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ABSTRACT

The work presented here is divided into three main 
sections. In the introduction some basic general properties of 
anomalies are reviewed, mainly through the example of the d=2 
abelian anomaly. We also review the connection between this 
anomaly and the Kac-Moody algebra of free fermionic currents.

In chapter II we then investigate the algebra of free 
fermionic currents in d=4. It is proved for a specific case 
that the Jacobi identity is not compatible with a certain set 
of standard assumptions which are normally assumed to hold for 
field theories. The proof is supplemented with a full
calculation of the relevant double commutators which suggests 
an interesting possibility of getting well-defined finite 
results. We then discuss the relationship between this result 
and the anomaly of the d=4 axial current.

In chapter III, the algebraic properties of abelian gauge 
theories are studied in the Hamiltonian formalism both in d=2 
and' d=4. In d=2 it is shown explicitly how the anomaly
modifies the Poincare algebra, besides the already known
modifications of the Gauss-law constraint algebra. In d=4, 
employing a one loop BJL calculation, it is found that the 
anomaly leads to a breaking of the Jacobi identity in the
algebra of the Hamiltonian with the Gauss-law. It is also
shown that in order to reproduce the anomaly, a square 
diagram, with one fermionic energy-momentum tensor and three 
fermionic currents, should be considered.
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THE THOUGHT-FOX / Ted Hughes

I imagine this midnight moment’s forest
Something else is alive
Besides the clock’s loneliness
And this blank page where my fingers move.

Through the window I see no star:
Something more near
Though deeper within darkness
Is entering the loneliness:

Cold, delicately as the dark snow,
A fox’s nose touches twig, leaf;
Two eyes serve a movement, that now 
And again now, and now, and now

Sets neat prints into the snow 
Between trees, and warily a lame 
Shadow lags by stump and in hollow 
Of a body that is bold to come

Across clearings, an eye,
A widening deepening greenness 
Brilliantly, concentratedly,
Coming about its own business

Till, with a sudden sharp hot stink of fox 
It enters the dark hole of the head.
The window is starless still; the clock ticks, 
The page is printed.



Notation and conventions

This work follows the conventions of ref. 3-10, which are 
basically those of ref. 3-15. Here is a short summary of some 
relevant ones (d=2 conventions are given in parenthesis):
a. A Greek letter index runs over 0,1,2,3 (0,1) while a Latin 

index runs over 1,2,3 (1) only. Repeated indices (Greek or 
Latin) are to be summed over.

b. g diag(1,-1,-1,-1) (diag(1,-1)) ; 6 =  - g .
M'V 0 1 2 3 1 2 3 3 3

C.  e 0 1 2 3 =  ~z ~ e =  1 ( £  0 1 =  1 )  i
5 0 1 2 3 5 0 1

Y 5 =  y - iy y y y (y =Y Y ) •
d. B(x) = B(t,x) and B(x) = B(0,x), for any operator B.
e. F = 5 A - 5 A ; EX = F01 ; BX = (VxA)X= eimX5 A Z ; In the|iv v p, n v * y m ’

Weyl gauge we have Ex = - 5°A1, where A is a U(l) gauge 
field.

£Lf. The generators X of a non-abelian group G are taken in the
fundamental representation, and are normalized to give
tr(Xa\b)= —6ab. dabc « tr(Xa{\b ,XC}).2

g. All commutators, unless otherwise specified, are equal-time 
commutators.

Other conventions or deviations from the above will be 
given at the introduction to each of the chapters or at the 
appropriate places when necessary.

We will also make use of the following abbreviations:
J- Jacobi identity or the left-hand side of it (the sum of the 
three double commutators), VEV- vacuum expectation value,
W.I.- Ward Identity, ST- Schwinger term, E.T.C- equal time 
commutator, C.C.R- canonical commutation relations, C.S.M. - 
Chiral Schwinger model.
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CHAPTER I - Introduction to anomalies



1.1 Classical symmetries and conserved currents

By now, anomalies are recognized as a fundamental feature 
of quantum theories. Theoretically, their study led to the 
discovery of important topological, geometrical and algebraic 
structures and to a much better understanding of quantum 
theories themselves. In parallel to that, various experimental 
predictions based on the knowledge of anomalies were derived 
and verified. The principle of anomaly cancellation, for 
instance, is a clue to the understanding of the basic 
experimental fact of the equal magnitudes of the electron and 
proton charges.

The subject of anomalies and their implications has grown 
very rapidly, and it is even hard to give a good definition of 
it. In this brief introduction, I’ll just outline a few 
properties and results, which are at the background of the 
present work.

We normally say that there is an anomaly when a symmetry 
of a classical theory is not respected by its quantum version. 
Noether's theorem tells us that when a classical theory is 
invariant under a continuous symmetry, there should exist 
corresponding conserved currents. In a theory containing 
fermions, one can define a transformation for the fermion 
field ¥ by :

¥(x) -► eia¥(x) ; a real (1*1)

These transformations form a U(l) group which will be
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denoted Uv (l). If the theory in question is invariant under 
this group, we'll find a conserved current:

= o (i .2)r

We can also define another type of U(l) transformations: 

iPY5¥(x) -► e ¥(x) ; p real (1*3)

which we denote by U^(l). The classically conserved current
Awill be denoted by J (x). In the theories we'll deal with, 

these currents are given as bilinears in the fermion fields:

JV (x)=?(x)y ?(x ) ; JA(x)=?(x)y y V(.x ) (1.4)\i n |i \x 5

In the quantum theory the conservation of the currents is 
translated into certain conditions on the Green's functions of 
the currents, known as the Ward-Takahashi identities 
(hereafter, W.I.). An anomaly then means that we cannot 
satisfy simultaneously all the W.I.'s and other physical 
conditions one would like to impose on a given Green's 
function. In order to demonstrate how this situation occurs we
now specialize to d=2.



1.2 The axial anomaly in d=2

In many aspects, the gauge anomaly in two space-time 
dimensions, provides a good starting point to learn about 
anomalies in quantum field theory. The models are technically 
easy to handle, but still possess essential features.

Consider the following current-current Green’s function:

n (x) « <01 T(J (x)J (0) |0> (1.5)p,v p. v

where each of the J’s can be either a vector or an axial
current. The Fourier transform of n (x) is defined by:pv

n (p) = Jd x e“ip,xn (x) (1.6)

We’ll derive the W.I. for n (p):pV

a^n^cx) = a1* <o| 0(xo)Jii(x)Jv(O)+e(-x°)Jv(O)J|1(x) |o> (1.7)

Since a^GCx0) = g’i06(x°), we get:

a|intlv(x) = g^°6(x°) <01 [J|1(X),JV(0)] |0> + . (1.8)

+ <o| T(aM'j(i(x)Jv(0)) |0>

Using, current conservation, the second term is zero. The first 
term is the equal time commutator of the currents. It has a 
classical part which one can get by naive application of the 
canonical anti commutation relations of Y(x) and its conjugate
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(see appendix A). For our 2-dim. case there is no contribution 
of this type. The canonical terms are normally (at least for 
internal symmetry currents) proportional to a Dirac delta 
function (whose argument is the space coordinates difference) . 
There might also be other terms proportional to derivatives of 
delta. To get these terms one should define the equal time 
commutator more carefully, taking into account quantum 
divergences. Such calculations are at the heart of the present 
work. The non-canonical contributions to the commutator 
exposed by them are generally called Schwinger terms. It was 
Schwinger who proved that if <0| ^  were vanish, one
would be in conflict with very basic assumptions of quantum 
field theories. For this specific case, the Schwinger term is 
a c-number, but we’ll call any non-canonical contribution to a 
commutator, a Schwinger term (abbreviated to ST). Another name 
in use is commutator anomalies.

We’ll now proceed with the derivation of the W.I. 
ignoring the possible presence of a ST. In momentum space one 
gets:

i P ^ C p )  = fd2x e“lp‘xd^n^v(x) (1.9)

Therefore the naive W.I. is:

ip^n^cp) = o ( l . i o )

The reasoning behind neglecting the ST is the following:
The T-product used to derive the W.I. is not a Lorentz 
covariant object, because of the presence of 0(x°). However, 
we normally define the Green’s functions in a Lorentz
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covariant way. For example, in perturbation theory we use
Lorentz covariant Feynman rules to evaluate n (p).H v
Therefore, we. have neglected not only the ST, but also the
derivative of the difference between the covariant and the
non-covariant forms of the T-product, known as the seagull
term. An implicit assumption in the derivation of the W.I. is
that possible ST’s cancel against derivatives of seagulls.
This assumption is known as the Feynman conjecture. Thus we
see that commutator anomalies do not necessarily correspond to
W.I. anomalies. In ordinary QED, for instance, one encounters
ST’s but it is possible to define the T-product in such a way
that the Feynman conjecture is satisfied.

We’ll now check explicitly whether n (p) can satisfy allH v
the W.I.’s we want to impose on it. We’ll consider a free
massless fermionic theory, which is invariant under both U^(l)
and U A(1). Then n (p) is given exactly by the bubble A p. v
diagram (Fig. la):

n (p ) = - / ^p.vv J
(2*)

tr r -  r ]2 * f  ^ ( 1 . 11 )

Where r stands for y or y vc.(i p. M-
We note that n (p) is superficially log divergent. IfV

all the expressions appearing in our derivation of the naive 
W.I. were well defined, the derivation would have been 
justified and the naive W.I. would hold. Therefore, having 
some sort of divergence is a necessary condition for having an 
anomaly. However, that doesn’t mean that the starting Green’s
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function must be divergent. In the cases where the canonical 
part of the commutator is non-trivial, the W.I. will connect 
two Green’s functions. The second Green’s function may have a 
divergence which will lead to an anomaly. Another important 
point is that it is the fact that we are forced to introduce 
some regularization in order to define n (p) which is crucialp.v
for circumventing the naive W.I.. In fact we will see that 
the W.I. anomaly doesn’t contain any infinite parts. Whatever
regularization we choose for defining IT (p), one of ourP' ̂
physical demands is Lorentz covariance. Assuming this, we can 
write a general expression for n (p), using only the 
information that it has to be a two-index Lorentz tensor, 
depending on a single 2-vector p :

n N1(P) = g B]_ (p2) + (p2gnv-2pnpxi)B2(p2)Hv \iv \i\> (1 V ( 1 . 12)

+ e B3 (p ) + E (p g -2p p )Bi+(p ) p,v J ' M- ctv a v H

The B^’s are as yet, undetermined functions. They will be 
called the invariant amplitudes. From (1.10) we get:

2 2Bi - p B2 = 0 ; B3+ p Bit ~ 0 (1.13)

Similarly, we’ll have a second W.I. from ’’dotting” p into 
the second index. Here we’ll get:

2 2Bi- p B2 = 0 ; B3- p B̂  = 0 (1*14)

Since n (p) has zero mass dimensions, so have B 1 and B3.
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W e can therefore expect them to correspond to the 
superficially log divergent part of the bubble. Hence their 
definition will depend on the chosen regularization. On the 
other hand, B2 and have mass dimension -2. They correspond 
to the convergent parts and there is no ambiguity in their 
definition.

VVFrom parity considerations, Bo and Bu vanish for n and0 H nvAAn . Since Bi is ambiguous, we might be able to choose it to M' ̂
satisfy (1.13-4). However, for the two mixed cases, namely, AV
and VA, B1 and B2 are zero because of parity, and B3 and
B^ must be zero to satisfy simultaneously (1.13-4) (assuming
analyticity). But we can show by an explicit calculation that
B^ is non-zero. Since it is also unambiguous, there is no

VAfreedom left to redefine it to be zero. Thus, n (p) cannotH-v
satisfy both W.I.'s.

In fact, there is another constraint we would like to
impose on IT (p) . We have an algebraic identity (special to v
d=2), which says:

y y 5 — z y (1.15)

It follows that:

v TV. , tA/ xE J (X) = J (X) \i vv 7 M- (1.16)

If we want to impose it on the two-point function we get:

ttAA, X a PTTVV/ , Vn (p ) = e e Hn (p) /. Bi =|i v ap 1
A V A - Bi ; B2 = B2 (1.17)
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The result of introducing this extra demand is that if we 
V VVdefine Bi so that the W.I. for n (p) is satisfied, then 

AAn (p) won’t satisfy its W.I. and vice versa. In d=4, extra 
|1 v v ̂  ' ’

constraints would typically come from demanding Bose 
symmetry.

