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ABSTRACT

This thesis investigates automatic scene interpretation in 

relation to computational cost. The scenes of interest are 

essentially two-dimensional. Three specific areas of scene 

interpretation are considered:

1) texture characterization

2) image classifier design

3) image segmentation

Computationally-efficient and generally-applicable methods are 

developed to minimize cost.

Five properties of visual texture, namely: coarseness, contrast, 

• busyness, complexity, and strength of texture, are approximated in

computational forms, to produce five textural features for 

texture-based image classification. The cost involved in the 

computation of the features is very low, as they are easily 

computable and require little CPU process time, and the memory 

requirement is small. The features correlate well with human 

perceptual measurements in the rank ordering of a set of natural 

textures, and fairly well in indicating similarity between different 

textural patterns. The features produce better classification 

accuracy in two applications, compared with features from two 

classical texture analysis techniques [32,80].

With regard to texture-based partitioning of images, two 

additional features were developed. The application of these 

features in the segmentation of some test images produced 

satisfactory results.
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In the area of classifier design, a distribution-free scheme was 

developed which is based essentially upon Euclidean distance. In the 

design, features are normalized such that their values are 

constrained to lie between zero and one inclusive. The contribution 

of each feature in classification decision making depends on its 

relative ability to separate the classes. The classifier was 

employed in three classification problems; it obtained classification 

accuracy comparable with that of the maximum likelihood classifier, 

but in terms of speed, it proved to be faster than the latter.

In respect of segmentation - a technique was developed which 

combines the region growing concept of seeking uniform areas in an 

image with the concept of agglomerative clustering. On the basis of 

a defined criterion, uniform neighbourhoods are located in an image, 

and their mean feature values are computed. These feature values are 

agglomeratively clustered to produce the mean feature vectors for the 

different categories present in the image. The mean vectors are in 

turn used to classify the image pixels.

In terms of implementation, two algorithms were designed for the 

segmentation scheme. One algorithm uses fixed neighbourhood size in 

seeking uniform areas in the image, while the criterion for 

uniformity is varied subject to some constraints. In the second 

algorithm, the uniformity criterion is fixed, while a quad-tree 

approach is used to vary the size of neighbourhood from one part of 

the image to another, depending upon the relative level of 

uniformity.

The segmentation results obtained for different kinds of test 

image confirm the feasibility of the approach. The method is fast, 

and requires only a small amount of memory; hence it can be used in

real time.
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CHAPTER ONE 

INTRODUCTION

1.1 Introduction to Scene Interpretation
Scene interpretation or analysis is a major problem area in the 

image processing field. It is sometimes referred to as image 

analysis, image recognition, or image understanding. Scene analysis 

deals with the automatic interpretation of the image of a scene in 

order to make a decision. The interpretation is based on 

characterization knowledge, and this knowledge in turn requires the 

analysis of the basic properties, characteristics or attributes of 

the contents of the scene. The output of a scene interpretation 

system is essentially a description of the contents of the image of 

the scene, or an assignment of the image, or part(s) of it, to 

particular class(es).

Scene analysis techniques have diverse applications. Some of 

the application areas are enumerated below

1) Remote sensing - vegetation mapping, land-use classification, 

and monitoring of the environment from aerial and satellite 

images of the earth surface

2) Photogeology in mineral exploration

3) In agriculture, for example

(i) Mapping and classification of crop types in aerial 

photographs for the purpose of agricultural yield estimation
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(ii) Mapping and classification of different forest plants in 

remotely sensed images for the effective management of forest 

resources

*0 Biology and medicine; for example, tumour detection and blood 

cell counting

5) Robotics and industrial automation

6) Military problems - target detection and recognition in aerial 

surveillance

1.1.1 Scene Analysis System
The analysis of the image of any scene generally consists of two 

aspects. The first is the partitioning of the image into its 

component parts - that is, into regions corresponding to the objects 

or categories present in the scene. It is essentially the grouping 

together of pixels having similar properties. The second part is to 

classify or identify each of these component regions, or at least the 

region(s) of interest. The first part in the analysis process is 

generally called "segmentation", while the second is more 

specifically referred to as "identification". A block diagram of a 

basic scene analysis system is shown in Fig. 1.1.

The segmentation aspect generally involves working at local 

level (i.e. at pixel level or over small neighbourhoods) in the 

digital image, while identification is carried out on subimages or 

images. In segmentation, no information external to the image may be



INPUT IMAGE 
OF SCENE.

ASSIGNMENT OF COMPONENT

PARTICULAR CLASS(ES).

Fig. 1.1 A Basle Scene Analysis System.
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required, but in identification, external information may be needed. 

This is often the case in remote sensing and agricultural 

applications - the so-called "ground truth information".

In general, there are three distinct, but not necessarily 

independent, phases that are associated with scene analysis; namely, 

characterization, abstraction and generalization [59].

(i) Characterization
This involves observing the attributes, or characteristics, of 

the content of the scene, quantifying these attributes, and 

extracting or selecting useful features from the set of observations.

(ii) Abstraction
This is the formulation of decision rules for classification or 

segmentation. It is basically a decision-making phase.

(iii) Generalization
This is essentially the evaluation of the proposed solution.

It is the phase for system performance evaluation.

Almost all the problems encountered in scene analysis are 

associated with the first two phases; namely, the extraction of 

useful features, and the formulation of decision rules.

1.1.2 Feature Extraction
One important issue in the extraction of features for the 

automatic analysis of a scene is the problem of texture 

characterization. In the analysis of scenes, humans use three types 

of information. These are: spectral, textural and contextual
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information. However, in a machine environment, context is usually 

difficult to implement* The tw0 important factors are spectral 

information and texture [32]. Spectral information includes 

brightness and colour. It represents brightness in the cases of 

black-and-white pictures and monochrome images; and in the case of a 

multiband image set, it represents the pixel gray levels in an 

individual band. Brightness is directly conveyed by the gray levels 

of the image pixels; while in the case of coloured image, spectral 

information is depicted by the tristimuli of red, green and

blue.

Texture, on the other hand, is a much more difficult concept. 

Literally, texture refers to the arrangement of the constituent 

components of a material. In image analysis, however, one is 

concerned with visual texture. This is a function of the spatial 

distribution of tonal values (gray tones). The properties of texture 

which humans use in distinguishing between textures are well known. 

The most important ones are: coarseness, contrast, busyness, 

complexity, shape, directionality, and strength of the texture.

