section we conclude the following:

(i) The procedure for recognising equivalent patterns in most cases takes up about

half of the computational time needed to solve a problem. However, this extra cost

is outweighed by reducing the tree length by 1/4. (Here we can emphasize the

possibility of improving the pattern recognition procedure currently used).

(i i) The computational effort required to solve a problem largely depends on the

number of pieces in R (It also depends on the dimensions of the available

rectangles relative to the dimensions of Aq i. e. sizes of normal sets).

It is clear that the enumerative algorithm of Section 7.3.3 can solve

optimally small size NGC problems. It will be shown in the following Section

how a Branch and Bound Procedure can be used to limit the tree search necessary in

order to determine an optimum solution allowing larger NGC problems to be solved.

Problem 6 of Table 7. 2 optimally solved by the algorithm described in

Section 7.3.3 is fully worked out in Figures 7. 2 and 7. 3, being used as the

Illustrative Example throughout this Chapter.

7.4 The Tree - Search Algorithm

As discussed in Chapter 6, in the event that, the subgradient procedure

Chapter 7 265

together with the problem reduction tests being used in a procedure as described in

Section 6.5., does not optimally solve the problem a reduction in the size of the

problem will have been achieved. The optimal solution to the reduced problem is

then obtained by developing a tree - search algorithm. A description of this

algorithm is presented below:

(a) Perform the procedure described in Section 6.5 at the initial tree node effecting

a reduction in the size of the problem to be considered.

(b) Select a node of the tree using a specified selection rule and pick an unplaced

rectangle associated with this node to branch o n . Using the selection rule described

in Section 7.3.2 a rectangle r j is chosen to be placed with its bottom left - hand

comer at some position (p, q) in Aq (the left - most downward placement

described in Section 7.3 is used) , such that the pattern of rectangles placed along

the branch emanating from the initial tree node to the current node forms a

normalized cutting pattern for Aq. We investigated placing rectangle r j at (p, q)

in Aq by setting variables , y ^ to one and

X xir ’ £ y;s
r e L j s e W j

r * p s * q

to zero at the current node. Note that if no tree can be found the tree search is

finished.

(c) Perform the subgradient procedure at each tree node - it is clear from the

Lagrangean program described in Section 6.2.1 that we can calculate an upper

bound for the optimal completion of each tree node as that program is easily adapted

to cope with the setting of (x^ , y ^) to specific values in the tree. Each node is

then labelled by the minimum upper bound Zmjn found during the subgradient

Chapter 7 266

iterations for that node.

(d) If a new feasible solution is found at (c) - the conditions for feasibility are

given in Section 6.4.1. - update the largest lower bound Z^g (Z^g corresponds to

a feasible solution) obtained so far accordingly.

(e) Discard any node in the tree that has an associated upper bound Zmjn less than

ZLb (i- e. backtrack) and go to step (b) .

7.4.1 Node Selection Rule

We decided to develop the tree search using a depth - first rather than a

breadth - first search strategy allowing us to select the tree nodes along branches

extending from the first to lowest levels. Thus, we can regard the tree, starting with

the leftmost branch, progressively developing the top to bottom branches and

working from left to right, as slowly building up all complete normalised cutting

patterns in Aq with each pattern being generated in the same way as in the

enumerative algorithm. By going to the lowest level in the tree as rapidly as

possible, although at the expense of temporarily ignoring potentially more promising

branches en route, feasible solutions (complete patterns) are generated at early

stages in the search. Once a pattern (k) in the Basic Pattern Set (Section 7.3)

is generated, its value constitutes a bound on the optimal solution of the problem

which can be used to prune the tree and hence reduce the area of search necessary.

Furthermore, if computer time is restricted, the best feasible solution (say,)

generated to date may be adopted.

A depth - first strategy was chosen for our problem since it was easily

implemented computationally (less computer storage and less book-keeping routines

Chapter 7 267

are required than the corresponding amounts involved in the use of a strategy of

always branching from the tree node with the current largest upper bound).

7.4.2 Branching Rule

At any tree node, the state of search is represented by Lists L j, L2, L3 and

S as they have been defined in Section 7.3.3. Let n be the tree node (excluding

the initial tree node) that has been currently picked by the node selection rule to

branch on. Let L4 = { q e R I q g L |, ^ * L2 U L3 } represent the set of

unplaced rectangles associated with node n from which a rectangle q must be

chosen to branch on . Set L4 is computed as follows. Consider any rectangle q

of type jj in Set R that is not included in the current layout in Aq represented by

L j. Rectangle q is excluded from further consideration if any other rectangle of the

same type has been already either placed in allowable positions to the current layout

to produce other layouts or found impossible to be placed. Once such a rectangle q

is found, it is then tested whether by provisionally placing it in all allowable

locations (p, q) e S available in the current layout, a new layout is produced which

is either identical or equivalent to a pattern generated so far. If the new layout is

essentially distinct, the corresponding probable waste (Section 7.3.2) is noted

and rectangle q belongs to Set L4.

If Set L4 is empty, then no branching from node n is possible; otherwise

a rectangle q e L4 with minimum probable waste is picked to branch on.

Chapter 7 268

7.4.3 Bound Calculation

Once a rectangle q is chosen to be placed with its b. 1. h. c. at position

(p, q) in Aq at node n - level t - variables Xjp and are set to one and both

summations

_X Xir and _X Yiq
reL., r*p seW., s * q

to zero in the current Lagrangean solution. The placement of rectangle q at (p, q)

also requires the setting of

P + tXj q + P j

X X Zrs
r = p s = q

- represents the area at Aq taken up by rectangle q - to zero. The Lagrangean

bound (Section 6.2.1.) becomes tighter by imposing necessary conditions on

some variables in the Lagrangean solution derived from the amount of " essential

waste " associated with the current layout of rectangles on Aq. The amount of

" essential waste " is computed as follows:

Let L^ represent the current layout of l rectangles in Aq at node n.

Since only (M - 1) rectangles remain to be placed, the essential waste (W) for

this layout may be taken as the sum of the areas of the waste regions corresponding

to L | into which none of the (M - 1) rectangles can fit. Let Q denote the set of

locations (r, s) that lie within these regions of essential waste. Since no rectangle

can be placed with its b. 1. h. c. at any location (r, s) e Q, we can set the

corresponding variable Zrs to one in the current Lagrangean solution.

Thus, in the Illustrative Example of Section 7.3, consider layout 10 of

rectangles rj and r^ as given in Fig. 7.2., with rectangles ^ and r4

Chapter 7

Figure 7.9 Layout of Rectangles Tj and
(see Fig. 7.2).

0 2

Chapter 7 270

remaining to be placed. This layout and the remaining unplaced rectangles are

reproduced in Fig. 7.9.