We now return to (1.11) to prove some of the previous 
claims. After introducing a Feynman parameter, and doing a 
legal shift in the r-integration, we get:

1 2 t r [ (/+( 1 - x )j6)r (/*-xrf)r ]
n (P) = Jdx/4-E ------  --K ... V  *J}Pv 2 2 2 20 (2tc) [r +x(l-x)p ]

(1.18)

In this form one can read off the Lorentz structure and make 
contact with our general decomposition (1.12). For example, 
the zero-dimensional amplitudes B1 and B3 are given by:

r fd2r , trl>r ] log div part = Jdx/--- {------- -̂---2 " 2 2 2 (2tc) [r +x(l-x)p ]
} (1.19)

We can define this integral through a symmetric 
integration formula (see appendix E). We then get:

1l.d'. part = j tr[YBrtlTarv] /ds/— 2{—  ---1----—
0 ( 2 n ) [r +x(l-x)p ]

} ( 1 . 20 )

With this definition, the superficially log divergent 
amplitudes actually vanish. This follows from the algebraic 
identity (which is again special to d=2):
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yar r ...r y = 0 for any positive integer n (1.21)
^1 ^2 M'2n+1 a

Alternatively, we could have used the Pauli-Villars 
regularization method to define the bubble. This would have 
given us a non-zero but finite value for the zero dimensional 
amplitudes. The non-zero value would come from terms like:

2tr[Mr Mr ] = m tr[r r ] (1.22)

Where M is the mass of the regulating fermion.
We have seen that and B3 turn out to be finite, but 

possess an ambiguity which reflects itself as a dependence on 
the regularization scheme. Next, we can identify B2 and B̂  
from:

l 2
Finite part = t r [ ^ r v]/dx(l-x)x/^—^ {------------  ̂ (1.23)

0 (2tc) [r +x(l-x)p ]

The integral is convergent, and the result for it will be of
cthe form --- with c a non-zero finite numerical constant.
2

P
Since all the invariant amplitudes are finite the anomaly 
(i.e. p^n (p) ) is also finite.|! V

Let us summarize the main results of the analysis we have
carried out. There is no choice of ambiguous quantities for

VAwhich we can satisfy both W.I.’s in n (p). Moreover, imposing
algebraic relations between the vector and the axial currents,

VV AAwe have to sacrifice W.I. for either n (p) or n (p) as well.|!V v 7 |!VV '
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In another language we can say that there is a part in the ST 
which is not cancelled by the seagull term contribution when 
the divergence of n (p) is taken and therefore the Feynman 
conjecture fails.
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1.3 Implications of anomalies

The bubble diagram can appear in several theories of 
interest:
1. In the free theory. Here the anomaly doesn’t have any 
direct physical consequence, since the bubble diagram doesn’t 
enter in any physical process in this theory. The conservation 
equation of the current is true quantum mechanically since for 
any two physical states a and p we have:

ati<ol JV,A(x) |P> = 0 (1-24)

(1.24) is true despite the fact that the set of naive 
W.I.’s cannot be maintained. For many purposes the free theory 
is a good place to study the anomaly, and the fact that the 
anomaly already appears there reflects its basic nature.
2. Suppose one of the currents is coupled to a gauge field 
while the symmetry associated with the other current remains 
global. QED with a global axial current is an example of this 
type. In our d=2 example, the bubble diagram with one external 
photon (FiG. lb) then describes the following matrix element:

<0|J^(x)|Y> « iee^n^Cp) (1.25)

Where e is the gauge coupling constant and is the photon 
polarization vector. One can choose to preserve the vector 
W.I.'s , but then the axial W.I.’s are broken. Because of
(1.25), and in contrast to the free theory, this implies that 
the axial current is not conserved quantum mechanically:
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d^J^Cx) « eeM'VF^v(x) (1.26)

Thus, the global U (1) is broken in the presence ofA
vector photons. In a situation like this we talk about "The 
good anomaly", since the theory is consistent and we get a 
natural way to reproduce a desired physical effect of symmetry 
breaking. The first process to be understood in terms of this 
mechanism was the decay of n ° into two photons. Since then, 
many other physical phenomena have been tied to this form of 
anomalies.
3. We can also think of a theory where both Uy(l) and U^(l) 
are gauged (Fig. lc). Because of the anomaly, at least one of 
the gauge symmetries must be broken when the theory is 
quantized. However, unlike the previous case, it is believed 
that the resulting theory is inconsistent. Chapter III is 
devoted to the problems arising in such theories. In this 
situation we are talking about "The bad anomaly". So far, the 
common strategy concerning bad anomalies has been to reject 
theories possessing them (The principle of anomaly 
cancellation). We’ll remark on this later.



1.4 Generalizations and further results on anomalies

1. The type of anomaly arising in our d=2 example, i.e. an 
anomaly connected to a classically conserved fermionic current 
coming from the continuous axial symmetry, generalizes to
space time dimensions d=2n. It occurs in one-loop diagrams

1containing at least —n + 1 vertices where the number of axial2
vertices, i.e. vertices with y5 type of coupling, is odd. In 
d=4, for example, we encounter anomalies in the AVV and AAA 
triangle diagrams. Note that, because of the unavoidable 
anomaly in the AAA triangle, a theory with an axial gauge 
coupling in d = 4 will always have a bad anomaly, in 
contrast to the d=2 case.

We can also discuss internal symmetries which are 
more general than the abelian U(l)'s appearing in our d=2 
example. One can then show that if the fermionic current 
carries an index ’a* of a compact Lie group G, i.e.,

3# M  £L SLj  \ y , where X is a generator in the corresponding\x \i x
Lie algebra, the anomaly in the — n + 1 diagram will be2
proportional to a symmetrized trace over the group

a b cgenerators. In d = 4, this group-theoretic factor is d
In the d=4 non-abelian case, we have anomalies also in the
4-point and 5-point Green’s functions, which correspond to
a square and a pentagon diagram. However, these anomalies
are determined by the triangle anomaly. The practical
meaning of rejecting bad anomalies of the type considered
here is that we restrict the fermionic content of the

a b ctheory to be consistent with the condition d = 0. This
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condition has been very useful in constructing the 
standard model and in analyzing grand unified theories.
2. Another interesting and important feature of axial 
anomalies is the fact that they are non-perturbative. In 
our example, one can see that there are no radiative 
corrections to the bubble diagram due to (1.21). The d=4 
derivation is much more involved, but again the end result 
is that the numerical coefficient of the anomaly does not 
receive radiative corrections. Alternatively, this result 
is implied by the existence of manifestly non-perturbative 
methods to derive the anomaly.
3. Bosonic loops are known to be free of axial gauge 
anomalies. However, bosonic fields do play an important role 
in investigating them.

Consider the following action, which describes fermions 
coupled to an external gauge field:

gauge fields. We now define an effective action related to S 
through functional integration over the fermion fields:

(1.27)

e W^B? = JD¥D¥ eiS(¥,Y,B) (1.28)

Because of the anomaly, the effective action W(B) is not
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invariant under chiral gauge transformations and we have:

6W(B^W)
6p(x) = G(B) p(x)=0 (1.29)

QWhere Bp is the axially gauge transformed B. However, it is
clear that W(B) is not local in B. If it had been local we
could have subtracted it from S and the resulting theory would
then be anomaly free. But the basic result about the anomaly
is that it cannot be removed by subtracting a local counter
term. Thus W(B) cannot be local in B.

r 4 1Wess and Zumino1 Jhave shown that if a scalar field 0(x) 
is introduced with an appropriate gauge transformation rule, 
an effective action W(B,0), local in both B and 0, can be 
constructed, which will reproduce the anomaly, namely:

6W(B^X>,0^X>)
6p (x) P(x)=0

G(B) (1.30)

In the abelian case, the construction is very simple. 
For example:

W( A, 9 ) - eee^F (1.31)v ' |!V v '

reproduces (1.26) provided 0 transforms under U.(l):ri

0 -► 0 ' = © + p (1.32)

In the non-abelian case the WZ action has a much more
complicated and richer structure. Its main use so far has been
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in constructing effective actions in d=4 for describing QCD
effects at low energies, which incorporate QCD good flavor
anomalies. More recently, it has been proposed by Faddeev and
Shatashvili (ref. 3-1) that adding a WZ action to a theory
with bad anomalies may be an alternative to the normal
strategy of anomaly cancellation, previously mentioned.
4. Other types of anomalies are known besides gauge anomalies.
Another important anomaly connected with a continuous symmetry
is the gravitational anomaly. It appears in one-loop diagrams
involving energy momentum tensor vertices. An example in d=2
is again the bubble diagram, with the two current vertices
replaced by © vertices. In d=4 we have the Salam-Delbourgo
anomaly (ref. 3-17) in the triangle diagram with two 0 ' s and|A v
one UA (1) current. This is an example of a mixed gauge and
gravitational anomaly. The symmetry connected with the
conservation of 0 is general coordinate invariance.

|1 v
There are also anomalies associated with the topological 

nature of gauge or general coordinate transformations. They 
may arise in the case of "large” transformations which cannot 
be reached continuously from the identity. This type of 
anomalies will not be dealt with in the present work.
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1.5 Connection of the d=2 anomaly with the K.M. algebra

It was said earlier that the anomaly already appears in 
the free quantum theory of fermions. It is also known that in 
d=2, the free quantum fermionic currents form a rich algebraic 
structure, called the Kac-Moody algebra. The defining 
relation for this algebra (using its continuum version) is:

[J (x),J (y)J = if J (x)6(x-y) + —  k6 6’(x-y) (1.33)
2%

a b cHere f are structure constants of a compact Lie algebra G,
and the J's are linear combinations of vector and axial 

a Va Aacurrents (J « J ±J ). The K.M. algebra is an extension of Go o 7
and reduces to G when the numerical constant k is set to zero.
The central extension (the second term in (1.33)) is an
example of a ST mentioned earlier. The in front of it
reflects its quantum nature. In order to derive (1.33) for the
case that the J’s are bilinears in elementary fermion fields, 
one should use a careful definition of a commutator. We'll use 
the BJL method which is defined and explained in appendix B. 
Since the BJL procedure calculates the commutator of two 
operators from their T-product, the connection with the W.I. 
will be more transparent.

The first term in (1.33) is a canonical term and 
therefore doesn't interest us here. If we take the vacuum 
expectation value of (1.33), on the r.h.s. only the central 
extension will contribute, since it's a c-number and the
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current is normal ordered. Hence the central extension is 
given by the VEV of the commutator. In order to evaluate the 
VEV of the commutator using the BJL definition, we have to 
know the VEV of the T-product of the currents in momentum
space. This is nothing but n (p) . The fact that we deal with|! v

£La general group G means that we have to replace r by X r . In[i p.
o bthe Feynman expression we’ll encounter tr(X X ), which will 

a bgive the 6 factor. Note that the T-product of the currents
is given by an appropriate linear combination of n (p)’s, so
it’s enough to look at the BJL limit of a general n (p).

(1 v
Earlier on we found that B1 and B3 are ambiguous

constants, while B2 and B̂  are of the form and c is fixed.
1Going back to (1.12), and looking for the —  term we find:
P_

1 r 1 1 a 1 1 .—  (-2cpi)[g g + g g + e  (g g + g g )] (1.34)1 7 L llo v vo ll Li VDao v vo a /J x 7p0

p 1 will turn in x-space into an i6’(x-y). We see two 
interesting things:
1. The non-vanishing value of the central extension k and the 
unambiguous and non-vanishing part of the W.I. anomaly arise 
from the same source - the non-zero value of c.
2. A ST appears in both the even and the odd parity parts, 
though a genuine W.I. anomaly is unavoidable only in the odd 
parity part. However, the two ST ’ s can be distinguished by 
their different Lorentz structure.
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CHAPTER II - The failure of the Jacobi identity for 
free fermionic currents in d=4 and its 
relation to the axial anomaly
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2.1 Introduction

The aim of this chapter is to examine the validity of 
Jacobi identity for current operators in a free massless 
fermionic theory, in four space-time dimensions. The main 
conclusion is that for certain cases, the Jacobi identity is 
not compatible with other "standard", well established 
assumptions which are made about quantum field theories. We 
begin by reviewing some previous results concerning the 
validity of the Jacobi identity. Next, it is shown that under 
a specified set of standard assumptions, the Jacobi identity 
for the time component of the axial current and two different 
space components of a vector current must fail at equal time. 
Then, all the components of the vacuum expectation value of 
the double equal time commutator of one axial current and two 
vector currents are calculated, using a double BJL limit and 
the previous result is verified and elaborated. The results of 
a similar calculation for three non-abelian vector currents, 
where another violation of the Jacobi identity occurs, is also 
given. It is shown that this result implies a third violation 
of the Jacobi identity, this time between the energy-momentum 
tensor and two currents. The properties of the various results 
are discussed and a connection is made with some previous 
work. A short discussion is given of what happens in two 
dimensions. We then suggest a possible connection with the 
W.I. anomaly of the axial current.
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For convenience we change in this chapter to the 
following notation for the fermionic currents:
V (x) = f(x ) y ¥(x) is the U(l) fermionic 4-vector current,

i ^
v(x) = —^(x )y ,X Y(x) is the non-abelian vector current, and |! £ (1

A (x) = ¥(x )y 5Y ¥ ( x )  is the fermionic U(l) axial current.P- M'



2.2 A brief review of previous work on J breaking

The validity of J was previously questioned in several 
contexts:
1. The quantum mechanical non-relativistic problem of a
charged point particle moving in an external magnetic field of
a Dirac monopole. A possible failure of J for the velocity
operators at the location of the monopole was first noted by
the authors of ref 1 (1969), and much later aroused renewed
interest1 ’ jand debate * . The terminology used in these
papers is that of cohomology theory, according to which a
possible failure of J for a set of generators indicates the
possible presence of a 3-cocycle. Moreover, if this third
cocycle is non-trivial, i.e. if it is a non-integer multiple
of 2it, then the finite transformations related to these
generators are non-associative.

r 1 412. Johnson and Low 1 J observed, back in 1966, a failure of J
for spatial components of vector currents in the quark model.
They sketched this possibility, using the BJL definition of a
single commutator. Buccella et al. ^proved , for the same
model, that C-number ST 1 s are not compatible with J. 

r 2 1Jackiw1 notes that there are experimental indications that 
the ST is indeed a C-number, consistent with the quark model 
calculations, but since the calculation produces a 
quadratically divergent term (which cannot be removed by usual 
renormalization), the mathematics of the problem seems to be 
ill-defined. It seems that no further investigations into this 
issue have been published. The results presented here are
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closely related to those of ref's 10 and 14, and it is hoped 
that they will illuminate them further.
3. An argument by Brandt1 seems to imply that whenever
commutators are defined as limits of regularized expressions,
there is no automatic guarantee that J will hold. His argument
can be used to solve the following paradox: Suppose one
chooses to define the E.T. double commutator as a limit of a
regularized double commutator (for instance, by using point
splitting or a double commutator at unequal time etc.). Then
for the regularized double commutator J is expected to hold

regsince the operators are now well defined. But if J =0 for 
any value of the regulating parameters then in the limit it 
will remain zero and therefore we can always find a 
regularization procedure which respects J at equal times. 
However, we note that a definition of a double E.T.C is 
restricted by that of a single E.T.C. . It forces us to take 
the limits of the regulating parameters in a certain order. 
For a double commutator we'll need to take two successive 
limits, the first corresponds to the "inner" single commutator 
(See assumption 2 of section 2.3 . However, this restriction 
may leave some residual freedom, which is discussed later on). 
Therefore the limits of the regulators are taken in different 
orders in the three double commutators which form J. A failure 
of these limits to commute will result in a failure of J for 
the double E.T.C.'s even though it holds for the regulator- 
dependent ones.
4. A failure of J in a theory with a bad anomaly was noted by 
ref 9 (see also ref 1 1 ) for three spatial components of the
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electric field. These results were also obtained from a BJL 
calculation. They are effectively reproduced in the next
chapter and further implications are discussed there.

£5. Possible associativity anomalies are also mentioned in the
f 221context of string theories
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2,3 The incompatibility of J(AVV) with standard assumptions

It was already mentioned in the introduction that
f 17 1Schwinger gave a proof1 Jthat the VEV of [V0>VjJ cannot be 

zero, independent of any definition (regularization) of this 
object, if one accepts a limited set of very general 
assumptions. In an analogous manner one would like to 
establish the possibility that J can fail in certain cases, 
without referring to any specific definition of the double 
commutators involved. Although we call the final result the 
failure of J, a more cautious statement to make is that we 
give a set of assumptions which are inconsistent with J.