Perceptually, coarseness relates to the sizes of the constituent 

elements - the so-called basic patterns, or texture primitives. In 

coarse textures, the primitives have relatively large sizes, and 

consequently, there is a relatively high level of spatial uniformity 

in intensity or tonal values. Contrast is dependent on the dynamic 

range of tonal values, as well as the amount of local variations in 

the values. Busyness depends on the spatial frequency of change from 

one intensity level to another, while complexity is related to the 

amount of visual information present in a texture. Directionality 

refers to the angular orientation of the texture primitives. Shape
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refers to the geometrical shape of the primitives, while the strength 

of a texture depends on the degree of distinguishability of the 

texture primitives from one another.

Texture, unlike brightness, is not directly conveyed by 

individual image pixels. It is a neighbourhood property. The 

difficult problem is to derive features from the gray tones of the 

image pixels that would convey information about the above mentioned 

textural properties - that is, to characterize texture from the gray 

tones of the image pixels.

1-1.3 Formulation of Decision Rules
There are generally two sets of decision rules: those for 

identification or '’pure" classification, and those for segmentation; 

but identification rules can also be incorporated into the 

segmentation process. For the purpose of identification, decision 

rule formulation is essentially the problem of classifier design. 

Various designs exist in the literature, but the majority of them use 

the approach of statistical decision theory, employing classical 

criteria such as the maximum likelihood rule, min-max rule, Bayesian 

rule, and a host of linear discriminant functions.

Some other designs use normalized distance measures, or even 

simple distance metrics, such as the Euclidean distance. There are 

also various approaches to decision rule formulations in relation to 

segmentation, such as rules based upon edge detection, clustering,

feature histograms, region growing, and so on.
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1.2 Scene Analysis and Computational Cost
The computational cost associated with any technique in the 

scene analysis field may be measured in terms of one or more of the 

following considerations:-

(i) The Amount of Computation Performed
This may be measured quantitatively by the computation time 

taken, i.e., the CPU process time. If a large amount of computation 

is involved, the process is likely to take a long time, resulting in 

high cost.

(ii) Memory Requirement of the Method
Large memory requirement may demand the use of special hardware 

for storage purposes, increasing the cost of the analysis system. 

Alternatively, virtual memory may be used. However, the use of 

virtual memory generally results in the machine spending more time in 

paging than in actual computation, and thereby increasing the overall 

process time.

(iii) Complexity of the Technique
Complex techniques are generally difficult to implement, and 

such methods, in most cases, are likely to involve a large amount of 

computation and/or memory.

(iv) General Applicability of the Method
Problem-dependent methods are generally ad hoc approaches, which 

are hardly useful for real-time applications. This is because, for 

each application, a new method may be required, or a substantial
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modification to the existing technique may need to be made. This 

results in increased complexity of the systems that have been 

designed, and an attendant rise in overall cost.

1.3 Scope of Work
The work reported in this thesis is concerned with the 

development of cost-effective techniques in three areas of scene 

analysis. The scenes of interest are two-dimensional: for example, 

X-ray images, radiographs, photomicrographs, aerial and satellite 

images of terrains, etc. Specifically, the work is in the areas of 

textural feature extraction, image classifier design, and image 

segmentation.

1.3.1 Textural Feature Extraction
In the area of textural feature extraction, a set of five 

features was developed for texture-based image classification. The 

features, though statistical, were developed from the conceptual 

relationship of some textural properties to spatial changes in 

intensity. These textural properties are: coarseness, contrast, 

busyness, complexity, and strength of texture.

The extent to which the features approximate the properties, and 

the extent to which certain combinations of the features approximate, 

or relate to, human perception of textures, was investigated in two 

experiments, also involving human perceptual measurements. The 

features were also applied in two image-classification problems, and 

the results were compared with those obtained using features from two 

classical texture analysis techniques; namely, the spatial gray level 

dependence method [32], and the gray level difference method [80].



2 2

Two features were also developed for the textural segmentation of 

images. The segmentations of some textured images using the features 

are shown.

1.3.2 Design of Image Classifier
For the classification of images, a distribution-free scheme 

called a "weighted-feature minimum distance classifier" was 

developed. The design is based essentially upon the Euclidean 

distance metric, but the features are normalized in such a way that 

they are constrained to have values between zero and one inclusive. 

Furthermore, in the design, each feature is weighted such that its 

effectiveness in the classification decision making depends on its 

relative ability to separate the classes. A measure of separability 

used for weighting is the distance between mean values of features 

for the classes - the so-called "contrast criterion" [433* The 

performance of the classifier was compared with the maximum 

likelihood and Euclidean-distance classifiers in three applications, 

two of which involved texture classification, and the other, 

classification of agricultural land-cover types using spectral 

signatures.

1.3.3 Development of Image Segmentation Scheme
A pixel-classification based segmentation technique has been 

developed. This is a hybrid scheme, which combines the concepts of 

region growing and clustering to partition an image into a given 

number of categories or regions. Uniform neighbourhoods are first 

located in an image. The mean feature values of these neighbourhoods
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are then agglomeratively clustered to produce the mean feature 

vectors for the categories. The feature vectors are in turn used to 

classify the image pixels.

There are two variants of the scheme with regard to 

implementation. In the first case, i.e. Algorithm I, a fixed 

neighbourhood size was used in seeking areas of uniformity in the 

image; whilst in the second case, Algorithm II, an arrangement in the 

form of a quad-tree was used to vary .the size of neighbourhoods from 

one part of an image to another, depending on the degree of 

uniformity.

The segmentation results obtained from both algorithms were not 

only similar, but also very satisfactory. However, Algorithm II has 

been found to be more accurate and takes less computation time.

Hence, it is the better algorithm.

The test images include a human passport photograph, an X-ray 

image of a human wrist, a composite textured image, an outdoor scene, 

and two satellite images of terrains. In the segmentations, either 

spectral features, textural features, or a combination of both, were 

used, depending on the image. The segmentation technique is fast, 

requires small memory, and can partition an image into any given 

number of categories or regions depending upon the desired level of 

detail.

1.4 Outline of Thesis
The thesis is divided into seven chapters and five appendices.

In Chapter One, a general introduction to the subject of scene 

interpretation is given. Chapter Two presents a review of some of 

the methods that have been developed or suggested in the literature, 

specifically in the areas of texture analysis, image segmentation and
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image classifier design. Chapter Three describes the perception- 

related texture features that have been developed. Also presented in 

this chapter are the results of the experiments performed to assess 

the extent to which the features approximate or relate to human 

perception of textures.

