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A B S T R A C T

The fluid-structure interaction problem is defined by the 
governing equations of motion of fluid and structure, and 
by interface boundary conditions. For the structural model 
standard finite element techniques are used. The fluid 
element is based on a displacement formulation in terms of 
the velocity degrees of freedom at the element nodes. A 
reduced selective integration method is used to obtain the 
penalty function formulation of the incompressibility 
constraint. The algorithms used to solve for the transient 
response is a one step "linearly implicit" 
predictor-corrector method. Velocities obtained from the 
solution of the fluid problem are used to calculate the 
surface forces acting on the structure. The response of 
the structure under these forces is calculated from the 
equations of motion of the structure using an implicit 
technique (Newmark Method). The resulting structural 
velocities are used as the interface boundary conditions 
for the next time step. The process is repeated for a 
series of time steps until the final steady state solution 
or total time response solution is achieved. A nine-noded 
parabolic element is used for the fluid, thus making it 
simple to model curved or complicated geometries. The 
solution technique does not involve any of the much 
criticised upwinding, and has been found to be stable for 
relatively high Reynolds numbers. Results are available 
for the cross-flow vibrational analysis of a circular 
cylinder for a range of Reynolds numbers. Some results are 
also presented for the flow-induced vibrations of a column 
of tubes.
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1 . I N T R O D U C T I O N

1.1 General Introduction and Previous Studies

The problem of fluid-structure interaction is likely to 
exist wherever relative motion of a solid and fluid 
occurs. The fluid flow and structure are coupled systems 
and their interaction is usually time varying. The 
coupling occurs between the forces that the fluid exerts 
on the structure and the dynamic response of the structure 
giving time varying boundary conditions to the fluid. The 
fluid structure interaction problem can be classified as:

(i) The fluid internal to the structure, for example the 
instability of fluid conveying pipes and seismic response 
of ground supported liquid storage tanks.

(ii) The fluid external to the structure as for example 
the transient motion of submerged or partially submerged 
structures, and flow induced vibrations.

Various techniques have been used to solve the problem of 
fluid structure interaction. Most of these problems are of 
such complex nature that the method of analysis must be 
numerical. The Finite Element Method is one technique for 
the modelling of such complicated problems and techniques 
that have previously been developed for the analysis of 
fluid-solid systems can be categorized into the following 
three basic approaches:

1 8



1 . 1 . 1  A d d e d  m a s s  a p p r o x i m a t i o n

In the added mass approach some fraction of the fluid mass 
is added to the structural model at the fluid-structure 
interface. Normally the assumption used to evaluate the 
added mass is based on a flexible structure and 
incompressible fluid. This approach neglects the stiffness 
effects in the fluid and, in general, leads to 
conservative results. It is a relatively simple approach 
which has been used to obtain practical engineering 
results for both two and three dimensional cases (2,3).

In the early 1930's, Westergaard (1) proposed a method for 
computing the hydrodynamic pressures induced on gravity 
dams by earthquakes, utilising the equivalent added mass 
concept. The approach is based on the assumption that the 
dam is rigid, the ground motion harmonic and the effects 
of water compressibility and surface waves are negligible. 
Since this pioneering effort, many authors (4,5) have 
studied seismic interaction between dam and reservoir, and 
their results indicate that the Westergaard added mass 
concept is a good approximation where his basic 
assumptions of dam rigidity and water incompressibility 
are valid.

19



The hydrodynamic mass matrix for a vibrating ship has been 
evaluated using a three dimensional finite element 
discretisation of the surrounding water in reference (7), 
which includes several other references on this approach 
for investigating ship vibrations. Solution for the 
hydroelastic vibrations of tanks partially filled with an 
inviscid fluid, was obtained by directly determining the 
added mass matrix by Sayhi and Ousset (6). The effect of 
the fluid-structure interaction leads to the calculation 
of a fully populated added mass matrix which is computed 
from the impedence matrix relating the pressure to the 
displacement on the interaction surface. An eigenvalue 
problem is then solved and the natural frequencies of the 
coupled system are predicted. Similar approximate methods 
have been used for the analysis of liquid filled tanks 
(10). Added mass coefficients of large offshore structures 
subject to ground excitation were calculated by Buragohain 
and Agarwal (15) using this approach.

The added mass method is widely used to analyse the flow 
induced vibrations of ship structures. The increase in the 
flexibility of ship structures accompanied by the increase 
in propulsion power, has resulted in high levels of 
vibration with various annoying consequences. In the 
conventional approach, the ship is assumed to be a slender 
body, concentrated added masses are then introduced at 
various sections of the ship. Such a method is compatible

20



with a hull girder theory for the structural behaviour of 
the ship (7), which yields good results concerning the 
first few vibration modes. The influence of the 
dynamically varying pressures acting on the submerged 
surface of the vibrating hull were taken into account by 
introducing an additional mass term in the equations of 
motion of the structure (7). For the first few modes of 
the hull girder, finite element results for added mass 
agree with the results obtained from conventional 
semi-empirical formulas. However, with higher, more 
complex modes, the discrepency increases. Also free 
surface effects are generally neglected in the frequency 
range of interest(8 ,9). The radiation condition certainly 
influences the hydrodynamic mass matrix in a way which is 
difficult to assess. Infinite elements (8,9) may prove 
useful to deal with the problems of an infinite boundary 
and with wave radiation effects. This radiates energy and 
appears to the structure as an apparent damping with a 
magnitude often greater than any inherent damping within 
the structure itself.

The added mass method is often applicable to a class of 
practical problems where the structural vibration is of 
small amplitude and low frequency, and the fluid motion 
can be described as an ideal fluid flow. Such assumptions 
are used by Yu and Vanburen (131) to perform an added mass 
fluid-structure interaction analysis of a submerged

21



four-tube array. The hydrodynamic mass matrix for the tube 
array is generated using a substructure technique of a 
finite element code. By combining the substructural 
hydrodynamic mass with the structure, many dynamic 
characteristics such as normal modes, shock spectrum and 
time history analysis were computed.

1.1.2 Lagrangian formulation

In the Lagrangian approach, the behaviour of the fluid is 
expressed in terms of displacements at the finite element 
nodes in the same manner as in structure. The fluid is 
treated as an elastic medium with a small but finite shear 
modulus. Hence, compatibility and equilibrium are 
automatically satisfied at the nodes along the interface 
between the fluid and the structure. The major advantage 
of this approach is that the fluid finite elements that 
are generated can be readily incorporated into a general 
purpose computer program for structural analysis, since 
special interface equations are not required.

The transient response of fluid-structure system using 
this approach has been presented by Shantaram et al (18) 
and Wilson (19). The finite element displacement 
formulations for coupled fluid-structure system pose the 
difficulty of zero energy deformation modes with non-zero

22



frequencies (4,6). Zienkiewicz et al (3) have suggested 
the use of penalty-type finite element formulation for 
avoiding the zero energy deformation modes in the fluid 
domain. However, at low values of penalty coefficient zero 
energy modes were observed, which disappeared as the value 
of penalty coefficient was increased, and only the true 
frequencies appeared in the free vibration analysis of the 
system. Similiar findings were observed by Hamdi et al 
(25). In the case of examples with top free surface, it 
was observed that some zero energy frequencies were still 
present, even when a high value of penalty coefficient was 
used. The number of these zero energy frequencies 
increased with an increase in the number of elements in 
the fluid domain. Deshpande et al (26) solved the coupled 
problem of a real, compressible but inviscid fluid and an 
elastic structure. A constraint of irrotationality on the 
displacements in the fluid was imposed and a penalty-type 
finite element formulation for the coupled fluid-structure 
system was obtained. The fluid-structure boundary was 
represented using interface finite elements in an attempt 
to reduce the zero energy modes and the equations that 
were finally obtained were banded and symmetric. The cost 
of the modal analysis was reduced by the suppression of 
zero energy modes. Numerical results for free and forced 
response of a coupled fluid-structure system were 
presented.
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A constraint of zero fluid rotation at the integration 
points is introduced by Wilson and Khalvati (24) to 
selectively eliminate zero energy modes and produce a 
fluid element with optimum behaviour. A nine-noded 
Lagrangian element with 2X2 integration and four 
rotational constraints at the integration points is 
produced. The mode shapes and frequencies of a rectangular 
tank of fluid were evaluated using this element and some 
suggestions are given to develop a three-dimensional 
element.

A transient finite element formulation for incompressible 
viscous flow in a arbitrarily mixed Lagrangian-Eulerian 
(ALE) description is presented by Hughes et al (27). 
Arbitrary Lagrangian-Eulerian finite element methods were 
recently developed in response to the need of very 
versatile modelling techniques for treating transient 
fluid-structure systems. Such methods combine the basic 
attributes of the finite element technique and the freedom 
of moving the fluid mesh offered by the ALE description, 
and thus have considerable potential for application to a 
wide variety of fluid-structure interaction and free 
surface flow problems. Such an approach is used by Donea 
and Giuliani (28) to solve the problem of fluid-structure 
interaction with interfaces involving sharp corners. 
Problems of this type are encountered, in the analysis of 
clusters of fast reactor subassemblies. Liu and Belytschko
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(29) have used ALE methods and direct time integration to 
solve the problem of fluid-structure interaction with 
sloshing. The ALE approach is suitable when surface 
displacements are large. Analogous finite element ALE 
formulations for compressible fluids are presented in 
(30,31) .

The technique of fixed-interface modal synthesis 
sub-structure methods, used to solve large structural 
eigenvalue problems was extended to the fluid-structure 
eigenvalue problem with a view to obtaining an efficient 
solution to problems involving localised modifications 
(32). The three cases considered in this reference are;
(i) Fluid or fluid-structure vibration problems directly 
analogous to structural case.
(ii) The modification of the fluid model of a structure 
enclosing a compressible fluid.
(iii) The modification of fluid and structural models of a 
structure enclosing an incompressible fluid.

1.1.3 Eulerian formulation

In the Eulerian approach the behaviour of the fluid is 
characterised by a single pressure (or potential) variable 
and the coupling is achieved by consideration of interface 
forces. The behaviour of the fluid can be expressed in
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terms of analytic functions (for certain geometries) or a 
mesh of finite elements with the pressure as the unknown 
nodal variable. The solution of the coupled system can be 
accomplished by solving the two systems separately with 
the interaction effects found by iteration (11,12). It is 
also possible to couple both systems and solve them as one 
without the need to iterate but this leads to 
unsymmetrical equations (13,14). The Eulerian formulation 
requires only a single pressure or potential variable to 
describe the fluid motion, whereas the Lagrangian 
formulation, requires pressure as well as velocities to 
describe the fluid motion. The method thus has the 
advantage that in general a smaller number of variables 
are involved to describe the fluid motion and is widely 
used in the fluid-structure interaction problems. A 
considerable disadvantage is that the coupled equations at 
the interface cause the finite element equations to have a 
large bandwidth. The computational cost can thus be 
considerable, but the process is effective, particularly 
if the compressibility effects are negligible. The special 
coupling equations and the lack of symmetry usually means 
that this approach requires a special purpose computer 
program.

In fluid-structure interaction problems, it is sometimes 
convenient to describe the motion of the fluid in Eulerian 
system and motion of the solid in Lagrangian system. That 
is, the fluid motion is described using a single pressure

26



(or potential) variable, whereas the behaviour of the 
structure is expressed in terms of displacements at the 
finite element nodes. The finite element displacement 
(representation of the structure is standard. The method is 
classified as the Eulerian-Lagrangian formulation. Such an 
approach is used (16) to solve for the transient dynamic 
analysis of reservoir-dam interaction. The Staggered 
solution scheme was adopted in (17) to make the solution 
procedure more efficient.
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1 . 2  S c o p e  o f  P r e s e n t  I n v e s t i g a t i o n

The present work deals with the development of a general 
finite element procedure which can be used to solve 
fluid-structure interaction problems, it can be included 
in any general purpose modular finite element package. The 
development has been carried out using the general purpose 
finite element package FINEL (33). A Lagrangian 
formulation has been used, where the fluid element has 
velocities as nodal variables. The major advantage of this 
approach is that the fluid element can be readily 
incorporated into a general purpose computer program used 
for structural analysis, since the coefficient matrix has 
the same properties as a structure stiffness matrix, that 
is, it is symmetric and positive definite. The 
Navier-Stokes equations are used to describe the fluid 
motion and are solved using a penalty function formulation 
with selective reduced integration. This method has been 
used successfully in the solution of incompressible 
orthotropic elasticity problems (34,35). The method used 
for the orthotropic elasticity can be directly applied to 
solve incompressible Stokes flow. The penalty function 
approach leads to the simplest effective finite element 
implementation of incompressibility and is achieved by 
making the effective Poissons ratio of the fluid V very
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nearly 0.5. The consequences of imposing this form of 
incompressibility constraint and value of Poissons ratio 
required have been found by studying axisymmetric flows 
between two parallel plates. This is discussed in chapter 
6 . A considerable loss in mass flow rate results if the 
incompressibility constraint is not fully satisfied. This 
chapter also include tests to define the maximum value of 
element aspect ratio that can be used in regions of fully 
developed flow.

Pressure is eliminated from the finite element equations 
since the incompressibility constraint ensures no volume 
change and hence no virtual work is done by the pressure. 
This means that the pressure term is present in the Navier 
Stokes equations but it is not present in the discretised 
finite element equations because its weighted residual 
value is always identically zero (or very small in this 
case since the Poissons ratio term is just slightly less 
than 0.5). However, it is shown in section 2.10 that the 
pressure can be easily recovered from the results. The 
unsteady non-linear equations that are formed require a 
time stepping algorithm in order to obtain a solution.
This has been an area of much research and many ideas have 
been proposed (36-39). In this work a one-step linearly 
implicit predictor-corrector method has been employed 
(40). The theory for the fluid element formulation is 
covered in chapter 2. Based on the previous studies
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carried out in this field at Imperial College (51), a 
nine-noded fluid element is selected and formulated 
(section 2.8). The superior behaviour of the nine-noded 
element formulated using selective reduced integration has 
been confirmed numerically (51,53). A very simple 
structure model is used (chapter 3). A more complicated 
general finite element model of the structure can, 
however, easily be incorporated into the method. The 
theory for fluid-structure interaction is considered in 
chapter 4. The fluid and structural systems are solved 
independently and the interaction is achieved by use of 
interface force and velocity boundary conditions. Within 
each time step the fluid equation of motion is solved 
first, assuming that the interface velocities are defined 
by the structural response in the previous step. The 
structural equations of motion are then solved, where the 
forces acting on the structure are the fluid pressure 
forces calculated from the solution of the fluid equation 
for this step. For the following time step a new set of 
velocity boundary conditions found from the structure 
response are applied to the interface boundary. Thus, at 
every time step the effect of the structure's motion on 
the fluid is taken into account as are the fluid forces 
acting on the structure. Only a small amplitude response 
has been considered. The computer implementation of the 
entire procedure inside ‘the finite element package FINEL 
is briefly discussed in chapter 5.
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Since the finite element method is well developed for 
structural analysis, more emphasis is placed upon the 
development and testing of the fluid elements. The 
associated computer program FINEL already has an extensive 
library of structural elements. The examples of flow in a 
channel, flow over a step, flow in a cavity, flow over a 
backward step, flow over a circular cylinder and vortex 
shedding are considered to check the validity of the fluid 
element (chapter 6,7). These are all well-known test cases 
and many experimental and numerical results are available 
for comparision.

A simple problem of fluid-structure interaction is 
considered in chapter 8 . Firstly the flow induced 
vibration of a single rigid cylinder on elastic supports 
is considered (section 8.1). The results obtained are 
compared with the available experimental results. This is 
further extended to analyse the flow around a column of 
three rigid cylinders in section 8 .2 .

Finally, in chapter 9, the present developments are 
summarised and suggestions for further work are made.
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2  T H E  F L U I D  I D E A L I S A T I O N

2.1 Fluid Equations

The fluid environment surrounding the structure is assumed 
to be incompressible and viscous. Consequently, the 
behaviour of the fluid is defined by the Navier-Stokes 
equations and the continuity equation. The tensor notation 
is used throughout and the repeated indices summation 
convention is also employed.

a) Conservation of mass

This is the continuity equation for an incompressible 
medium.

b) Conservation of momentum

(2.1)

( 2 . 2 )

The Cauchy stress tensor t y  i s

-pSy + 2/tu( i , j ) (2.3)
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p is the pressure
Sy is the Kronecker =1 for i=j

Delta =0 for i^j
and u Ci~j)= ( u lj + u j -l ) / 2  is the symmetric part of the

velocity gradients.

The density ((?) and dynamic viscosity {/X) are physical 
properties of the fluid.
Equation (2.2) is the Navier Stokes equation for 
incompressible and viscous flow. In rectangular 
coordinates the complete equation can also be written as

x-component

Du
H

Du. \J Du_ + u>AlL- 
dy t)7~

+  A p—  n  
dx. Dy*

-  0

y-component

e P^L u Dt/_ + \J py  ^ cp d v  
d t  d?c 2>y dz.

4-
Z Z 2-

d * *  Jyx DrJ-
o

z-component

d u L +  U c )u >  * - —
% Z

3tfr

(_
__ d x x 2>yx
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Omission of the unsteady term ( u ^ )  in equation (2.2) 

leads to the steady Navier-Stokes equation for 

incompressible, viscous flow. Furthermore, if the 

non-linear convective or inertia term (u^u^j) is 

eliminated, the Stokes equation for incompressible flow is 

obtained. For small Reynolds number that is, slow 

velocity, large viscosity or small bodies the solution of 

Stokes equations provides a good approximation to the 

solution of equation (2.1) and (2.2).

In order to solve equations 2.1 and 2.2 specific initial 

and boundary conditions must be defined. LetJl.be a 

bounded region in fT ,n w i t h  piecewise smooth boundary <)s l m 

The mixed initial boundary value problem consists of 

finding a vector velocity field u(x,t) and a scalar 

pressure field p(x,t) which satisfy the Navier-Stokes 

equations for all x £ xl and t{ (0,T),TX), such that

u(x,0)= ue(x), xf/i
u(x,t)= g'(x,t), x^d-O,, t£(0,T)
n(x).T(x,t)= h(x,t),xt2)i2t,tf ( 0, T)

( 2 . 5a)

(2.5b)

(2.5c)

where u0is the given initial data, g and h# are the given 

boundary data, and n is the unit outward normal vector to

dn. bsi% and £>&-£ are subregions of dn. satisfying 2)-ft
and 0 .

34



When £ is formally set to zero in equation 2.2 and the 

initial conditions are ignored, then the boundary value 

problem becomes one of Stokes flow. The resulting 

equations are identical to those of isotropic, 

incompressible linear elastostatics.