Here are the assumptions:
(1) The existence of ETC, which for two local operators A and 
B will have the form:

[ A ( t , x ) , B ( t , y ) ]  = l  CnDn ( x - y ) O n ( t , x )  ( 2 . 1 )

where:
On (t,x) - are local operators constructed from basic fields of
the theory and their derivatives including the unit operator.
W e ’ll assume that the 0 ’s belong to a set of independentn
operators (see ref 18).
Dn (x-y) - are delta functions and / or any of their 
derivatives.
Cn - .are numerical quantities which are allowed to contain

—  1 -2dimensional divergent parts of the form (t) , (t) etc.
where t -> 0 .
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(2) The free currents, together with a subset of {C>n} , close
an algebra with the algebraic properties : [A,B] = -[B,A] ;
[C,[A,B]] = [C,D] If [A,B] = D .
(3) In the free theory [A,B]true = [A,B]canoni(jal + possible 
different extra terms. The extra terms correspond to different 
values of the label n in (2 .1 ) than the terms which can be 
derived from C.C.R. . Actually a weaker assumption is needed 
and we’ll comment on this later.
(4) All properties used to prove the necessary existence of 
the ST hold, like Lorentz covariance, positivity of the 
Hamiltonian, etc. (see also assumption 6 ).
(5) The currents are hermitian operators of canonical 
dimension 3 (in mass units), and have normal transformation 
rules under P,C,T, symmetries (see appendix A). They are 
normal ordered to give zero VEV.
(6 ) We can use axial current conservation in the commutator of 
two axial currents.

Under these assumptions, it will now be shown that the 
VEV of:

[AQ(0,x),[Vi (0,y),V.(0,8)]] + 2 Jacobi permutations (2.2)

is non-zero for i£j in a free massless fermionic theory since 
the first term is necessarily non-zero while the other two 
vanish.

We start by showing for the free theory that:

[ AQ (0, x) , V ± (0, y ) ] 0 (2.3)
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Using (1) and (2) for the r.h.s. of (2.3) we have that dim 0n
is less than or equal to 3 since dim D is at least 3. Sincen
only fermion fields, their derivatives and the unit operator
can be used to construct 0 , we get (using dimensions and
Lorentz properties) that 0 can only be bilinears in then
fermion fields or the unit operator. Writing down the most 
general sum of terms constructed from the five independent 
Lorentz fermion bilinears with complex coefficients we get, 
using hermiticity, discrete symmetries, anti-symmetry of the 
commutator, translation invariance, that all the coefficients 
vanish. In fact, c-numbers on the r.h.s of (2.3) do not 
matter, but it is easily seen, using charge conjugation, that 
they vanish. We also note that C.C.R also gives (2.3). It now 
remains to show that the first term of (2 .2 ) cannot be zero. 
Repeating the same exercise for [V. (0,x),V. (0,y) ] , (This is 
done in detail in appendix A in order to demonstrate the 
general technique), we get that the only possible non c-number 
contribution, is a term of the form e. A . Again, this is

i  J  k

exactly the result one gets from C.C.R. We now use assumption 
3 to exclude any cancellation of the canonical term by a 
non-canonical contribution (here one can see that we are 
really using a weaker version of 3). The final step is to 
simply substitute the canonical result into the first term in
(2.2) and use 4 and 6 to get that the VEV of what’s left 
cannot vanish.

There are two comments to be made:
1. Assumption 3 already assumes that C.C.R. do not contain all 
the information about the true commutation relations. However,
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re j ecting the weaker version of it, which, as previously 
explained, is what is actually being used, is equivalent to 
saying that C.C.R. do not contain any information at all about 
the true commutation relation. Besides the fact that no 
acceptable definition of E.T.C is known to give such a result, 
it’s hard to see how one can accept it and keep all other 
canonical results unaffected.
2. Assumption 6 relies on the fact that there is no W.I.
anomaly in the AA two-point function, and therefore the proof
that the [A ,A.] ST cannot vanish goes parallel to that of the o 1

f V , V. 1 case .L o lJ
Before concluding this part it is useful to give an 

explicit expression for the ST which appeared in our argument. 
It seems that the following structure is agreed upon by 
several ^  ̂ methods of defining the E.T.C. :

3 1 2 o<0| [Vo(0,x),Vi(0,5)] |0> = i(A8i6 (x) +---63(x)) (2.4)
12n

where A is a quadratically divergent quantity and S^  is a
finite non-zero constant. For free currents the axial ST has
the same structure as in (2.4) with S =Saa vv
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2.4 BJL calculation of the AVV double commutator

In this section we’ll use the BJL definition of a double 
commutator (see appendix B) in order to calculate J for one 
axial and two vector currents of the U(l) free massless 
fermionic theory. Define:

JaP|1(5’y)5 <0i [ v ° ^ ) > [ v 0>y)-v°>fi)]]+ (2,5)

[Vp(0,y),[A(i(0,S),Va(0>x)]] + [A^(0,5),[V(j(0,x)>Vp(0,y)]] |0> =

= B^+ B2 + B3

The relevant three-point function needed to evaluate 
these double commutators is given in the free theory exactly 
by an appropriate triangle diagram (Fig. 2). The calculation 
of this diagram is well known and we will use the expression 
for it given in ref 12. We want to calculate:

Bi (J1,£2)= “lim k10 lim k20 T (kx,k2) (2 .6 )k10->-iw k20->i®

B2 (ii,52)= lim k2 0 lim k10 T (k1 ,k2) (2.7)
k2 o^i® k̂  Q-̂ i® p

8 3 ( ^ 1 , 6 2 ) “  l i m . <10 k 20 T ( k 1=-(q+k2 ) , k 2 ) (2 . 8)Qq i® k2 o->i°° "

where:
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i* 4 I k i x  ik2y
Tap(J(ki ,k2) = /d xd y e e <0|TVp(x)Vp(y)Ap(0) |0> = (2.9)

- 1 R „(ki,k2 ,m0=O)
(271) 4 ap[i

r 1 2 1and ,k2 ,mo=0) is given1 Jby:

16tc
-- R (ki ,k2 ) =2 crp|i v 1 ’ z ' (2.10)

=kI S a p J - kl-k2 Iu (kl>k2 )+k2 (I2 0(kl>k2 )-I1 0 <kl-k2 ))]

+kISappt-ki(I2 0<k2 >kl)-I1 0 <k2 ’kl))+kl'k2 ll1(k2’kl)]

5 x I t+k2pkik2^ TOJ l 2o(k1 ,k2 )-lio(k1 ,k2)]

-kiakik2 e5Tpp[l2 o(k2 ,k1 )-Iio(k2 ,k1)] +k2(jkik2 e5 xppIii(k2 ,k1)

where I (k^,k2) is defined by: 
st

1 1 -x
I (kj. ,k2 )= /dx /dy st 0 0

s t x y
2 2y(l-y )k]_ +x( l-x)k2+2xyk1 »k2

( 2 . 1 1 )

Let us calculate B2. We first take the limit k 1 0+i®. We 
can rewrite (2 .1 1 ) as follows:

I (kx,k2)= 
st

f (klfk2) 
st_______

2
k10

(2 . 12)
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Examining (2.11) we find f to be at most logarithmically 
divergent as k^* i® • Hence, we write an expansion:

Suppose now that c^ and c2 are finite. It is then 
legitimate to expand under the integral sign. We can see from 
dimensional reasoning and from (2 .1 1 ) that Cĵ is a numerical 
constant and c2 is proportional to k20. In this case there 
will be no contribution to the second limit since there are no 
negative powers of k20. Checking the s,t values relevant to
(2 .1 0 ), we find that only the combination (I2 o(k1 ,k2)- 
I 1 0 (ki,k2)) has a logarithmically divergent c i , while all 
other I have finite C! and c2 , and therefore won’t 
contribute. We also see from (2.10) that I2o(k*,k2 )-Iio(ki,k2) 
is multiplied at most by one power of k^o so it's enough to 
consider only c^.

For I2o (k i ,k2 )-I10 (k1 ,k2 ) Cj_ behaves at k 10 + i« like
2

kl ° , , 2ln(---). The quantity a should have the dimension of mass .

Considering (2.11) again, we note that the logarithmic 
behaviour of f at the above limit is caused by the pole at 
y=0 , which is the lower limit of the y integration. The 
behaviour near the pole is dominated by the coefficient of the

^st >k 2 ) = cl+ --- + 0 (““ -) (2.13)
kl 0 k 10

a

2
x(l-x) term, which is For later purpose we’ll write it:2

2
k 2 0

) (i-

2

)2
ki o

2
k2 0

(2.14)
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and by the coefficient of y, which in the leading order has no 
momentum dependence. Therefore ’a’ should be proportional to

k2 and dependence on 5^ or on *fi2 can come only through
1

higher orders in --- which don’t contribute anyhow, as was
k i o

previously explained. This is what we expect from the
analysis of the previous section. Since each factor
corresponds to a derivative of a 6-function, and since for B2

3 -> +we expect only derivatives of 6 (y), we get only k2

dependence.
Our conclusion that ĉ  should be proportional to the

logarithm of (2.14) can be verified explicitly and the
constant of proportionality can be found since the y
integration in (2 .1 1 ) is elementary and indeed the expected
logarithm is found. Now, the logarithm of (2.14) is a sum of
two logarithms of which one is finite at k10-»- i°° and gives
rise to negative powers of k20. Performing the second limit
k20+ i® we will get a contribution only from the fourth term
in (2 .1 0 ) since only one k 20 factor is needed from the

1
polynomial to get a final --- contribution. We finally get

k 2 o
for B2:

B2 (kl> k2 ) = (2.15)

-i ± r * , k20 k2 0— 2 6poEoia^k2 L5 2 " lim k2 0lim k1 0 (2—  ln(---))]
6*it k20->-i= k10+i« kl° kl°k 2 o l00
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Most of the features of the result are those expected 
from the previous section. Examining the Lorentz structure it 
is easily seen that to get a non-zero result we must have p=0 

and both spatial. Comparing with (2.4), (2.15) is also a 
sum of two terms : a finite third derivative of a 6-function

2 3 „ 3 +(d^ 6 (y) ) 6 (x) and a first derivative of a 6-function with a 
coefficient which suggests a quadratic divergence, i.e. 
k 2 oln (k2 o ) • However, unlike the calculation of a single 
commutator, we are left here with a possibility to get rid of 
the divergent part by fixing the final limit to be taken on a 
k2 o=constant•k^q line, which will leave us with a constant 
that can be thought of as a part of a pure polynomial in k2 0 

(taking constant- 1  will set it immediately to zero and save us 
the trouble of dropping it!).

The interpretation of the second term in (2.15) deserves 
further discussion. To get (2.15) we had to take a successive 
double limit. The first step is to identify the leading 
contribution to the first limit and then to identify in what 
remains the leading contribution to the second limit. If no 
divergences occur, this procedure should agree with what was 
done in the previous section, i.e. forming the double 
commutator from two single ones. However, we find in this case 
that we need a further specification of the definition to get 
a full agreement and that there are other possible definitions 
which do not agree with the previous section about the 
presence of the quadratic divergent term. Now, one may argue 
that we should insist on consistency with the single BJL limit



-46-

for the VEV of [Aq ,Â ] , even if it means that we have to keep
a divergent term. However, since associativity is lost 
whether we keep the divergent part or not, it doesn't seem at 
all necessary to force such a consistency condition. Rather, 
it is more natural to use the freedom created by 
non-associativity to get rid of the infinite term. Of course, 
we must keep in mind the possibility, that another, yet 
unknown physical or mathematical argument will fix the 
ambiguity in the second term of (2.15) in another way. 
Nonetheless, we'll encounter more hints as we continue that 
everything we need is in the finite third derivative term.

For completness we write down the full expression for 
the VEV of J(AVV), dropping the ambiguous term:

_ ■ " 2  * 2 J , S 2 ) ~ “  [ g  e . k2^2 + g e _• k i ^ i  + ( 2 . 1 6 )a p | i v 1 L° p o  o i p a  * z &CTO Olp[!  1 1  v '

6n
+ g e . q q I |io o i p a  1

where q=-(£i+&2)
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2.5 The VVV double commutator

Using the double BJL limit we can repeat the previous
calculation for three vector currents. Because of charge
conjugation, only non-abelian currents will give a non-zero
result for the VEV of the double commutator, which is
therefore proportional to the totally anti-symmetric structure 

ab cconstant f . We get for J(VVV):

-* •*
^p°(kl,k2)= —  fabC[(BoiB„0g +Bpig00g +guig„0g00) (2.17)

1 2 tc

i+ 2 i+ 2 i+ 2 I* 1-*'
(klk1 +k2k2+q q )-gaiSpkg^kklk1 -gpigakgtlkk2k2

l->
"BuigokBPkq q ]

where the spatial index k is not under summation. We 
immediately note that the momentum structure is the same as 
that of the AVV double commutator, including an ambiguous 
first derivative term which has already been omitted from
(2.17). This shouldn’t be a surprise since the final result 
arises in both cases from the VEV of the ST between one time 
and one space components of the currents (which, as has 
already been mentioned, is the same for AA and VV cases). As 
for the Lorentz structure, we see that J is violated in two 
cases; when two of the indices pick up the time value and the 
third a spatial value, or when two of them take the same
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spatial value and the third a different spatial value. The 
second case is the one discussed by ref's 10 and 14, and it 
resembles J(AVV) in the sense that only one of the three VEV's 
which form J is different from zero. This property was the 
basis for the arguments previously constructed here and in ref 
10 for the failure of J. It enables one to rely only on the 
non-vanishing of the ST and not on any knowledge 
about its form. It is conceivable that the analysis of section
2.3 can be repeated for the J(VVV) case as well, with the 
appropriate modification needed to take into account the 
presence of a non-abelian G. For two time components and one 
spatial such an argument cannot be constructed without using 
the explicit form (2.4) of the ST, since all three terms are 
different from zero. However, it is interesting to note that 
for this case the ambiguous first derivatives simply cancel 
when we form J since k 1 +k2+q = 0. Thus, for this choice of 
indices, J(VVV) comes out finite, well-defined and non-zero 
even if the double commutator is left ambiguous. This result 
clearly demonstrates the importance of the third derivative 
terms.