The application of the features developed here in inlage 

classification, and a comparison with two classical texture analysis 

methods, are reported in Chapter Four. The features developed for 

textural segmentation, and their application in the supervised 

segmentation of three textured images, are also presented in this 

chapter. The design of a distribution-free classifier (the 

weighted-feature minimum distance classifier), and some applications, 

are given in Chapter Five. In Chapter Six are descriptions of the 

segmentation scheme that has been developed and the two variants of 

the algorithm. The results of segmentations are also included. 

Overall conclusions, and some suggestions for further work, are 

discussed in Chapter Seven.

In Appendix A-1, tables showing the frequencies of ranks and 

similarity assignments, obtained from the human perceptual measure

ments, are presented. A description of the minimum error-rate 

(maximum likelihood) classifier is given in Appendix A-2. The 

spatial gray level dependence method and the gray level difference 

technique of texture analysis are discussed in Appendix A-3, while in 

Appendix A-4 a proof is given for the variance updating formula given 

in Chapter Five. Finally, in Appendix A-5, six Fortran programs are 

shown. The first one is for the computation of the textural features 

that have been developed; and the second is for the implementation of 

the classifier that has been designed. The remaining four are for 

the two segmentation algorithms. For each algorithm, there are two
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programs. One is for segmentation of a three-band multispectral 

image using the pixel gray levels in the three bands as features. The 

other is for the segmentation of a black-and-white or monochrome 

image. Segmentation may be carried out on the basis of texture (in 

which case the two features developed for segmentation are used); or 

on the basis of brightness (i.e. using pixel gray levels as 

features); or on the basis of a combination of both texture and 

brightness.
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CHAPTER TWO

REVIEW OF SCENE ANALYSIS TECHNIQUES

2.1 Introduction
The design of a scene analysis system generally depends upon the 

intended application and/or the form of the result that is expected 

from the system. A complete system usually consists of two aspects: 

segmentation and identification. Segmentation is the partitioning of 

the image of the scene into component regions corresponding to the 

objects or categories present in the scene; while identification is 

the assignment of the region(s) of interest to particular class(es). 

This assignment is carried out by a decision-making process called a 

classifier.

Both segmentation and identification require the observation of 

the basic properties of the contents of the scene, and the extraction 

of useful information from them - a process referred to as "feature 

extraction".

Various methods have been suggested, or developed, in the areas 

of feature extraction, image segmentation, and design of classifiers. 

In the area of feature extraction, the focus is on texture 

characterization; that is, the derivation of textural features from 

the gray levels of image pixels. Some of the attempts already made 

in this regard are reviewed in section 2.2. Subsection 2.2.1 

describes some statistical techniques; subsection 2.2.2 discusses 

some structural methods; while statistical-structural approaches are

reviewed in subsection 2.2.3.
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In section 2.3, some approaches to image classifier design are 

discussed. Their relative merits and demerits are also mentioned.

The review of some image segmentation schemes is contained in section

2.4. Subsections 2.4.1 and 2.4.2 describe edge detection based 

approaches and non-edge detection based techniques respectively.

2.2 Texture Characterization
Texture is an important property that humans use in analysing a 

scene, or distinguishing one scene from another. It is of particular 

importance in the analysis of natural scenes, as most natural 

environments consist of textured surfaces. The development of 

computational measures for the automatic discrimination between 

different textural patterns is called texture analysis or 

characterization. It is a subject that has received considerable 

research effort. Various techniques have been developed.

Haralick [30] groups the various methods into three categories: 

statistical approaches; structural methods; and statistical- 

structural techniques. While the statistical methods are generally 

applicable, the structural approaches, in most cases, can only be 

applied if the constituent elements (called the texture primitives or 

basic patterns), and also some placement rules, can be extracted. In 

general, statistical techniques are more suitable for microtextures, 

while structural methods are more relevant in the case of macro

textures.

2.2.1 Statistical Techniques
Statistical approaches may be subdivided into two classes:

model based and non-model based methods.
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(i) Non-Model Based Statistical Methods
These are statistical techniques in which no stochastic or 

probabilistic model is assumed for the texture field. Some methods 

belonging to this class are the "spatial gray level dependence 

method" (SGLDM) [32]; the "gray level run length method" (GLRLM)

[23]; and the "gray level difference method" (GLDM) [80]. Other 

methods in this category are the "neighbouring gray level dependency 

method" (NGLDM) [72]; the "textural edgeness technique" [67]; and the 

frequency domain based approaches of Fourier power spectrum and 

autocorrelation.

In the SGLDM method, a matrix called a gray level co-occurrence 

matrix is computed, in which an entry p(i,j)/d,6 is the probability 

of finding two gray levels i and j in the image, separated by 

distance d and in angular direction 0. Four matrices are produced, 

one for each value of 0 of 0°, H5°, 90°, and 135°. A number of 

textural features are derived from these matrices, out of which four 

are considered to be most useful.

The GLRtM uses the run lengths of gray levels. A gray level run 

length primitive is a maximal collinear connected set of pixels, all 

having the same gray level. Four matrices are produced, one for a 

given angular direction in which an element p (k , £,) is the number of 

times there is a run of length i, having a gray level of value k.

The gray level difference method makes use of the differences 

between the gray levels of pixels. A matrix is formed in which an 

element p(i)/d,0 is the probability of obtaining a difference of 

value i between the gray levels of two pixels separated by distance d 

from one another and in angular direction 0. Four matrices are 

obtained, one each for 0 value of 0°, ^5°, 90°, and 135°. From these

matrices, five textural features are derived.



Instead of finding co-occurrences of gray levels in four 

directions, as in [32], in [72] co-occurrences were found in a 

neighbourhood. In this approach, a neighbourhood is centred on a 

pixel and a count is made of the pixels having the same gray level as 

the centre pixel. This count gives the NGLDM number, denoted as s.

A matrix of gray levels and NGLDM numbers is formed, and some 

features derived from the matrix.

The method of textural edgeness characterizes texture in terms 

of the number of edges present per unit area, where we define an edge 

(the so-called microedge) as restricted to the edges within a 

texture field, rather than the edges separating different texture 

fields. A similar approach was used in [73] for pulmonary disease 

identification.

The Fourier power spectrum and autocorrelation techniques 

essentially use spatial frequency to characterize texture. The 

spatial frequency spectrum contains information about the texture of 

an image, because fine textures are rich in high frequency 

components, whereas coarse textures are rich in low frequency 

components. Some frequency domain techniques are reported in 

[10,19,27,36]. In [10], autocorrelation was used, while the 

remaining three approaches used Fourier methods. A discussion of 

autocorrelation methods is also given in [61,Chapter 17].