Different methods have been used in the past to solve the 

Navier Stokes equation and the continuity equation. Much 

of the initial work employed the stream function-vorticity 

formulation which has the advantage of satisfying 

incompressibility identically (41). However, the 

difficulties encountered in applying boundary conditions 

and extending the approach to the solution of 

three-dimensional problems have led to an increasing 

interest in solving the Navier Stokes equations and the 

continuity equation in terms of the primitive variables of 

pressure and velocity. The principal problem with the 

primitive variable approach is the imposition of the 

incompressibility constraint. Three distinct approaches to 

imposing the constraint are found in the finite element 

literature.

(i) The interpolation function for the pressure are used 

as the weighting functions for the continuity equation in 

a Galerkin or virtual work formulation (42). In the case 

of the Stokes flow where a variational principal exists,
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this approach c o r r e s p o n d s  to the method of L a g r a n g e  

m u l t i p l i e r s .

(ii) The interpolation functions for the velocity are 

chosen such that the incompressibility constraint is 

satisfied in an integral sense for each element (43). As a 

consequence, the pressure is eliminated from the 

equations, although it is retained in the boundary 

conditions.

(iii) The incompressibility constraint is imposed through 

the addition of a constrainted term to the Galerkin 

formulation. The pressure is eliminated as a dependent 

variable. This latter approach is called the "Penalty 

Function Method" (40).

The Penalty Function Method was first applied in the 

context of finite element analysis with solution of 

elasticity problems for incompressible solids by 

considering the limit of compressible solution as Poissons 

ratio approaches 0.5 (44). There is an analgous problem in 

Stokes flow (45). The first effort to apply the penalty 

function method to problems where the acceleration terms 

are significant in the Navier Stokes equations was that of 

Hughes et al (46 ) .
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2.2 T h e  P e n a l t y  F u n c t i o n  F o r m u l a t i o n

Here the Navier-Stokes equations are replaced by an 

auxiliary system of equations whose solution is "close" to 

the required solution (40). This auxiliary system of 

equations serves as the basis of the finite element 

approximations.

The equation for the stress-tensor (2.3) can be re-written 

as

where
“P ° i j  +2/1U  ( t j j )  

- X UU<

(2 .6 )

(2.7)

For i s o t ropic solids

and

The lame parameter X 

of rates of strain.

/U =E/2(1+V)

X =^ZV/ (  1 - 2-0) .  

and /U are assumed to
(2 .8 )

be independ€nt

In order to solve equation (2.2) with the str 

(2.6) using the finite element method, an equ 

variational equation is required. This is obt 

the Galerkin formulation (49,50). Physically, 

formulation can be interpreted as the virtual 

obtained if a virtual velocity is applied to 

corresponding to the terms of equation (2.2). 

pressure will only give rise to a virtual wor 

change occurs. As the flow is assumed to be

ess tensor 

ivalent 

ained using 

the Galerkin 

energy 

the forces 

However, the 

k if a volume
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incompressible, no volumetric changes occur, and 
pressure’s contribution to virtual energy equilibrium is 
zero. The incompressibility is enforced by taking the 
value of Poissons ratio very close to 0.5. Thus equation 
(2 .6 ) can be rewritten as

tvj = *Sij“k.k +2/a u(i.j) (2.9)

(In equation (2.9) the subscripts (X) have been dropped.)

Provided A is a large parameter, the incompressibility 
condition will be satisfied and need not be included as a 
separate equation

uk k=“P/^ 0 as A —* co (2 .1 0 )

We attain this by making Poissons ratio "g just less than 
0.5 in equation (2.8). The value of A approaching 
infinity leads to certain computational difficulties which 
are overcome by the use of Selective Reduced Integration 
when the element is formed (section 2.9).

Equations (2.9 and 2.10) do not correspond to any physical 
problem unless X is large. They are not the equations of 
compressible flow. However, similar limit arguments may 
be used to derive the incompressible equations from those 
for compressible flow (39). The convergence of the
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penalty-function solution to the Stokes flow equations has 
been proved by Temam (39). From the proof in ref.39 it 
follows that as A , u*-> u and p*_*p. if > is selected 
sufficiently large then u* and p* differ negligibly from u 
and p, respectively. The equations of Stokes flow are 
identical to the equations of classical, isotropic, 
incompressible elasticity, where u is the displacement 
vector. The use of penalty methods in solid mechanics is 
widespread. The penalty equations used here are identical 
to classical, isotropic, compressible elasticity in which 
A and /jl are interpreted as Lame parameters. Thus the 
penalty approach in elasticity amounts to approximating an 
incompressible medium by a slightly compressible one. In 
fluids it is slightly different in that it is the 
continuity equation which is approximated and the 
associated errors amount to a net fluid loss or gain.

When selecting the constraint parameter A various factors 
have to be considered. It must be large enough so that the 
compressibility and pressure errors are negligible, yet 
not so large that numerical ill-conditioning ensues. It 
has been suggested (40) that A could be picked according 
to the relation

A = c / i  ( 2 . 1 1 )

Equation (2.11) applies to Stokes flow calculations whilst
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for the solution of complete non-linear equation we can 
approximate the value from (40)

X = c max (/j ,/iRe) (2 .1 2 )

where yd is the dynamic viscosity, 
number and c is a constant which 
computer word length. Numerical s 
floating-point word length of 60- 
choice of value for c is IQ7 .

Re 'xT") is Reynolds
depends only on the 
tudies reveal that for a 
64 bits, a suitable

Generally it is not necessary to be very precise about the 
selection of the actual value for A and it may vary over 
several orders of magnitude with an insignifcant effect on 
results. However, for certain flow geometries where 
compressibility effects are important, a selection of the 
value of A is important and highest possible value is 
required (48 ) .

2.3 The Finite Element Discretisation

To apply 
equations 
tensor as 
for whole 
Method is 
function,

the finite element method approximate varitional>
corresponding to equation (2 .2 ) with stress 
in equation (2.9) are required which are valid 
of the domain under consideration. The Galerkin 
used (49,50). Assume to be the weighting 
the value of which is arbitrary everywhere on

40



the domain S i except on the boundary V where is
assumed to be zero. Applying the Galerkin approximation 
and rewriting equation (2 .2 ) gives

j
Si-

3 i u = 0
JV SI

Using Green's Theorem on the third term of 
to reduce the order of differentiation of 
then:

equation (2.13) 
the term tij.j

JX-
Ui t  d A + e f t l i  +J

Si- J
77 o i r ^ o (z-lk)

where nj signifies the outward normal to the boundary of 
the fluid domain. Using the boundary condition as in 
equation (2.5c), equation (2.14) becomes

o (z-i5)
j i  a  J  Jr

Substituting for the stress tensor from equation (2.9).

/7 «« _ » \M- Si'

Jr
We will expand equation (2.16) in its two-dimensional
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form only, in order to keep the derivation of the matrix 
simple. The three-dimensional form follows in exactly the 
same fashion.
Equation (2.16) in the x-direction is

and in the y-direction

c ls i~  + £ i t * / - J - u ( l l L - +  n
J  J  i( dx 9 y J  Jc>y l ^ r

s 1 S I- S t

( 2 7 8 )
A

where t , and t^ are the components of t^ in the x and y 
direction respectively.
Rearranging equation (2.17) and (2.18) gives

- /v

U 'T i L c l & 'J *  ? « / t t 2 u - + v 2 i i _ ) o t n .  -r I ' f t . / ' f a + X
2 /  .1 7)y J d x   ̂ w  /

e
J ?t
SL S t j  dX  

S t

-t f^> A1 \o/si — ftf -t  d f  (Z'fl)
J dy ''dy 2>x J J
S t p

and

-t e  [ i f  ( u  + v'7)v -» - t i f f i n
£  ■ »*■  L  ^  9 *

+ H ( \  o f# -  -  u j  o i r  / 2 . 2 0 )
J  e>y \ dx J  V
SL
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2 . 4  M a t r i x  P r o b l e m

The domain J7- is discretised into non-overlapping 
elements. The nth element is denoted by e n and its 
boundary is denoted by (fig.2.1). Associated with the 
discretisation is a set of nodal points. The position 
vector of the nth node is denoted by xn . The 
"interpolation function" associated with node n is denoted 
by wn . These interpolation functions are used to 
interpolate element geometry and displacements. These are 
evaluated in section (2 .8 ) for a nine-noded element and 
the strain-velocity matrix oc is evaluated. The 
solution of the Galerkin problem may be expressed in terms 
of the interpolation functions.

In the finite element method both the real velocities U 
and the virtual velocities U can be interpolated from the 
nodal values. In the matrix form the interpolations are

U = w u

y  = u = w, 0 w*. 0 w5 0 0 ws 0 --------- ~

V  . « 0 w, 0 w^O w3 0 W^O -------_

( 2 . 2 1 )

(2 .2 2 )
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Similiarly
U = w u (2.23)
w = interpolation functions (section 2.9) 
u = vector of nodal velocities
u = vector of nodal velocities of the weighting 

function u£ .
These are arbitrary and non-zero everywhere except at the 
boundary T , where they become zero.

Grouping equations (2.19) and (2.20) into a matrix form, 
and using the above defined interpolation function gives

e
+ . .a u? co u ct-ft -y £

J2.

a u>
t  i

-
. Uotsx LL UJ>C> X 2>U> U dfL

JX.

F air {2-Zk)
J
r

where t) and v are the differential operators given as

b

S
H

-

o

1

jL  I
b bx

0 V  by cvmd v =
b

i

—
!__

i

(2-2b)
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X  i s  t h e  m a t e r i a l  p r o p e r t y  m a t r i x  a nd  i s  d e r i v e d  f r o m

X  =
0 I-2V I-2V °1A 0 — 2/^0

1-2V~ \-2v»
O

0
0 o M _ 0 // .

2(/-v) 2V_ r\ 2-vK o
=M

i-Zro \-z-o
z,-o _
\- 2.V z ( \-v )

l- 2.V 0 2('j-v )K O

O O 1 O C 1

where K = 1/(1-2*0 )

and F = force vector
The expression for X is the same as in the case of plain 
strain, isotropic material.

The virtual velocities u are non-zero and arbitrary. 
Equating the terms containing these, the following 
equations are obtained

L id n . + (2 u5 cl c ln  - t rfl X ^ u c l n .
A
u f f d r (2 .27 )

where oC = &w

Equation (2.27) appl 
small portion of the 
continuum region of 
these elements such that the

single finite element and a 
it represents. The entire 
represented by assembling 

inter-element continuity of

ies to a 
continuum 

interest is

45



the velocities is enforced. The following matrix equation 
is obtained as a result of this assembly process.

Mu + Cu + N(u)u = F (2.28)

Equation (2.28) forms the basic numerical description of 
the finite element analysis of problems in fluid flow. In 
a finite element computer program, it is most convenient 
to form the arrays M,C,N and F in a element-by-element 
fashion, such that

to add elemental contributions M e ,Ce ,Ne ,Fe to the 
appropriate locations of M ,C ,N and F, and ne is the 
number of elements. The matrices are identified as

a) The Mass Matrix

(2.29)

where X  denotes an "assembly operator" whose function is

(2.30)

Meis usually approximated to a diagonal matrix.
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b )  T h e  S t o k e s  F l o w  M a t r i x

Ce= cC X©C d f L (2.31)

Cgis symmetric, positive definite and possess a band 
profile structure (fig.2 .2 ).

c) The Non-Linear Convective Matrix

(2.32)

d) The Force Vector
(2.33)

These matrices are integrated using numerical integration 
(50).

2.5 Selective Reduced Integration

In the analysis of a three-dimensional or plane strain 
elastic body, as Poissons ratio tends towards 0.5 the 
equations become ill-conditioned because of the high bulk 
stiffness. Taking v too close to 0.5 can either ruin the 
discretisation accuracy or produce an excessively 
ill-conditioned stiffness matrix. If the Poissons ratio is 
not sufficiently close to 0.5 then the solution is no 
longer incompressible.
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For incompressible flow problems then, when X is chosen to 
be sufficiently large that the flow is incompressible, 
other problems can arise, most especially element 
locking. When the element is integrated numerically an 
incompressibility constraint is introduced at every 
integration point. If a large number of integration points 
are chosen then there will be more constraints than there 
are degrees of freedom and the element will "lock". It is 
important, therefore, that only a sufficient number of 
constraints are introduced to enforce incompressibility. 
This is achieved by only enforcing the constraint at a 
selected number of points within the element, usually at 
fewer points than are used to integrate the element 
matrices. Thus in integrating the element matrices the 
Stokes flow component are sampled at a sufficient number 
of integration points to integrate them exactly, but the 
incompressible constraints are only enforced at sufficient 
points to obtain a non-singular matrix. This process is 
termed selective reduced integration and it has been used 
extensively in this work.

To implement the selective reduced integration the Stokes 
Flow coefficient matrix C is segregated into two 
components, the dilatational (volumetric) and the 
deviatoric (shear) contributions.

C oc KcCo!n =
J
JX

-  DtL + (2.34)
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X is the material property matrix containing the terms 
1/(1-2V) which becomes infinite as *\) approaches 0.5. The 
strain-velocity matrix is split into two components' 
in a way such that when the product is performed,
only the terms of C which give rise to volumetric 
changes, retain the infinite terms of X .

A typical nodal element submatrix of 'oc' is

oC- n
0

£>X.

0
a 7

7)U3V

t>X

(2-35)

Let oc^^denote the dilatational part ofoC^(34).

oC  — — Bi”  Z

dtO-n
'bx i>y

d u>n
die- e)y

0 0

(2  3/5)
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T h e n  t h e  d e v i a t o r i c  c o m p o n e n t  c ^ ^ £v/ is

-

9$ DEM

1 1 )̂̂ v»
2 2>x ^  2> y

_ 1 1
Z <2?X 2- 2>y

Py

The expression for C then becomes

If the multiplication is carried out the equat 
becomes

C = oC X  cvi d s i-
— 2)E\j —  —

OC X  cc o[xl— — bu.
j
JTL

The terms foC^eUX  cCilLc|x̂  and foC ^ 9v/ d"0-
- 'a  Jo-zero for an isotropic media.

(2.S7)

( 2 .36)

ion (2.38)

( 2 . 1 =1)

are identically
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Volumetric part is

_ O u > w  J_
2 Zx 2 2 *  0
J_ 'dc>>ri \
2 2) / * v  °

M

zO-v)K ZKV o 
ZK-U q

O 0 * 1

4  1_ 7)u>
- L ^ n , ^

*  £\7^
o  7o

- A

h?n-.!L6+zV)2u>n
2x  * 7?>l

?~*l /l+Z») )̂lJ.
dy * 1 2*

6tXM)2ut„

^J^!L.£-(l-t-2v) h it,,
Vy *  2 y

K = l/(l-2v) approaches infinity as'tf—>0.5. Thus the 
matrix C^|L contains all the infinite terms.

(Z.l+D)

Deviatoric part is

Lev — 2 ^  2 3 ^  * 7

3usn
2 2 ?>y

2 1̂-vJk 0 "

Z(/--»)K o

=■ /*

r  ^-§~ +.

i- 'diOn

4- ^ .  -• 7>u>„ 
* 2*  *£ 7 y
-J_ pU>n 1 £*) u»,

2 2>x >  ^T
?*>r,

^y <?*

-JL 7)tOn
z  " ^ T  -^ T

2/  2*  2 x2 2 ^

J
All the above terms do not- inning • _not include the infinite term 1k 1 .

(Z>• H-
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Cross Products

4

■fc z ( l-v )K  2vK  0
t t " 2vK 0

-•£ i- ^
j i

h*
U

1
a 2>x * 7 y

-j_ 7>u>n JL

% ? y
Du>„

dy ?K

O O
“I

J

O O

The volumetric component is integrated using reduced 
integration thus allev/ating "mesh locking". Full 
integration is employed on the remaining component of the 
matrix C to retain the rank of the matrix. It can be 
shown that, although the matrix C DIL contains very large 
terms, it is singular and does not affect the overall 
solution of the equation (2.38) (51). The
incompressibility constraint is imposed, since the product

where u^ is a deformation mode containing no-volume changes. 
To validate equation (2.43) consider a single four-noded 
element to keep the matrices simple (fig.2.3). Full
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integration is carried out at 2X2 Guass Integration points 
and reduced integration at 1X1 Guass Integration points. 
Similar proof applies to the nine-noded element.

The velocity vector is interpolated as follows

°  o O n) OX) 0 o (!■+?,

i i

v/.’
u.

Using the above interpolation functions and using 
equations (2.34,2.39) the matrices are formed as

SYM.

_ l 
" 4-

\
~  \z

i
4-

\
6 0

_ \_  
~ 12.

\
~4-

_ \
” 12- 0 __ 1 

6

o - X
6

0
\

~ 12-
- X

4-

1
3

0 1
¥

i
" a

i
3 0 1

>2-
X
4*

X _l_
" V

__ i
)Z

-
\
3 0

J -
3
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I

£ dil
/Ut
*+(1- zv)

\ I ' t  "I - I  

-  I “ I I | *

I 1 ~\  "I "I

I "I ' I  "I

I ) I

I I
l

The matrix C^^does not contain any (1/1 — 2'\>) terms and is 
thus finite. However, CBIL contains the infinite terms as 
"^approaches 0.5.

The matrix C.̂  is made singular (because of reduced 
integration) and will not affect the overall solution of 
equation (2.38), but it will make any velocities involving 
volume change zero. To show the above to be true, consider 
fig.2 .3, the nodal velocities u,£

E d  =
. » 1 / _0 v, Ui Vz 0
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Considering a small velocity, with = v̂  and u^ = u^the 
volume change is

dV = (l+u^at) (1-v^At)
= l2, - lv^At + lu^At 
= l A t  (u'z  -  vf )

For no volume change

/ / tU2 = V, = u
and Bd. = [° u'u/ u# 0 0

/u ° ]

Then £»l»4- 0 for no volume change.
For any other ,then -BIL °

Hence imposes the incompressibilty constraint without
changing the character of the solution of equation (2.38).