The shaded regions in Fig. 7.9 are essential waste regions, since it is

impossible for either of rectangles q or r^ to be placed in Aq so that they

cover these regions. The essential waste corresponding to this layout is equal to 3 +

4 = 7, the sum of the areas of these essential waste region and set C2 of locations

Thus, in the Lagrangean program solved at the tree node corresponding to the layout

of Fig. 7.9., variables Zj.s such that (r, s) £ Q are set to one.

The essential waste associated with a particular node increases as we move

from the top to bottom branches in the tree. The essential waste attributed to a

pattern of rectangles in the Basic Pattern Set is conventionally taken to be the total

waste area of the corresponding pattern i.e

Once a tree node is found to be terminal, all X and Y variables associated

with the rectangles that are not in the current pattern should be eliminated from the

corresponding Lagrangean program. In the case of a non - terminal node, certain

Xjp and/or Yjq variables associated with any yet unplaced rectangle rj to the

current layout should also be eliminated if, by placing rectangle q with its b. 1.

h. c. at a location with an X - coordinate equal to p or a Y- coordinate equal to q,

it overlaps Aq or any other rectangle in L^.

is given by { (0, 4), (1 ,4) , (2, 4), (7, 0), (7, 1) , (7, 2), (7, 3) }.

Chapter 7 271

7.4.4 Computational Considerations

In this Section we present the computational implementation of the tree -

search algorithm as described in Sections 7.4.1 to 7.4.3.

At the initial tree node, a procedure based on the subgradient procedure and

problem reduction tests was carried out in the way described in Section 6.5., so it

will not be repeated here. An initial value for Zj^g used by the procedure - a value

of a feasible solution to the problem - was very easily obtained - it was taken to be

equal to the value Vj of the first complete pattern in the Basic Pattern Set generated

by the tree - search.

If no optimal solution was found at the initial node then the set of

Lagrangean multipliers that gave the minimum upper bound Zmjn were recalled

—let u*, e* and f* denote this set of multipliers — to be used in the calculation of

the Lagrangean bounds at all nodes emanating from the initial node. Also, the

minimum and maximum requirements on the number of rectangles of each type that

can be cut from Aq were noted -- let Pj and Qj denote these requirements

V j = 1,..., m.

A. The tree-search nodes. Each node n of the tree has associated with it a vector

of size four, namely the generation number of its parent node - n (n), the label of

the rectangle placed in Aq at the current node - q and the coordinates of the

location where rectangle q is placed - (p, q).

Each level l of the tree has associated with it three vectors u (l), e (l)

and _f (l) that contained the best set of u, e and f Lagrangean multipliers

(Section 6.2.1) for this level (i. e. the set associated with the lowest upper bound

Chapter 7 272

found at the most recently visited node of level l) and two further vectors, each of

size m that contained the minimum and maximum number of rectangles of type j

required to be cut by the Lagrangean solution obtained at the most recently visited

node of level l . The latter vectors are denoted by P (l) and Q (l) respectively.

Three vectors that contained information on which variables were set to one

or zero or which ones were free at a Lagrangean solution corresponding to any tree

node and a further vector that stored all allowable locations in Aq for placement of

rectangles at the current node, were used throughout the search and updated for

forward and backward branching accordingly. The three former vectors were

denoted by X, Y, and Z and the latter by

All the above vectors were kept in RAM when a tree node was generated so

that they were available if a branch were later to take place from the node.

At each node n of level l the following procedure was carried out:

(a) Reduction. Reduction tests 1 and 2 based on overlapping pieces and free

area described in Section 6.3 were used in order to update Qj (l) for all j= l , ..., m.

The knapsack area program reduction test 3 was also performed in order to update

Pj (l) and Qj (l) for all j types of rectangles.

(b) Bound. The subgradient procedure as described in Section 6.4.1.was carried

out until either 50 iterations were performed or K fell below 0.005. (Rule 2 of

Section 6.4.2. was used in the step - size calculation starting with k = 2). The

initial set of Lagrange multipliers used was associated with the tree node at level

(t - 1) from which branching was taking place - u (l - l) , e (l - l) and f (l -1).

Similarly, the initial P (l) and Q (l) were the final P (l - 1) and Q (l - 1) at

Chapter 7 273

(c) Backtracking. We can backtrack in the tree if any of the following conditions

is satisfied:

the predecessor tree node except that P (l) was updated at each forward branch to

take account of the rectangles placed in Aq. The state of the variables in the

Lagrangean program was described by vectors X, Y and _Z.

m
(i) min{ £

j = l
Q jO)Vj, Z . } <mm 1 T-B

m
(i i) £ (pj O) + ej)c^pj > ab ptt

j = l

where 0j represents the number of j rectangles included in the layout Lj

corresponding to the current node (Section 7.3.3).

m
(in) £ (P j(i)+0 j)D j > z UB

j = i

7.5 Computational Experience with the Algorithm

The complete tree - search algorithm described in Section 7.4 was

programmed in FORTRAN and run on a CYBER - 855 machine for a number of

randomly generated problems. The algorithm was tested as a whole on 3 sets of

problems that we now describe. Each problem in the first and third sets is denoted

Chapter 7 274

Sets 1 and 2, containing 8 and 12 problems respectively, have already

been used as test problems in Chapters 5 and 6 respectively. The data for all

problems in Set 1 is presented in Tables 5.1 and 5.5 of Chapter 5. All problems

in Set 2 are from Beasley [1985t](each one is denoted by the letter B and a

number that distinguishes it within the Set).

Finally, Set 3 contains 18 problems, each randomly generated in the

following way. The dimensions oq and Pj of each rectangle were generated by

sampling two integers from the uniform distributions [1, 3 Oq/4] and [1, 3Pq/4]

respectively. The integer value of each rectangle was generated by multiplying

ctj pj by a real random number drawn from the uniform distribution [0. 5, 1. 5]

and rounding up. Pj = 0 and Qj = 1 for all i = 1,..., m.

Tables 7.3, 7.4 and 7.5 describe the performance of the tree - search

algorithm on the 38 test problems of Sets 1, 2 and 3 respectively. Each table

shows the size of the stock - rectangle Aq and the number of rectangles in R to be

cut from Aq for each problem. It also gives the size of the normal Sets L and W

being calculated once the original problem has been reduced in size by applying to it

the first three reduction tests of Section 6.3. The amount of reduction produced is

shown as a reduction percentage 100 (1 - D2/D1) where D2 and Dj are defined

in Section 6.6. Furthermore, each table shows the best upper bound Zm|n and the

best lower bound Zjjg corresponding to a feasible solution before the algorithm

first branches; the value of the optimum solution Z 0pt and the number of nodes

generated in the search and finally, the total time and the time spent at the initial tree

by two numbers. The first number is the set to which the problem belongs, the

second one distinguishes the problems within the same set. Thus, 3.2 is the

second problem in Set 3.