We can see the intimate connection between the presence 
of third derivatives and the failure of J yet from another 
direction, and as a byproduct to discover a third failure of
J. Ref 13 (chap. II) gives a formal proof that:

[Va (t,x),Vb(t,y)]= ifabcV°(x)6 3 (x-y) + SabaV(x-y) (2.18)
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i.e. there are no ST' s with higher derivatives of a delta 
function. This, of course, contradicts the previous results
(2.16) and (2.17), and the form (2.4) for the ST. Examining 
the proof given in ref 13 we find that J is assumed to hold 
for the VEV of the following double commutator:

where 0 stands for the energy momentum tensor. It is 
reasonable to expect that the formal proof of (2.18) is 
incorrect since J fails also for (2.19). In fact, it will now 
be shown, using arguments similar to those of section 2 . 3  that
(2.18) is in fact a minimal requirement for J(0VV)=O to hold. 
Hence the formal proof is invalidated since it is actually a 
circular argument.

We begin by observing that the double commutator (2.19) 
is expected to have a vanishing VEV since:

The relation (2.20b) follows from the invariance of the 
vacuum under group transformations. To check the other two

(2.19)

(a) [V?'(0>x),V?(0,y)] = if abCV?(0,5)63 (J-y ) ( 2 . 2 0 )

(b) <01 [e ,Vo] lo> = o

[i3iterms in J(0 VV) we'll use the canonical commutator1 J
(assuming that the currents are conserved):

( 2 . 21)
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After substituting (2.21) into the remaining terms in
J(0VV) one can immediately see that the final result depends
crucially on the nature of the ST. Only if we assume the form
(2.18) may we hope that a cancellation between the two terms
will occur, because in this case, both of them are
proportional to V6 (x-y)»V6 (y-z). Higher derivatives of a
6-function, like those in (2.4) spoil this possibility. One
may still worry whether a cancellation can occur from extra
non-canonical terms on the r.h.s. of (2.21). However, it’s
easy to see that no such other terms which are proportional
to a first derivative of a 6-function besides the canonical
one can be present in the free theory. Using assumption 3 of
section 2.3 which states that the canonical term must be
present closes the argument. It should also be noted that
(2 .2 1 ) is insensitive to the question of which form of © is
chosen for the l.h.s. of it (i.e. 0 or 0-,.c B See ref. 13)
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2.6 The Jacobi identity in two space-time dimensions

In d=2, the Jacobi identity is repeatedly used to derive 
important results concerning the K.M. and Virasoro algebra, 
and no inconsistencies are encountered. It is therefore 
natural to ask how our previous arguments are evaded in d=2 . 
We can note immediately that the argument of section 2.3 and 
the argument of ref 10 do not carry through, since they both 
require two different space indices. Also, from dimensional 
arguments (in d=2 the currents have mass dimension 1), the ST 
for [V ,V.1 can contain no more then a finite first derivative 
of 6-function, as was shown explicitly in the previous 
chapter. Hence, one can easily verify the following:
1. Though VEV’s of certain current double commutators are 
non-zero, J will be zero, again .due to the fact that the ST 
contains only first derivatives of a 6-function and momentum 
conservation implies k1 +k2+q = 0 .
2. Since the ST is finite from the start the double BJL 
results completely agree with the single BJL ones and no 
ambiguities arise in the final limit.
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2.7 A possible connection between J breaking and the axial 
anomaly

It is natural to ask whether the breaking of J is somehow 
connected with the anomaly in the divergence of the axial 
current. Recall the main feature of the analogous connection 
in d=2 discussed in the introduction. In the first place we 
have found that an anomaly in the commutator of certain 
components of a specific current doesn’t necessarily imply a 
breakdown of the W.I. connected with the conservation of this 
current. However, the reverse is true, and a W.I. breaking 
does imply the appearance of a commutator anomaly. Moreover, 
we have found a numerical connection between the W.I. anomaly 
and the ST.

We will show here, that the d=4 free theory case reveals
a remarkable similarity to the d=2 case, if we take the VEV of
the double commutator or that of J to be the analog of the d=s2
ST. In order to do this we look for a numerical connection
between the non-conservation of the axial current and the
double commutator. Actually, a connection between the axial
anomaly and ST’s in a four-dimensional fermionic theory was
pointed out by the authors of ref 15. They define two
numerical constants K and S , where the definition of Svv aa’ aa
is given by (2.4), and K is defined through:

[Vi (0<y),Vj(0,x)]= 2iKvveiJkAK(0,x)6 (x-y) + ... (2.22)

The ... refers to extra terms which might appear in
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a theory with interactions. Now, the claim of ref. 15,
following a short-distance analysis of the triangle graph by
Wilson1 Jand CrewtherL , is that the Crewther relations
connect and K to the divergence anomaly of the axialaa vv
current via:

S SaaKvv (2.23)

[ 1 2 1where S is Adler’s anomalous constant1 Jdefined for the 
fermionic part of the current by:

a0 ra Ap (x) = S —  F^0(x )Ft p(x )e. (2.24)

In (2.24), FTp is the field strength tensor of the E.M. field 
and a0 is the "bare" fine structure constant.

It is trivial to see that the r.h.s. of (2.23) is 
uniquely related to the numerical coefficient of the VEV of 
the double commutator (2.2) by simply combining (2.4) with
(2.22) . We note that the three numerical coefficients in
(2.23) were defined so to fulfil S=S =K =1 for the U(l) freeaa vv v 7

currents. Therefore, the result we get from combining (2.4) 
with (2.22) agrees with our BJL calculation (2.15) as well.

To summarize, we find a similarity between the d=2 and 
d=4 free fermionic theories, concerning the relation of the 
W.I. anomaly to anomalous commutators. A breaking of the 
Jacobi identity for certain components of a given current does 
not necessarily imply a breakdown of the W.I. connected with
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this current (e.g. the non-abelian vector triangle is free 
from W.I. anomalies, but the Jacobi identity of the free 
non-abelian currents is broken); however, we do find a 
breaking of J associated with a W.I. breaking for the axial 
current. We also find a clear numerical connection between the 
two phenomena.

The similarity between d=2 and d=4 ceases when we look at 
the actual algebraic structure which emerges in d=4. Two 
important differences are immediately apparant:
1. There are no direct means of getting rid of the divergence 
in the single commutator ST, and it is therefore not clear how 
to incorporate it into the algebra.
2. The role of the space components of the currents is more 
fundamental in d=4. In d=2, with the help of the special 
identity (1.16), A i is actually V0 , and if we start in the 
classical theory with a gauge group G, the ST provides an 
extension of this algebra. In d=4, already for G=U(1) we have 
to consider a bigger algebra in order to incorporate the space 
components of the currents which take part in forming the 
anomalous contribution. However, it is interesting to note 
that although in d=4 the vector and axial currents are not 
tied together by an identity of the type (1.16), the algebra 
of the ’s doesn’t close without the 's (eq. (A.5) app. A).
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3.1 Introduction

The aim of the present chapter is to look at the problems
caused by the bad anomaly and at the ways various commutators
are affected by it when the theory is formulated using the
Hamiltonian approach. In a set of papers by Faddeev and
Faddeev and Shatashvili ̂ ̂  ̂ it was suggested that when an
anomalous theory is quantized in the Hamiltonian formalism,
using the Weyl gauge (A =0), information about the anomaly

0

appears as an extra term in the commutator of the Gauss-law 
constraints. These constraints are also the generators of the 
residual time independent gauge transformations which are left 
after fixing the Weyl gauge. In a non-anomalous theory they 
satisfy the normal algebra of the gauge group, namely:

[Ga(x),Gb(y)] = ifabcGc(x)6 3 (x-y) (3.1)

In this case it is consistent to impose:

Ga(x)|physical> = 0 (3.2)

which eliminates the remaining gauge freedom. However, for an 
anomalous theory, ref. 1  proposes, that as a consequence of a

Siproper regularization of the quantum operator G (x), eq. (3.1) 
is modified to:

r - , a N ^b.+ Nn . „ a b c ^ c . c 3 , ab.->[G (x),G (y)J = if G (x)6 (x-y) + a2 (x,y) (3.3)
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Now, eq. (3.2) and (3.3) are inconsistent when taken together.
Since eq. (3.2) is an essential step in the normal

ab -> •*quantization procedure, <*2 (x,y) represents an obstruction to 
this procedure due to the fact that it appears only after 
passing to the quantum theory. Yet, Faddeev has suggested that 
maybe after taking into account the presence of a2 > a new 
quantization scheme, which will yield a consistent theory, can 
be found. This hope provides us with the motivation to look 
more closely at anomalous gauge theories in the Hamiltonian 
formulation. In general, the potential problems one might 
expect, in an anomalous gauge theory, are a lack of unitarity 
when the theory is quantized in a manifestly Lorentz covariant 
gauge, or a lack of Lorentz invariance when the theory is 
quantized in a unitary gauge (like the Weyl gauge).

Most of the investigations around Faddeev’s proposal
have so far been carried on two dimensional theories. In

r 2 1particular, Halliday, Rabinovici, Schwimmer and Chanowitz1 J 
have shown, by an exact solution of the abelian chiral 
Schwinger model, that the resulting spectrum of states of the 
full Hilbert space is indeed non relativistic and that there 
is no subspace of it which possesses the desired Lorentz 
invariance. Before discussing this point, it’s important to 
clarify a certain issue concerning the status of (*2 > for the 
case of an abelian gauge group.

It is known that for the abelian case, (*2 is 
cohomologically trivial in the sense that one can change the 
definition of G(x) by a term with local dependence on the



-60-

gauge field in such a way that the new G(x) will satisfy
(3.1) . However, this is not likely to remove the obstruction 
to quantization, since in order to impose (3.2) consistently, 
one should also demand:

[H,Ga(i)] - 0 (3.4)

Where H is the Hamiltonian operator, and * stands for "weak 
equality" 1 * . Eq.(3.4) guarantees that the time evolution of
physical states is consistent with the constraints imposed at 
some initial time. If we start with a situation where (3.4)
is satisfied but a^^O, a redefinition of G(x) by an A (x)M-
dependent term in order to remove a2 > may result in an 
appearance of a new term on the r.h.s. of (3.4). In fact,
this situation is known to occur in the two dimensional
abelian models, as will be shown explicitly later on.

This interplay between (3.3) and (3.4) in the abelian 
chiral Schwinger model has already caused some confusion, more 
so because different quantization procedures can differ in an 
implicit manner about the way the above mentioned ambiguity is 
fixed and to produce what look like contradictory results (As 
an example see some of the remarks of ref.3 concerning ref.2 ). 
The conclusion that should be drawn from this "abelian
phenomenon" for the general case (abelian and non-abelian), is 
that we should look how the anomaly affects both equations
(3.1) and (3.4).

Returning to the non-relativistic spectrum found in 
ref.2 , it can be argued to be the result of the impossibility
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of imposing (3.2) due to problems with either (3.1) or (3.4). 
It is known that in a non-anomalous theory like QED, Poincar6 

invariance is guaranteed only when Gauss-law is imposed, since 
the equal-time Poincare algebra closes up to G-dependent 
terms. It will be shown that this picture of the source of 
Poincare non-invariance needs some modification. The 
conclusion will be that the anomaly can affect a third 
commutator, connected with the Poincare algebra, in a way that 
doesn’t follow directly from the two anomalous commutators 
which were already discussed. The rest of the chapter is 
divided into two parts as follows: In the first part (3.2) we 
study the Poincare algebra of the abelian chiral Schwinger 
model (hereafter C.S.M) in its bosonized form and show that 
when G(x) is fixed to commute with the Hamiltonian, a 
”G-independentM anomaly appears in the Poincare algebra, and 
discuss the implications. In the second part (3.3) we try to 
examine the same questions of how the anomaly affects key 
commutators in a d=4 abelian example. Again, because the 
model is abelian, a 2 is trivial and there should exist a local 
G(x) that satisfies (3.1). However, it is not a priori clear 
that there is a choice of a local G(x) which can satisfy
(3.4). We study this question for the case of massless axial 
QED in perturbation theory, using the BJL definition of 
commutators. Two interesting features, compared with the d=2 
case, emerge. The first one is that the algebra of G and H 
does not satisfy the Jacobi identity (As was mentioned in the 
previous chapter, the breaking of the Jacobi identity by 
commutators calculated from anomalous diagrams in an anomalous 
gauge theory was first noted by Jo1 J , but its manifestation
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in the G,H algebra was not discussed). The second interesting 
feature is that the relevant commutators have contributions 
from a square diagram on top of the expected contributions 
from the AAA triangle diagram.
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3.2 Poincare non-invariance of C.S.M

In this section we will study the question of Poincar6 

invariance in the C.S.M. using its bosonized representation. 
For simplicity we take one left-handed and one right-handed 
fermion. As was shown in ref.2 through the bosonization of the 
fermion operators, the original theory is completely 
equivalent to a quadratic bosonic model. Hence, we’ll work 
with the following expressions: a Hamiltonian H given by:

In these formulas $(x) is a dimensionless scalar field 
and n(x) is its canonical conjugate momentum. They satisfy 
canonical equal-time commutation relations:

1 2  T T>H = Jdx H(x) = - j dx {E (x) + H (x) + H (x)} (3.5)

where:

L L L L
HR (x ) = [ A  (nR(x)±S ®R(x)) ± eRA(x) ] 2 2 A (3.6)

and a constraint G(x) given by:

[nL(x),$L(y)] = [nR(x),$R(y)] = -i6 (x-y) (3.8)
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Similar ly , the gauge field A(x) and the electric field E(x) 
satisfy:

while all other equal time commutators between these fields 
are zero. In this formulation of the theory, all commutators 
we want to calculate are realized canonically, that is, we use
(3.8) and (3.9) directly. The standard normal ordering of 
composite operators is to be understood in all of our 
expressions.