For the nine-noded parabolic element used here the 
volumetric component of is integrated using a set of
2X2 integration points, while the remaining terms of C 
are integrated fully using a set of 3X3 integration 
points.
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2 .6 S o l u t i o n  M e t h o d  of the M a t r i x  E q u a t i o n s

Equation (2.28) denotes an initial value problem for a system 
of non-linear ordinary differential equations. C is a linear, 
symmetric matrix whilst ^(u) is a non-linear, non-symmetric 
matrix. u=u(x,t) is a time-dependant function of x and t. To 
solve this problem, a time-stepping algorithm is used, based 
on the one-step "linearly implicit" predictor-corrector method 
as suggested by Hughes et al (40).The algorithm can be 
summarised as :

(M+X»tC)u1*^, = MU„+| + ^ t ( F „ +|-N(u'T,+| iu '^ ,  )

iimrUT* +(!-•»■)
0 _**

 ̂ “Hn-M )/tfA t

-Corrector-(2.44) 
-predictor-(2.45) 

(2.46a) 
(2.46b)

whereat = 
F = 
u_ = 

_a =

K =

i =

Time step
Force vector at n'th timestep
velocity vector at n'th timestep
acceleration vector at n'th time step
Positive parameter which governs stability and
accuracy of the algorithm
number of iterations within each timestep.

The velocity vector at time t^, is defined as

l-M
lv**| = Urv-H

In each timestep equations (2.44) and (2.45) are solved i+1 
times. A local truncation—error analysis reveals that if i=0
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the algorithm is first-order accurate, whereas if i=l and 
Y=0.5, then a second order accuracy is achieved (40). This 
requires twice as many solutions to equations (2.44) and 
(2.45) and is hence twice as expensive as the first order 
scheme. The solution procedure using an upwind scheme and i=0 
was found to be stable by Hughes et al (40), if At satisfies a 
Courant Condition (52). Tests reveal that the solution 
procedure becomes unstable for i=0 for all At^O, if standard 
Guass integration is used. However, for i = l, **=1 and At chosen 
according to equation (2.49) the solution procedure is found 
to be stable.

The algorithm is initialised by specification of the initial 
velocity and acceleration u0and a . It is quite possible to 
start with a quiescent state (u=a=0 ), but we find that in this 
case the convergence is very slow and many extra timesteps are 
required before steady state solution is obtained. Instead we 
initialise the algorithm by using Stokes Flow solution (Re=0) 
obtained by solving the linear equation (2.47). Hence the 
simplified algorithm used to solve the non-linear equation 
(2.28) becomes

Cue = F Initialisation (2.47)
(M + AtC) u!^(= (Fm|- N (gm( )u'„+, ) (2.48a)

u« (2.48b)
o-n+i “ H tm-i (2.48c)
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where I (2.49)At

)

unand are the nodal velocities for the element and ax and 
AY are the distance between the two adjacent nodes for that 
element in x and y direction respectively. Within each 
timestep equation (2.48) is solved twice. By carring out tests 
with i*l, it was found the convergence rate or accuracy for 
the solution does not increase significantly, however, there 
is considerable increase in cost of the analysis. The left 
hand side of equation (2.48) consists of matrices £  and M.
Both are symmetric, positive definite and possess the band 
profile structure of C. For a fixed timestep we need to form 
the left side of equation (2.48) once only. and N (u1̂ )u^+f

are formed as a product, element by element, and then 
assembled for the entire domain. M and N(u) are square 
matrices, while u is a column matrix. The product thus formed 
is a column matrix, which is relatively cheap and easy to 
store. Mu^is formed at each timestep once only, while the 
non-linear matrix N(u^ )uj,+| is formed at each iteration within 
the timestep but ) need not be formed explicitly. The
right hand side of equation (2.48) is thus a column load 
vector which is updated at each iteration. The process is 
economical and does not require any additional storage. The 
major contributors to the computational cost of the algorithm 
are the forward-reduction/back-substitution of the factorised 
array in obtaining u^Ih .
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When it is required to solve for high Reynolds number flow, it 
is found that an incremental Reynolds number approach is 
cheaper. The Reynolds number is incremented in steps. To start 
off, a smaller Reynolds number is used and when the flow at 
this lower Reynolds number has reached steady-state, the 
Reynolds number is incremented to a higher value and the 
solution at the lower Reynolds number is used as the starting 
conditions. The number of increments depends on how high the 
flow Reynolds number is. Multiple factorisations are required 
if an incremental Reynolds number approach is used. The 
Reynolds number (£ud/*i) is incremented by increasing the 
value of density f . The new value is automatically 
incorporated when the non-linear convective matrix N 00 is 
formed at each timestep. However, it is also required to 
update the mass matrix M with the new value of £. The assembly 
costs can be reduced by forming the matrices M. and £  once 
only, and just before factorisation of the term (M+^tC), M is 
multiplied by the required increment in density. For example 
if the flow Reynolds number is 5000 and is analysed in the 
steps 100,500,1000,2000,5000, then the density increments 
are 5,2,2,2.5 based on the previous density value. This 
process can be easily carried out inside the solution module, 
by forming the new matrix M, then (M+^tC) and factoring and 
overwriting the old matrix for which a solution has already 
been obtained. This approach is used in section (7.3) to solve 
for flow inside a square cavity at high Reynolds number.
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2 . 7  C o n v e r g e n c e  C r i t e r i o n

At each timestep the non-dimensional Euclidean norm (Ec)
of the difference of the solutions at any two successive
iterations is compared against a sufficiently small value 

-*/- - 5of the order 10 —  10

Ec =
Uthqx

(2.50)
n=f

NE = number of equations

A gradual de 
convergence.
the dif f eren
itera t ions i
and cont inue
execu t ion is
densi ty are
times tep tha
needs ref ini
corne rs and
inves t igated

crease in the value of Ec indicates
However, if the value of Euclidean no rm of

ce of the sol ution at any two successi ve
s larger than the value at a previous timestep
s to increase in the following iterations, the 
terminated and the timestep size and mesh 

further investigated. Usually a smaller
n the one selected is required or the mesh
ng in the critical regions involving sharp
rapid flow changes . These points are f urth
in the following chapters.

To accelerate the convergence a weighted average of the 
velocities was also used in computing the velocity matrix 
for the next iteration. For example for the nth timestep

u e ( u n ) + (1 -e' )uT1_, (2.51)
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Where ie<i . The above procedure is very useful if
the problem to be solved exhibits an oscillatory
convergence. When the value of Euclidean norm "Ec" is
equal to or less than the value of Convergence Factor

~Lh —5(typical value 1 0 — 10 ) we assume that the flow has 
reached a steady state. A steady state flow solution has 
been achieved for low to moderate Reynolds number flow 
inside a square cavity (section 7.3) and low Reynolds 
number flow over a backward facing step (section 7 .2 ).

2 . 8  The Selection of the Timestep

The cost of the analysis (i.e. the number of operations 
required) is directly proportional to the number of 
timesteps required for the solution. It follows that the 
selection of an appropriate timestep is of much 
importance. The timestep must be small enough to obtain 
accuracy and stability in the solution, but not smaller 
than necessary, because this would mean that the solution 
is more costly than is actually required.

The timestep is selected according to equation (2.49) 
which is the Courant Stability condition (52) for 
two-dimensional flow. The inequality in equation (2.49) 
must be satisfied for each element in the mesh. The 
equation is solely a convection condition and is
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independent of Reynolds number. In order to obtain a 
solution free from instabilities and one that converges 
towards the steady state solution, it is required to 
select a mesh which is fine enough to resolve the boundary 
layer. The boundary layer gets thinner as the Reynolds 
number is increased. As is shown in section 7.3 using too 
coarse a mesh in the boundary layer region leads to 
instabilities appearing as ripples in the velocity vector 
plots. These ripples slow down convergence and the 
solution fails to converge towards a steady state if the 
Reynolds number is high. The presence of instabilities
indicates a need for mesh refinement in these regions. The

, Ue {  Leelement Reynolds number given as Ree = — ---- (52) is/CL
required to be roughly equal to or less than 2 , in these 
critical regions only. Everywhere else a much larger value 
of local Reynolds number can be used (section (7.3)). The 
new timestep is selected based upon this new mesh with 
smaller elements. Hence the timestep selection is also 
Reynolds number dependant. Investigations into inesh 
density and timestep selection for various example 
problems are further carried out in chapters 5 and 6 .
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2.9 T h e  F l u i d  E l e m e n t  S e l e c t i o n  a n d  F o r m u l a t i o n

One of the main problems associated with the selective 
reduced integration is that not all of the element 
families perform equally well. Studies have been 
undertaken to determine the most effective elements and 
quadrature scheme for use with the penalty methods. So 
far, these efforts have been largely empirical as no 
rigorous general theory yet exists. According to an 
heuristic theory (35), the most effective elements in 
applications of the type considered here are the 
"Lagrange" isoparametric elements with appropriate 
selective integration schemes. These elements, for the 
two-dimensional case, are schematically illustrated in 
fig.2.4. Triangular elements and "serendipity" 
quadrilateral elements are predicted to exhibit inferior 
behaviour, which has been confirmed numerically (53).

Previous studies undertaken by Prassas (51) using 
selective reduced integration show that the Lagrange 
family of elements exhibit better performance than the 
"serendipity" quadrilateral elements. A simple test of 
entry flow in a pipe was carried out using the eight-noded 
Serendipity and the nine-noded Lagrange elements, with 
different values of equivalent Poissons ratio *0 tending 
towards 0.5. With eight-noded element ripples began to
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appear in the flow field as the value of v was increased 
beyond .4999999. However, with nine-noded element the 
solution was stable for all values of •'0. It has been 
suggested (51) that for the element to show correct 
behaviour the number of parameters p describing the 
variation of velocity u must be greater than the number of 
points of the reduced quadrature used oc . Otherwise the 
incompressibility constraints dominate the coefficient 
matrix and the elements "lock".

Based on the findings listed above, a two-dimensional 
nine-noded Lagrange Fluid Element is developed. The basic 
procedure in the isoparametric finite element formulation 
is to express the finite element coordinates and element 
displacements in the form of interpolations using the
natural coordi
2-dimen,sional

x = 2 > ; *;
i = \

y =
9

i= \

where x and y
element and X;
element nodes.

(2.52)

(2.53)

in the natural coordinate system of the element, 
which has variables ^ and ^  that each vary from - 1 to
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+1. The fundamental property of the interpolation 
function w is that its value in the natural coordinate 
system is unity at node i and is zero at all other nodes. 
Using these conditions the functions w corresponding to a 
specific nodal point layout could be solved for in a 
symmetric manner. For a nine-noded parabolic element (fig. 
2.5) these are given as below

w2 = £ 1 , 0 - $ ( ? - ' )  

ws= i  \  9 < V ')

V  i f / l f O M . )

v

wr  ^ . C V ' X ' - ? * )

w7 =

w«=

w« r
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By means of the coordinate interpolation, the element can 
have curved boundries if required. The interpolation 
function matrix is thus

w = w, 0 w^O w3 0 w^O ws 0 w6 0 w7 0 w8 0 Wc, 0 

0 w, 0 wz 0 w5 0 w^ 0 ws 0 0 w7 0 w& 0 Wej (2.54)

In the isoparametric formulation the element displacements 
are interpolated in the same way as the geometry.

where u and v are the local element displacements at any 
point of the element and u^ and vj (i=l,9) are the 
corresponding element displacements at its nodes.

To be able to evaluate the element matrices, we need to 
evaluate the strain-displacement transformation matrix. 
The element strains are obtained in terms of derivatives 
of element displacements with respect to the local

(2.56)

(2.55)
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coordinates. Because the element displacements are defined 
in the natural coordinate system (equation (2.55)), it is 
required to relate x and y derivatives to ^ and ^  

derivatives, thus

x = fl (i ^ '  y = (2.57)

The inverse relationship is

\  = h  ( x ' y ) ' \ = (2.58)

The derivatives and are also required and can be
calculated using the chain rule

_2 _ = _d_ . ^
2 x  3 * 3? 3x

and similiarly for • In the matrix form

d x  Dy’ 3

on

2) . 
2>l ‘

2>x 3y

n
\ d  1

dx

j I
s:

 »
L --

---
---

---
-

ii

^
U

l 2>?
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J is the Jacobian operator relating the natural coordinate 
derivatives to the local coordinate derivatives. The 
inverse of the Jacobian is easily found, provided there is 
one-to-one correspondance between the natural and the 
local coordinates of the element. Thus the strains can be 
calculated as

*• +
f  ̂Vf X* y *

0

£ =. £yy — D %

f % r i__
_

-

Hence a — oC u

u

V (Z-60)

where oC =  }<i> (2 .6 1 )

and oC is the strain-displacement matrix. The matrix oc  

is split into two separate components, dilatational and 
deviatoric, and is numerically integrated using selective 
reduced integration as detailed in section (2.5).

The volume integration extends over the natural coordinate 
volume, and the volume differential, dV, can be written 
in terms of natural coordinates as

dV = d ̂  d ̂  t  |jJ (2.62)
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Using all of thewhere t is the uniform element thickness, 
above parameters the matrices in section (2 .6 ) are 
integrated numerically.

2.10 Pressure Recovery

The theory given in this section is developed directly 
from the use of finite elements in structural analysis. 
The extension to flow problems is obtained immediately by 
replacing displacements by velocities and strains by 
strain rates. The resulting equations are identical to 
those given in this section. The fluid pressure recovery 
is based upon the equivalent stress recovery procedure as 
used in plain strain stress analysis. For an isotropic 
material the stress-strain relationship is given as (50)

0 ~  = X L  (2.63)

where X  is the material property matrix. For the 
two-dimensional plain-strain case

C5Txy

*

Z(i-v)  K 

0

K 0  

2(»-v)K  0

0  1

-
<>u/dx.

^ / i y
}uA +  2 ^

ZK

ZK

( l - v )

-v

'dy

?>tt 7)^—— -j-----
'by dx
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t h u s

in the case of an incompressible material with 
pressure 'p* is given as (50)

P = -l/3(

or for two-dimensional case

P 1 / 2 ̂  O x y -f- o y ŷ

Substituting foro^and from equation (2.65)

A / .  /'i +  v - i A l  3x  ̂ 1 3v C 1/P =  ■ Z/IK

=  -,X/K

_  __XL— ^  h a v ~ l

'p« a*"
3 *  + 3 y

J

^ / i e v e A as V

=0.5 the

( 2 . 6 6 )

(2.67)
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The expression for p in equation (2.68) is the same as 
used previously in equation (2.7) to substitute for p.

The a p p r o a c h  used to c a l c u l a t e  p r e s s u r e  can be e a s i l y  

a c c o m m o d a t e d  in a g e n e r a l  p u r p o s e  s t ress a n a l y s i s  pa c k a g e . 

V i t h  ver y  few changes, the sum of dire c t  s t r esses is the 

pr e s s u r e  for fluid ana l y s i s  (33).

In order to calculate the fluid pressures acting on the 
structure, it is required to calculate the fluid pressure 
on the fluid-structure interface boundary. These elemental 
pressure forces are found by integrating the stress over 
the element. The following standard relationship as used 
in the stress analysis is used to derive the expression 
for the pressure forces (50)

Kr = R (2.69)

The matrix K has the form

K
I J

V

oc*Xoc d V
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where ©C is the strain-velocity matrix
X is the material property matrix 
R_ is the force vector
r is the displacement matrix or the equivalent 

velocity matrix in the fluid analysis

The force vector can be evaluated as below if the element 
stresses or pressure are known. The force vector for the 
element is

5-n = oc X o c  A v . u m

oc+k

ôccr clV (2.70)
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9

F i g . 2 . 5  9 - N o d e d  P a r a b o l i c  E l e m e n t  w i t h  N o d e  S e q u e n c e  
to E v a l u a t e  I n t e r p o l a t i o n  F u n c t i o n s
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3 .  T H E  S T R U C T U R E  I D E A L I S A T I O N

The equation of motion of a structure is given by

M5r + Qsr + Ksr = R  (3.1)

where M & fC s , and are the structural mass, damping and 
stiffness matrices. R is the external time varying load 
vector. For the examples given later a very simple 
structural idealisation has been used, where the 
cross-sectional shape has been assumed rigidf but rigid 
body translations and rotations are resisted by springs. 
For the case of a rigid circular cylinder, the structure 
is idealised as shown in fig. 3.1. The mass matrix and the 
stiffness matrix are both diagonal in this case.

m 0 0

Mass matrix M = 0 m 0

0 0 I

K 0 0

Stiffness matrix K = 0 ky 0

0 0 k.

Load vector £ = R,
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where m = mass per unit length
I = Moment of inertia (l/2mdl2' for a 

solid cylinder of radius ■ dL* ) 
kx = Stiffness in horizontal direction 
ky -  Stiffness in vertical direction 
ke= Rotational stiffness
Rx= Horizontal component of load vector (Lift)
Ry= Vertical component of load vector (Drag)
Re= Rotational component of load vector (moment)

The load vector R , is formed by summing the nodal forces 
along the interface boundary about the centre of cylinder. 
The structural idealisation used in the fluid structure 
interaction examples to follow is indeed very simple, a 
more complicated general finite element model of the 
structure can, however, easily be incorporated into the 
method especially if the structural and fluid node points 
at the interface coincide. The associated finite element 
program FINEL has a wide range of structural elements and 
any of these can be used to represent a more complicated 
structure. The mass, stiffness and the damping matrices 
can be assembled using the standard routines inside the 
package. The force vector in this case will consist of the 
fluid forces corresponding to the nodes on the fluid 
structure boundary, found by solving the fluid equations. 
The process is relatively simple if the fluid and the
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s t r u c t u r e  n o d e s  c o i n c i d e  on the i n t e r f a c e  b o u n d a r y .  If the

fluid and the structure nodes do not coincide on the 
interface boundary, some form of transformation matrix
would be required to transform the fluid forces to
equivalen t values on the structure nodes and vice versa.
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F i g . 3 . 1  S i m p l e  S t r u c t u r e  I d e a l i s a t i o n
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4. THE PLDID STRUCTURE INTERACTION

Both the structure and the control volume of the 
surrounding fluid are discretised by corresponding finite 
elements as shown in figure 4.1. The internal boundary

conditions for velocities and forces. The equation of 
motion for the fluid flow (eq.2.48) is solved first. The 
velocities obtained from this are used to calculate the 
fluid forces acting on the structure using the equation to 
calculate pressure forces (equation (2.70)) on the 
fluid-structure interface boundary

The nodal pressure force values for the element are 
calculated by integrating the element stresses for that 
element, following the procedure as outlined in section 
2.10. The lift and drag forces are found by summing the 
inter-element forces for nodes along the interface 
boundary. For the simple case of a solid circular cylinder 
of unit length, the interface forces are transformed to 
the centre of the cylinder using a transformation matrix 
T.

conditions on the contact surface Q are given by

for the nth element (4.1)
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R,

R = Rv = T R, (4.2)
R.

1 0 1 0 1 0 1 0  

where T = 0 1 0 1 0 1 0 1  

Y, x, Yz xi y3 x3 ytfxlf

(4.3)

and R . RV,,RV,,R. R R R -
i xa- >3 Y3 Xif Vlf - }

(4.4)

and x, and y ( are the horizontal and vertical distance of 
interface node 1 from the centre c as shown in figure 4.2.