P r o b l e m

N umbe r
(a0, Bo> m fLl H

I n i t i a l T r e e n o d e T r e e - S e a r c h

R e d u c t i o n

p e r c e n t a g e

(1 “ D2 / D |) 1 0 0

U p p e r

b o u n d

Z .
m i n

L o w e r

b o u n d

ZLB

D u a l i t y

g a p

%

T i m e t o

o b t a i n

Z .
m m

(CP s e c s)

O p t i m u m

s o l u t i o n

Z „
o p t

N u m b er

of
t r e e

n o d e s

T o t a l t i m e

C Y B E R -8 5 5

s e c o n d s

1 . 1 (4 , 4) 3 2 2 100% 100 1 0 0 0.02 1 0 0 - 0.02
1 . 2 (6 , 6) 5 4 6 60% 3 5 27 12 .9 % 0 . 4 31 18 1 . 3

1 . 3 (1 0 , 1 0) 5 7 7 100% 1 1 6 1 1 6 - 0 . 9 1 1 6 - 0 . 9

1 . 4 (2 0 , 3 0) 5 2 3 100% 6 8 0 6 8 0 - 0 . 5 6 8 0 - 0 . 5

1 . 5 (7 , 9) 4 1 8 25% 5 8 51 1 3 .7 % 0 . 5 5 4 7 0 . 8

1 . 6 (8 , 6) 5 6 4 - 1 0 2 8 5 20% 0 . 4 8 5 8 0 . 8

1 . 7 (1 0 , 1 0) 7 9 10 - 2 1 9 1 9 8 1 0 .6 % 3 . 2 19 8 7 0 1 0 . 1

1 . 8 (15,10) 7 7 10 - 2 7 5 2 0 5 5% 3 . 0 2 6 2 4 8 8 . 8

a T i m e l i m i t e x c e e d e d

b B e s t s o l u t i o n f o u n d b e f o r e e x c e e d i n g t i m e l i m i t

T a b l e 7 . 3 T r e e - S e a r c h A l g o r i t h m o n 8 p r o b l e m s o f C h a p t e r 5
to-oUi

C
hapter 7

Problem
Number (ao* V m |L| |w|

Initial Tree node Tree-Search

Reduction
percentage
(1-D2/Dj)100

Upper
Bound
Z .m m

Lower
Bound
ZLB

Duality
gap
%

Time to
obtain
Z .m m
(CP secs)

Optimum
solution
Zopt

Number of
tree nodes

Total time
CYBER-855
seconds

B1 (10,10) 5 7 6 30% 194 164 18.2% 1.6 164 31 4.5
B2 (10,10) 7 10 10 1 1% 257 230 11.7% 2.8 230 2500 652.8
B3 (10,10) 10 9 10 38% 261 246 5.6% 2.5 247 399 40.5
B4 (15,10) 5 - - 100% 268 268 - 0.04 268 - 0.04
B5 (15,10) 7 6 10 100% 358 358 - 1.2 358 - 1.2
B6 (15,10) 10 13 10 20% 317 289 9.6% 4.5 289 357 45.0
B7 (20,20) 5 - - 100% 430 430 - 0.04 430 - 0.04
B8 (20,20) 7 6 20 15% 921 834 10.4% 7.13 834 2400 748.1
B9 (20,20) 10 18 17 100% 924 924 - 5.2 924 - 5.2
BIO (30,30) 5 7 7 100% 1452 1452 - 1.5 1452 - 1.5
B1 la (30,30) 7 18 27 13% 1798 1688 6.5% 33.5 1 688b 343 800
BI2a (30,30) 10 27 30 9% 1963 1770 5.2% 96.9 1851b 257 800

Table 7.4 Tree - Search Algorithm on 12 problems from literature. to
a Time limit exceeded on
b Best solution found before exceeding time limit.

C
hapter 7

Problem
Number ocnOa m |t| |w|

Initial Tree node Tree-Search
Reduction
percentage
(1-D2/D,)100

Upper
Bound
Z .min

Lower
Bound
ZLB

Duality
gap
%

Time to
obtain
Zmin(r.p secs)

Optimum
solution
Z „ opt

Number
of tree
nodes

Total time
CYBER-855
seconds

3.1 (10,10) 5 7 7 100% 911 911 - 0.7 911 _ 0.7
3.2 (10,10) 7 7 8 - 119 83 5.3% 1.5 113 145 12.2
3.3 (10,10) 10 10 8 - 1051 869 12.1% 3.3 937 499 58.0
3.4 (10,10) 15 10 8 100% 1307 1307 - 0.3 1307 - 0.3
3.5 (15,15) 5 7 9 80% 4115 4016 2.4% 3.9 4016 34 9.5
3.6a (15,15) 10 14 13 - 4982 3953 20.6% 12.5 4128b 1650 800
3.7 (15,15) 15 14 13 100% 5827 5827 - 3.2 5827 - 3.2
3.8 (20,20) 5 9 10 80% 6914 6771 2.1% 10.5 6771 70 64.1
3.9a (20,20) 10 19 15 - 8262 6517 19.3% 31.9 6924b 801 800
3.10a (20,20) 15 19 15 86% 10362 10287 0.7% 31.5 10287b 558 800
3.11 (30,30) 5 8 10 100% 31974 31974 - 12.6 31974 - 12.6
3.12 (30,30) 7 18 13 28.5% 1237 1178 5% 41.6 1178 358 531.9
3.13a (30,30) 10 26 14 - 40323 31530 24.2 % 86.8 32452b 271 800
3.14a (30,30) 15 27 15 20% 1325 1270 4.3% 94.2 I270b 262 800
3.15 (40,40) 5 10 10 80% 2522 2401 5% 40.1 2401 74 285.1
3.16a (40,40) 7 18 13 28.5% 2720 2487 9.3% 78.5 2487b 181 800
3.17a (40,40) 10 32 14 20% 2738 2517 8.8% 149.6 25l7b 104 800
3.18 (40,40) 15 35 21 100% 2949 2949 - 65.2 2949 - 65.2

Table 7.5 Tree - Search Algorithm on 18 problems.
a Time limit exceeded
b Best solution found before exceeding time limit.

C
hapter 7

Chapter 7 278

node. A measure of the gap between the value Zmjn obtained before first

branching and the optimum is also given for each problem.

The 38 test problems solved by the algorithm are of two types: those for

which at most one rectangle of each type j is required to be cut from Aq (Qj = 1

for all j = 1,...» m) and those for which there is an upper bound (Qj ^ 3) on the

number of pieces of type j that can be cut. Problems in Sets 1 and 3 are of the

first type and problems in Set 2 are of the second type. All problems contain

between 30 and 2000 variables with 20 to 5000 constraints approximately.