With the above definitions one gets:

As was mentioned in the introduction we can modify G(x) 
by a locally A(x)-dependent term which will set the r.h.s. of
(3.10) to zero. Define:

[E(x),A(y)] = i6 (x-y) (3.9)

(3.10)

[H,G(x)] = 0 (3.11)

1 2 2(x) - G (x)  ̂( )  A(x) (3.12)

(3.13)

[H,Gm ( x ) ]  = -  i ( e * - e * ) E ( x ) (3.14)
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The modification (3.12) can be thought of as a
modification of the fermionic current, reflecting finite
A(x)-dependent ambiguities in the definition of the normal-
ordered current, and is therefore strongly related to the
current conservation equation. We will discuss this point in
more detail in the next section where we work directly with
the fermionic variables. The possible presence of such an
A(x)-dependent term in the definition of the fermionic current
explains quite naturally how the so called seagull commutator

r 3 1can be realized in the present canonical framework1 J.
We now want to understand whether we can construct a set 

of Poincare generators satisfying the appropriate equal-time 
algebra. These generators have to satisfy two demands:
1. to generate the relevant Poincar6 transformations 
(infinitesimal translations and Lorentz transformations) when 
acting on the basic degrees of freedom.
2. to satisfy the Poincare algebra.

The two-dimensional Poincare symmetry consists of three 
operations: Time translations that should be generated by the 
Hamiltonian H, space translations generated by the momentum P, 
and boosts generated by M. The algebra these generators should 
satisfy is:

(a) [H,P] = 0 (3.15)

(b) [M,P] = -iH

(c) [M,H] = -iP
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Assuming H and P are given as space integrals over 
densities which are local functions of the basic degrees of 
freedom:

H = Jdx H(x) ; P = Jdx P(x) (3.16)

the boost generator will be given by:

M = tP - Jdx xH(x) (3.17)

Based on experience from non-anomalous QED, we allow terms of 
the form /dx U(x)G(x), to appear on the r.h.s. of (3.15).

We first note that our information on P is somewhat 
different in nature from that concerning H. Since we are 
working in the Hamiltonian formulation, the Hamiltonian 
generates the dynamics, and in the equation:

i[H,<l>(t,x)] = d0<t>(t,x) (3.18)

the r.h.s. is defined by the l.h.s., and we are looking for 
a <j)(t,x) which solves it. In other words, (3.18) cannot in 
general be used to restrict the form of H. In contrast, the 
equation:

i[ P» ♦ (0, x) ] = 3x<t>(0,x) (3.19)

serves as a restriction on P. We are looking for a P which
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satisfies it. There is one crucial exception to this. Since we
don’t want the constraint to be a dynamical variable, the case
<j) = a constraint, does restrict H as a Poincare generator, and
H must be chosen to commute with the constraints (eq.(3.4)),
as a part of the first condition we have placed on the
Poincar6 generators. Trying to treat possible terms appearing
on the r.h.s. of (3.4) as new constraints, without introducing
new degrees of freedom into the theory, is not likely to
succeed because the theory will become over constrained and
may be "pushed back" to the free theory.

Following the above, it is clear that with the choice
(3.13-14) the Poincare algebra is anomalous. What about the
choice (3.10-11) ? Here we make use of an observation due to 

T 7 1Schwinger1 , that once H(x) is given, P is fixed by (3.15). 
We substitute (3.17) into (3.15c) and use (3.15a) to get:

-iP = -/dxdy x[H(x),H(y)] - i/dx U (x)G(x) (3.20)

The commutator appearing in (3.20) must be anti-symmetric 
under x - y so only terms proportional to 6 ’(x-y), can appear. 
Substituting from (3.5) we get:

[H(x), H(y)] = -{[HL(x),HL(y)]+[HR(x),HR(y)]} (3.21)
k

The evaluation of the remaining commutators using (3.8) is 
elementary. We get:
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P (3.22)

We now check to see whether this P satisfies (3.15a):

2 2= Jdx [ Up (x) , H] G(x)+i(eL-eR ) / dx ( E (x) A( x )+A(x)E (x) )■+

We can replace the square brackets in the last line of (3.23) 
by -(G(x)-d E(x)). Doing this we get:X

The first term in (3.24) is proportional to G(x), and in fact 
vanishes for the correct choice of Up(x). However, the second 
term which is "G-independent", remains and prevents the 
closure of the Poincare algebra. Note that this term has the 
characteristic coefficient of the anomaly (i.e. it vanishes 
for e jj = ±e^). comes from the following term in P (see

[P,H] = Jdx([Up(x),H]-iE(x))G(x) (3.24)

(3.22)):

1 2  2 2“ -(eL-eR )/dx A (x) (3.25)
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This in turn can be traced back to the commutator of the
1interaction part in the Hamiltonian (i.e. the eAJ part of the 

Hamiltonian) with itself (see (3.21)). The reason that this 
last commutator is anomalous is of course the presence of the 
Schwinger term in the current-current commutator, precisely 
the same Schwinger term which is the cause of (3.10). In 
appendix C we check whether this "Poincare anomaly" cannot be 
removed by local redefinitions of both the Gauss-law G(x) and 
the Hamiltonian. We show that under a suitable set of 
assumptions about these possible modifications, as long as one 
demands that the modified H will commute with the modified 
G(x), the Poincare algebra based on the modified H is 
anomalous in a similar "G-independent" manner.

The "Poincare anomaly" can place some restrictions on
possible suggestions for a consistent quantization of an
anomalous theory. Suppose that we choose an H and a G(x) which
satisfy (3.10-11). In Dirac’s terminology, G(x) is a second

r 4 5 iclass constraint 1 * . Dirac has suggested that a set of
classical second class constraints can be set consistently to 
zero, if the normal Poisson brackets are replaced by what is 
termed Dirac brackets1 * . In a classical theory, these
brackets are defined in such a way that the bracket of any 
function of the phase space coordinates and pi with a 
second class constraint, vanishes. Therefore, after 
introducing them, it is consistent to set the second class 
constraints to zero. In our case, we cannot apply Dirac’s 
method directly, since G(x) turns into a second class 
constraint only after quantization. Still we may try to
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borrow the idea and define a new quantum commutator:

[Oi(x),02(y)]*= [o1(x),o2(y>] (3.26)
-/dzdw[Ox(x),G(z)]([G(z),G(w)]) 1 [G(w),02 (y)]

where the inverse of the commutator of G(x) with itself will 
be defined by:

In the general case, the commutator of the constraints can be 
some quantum operator, so finding a solution to (3.27), and in 
particular assuring that the left inverse and the right 
inverse are equal (if they exist at all), can range from a 
complicated task to an impossible one. However, the r.h.s. of
(3.10) is a c-number. By substituting (3.10) into (3.27) it's 
easy to see that:

Jdz([G(x),G(z)]) 1 [G(z),G(y)] = (3.27)

=/dz[G(x),G(z)]([G(z),G(y)])-1= 6 (x-y)

([G(x),G(y)]) 1 e(x-y) (3.28)
2 2

Where (0 is the step function):

With (3.28) substituted into (3.26) the Dirac "trick" will
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work, and whenever one of the 0's in (3.26) is G(x) we’ll get 
a zero. Note, that under the new commutation rule we have:

One may wonder how we overcame previous obstructions to 
satisfying both of these equations simultaneously. This can be 
understood by recalling that using Dirac brackets is 
equivalent to using normal brackets but modifying the

locality on the possible modifications, we were not able to 
achieve (3.29). But does (3.29) solve the problem of Poincare 
invariance ? The answer is no. Because of (3.11) (which is 
also true for the Hamiltonian density H(y)),for any operator 
0 , the following holds:

Hence the new commutator definition doesn’t modify 
eqs.(3.20-24), and the Poincare anomaly remains. We note that 
the treatment of the Chiral Schwinger model in ref. 8 seems to 
match our last discussion. Through the introduction of certain 
non-local terms the analog of (3.29) is achieved (see ref. 8 

eqs. 11 and 22), but still Poincare invariance is not 
recovered.

-Compared with this, the main suggestion so far for a 
consistent quantization of an anomalous gauge theory^^ is to

[G(x),G(y)]*= 0; [H,G(x)]*= 0 (3.29)

[H,0]*= [H,0] (3.30)

add to the original action a Wess-Zumino term, which includes
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a new field (0), and therefore should be considered as a 
non-local modification. This proposal is again studied in the 
context of C.S.M. in ref.2. It is left to the reader to 
convince him/herself by using the formulas given there that 
this time, after correctly fixing the local modifications, not 
only G(x) does return to be a first class constraint, but also 
the "G-independent” anomaly in Poincare vanishes as well.



3.3 Axial massless QED in d=4

For d=4 anomalous gauge theories we again expect problems 
with Poincar6 invariance when the starting classical theory is 
formulated in a physical gauge. Again, for the abelian case, 
(*2 in eq. (3.3) is cohomologically trivial, and therefore one 
expects the anomaly to affect (3.4) as well. The question we 
want to address in this section is whether the features of the 
d=2 abelian case generalize to the d=4 abelian theory. Can we, 
for instance, still shift the anomaly between (3.1) and
(3.4) ?

Since in d=4 one cannot obtain exact solutions to the 
relevant models, we will work out one-loop contributions to 
anomalous commutators, to the leading order in perturbation 
theory, using the BJL definition, and check the answers at 
this level, as was done in refs. 6 and 9. As a convenient 
model for studying these questions we choose massless axial 
electrodynamics, in which the U(l) gauge field is coupled to a 
single axial fermionic current. Contrary to d=2, where the 
"pure axial” theory is non-anomalous, the AAA triangle diagram 
(Fig.3a) has a fundamental a n omaly^^ . Including a vector 
current, we would have to consider the AVV diagram as well.

The classical Lagrangian density for our model is given
by:

L(x) .=---F (x)FM'v(x)+i?(x)/¥(x)-eJ (x)Ap'(x) (3.31)
1+ v H”

5 _where J (x) = Y(x)y y 5Y(x ).r1 r>
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In the Weyl gauge, the Hamiltonian density derived from this 
Lagrangian is:

, 2 21 • 5 •H(x) = -(^(x)+8 (x))-if(x)y•51Y(x)+eJ,(x)AX(x) (3.32)
2 i i

and the Gauss-law constraint is:

5
G(x) = V*8 (x)-eJ0 (x) * 0 (3.33)

Before proceeding to the actual calculation of the 
relevant commutators, we’ll try to use simple considerations 
in order to analyze the possibilities. We’ll start by 
examining the possible form of [GM(x),G^(y)], where the label 
M indicates, as before, a possible modification of (3.33) by a 
local function of A^(x). Standard assumptions^^ (see (2.1)) 
imply that the terms on the r.h.s. must be proportional to 
5 (x-y) or its derivatives. The required x - y anti-symmetry, 
and dimensions allow only for a first derivative. We also 
expect to have the Levi-Civita tensor on the r.h.s. since the 
anomaly is coming from the parity violating part. Moreover, 
the r.h.s. should depend only on and must be a local 
function of it. All of this leads to:

3
[ ^ j ( x ) , G M ( y ) ]  =  C  g.$6 ( x- y )  (3 . 3 4 )

71

where 6 is the magnetic field, and c is an untietermind
3numerical constant, e anticipates the fact that non-zero
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contributions to the r.h.s. of (3.34) will be connected to the 
triangle diagram. In fact, (3.34), apart from a group 
theoretic factor, is precisely Faddeev’s suggestion^^ . 
However, the triviality of a 2 in the abelian case means that 
there is a choice of G^(x) for which c=0.

Using similar considerations, we can assume the following 
form for the second commutator of interest:

-  . 3
[H,Gm (x )] = (cii(x)*6 (x)+c2l ( x ) ( x ) ) (3.35)

%

Contrary to (3.34), we must allow 1i!(x)=-d(x) dependence on 
the r.h.s. because the l.h.s. gives us 5qG(x ). A shortcut 
argument for no fermion field dependence on the r.h.s. is 
that anomalous diagrams from which possible contributions to 
the r.h.s. may arise, do not contain external fermion lines.

When we examine the possible terms which we can use to 
modify G(x) , we find only one term which is a local function 
of A^(x) alone and is invariant under space rotations. We can 
therefore write:

3
Gm (x ) = G(x)+C3—— X(x).fc(x) (3.36)

%

+ 3The term we added to G(x) should start from order e because
it has a non-vanishing canonical commutator with G(x), so

. - 3only e will be consistent with (3.34).
Now we’ll examine how the various undetermined constants 

are constrained by the Jacobi identity and by the demand that
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there is a choice of c3 for which G^(x) commutes with the 
Hamiltonian. Starting with the Jacobi identity we have:

j(GM(x),GM(y),H) = [[GM(x),GM(y)],H] + (3.37)
[[H,GM(x)],GM(y)] + [[GM(y),H],G1I(x)]-

3
= lS-{[cS^ 8  (i-5),H] +

+ ([ Cl E(x) •B(x)+C2l ( x )  - v x j ( x )  ,GM(y) ]
->■x~

The commutators that are left to evaluate on the r.h.s. of
3(3.37) are 0(e ); therefore, to this order, only their

canonical contributions are important.

J(GM (x),GM(y),H)

+(c1EJ(x)[BJ(5),aiE1(y)]+C2[Aj(5),6iE1(y)](vx|(J))J-(5-y))}=

= —  i ( - c + 2 c 2 ) ^ x 1 s ( x ) 6 ( x- y)  2 x
%

So satisfying the Jacobi identity implies c = 2c2 • On the
other hand, from eq . (3.35) we see that we have to have
c l=c2 = 0 for the modified Gauss-law to commute with the
Hamiltonian. Combining the two conditions together we get
c=0. The net result of this analysis is, that under our

3assumptions and at least to order e we are facing four 
distinct possibilities:
1. There is a choice of c3 which will set the r.h.s. of (3.34)
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and (3.35), simultaneously to zero.
2. There is no choice of c3 which will set (3.35) to zero.
3. The Jacobi identity is not satisfied. As in the d=2 case,
one can shift the anomaly between (3.34) and (3.35), by
choosing an appropriate C3 each time. It’s important to note
here that J(G^,G^,H) does not really depend on c3 , since the

3term connected with C 3 is of order e and therefore 
contributes through canonical commutators which automatically 
satisfy the Jacobi identity.
4. The Jacobi identity is not satisfied and still the r.h.s. 
of eq. (3.35) cannot be set to zero.

While the first possibility looks very unlikely, since it 
simply tells us that there is a local modification of G(x) , 
which allows to impose it consistently, a miracle that hasn't 
occured in d=2, the fourth possibility looks too ugly. In any 
case, it is clear that the d=4 abelian case possesses some new 
qualitative features compared with d=2 .