Thus

R
TR TU

X R*< '  R / = X

■m
Ryi / R,

I
= ) { y. R .+x. R • ) (4.5)xl i yi

i~\ u\

ni= number of interface nodes
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Similarly the structural matrices required to solve the 
equation of motion for the structure are reduced to a 3X3 
form and the simple equation of motion of structure is 
solved

-
m 0 0 ‘ r,

r.
r.

ioo

V V

0 m 0 +
•

r2 + 0 ky 0 r2 = Ry

0 0 I
« •
e. —

•
e  

• .
0

•

0 k? e <z>
___

1

(4.6)

2where m is the mass and I is the moment of inertia (1 / 2 md 
for a solid cylinder of radius 'd'.). kx and ky are the 

horizontal and vertical stiffness of the cylinder and k0 

is the rotational stiffness.

The simplified equation of motion of the structure under 
the action of fluid pressure forces is solved using the 
Newmark method. The solution at time t+at is based upon 
using the equilibrium condition at t + A t , and is thus an 
implicit method. The following assumptions are used (47)

- w =  4  + < < <4 - 7 >

• W =  s-k + i t * fc + ( 4 - 8>
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where ^  and £ are parameters which govern the accuracy and 
stability of the solution. Unconditional stability is 
achieved if y^=0.25 and 8=0.5 are selected. This scheme is 
also known as the constant-average-acceleration method 
(fig.4.3). To obtain a solution for the displacements, 
velocities and accelerations at time t+ at, the 
equilibrium equation at time t+at is also considered along 
with equations (4.7) and (4.8).

Mo r* + Cc,r + K, r = R (4.9)

Solving from equation (4.8) for r ^ A<fc in terms of and
then substituting for r^^into equation (4.7), we obtain 
equations for and £ / each in terms of the unknown
displacements only. These two relations for ^ ^ a n d
are substituted into equation (4.9) to solve for ^ ^so 

that and r ^ ^  are then calculated using equation (4.7)
and (4.8). The complete step by step algorithm is outlined 
as below

Initial Conditions and Calculations

1. Form the Stokes flow coefficient matrix C, the mass 
matrix M, and the force vector F, for the fluid domain.
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2. Solve the linear Stokes flow equation to obtain the 
initial value of velocity vector.

£U0 = £ (4.10)

3. Form the structure mass matrix Ms , the stiffness 
matrix Ks , and the damping matrix Cs .

4. Initialise r* ,r and r for the structure. The 
algorithm is started by selecting r* =r =r = 0 .

5. Select the structure timestep size at, and the 
parameter ^ an(3 & • In the present work and S are 
selected to obtain unconditional stability, ^=0.25 and

S=0.5. The timestep at is chosen to be the same as used 
for the fluid analysis. The reasons for this are discussed 
later in this section.

Based on the above values the integration constants are 
calculated

a o =
1

\
a . =

___ s_.

i
a  2 T ~  ' a 5 ( ^ - 0

a * =
J l.  _  |
n a 5 = s  < k  - * )

a 6 = At(f-s) / a  7 =
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6 . Form the effective stiffness matrix

£  = K + a6 {ls+ a, (4.12)

A7. Invert K . The process is simple for the examples
considered, K is diagonal and 3X3. For large and fully

a a t
p o p u l a t e d  K i t  i s  r e q u i r e d  t o  t r i a n g u l a r i s e  K = LDL

Standard routines exist inside the finite element package 
FINEL to triangularise this kind of matrices.

W ith in  e ac h  t i m e s t e p

1. Solve the non-linear fluid equation (2.48), using the 
velocity vector u0 for the first timestep and then 
subsequently the velocity vector from the previous 
timestep.

2. Using the velocities found from the solution of 
equation (2.48), calculate the fluid pressures acting on 
the structure using equation (4.1), and transform to the 
required 3X1 form using the transformation matrix T.

3. Calculate effective loads at time t+at.

-- fcf-Afc —-fc+At= Bt-at + M s (a0 rt + a2 4  + a ^ )  

+ Q.s(a i l ± + av rt + ) (4.13)
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4. S o l v e  for d i s p l a c e m e n t s  at t i m e  t+at.

AK r."t+At (4.14)

5. Calculate accelerations and velocities at time t+At.

a o ( - JU ) - t 3 ^ (4.15)

r = r A-t + + (4.16)

6 . The velocities r.^ .are extrapolated back to the 
interface nodes using the transformation matrix £.

I-n
t  •T r (4.17)

These interface velocities are applied as a new set of 
boundary conditions for the fluid analysis. The equivalent 
force vector for the non-fixed freedoms is calculated 
using these new values of interface velocity boundary 
conditions and the fluid equation in step 1 is solved 
again.

The process is repeated until a solution for the desired 
time duration is obtained.
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4,1 T i m e s t e p  s e l e c t i o n  for t h e  s t r u c t u r a l  e q u a t i o n  of

motion

The major contributor to the cost of the fluid-structure 
interaction analysis is the solution of the fluid 
equation. The timestep is selected using equation (2.49) 
and is based upon the accuracy and stability 
considerations dependant on the fluid equation. In order 
to obtain a good approximation to the actual dynamic 
response of the system under consideration, it is required 
that the equilibrium equations are integrated to high 
precision, at should correspond to the smallest period "T" 
(At would have to be about T/10). In most of the examples 
studied in the next section, the fluid timestep is small 
enough to analyse the structural response. However, if the 
natural frequency of the structure is very high hence a 
small time period T is required, it is quite possible that 
^ structure (the time period required for structural analysis) 
to capture the high frequency behaviour is smaller than 
Afcraj(1>. In the present work same value of at for structure 
and fluid analysis is used. If a timestep at smaller than 
AtFLUII> is selected, it would result in additional cost. The 
frequencies and mode shapes of the finite element mesh are 
often crude approximations to exact quantities and in many 
analyses there is little justification to include response 
predicted in the higher modes. The time integration scheme 
used for the structure equation is unconditionally stable 
and hence stable for any value of at used. On the other 
hand, the implicit algorithm used for the fluid equation
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is conditionally stable and any increase in At would 
result in divergence. The problem of fluid-structure 
interaction is solved in chapter 8 using the above 
timestep selection approach and the dynamic response of 
the system is found to agree with the available 
experimental results.
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5 .  C O M P U T E R  I M P L E M E N T A T I O N

The present development was carried out using the general 

purpose finite element package FINEL. FINEL is finite 

element analysis system used as a standard analysis tool, 

for teaching purposes and also as a research tool ( 33). 

The basis of FINEL follows directly the steps involved in 

the Finite Element Method. The computer implementation of 

the Finite Element Method is highly successful as it can 

be broken down into a set of discrete, almost unrelated, 

steps such as mesh definition, assembly of matrices, 

solution, stress recovery etc.. This feature is used 

within FINEL to define a modular structure for the 

program. The modules inside FINEL are independent and do 

not communicate directly with each other but indirectly 

through a common database (fig.5.1). The FINEL database is 

a random access mass storage file. The database along with 

the various common areas in the FINEL executive are the 

only means of inter-communication between the various 

modules. The executive passes control to any module. The 

module performs its task and then returns the control to 

the executive to be passed on to the next module. These 

modules are associated with a series of FINEL libraries in 

such a fashion that the programmer can modify or add 

routines into a library (fig.5.2).
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In order to carry out the fluid and the fluid-structure 

interaction analysis, the modules were arranged in the 
following manner.

GRID 

ASMB 

OWNl 

BNCN 

CHOL 

LOAD 

OWN 2 

STRS 

PLOT

GRID Sets up the finite element mesh for the fluid 

domain. The finite element mesh for the structure present 

inside the fluid domain can also be set up, if required 

for the fluid-structure interaction analysis. The 

nine-noded planar or axisymmetric fluid element is used 

to represent the fluid and a structure element to 

represent the structure ( a choice of structure elements 

is available inside FINEL ( 33) ). This is a standard 

FINEL module.

ASMB Standard matrix assembly module. The mass matrix 

and the Stokes flow matrix are assembled in this module.
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Both of these matrices are symmetric matrices and possess 

a band-profile structure. The fluid element is used to 

form the relevant matrices using the selective reduced 

integration (section 2.5). This module will also set-up 

the structural matrices if a complicated structure is to 

be analysed for the fluid-structure interaction problem. 

This is a standard FINEL module but uses the special fluid 

element which is temporarily added to the FINEL Element 

Library for each run.

0WN1 Performs the summation ( M+VatC) (equation 2.44), 

and overwrites the original C. matrix. This module was 

specially written for the fluid flow analysis.

BNCN This is the standard FINEL boundary condition 

module.

CHOL Standard FINEL Cholesky factorisation module. The 

matrix ( M+7fAtC) is factorised. CHOL is a standard FINEL 

module.

LOAD This is the standard FINEL load module.

OWN2 Solution Module. This is the module where the 

solution for the non-linear fluid equation (eq.2.44) is 

performed, based on the algorithm as detailed in section 

2.6. If the fluid-strucure interaction analysis is to be
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c a r r i e d  out t h e n  t he  r e l e v a n t  r o u t i n e s  a r e  c a l l e d  f r o m  the

library to solve the equation of motion of the structure 

under the action of fluid forces (chapter 4). The module was 

specially written for the flow and fluid-structure 

interaction analysis.

S T R S  Modified FINEL stress recovery module to calculate 

pressure and shear stress if required. The module is 

almost identical to the standard FINEL stress module but 

the summation of the direct stresses has been included to 

calculate the fluid pressure.

P L O T  Post-processing of results in the form of velocity 

vector plots and various other graphs takes place in this 

module. The data is read form the FINEL database where it 

was originally written in the 0WN2 module and the STRS 

module.
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The solution to the Stokes flow problem both in two 

dimension and axisymmetric cases is obtained by solving 

the linear Stokes flow equation (eq.2.47). The solution 

gives a good representation of low Reynolds number or 

creeping flow problems. Examples of two-dimensional entry 

flow in a duct and axisymmetric flow in a pipe are 

considered. The example of axisymmetric flow between two 

parallel plates is used to illustrate the use of 

incompressibility constraint and the importance of 

selecting the correct value of penalty parameter A , as 

related to problems where compressibility effects are 

important.

The entrance region for laminar flow has received 

considerable attention in recent years. Not only is such a 

study of importance to industrial and viscometric 

applications, but also as a simple developing flow it 

provides a suitable example for evolution and evaluation 

of numerical solution procedures for linear and non-linear 

partial differential equations, for example, the 

Navier-Stokes equations. One of the first finite element 

solutions to such problems was achieved by Atkinson and 

co-workers (54,55) with a stream-function vorticity 

approach. Zienkiewicz and Godbole (56) have presented some 

finite element results for entry flow problems in two and 

three dimensions using parabolic elements and the penalty 

function approach. These results are compared with the 

results of Lew and Fung (57) using stream-function

6 .  S T O K E S  F L O W
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approximation and a rectangular element. The associated 

experimental investigations done by many authors are 

discussed by Atkinson and co-workers (54). it has been 

suggested previously (56) that the only realistic 

experimental initial condition at low Reynolds numbers is 

the generation of a flat velocity profile at a known 

position within the conduit. Numerical examples covered in 

the literature also use a simil/ar inlet boundary 

condition.

6.1 Two Dimensional flow

Two-dimensional flow in a duct is considered. Details of 

the numerical example are as shown in fig. 6.1.1. The top 

and bottom walls of the duct are no-slip walls. Because of 

the symmetric nature of the problem, only one half of the 

flow above the centre-line is analysed. A flat inlet flow 

profile is used with u=1.0. A range of uniform and 

non-uniform meshes are tried to solve the Stokes flow 

problem. The flow solution in the form of velocity vector 

plots is shown in fig. 6.1.2 for a 7X3 uniform mesh 

(fig.6.1.2a) , 7X3 non-uniform mesh with a finer mesh in 

the corner near the entrance and the fixed wall 

(fig.6.1.2b) , 7X5 uniform mesh (fig.6.1.2c) and a 7X5 

non-uniform mesh (fig.6.1.2d and fig.6.1.2e). The solution 

is fairly smooth with the uniform meshes, however, some
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flow is moving away from the fixed wall and towards the 

centreline when a finer mesh closer to the fixed wall is 

used (fig.6.1.2b and fig.6.1.2d). This is as a result of 

the flat inlet boundary condition. The element containing 

the wall boundary has u=0 at the wall and u=1.0 at all 

other nodes. The boundary condition is not smooth and this 

is made worse when a smaller element is taken near the 

fixed boundary. The distance between two adjacent nodes at 

the inlet and near the fixed boundary with u=0, is 

decreased, hence a large variation in velocity over a 

relatively short distance.

Effects of mesh sub-division on axial velocity development 

on the plane entry flow can be seen from the plot of 

centre-line velocity along the length of the duct 

(fig.6.1.3). The axial velocity increases sharply over the 

first half of the duct. Results are improved considerably 

when a finer mesh in this region is used. There is little 

difference between the results obtained using 7X3 

non-uniform and 7X5 non-uniform meshes. The number of 

nodes in the horizontal direction (flow direction) is the 

same for the two meshes. The results are in good agreement 

with theory and also with the results of Atkinson et al 

(54) obtained using a stream-function vorticity approach. 

From the obtained results it shows that mesh refinement in 

the axial direction is sufficient to obtain a good 

solution to the flow problem. Fig.6.1.2e having mesh
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refinement in the axial direction only gives a smooth as 

well as accurate solution.

6.2 Axisymmetric flow

Bodies of revolution under axisymmetric loads are two 

dimensional in so far as analysis for stresses and 

deformation is concerned. For the case of fluids, the 

velocities are confined to the radial (r) and axial (z) 

directions. Accordingly little change is needed to adopt 

the two-dimensional elements of the previous section to 

the axisymmetric elements.

Developing flow in a pipe is considered. Details of mesh 

and boundary conditions are as shown in fig.6.2.1. The 

initial condition is a flat velocity profile. In fig.6.2.2 

a simple solution of an axisymmetric entry flow region is 

shown for two different meshes. The flow behaves very much 

like the two-dimensional flow and moves towards the 

centreline when a finer mesh in the radial direction and 

near to the fixed wall is used. Axial velocity is plotted 

along the centreline of the pipe in fig.6.2.3 for the 7X5 

uniform and 7X5 non-uniform mesh. There is an improvement 

in the results when a finer mesh is used near to the inlet 

and in the axial direction.

The velocity field obtained from the Navier-Stokes 
equation applied to the pipe entry flow problem may be 
expressed as (54)
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u a f ( r,z,Re ) (6 .2 .1 )

where r is the distance in the radial direction 

z is the distance in the axial direction 

(fig.6.2.1)

and Re is the flow Reynolds number

For the centre-line velocity

v\.L= f ( z,Re ) (6.2.2)

From theoretical results, the final dimensionless 

centreline velocity is 2. From the results in fig.6.2.3, 

this velocity is attained at z/r = 1.5 and for z/r>*1.5, 

the flow remains fully developed with dimensionless u = 2.0. 

These results are in good agreement with the results 

obtained by Atkinson et al (54).

Axisymmetric flow between two parallel plates is 

considered to illustrate the importance of the value of 

penalty parameter Fig.6.2.4 shows the mass flow rate 

between the inlet and outlet of two parallel plates for 

various values of Poissons ratio. A fully developed flow 

with a maximum velocity of lm/sec is applied on the inner 

radius. The gap between the two plates is taken as 0.1. We 

see that there is a considerable loss in mass flow rate 

between the two stations for small values of penalty 

parameter X i.e. values of Poissons ratio not very close 

to 0.5. However as V approaches 0.5 the value of penalty
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parameter ' increases and the mass flow rate improves at 

the outlet. When a value of V = *49999995 is used the mass 

flow rate at the inlet and outlet is exactly the same. The 

incompressibility constraint is fully satisfied and there 

is no loss in the mass flow rate. The compressibility 

effects get more important as the gap between the two 

plates is further decreased. With a narrower gap a higher 

value of X was required in order to satisfy continuity in 

mass flow rate. Hence the constraint of incompressibility 

is very much dependant upon the value of penalty parameter 

X i specially in the regions where compressibility effects 

are important, as is indicated by the problem of flow 

between two parallel plates with a narrow gap.

6.3 Aspect ratio

The example of fig.6.2.4 was used to investigate the 

maximum possible value of aspect ratio to which the fluid 

finite elements could be stretched. A uniform mesh of 40 

elements is used and the radial dimension is increased or 

decreased to attain the desired aspect ratio. For this 

particular example of fully developed flow we stretched 

the elements to an aspect ratio of 2000 in the regions of 

fully developed flow with little changes in flow 

characteristics. For such high values of aspect ratio it 

is very important to use V as near as possible to 0.5, in 

order to satisy continuity. A value of V =.4999999995 was
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sufficient to give results for aspect ratios of up to 800. 

Using the same value of V but aspect ratio increased to 

1200, resulted in some loss in mass flow which was 

recovered by using V = .499999999995. The above mentioned 

values of aspect ratio apply to the regions where changes 

in flow velocities and/or geometry are negligible. Much 

smaller values of aspect ratio are required in the 

regions where flow is undergoing rapid changes, in order 

to capture all details of the steep velocity gradients.
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7 .  U N S T E A D Y  I N C O M P R E S S I B L E  V I S C O U S  F L O W

The solution for unsteady incompressible viscous flow is 
obtained by solving the complete set of non-linear 
equations (eq. 2.47 and 2.48). The initial solution is 
obtained by solving the linear Stokes flow equation 
(eq.2.47). The timestep is selected using equation 2.49. 
Examples of flow over a step, flow over a backward facing 
step, flow in a cavity and vortex shedding behind a 
circular cylinder at low and moderate Reynolds number are 
considered. The results are compared with the available 
numerical and experimental results.

7.1 Flow over a Step

The problem is that of laminar flow in a channel over a 
square step. The square step forms a portion of the lower 
boundary domain. The top boundary is located near the top 
of the step and is a no-slip wall. In order to compare our 
results and make the problem identical to those of ref. 
40,59 , the step is located fairly close to the inlet 
region.