An overall evaluation of the computational results reveals some interesting

features. Two out of the 8 problems in Set 1, five out of the 12 problems in Set

2 and five out of the 18 problems in Set 3, did not require any branching. Note

that convergence to optimality was achieved without the tree - search being required

in the case of three of the largest problems being solved, involving 15 types of

rectangles each, namely problems 3.4, 3.7 and 3.18 . Out of the 26 remaining

problems, optimality is obtained in 17 problems; the other 9 problems could not

be solved within the time limit of 13 minutes and 20 seconds. In these problems,

the algorithm found good feasible solutions, with a bound on the distance from the

optimum.

Thus, the best solutions found for problems B ll and B12, with values

1688 and 1851 respectively, are at most 0.23 and 0.86% worse than the

optimum, since < 1692 > and < 1867 > are the best valid upper bounds obtained

by the search within the allowed time limit for each problem. Similarly, the best

feasible solutions found for problems 3.6, 3.9, 3.10, 3.13, 3.14, 3.15 and

3.16 with the corresponding values shown in Table 7.5 are at most 0.5, 0.6,

0.3, 2.0, 0.6, 1.8 and 5% respectively, worse than the optimum for each

Chapter 7 279

problem.

Tables 7.2 and 7.3 both present the results obtained by solving all 8

problems in Set 1 with the enumerative algorithm (Section 7.3.3.) and the tree -

search algorithm respectively. We can see that all these problems were solved by the

second algorithm with a considerably less computational effort, in terms of the

number of tree nodes, as well as in terms of computing time. In particular,

problems 3 and 4 were optimally solved at the initial tree node. In both cases

there was a 100% reduction in problem size produced by applying the reduction

tests of the tree search algorithm on the original problems. However, the optimum

solution for problem 8 was found by the same algorithm in 8.8 seconds by

generating 48 tree nodes only, although no reduction on the original problem was

possible, compared to 600 nodes obtained by the enumerative search in 64.7

seconds.

The computational effort needed by the tree-search algorithm to solve a

problem strongly depends on the gap between the best upper bound obtained at the

root node of the tree and the optimum. There is a high positive correlation between

the value of this gap (expressed in percentage) and the number of nodes in the

search tree. For problem B2, the best bound obtained at the root node was away

from the optimum by 11.7% requiring 2500 nodes to be generated in 652

seconds compared to 399 tree nodes obtained in 40 seconds for problem B3 with

an initial bound on the solution being at most 5.6% worse than the optimum.

The total time needed to solve a problem strongly depends on the number of

variables left after reduction before one has to branch. For instance, for problem

3.15 involving 1666 variables before branching, the search generated only 74

nodes in 285 seconds compared to 145 nodes obtained in 12.2 seconds for

problem 3.2 which had 177 variables left for branching (in both problems, the

Chapter 7 280

best upper bound obtained at the initial tree node was about 5% away from the

optimum).

All problems in Set 2 have also been solved by Beasley [1985b].

Comparing his results with the ones shown in Table 7.4. obtained by our algorithm

we conclude that for problems for which m is small (Qj is also small), Beasley's

results may involve less computational effort. On the contrary, we expect our tree -

search algorithm to perform better on problems (Sets 1 and 3) in which the

number of types of rectangles in R is larger (e.g. one rectangle for each type

available).

Fig. 7.10 gives the complete tree for the Illustrative Example of Section

7.3 (problem 1.6 of Table 7.3) generated by our tree - search algorithm (the tree

generated for the same problem by the enumerarive algorithm is presented in Fig. 7.

3). In Fig. 7.10, the order in which each node is generated is denoted by the one -

digit integer number written outside the node at the top left or right hand side of it.

The state of search at each node is represented by three numbers written within each

circle. The first of these numbers indicates the label of rectangle that is placed in Aq

at the current node with its b. 1. h. c. at the location represented by the following

pair of numbers. The best upper bound obtained at each node is denoted by the

number written at the bottom left hand side or below each node. This problem was

solved with a value of an initial feasible solution equal to 85. No better feasible

solution was found by the algorithm, so the initial solution was the optimal one.

In Appendix B, the data and the optimum cutting patterns (both guillotine

and non-guillotine) are presented for a number of constrained cutting problems.

The computational results of these problems are given in Table 7.6.

1

Figure 7.10 The Tree - Search obtained for the Illustrative Example of
Section 7.3.

to
00

C
hapter 7

Chapter 7 282

Guillotine Solution

Problem Initial Tree Node

Number
Upper
Bound

^min

Duality
Gap
(%)

Number
ofSSA
Iters

Time in
CYBER-855
CP seconds

Optimum
Solution

Zopt

Number
of Tree
Nodes

Total
Time in
CP secs

1 48 17.0% 20 29.7 41 649 32.1

2 253 10.4% 20 128.3 229 749 134.3

3 370 3.0% 20 577.9 359 5855 593.5

4 675a 9.4% 16 1500 617 7 1 0 0 0 1 8 5 0 . 0

5 853a 8.2% 14 1500 788 63700 1911.4

Tree - Search

Non - Guillotine Solution

Problem Initial Tree Node Tree - Search
Reductior Upper Lower Duality Time in Optimum Number Total

Number Pecentage Bound Bound Gap CP secs Solution of Tree Time

^min ZLB (%) Zopt Nodes CPsecs

1 100% 47 47 - 0.02 47 - 0.02

2 100% 245 245 - 0.03 245 - 0.03

3 100% 360 360 - 0.04 360 - 0.04

4 20% 673 642 4% 23.7 647 2671 1500

5 20% 898 856 4% 33.7 856b 728 1500

a Time limit at root node ^ Best Solution found before exceeding time limit

Table 7.6 Computational Results of the problems in Appendix B.

Chapter 7 283

7.5.1 Conclusions

In this Chapter, we developed a new exact method for solving the NGC

problem. In order to limit the search necessary to find the optimum solution, we

embedded in the algorithm bounds, obtained from the Lagrangean relaxation of a

0 - 1 integer programming formulation of the problem (Chapter 5) with the

Lagrangean problem being solved by subgradient optimisation (Chapter 6). The

algorithm has been tested on a number of randomly generated test problems of small

to medium size. The largest problem solved includes 15 types of rectangles (one

rectangle for each type) to be cut from a stock - plate of size (40, 40).

As can be seen from the computational experience presented in Section 7.5,

the algorithm we adopted is a reasonably reliable, efficient tool for solving medium

size NGC - problems, as well as for finding very good approximate solutions to

problems that involve a lot of computational effort to be solved exactly.

Chapter 7 284

APPENDIX A

We are given a set R = { (Oj, P j), j = 1 , m } of rectangles to be cut

from a stock rectangle Aq = (ccq, Pq). Each rectangle j in R is associated with a

value \>j and an upper bound Qj on the number of rectangles of that type required

to be cut. Let

m
M = I Qj

j = l

denote the total number of rectangles available.

Let Pj (l) and Qj (l) be the minimum and maximum number of

rectangles of type j that can be cut by the most recent Lagrangean solution in level -

t - of the tree. Let u (l), £ (l) and f (l) represent the set of Lagrangean

multipliers associated with the current solution.