(ii) Model Based Statistical Techniques
In these approaches, a model is assumed for the texture field. 

The classical examples of this class of technique are the 

autoregression (AR) models of different kinds. Essentially, the AR 

methods work by making use of the degree to which a pixel gray level 

can be estimated given the gray levels of the neighbouring pixels. A
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set of parameters are estimated from the image data. These estimates 

are then used for texture classification, segmentation or synthesis. 

McCormick et al [46] first used this idea in texture synthesis. They 

used a 1-D time series model. Deguchi and Morishita [17] developed a

2-D autoregression model for texture classification and/or 

segmentation. Mitrakos et al [49,50] developed a technique called 

the "composite source model" for image partitioning and coding. In 

their method, two components called the C and E components are 

derived from a Gaussian-Markov model of order p. Using maximum 

likelihood estimates of p parameters and the variance of the 

residuals, they successfully performed image segmentation and image 

coding. Other model based techniques are given in [40,51,62].

The methods of textural edgeness, autocorrelation and Fourier 

power spectrum essentially characterize one aspect of texture;

♦  namely, coarseness. An added disadvantage of the frequency domain

methods is the asssumption that the image function is periodic, which 

certainly is not true. The spatial domain approaches are generally 

better, but some of them may require large memory - for example, the 

SGLDM - due to the need to store four matrices. The main advantage 

of the model based techniques is that they can also be used for 

texture synthesis, but, as is pointed out in [30], their 

effectiveness is mainly restricted to microtextures.

2.2.2 Structural Approaches
A fundamental technique in almost all structural approaches is 

the extraction of texture primitives. A primitive may be defined as 

a connected set of pixels characterized by some predefined 

properties, e.g. shape. The pixel, with its gray level attribute, is 

the simplest primitive of a texture field. After defining the
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primitives, they are extracted from the image using suitable 

procedures. The spatial interactions between the primitives are then 

examined to characterize the texture.

Structural analysis methods include the texture model of 

Carlucci [8], which uses primitives of line segments, open and closed 

polygons, in combination with some rules that are given syntactically 

in a graph-like language. Another example is the tree grammar 

syntactic method of Lu and Fu [45]. They view rules of spatial 

placement of texture primitives as production rules of a specific 

grammar. Classification of a given texture then reduces to the 

determination of whether the texture field exhibits a pattern which 

belongs to a given language. Zucker [83] also developed a method 

similar to that in [45].

Other structural methods are: the structural element technique 

of Serra et al [68]; the structural analysis approach of Tsuji and 

Tomita [76]; and the technique proposed by Vilrotter et al [78]. In 

the approach of Vilrotter, matrices that are in some respects similar 

to gray tone co-occurrence matrices and called ’’edge repetition 

arrays” (ERAs) are first defined, and then computed from the image. 

The computed ERAs give an initial and partial description of texture 

elements (texels). From the ERAs, texture primitives, as well as 

their spatial interrelationships, are determined. Then, on the basis 

of the extracted primitives and determined interrelationships, 

texture classification is achieved.

Structural approaches in general have the advantage of being 

able to capture the shape aspect of texture, but the detection or 

extraction of primitives in real textures can be quite a problem. 

Furthermore, structural techniques are not only computationally 

expensive, but are also very complex in terms of implementation.
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2.2.3 Statistical-Structural Methods
These are methods that tend to combine both statistical and 

structural approaches. As stated in [30], they are structural in the 

sense that they also involve the extraction of primitives, and 

statistical in the sense that spatial interactions between the 

primitives are measured by probabilities. The generalized 

co-occurrence matrices method of Davies et al [16] is a classical 

example of this group of techniques. Other examples are [^8>.713« They 

share in the relative merits and demerits of statistical and 

structural techniques.

The various texture analysis methods, and their relative 

advantages and limitations, are discussed in [26,30], while 

information about the relative performance of some of the methods is 

given in [13,80].

2.3 Image Classifier Design
The assignment of an image or part(s) of it to a particular 

category, or categories, requires a good decision making process. A 

major consideration in the design of a classifier is the accuracy of 

decision making. The other considerations are the complexity of the 

design, and the cost of computation. Approaches to image classifier 

design may be divided into two groups. There is the group of 

classifiers in which classification decisions are based on 

statistical decision theory. The second group of methods makes use

of simple similarity measures or distance metrics.
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2.3-1 Methods Using the Approach of Statistical Decision Theory
The majority of classifiers belong to this group. These 

classifiers employ the classical criteria used in statistical 

decision making. Such criteria include the Bayesian rule, the 

maximum likelihood rule, the min-max rule, the Neyman-Pearson rule, 

and a host of linear discriminant functions - for example, the 

Fisher’s linear discriminant. These criteria, and various types of 

discriminant functions, are discussed in [18,22]. The design of 

classifiers employing statistical decision making is also described 

in [14]. The criterion to be used in a given situation may depend on 

the risk of, or cost involved in misclassification. The particular 

circumstances in which one criterion may be employed in preference to 

another are explained in [22].

Statistical classifiers have two main disadvantages

(i) The statistical properties of the image are not closely 

approximated by those of the model; for example, the classifiers 

generally assume a probability distribution (usually normal) for the 

image data. Another assumption inherent in the use of statistical 

criteria is that the samples in the data set are independent. It is 

well documented that image data in most cases are not normally 

distributed [15]. Therefore, the assumption of normality in these 

designs is inappropriate, because their normality assumption is 

violated by the data, and this introduces a substantial amount of 

error. Thus, their accuracy would be poor in applications where the 

image data deviates substantially from the normal distribution model. 

For instance, better results were obtained in [20] in the 

classification of agricultural crop types from aerial photographs 

using distribution-free methods than by using a linear discriminant
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function approach; this is because the latter method assumes 

normality, although the data set were not normal. Furthermore, the 

inherent assumption of independence between image samples is not 

true. There is some degree of dependency in images. Therefore, 

because of the normality and independence assumptions made in these 

classifiers, they may not have general applicability.

(ii) This group of classifiers is generally complex in design, and 

also computationally expensive. The high cost of computation may be 

due to the inversions and multiplications of matrices that are 

involved in the decision making process.