There are relatively few studies of flow over a step. Two 
related situations have been studied in more detail. These 
are of flow through a pipe orifice and flow through a 
channel with sudden expansion (the backward facing step). 
Earlier work on flow over a step employing FDM and using 
the stream-function/vorticity approach with upwind
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treatment of advection for Reynolds number up to 1000, has 
been reported by Greenspan (60) and Freeman (61). Hughes 
et al (40) presented some results using the finite element 
method on a very coarse uniform mesh. For Re=200 the 
conventional Galerkin method produced spurious wiggles in 
the velocity vectors upstream of the step. A reasonable 
recirculation eddy downstream of the step was obtained. 
Upwind methods were used to eliminate these wiggles and 
obtain a smooth solution. A solution for Re=10^ was also 
presented using the same coarse mesh and upwinding. Leone 
and Gresho (59) and Gresho and Lee (62) present some more 
results using finite element method and no upwinding, for 
flow over a step for Re=200 for a range of non-uniform 
meshes. It is shown that smooth solutions can be obtained 
without using upwinding. Bercovier and Engelman (63) 
present some results for time-dependant flow past a square 
step without any comment or detailed explanation. The 
example of flow over a step characterises flow over sharp 
corners. Problems involving sharp corners are also 
encountered in the analysis of clusters of fast reactor 
fuel subassemblies. Fluid-structure interaction problems 
involving sharp corners are discussed by Donea and 
Giuliani (28 ) .

In t h i s  section, results are p r e s e n t e d  for f l o w  over a 

s q u a r e  s t e p  for a range of R e y n o l d s  n u m b e r s  and using 

u n i f o r m  and n o n - u n i f o r m  meshes. The n i n e - n o d e d  fluid
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element using the conventional Galerkin method is used 
throughout. The problem definition is depicted in figure 
7.1.1. A coarse uniform mesh of 48 elements (fig.7.1.2 ) 
similiar to the one used by Hughes et al (40) is used. The 
inlet boundary condition is a flat velocity profile, u=l. 
Thus the problem is more of a developing flow over a step 
in a channel. No-slip boundary conditions are used on the 
top and bottom wall. The density C is incremented in 
order to obtain the desired Reynolds number, other 
parameters in the Reynolds number equation ( Re= ^ulZ/X)  

are taken as unity. The channel height is taken as 1 and 
the length of the channel is 4. The Reynolds number is 
based on the channel height and not on the step height. 
These parameters are chosen to make the example identical 
to those of other authors. The timestep, At = .04 is 
chosen using equation (2.49). The flow Reynolds number is 
taken as 200. The initial flow solution is obtained from 
the solution of the Stokes flow equation. Velocity vector 
plots at 20 timestep intervals are presented in figure 
7.1.3.

As is clearly visible from the velocity vector plots 
(fig.7.1.3) instabilities in the form of "ripples" appear 
upstream of the step. These ripples are virtually absent 
from the initial solution to the Stokes flow problem 
(fig.7.1 .3a), but as the non-linear convective terms are 
introduced, the ripples appear upstream of the step and
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these are present throughout the solution. They occur in 
the region between the inlet and the front face of the 
step and do not appear anywhere else in the flow, even 
after many timesteps. A recirculation eddy appears 
downstream of the step which elongates with time. In 
addition to the dowstream eddy there is another 
recirculation region at the top of the channel near the 
outlet where the flow is trying to re-enter the channel. 
This small region gets pushed outside the channel after 
about 80 timesteps. The main eddy downstream of the step 
continues to grow with time (fig.7.1.3e), which indicates 
that the flow has not quite reached a steady-state as yet.

Investigation into the cause of ripples

An attempt is made to find the cause and cure of these 
ripples, before going any further. Hughes et al (40) 
believe that the presence of ripples demonstrates the 
inappropriateness of the Gau.ss-Legendre integration of the 
convection term and suggests the use of optimal upwinding 
to eliminate these ripples. Solutions for flow over a 
square step are presented in reference 40, using a coarse 
uniform mesh of 48 nine-noded elements similar to the one 
in figure 7.1.2. Results are presented for flow at Re=200 
and Re=107 in the form of velocity vector plots. These 
solutions free from any upstream ripples are very
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identical to each other, which indicates that upwind 
schemes are insensitive to the input value of Reynolds 
number. Also at large Reynolds number, most of the 
viscosity is artificial (i.e. numerical) and the resulting 
effective Reynolds number can be many orders of magnitude 
less than the input value. At high Reynolds number the 
flow becomes more complex and a coarse mesh simulation 
will often not recognise these complexities. Results 
obtained by the use of upwind methods are often 
independent of the flow Reynolds number.

From observation, the possible cause of ripples could be a 
combination of the following factors

(i) The rapid change in flow velocity between inlet and 
the step as a result of fixed boundary condition at the 
step.

(ii) The sharp edge singularity at the leading corner of 
the step.

(iii) The inlet boundary condition is not smooth.

(iv) The mesh too coarse to resolve the steep gradients 
upstream of the step and in the direction of the flow.
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Investigation into the cause of ripples has been carried 
out by Gresho et al (59). It was found that if a parabolic 
inlet flow profile is used, the ripples are reduced by 
about 10%. Smoothing the inlet boundary condition by using 
u=0.75 at the midside nodes of the corner elements 
reduces the ripples by a small amount only. Moving the 
step further downstream in the channel does not make much 
difference to the ripples.

To shed further light on this, the problem was reanalysed
i

but rounding off the front edge of the step (fig.7.1.4). 
The number of elements and nodes was exactly the same as 
used in the previous example as was the flat velocity 
profile at the inlet. The velocity vector plots of 
fig.7.1.5 show that the ripples upstream of the step have 
disappeared. The eddy downstream is correctly modelled and 
is identical to that of the previous test with the square 
step. Overlaying the vector plots of the two geometries at 
the same time show that the only difference is upstream. 
This proves that a cause of the upstream ripples is the 
sharp corner on the front face of the step and the mesh 
immediate to the front corner of the step. This indicates 
that a slight rounding of the geometry can lead to a 
significant improvement in the numerical stability of the 
results. Further work is required to investigate the 
sensitivity of the results to the radius of the corner.
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Using a uniform mesh of 128 elements does not eliminate 
ripples to any extent and the results are not reported 
here. However using a non-uniform mesh of 128 elements 
with finer mesh upstream of and around the step and 
(fig.7.1.6) eliminates these ripples and the solution 
obtained is smooth. The solution in the form of velocity 
vector plots is presented in figure 7.1.7. The timestep 
was recalculated for this fine mesh and was found to be 
0.015 for stability and convergence. This is about three 
times smaller than the previous timestep used with the 
uniform coarse mesh. The cost of analysis increases as a 
result of the smaller timestep and the increased number of 
equations that have to be solved at each timestep. The 
non-uniform mesh of 128 elements was found to be suitable 
to solve for flow at Re=200. Using the same mesh of 
fig.7.1.6 but incrementing the flow Reynolds number to 
500, the flow solution in the form of velocity vector 
plots is presented in figure 7.1.8. For this run the inlet 
flow was modified by using u=0.75 at the midside nodes of 
the top and bottom element adjacent to the walls (59). 
Velocity vector plots are presented at 30 timestep 
intervals upto T=1.35 and then at T=3.6,4.05 and 4.50. The 
initial solution at T=0 is free from any ripples, but at 
T=0.45 ripples appear upstream of the step and also near 
the top and bottom wall close to the inlet. The ripples 
closer to the wall could be as a result of the slightly
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modified inlet boundary condition with u=0.75 near the 
walls. This is to make the inlet condition smoother and is 
known to reduce the ripples (56). The ripples upstream of 
the step are similar to those obtained with the coarse 
uniform mesh and Re=200. This indicates that the mesh 
used, although fine enough to deliver a solution free from 
any ripples for Re=200, is not sufficiently fine for 
Re=500. In order to obtain a smooth solution at higher 
Reynolds number further refinement closer and upstream of 
the front edge of the step is required. The increased mesh 
density and the consequential need for a shorter timestep 
makes the solution at higher Reynolds numbers 
progressively more expensive.

The flow solution at Re=500, however, presents some 
interesting features. A small recirculation bubble has 
appeared at the top of the step, which is small to start 
with but elongates and moves further downstream into the 
flow. At T=3.6, while the main eddy is growing larger and 
moving downstream into the flow, another eddy is appearing 
near the bottom of the step and growing in size. At T=4.05 
and T=4.5 the small eddy present above the step has moved 
downstream of the step and is located near the top 
downstream corner. A small recirculation region is also 
present upstream of the step near the bottom wall. At the 
top wall near the outlet some flow is recirculating back 
in the channel and this region gets pushed out of the
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channel with time. In the above example at Re=500 steady 
state flow was not reached at 300 timesteps. Numerical 
results of flow over a step at high Reynolds number are 
difficult to find. The flow behaviour also depends on the 
outlet boundary condition. If the outlet is left open 
(fig.7.1.4 and 7.1.8), some of the flow recirculates back 
in the channel and most of the flow is heading downwards. 
Using v=0 at the outlet leads to a very much compressed 
downstream eddy and forces the flow to come out as fully 
developed. Furthermore, a region of instabilities appears 
upstream of the step and near the bottom wall. Details of 
out flow boundary condition are discussed in ref.59.

The ripples in the flow arising from the numerical 
solution are also present in the analysis of Stokes flow, 
particularly when there are sharp changes in geometry 
and/or if a coarse mesh is used in the regions of rapidly 
changing flows. Axisymmetric flow between two parallel 
plates is examined, with flow coming from end A and B, and 
exhausting from C (fig.7.1.9). As the gap between the two 
plates (h) was decreased, ripples appeared in the regions 
indicated by dotted lines in fig.7.1.10. These disappeared 
to a large extent after the corners were rounded off.
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From the numerical test cases carried out so far, it can 
be seen clearly that any instabilities present in the flow 
solution appear as ripples in the velocity vector plots. 
These are a strong and useful signal that some important 
portion of the solution is being inadequately modelled. 
These also indicate the region of the flow where the 
solution is particularly defficient. An approximate 
solution can be obtained to the flow problem in hand, 
using a coarse mesh and with instabilities present in the 
solution, but if an accurate solution is to be obtained, 
these must be eliminated from the important regions of the 
flow. Refining the mesh by using more elements in these 
regions, eliminates these ripples and a smooth and 
accurate solution can be obtained. This, however, results 
in more nodes and a smaller timestep for stability and 
convergence of the solution. The cost of solution thus 
increases. Slight changes in geometry i.e. rounding off 
the front sharp corner of the step also eliminates ripples 
and delivers a smooth solution even on a coarse mesh. 
Slight changes in geometry,(provided that these do not 
alter the original problem definition), are thus a cheaper 
option. How to obtain a ripple free solution, depends very 
much upon the type of problem and on the accuracy of 
solution required. If the ripples are present in the 
regions of lesser importance, or if these are small 
throughout the entire grid and the numerical solution
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looks physically reasonable, then the solution of the 
original equation is probably adequately approximated 
everywhere. It is however clear that these ripples are 
caused by the poor resolution of a rapidly changing flow 
field.

Upwind methods for such problems are dangerous and often 
lead to false sense of security as any coarse mesh can be 
used for any Reynolds number. Upwind methods are less 
accurate methods compared to the conventional Galerkin 
methods and should only be employed on meshes with more 
nodes. The flow invariably becomes more complex and 
difficult at higher Reynolds numbers, yet coarse meshes 
are used with upwind methods to obtain solutions which are 
stable but do not represent the true solution for that 
Reynolds number. In fact, upwinding introduces artificial 
viscosity and so the numerical Reynolds number can be much 
lower than the one that is actually required.
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7.2 F l o w  o v e r  a B a c k w a r d  F a c i n g  S t e p

The flow over a backward facing step has been used as a 

test case for numerical model of fluid flow for many 

years. Several features contribute to its interest namely, 

separation and reattachment, a recirculation bubble and a 

fairly simple and well defined geometry. Over a dozen 

experimental investigations of such flows have been 

reported in the literature (64). All of these, except one, 

deal with the turbulent regime and are, therefore, 

ill-suited for testing numerical methods since their 

prediction also depends on the turbulent model adopted.

Low Reynolds number measurements for flows over a backward 

facing step have been carried out in ref.65 with the 

specific intention of providing experimental results to 

compare with the numerical ones.

The numerical simulation of the back step problem has been 

treated extensively by Roache and Mueller (66) and 

analytically by Moffatt (67) and Weinbaum (68). Roache and 

Mueller used the FDM and upwind differencing; detailed 

results are presented for Reynolds number in the range 

0.1- 100. One of the key results is the numerical 

demonstration of the fact that the flow separates even for 

Stokes flow, a small corner eddy appears and the 

separation point moves up the face of the step, 

approaching the corner as the Reynolds number is 

increased. These facts were previously predicted by 

Kawaguti (69) and verified experimentally by Matsui et al 

(70) for Reynolds number range 5-50. Weinbaum (68) also
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predicted that separation could occur below the sharp 

corner. He predicted an approximate form of the corner 

singularity via an analysis of the biharmonic equation for 

the stream function and the argument that Stokes flow will 

prevail sufficiently close to the corner.

Some results of laminar and turbulent flow over a backward 

step are presented by Taylor et al (71) using FEM. 

Turbulent models are constructed using one equation 

modelling. Results for Re=50,150 are presented by Ecer, 

Rout and Ward (72) using a variational formulation. 

Comparision of finite difference and finite element 

predictions with experiment for turbulent flow for this 

example are presented in ref.73. Some further results 

using FEM and laminar flow are presented in ref.74,40. 

Hutton and Smith (76) have reported successful simulation 

of this flow employing FEM and no upwinding.

The problem of laminar flow over a backward facing step is 

analysed using the fluid finite element. The problem is 

defined in figure 7.2.1. The channel width upstream of the 

step is 0.5 (h) and downstream is 1.0 (H). The step height 

is therefore 0.5 (H-h). The computational domain extends 

3X(H-h) upstream and llx(H-h) downstream of the step. The 

top and bottom walls of the channel and the step itself 

are no-slip walls. A fully developed flow at the inlet is 

used with Umax=1.0. The outlet is left open. The flow 

Reynolds number is based on the step height 

(Re=Umax(H-h) t / M  )• A non-uniform finite element mesh of
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54 elements and 251 nodes ( f i g . 7.2.2) is used to a n a l y s e

the flow problem. Based on the f i n d i n g s  of the f low over a

s tep p r o b l e m  (section 7:1), a finer m esh is use d  near the

step corner. Because of the sharp change in geometry, the

flow undergoes a rapid change in this region. An

incremental Reynolds number approach was used for the

solution (section 2.6). The f l o w  R e y n o l d s  number is

incremented using the density parameter € in the

Reynolds number equation. Calculations are performed using

a fixed t i m e s t e p  at = 0 . 0 9 .  We a re i n t e r e s t e d i n  o b t a i n i n g  a

steady-state solution at low Reynolds number, in order to

compare with the available numerical and experimental

results. The difference in solution at two consecutive

timesteps is compared with a tolerance factor. When the

difference in solution at two consecutive timesteps is
-5less than the tolerance factor (10 ), the flow is assumed

to have reached a steady-state. The Reynolds number is 

incremented to the next value at this stage.

The c a l c u l a t i o n s  were p e r f o r m e d  in three sequences. In the 

first sequence, the initial c o n d i t i o n s  were as obtained 

from the Stokes flow s o l u t i o n  and Re=50. The sequence 

c o n s isted of 71 timesteps and s t e a d y  flow was achieved. 

This flow w as used as the i n i t i a l  co n d i t i o n  for the s e c o n d  

sequence in w h i c h  Re=100. A f t e r  a further 108 t i m e steps
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steady flow was achieved and using this solution as the 

initial solution, finally, solution was obtained for 

Re=150. The final stage took a further 134 timesteps 

before a steady-state solution was achieved. Velocity 

vector plots for the steady-state solution at the three 

Reynolds numbers is presented in figure 7.2.3. The length 

of the recirculation bubble downstream of the step can be 

seen to elongate as the flow Reynolds number is increased. 

The variation of the recirculation zone length with the 

Reynolds number is plotted in figure 7.2.4. This is 

compared with some of the available experimental and 

numerical results. For Reynolds number up to 100, the 

numerical and experimental results seem to agree quite 

well, but at higher Reynolds numbers the discrepancy 

between the various results obtained using different 
techniques increases (fig. 7.2.5).

The shear stress along the top and bottom wall of the 

channel is calculated using equation 2.65. The 

non-dimensional shear stress is given as

The value of shear stress is plotted in figure 7.2.6 for 

Re=50 and in figure 7.2.7 for Re=150. Experimental (65) 

and numerical (72) results are available for the case of 

flow over a backward step at Re=150. From the graph in

X. - (H-h) / Re Umax (7.2.1)
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figure 7.2.8, it can be seen that the results obtained 

using the fluid finite element are in reasonable agreement 

with the experimental results and the numerical results 

obtained using a variational formulation. The value of 

shear stress upstream of the step T a n d  downstream 

of the recirculation eddy after it attains a constant 

value is compared with the available results in

Table 7.2.9. The values of "'Cup and ^botow obtained 

using the fluid finite element are in good agreement with 

the equivalent theoretical and experimental values.

All of the numerical test cases reported here were run on 

a CDC 855 mainframe. The computer time used for the above 

example is listed in Table 7.2.10. Similar test case but 

using a variational formulation was run on a VAX-780 by 

Ecer, Rout and Ward (72). The computer time and the number 

of timesteps taken in the above reference are also 

tabulated in Table 7.2.10 along with the current results. 

The two computers used above are different from each other 

and hence the computer time used on the two machines is 

not comparable. The two computer times, however give an 

idea of the time the two different numerical schemes will 

take. The number of timesteps taken before a steady-state 

solution was achieved, indicate the effectiveness of the 

Penalty-Function formulation for such problems.
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Fig. 7.

a) R e  = 5 0 , n = 7 1 ,  T i m e  = 6 . 3 9

b) R e = 1 0  0, n = 1 7 9 , T i m e  = 1 6 .  11

(c) R e = 15 0, n = 3 1 3 ,  T i m e  = 2 8 . 1 7

2.3 Flow over a Backward Facing Step, Velocity Vector 
Plots Representing the Steady-State Flow Solution
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Fig. 7.2.8 Shear Stress Distribution along the Bottom Wall 
Flow Past a Backward Step, Comparison of Results 
Re=150
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7 . 3  F l o w  i n  a  C a v i t y

The classical problem of a wall-driven cavity on a unit 

square, with u=l along the entire upper boundary including 

the corner nodes can be considered as an ideal physical 

problem from the viewpoint of obtaining numerical solution 

to the Navier-Stokes equations to describe fluid motion. 

Because of its geometric simplicity and comparatively 

minor singularities, it provides a model problem for 

testing new numerical schemes and as a benchmark solution. 

It allows comparisons to be made among various schemes 

using different methods of problem formulation, 

discretisation, iteration and approximation. One of the 

main problems in doing numerical fluid mechanics is that 

the grid size must decrease as the Reynolds number 

increases so that numerical stability is obtained. A 

majority of the analysis methods have been tried on this 

problem and a limited number of results are available.