The state of the search in the tree is described by the lists L^ (l), L2 (l),

L3 (l) and S which are updated for forward and backward branching. Each

node n in the tree has a unique parent node denoted by k (n). The total number

of nodes generated by the search is denoted by " no. of nodes". The description of

the complete tree-search algorithm, including the calculation of bounds is then as

follows:

Initialisation

1.1 S e t n = l , l = 0 , L 1 (0) = { },L2 (0) = { },L3 (0) = { },S={ } , u(0)=0,

g. (0) = 0, f (0) = 0, no. of nodes = 1, Pj (0) = Pj and Qj (0) = Qj

for all j = 1,..., m.

Chapter 7 285

Calculation of bound at initial tree node

2.1 Perform problem reduction tests 1,2 and 3 (Section 6.3).

2.2 Calculate normal sets L, W, Lj and Wj for all types j = 1,..., m and an initial

value for the lower bound Zjjg.

2.3 Perform the subgradient procedure (Section 6.4.1) to calculate the value of

stop; Zj^g is the optimal solution.

2.5 Recall the set of multipliers u m n̂, e mjn, and f associated with 'Zrr^n

and update Pj (0) and Qj (0) accordingly.

2.6 Resolve the Lagrangean problem with u m n̂, e j ^ , f mjn and perform

problem reduction tests 1 to 7. If no reduction is achieved, go to 2.7;

otherwise perform a further 30 subgradient iterations to achieve further

reduction. S e t u (0) = u min, e (0) = e min, f (0) = fmin- Update Pj (0)

and Qj (0) and continue.

2.7 Place the first rectangle in R at location (0 , 0) in Aq. Call this rectangle £

(of type T|) and go to 5.1.

Calculation of bound at node -n- in level - 1

3.1 If P£ (l) > 0, set P^ (l) = P^ (t) - 1.

3.2 Since rectangle r^ is actually placed at location (p, q) in Aq, set the

corresponding variables in the Lagrangean solution to fixed values i.e. set

^min*
2.4 If Zmin = ZLB or

m m
or

X^p. = 1, Y^q. = 1 and

Chapter 7 286

3.3 Compute set Cl of locations corresponding to the amount of essential waste -

© - obtained at the current node and set ZTS = 1 for all (r, s) e £2.

then the current node n becomes a terminal node, so set Qj (l) = Qj 0) - 9j

(see Section 7.3.3) if a rectangle q (of type j) e Lj (l), Qj (l) = 0

otherwise, and go to 3.7.

3.5 Perform problem reduction tests 1 and 2 in order to update Qj (l) for all

3.6 Eliminate any and/or Yjs variables associated with any rectangle q £ Lj(l)

from the Lagrangean solution if it is not possible to place q at any location (r,q)

for all q 8 Wj or location (p, s) for all p e Lj.

3.7 Perform problem reduction 3 in order to update Pj (l) and Qj (l) for all j =

3.8 Set no.of iterations = 50 and obtain n (l) = i i (l - l) , f i (l) = f i (l - l) and

f (D = f O - l) .

3.9 Perform the subgradient procedure to calculate the value of Z j ^ .

3.10 If Zmjn > Z\ ft andZjjjjjj is such that the Lagrangean solution is feasible to

the original problem (Section 6.4.1), set Zĵ q = 'Zrn[n and go to 6.1; if

3.4 If

Chapter 7 287

m m

nun { X Qj (1) '°j ' Zmin J S ^LB 01 X Pj ^1 ̂“j > “ O »0
j = l J J j = l

m
or y P- (l) \). > Z •4 -4 J J mm

j = l

then go to 6.1; otherwise, recall the set of multipliers u mjn, e and f

associated with Z ^ jj, set u (l) —min’ — (^) — min £ (i) £ min*

update Qj (l) and Pj (l) accordingly and continue.

Selection of a rectangle for placement

4.1 Choose a rectangle rj from set R such that rj g Lj U L2 U L3 and it has not

been tested for placement. Let this rectangle be rj of type J and go to 4.2. If

none exists, check whether a rectangle rj e Lj U L2 U L3 having minimum

value of problable waste has been found for actual placement at (p', q ') in Aq.

Call this rectangle r^ (of type t\) and go to 5.1; otherwise go to 6.1.

4.2 If

ctj Pj < 0Cq P0 - ^ pi
*i £ L^ (1)

then check if rectangle rj can be provisionally placed with its b. 1. h. c. at any

allowable location in S; otherwise go to 4.3. If none of the following

conditions is satisfied for a particular (p’, q ') e S,

(i) rectangle rj overlaps boundary of Aq

(i i) rectangle rj overlaps a rectangle rjeLj

then rectangle rj can be provisionally placed at (p', q ') and go to 4.4;

Chapter 7 288

otherwise continue.

4.3 Set L3 (l) = L3 (l) U (rj, Jj, aj, p j } and go to 4.1.

4.4 If by provisionally placing rectangle rj at (p\ q ') to the current layout of l

rectangles represented by L | (l), a new layout is produced which is identical

or equivalent to another pattern obtained so far, then set L2 (l) * L 2 (l) U

{ rl> Jp p'p q'p ctj, Pi } and go to 4.1;

otherwise determine the amount of " probable waste" generated, note rectangle

rj if this has minimum value so far and go to 4.1.

Forward branching

5.1 Set L2 (l) = L2 (l) U (r£, rj£, pf£, q'£, p£ }.

5.2 Set l = l + 1, no.of nodes = no. of nodes + 1, K (no. of nodes) = n, n = no.

of nodes and Pj (l) = Pj (l - 1) , Qj (l) = Qj (l - 1) for all j = 1,..., m.

5.3 Set Li (t) = (l - 1) U {7^, r^, q^, 0n , p‘{% q’̂ , a £, P^ } and modify

S accordingly.

5.4 If I (1)1 — M stop (all rectangles in R have been placed in A g);

otherwise go to 3.1.

Backtracking

6.1 If t = 0, stop; all normal cutting patterns have been generated; the optimum

solution is given by the current value of Zj^g.

6.2 To remove rectangle r^ (of type q) placed at (p’, q’) in Aq at node n, level

l, set l = l -1, n = 7t (n), Lj (l) = Lj (l) - { r̂ , r̂ , q^, 0g, p'£, q^, (X£,

p£ } and modify S.

6.3 If rectangle r^ can be placed at an allowable location (r, s) e S such that

r * p' and s ^ q', set p' = r, q' = s and go to 5.1; otherwise go to 4.1.