2.3-2 Methods Employing Simple Distance Metrics
For this group of techniques, the most commonly used measure of 

similarity is the Euclidean distance. Some other measures of 

similarity (e.g. the Tanimoto coefficient) that these classifiers may 

use are also described in [18]. The Euclidean-distance classifier is 

simple in design, has comparatively high speed, and is generally 

applicable. However, it has the following disadvantages:-

(i) The accuracy is comparatively poor. This is due to the 

dominance of certain features in distance calculations merely because 

of their large numerical values. A relatively large difference in 

value between two classes for features that generally have large 

numerical values may not convey as much difference (say perceptually) 

between the classes, as small differences for features that have low

numerical values.



( i i )  A Euclidean-distance classifier does not take into consideration

the abilities of the individual features to discriminate between the 

classes. However, in most cases, there is a higher degree of 

separability between the classes using some features than others.

For instance, in a multispectral (multiband) satellite image of a 

terrain, two regions or categories may be highly distinguishable from 

one another in one band, while such distinction may not be possible 

in another band.

The first disadvantage is generally minimized by a process of 

feature normalization, while for the second, a weighting of the 

features dependent upon their relative abilities to discriminate 

between the classes is needed. A combination of the two processes 

would lead to improved classification accuracy. However, it is 

desirable that this improvement in performance does not result in 

significant increase in computational cost.

2.4 Image Segmentation Methods
There are many approaches to image segmentation in the 

literature. However, most of the techniques are essentially ad hoc, 

as there is no general theory of segmentation. As stated in [33], 

"the methods essentially differ from one another precisely in the way 

they emphasize one or more of the desired properties, and in the way 

they balance or compromise one desired property against another." 

Nevertheless, image segmentation techniques may be divided into two 

broad groups: edge detection based schemes and non-edge detection

based approaches.
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2.4.1 Edge Detection Based Methods
Segmentation techniques in this group seek in an image for 

points of significant change or discontinuity in feature activity; 

the feature generally used is the gray level of the image pixels. An 

edge is defined as a significant change in intensity (gray) level. A 

connected set of the edges gives the boundaries between an object and 

its background and/or between the different objects or regions in the 

scene.

There are two main classes of edge detection methods: the 

enhancement/thresholding techniques; and the methods of edge fitting. 

A third group consists of those methods which use some other kind of 

criterion for determining edge points.

(i) Enhancement/Thresholding Methods
In these methods, discontinuities in feature activity are 

enhanced or accentuated by some spatial processing involving the use 

of differential operators. Such operators include the Prewitt, 

Roberts, and Sobel operators, or their modified forms. These 

operators are used to perform discrete differentiation of the image 

array to produce a gradient field. An edge is deemed to exist at an 

image point if the gradient or magnitude of change in feature 

activity at the point is sufficiently large, and greater than some 

specified threshold.

(ii) Edge Fitting Techniques
These methods employ template matching operators. These are 

sets of masks representing discrete approximations to ideal edges of 

various orientations. Some operators of this kind are the compass 

gradient introduced by Prewitt [6 3 ] and the Kirsch operator [41]. An
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edge of the particular type or orientation defined by the mask is 

deemed to exist at a given image point if there is a sufficiently 

high degree of "fit” between the image and the mask centred on the 

point.

(iii) Other Edge Detection Schemes
These are methods which do not involve spatial differentiation 

or edge fitting, but rather use some other criterion for determining 

edge points. Some segmentation approaches belonging to this category 

are the equal-means and equal-variances hypothesis testing technique 

of Yakismovsky [82], and the zero-slope hypothesis testing method of 

Haralick [29]. The method in [82] assumes a normal distribution for 

regions. Statistical hypothesis testing is used to locate edge 

points. Edges are declared to exist between pairs of contiguous and 

exclusive neighbourhoods if the hypothesis of equal means and equal 

variances between them has to be rejected. Haralick’s method 

involves fitting a plane to the neighbourhood centred on a pixel and 

then testing the hypothesis that the slope of the plane is zero.

Edge pixels are the ones between neighbourhoods for which the 

zero-slope hypothesis has to be rejected.

A discussion of some edge detection approaches to segmentation 

and their relative performances is given in [1]. In general, edge 

detection methods are only good for brightness or gray tone dominated 

images in which there are clear differences in brightness between 

objects and background. They are poor performers on textured images, 

and for complex scenes in which boundaries are best established using 

a combination of features instead of only intensity. Segmentation 

schemes employing edge detection are also described in [25,66].
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2. *1.2 Non-Edge Detection Techniques
Methods in this class group together pixels having similar 

attributes or properties. Essentially, they assign or classify image 

pixels to one category/region or another in the image. These 

segmentation approaches include histogram methods, clustering 

methods, and various region growing schemes. A general advantage of 

these approaches is that they are capable of using more than one 

feature in the segmentation process.

(i) Histogram Methods
These techniques involve the construction of a feature 

histogram. Thresholds are selected in the histogram to partition the 

image. A particular category or object in the image would correspond 

to all pixels in the image having feature values between any two sets 

of thresholds. They are essentially methods in which clustering is 

done in measurement space, and this is then mapped on to the image 

domain to produce segmentation. As in any clustering approach, an 

inherent assumption is that feature values of pixels belonging to one 

category would be similar to one another, but significantly different 

from those of pixels belonging to other categories. Hence, the 

accuracy of histogram techniques depends on how well the objects or 

categories of interest in the image separate into distinct measure

ment space clusters; that is, on the modality of the histogram.

If there is no clear distinction between clusters in measurement 

space, the histogram may be unimodal or even flat, and one may not be 

able to partition the image because of the difficulty in setting 

thresholds. Some approaches for the construction of histograms with 

enhanced modality are described in [11 ,*I2,*I7,57,58,81 ]. Histogram 

methods are also described in [25,66] for the partitioning of an
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image into regions of different average brightness, or separating an 

object from its background. The use of more than one feature in 

histogram-based techniques requires the construction of multi

dimensional histograms. Histograms of this kind are difficult to 

construct, and generally require considerable memory; and the 

selection of thresholds is a more difficult problem. Some multi

dimensional histogram schemes are described in [24,55].

(ii) Clustering Approaches
In general, clustering procedures involve the iterative grouping 

and/or regrouping of the image pixels subject to a minimization or 

maximization of a given criterion function. In some clustering 

methods, the number of groups (clusters) into which the image data 

is to be partitioned is specified, while in some others, the 

iterative process is stopped when the criterion function being 

maximized or minimized reaches a critical value.