Burgraaf (76) was the first to do an extensive numerical 

study on the cavity flow problem using a modified 

relaxation method. His calculations were for a square 

cavity in the Reynolds number range from 0 to 400 with 

mesh spacing from 1/10 to 1/40. The motion of the vortex 

centre towards the centre of the cavity is demonstrated as 

the Reynolds number is increased. The behaviour of the 

secondary vortices in the lower corners is also examined. 

He noted that the secondary vortex pattern was 

viscosity-dominated in contrast with the relatively
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n o n - v i s c o u s  p r i m a r y  eddy.

Using the same relaxation scheme as Burgraaf, Pan and

Acrivos (77) obtained detailed numerical solution to the

problem of creeping flow in a cavity. They also conducted

a flow-visualisation study of the cavity flow problem over

a wide range of Reynolds number from 80 to 4000. The

visualisation studies produced flow fields consistent with

the Batchelor model (78). The value of 4000 was the

Reynolds number at which flow instabilities began to

appear. Greenspan (79,80) considered the cavity flow

problem numerically by means of the generalised Newton's

method with overrelaxation. Solutions for Reynolds number 
5up to 10 are presented. Another set of studies carried

out at Imperial College by Runchal, Spalding and

Wolfshtein (81), Runchal and Wolfshtein (82) and Gosman et

al (83), presented two new features; use of non-uniform

mesh system to improve the accuracy of the solution, and

evaluation of wall vorticity which was an improvement over

that used by previous investigators. Results for Reynolds 
4-number up to 10 were presented using non-uniform meshes. 

Mills (84) examined the cavity flow problem at Re=100 for 

different aspect ratios using central differencing. 

Nallasamy and Krishnaprasad (85) have presented detailed 

results for Reynolds number in the range of 0-50,000 using 

finite difference techniques. A further review of 

computing methods for recirculating flows (cavity flow)

144



was carried out by Tuann and Olson (86) and Bozeman (87).

A survey of earlier work (until 1973) was carried out by 

O'Brian (88).

All the earlier work uses techniques other than the Finite 

Element Method which is comparatively new in this field. 

However, there are some results for this example obtained 

by solving the steady Navier-Stokes equation using FEM. A 

survey of earlier work (up to 1977) was carried out by 

Tuann and Olson (86). Hughes et al (40) present results 

for Reynolds number up to 400. In another paper (46)
if-results for higher Reynolds number (up to 10 ) are

presented using an incremental Newton-Raphson scheme. A 

coarse non-uniform mesh of 165 nodes was used. Results for 

Reynolds number up to 1000 are presented by Bercovier and 

Engelman (63). A penalty function type of isoparametric 

finite element and uniform mesh is used.

The most  r e c e n t  work u s i n g  FEM i s  by Huf fenus  and 

K h a l e t z k y  (89 (1984)) and Gresho  e t  a l  (90). The method o f  

c h a r a c t e r i s t i c s  i s  u se d  i n  r e f . 89, w h i l e  Gresho e t  a l  u se  

a m o d i f i e d  FEM a s  d e t a i l e d  i n  r e f .  91. A c o m p a r a t i v e  s t u d y  

of  t h e  c e n t r a l  and upwind d i f f e r e n c e  schemes u s i n g  t h e  

p r i m i t i v e  v a r i a b l e s  i s  d e m o n s t r a t e d  u s i n g  t h i s  example  by 

Timin and Esmai l  (92). R e s u l t s  a r e  p r e s e n t e d  f o r  Reyn o ld s  

number u p t o  1000 u s i n g  a c e n t r a l  d i f f e r e n c e  scheme and 

u p t o  5000 u s i n g  upwind d i f f e r e n c i n g .
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for a range of Reynolds numbers. An attempt was made to

achieve a solution for the highest possible Reynolds

number, prior to convergence problems. Particular

attention was paid to mesh density and timestep size as

the Reynolds number was increased. An incremental approach

was used to obtain the solution at the higher Reynolds

numbers. The parameter chosen to increment the Reynolds

number was the density £. The solution at each timestep

was checked for convergence and the Euclidean norm (Ec) of

the difference of the solution at any two successive

timesteps was compared with a convergence factor 'e'. The
-5value of the convergence factor e was taken as 10 . When

Ec=e the solution can be assumed to have reached steady 

state. At this stage the Reynolds number was incremented 

to the next higher value.

In t h i s  w o r k  r e s u l t s  a r e  p r e s e n t e d  for f l o w  in a c a v i t y

Problem Definition and Characteristics of Flow

For the case of a square cavity the problem description is 

as shown in fig.7.3.1 . u=l along the entire upper 

boundary including the corner nodes. The nature of the 

vortex formed in the cavity depends on the Reynolds number 

defined as Re = ud (VyU , where u is the velocity along the 

upper boundary, d is the width of the cavity, £ is the
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density and JU is the viscosity. Aspect ratio (cavity 

width to height ratio) also plays an important role. For 

an aspect ratio of unity and relatively low Reynolds 

number, the centre of the primary vortex is located about 

three-quarters of the cavity height from the bottom and at 

midwidth, with most of the strength concentrated in the 

upper portion of the cavity. A pair of small 

counter-rotating secondary vortices of much smaller 

strength are located in the lower corners of the cavity. 

The size of corner vortices changes as the Reynolds number 

is increased. For an aspect ratio greater than unity, the 

number of vortices in the cavity depend on the value of 

aspect ratio (84).

For relatively low Reynolds number (order of zero) the 

flow is well represented by a 5X5 uniform mesh 

(fig.7.3.2a). This gives a good solution for Re=0 

(fig.7.3.2b), but for Re=100 (fig.7.3.2b), instabilities 

start to appear near the upper boundary. In fact it can 

be seen in fig.7.3.2b that the velocities at the second 

row of the nodes away from the driven surface and parallel 

to it are accelerating in the wrong direction. With the 

use of 10X10 uniform mesh (fig.7.3.3a) the flow solution 

is well represented for Re=0 (fig.7.3.3b), reasonably well 

for Re=100 (fig.7.3.3c) except for the top left hand 

corner, and the solution obtained at Re=400 (fig.7.3.3d) 

is similar to the Re=100 solution with the 5X5 uniform
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mesh. Although the movement of the centre of rotation of 

the primary vortex is well represented in the velocity 

vector plots (fig.7.3.3b to 7.3.3d) of 10X10 uniform mesh, 

the presence of ripples near the top moving boundary and a 

region of reversed flow near the top wall is not correct. 

The presence of these ripples indicate that the flow near 

the top boundary is undergoing rapid changes and is 

inadequately modelled. The 7X8 non-uniform mesh with finer 

mesh near the top (fig.7.3.4a) gives a smooth solution for 

Re=100 (fig.7.3.4c) and also for Re=400 (fig.7.3.4d). The 

flow solution at Re=400 still has a few ripples near the 

top. However, the reversed flow region is absent. This 

indicates that the mesh is adequately refined in the 

vertical direction, but further refinement is required in 

the horizontal direction. At least ten elements are 

required along the horizontal direction to resolve the 

flow properly at Re=400. The 10X10 non-uniform mesh 

(fig.7.3.5) gives a smooth solution for Re=400 

(fig.7.3.6b), but ripples start to appear as the flow 

Reynolds number is increased, indicating that further mesh 

refinement is required in horizontal direction 

(fig.7.3.6c), and in both horizontal and vertical 

direction (fig.7.3.6d, Re=2000 and fig.7.3.6e, Re=3000). A 

14X11 non-uniform mesh (fig.7.3.7) gives a smooth solution 

for Reynolds upto 1000 in figure 7.3.8. A solution for 

Reynolds number upto 5000 was obtained using this mesh . 

The solution failed to converge when the Reynolds number
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w a s  i n c r e m e n t e d  b e y o n d  5000.

The behaviour of the primary eddy is best studied by 

following its centre as a function of the Reynolds number. 

Midplane horizontal velocity is plotted for a range of 

Reynolds numbers in fig.7.3.9. From the velocity vector 

plots we see that the centre of circulation of primary 

eddy moves upstream at Re=100 with respect to its location 

at Re=0. As the Reynolds number is further incremented it 

moves towards the centre of the cavity. Similiar behaviour 

has been observed by other authors mentioned previously 

(46,85 ) .

In the present study, secondary eddies appeared at Re=100. 

As these are much weaker in strength compared to primary 

eddy, these can not be seen in the velocity vector plots. 

In order to see their exact location and direction of 

rotation, it is required to magnify the velocity vectors 

in the two corners. Their position, however was found by 

looking at the velocity values for the nodes in the two 

bottom corners. The upstream secondary eddy was found to 

be larger compared to the downstream eddy and it further 

grows with increasing Reynolds number. In the finite 

difference literature (85) similiar behaviour of the 

secondary eddies was observed. It was found that the 

upstream secondary eddy grew to a maximum at about Re=500, 

and then started to decrease in size when the Reynolds
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number was further increased (85). The downstream eddy 

more or less stayed the same size upto Re=500, then 

continued to grow as the Reynolds number was increased. 

The available finite element results for cavity flow do 

not go into the details of the secondary eddies.

The physical mechanism behind the growth and decay of the 

secondary eddies can be explained by the fact that there 

is a strong deceleration of the flow from (1,1) to (0,0) 

(fig.7.3.1). At (1,0) the flow hits the wall which results 

in further increase in pressure. The kinetic energy of the 

fluid stream in the vicinity of the wall at low Reynolds 

number is low and the stream is unable to negotiate this 

pressure hill, with the result that it separates, forming 

an eddy at the corner. As the Reynolds number increases 

the stream kinetic energy also increases and hence the 

eddy shrinks in size. A similiar situation prevails on the 

bottom wall of the cavity. However, the stream along this 

wall possesses a much smaller kinetic energy as a result 

of frictional loss along the bottom wall. Therefore, it 

needs a much larger Reynolds number to overcome the 

adverse pressure gradient, hence the observed behaviour of 

the downstream eddy. Similiar phenomenon has been observed 

by Leal [18] who studied decelerating flow over a flat 

plate. The behaviour of these recirculation eddies and the 

complex variation of pressure along the side walls is 

covered in ref.85.
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In fig.7.3.10 the results are presented for flow in a 

cavity of aspect ratio 3, and at Re=100. The velocity 

vectors in the right hand side of the cavity are magnified 

to see the exact location and direction of rotation of any 

secondary eddies that might be present. The magnification 

factor is X9 in figure 7.3.10a and applies to the velocity 

vectors away from the line and in the direction of the 

arrow. In the successive plots, the velocity vectors 

further away from the driven wall are magnified, in figure 

7.3.10b, the secondary eddy can be clearly seen. In order 

to see if another recirculation region is present near the 

right hand wall of the cavity, the velocity vectors in 

this region were magnified to a maximum of X2494. Only two 

counter-rotating recirculation eddies are seen in the 

velocity vector plots. The one away from the moving wall 

is much smaller in strength compared to the one near the 

moving wall. The strength of the secondary eddy as 

compared to the main eddy can be estimated from the 

magnification values as used in figure 7.3.10. Compared to 

the example of square cavity, there is only one secondary 

eddy in the case of the rectangular cavity.

From the above test cases, the following observations are 
made.

(i) It is clear that nodes are required inside the
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boundary layer region to obtain a smooth solution. The 

boundary layer is the thin layer close to the solid 

boundary within which vorticity varies rapidly as a result 

of the combined effects of viscous diffusion and 

convection, and outside which vorticity is zero or 

non-zero and varies slowly. Hence effects of viscosity are 

important in this region. The boundary layer gets thinner 

as the Reynolds number is increased. The thickness of the 

boundary can be estimated to be of the order R e *5 (94). As 

long as there are node points inside the boundary layer, 

steep gradients are captured with very few or no 
oscillations.

(ii) For stability the cell Reynolds number, Rec = £u±x/jU 
should not exceed 2 (52), where ax is the distance 

between two adjacent nodes for the element and u is the 

nodal velocity for that element. In fig.7.3.6 and Re=400, 

the flow is stable. The cell Reynolds number, although not 

less than 2 is sufficiently small near the top moving 

boundary. Away from the top boundary as the cell size 

increases the effective cell Reynolds number also 

increases and is much greater than 2 for cells with high 

velocities. As the Reynolds number is incremented by 

incrementing the parameter £ , Rec also increases and 

ripples begin to appear near the top boundary for Re=1000 

(fig.7.3.6c) and a region of reversed flow developes as £ 

is incremented further. In figure 7.3.8 and Re=1000

152



smaller elements are used near the top boundary, hence a 

smaller Rec . The solution obtained is stable and free from 

any ripples. This indicates that as long as the Reynolds 

number is sufficiently small in critical regions where 

flow details are changing rapidly, smooth solutions with 

reasonable accuracy can be obtained.

(iii) To fulfil the stability conditions outlined above, 

it is necessary to use a non-uniform mesh. This has the 

benefit that a finer mesh can be used in the regions where 

the flow is undergoing rapid changes and sufficient nodes 

are present inside the boundary layer region. Everywhere 

else in the flow where flow velocities are relatively 

small and not changing rapidly a coarse mesh is used. The 

total number of nodes and hence the number of equations 

required to solve the problem reasonably accurately are 

greatly reduced compared to a uniform fine mesh with 

smaller elements everywhere. The timestep for stability of 

solution is selected according to equation 2.49, and the 

equation needs to be satisfied for every element in the 

mesh. Based on the smaller elements near the top boundary 

with large velocities the timestep is small. Although a 

small timestep is used and many steps are required before 

a steady-state solution is achieved, the overall cost of 

the analysis is less as the effective number of equations 

required to solve at each timestep is reduced by the use 

of non-uniform mesh.
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(iv) The presence of ripples slows down convergence.

Using a 10X10 uniform mesh 160 timesteps were taken before 

a steady state solution was obtained for Re=400. With 

10X10 non-uniform mesh the solution obtained was smoother 

and it took only 128 timesteps to achieve a steady state 

solution. Although a lesser number of timesteps are 

required to achieve the steady state solution, the total 

cost of analysis is slightly more with the use of 

non-uniform mesh as a smaller timestep results from the 

presence of smaller elements in the finer mesh region. The 

solution obtained, however, is a great deal smoother and 
more accurate.

(v) Near Re=4000 

Reynolds number the 

and the equations o 

The choice of highe 

the rapidly increas 

when a finer mesh a

convergence problems 

flow is changing to 

f constant viscosity 

r Reynolds number is 

ing cost of analysis, 

long with a smaller

arose. Around this 

a turbulent one 

no longer hold, 

also limited by 

which results

is used.timestep

(vi) This particular problem of cavity flow involves 

sharp corners. In the previous example of flow over a 

step, it was observed that most of the ripples can be 

eliminated by rounding off these corners. The two top 

corners seem to be the region where flow velocities are 

going through a rapid change. Based on the previous
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findings, it can be expected that rounding of the corners 

near the top boundary will reduce or even eiminate these 

ripples.

The numerical study of a complex flow is possible with the 

use of the fluid element. One such example is presented 

with the flow over a square obstacle inside a square 

cavity (fig.7.3.11) . The flow enters from the bottom left 

side of the cavity and leaves the cavity from the top 

right side. The flow was analysed at Re=1000. Steady-state 

flow was not achieved after 146 timesteps in this case.
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Fig. 7.3.1 Problem Definition and Characteristics of 
Flow in a. Cavity

156



F i g . 7 . 3 . 2 a  5 X5  U n i f o r m  F i n i t e  E l e m e n t  M e s h

/  — —• —* —» — * — ► ■—*

1 « ' - -  ~ » t J N ^  N N X » - , J

t ' * • • » # /  1 . 1 « 1 « • - f  j

, X ' '  '  -  ^  /  /

, ^  /  /

• * » - -  -  4- # • • ' ^ ✓  /  *

......................................................................

......................................................................

Re = 0 I n i t i a l  F l o w  S o l u t i o n  Re = 1 0 0

F i g . 7 . 3 . 2 b  V e l o c i t y  V e c t o r  P l o t s -  F l o w  i n  a C a v i t y  
5X5  u n i f o r m  m e s h

157



F i g . 7 . 3 . 3 a  1 0 X 1 0  U n i f o r m  M e s h  (b)  Ke = 0 ,  I n i t i a l  F l o w
S o l u t i o n

( c )  Re  = 10  0 , n = 3 9 (d)  R e = 4 0 0 ,  n = l  60

F i g . 7 . 3 . 3  F l o w  i n  a C a v i t y  1 0 X 1 0  u n i f o r m  F i n i t e  E l e m e n t  
M e s h  a n d  V e l o c i t y  V e c t o r  P l o t s

158



( a )  7X8 N o n - U n i f o r m  M e s h  ( b ) Re = 0 f n i t L a l  F l o w  S o l u t i o n

( c )  R e = 1 0 0 / n = 3 6  (d)  R e = 4 0 0 ,  n = l 38

F i g . 7 . 3 . 4  7X8 N o n - U n i f o r m  F i n i t e  E l e m e n t  M e s h  a n d  V e l o c i t y
V e c t o r  P l o t s  -  F l o w  i n  a C a v i t y

159



Fig.7.3.5 10X10 Non-Uniform Mesh
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Fig.7.3.7 14X11 Non-Uniform Mesh
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7.4 Vortex Shedding Behind a Circular Cylinder

As a fluid particle flows towards the leading edge of a 

bluff cylinder, the pressure in the fluid particle rises 

from the free-stream pressure to the stagnation pressure. 

The high fluid pressure near the leading edge impels the 

developing boundary layers about both sides of the 

cylinder. However, at high Reynolds number the pressure 

forces are not sufficient to force the boundary layers 

around the backside of a bluff cylinder. Near the widest 

section of the cylinder, the boundary layers separate from 

each side of the cylinder surface and form two shear 

layers that trail aft in the flow. These two shear layers 

bound the wake. Since the innermost portion of the shear 

layers moves much more slowly than the outermost portion 

of the layers which are in contact with the freestream, 

the free shear layers tend to roll up into discrete, 

swirling vortices.

Any structure with a sufficiently bluff trailing edge 

sheds vortices in a subsonic flow. At very low Reynolds 

number based on the cylinder diameter the flow does not 

separate. As the Reynolds number is increased, a pair of 

fixed vortices is formed immediately behind the cylinder. 