Chapter 7 289

APPENDIX B

PROBLEM 1

Value:

Constraint:

12 8 12

1 1 1
6

7
3

8

0 2 0 l

Value: 2 4 5

Constraint:! 1 1

6 7

1 1

STOCK

Optimal non - guillotine
cutting pattern

(Opt. Sol. Value=47)

STOCK

Optimal guillotine
cutting pattern

(Opt. Sol. Value = 41)

Chapter 7 290

PROBLEM 2

8

1

0

Value:

Constraint

40

1

10 0 6
££

1

5

7
4

6

0 8 0 8
Value: 32 40

Constraint: 1 1

STOCK

Optimal non-guillotine
cutting pattern
(Opt. Sol. Value =245)

16 42 27

1 1 1

STOCK

'/////// %7 12

■ 1
4

15 \
0 16

Optimal guillotine
cutting pattern

(Opt. Sol. Value = 229)

Chapter 7 291

PROBLEM 3

Value*. 35

Constraint: 1
119 P

6

100

1

85

1

60

2

20

1

0 2 0
Value*. 19 21

Constraint: 1 1

STOCK

20
Optimal n on - guil l otine

cutting pattern
(Opt. Sol. Value =360)

STOCK

W IT /, Vi

3
k

6
1

2

0 20
Optimal guillotine

cutting pattern
(Opt. Sol. Value=359)

Chapter 7 292

PROBLEM 4

13

0
Value: 200
Constraint: 1

40
1

60
1

65
1

90
1

Constraint 1 1

STOCK

9 !

CD 6 :

2 7

y-r-r

5 :

1
10

0 30
Optimal non-guillotine

cutting pattern
(Opt. Sol. Value=647)

Optimal guillotine
cutting pattern

(Opt. Sol. Value-617)

Chapter 7 293

PROBLEM 5

9

0

Millie*.

Constraint:

16
2

1 6 3
24 0 10 0 17

216 160 102
1 1 1

703 m
0 7 0 4

21 28
1 1

5 — 6
8 7

o1- 1 9 0 14

Value-. 95 112

Const rurnt: 1 1 1 1 1

STOCK

6 r , 4
5

8
2

7777777
3 \

7

1
9

0 30
Optimal non-guillotine

cutting pattern

(Opt. Sol. Vblue=856)

STOCK

2
2

zz
5

m m i ni
7

8 _rn
1

4 6 l
0 30
Optimal guillotine
cutting pattern

(Cpt. Sd. Value=788)

Chapter 8 294

CHAPTER 8

CONCLUSION

In this thesis we have considered orthogonal two-dimensional constrained

cutting stock problems that are encountered in a variety of industrial applications.

Two versions of these problems have been examined, namely guillotine and general

cutting problems. The restriction of guillotine cuts is made in the general

two-dimensional problem because many important practical situations require this

limitation. Problems of glass - cutting, cutting thin sheet metal and paper sheets fall

in this category. Problems in which the optimal cutting patterns of rectangles are

not restricted to those with the guillotine property e.g. cutting thick metal sheets, are

much harder to solve.

New exact algorithmic procedures have been presented for solving both

types of cutting problems based on the development of mathematical programming

formulations and their exploitation by relaxation techniques to produce bounds for

Branch - and - Bound algorithms. The formulation of the Constrained Guillotine

Cutting problem as a dynamic program was followed by the examination of a

Chapter 8 295

method to provide upper bounds, namely the State Space relaxation. Subsequently

a State Space Ascent procedure was investigated computationally for minimising the

resulting upper bounds. This method proved to be efficient in providing high

quality bounds for medium - sized problems, which were embedded in a tree -

search procedure used to solve these problems exacdy. We have shown that CGC

problems of practical size can be solved in reasonable computing time using this

algorithm. The design of an effective interactive system allowed us to produce

solutions to guillotine problems manually using microcomputer graphics.

Comparisons were made between manually produced and exact solutions derived

from the Branch - and - Bound algorithm.

For solving the Non - Guillotine Cutting problem, two mixed integer

programming formulations of the problem were investigated followed by the

examination of two methods to provide, upper bounds, namely linear programming

relaxation and the cutting plane algorithm. Subsequently, five linear problems were

investigated; these problems were based on various 0 - 1 integer programming

formulations of the NGC problem. Computational experience is available for

cutting problems of small size only as a result of the large dimensionality of the

NGC integer programs. This led to the investigation of a Lagrangean problem

based on the best of the 0 - 1 integer programming formulations of the NGC

problem. Subgradient optimisation was used to optimise the resulting upper

bounds. Reductions derived from both the original NGC problem and the

Lagrangean relaxation produced substantial computational gains in the problem and,

in several instances, the optimal solution. The Lagrangean upper bound was

incorporated in a depth - first tree - search algorithm used to solve the NGC problem

optimally. The effectiveness of such a procedure (measured by the size of the

problem it can tackle as well as the running time) depends mainly on the sharpness

of the upper bound used, the branching strategy employed and the quality of the

Chapter 8 296

lower bound used. The computational results obtained using the algorithm indicate

that it is a reasonably reliable tool for obtaining exact solutions Id problems of small

to medium size. The largest problem solved includes 15 types of rectangles (one

rectangle for each type) to be cut from a stock - plate of size (40,40). In addition,

this algorithm is perfectly capable of providing very good approximate solutions to

large problems that involve too great a computational effort to be solved exactly.

297

REFERENCES

Adamowicz M. and Albano A. [1972] "A Two-Stage Solution of the Cutting Stock
Problem", Inf. Processing 71. (Proc. IFIP Congress 71), Amsterdam,
North-Holland Publishing Company, pp 1086-1091.

Adamowicz M. and Albano A. [1976a] "Nesting two-dimensional shapes in
rectangular modules", Computer Aided Design. Vol 8, pp 27-33.

Adamowicz M. and Albano A. [1976b] " A solution of the rectangular cutting stock
problem", IEEE Transactions on Systems. Man and Cybernetics. SMC6, pp
302-310.

Albano A. and Orsini R. [1979] "A heuristic solution of the rectangular stock
problem", Computer Journal. Vol 23, pp 338-343.

Art R. C. [1966] "An approach to the Two-Dimensional, Irregular Cutting Stock
Problem", IBM Cambridge Scientific Center. Report No. 320-2006.

Baker B., Coffman E. and Rivest R. [1980] "Orthogonal packing in two
dimensions", SIAM Journal of Computing. Vol 9, No. 4, pp 846-855.

Baker B., Brown D. and Katseff H. [1981] "A 5/4 algorithm for two-dimensional
packing", Journal of Algorithms. Vol 2, pp 348-368.

Baker B. and Schwartz J. [1983] "Shelf algorithms for two-dimensional packing
problems". SIAM Journal of Computing. Vol 12, No. 3, pp 508-525.

Beasley J.E. [1985a] "Algorithms for Unconstrained Two-Dimensional Guillotine
Cutting", Journal of the Operational Research Society. Vol 36, pp 297-306.

Beasley J.E. [1985b] "An Exact Two-Dimensional Non-Guillotine Cutting
Tree-Search Procedure", Operations Research. Vol 33, pp 49-64.