In fact, we already know from published results^' ̂  that 
BJL commutators give c = 0 for 0 3=0 . Moreover, the calculation 
in ref. 6 indicates that some of the anomalous commutators do 
break the Jacobi identity (note eq. 1.1 in ref.6b - It holds 
for the abelian case as well). So we can say that existing 
results hint that possibilities 3 or 4 may be realized. 
Assuming for the moment that there exists a value of c3 for 
which ci=c2=0 , we can speculate a bit more on what this value 
may be. First note, that in order to achieve c1=c2=0, for some 
value of c3 , we must have c1 =c2 for all values of c3. This
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can be seen directly by evaluating the following commutator 

canonically:

3 , 1
[ H , i ( x ) - S ( x ) ]  = Jd y [ - S ( y ) , i ( x ) . S ( x ) ]  =

= i(S(x)*6 (x) + X(x)•V x i ( x ) )

(3.39)

Next, recall that the expression for the divergence of the 
axial current which reproduces the anomaly in the AAA triangle 
is:

5^J (x) =|iv
|iva|3.---- er ' F (x)F Q (x) =

2 apv 2
48n 6n

£(x)*S(x) (3.40)

where the ambiguities in the AAA triangle were fixed by the 
demand of full Bose symmetry between the three photonic legs, 
and the second equality holds in the Weyl gauge. As is shown 
in ref.1 0 , one can define:

_ 5  5J (X) = J (x) -
\i M-

2e . 1As(x)apAT(x)e^
1 2n

pixp (3.41)

which satisfies:

(x) = 0 (3.42)

-We’ll now couple Ap(x) to J (x) . In the Weyl gauge the
Hamiltonian (3.32) remains unchanged, but the Gauss-law is

5 + _5 -
modified since J0(x) is replaced by J0(x). We’ll have:

_ 5
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(T(x) = G ( x ) ----— i(x)-S(x) (3.43)
1271

1from which we can guess that c3 = - —  is a serious candidate
1 2

to set c 1 =c2 =0. This guess is motivated by the classical 
(Poisson bracket) result:

3

[H,G(x) ] = a ^ C x )  (3.44)

f 1 2 1A derivation of a related relation can be found in Jackiw1 

(eq. 2.18). A direct proof is presented in a paper by Hwang, 
who also studies the status of (3.44) for C.S.M. . From (3.40) 
we see that if (3.44) is not modified in the quantum theory, 
we'll have c2 =0 and c^^O when c3=0 , and therefore there will 
be no way to get the modified Gauss-law to commute with H. 
This is to be contrasted with the d=2 case, where (3.44) is 
true in the quantum case, and consistent with [H,G:]=0. For d=4 
it’s attractive to conjecture that (3.44) is modified in such 
a way as to allow G to commute with H.

We now turn to the actual calculation to see which of the 
possibilities mentioned is realized. The standard assumption 
made in calculations of anomalous commutators is that they get 
contributions only from anomalous diagrams (to be more 
precise, that other possible contributions from non-anomalous 
diagrams cancel when we calculate a classically gauge- 
invariant object like [H,G]). Following this, we consider
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contributions from the AAA diagram (Fig. 3a). Here we’ll just 
give the final results. Details of the method of calculation 
are given in app. D and E. Our application of the BJL

details concerning the method can be found there. In fact, our 
triangle results should be deduceable from the results of 
ref. 6 after taking care of differences in conventions. I’ve 
redone the part of the calculation which is relevant to the 
present work for the sake of completness and to check the 
method.

r q I
definition follows closely that of JoL and complementary

(3.45)

(C) [E1(x),Jq (y)] = is
2

iJk(Aj(y)8k+2&jAk)63 (x-y)£2

( d ) 5 J ■ * •>E o (x-y)

3

[AJ(x),/(y)]
2

6n
2(g)



Using (3.45) (a),(c) and (e) one can verify that indeed:

[G(x),G(y)] = 0 (3.46)

i.e. c=0 for c3=0. The contribution of the triangle to the 
commutator of the Hamiltonian with the Gauss-law is given by:

Comparing with (3.35) we find that for C3=0 , we have ci = — and3
1C2 — - ~ • These values correspond to our possibility 4.6

We can get another indication that considering the 
triangle contributions is not enough, by trying to reproduce 
eq. (3.40) in the present formalism through:

3
[ H , G ( x ) ] T= —  ( 4 ® ( x ) * S ( x ) - 2 X ( x ) • V x J ( x ) ) 1 2 (3.47)

1 2it

1

(3.48)

where the space translations operator is given by:

(3.49)

Using (3.45) we get:

which doesn’t reproduce (3.40).



-82-

All of this suggests that we have missed contributions to
the anomalous commutators and that (3.45) is not the full
list. It's not difficult to see that the only other diagram

3which can potentially contribute to order e is the square 
diagram in Fig. 3b . It can contribute to commutators of the 
free fermionic energy momentum tensor (hereafter denoted by 
Gp), with various operators. Details of the calculations, 
which are much more cumbersome than the triangle calculations, 
are to be found in app. D and E. The relevant results are:

(a) [Jd y(-i'r(y)Yia1¥(y)),J0 (x)]anomalous (3.51)

= (x) «S(x)-l(x) «^x|;(x))2
1 2*

(b) [Jd y(-iY(y)Yia1^(y)),^*$(x)] =

3ie (S(x)«S(x)-S(x)*^x‘J;(x))
12*

3 . +(c) [Jd y(iY (y)51 f̂(y)) ,Ji(x)]anomalous

= ̂—  l(x)«^*fl(x) 212*

The contribution of (3.51) (a) and (b) to [H,G(x)] is

[ H , G ( i ) ] g - “ --- ( E ( x ) * B ( x ) - A ( x) • v x E (x ) )212*
(3.52)



-83-

Combining (3.47) with (3.52) we now get for c3=0, c1 =C2= — .

The Jacobi identity is still not saved but for the predicted
1value of c3 = - —  , the Gauss-law constraint commutes with H.12

It’s also easy to see that (3.51) (a) and (c) combine with
(3.50) to reproduce (3.40). This completes the proof that the 
square diagram contributions are essential to reproduce the 
anomaly in the Hamiltonian formalism. We’ll end up by making 
a few remarks on the d=4 results and their implications.
1. The results of ref.13 indicate that in d=2, ©„ does not 
contribute in a fundamental way to the anomalous commutators. 
The same result can be also easily seen from the formalism 
of ref.2 .
2. We have mentioned in chapter I that another axial Ward
identity anomaly is known to exist in our model, namely the

r 1 7 iDe1bourgo-Sa1am anomaly1 , which appears in a triangle
5diagram with two 0„ vertices and one J . However, it can’tl |i

contribute to the commutators discussed above.
3. After showing [H,G(x)]=0, we can ask whether the d=2 result 
of a ”G-independent” anomaly in Poincare, also generalizes to 
d=4. The direct diagrammatic evaluation of the analog to
(3.20), involves a lot of labour, since one should check for 
possible contributions from the triangle, the square, and 
possibly from a pentagon diagram, giving the matrix element of 
[ Qp(x) , 0p (y )J between vaccum and three photon state. The full 
calculation hasn’t been done but there are some things that 
can be said on the expected result. Let us assume by analogy 
with the d=2 case that an extra anomalous term in P1, will be 
of order e and a local function of A(x) alone, containing a 
Levi-Civita tensor. There are three terms which answer this

1
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requirement :
1) /d x A (x)A(x)*B(x) 2) Jd x B (x)A (x) 3) Jd x B (x)V*A(x) 
We can discard the last term since potential contributions 
are from terms containing three photon fields. Now, in d=2 we 
were able to construct a non-anomalous P1 when G^(x) commuted 
with itself. In d=4 using the BJL definition this happens for 
c3=0. As we have seen, the canonical Poincare algebra closes 
up to a G-dependent term, where this G is the unmodified one 
(c3=0). So if d=2 results are to be paralleled, we expect the 
anomalous contributions to the analog of (3.20) to vanish 
(When we work with C3*0 , P1 will be anomalous exactly because 
the canonical Poincare algebra still closes up to G(x) and not
Gm (x )).

It is not hard to evaluate the contribution of the
triangle diagram, since we have a complete expression for
i t ^ ^  . One can immediately see that none of the commutators
in (3.45) can contribute. The only remaining triangle

5 + 5commutator which is not in (3.45) is [ J\ (x) , (y) ] . This 
commutator contains several pieces, including a divergent 
term. However, only one term, with a non-diver gent 
coefficient, contributes to the final answer. One finds:

Jd xd y xi[el(x)*3 (x),el(y)*3 (y)] =

- ĉ  —  Jd xA1 (x)X(x)*S(x) 2
%

(3.53)

with c ^O and finite. We see once more that if d=2 results are 
to be generalized, we’ll need ’’non-triangle” contributions in 
order to cancel (3.53).
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4. Earlier on it was mentioned that a basic assumption in 
calculating anomalous commutators is that contributions to 
them come from diagrams with true Ward identity anomalies. 
If we stick to this assumption, we should conclude that the 
square diagram in Fig.3b has a Ward identity anomaly. Seen 
from a slightly different angle, this diagram describes an 
effective coupling of a graviton to three axial photons. In 
order to completely clarify the nature of the square anomaly, 
we should therefore study the one-loop diagrams of fermions 
coupled to external gauge and gravitational fields, and try to 
impose all desired physical requirements on the square. This 
investigation is beyond the scope of the present work. 
However, one can think of three distinct possible results:
(a) There is no fundamental anomaly in the square - one can 
fix the ambiguities of the square in such a way that all Ward 
identities and symmetry requirements are satisfied.
(b) There is a fundamental anomaly in the square, but it is 
connected to the already known anomalies in the triangle and 
may be calculated from them via some consistency condition.
(c) The anomaly in the square is new, and cannot be deduced 
from the already known anomalies.

It seems that our commutator results offer some (not 
conclusive) evidence, against the first possibility. Recall 
chapter I, where it was explained that a Ward identity anomaly 
is often described as arising in a situation where the ST 
doesn’t cancel against seagull contributions when the 
divergence of the relevant T-product is taken. In fact, the 
occurrence of this cancellation for the bubble diagram is
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precisely the mechanism which guarantees that [H,G(x) ] = 0 in
ordinary QED. Since in our case, the square has a non-zero
contribution to this commutator, it suggests that a failure of
Feynman conjecture does occur. Another sign for a non-trivial
nature of the square commutators is the fact that the

u 5contribution of the square to a J via (3.51a,c) is not
sensitive to various ambiguities in the relevant one-loop
diagrams. This issue is explained in appendix D.

If we take the fermions to be in some representation of
a gauge group, our square commutators will all be multiplied 

ab cby d (a,b,c are group indices of the currents - does not 
carry any). Thus, a cancellation of the square anomaly doesn’t 
place any new restrictions on the fermion representation and 
occurs automatically if the triangle anomaly is cancelled in 
the standard way. This is consistent with the second 
possibility we have mentioned, but by no means can be
considered as a sufficient proof of it. In connection with the 
last point we note the following: Any loop diagram which one 
obtains from a basic anomalous diagram by inserting into it an 
arbitrary number, N, of 9 vertices will have the same degreer
of divergence and the same group and discrete symmetry 
properties of the original diagram. Moreover, the new diagram 
will be connected through the naive Ward identities to a 
similar diagram with N-l 0p insertions. Therefore, the answer 
to the problem of the nature of the square anomaly should 
clarify the status of all of these other diagrams as well.
Finally, we mention that Capper, Jones and Linden1 J discuss
the process of one graviton ->• three photons in the context of
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an anomalous gauge theory, formulated in the light cone gauge. 
However, no specific claim about the square diagram or any 
other diagram with 0p insertions is made.
5. Another issue related to our d=4 results is their 
implications concerning the suggestion for a possible 
consistent quantization procedure of an anomalous gauge 
theory. First of all we remark that the main qualitative 
features of our results, namely the breaking of the Jacobi 
identity and the contributions from the square diagram, are 
expected to generalize to the non-abelian case as well. In 
fact, as was mentioned earlier, the failure of the Jacobi 
identity for the electric field components was first 
calculated^ ® ̂ in a general non-abelian theory. It is 
interesting, however, to know whether one can still achieve 

e q . (3.4) through a local modification, when a.2 is non
trivial.

The failure of the Jacobi identity for H and G implies 
that they cannot be both represented on the same Hilbert 
space, making the mathematical inconsistency of the theory 
evident (In d=2 the inconsistency of the theory is physical 
and not mathematical). If by adding a Wess-Zumino term we can 
remove this inconsistency, it means that we should find a 
breaking of the Jacobi identity in the commutators involving 
the Wess-Zumino part. This is an interesting problem, since 
the Wess-Zumino term is supposed to reproduce the effects of 
the anomaly on a ’'classical” level, i.e. through Poisson
brackets relations
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The main feature of our results in chapters II and III is 
the connection in d=4 between the W.I. anomaly and a Jacobi 
identity failure for certain commutators. We started by
looking for a d=4 analogy to the clear connection that exists
in d=2 between the Kac-Moody algebra and the d=2 axial
anomaly. In d=2 one first notices this connection in the free 
fermionic theory. Then, if the fermions are coupled to gauge 
fields in such a way that a bad anomaly is present, one can 
see in a clear manner how the presence of the non vanishing
K.M. central term affects the theory and destroys a desired 
physical property like Poincare invariance. Moreover, it was 
also shown (ref. 3-2), at least for d=2 abelian models, how 
the suggestion for a consistent quantization of an anomalous 
theory via the addition of a WZ action can be understood from 
a "K.M. point of view", as a mechanism for cancelling the
anomaly by adding another K.M. representation, based on a 
scalar field, in such a way that in the combined theory the
K.M. algebra is trivialized. In fact, the question whether 
this picture is true also for the d=2 non-abelian case is open 
at the moment.

In d=4 we haven’t seen any such direct connection between 
the algebraic structure of the free theory and the problems 
encountered when the anomalous current is gauged. The c-number 
terms calculated in chapter II do not seem to be related to 
the commutators of chapter III. Nevertheless, a Jacobi 
identity breaking does appear in crucial commutators and does
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create severe problems for the gauged theory. This is 
intriguing and deserves further attention.