As the Reynolds number is further increased, the vortices 

elongate until one of the vortices breaks away and a 

periodic wake and a staggered vortex street is formed. Up 

to Reynolds number of approximately 150, the vortex street 

is laminar. At about Re=300, the street is turbulent and
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it degenerates into fully turbulent flow beyond 

approximately 50 diameters downstream of the cylinder. The 

Reynolds number range of 300 to approximately 3xl05 has 

been called the subcritical range, because it occurs prior 

to the onset of turbulent boundary layer which occurs at a 

Reynolds number of approximately 3xlOS (fig.7.4.IS), 

depending upon the freestream turbulence and surface 

roughness. In the subcritical Reynolds number range, the 

shedding occurs at a well defined frequency. The Strouhal 

number (S) is the constant of proportionality between the 

predominant frequency of vortex shedding (f$) and the 

freestream velocity (u) and cylinder width (D)

S = fs D/u (7.4.1)

The general relationship between S and Re is well 

documented (fig.7.4.IS), but absolute values of S also 

depend upon cylinder surface roughness, length/diameter 

ratio, turbulence levels, proximity effects and velocity 

profiles (103).

The earlier work on vortex shedding behind a circular 

cylinder includes that of Jordan and Fromm (95), Tritton 

(96), Swanson and Spaulding (97) using the Finite 

Difference Method. Tritton showed that the vortex shedding 

occurs at a Reynolds number of around 100. Glowniski et al
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(98) and Bristeau et al (99) have briefly presented some 

vortex shedding results using primitive variables and a 

least squares finite element method. In the field of 

finite element method Smith and Brebbia (100) computed 

vortex shedding using the stream-function vorticity 

approach. Vortex shedding behind a circular cylinder using 

the finite element method and primitive variables is 

presented by Gresho et al (101). The recent work by the 

same author (90) uses a modified finite element method as 

detailed in ref. 91. Detailed results are presented for 

Reynolds number up to 400. A detailed study for this 

problem is carried out by Kawahara and Hirano (102) using

a finite element method and a two step explicit scheme.
Z a . 5Results are presented for Re=50,1.5x10 ,1.5x10 ,1.5x10 on 

a mesh of 4718 triangular elements and 2428 nodes. The 

most accurate and detailed results for this problem would 

seem to be that of ref.95 where more than 12000 nodes are 
used.

To analyse the flow around a circular cylinder a finite 

element mesh of 114 nine-noded elements giving a total of 

508 nodes (Fig.7.4.2) was used. Although accurate 

solutions without any ripples have been obtained for low 

Reynolds number laminar flows using coarse meshes (around 

400 nodes), a finer mesh gives a better representation of 

the flow when presented in the form of velocity vector 

plots. The computational domain extends 3.5 cylinder
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diameters above, below and upstream of the cylinder and 

about 12 diameters downstream. The boundary conditions are 

symmetric as shown in fig.7.4.1. Asymmetry is introduced 

by using a slightly different mesh density in one half 

along the line of symmetry. In figure 7.4.2, the row of 

elements along the top of the cylinder are different in 

size compared to the elements in the adjacent rows below 

the cylinder. Also downstream of the cylinder and along 

the centreline, the elements below the centreline are 

slightly smaller in size than the elements in the row 

above the centreline. These differences are all small and 

are not obvious in the mesh plot. This helps to cut down 

on the "gestation time", since for a completely symmetric 

mesh, the non-symmetric vortex shedding is initiated by 

rounding errors in the solution. Using a symmetric coarse 

mesh also leads to shedding, but the process takes longer. 

A coarse mesh is used downstream of the cylinder which 

also introduces asymmetry and acts as a triggering 

mechanism for vortex shedding. Asymmetry can also be 

introduced by changing the loading to be non-symmetric for 

a few timesteps and then returning to the actual load.

This is demonstrated later using the example of flow over 

a diamond shaped object (fig.7.4.14). The input flow 

velocity below the centreline was increased for a single 

timestep and then returned to normal. This was found to be 

sufficient to initiate vortex shedding, and can be clearly 

seen in the velocity vector plots at 270 and 300 timesteps
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(fig.7.4.14) . As we are mainly interested in the vortex 

shedding phenomenon, every effort is made to cut down on 

the "gestation time" and'hence save some computer time.

A non-uniform mesh was used in this example. The critical 

region is that which is next to cylinder surface i.e. the 

boundary layer region and upstream of cylinder where the 

flow velocities and pressures are rapidly changing. A 

coarse mesh upstream of the cylinder resulted in the 

appearance of upstream ripples. The diameter of the 

cylinder, the inlet velocity and the dynamic viscosity are 

taken as unity while the value of density is chosen to 

obtain the desired Reynolds number (that is this example 

has arbitrary units). The timestep is based upon the 

stability limit and chosen using equation (2.49). For this 

particular example at=0.1.

Five cases of flow for the Reynolds numbers of 

100,400,1000,5000, and 10000 were computed. For each case 

the linear Stokes flow solution for Reynolds number of the 

order of zero is taken as the initial solution. Velocity 

vector plots for a few shedding cycles and starting from 

the initial conditions are shown in figure 7.4.3 for 

laminar flow at 40 timestep intervals. The flow Reynolds 

number in this case is taken as 100. A non-symmetric mesh 

is used in this case and the higher Reynolds number cases 

to initiate vortex shedding. From fig.7.4.3 it can be
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seen that the flow pattern is identical above and below 

the centreline that is, it is symmetric until 40 

timesteps. However, from the velocity vector plot for 

n=80, the flow is no longer symmetric along the 

centreline. ( In an equivalent run using fully symmetric 

mesh and Re=100, the flow was found to be symmetric until 

about 120 timesteps, and only after this time did the 

shedding phenomenon start.) The recirculation region above 

the centreline is longer than the one below the centreline 

and has started to move further downstream of the 

cylinder. After about 200 timesteps the formation of 

vortices and their alternate shedding from the top and 

bottom of the cylinder can be clearly seen. As a result of 

this shedding the flow downstream of the cylinder 

oscillates, and these oscillations can be seen in the 

velocity vector plots. The horizontal and vertical 

velocity^ eight diameters downstream of the cylinder (ug 

and vg ) is plotted against time in figure 7.4.4. As 

vortices are shed in the flow, the flow oscillates 

downstream of the cylinder. The vertical velocity 

component oscillates at the same frequency as the vortex 

shedding, however, the horizontal component oscillates at 

twice the shedding frequency. The amplitude of oscillation 

is increasing in figure 7.4.4, which indicates that the 

flow has not quite reached a steady-state. The time period 

for one complete shedding cycle can be estimated from 

figure 7.4.4b. This is the time taken to shed one vortex
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from t h e  t o p  and one from t h e  bo t tom o f  t h e  c y l i n d e r .  From 

t h e  t ime  p e r i o d  T , t h e  S t r o u h a l  number i s  c a l c u l a t e d  and 

compared w i t h  o t h e r  n u m e r i c a l  and e x p e r i m e n t a l  v a l u e s  f o r  

t h i s  Reynold s  number i n  f i g u r e  7.4.16. The l i f t  and d r ag  

f o r c e s  a r e  a l s o  c a l c u l a t e d  by summing t h e  i n t e r e l e m e n t  

f o r c e s  f o r  nodes  a lo n g  t h e  s u r f a c e  o f  t h e  c y l i n d e r .  From 

t h e  v a l u e s  o f  l i f t  'L '  and d r ag  'D'  f o r c e s  t h e  l i f t  

c o e f f i c i e n t  and t h e  d r a g  c o e f f i c i e n t  a r e  e v a l u a t e d  u s i n g  

t h e  f o l l o w i n g  e q u a t i o n s .

Drag c o e f f i c i e n t  Cft=

L i f t  c o e f f i c i e n t  C =

(7.4.2)

(7.4.3)

where  £ i s t h e d e n s i

u i s t h e i n l e t

A i s t h e c r o s s

t y

v e l o c i t y

- s e c t i o n a l a r e a  o f  t h e  c y l i n d e r

These values of lift and drag coefficients are plotted 

against the timesteps in fig.7.4.5 , for a complete 

shedding cycle. The lift coefficient C u , oscillates at 

the shedding frequency and exhibits an essentially steady 

oscillation. The drag coefficient at this Reynolds number 

is increasing with time and does not show any oscillatory 

behaviour until 300 timesteps. The value of u^ ,v^ and
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c u for Re=400 are plotted in figure 7.4.7, 7.4.8 and for 

Re=1000 in figure 7.4.10, 7.4.11. The amplitude of 

oscillation has increased as the Reynolds number is 

increased form 100 to 400. Also the drag coefficient at 

Re=400 and 1000 can be seen to oscillate at twice the 

frequency of oscillation of the lift coefficient. The lift 

coefficient oscillates at the shedding frequency. The 

oscillation is not steady which is perhaps because of the 

turbulent nature of the flow at this Reynolds number. Also 

there is a continous rise in the drag coefficient which 

probably indicates that the flow has not yet reached a 
steady-state.

As the flow Reynolds number is increased, but still using 

the same mesh as before, some ripples start to appear 

upstream of the cylinder. The vortex pattern downstream of 

the cylinder is not as clear for the higher Reynolds 

number runs, when compared to the Reynolds number of up to 

400. A complete cycle of shedding is shown in figure 7.4.6 

for Re=400, and also for Re=1000 (fig.7.4.9) and Re=5000 

in figure 7.4.12 . At Re=400 the recirculation region 

downstream is clearly visible, although it is much more 

compressed and near to the cylinder. The flow downstream 

of the cylinder is oscillating as the vortices are shed in 

the flow, and these oscillations are much larger in 

amplitude than the one at Re=100 flow. The recirculation 

region downstream gets more and more complex as the flow
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Reynolds number is increased and this can be seen in the 

velocity vector plots (fig.7.4.9 and fig.7.4.12). This is 

to be expected as the vdrtex street is fully turbulent at 

this Reynolds number. The oscillations in the flow 

downstream are still seen at high Reynolds number, and 

from these oscillations the Strouhal number, the lift 

coefficient and the drag coefficient are calculated and 

compared with the results of other authors (103) in figure 

7.4.16 (shown as crosses), and figure 7.4.17.

From the results in figure 7.4.16 and figure 7.4.17 we 

observe that:

(i) The computed Strouhal numbers for the four Reynolds 

numbers (shown as crosses in fig.7.4.16) are in good 

agreement with the experimental results of ref.103.

(ii) Drag coefficient values for Re=100 and 400 are in 

reasonable agreement with the results of Jordan and Fromm 

(95) given as 1.5 for Re=100 and 1.2 for Re=400. The 

values of CL calculated in this work are lower than the 

ones in ref.90 . (Experimental values for CL for the above 

Reynolds number are difficult to find.)

(iii) Values of u8 Vg and uwax for Re=100 and 400 are 

presented in ref.90. These values are somewhat higher than 

the ones obtained in this work. A modified FEM with mass
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lumping and 1-point quadrature to generate all matrices is 

used in ref.90.

The values of Ug,vg fU^^Cji and CL are expected to be 

higher, once the flow has reached a steady-state. A 

constant increase in the amplitude of oscillation is 

noticed in figure 7.4.4 to figure 7.4.11, indicating that 

the oscillation and hence the flow is still to reach a 

steady-state.

Figure 7.4.14 shows the vortex shedding behind a diamond 

at Re=150. The problem definition and boundary conditions 

are shown in figure 7.4.13a. Because of the sharp corners 

involved in this case, a finer mesh is required near the 

diamond and upstream of it to resolve the sudden changes 

in geometry and hence the flow characteristics. The mesh 

used consisted of 134 elements and 581 nodes 

(fig.7.4.13b). Vortex shedding was initiated by a sudden 

change in loading for one timestep in one half of the mesh 

and then returning to normal loading. The vortex shedding 

started soon after this load change.
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n = 2 4 0
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n = 2 8 0

Fig . 7 4 6 A complete cycle of Vortex 
behind a circular cylinder
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Re < ‘ 5 REGIME OF UNSEPARATED FLOW

40 <  Re <  90 AND 90 <  Re <  150 
TWO REGIMES IN WHICH VORTEX 
STREET IS LAMINAR

150 <  Re <  300 TRANSITION RANGE TO TURBU- 
LENCE IN VORTEX

300 <  Re <: 3 X 105 VORTEX STREET IS FULLY
TURBULENT

3 X 105 g  Re <  3.5 X IQ6

LAMINAR BOUNDARY LAYER HAS UNDERGONE 
TURBULENT TRANSITION AND WAKE IS 
NARROWER AND DISORGANIZED

3.5 X 106 <  Re
RE-ESTABLISHMENT OF TURBU
LENT VORTrv  STREET

Fig.7.4.15 R e g i m e s  of Fluid F l o w  across Circular 
Cylinders (132)
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8 .  FLOW IN D U C E D  V I B R A T I O N

Flow-induced excitation is a consequence of energy 
transfer from a fluid to a structure around which the 
fluid is flowing. The three feedback mechanisms by which 
the transfer of energy from a fluid to a structure may be 
amplified and controlled are ; fluid-dynamic, 
fluid-resonant and fluid-elastic (129). The occurance of 
flow induced vibration fretting wear in process equipment 
such as heat exchangers and steam generators account for 
the majority of the failures due to vibration. There are 
numerous possible vibration and instability problems 
caused by flow induced vibrations in nuclear plant and 
internal components. When a plant is operating at the top 
end of its capacity, the flow sets up vibrations in the 
tubes and as the tubes rub against the baffle plates, they 
rapidly wear away. Dozens of the steam generator tubes at 
Ringhals 3 reactor in Sweden were found to have worn down 
to only 10% of their original thickness. Sometimes leakage 
is caused by the "shake and break" phenomenon, which 
occurs as a result of the sudden vibration in the tube 
bundles.

These problems have been discussed extensively in various 
forums, such as the SMiRT conferences (131), Keswick 
conferences (133), Karlsruhe conferences (133) and at 
different ASME meetings (113,130). Failures in the past 
caused by flow induced vibration have been documented in 
some detail in ref. 104-107. The progress upto 1979 in the 
field of instabilities of tube arrays subject to
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cross-flow is covered in ref. 108. Since then the 
analytical developments in this subject are covered in a 
series of papers (109-113). Experimental studies were also 
conducted by various investigators to determine the 
stability constants (114-117), verifying the mathematical 
models (118), and investigating the detailed flow field 
around tube arrays (119). The three major flow excitation 
sources are turbulent buffeting, vortex shedding and 
acustoelastic vibration. The random pressure fluctuations 
exist practically for all flow velocity ranges. Numerous 
studies have been made on turbulence induced vibration 
(120). If the turbulence spectrum and spatial correlations 
in a cylinder array are known, and if the cylinder 
oscillations do not affect the flow field, it is possible 
to calculate the cylinder response from the basic equation 
of motion. However, the information on the level of 
turbulence, its spectral distribution and scale is not 
known in general.

The characterisation of vortex shedding across a single 
cylinder and synchronisation of a single cylinder with 
vortex shedding are fairly well understood (1 2 0 ,1 2 1 ), 
although analytical solution of the detailed interaction 
process remains difficult (122). The problem of two 
cylinders in crossflow also has been discussed in some 
detail (123). However, for the case of cylinder arrays, 
the basic question of the existance of vortex shedding has

193



not yet been answered satisfactorily. Strouhal numbers 
associated with vortex shedding for in-line and staggered 
tube arrays have been collected from different sources 
(124). Parameters such as cylinder arrangement, cylinder 
pitch, upstream turbulence and vibration amplitude are 
known to affect the periodicity of vortex shedding. One of 
the difficulties is to separate the vortex excitation from 
other flow excitations. Previous studies on flow-induced 
vibration using the finite element method are covered in 
section 1 .1 .

The present study, is restricted to vortex induced 
vibration only. As a regular pattern of vortices is formed 
in the wake, it interacts with the cylinder motion and 
this is the source of the effect called vortex induced 
vibration. Each time a vortex is shed from the cylinder, 
it alters the local pressure distribution and the cylinder 
experiences a time-varying force at the frequency of 
vortex shedding. If the natural frequency of the cylinder 
is sufficiently close to the dominant frequency of vortex 
shedding, and if the cylinder damping is sufficiently low, 
sustained vibrations of the cylinder can be excited.
During vibration amplitude build up, the correlation 
length of vortex shedding increases appreciably, and the 
vortex shedding is controlled by the cylinder motion. The 
excitation mechanism outlined above is restricted to flow 
separation and vortex shedding.
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In air-flow, chimneys, telegraph wires, transmission lines 
(and suspended pipe lines in water) oscillate almost 
invariably in a direction normal to the flow. These are 
cross-flow oscillations. There has been rare exceptions 
when cylinder in air-flow have oscillated in the direction 
of flow (i.e. in-line motion) but these have been due to 
peculiarities of their installation. In water, marine 
piles, submarine periscopes and braced members of offshore 
structures can be excited to oscillate in both in-line and 
cross-flow direction. The in-line oscillations can be 
excited at flow velocities much lower than the critical 
velocities for cross-flow motion (125).

8.1 Flow Induced Vibration of a Single Cylinder

It has been shown in the previous section that a 
stationary cylinder is subjected to a fluctuating lift 
force which varies at the vortex shedding frequency 
(Strouhal frequency), fs , when it is placed in fluid flow. 
This force acts in a direction perpendicular to that of 
flow. A fluctuating drag force is also exerted on the 
cylinder, acting in the direction of the flow with a 
frequency 2f5 . In addition to these forces there are 
inertia and other effects which have the impressed 
frequency f. These forces act simultaneously on the
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oscillating cylinder and produce records with complex 
waveforms.

When the forcing frequency, f , of the cylinder approaches 
the vortex shedding frequency, fs , the two sets of forces 
become synchronized. The system of cylinder and wake, 
oscillates at the imposed frequency f of the cylinder only 
and the vortex shedding frequency fs is lost. This is also 
known as the lock-in effect. This lock-in or 
synchronization effect was first documented by Bishop and 
Hassan (126). This sychronization persists over a range of 
frequency which may be termed as the lock-in band. The 
lock-in band at low Reynolds numbers was measured by 
Koopman (127). In this range the recorded waveform have a 
fairly constant amplitude when the frequency is fixed. 
Within the lock-in range, the lift and drag forces suffer 
changes in phase and amplitude as the imposed frequency is 
varied. The phase angle between the force exerted by the 
fluid and the impressed motion changes in a manner 
corresponding to the response of a simple oscillator under 
the influence of an applied harmonic force (126). Lift and 
drag forces are also synchronized, when the forcing 
frequency is near an integral multiple of the Strouhal 
frequency (126 ) .

To analyse flow induced vibrations of a solid cylinder we 
use the mesh of fig.7.4.1. Flow at Re=300 and Re=1000 are
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considered. The forcing frequency (natural frequency) of 
the cylinder is calculated from the relationship

where k is the stiffness and m the mass/unit length of the 
cylinder.