Beckman M. J. [1968] "Dynamic Programming of Economic Decisions". Springer,
New York.

298

Bellman R. E. and Dreyfus S. E. [1962] "Applied Dynamic Programming”,
Princeton University Press, Princeton, New Jersey.

Biro M. and Boros E. [1984] "Network flows and non-guillotine cutting patterns",
European Journal of Operations Research. Vol 16. No. 2, pp 215-221.

Bischoff E. and Dowsland E. B. [1982] "An application of the Micro to Product
Design and Distribution", Journal of the Operational Research Society. Vol 33, pp
271-280.

Brown A. R. [1971] "Optimum Packing and Depletion". American Elsevier, New
York.

Brown D. J. [1980] "An improved BL bound", Information Processing Letters. Vol
11, No. 1, pp 37-39.

Chambers M. L. and Dyson R. G. [1976] "The Cutting Stock Problem in the flat
glass industry - selection of stock sizes", Operational Research Quarterly. Vol 27,
pp 949-957.

Christofides N. [1974] "Optimal cutting of two-dimensional rectangular plates",
CAD 74 Proc. (Int. Conf. on computers in engineering and building design), IPC
Business Press-Microfiche.

Christofides N. and Whitlock C. [1977] "An algorithm for Two-Dimensional
Cutting Problems", Operations Research. Vol 25, pp 30-44.

Christofides N., Mingozzi A. and Toth P. [1981a]" State-Space Relaxation
Procedure for the computation of Bounds to Routing Problems", Networks. Vol 11,
pp 145-164.

Christofides N., Mingozzi A. and Toth P. [198 lb]"Exact algorithms for the Vehicle
Routing Problem, based on Spanning Tree and Shortest Path Relaxations",
Mathematical Programming. Vol 20, pp 255-282.

Chung F. R., Garey M. and Johnson D. [1982] "On packing two-dimensional
bins", SIAM Journal of Algor, and Discrete Methods. Vol 3, pp 66-76.

299

Coffman E. G., Garey M. R. and Johnson D. S. [1984] "Approximation
Algorithms for Bin-packing - An Updated Survey". Bell Laboratories, New Jersey.

Cook S. A. [1971] "The Complexity of theorem proving procedures", Proceedings
of the third ACM Symposium on theory of computing, pp 151-158.

Coverdale L. and Wharton F. [1976] "An improved heuristic procedure for a
non-linear cutting stock problem", Management Science. Vol 23, pp 78-86.

Dantzig G. B. and Wolfe P. [1960] "The Decomposition Principle for Linear
Programs". Operations Research. Vol 8, pp 101-111.

De Cani P. [1978] "A note on the Two-Dimensional Rectangular cutting stock
problem", Journal of the Operational Research Society. Vol 29, pp 703-706.

De Cani P. [1979] " Packing Problems in Theory and Practice ", PhD Thesis,
Department of Engineering Production, University of Birmingham.

Dowsland K. A. [1982] "Two-dimensional Rectangular Packing" , MSc Thesis,
Department of Management Science, University of Wales, Swansea, Wales.

Dyson R. G. and Gregory A. S. [1974] " The cutting stock problem in the flat glass
industry", Operational Research Quarterly. Vol 25, pp 41- 53.

Eilon S. [1960] " Optimising the shearing of steel bars", Journal of Mechanical
Engineering Science. Vol 2, pp 129 -142.

Eilon S. and Christofides N. [1971] "The loading problem", Management Science.
Vol 17, pp 259 - 268.

Eisemann K. [1957] " The Trim Problem", Management Science. Vol 3, No. 3, pp
279 - 284.

Coffman E. G., Garey M., Johnson D. and Taijan R. [1980] "Performance bounds
for level-oriented two-dim ensional packing algorithms", SIAM Journal of
Computing. Vol 9, No. 4, pp 808-826.

Erdos P. and Graham R. L. [1975] "on Packing Squares with Equal Squares",

300

Journal of Combinatorial Theory. Series (A), Vol 19, pp 119-123.

Farley A. [1983a] "Trim-Loss pattern arrangement and its relevance to the flat-glass
industry", European Journal of Operations Research. Vol 14, pp 386-392.

Farley A. [1983b] "A note on modifying a two-dimensional trim-loss algorithm to
deal with cutting restrictions", European Journal of Operations Research. Vol 14, pp
393-395.

Fisher M.L. [1973] "Optimal solution of scheduling problems using Lagrangean
multipliers", Part I, Operations Research. Vol 21, pp 1114-1127.

Fisher M. L. [1981] " The Lagrangian Relaxation method for solving integer
programming problems". Management Science. Vol 27. No. l ,pp 1-18.

Fox B. L., Lenstra J. K., Rinnoy K. and Schrage L. E. [1978] "Branching from the
largest upper bound", European Journal of Operations Research. Vol 2, No. 3, pp
191-194.

Garey M., Graham R. L. and Ullman J. D. [1973] "An Analysis of some Packing
Algorithms" in Combinatorial Algorithms, edited by R. Rustin, Algorithmic Press,
pp 39-48.

Garey M. R. and Johnson D. [1979] " Computers and Intractability : A guide to the
Theory of NP completeness ", W. H. Freeman, San Francisco.

Garey M., and Johnson D. [1981] " Approximation algorithms for bin-packing
problems - a survey ", pp 147-172 in Ausiello G., Lucertini M., ed. Analysis and
Design of Algorithms in Combinatorial Optimisation. Springer Verlag, New York.

Garfinkel R. S. and Nemhauser G. L. [1972] "Integer Programming". John Wiley
& Sons.

Geoffrion A. M. [1974] "Lagrangean Relaxation and its uses in integer
programming", Mathematical Programming Study. Vol 2, pp82-l 14.

Ghare P. M. and Walters L. E. [1968] " A Branch and Bound Algorithm for the
multidimensional knapsack Problem", presented at a joint meeting of the 33rd

301

national meeting of the Operations Research Society of America and American
meeting of the Institute of Management Science.

Gilmore P. C. and Gomory R. E. [1961] " A Linear Programming Approach to the
Cutting Stock Problem", Operations Research. Vol 9, pp 849-859.

Gilmore P. C. and Gomory R. E. [1963] " A Linear Programming Approach to the
Cutting Stock Problem - part II ", Operations Research. Vol 11, pp 863-888.

Gilmore P. C. and Gomory R. E. [1965] " Multistage cutting stock problems of two
and more dimensions", Operations Research. Vol 13, pp 94-120.

Gilmore P. C. and Gomory R. E. [1966] " The Theory and Computation of
knapsack Functions ", Operations Research. Vol 14, pp 1045-1074.

Golden B. [1976] " Approaches to the cutting stock problem", AIIE Transactions.
pp 265-274.

Gomory R. E. [1963] " An Algorithm for Integer Solutions to Linear Programs ',
in Graves R. L. and Wolfe P., eds., Recent Advances in Mathematical
Programming. McGraw - Hill, New York.