The most commonly used clustering techniques in the partitioning 

of image data are of the ISODATA [2] type. The criterion function 

may be the minimization of the least square or mean square errors 

between the samples in a cluster and the cluster mean. Some 

clustering approaches to image segmentation are [6,12,31]. In [12], 

the criterion function that was maximized was the ratio of the 

inter-cluster scatter to intra-cluster scatter.

The subject of clustering, different kinds of clustering 

procedures, and the various criteria that may be used in clustering 

algorithms, are discussed in [18,Chapter 6]. Some investigators 

[3*7,75] have also introduced the fuzzy sets concept into the

clustering process.
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Clustering techniques are generally very expensive in terms of 

computation. Another disadvantage is that they may also require 

considerable memory. Hence, their use for real time applications is 

rather limited.

(iii) Region Growing Schemes
The techniques in this group may be divided into two types. In 

one set of methods, the general concept is to identify or locate 

uniform areas in an image. Such areas, or core points, are 

considered to belong to particular objects or categories in the 

image. Regions are then grown from them. The second type of region 

growing approach consists of those techniques in which the underlying 

principle is graph theory. Their implementation is usually based 

upon hierarchical or pyramidal data structure.

In the first kind of approach, pixels spatially adjacent to a 

core region that are similar enough to it are merged with the region, 

and its mean feature values are then updated. This process is 

continued until all pixels have been assigned to one region or 

another. The process may also involve the merging of contiguous 

regions that are similar enough.

One main disadvantage of this kind of scheme is the production 

of a large number of regions in the segmentation; also, areas 

corresponding to identical objects or to the same category at 

different locations in the scene may be labelled differently.

Another difficulty is the determination of the criterion or criteria 

by which one judges similarity. The criteria vary from one scheme to 

another [4,35,44,53,54,60].



The graph-theoretic methods generally involve the mapping of 

image points on to nodes in a graph. Narenda and Goldberg [56] used 

directed graphs to define regions after an edge detection operation. 

Morris and Constantinides [52] mapped an image on to a weighted 

graph, and a minimum spanning tree of this graph was used to define 

regions or edges in the image. Spann and Wilson [70] combined a 

quad-tree representation of an image with a parametric classifier in 

a clustering framework to produce segmentations. The boundary 

following algorithm [71], and the split-and-merge technique of 

Horowitz and Pavlidis [34], may also be considered as belonging to 

this group of methods.

In the split-and-merge method, an image is divided into a number 

of square blocks. Blocks that are considered uniform, spatially 

connected, and are similar enough, are merged together to form 

regions. The mean feature values of the regions are updated in the 

process. Non-uniform blocks are split and their component parts 

merged with the nearest appropriate region.

In addition to the large memory requirement of graph-theroetic 

techniques, the split-and-merge approach also produces jagged or 

squarish boundaries. Graph-theoretic schemes, and various data 

structures that may be used for their implementation, are described 

in [59].

Image segmentation in general, and the various approaches to the 

problem, are discussed in [21,33,64,65].
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CHAPTER THREE

TEXTURAL FEATURES CORRESPONDING TO TEXTURAL PROPERTIES

3.1 Introduction
Texture is an important item of information which humans use in 

analysing a scene. It is particularly useful in the analysis of 

natural environments, as most natural scenes consist of textured 

surfaces. Literally, texture refers to the arrangement of the basic 

constituents of a material. In a digital image, texture is depicted 

by spatial interrelationships between, and/or spatial arrangement of, 

the image pixels. Visually, these spatial interrelationships, or 

arrangement of image pixels, are seen as changes in the intensity 

patterns, or gray tones. Thus, in automatic analysis, information 

about texture has to be derived from the gray tones of the image 

pixels.

A number of texture analysis methods have been proposed, some of 

which [23,32,36,46,67,80] are frequently referred to in the 

literature. These and other methods are discussed in the review.

A major disadvantage of almost all of these approaches is that they 

do not have general applicability - that is, they cannot be applied 

to different classes of textures with reasonable success. For 

instance, while the statistical techniques are generally good for 

microtextures and are poor performers on macrotextures, the reverse 

is the case for the structural techniques. Another disadvantage of 

some of the existing methods is the computational cost involved, 

either in terms of memory requirement, computation time or 

implementational complexity.
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The human perception mechanism, in comparison, seems to work 

well for almost all types of textures. The properties which humans 

use to discriminate between different textural patterns include 

coarseness, contrast, complexity, "busyness" or fineness, shape, 

directionality and strength of the texture. Therefore, for general 

applicability of developed texture measures, and also for improved 

performance in automatic texture classification, it is relevant that 

measures reflect or represent to some extent some of the above 

mentioned textural properties. Tamura et al [74] did some work in 

this direction, but they used already developed features, only 

modifying a given feature or combining some features in one way or 

another to have a close relationship to a specific property.

Furthermore, the extraction of the features may be 

computationally expensive, as diverse analysis techniques are 

0 involved in their derivation.

Some other investigations carried out in the study of human 

perception of textures are reported by Julesz [37—39]. However, in 

these investigations, the aim was not the development of texture 

measures, but rather the study of the extent to which one can just 

perceive differences in artificially generated textures when all 

familiar cues are removed. He concluded that the discrimination of 

textures depends mostly on the difference in second-order statistics.

In the present approach, an attempt is made to develop 

completely new computational measures corresponding to some textural 

properties, so as to ensure general applicability, while at the same 

time minimize the cost of computation. Five textural properties, 

namely: coarseness, contrast, busyness, complexity and strength of 

texture, were approximated in computational forms. The computational 

form for each property was derived by expressing a perceptual



description of the property in terms of spatial changes in intensity 

or gray tones. In a digital image, information about spatial changes 

in intensity can be obtained by looking at the differences between 

the gray tone of each image pixel and the gray tones of its 

surrounding neighbours. Therefore, central to the development of the 

reported features is the computation of a one-dimensional matrix for 

an image, in which the ith entry is a summation of the differences 

between the gray level of all pixels with gray level i, and the 

average gray level of their surrounding neighbours. The 

computational measures are derived from this matrix.

A discussion of the five textural properties and their 

conceptualized relationships to changes in gray tones is presented in 

Section 3.2. A description of the matrix, which shall be referred to 

as the "Neighbourhood Gray Tone Difference Matrix" (NGTDM) follows in 

Section 3.3. The computational approximations to the textural 

properties are developed in Section 3.^. In Section 3.5, the 

approximations of the texture measures to textural properties are 

experimentally evaluated.