Vortex shedding frequencies for these Reynolds numbers 
were computed and verified in section 7 .4 .The natural 
frequency of the cylinder was chosen so that it is close 
to fs . At Re=300 (fig.8.1.1) we see that, to start with 
the two motions are out of phase, but later in time a 
change in phase occurs and the two frequencies lock-in. As 
a consequence there is an increase in amplitude of 
cylinder oscillation. The forcing frequency in this case 
is 4% lower than the vortex shedding frequency. As f is 
increased to .32 Hz (fig.8 .1.2) no lock-in effect is 
observed up to n=340. However, the vortex shedding 
frequency continously increases from .2 Hz at n=250 to .26 
Hz at n=320. The cylinder continues to oscillate at its 
natural frequency of .32 Hz. In this case the forcing 
frequency is 30% higher than shedding frequency. The 
lock-in band for low Reynolds number flows is found to be 
±25% (127). Thus we see that outside this range the

(8 .1 .1 )
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shedding frequency is affected somewhat by the forcing 
frequency.

For the same value of f and f$ but with the Reynolds 
number increased to 1 0 0 0 (fig.8 .1.3) the shedding 
frequency increases from .23 Hz to .32 Hz and finally 
locks-in with the cylinder motion. There is a rapid 
increase in the amplitude of cylinder oscillation. Also 
the cylinder displacement in the upward direction is 
considerably greater than the downward (-ve) displacement, 
which indicates that some lift is generated. The amplitude 
of the shedding frequency is decreasing since the 
structure is constantly gaining energy, and is introducing 
damping into the fluid.

Increasing f further to .65 Hz, we observe that the 
cylinder motion no longer affects the shedding frequency. 
Vibration of the cylinder normal to flow is not excited 
for either of the Reynolds numbers (fig.8 .1.4). For Re=300 
the vertical displacement of the cylinder was found to be 
very small (.001D, D is the cylinder diameter). Although f 
is very close to 3*fs (an integer multiple of shedding 
frequency), no lock-in effect is observed. However, for 
Re=1000 (fig.8 .1.4), the cylinder is oscillating at 
approximately f/3, although the amplitude of oscillation 
is very small and constant.
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To see if synchronization occurs, if the forcing frequency 
is near an integral multiple or division of f , we compute 
the response for f^=.22 Hz, f=.ll Hz and Re=1000 
(fig.8 .1.5). Initially the fluid and the structure motions 
are completely out of phase, but a change in the fluid 
motion occurs at n= 10 0 and the two frequencies lock-in.
The system oscillates at 2f in this case. The very sudden 
increase in the amplitude of cylinder oscillation resulted 
in very large interface velocities, and we were unable to 
analyse the response any further since the effects of 
changes in geometry are not included in the analysis. When 
the two frequencies lock-in there is a sudden increase in 
lift and drag forces and the vertical displacement of the 
cylinder increases from .05D to over .2D.

The cylinder continues to oscillate in the horizontal 
direction at or near twice the frequency of cylinder 
oscillation in the vertical direction. Throughout the 
computations a rapid increase in horizontal displacement 
of the cylinder was not observed.

From the tests carried out so far we observe various 
features in the numerical solution, that correspond to 
experimentally observed effects (120,126,127,128).

(i) The cylinder vibrates at or near the shedding 
frequency and the motion normal to the free-stream
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velocity builds up to higher values than the transverse 
vibration.

(ii) In the lock-in range the frequency of vortex 
shedding changes from the fixed cylinder shedding 
frequency to the cylinder natural frequency. As a result 
large amplitude oscillations are produced.

(iii) The lock-in range is also Reynolds number dependant. 
We find that it expands with increasing Reynolds number.

(iv) There is a small increase in the drag force over 
that for the fixed cylinder.

(v) There is an increase in the vortex strength 
indicated by a increase in lift and drag forces compared 
to the fixed cylinder.

We have also observed that synchronization can occur when 
the forcing frequency is an "integer division" of the 
shedding frequency (fig.8 .1.5) and this results in very 
large amplitude of oscillation. In this case the system 
oscillated near the shedding frequency. This phenomenon of 
frequency multiplication and frequency division is also 
reported in ref.126. In the previous examples the locking 
in of the two systems occured by the shedding frequency 
changing to the structural frequency, in this case, where
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the two frequencies are relate 
the opposite occured and the r 
This strong lock-in only occur 
frequency was higher than the 
few cases have been examined s 
have to be carried out to conf

d by an integer multiple, 
esponse was much stronger, 
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Fig. 8.1.3 Fluid and Structure Response 
Re=1000, f =.22, f=.32

Fig. 8.1.4 Fluid and Structure Response 
Re=1000 f f =.22, f=.65
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Fig. 8.1.5 Fluid and Structure Response 
Re = l0 00 fs = . 2 2 f = . 1 1
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8.2 F l o w  I n d u c e d  V i b r a t i o n  of a C o l u m n  of C y l i n d e r s

The phenomenon for the flow-induced vibration of cylinder 
rows and cylinder arrays is far more complicated than the 
flow-induced vibration of a single cylinder. In the 
previous section (8 .1 ) vortex-induced vibration of a 
single cylinder in cross-flow was considered. The vortex 
shedding as an excitation source applies only to tube 
bundles with wide tube spacings. If the tube spacings are 
narrow, other sources, such as wake swing, jet switch, jet 
instability and vortex pairing may be the main excitation 
mechanisms (130). The forces on tubes in a tube bank are 
generated by the interaction of flow fields about adjacent 
tubes. For circular cylinders three types of dynamic 
instability across a flowing medium have been discussed in 
the literature (108).

(a) Wake Induced Flutter - This occurs when more than one 
cylinder is present. The wake behind the upstream cylinder 
contains periodicities and general turbulence. When this 
wake strikes the downstream cylinder, large oscillations 
can be excited in the cylinder. This is called 
wake-induced flutter, wake galloping or wake-induced 
oscillation and has been observed with two, three, four or 
more conductor arrangements.

(b) Jet-switching Instability - When a stream flows 
across a closely spaced cylinder row, a series of 
similarly sized and spaced jets appear in the wake. These 
jets pass downstream of the cylinders and coalesce in
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pairs. If the cylinders oscillate, the oscillation can 
cause the jets to switch back and forth forming different 
pairs. Cylinder motion and jet switching are thus coupled 
and large oscillations of the cylinder can occur.

(c) Fluid-Elastic Instability - If a cylinder in an array 
in a cross-flow is displaced from its equilibrium 
position, fluid forces exerted on the cylinder change. If 
the variation in these fluid forces is sufficiently large, 
then large oscillations of the cylinder can occur. This 
type of motion is also described as fluid-elastic orbital 
vibration, fluid-elastic whirling, whirling instability, 
aeroelastic coupling and hydroelastic instability.

A vast amount of literature is available on the 
experimental and analytical work carried but in this field 
(1 2 0 ), however, very little work is available on the 
numerical work using finite element method for this 
particular problem. Yu and Vanburen (131) have presented 
the dynamic analysis of a submerged four-tube array using 
the added mass approach. The hydrodynamic mass matrix for 
the tube array is generated using the substructure 
technique. By combining the substructure hydrodynamic mass 
with the structure, dynamic events such as normal modes, 
shock spectrum and the history analysis for a single 
numerical problem are carried out.
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Flow around three cylinders in a column is analysed in 
this section. The two-dimensional, structural model for 
the cylinder column is shown in fig. 8 .2 .1 . kx and ky are 
the stiffnesses of the cylinders parallel and normal to 
the free stream flow, kg is the rotational stiffness. The 
finite element mesh used to analyse the flow around this 
column consisted of 204 elements and 898 nodes (fig. 
8.2.3). The distance between the cylinders is one cylinder 
diameter. The top and bottom of the flow domain are no 
slip walls (fig. 8.2.2). Thus the example considered is 
that of flow around a column of three cylinders in a duct. 
Based on our experience with the flow around a single 
cylinder, a slightly different mesh density is taken above 
and below the centre line in order to introduce asymmetry 
into the flow. Velocity vector plots at twenty timestep 
intervals are presented in fig. 8.2.4. The flow Reynolds 
number was 150. The initial flow solution (8.2.4a) is 
obtained by solving the Stokes flow equation. In the 
velocity vector plots to follow, the flow can be seen to 
oscillate downstream of the cylinders. The flow escapes 
through the gap between the cylinders and moves away from 
the central cylinder in the form of jets at high velocity. 
The flow changes direction further downstream and is 
moving towards the centre again. The flow behind the 
central cylinder is beginning to roll up into vortices and 
these are being shed alternately from the top and the 
bottom of the cylinder. The velocity vectors are seen to
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oscillate downstream of the other two cylinders also.
There is a clear recirculation region behind the top and 
bottom cylinders which moves downstream into the flow with 
time. The vortex shedding behind the central cylinder 
resembles the vortex shedding phenomenon for a single 
cylinder (section 8.1). In the velocity vector plots at a 
later time (fig.8.2.4g onwards), the three cylinders seem 
to be shedding vortices more or less individually, and 
most of the flow through the gaps between the cylinders is 
moving in a straight line with very little oscillation. 
This probably indicates that the gap between the cylinders 
is large and is not affecting the flow pattern too much. 
The horizontal and vertical components of the velocity^ 
eight diameters downstream of the cylinders/ are plotted 
against time in fig. 8.2.5 and 8.2.6. Lift and drag forces 
acting on the individual cylinders is calculated by 
summing up the relevant nodal forces about the centre 
point. Drag coefficient and Lift Coefficient C u are
also calculated using equation 7.1.1. These are plotted in 
fig. 8.2.7 and 8.2.8. The vertical component of the 
velocity downstream of the cylinder oscillates as vortices 
are shed in the flow. The oscillation in fig. 8.2.6 is by 
no means steady. The amplitudes for the top and bottom 
cylinders are decreasing with time, while it is increasing 
for the central cylinder. This is because most of the flow 
moves through the gaps between the cylinders towards the 
fixed wall in the early stages of the process (fig.8 .2 .4c
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and 8.2.4d) but slowly settles down and moves in a straight 
line at later times (fig.8.2.4e onwards). An incremental 
Reynolds number approach is used in this case (section 2.6) 
and the flow Reynolds number is incremented suddenly from 0 to 
150. In the test cases with a single cylinder (section 7.4), 
flow solutions were obtained by incrementing the Reynolds 
number in large steps. The flow is more complex around a bank 
of cylinders and smaller increments are probably required to 
obtain a smooth solution. Further tests with smaller 
increments in Reynolds number are required to check this 
behaviour. The time period ' ' taken to shed a pair of
vortices can be calculated from fig. 8.2.6. The Strouhal 
Number ’S' can be calculated using

S = fsD/u (8.2.1)
where fs is the predominate frequency of vortex shedding 

u is the freestream velocity 
and D is the diameter of the cylinder.

The Strouhal number for the top and bottom cylinder is found 
to be 0.19 and 0.25 for the central cylinder (fig.8 .2.6 ). The 
Strouhal number for a single cylinder at Re=150 is around .17 
(fig . 7.4.16) . A cylinder in an array of cylinders sheds 
vortices at a different frequency compared to a single 
cylinder. The frequency of shedding and hence the Strouhal 
number also depends upon the arrangement of cylinders in the 
array. The oscillations in the flow behind the central 
cylinder seem to be more in-phase with the upper cylinder than 
the lower cylinder (fig.8 .2.6 ). The oscillations in figures 
8.2.5 to 8.2.8 are not steady and indicate that the flow has 
not reached a steady-state as yet. From figures 8.2.7 and
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8 .2.8, it is possible to obtain approximate values of CD 
average, C L peak-to-peak and C L average. All three cylinders 
have a similar value of Cĵ  average (fig.8.2.7). C u 
peak-to-peak for the top and bottom cylinders is the same 
(fig.8.2.8). This is because of the symmetric nature of the 
flow. There is a discrepancy in C u average values for the two 
cylinders. The top cylinder has a higher C L average value, 
probably because the central cylinder is oscillating in phase 
with this cylinder (fig.8.2.6). The value of Cp and Cu peak 
to peak is much smaller for the central cylinder. The 
oscillations in the flow behind the central cylinder are 
restricted because of the presence of high-speed flow near and 
downstream of the central cylinder. The distance between the 
no-slip wall and the end cylinder is large and the flow is 
unrestricted in this region. Hence the flow behind the top and 
bottom cylinders oscillates with larger amplitude. Some 
experimental and theoretical results for instabilities in tube 
rows and tube arrays are presented in ref.120 for certain 
configurations. Numerical results for flow around a column of 
tubes are hard to find.

Only a single example of flow around a bank of three cylinders 
is considered. The flow around a group of cylinders is much 
more complex than that around a single cylinder. A finer mesh 
is required to solve the flow problem reasonably accurately. 
The mesh used to analyse the flow around a column of three 
cylinders consisted of nearly 900 nodes and the timestep for
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stability and accuracy of the solution was found to be 0.065. 
All the calculations were carried out on a Cyber 855 
mainframe. The computer times used for the flow analysis and 
the fluid-structure interaction analysis for a single cylinder 
and a column of three cylinders is presented below.

Single Cylinder 
Flow analysis
4.0 170-855 cp secs/timestep 
Fluid-Structure Interaction analysis 
9.02 170-855 cp secs/timestep

Column of Three Cylinders 
Flow Analysis
7.5 170-855 cp secs/timestep 
Fluid-Structure Interaction Analysis
16.08 170-855 cp secs/timestep

The present test problem was run for 200 timesteps and 
steady-state flow was not achieved at the end of this time.
The total time used for the analysis is thus considerable 
(3200 cpu secs +). The computer time to analyse the flow 
around a group of three cylinders is significantly more than 
that for a single cylinder. Although a simple example of the 
flow around a bank of three cylinders was examined, it is 
quite possible to model a bank of cylinders with more than
three cylinders. This would require more storage and 
considerably more computer time.
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9 .  SU M M A R Y  A N D  S U G G E S T I O N S  F O R  F U R T H E R  W ORK

A finite element procedure for fluid flow and for the 
fluid-structure interaction problems has been developed.
As the two systems are solved independently and coupled by 
use of velocity and force boundary conditions, the 
procedure is also suitable for fluid dynamic and 
structural dynamic problems. The Penalty function 
formulation of the Navier-Stokes equations is studied in 
detail. A variety of flow problems are solved for a range 
of Reynolds numbers. The results obtained are in good 
agreement with the available experimental and numerical 
results. It can be said that the solution procedure used 
to solve the Navier-Stokes equations gives a true 
representation of the flow at low and moderate Reynolds 
numbers, provided that the correct mesh is used. The 
appearance of instabilities in the form of ripples 
indicate that a mesh refinement is required in the areas 
where these occur. Use of upwind methods have been 
suggested to obtain smooth solutions on coarse meshes but 
they have not been used in this work. These are relatively 
insensitive to the input value of Reynolds numbers. The 
method used in this thesis does not use any upwinding. 
Updating of mesh is required as the Reynolds number is 
increased. It is essential to have nodes inside the 
boundary layer. As long as the boundary layer is resolved 
and a finer mesh is used in the critical regions, the 
solution obtained gives a good representation of the flow. 
Use of non-uniform meshes serves this purpose by utilising 
enough nodes in critical areas only, thus reducing the

2 2 4



overall cost of the analysis. Slight changes in geometry 
are also considered. When the leading edge of a step is 
slightly rounded off, the ripples are eliminated and the 
solution is identical to that obtained by using a much 
finer mesh on a square step. Small changes in geometry, as 
shown in the flow over a step example, do not alter the 
flow characteristics. The flow downstream of the step with 
the rounded front edge is identical to the flow downstream 
of the standard square step. Slight changes in geometry in 
the critical areas thus offers the cheaper option of 
obtaining a relatively smooth, ripple free solution on a 
coarse mesh. Whether to change the geometry of the problem 
slightly or use a finer mesh in the critical areas, 
depends very much on the problem in hand and on the 
accuracy of the solution required. A similar procedure can 
be adopted in the cavity flow problem i.e. rounding off 
the top two corners. Thus it is possible to obtain 
solution at high Reynolds number using coarse mesh when 
compared to the one originally used in the cavity flow 
problem. Hence mesh and geometry considerations are very 
important in the finite element analysis of flow problems 
(48) .

tThe equation used to select the timestep, although 
independent of the flow Reynolds number, does take its 
effect into account indirectly. It is required to reduce 
the element size in the boundary layer regions as the flow
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is analysed at high Reynolds numbers in order to obtain a 
smooth solution and hence a smaller timestep for stability 
and convergence. All the above requirements agree well 
with the physics of the flow (62), and are ignored when 
upwind methods are used.

The effect of the value of parameter A is also clearly 
shown to affect the solution (section 6.2). It is 
important that the, incompressibility constraint is fully 
satisfied otherwise a loss in mass flow rate occurs. This 
leads to a net pressure loss. Pressure and shear stress 
are compared with the experimental values for the case of 
flow over a backward step. These are in reasonable 
agreement. For all of the examples, results are displayed 
as velocity vector plots. Postprocessing in this form is 
cheap and gives a good physical representation of the 
flow.

A well banded matrix with a small bandwidth is important, 
in order to have an economical analysis. A standard 
algorithm is used to renumber the mesh and obtain a matrix 
with the minimum possible bandwidth. The savings could be 
in the order of 20-30% compared to an ordinary mesh.

The method that has been adopted for fluid-structure 
interaction analysis is very simple and easy to code, it 
can be comfortably included into any general purpose fe
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program. Good agreement has been found for the interaction 
results when compared with other numerical and 
experimental results. Although only a relatively simple 
geometry has been considered here, the program can analyse 
arbitrary geometries of any complexity. In all of the 
fluid-structure interaction examples presented in this 
thesis we have dealt with small structural displacements 
(5-10% of cylinder diameter). The resultant changes in 
geometry for this kind of movement can be classed as 
negligible. Sustained vibration of a cylinder is known to 
occur at amplitude of 0.5D or more. For this kind of 
movement, updating of the mesh is required. This can be 
included in the program by updating that part of the mesh 
which is adjacent to the cylinder. The example of flow 
around a cylinder column indicates that it is quite 
possible to analyse the flow around tube banks and to 
study the fluid-structure interaction behaviour of the 
complicated tube banks. The effort required to model such 
an example is significantly more than a single tube. The 
flow is much more complex in this case and a finer mesh is 
required to capture all of the flow details. The approach 
can be easily extended for axisymmetric and 3-D analysis. 
Although the cost for 3-D analysis would be high.

A working finite element method computer code has been 
developed and included in the general purpose finite 
element package FINEL. This is a significant step towards
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the development of a general purpose, modularised, 
fluid-structure interaction, finite element program 
suitable as a general engineering tool. However, there are 
certain limitations, especially for high Reynolds number 
flows mainly related to the choice of a sufficiently fine 
mesh and the fact that no turbulence model is included.
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