Finally, and in connection with the last point, it is 
interesting to know whether some sort of a "K.M. point of 
view" exists also for Faddeev and Shatashvili’s suggestion in 
d=4. Can we think about their procedure as adding a 
representation of the same algebra as that of the original 
fermionic theory, based on a scalar field, in such a way that 
in the combined theory the Jacobi identity is restored ?
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A P P E N D I C E S
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Appendix A

The purpose of this appendix is to show in more detail 
how symmetry considerations constrain the current E.T.C.'s in 
a free massless fermionic theory. As an example, consider the 
non c-number part of [ V . (0 , x) , V . (0 , y ) ] . As explained in
section 2.3, it’s enough to analyze the contributions from the 
five independent fermion bilinears (the scalar, pseudo-scalar, 
vector, axial vector and anti-symmetric tensor), which have 
the form ¥ ( 0 , x ) IV Y ( 0 , x ) , where IV is the appropriate
combination of Dirac matrices. For the definitions of the 
fermion bilinears and other notational conventions see ref
2-20 as well as for the P,C,T transformation properties (table 
(3-199) p.157 there). We now write a general expression for 
the above commutator:

[Vi(0,x),Vj(0,y)] = l CnOiJ(x)6 3 (x-y) (A. 1)

where C are complex numerical coefficients and 0. .(x) n ij
are the fermion bilinears (or any combination of their
components we can form using the tensors g. . and e. ). All

1 j 1 j x
our 0 . .’s are defined to be hermitian; therefore, by taking 
the hermitian conjugate of both sides of (A.l), we get that
all Cn ’s should be pure imaginary. Furthermore, since the
l.h.s. of (A.l) should be anti-symmetric under the 
simultaneous interchange i~j , x~y (see assumption 2 section
2.3), and since the r.h.s. of (A.l) is symmetric under x~y it
follows that there are no g. . terms on the r.h.s. Therefore:J- J
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By operating with charge conjugation on both sides of 
(A.2) and using the known transformation properties of all the 
bilinears appearing in this equation we get C2=C3=C^=0. One 
can furthermore verify that an imaginary is consistent with 
P and T transformations. Finally, naive use of the canonical 
anti-commutation relations:

(A.3)

gives the C.C.R between any two fermion bilinears:

[’r (0 ,x ) r1i ( 0 ,x) ,?(0 , y ) r 2f  (0 , y )] (A.4)

“?(O,5 ) ( r1Y0r2- r2Y0r 1),f (0,x)63 ( x - f )

[ V O . x )  ,Vj(0,y)] canonical (A.5)



Appendix B

As was mentioned on several occasions in the text, 
quantum field theory singularities force us to look for a 
careful definition of a commutator. Such a definition is 
provided by the BJL prescription, according to which a matrix 
element of the commutator of two local operators A and B, 
between two arbitrary physical states is given by (ref. 3-10,
3-16):

lim <a| j V x  elq"xT(A(x)B(0>) |p> = (B.l)
q0-»i»

= (----) <a| Jd x e"lq'x[A(0 ,x),B(0)] |p> + 0(— )
-iq0 2u Qo

When Feynman rules are used to evaluate the T-product on the
l.h.s. of (B.l), pure qo polynomials are to be dropped,
since they arise from the difference between the Lorentz non
covariant T-product which is used to define the BJL limit and
the covariant object one gets from Feynman rules and uses in
the actual calculation. On the other hand, terms which contain

2q0ln(q0)
ln(q0) or qoln(qo)= -------- are interpreted respectively as

Qo
logarithmic and quadratic divergences in the commutator.

There exist several formal proofs of the definition 
(B.l) (see for instance ref. 2-13). They serve to show that 
the BJL definition agrees with more naive ways of calculating 
commutators when no singularities are encountered.
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Final ly, by an obvious generalization of (B.l), a double
commutator of three local operators can be defined as the
coefficient of the — —  term in an expansion of their three-

QoPo
point function, reached through a successive limit:

lim lim
Qq ■* i°° Po-* i°°

QoPo T(p,q)= - /d3x d3y e“ip-x e-1^

<a| [B(0,y),[A(0,x),C(0,5)]] |p> (B.2)

where:

T(P,q)= h
d y ipxe iqy <a| TA(x)B(y)C(0) |p>x (B.3)
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Appendix C

In this appendix we show in some detail, that no -local 
modifications of H(x) and G(x) can remove the "G-independent" 
anomaly in Poincare algebra, discussed in section 3.2 . By a 
local counter term (c.t.) we mean a term which is a finite 
polynomial in the basic variables, which we take to be:

L L
(nR(x)±9x®R(x)), A(x), E(x) (C.l)

The restrictions we impose on these c.t.’s are the following:
1. G(x) is to be modified only by an A(x)-dependent term.
2. No change is to be made in the fermionic content of the 

theory.
3. The vector Schwinger model (normal 2-dim QED) expressions,

2 2should be recovered smoothly in the limit (e, -er>)->*0 , .Li it +
4. [Hm ,Gm (x )]-0
5. No new constraints should be generated.

We now construct the general form of and Glir(x) ,
2compatible with the above requirements, when e^ is close 

2enough to e^. It is useful to recall the mass dimensions of 
various quantities:

[H(x)]=[G(x)]=2; (C.2)
L L

[nR(x-)±&x$R(x) ]=[E(x)] = [bx]=[eL]=[eR]=l;
[A(x)]=0 ;
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Using the above set of assumptions and dimensional 
considerations we get:

C^(x) = G(x)+e2G1 (A(x))+e5xG2 (A(x)) = G(x)+MQ (x) (C.3)

L L
HM(x)=H(x)+e Hx(A(x))+5xH2 (A(x),E(x),nR(x)±5x$R(x))+ (C.4) 

+eE(x)H3 (A(x))+UH (A(x))G(x) = H(x)+MR(x)

2 2Where e = /(e^- eR ). Note that we allow a term proportional to
the constraint to appear in H_,(x) . We have used G(x) in this
term, because UTT(G -G) can be absorbed in the other terms inn M

. We now proceed to evaluate the relevant commutators from 
the canonical commutation relations given in (3.8-9). We 
introduce the following notation:

—  F(A(y)) = F'(A(y)) (C.5)
6A(y)

Then the basic commutators give:

(a) [E(x),F(A(y))]= iF'(A(y))6 (x-y) (C.6 )

(b) [F(A(x)),&yE(y)]« -i9y(F'(A(x))6(x-y)) =

= iF'(A(x) ) 6 '(x-y)
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From our fourth demand we get the following set of equations:

(a) G ’=0 ; (b) G£=H£ ; (C.7)
1 2(c) -H'̂  + j(H£)' - U£ + UJJG1 =0 ;

Next we want to calculate Plf from:M

-iPM= -Jdxdy xfl^Cx) ̂ ( y )  ]-i/dx Up(x)GM (x)= P+Mp (C.8 )

where P is given by eq’s (3.20) and (3.22). P has the 
following commutation relations with the basic variables:

L L L L
(a) [p,nR(x)±ax$R(x>] = iax (nR(x)±ax»R(x>) (C.9)

(b) [P,A(x)] = iaxA(x)

(c) [P,E(x)] = i5xE(x) + ie A(x)

where (C.9c) is anomalous. We therefore want Mp to commute 
with the scalar variables and with A(x), and to give 
[ftlp,E(x)] = -ie A(x). Note that (C.9) has already fixed for us 
Up (x)= -A(x) . Before we proceed we note that H2 decomposes as 
follows:

L L L
H2 (x )- = HR( A(x) ) (nR(x) ±3 x$R(x) ) +HR(A( x) )E (x) + 

+ eHgCACx))
(C.10)
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From the demand that Mp should commute with the scalar 
variables we get:

L
(a) Hg'=0 ; (b) [H2 (U£-A)+-(Uh ) ’ ] ' = 0 ; (C.ll)

(c) [H®(0^+A)+i(D*)']'=0 ;

Substracting (C.llb) from (C.llc) we get (HgA)'^, from which
Eby locality of we get:

h| = 0 (C.1 2 )

Substituting back into (C.ll) we get:

“ ( % ) M=0 ; (C. 13)

From [Mp,A(x)]=0 we get:

h£'- Uh H- (C.14)

Finally from the demand on the commutator of Mp with E(x) we 
get:

(DHHi " H2 ' H3 ) , +  “ ( u h > , - ( AGi ) ' = "a (C.15)
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Using (C.7a) and (C.14), (C.15) becomes:

°H t Hi“ 7(H 3 )')+0H(H'i- 7(H3)")4(Dh )'"G1= “ A  (C. 16)

The solution of (C.13) is:

2Ur (A) = c0 + c i A (C.17)

But from locality of Û ., C i = 0 .  Substituting U ’=0, (C.7c)n A n
becomes:

1 2-H”+ “ (H3)m =0 (C.18)

(C.16) now gives:

G i =  A (C.19)

which cannot be satisfied because of (C.7a).
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Appendix D

In this appendix we give some details of the d=4 BJL 
calculations involving the square diagram.

In a calculation of the l.h.s. of (B.l), some preliminary 
steps can be taken before actually doing any Feynman integral. 
In this we follow the method employed by Jo (ref. 3-6), and we 
give here a short summary of the main idea.

Our commutators are expected to separate into a sum of a 
canonical term plus anomalous contributions. The canonical 
terms are defined to be those which we get by naive 
application of the canonical commutation relations that the 
basic fields satisfy, ignoring divergences of composite 
operators. The canonical results relevant to our calculation 
are:

(a) [Hf,

= id

Jo(x)]=[/d3y(-iY(y)Yi51Y(y)),Jo(x)]

i 5 +
1 Ji(x)

(D.l)

(b) -i&̂ -J

3
(o) [Hp J . £ ( x ) H J d  y(-i?(y)yia1f (y)) , v - l ( x )  ] =o

3 5 -  * 5(d) [Jd y Ji(y)A1 (y) ,V*l:(x)] = i&1 Ji(x)

As a consequence we expect:



-104-

h -ikx•x 5
lim(-ik1 0 )<0| Jd xe T(HFJ0 (x)) |y(k2 ,e2 )Y(k3 »^3 )>= (D.2 )
kio+i®

r 3 • s=Jd x e |-k^<0| Ĵ. (x) I yy > + anomalous terms}

One of the aims of the preliminary steps mentioned is to 
separate the canonical contribution (the first term on the 
r.h.s. of (D.2)) from the rest, before explicitly evaluating 
the Feynman diagram. This means changing the order by taking 
the BJL limit before doing the loop integral. Taking the limit 
first is a safe operation only when the resulting expression 
is not superficially divergent (both in UV and IR regions). 
In this spirit the following operation and obvious 
generalizations of it are also safe:

1lim --- (a superficially log-div integral) = 0 (D.3)
kio^i® kj_ o

lIf lim --- (integrand) = 0
kio + i°° k10

Our starting Feynman expression for the square is 
superficially linearly divergent. Taking the BJL limit before 
doing the integral is therefore not safe. If one still insists 
on doing so, this procedure will pick up only the canonical 
terms in the commutator, and miss the anomalous ones. The way 
to proceed is to make use of algebraic identities which 
separate out convergent bits of the starting expression. Two
useful identities are:
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1 1 1 1 1 1 1(a) --- = —  - —  i  ■ l + 1 —  (D.4)
t + t t t t  P + f  t t

1 1 f i 1 ,(b) --- = —  + (—  ■- — )
t f + f t

Thinking of r as a loop momentum and of p as some linear
combination of external momenta, the l.h.s. of (D.4) is a 
typical fermion propagator appearing in the expression for the 
loop. Then, the second and the third terms on the r.h.s. of 
(D.4a) and similarly the second term on the r.h.s. of (D.4b). 
have an improved UV behaviour. However, one should be careful 
not to use repeatedly the identities in (D.4) too many times 
or the resulting single terms may become superficially IR 
divergent.

A typical square diagram, relevant for evaluating the 
T-product on the l.h.s. of (D.2) is shown in Fig. 3b . From 
Feynman rules we get:

*4
(a) Di= E1 ( k 2 ( k 3 )/— - (-l)tr[— (-ieyjYS)— Y0Y5 (D.5)

(2it )** W *  *

1 ( " l e y  hY5 )--- 1-- —  (- - Y[(2r+k2-k3-ki)X)]
f - t  1 3 / - Q W s )  2

We have to add to it:

(b) D2 — Di(j*»0, k 1-*k3 , in the trace)

(c) D3= D]_(0~i, k1-*k2, in the trace)
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and three more diagrams with the fermionic arrows reversed in 
each of the D̂  's . These diagrams are equal to those given 
above due to charge conjugation. Therefore the final 
expression for our T-product is 2(D1 +D2+D3).

D2 and D 3 contain the canonical contributions. After 
making use of the above mentioned algebraic identities we get:

2 i jlimC-ik!o)2(D2+D3)= ie e (k2 )eJ(k3) lim (D.6 )
ki o*i® k̂ Q->i«»

{2[S+
m=

+ Am=l m

+/d r
(2it)

r 1 1tr[--- Y± - y .
“ ^ + * 2 t  3

---- Y0Y5 ](ki+k2+k3)X
t - t  3

+/± J1 t r [ i  Yi  J -  v .
(2it )** *  3

1

t ~ t  2 -^3
YJlY5](kl-k2-k3)A}

where the A ’s and S will be defined below. In the last two m
lines of (D.6 ), we have (almost) separated the canonical 
contribution. The canonical term is basically the AAA 
triangle. Demanding full Bose-symmetry (i.e. symmetry under 
the exchange of any two of the three photon legs) completely 
fixes the ambiguity in the definition of AAA. In bringing the 
last two terms in (D.6 ) to this symmetric form, we pick up 
surface terms from a shift in the loop momentum. The last two
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terms in (D.6 ) therefore give us:

d r tr (D.7)
(2 ti )

+ - 1

2%

2 1where p = —k2+ —k3 .3 3

An important technical comment is in place here. The last term 
on the r.h.s. of (D.7):

comes from shifting the "partially Bose symmetric" form of the 
triangle (i.e. symmetry in only one pair of photonic legs) to 
the completely Bose symmetric form. It reflects an ambiguity 
in the definition of the canonical part of the commutator. 
However, the two commutators we are interested in, namely, 
(3.35) and (3.48), are insensitive to the way we choose to 
define the triangle, as long as we use the same definition, 
since their canonical parts vanish. The last term in (D.7) was 
therefore systematically omitted from (D.la,b,d).

i-2Ei(k2 )eJ(k3 )eoiJJlkf(k2 0-k3o)
1 2ix
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In general, the regularization in our calculations is 
effected through keeping track of shifts in loop momentum, and 
through symmetric integrations (see appendix E). In this way, 
linear divergences disappear, leaving finite surface terms. 
The way to define and evaluate surface terms is briefly 
reviewed in appendix E. In the course of calculation one also 
encounters integrals which are superficially log-divergent. To 
evaluate these we need to introduce a cutoff. After doing so 
one finds that in fact the divergences cancel, leaving well- 
defined and cutoff-independent results, as should be expected 
for an anomaly.