3.2 Description of Textural Properties and their Relationship to

Changes in Gray Tones

(a) Coarseness
Coarseness is the most fundamental property of texture, and in a 

narrow sense, it is used to imply texture. It is the size of the 

basic patterns or primitives making up a texture that determines the 

degree of coarseness of the texture. In coarse textures, the texture 

primitives are relatively large in size. As a result, coarse 

textures tend to possess a high degree of uniformity in intensity
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even over fairly large areas. Therefore, for such textures, the 

difference between the gray tone of a pixel and the average gray tone 

in its neighbourhood, even for fairly large neighbourhood size, would 

generally be small.

(b) Contrast
Perceptually, an image is said to have a high level of contrast 

if areas of different intensity levels are clearly visible, such as 

black and white patches. If, in an image, the differences between 

the different intensity levels are made smaller - as would happen in 

gray scale shrinking - the less distinguishable are areas 

corresponding to different levels of intensity, and hence the less is 

the contrast. Conversely, the contrast would be increased if the 

gray scale is stretched. In such a situation, the change in 

intensity between areas of different intensities would appear more 

abrupt, resulting in the perception of sharp edges.

However, apart from dynamic range of gray scale, the amount of 

local variations in intensity may also influence the contrast of an 

image. For example, consider two checkerboard patterns in which the 

patterns consist of equal sizes of black and white patches, but the 

size of the patches in one checkerboard is half that in the other 

board. For these two patterns, the dynamic gray scale range is the 

same, yet the pattern with the smaller sizes of patches would tend 

to give the illusion of higher contrast. This is because the spatial 

rate of change in intensity, and consequently the amount of local 

variations in intensity, is higher. In this kind of situation, the 

gray level of an image pixel may be substantially different from 

those of its neighbours.
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(c) Busyness

A busy texture is one in which there is rapid spatial change 

from one intensity level to another. The spatial rate of change in 

intensity in an image depends primarily upon two factors. One is the 

spatial frequency of change from one intensity level to another, 

while the second is the magnitude of these changes. If the changes 

are very small in magnitude, they may not be visually noticeable and 

a high level of local uniformity may be perceived. Similarly, if the 

spatial frequency of change is low, a high degree of local uniformity 

in intensity may still be perceived, even if the magnitude of the 

changes is large. While the spatial frequency of change from one 

intensity level to another reflects the level of busyness, the 

magnitude of these changes depends upon the dynamic range of gray 

scale, and thus relates to contrast. Therefore, a suppression of the 

contrast aspect from the information about spatial rate of change in 

intensity may convey information about texture busyness.

(d) Complexity

The complexity of an image relates to its visual information 

content. A texture is considered complex if the information content 

is high, and this is generally the case when the texture comprises 

many patches of different average intensities. In textures that are 

made up of large primitives, the number of patches with visually 

noticeable different average intensity would tend to be few compared 

with textures having small sizes of primitives. Also, a texture with 

a large number of sharp edges tends to be complex, compared to one 

with few edges.
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The number of patches, as well as the number of edges, depends 

upon the spatial period of repeating patterns, while the sharpness of 

the edges depends upon the dynamic gray scale range. Thus, 

complexity of a texture has some relationship to its level of 

busyness as well as to the contrast.

(e) Texture Strength
The term "strength of texture" is a difficult concept to define 

concisely. It appears that a texture is referred to as being strong 

when the texture primitives, i.e. the basic patterns making up the 

texture, are clearly visible or identifiable. Such textures 

generally tend to look either very attractive, or rough. For 

instance, given three photographs of different textures - say, one of 

fossilized seafan, one of soap bubbles, and the other of still water 

(see [5]) - one is at first sight involuntarily attracted to the one 

of seafan. This is because it presents the strongest "visual feel" 

amongst the three, as a result of the fact that the constituent 

components are very discernible to the eye. In fact, the photograph 

of still water would be the least attractive, because there are 

virtually no identifiable components.

The degree of distinguishability between the primitives making 

up a texture may depend upon two factors: the size of the primitives, 

and the differences between the average intensities of the 

primitives. It may be possible to distinguish between large 

primitives, even though differences between their average intensities 

are small. However, for such distinctions to be made between 

primitives of small sizes, there must be wide differences between 

their intensities and/or sharp edges between them.
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From the above descriptions of the textural properties, the two 

most important factors that determine the degree in which a texture 

possesses a given property are:

(i) spatial changes in intensity levels (gray tones), and

(ii) dynamic range of gray scale

3.3. Neighbourhood Gray Tone Difference Matrix (NGTDM)
This is a column matrix in which the ith element, s(i), is the 

summation of the differences between all pixels having gray tone of 

value i and the average gray tones of their neighbourhoods (as 

defined below). The size of neighbourhood is specified by a distance 

parameter d.

Definition
Suppose the gray tone of the pixel at the point (k,S,), is 

denoted as f(k,£), then the average gray tone in the neighbourhood of 

this pixel is defined as

m=-d n=-d

d d
l  l f(k+m, £+n) -f(k,Jl) (3-D

where d specifies the neighbourhood size, given by

W = (2d + 1)(2d + 1 ) ,  d = 1,2,3

Again, over all pixels of intensity i, namely f(k,&) = i, we define
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= A(k,fc)

An entry in the matrix for the gray tone of value i is given by

s(i) = l I i - Aji 
i e Na

(3.2)

4

where {Ni } is the set of all pixels in the image (except those in the 

periphery) having gray tone = i, and s(i) is necessarily zero if no 

pixel within the appropriate part of the image has a gray tone = i.

Illustration

Consider the 5x5 sample image shown in Fig. 3.1(a). Specifying 

a distance, d=1, results in a 3x3 neighbourhood. This neighbourhood 

can only be centred on pixels within the indicated square. The other 

pixels are considered as being in the periphery of the image.

s(i)

1 1 4 3 1 i 0 2.750

3 4 0 1 1 1 4.125

5 4 2 2 2 2 0.250

2 1 . 1  4 4 3 0.000

0 2 2 5 1 4 4.875

(a) (b)

Fig. 3*1 (a) Sample Image (b) NGTDM for Sample Image
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There are two pixels within the indicated square with gray 

tone = 2.

Thus for this image

s(2) 0.250

In similar fashion, we have

s(0) = 2.750
' s(1) = 4.125

s(4) = 4.875
and s(3) is necessarily zero. The NGTDM for this sample image is as 

shown in Fig. 3.1(b).