Greenberg H. and Hegerich R. L. [1970] " A Branch Search Algorithm for the
knapsack problem", Management Science. Vol 16, pp 327-332.

Haessler R. W. [1971] " A heuristic programming solution to a non-linear cutting
stock problem", Management Science. Vol 17, B-p793-802.

Haessler R. W. [1975]" Controlling cutting pattern changes in one-dimensional trim
problems", Operations Research. Vol 23, pp 483-493.

Hahn S. G. [1968] " On the optimal cutting of defective sheets ", Operations
Research. Vol 16, pp 1100-1114.

Haims M. J. and Freeman H. [1970] " A multistage solution of the Template-Layout
Problem" IEEE Transactions on Systems Science and Cybernetics ", Vol 55C-6,
No. 2, pp 145-151.

302

Held M. and Karp M. [1971] " The Travelling Salesman problem and Minimum
Spanning Trees", Part n , Mathematical Programming. Vol 1, pp 6-25.

Held M., Wolfe P. and Crowder H. P. [1974] " Validation of Subgradient
Optimisation ", Mathematical Programming. Vol 6, pp 62-88.

Hertz J. [1972] " Recursive computational procedure for two-dimensional stock
cutting ", IBM Journal of Research and Development Vol 16, pp 462-469.

Hinxman A. [1980] " The Trim-loss and assortment problem - a survey ", European
Journal of Operations Research. Vol 5, pp 8-18.

Hodgson T. [1982] " A combined approach to the pallet loading problem ", HE

Transactions. Vol 14, No. 3, pp 175-182.

Hodgson T., Hughes D. and Martin-Vega L. [1983] " A note on a combined
approach to the pallet loading problem ", HE Transactions. Vol 15, No. 3, pp
268-271.

Johnson D. [1973] " Near Optimal Bin Packing Algorithms". Doctoral thesis,
M.I.T.

Johnson D. [1974] " Fast Algorithms for Bin packing ", Journal of Comput.
Systems Sci. ", Vol 8, pp 272-314.

Johnson D., Demers A., Ullman J., Garey M. and Graham R. [1974] " Worst-Case
Performance Bounds for Simple One-Dimensional Packing Algorithms ", SIAM
Journal of Computing. Vol 3, pp 297-385.

Kantorovich L. V. [1960] " Mathematical methods of organising and planning
production ", Management Science. Vol 6, pp 366-422.

Karp R. M. [1972] " Reducibility among combinatorial problems ", Complexity of
Computer Computations. R. Miller and J. Thatcher eds, Plenum Press, N. Y., pp
85-104.

Lemke C. E. [1954] "The Dual method of solving the Linear Programming
Problem", Naval Research Logistics Quarterly. Vol 1, No. 1.

303

Madsen O. B. G. [1979] " Glass cutting in a small firm ", M athem atical
Programming. Vol 17, pp 85-90.

Marconi R. [1971] "Heuristic method for minimising trim loss in the paper
industry", IBM Technical Disclosure Bulletin. Vol 14, pp 325-327.

Marsten R. E. [1981] " The Design of the XMP Linear Programming Library ",
ACM Transactions on Mathematical Software ", Vol 7, No. 4, pp 481-497.

Martello S and Toth P. [1979] " The 0-1 Knapsack Problem ", Combinatorial
Optimisation. Christofides N., Mingozzi A., Toth P. and Sandi C. editors, John
Wiley & Sons, pp 237-279.

Metzger R. W. [1958] " Stock Slitting ", Chapter 8 of Elementary Mathematical
Programming. John Wiley & Sons Inc., New York.

Pauli A. E. and Walter J. R. [1955] " The Trim Problem : an application of linear
programming to the manufacture of newsprint paper ", presented at Annual Meeting
of Econometric Society, Montreal, Sept 10-13,1954, Abstract in Econometrica, Vol
23, p 336.

Pauli A. E. [1956]" Linear programming : a kev to optimum newsprint production".
Pulp Paper Mag. Can. 57, pp 145-150.

Pierce J. F. [1964] " Some Large Scale Production Scheduling Problems in the
Paper Industry " (Prentice Hall, Englewood Cliffs, NJ).

Pierce J. F. [1966] " On the solution of Integer Cutting Stock Problems by
Combinatorial Programming - Part I ", IBM Cambridge Scientific Center. Report
No. 36, Y02.

Sahni S. and Horowitz E. [1979] " Fundamentals of Computer Algorithms ",
Pitman, London.

Salkin H. M. and Dekluyver C. A. [1975] " The Knapsack Problem : a survey ",
Naval Research Logistics Quarterly. Vol 20, pp 127-144.

Shapiro J. F. [1979] " A survey of Lagrangean techniques for discrete

304

optimisation", Annals of Discrete Mathematics. Vol 5, pp 113-138.

Short P. J. [1973] " Optimal Batch Execution on a Multi-Processing Computer (A
Two-Dimensional Packing Problem) ", MSc thesis, Department of Management
Science, Imperial College of Science and Technology, University of London.

Smith A. and De Cani P. [1980] " An Algorithm to Optimise the layout of Boxes in
Pallets ", Journal of the Operational Research Society. Vol 31, pp 573-578.

Stainton R. S. [1977] " The Cutting Stock Problem for the stockholder of steel
reinforcement bars ", Operations Research Quarterly. Vol 28, pp 139-149.

Steudel H. [1979] " Generating pallet loading patterns - a special case of the
two-dimensional cutting stock problem ", Management Science. Vol 25, No. 10, pp
997-1004.

Tilanus C. B. and Gerhardt C. [1976] " An application of cutting stock in the steel
industry ", in K. B. Harley (ed.), Operational Research 75 (North -Holland,
Amsterdam), pp 669-675.

Trauth C. A. and Woolsey R. E. [1969] " Integer Linear Programming : A study in
Computational Efficiency ", Management Science. Vol 15, No. 9, pp 481-493.

Vajda S. [1958] " Trim loss reduction ", Chapter 21 of Readings in Linear
Programming. Wiley, New York.

Wagner H. M. and Whitin T. M. [1958] " Dynamic version of the economic lot size
model ", Management Science. Vol 5, pp 89-96.

Wang P. Y. [1983] " Two algorithms for constrained two-dimensional cutting -
stock problems", Operations Research, Vol 31, No. 3, pp 573-586.

Weingartner H. M. and Ness D. N. [1967] " Methods for the solution of the
Multi-Dimensional 0/1 knapsack problem ", Operations Research. Vol 15, pp
83-103.

White D. J. [1969] " Dynamic Programming ", Oliver and Boyd, Edinburgh.

305

Wolfe C. S. [1984] " Cutting Plane and Branch and Bound for solving a class of
Scheduling Problems ", TIE Transactions (US'). Vol 16, pp 50-58.