We now give the definition of the various terms in (D.6 ). 
S is a surface term given by:

(D.8 )

1 2EoijAl--k20 (k2+k3 k30k2]
12n

The various A ' s are defined as follows: m

(D.9)
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H
(b) A2 = “J ^ ^ utr[— - 7 Yi 7 Yi 7 YAY5 ]-(ki-k2-k3)

( 2 u ) 4 >+*i“  f  * t  3 1

(c) A3 = tr[--- y ± - ĵ2 - Yj 7  Y^Ys ]-(ki-k2-k3)l 1 l
(271) t  f  t

will contribute only to the anomalous terms. After 
some algebraic manipulations we get:

z 1 ilim(-iki0 )2Di= 2ie e (k2)e (k3 ) lim kio 
k̂  0^i® k̂  o^i®

• [ l  Af, + l A®]LL,«,m u. mJm=l m=l

(D.14)

f _ rd r r x x x x i(a) A1 = J------ tr[— y.  -  y 0 ------ Y -------- YoYsJr'
(2-n >1* t  t Mtl J t - t  1

(D.15)

(b) a | = tr[- Yj_ - Y0 --- Y -i --- f-3 -- - YjY5 ]l"
(2n )** t  t  M l  ' M l  M l  *

1 1 1

f. fd r tpri 1 1

(2it> * #■ " f M i  J M l
f rdr r , ■** ***(c) A3 = -J^- tr[— Jb2 - Yi “ Y0Ll / / /

1 1 nY-i -----— Y 0 Y5 Jr'

f_ cd r  ̂ r 1 ,/ 1 1( d )  Ai+ = - J ------^ t r [ -  7  Yi  7  Y0 ------ Y
(271)

1 1 / 1 if 3 — 7 Y a Y5 J
- >  ’ t  " /• #•-ifci J Hfci’ M i

(e) J—  ■tr[-— '  h  ~ $2 ~ Yt  -  Y0
1 1 1

(2n)“ M 2 t  f  t  1
Y 0 Y5 ]r-
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(d) Ag= J^-I tr[ 
(2n)

YO -  Y
M i  1 M i  t  3 M

t s  -  ^3 ~  Y p Y 5 ] r '

1 1( a )  A f = / i - £  t r [ -----  Yi ------ YO 7  Yi  ~  Y«Y5 ] - ( k 2 - k l - k 3 ) x ( D . 1 6 )
(2it)** W i  M l  t  3 t  2

(b) A^/iLl tr[-i- Y± —  
(2,)“ M l  t + t

1 1 . 1
YO “  Y _• -  *3 “  Ys Y 5 ] - ( k 2 _ k l - k 3)
1 t  3 t  P 2

, . <r r d r  r  ̂ 1 1 1 -i 1
( c )  A 3 = - / ------ tr[~ Jfc2 -  y ±  - YO 7 - 7  Y-j -------  Y o Y 5 ] - ( k 2 - k i - k 3 )

(2n)** P P P P~Py J t~t 1 2

Most of the A ’s are superficially linearly or
logarithmically divergent, and A^ are superficially
quadratically divergent. As explained, the linear divergences
disappear after a shift to a symmetric origin. The quadratic
and log divergent terms in , a !?, A®, A? cancel for eachm m m 7 m
A separately, when the integrals are defined according to the m
symmetric integration formulas (E.l), and the traces over the

b e  fDirac v-matrices are taken. For A , A and kinA , the 
cancellation is less trivial, in the sense that it occurs only 
when all the different contributions from these terms are 
summed together. To treat the superficially log-div parts, a 
cutoff is introduced and extra care is needed in order not to 
miss various finite terms which are left at the end.
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Let us illustrate the last points in a particular
example. In order to calculate the A ’ s we need to calculate:m

i = /d r
1 1 1 

t r [ — y “ Y- “ Y
(2ic) T)

t J M
Y p Y 5 ] r' (D.17)

where p= kj^+k, and k has no dependence on r or ^  . After 
introducing a Feynman parameter and shifting the r-integral, 
we get:

I = Ii+ a surface term (D.18)

1 2 *Ii = 3/dx( 1-x) /— J

tr[ (^+x^)Yv(/-+xĵ )YT)(^+x^)Y1 (^-(l-x)j<)YiY5] (r+xp)^
2 2 •)[r +x(l-x)p ]

The linearly divergent term in 1̂  (.t t t t  r^) drops out because 
it’s odd under r ■* -r.

pThere are four superficially log-div terms. The p f f f x p 
term is zero due to the Dirac trace and the symmetric

pintegration. The other three terms, involving r , do not 
vanish. After using (E.l), we are left with an r-integral of 
the form:

4 2 2
2 _ jd r ____r r__________
4r4 *  ̂ r  ̂ 2 , *♦(271) [r +x(l-x)p +ie]

(D.19)

where we have put back the ie, so far omitted from the 
fermion propagators. Since the integrand is a scalar we can
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i+ oo 2 00 2
replace / dr-* 4 it/r dr/dr0 (here r = r ). We then perforin the

o •■-00
r0 integration along the contour dictated by the ie. The 
result of this integral is of course finite, but the remaining 
integral is log divergent. After introducing a cutoff A, we 
finally get for (D.19):

i = J _  m ( ---- i ----)
4 r 4 16n2 -x(l-x)p2

34i
192iu

(D.20)

We now separate all finite contributions from (D.20) which may 
be important in the limit k1 0+i® :

I
4r4

2i
216it

+ o(

34i
2192*

k0
—  ln(x(l-x))- - ± -  —  + (D.21)2 2 16n 8n kĵ o

The first term on the l.h.s. of (D.21) is the "true" divergent
part, and it cancels among the different A ’s as mentionedm
above. For future reference, we denote this term by D.

The finite r-integrals and the various finite 
contributions from the log-div parts, stay finite in the BJL 
limit and after integrating over the Feynman parameters. In 
what follows, we give a list of key intermediate results. 
They, were derived both by a "hand calculation" and by using 
the algebraic manipulation program "REDUCE" (ref. 3-14).
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(a) /—  t r [ -  Y -  Y -----  Yo Y5 ] r ^=
(2ti )** * P P "  t ~ t  1

(D.22 )

o Jl
-2EopniP P

24ti

(b) lim tr[— y — y — y ---  Y v5 ]rJ!'=
klo-i“ (2,)“ P V t " P K t~ t *

= ^ D f P a[3g^vr)0jl + 3evTiKa-g;evaKjl+g ^ naKA]-3p^vT)Kjl} +

1 0+ ---- [ 19p z +p (7g e 0+23g z „+llg z 0)1 +2 L o V T| K O v ICO V T) 0 Jl T)0 V O K1 &VO 0 T| K Jl  ̂ J
288n

+ --- k z2 0 T) O K V
24tc

(c) lim t r [ -  y -  y -  y -  y,  -----  YxY 5 ] r Jl=
k10-i“ (2*)“ P P V  K P 1 P - t  %

= 7 i D [ 2 g * e XJl +2g * e XKAv- 3eX|C ] +

28871
- [l9(g e . +g, z )-13(g z , +g z , )]2 L KO o\T]V 0 0 K T) V 7 ' °T) 0 OXKV &VO oXlC^7 -1

r H I* r 1  ̂ ^
(d) lim J-----  t r  [-----  y -----  Yo 7  Y„YS ] =

^ o * 1” (2*) * “ * 1 *

16n;
r Jl aL-2ki£n +q (-e -g e +g e + 3g e ) + 1 Jlapp. a a p ji  p,o aa p o  po aaop. ao o a p p 7

+ q e ] 
o a o p p
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y. 4 , 4 4 r lX+4 1,' »T •*■u l5[ [ SA*A _ TA _ 3^ _ OA L 1 ~
T T T

^aOE, £
*8
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k ---]jq. — — J o Tjj mil (m) I I J P

r . driov a T aptIx) d ,
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t1 a d x) p T pdAX) t! t nt pdrlA T 1 Z Z
+ 3 T5[S- 3 T5tS-)^+ 3T5[S-1 -- --- v 3 I T

f a 4 tl j d T**-< p ^(1LS) = [SXA- A- A __ A —-]ji — f (X)
*7

( £5[035X -321082T) YPT°33.
*817

r r C ■* , •/ T J ^(Ug) coT^OIjx
[SA A --------- - A --------- êjt -------- °A — 3^ — ^A — ljq. /OT^ uiti (3{)

I T I I I T J P♦t

(£5X03̂ -25l0e2l)YFTO32. o 5
*817

Tt-4 Tt-4 c Ti-4 4 T 4 4 ooT+oisx A -------- OA - -A - Z^ —]jq. -— /0l5t tQTi (p)
I I T J J PJ+r

j [ S A “A --------- Stf
* L I T I
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,d r r 1  1  1(o) lim /--  tr[- Jt2 — Yi — Y, 1 1 - l
t  t  1 1  m t - i i  3 p - p  1

Y o Y 5 I xJr =

1 11= -(- —iD + ---- )k2oek 3 2 oijm
288ti

In the above formulas, p = (kx+k), and k,q, do not depend on 
either r or k: . D denotes the "true" log-divergent part (the 
first term on the r.h.s. of (D.21)). With these formulas one 
should be able to reproduce (3.51). It should be remembered 
that in some cases a rearrangement of the starting expression 
may be needed in order to match it with the form given in 
(D.22). Useful properties in this context are the charge 
conjugation identity (ref. 3-15 ch.7), the cyclic property of 
the trace, etc. Note also, that we have dropped non-divergent 
polynomials in k10» as prescribed by the BJL definition.

We have shown in some detail how to calculate (3.51a). 
The calculation of (3.51c) follows the same path. The 
expression analogous to will be:

D?= ei(k2 )€J(k3)/—  (-l)tr[—  (—iey ±y 5 )——y . Y 5 (D.23)
(2n )*! W *  *

1 ( - l e y  Hy 5 )------------ —  (— yo ( 2 r + k 2 - k 3 - k i  ) A ) ]

P~t 3 P~ ( * l +* 3 )  2

The diagram associated with (3.51b) contains a photon 
propagator. In the Weyl gauge the photon propagator is given
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by:

i6 . . x
D. . (p) = --+ Of------1 (D.24)

P Po

Since the basic square is at most linearly divergent, one 
can see, by using a relation similar to (D.3), that the higher 
order terms in (D.24) cannot contribute to the BJL limit. In 
order to calculate (3.51b) we therefore start from the 
expression:

m
iki0(-ikx) ~ ~  e1 (k2 )eJ(k3 ) 2

kl
(D.25)

(-ljtrt-1- (-iey.rs)— (iey Y5) 
( 2it )** t + U  t

—  (-ley .Y5)-----i ------  ( -  -  y . (2r+k2- k 3- k i  ) ^ )]
t~t

Again, most of the intermediate results needed for the
calculation are given in (D.22). However, there is an
important difference between the calculation of (3.51a,c) and
that of (3.51b). In the previous cases, we were looking for a

1term in the basic square which behaves like --- , while here,
k 10

because of the photon propagator, we are looking for the term 
which behaves like 1. Therefore, unlike the previous cases, 
the present result is sensitive to the ambiguities of the
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square, which are reflected in the possibility of adding or
substracting polynomials in the external momenta. Again, we
impose Bose symmetry. The expression for the T-product based 

Eon Di is not symmetric under k2 • k3 , i - j , due to surface 
terms. These terms can be easily calculated and then one can 
read off the polynomial that should be added in order to 
symmetrize.
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Appendix E

1. Symmetric integration formulas.

4 2 1 4 2 2(a) Jd r rarpf(r ) = - g^/d r r f(r ) (E.l)

H Z l(b) Jd r r rQr r.f(r ) = — (g Qg .+ g gQ* + g ,gQ ) a (3 y 6 v ' 24 v ct P Y o a y D(3o ° a o Dp y '
4 2 2 2Jd r r r f(r )

(c) Jd r rarprYr6Perilf(r ) = — {gaf5 (gY6g£T,+ Sy eS6ti + SrriS6e>
4 2 2 2 2+ 4 similar terms with p~y , , p-t])} / d r r r r f(r )

2. Evaluation of surface integrals.

Surface terms arising in our calculations are of the
form:

4
J— - [f(x,p,r+a) - f (x ,p , r) ] = (E.2)
( 2 k ) 1*

4
(exp(a-&)-l)f(x,p ,r)

( 2 n )
a / 

k J

4d r
( o  \ 4 ar (2n:) k

f(x,p,r)

a a fK  T) ^

4d r
( 2 n ) 5 r  d r  < T)

f(x,p,r) + 0 (-2-) 
dr

where x is a possible Feynman parameter, p an external 
momentum, and a^ depends on some external momenta and on x. 
The function f will in general be a ratio of two polynomials
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in r. It is useful to work with an f chosen in such a way that
2its denominator depends on r only through r (see for example

(D.18)). We then perform the integral in a finite spherical
2 24-volume defined by r =R in Euclidean space. After that, the 

limit R -► ® is taken. A useful basic result is:

4
J d r 
D

25 (r g(r ))v p.
2

i 2n
1 4 2
(“guv)R )4 (E.3)

where the domain of integration D is the 4-sphere r=R. This
2result can be generalized to r r r ft....f(r ), in a[i a (3 \ >

2straightforward way ( for the next non-zero case, r r rRg(r ), ̂ (j< o: p
one should replace “g^v on the r.h.s. of (E.3), by the tensor

structure on the r.h.s. of (E.lb) etc.). For evaluation of the 
the second order (in derivatives) term in (E.2), the following 
result is useful:

4
Jd r 
D

aK6v(rYrXg(r )) (E.4)

1 4  2 1 5[—R g(R )+ --R4 24
5 / d 2 \ 1  , v k  y \— g ( R  ) J  + g g r5R

1 5— R 24 — g(R2)} 5R
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F I G U R E S
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Fig 1.

Fig 2. 

Fig 3.

Figure Captions

a. A bubble diagram describing a 2-current Green’s 
function in a free fermionic theory.

b. The bubble diagram in a ds=2 theory with a good 
anomaly.

c. The bubble diagram in a d=2 theory with a bad 
anomaly.

The AVV triangle diagram

a. The AAA triangle diagram in axial massless QED.
5 +b. A square diagram contributing to [Hp,J0(x)].
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Figure lb

Figure lc
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V
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