3.4 Computational Measures for Textural Properties
(a) Coarseness

In coarse textures, there is slight spatial rate of change in 

intensity. For such textures, therefore, the difference between a 

pixel gray tone and the average gray tone of its neighbourhood would 

tend to be small. Thus, the result of the summation of such 

differences computed over all image pixels would give an indication 

of the degree of spatial rate of change in intensity. This is the 

same as the summation of the entries in the NGTDM. However, in the 

summation of the entries, each entry is weighted by the probability 

of occurrence of the corresponding gray tone value. The result of 

this summation, denoted as T, is given by

&= l Pis(i) 
i=0

T (3.3)
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where G^ iS the highest gray tone value present in the image. For 

coarse textures, the value of T would be low. In order to give a 

measure that increases with the degree of coarseness, the following 

is derived:

fcos [ e + T ]

= [ E *  l P i S ( i )  ] ' 1 (3 .1!)i=0

where e is a very small number, just to ensure a non-zero value, and

is the probability of gray tone value i. For an NxN image, and
2NGTDM computed using distance d, = f^/n , where n = N-2d.

(b) Contrast
Considering the description of contrast, and the increase in the 

level of contrast with gray scale range and local variation in 

intensity, the following computational form is proposed:

con
Ng (Ng"1) i=0 j =0

I l PiPj(i-j)
uh
I

i=0
s(i) (3 .5 )

where Ng is the total number of different gray tone values (i.e. 

different gray levels) present in the image. It is given by
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Ng f
i=0

(3.6)

j1 if pt * 0
where (3.7)

(0 otherwise

fcon is Product of two terms. The first quantity is the 

average weighted squared difference between the different gray tone 

values taken in pairs, and is used to reflect the dynamic range of 

gray scale; the weighting factor is a product of the probabilities of 

the two gray tone values under consideration. The second term is the 

average difference between pixel gray tones and the average gray tone 

of their neighbourhoods; this quantity increases with the amount of 

local variation in intensity.

(c) Busyness

The following computational measure is given for this property:

bus

"

& 1I P i S ( i ) / L l iPi - J Pi
_i=0 j = 0  J_- i = ° /

(3.8)

p^*0, Pj*0

The numerator is essentially a measure of the spatial rate of change 

in intensity, while the denominator is a summation of the magnitude 

of differences between the different gray tone values. Each value is 

weighted by its probability of occurrence. The denominator results
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in the suppression of the effect of contrast variations. Hence, the 

expression would tend to emphasize the frequency of spatial changes 

in intensity values.

(d) Complexity

As already mentioned, a texture is considered to be complex if 

the visual information content is high. The amount of visual 

information depends upon the number of patches, lines and edges that 

are noticed by the eye. These in turn depend on the rapidity or 

otherwise with which spatial changes in intensity occur, as well as 

the magnitude of the changes. Textures in which the spatial rate of 

change in intensity is slight generally tend to have few different 

values of gray tones; but there is a high probability of each value 

occurring. Consequently, in these textures, there are not many 

patches that have different average intensity levels, but the 

patches are large; hence these textures tend to have low degree of 

complexity.

On the other hand, textures with many different gray tone values 

tend to consist of many patches, and also many edges, due to rapid 

spatial changes in intensity. These patches are more noticeable, and 

the edges sharper, when the dynamic range of gray scale is large. A 

proposed computational measure for complexity is as follows:

Gh Gh
fCOm = J  J  {(I 1“J | ) (Pis(i) + pjs(j))j/(n2 (pi+pj)| (3.9)

P ̂ * 0, P j * 0
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(e) Texture Strength
Following the discussion in Part (e) of Section 3.2, we may 

define texture strength as

This expression involves two terms. The numerator is a factor 

stressing the variation in intensity levels, and therefore may 

reflect intensity differences between adjacent primitives; while the 

denominator conveys information about the size of texture primitives, 

as it is essentially a measure of the spatial rate of change in 

intensity.

3.5. Approximation of Features to Textural Properties
Two sets of experiments were performed to determine the extent 

to which the texture features correspond to the properties, and 

therefore to human perception of textures. In each set of 

experiments, human subjects performed perceptual measurements on a 

set of natural textures, and the computer also performed 

corresponding tasks using the features that have been developed.

s(i) (3.10)

Pj_ *  o ,  P j  *  0

The experiments were carried out with the following aims:-
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(i) to investigate the degree to which each of the five textural 

features relates to each of the five textural properties, and 

consequently to determine whether the theoretically 

conceptualized textural property - textural feature relation

ship agrees with the practical case

(ii) to investigate the extent to which the features relate to each 

other, and also how the properties are correlated with one 

another

(iii) to investigate the extent, if any, to which certain 

combinations of the features can indicate similarity between 

different textural patterns, and therefore to determine the 

extent to which the features approximate human perception of 

textures

In all, 88 subjects performed the experiments; 48 men and 40 

women. Ten natural textures taken from Brodatz’s album [5] were 

used in the experiments. They were:

crushed rose quartz (D98) 

depressed cork (D4) 

straw matting (D55) 

herringbone weave (D16) 

beach pebbles and sand (D27) 

grass lawn (D9) 

beach pebbles (D23) 

oriental glass fibre cloth (D79) 

pigskin (D92)

fur of unborn calf (D93)
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They were labelled samples A - J respectively. From henceforth, 

the textures will simply be referred to as quartz, cork, matting, 

weave, beach, grass, pebbles, fibre, pigskin and calf. A part of 

each of the original picture from the album was photographed on a 

35 mm negative film and digitized into a 384 x 384 digital image with 

256 gray levels. There was no other operation performed on the 

digital images (e.g. gray-scale contraction or histogram flattening).

However, since a comparison was to be made between the results 

of the perceptual measurements and those produced by the texture 

features, it was only natural that both processes used the same 

pictures. Thus, in the perceptual measurements, the original 

pictures from the album were not used, but rather the printed copies 

of the digital versions. In this regard, the digital pictures were 

displayed on a monitor and photographed. They are shown in Fig. 3.2 

(A-J).

3-5.1 Ranking Experiments

This was the first set of experiments. Subjects were told to 

rank the ten textures using each of the five properties - coarseness, 

contrast, busyness, complexity and texture strength. Prior to 

performing the experiment, the subject was given a brief explanation 

of the concept of texture and each of the five textural properties.

In the case of the computer, each of the 384 x 384 digital 

images was divided into sixteen subimages, each of size 96 x 96. It 

is reasonable to assume that a subimage of this size is large enough 

to capture the desired textural properties satisfactorily. The five 

features were computed for each of the subimages and the average over 

the sixteen was determined. Two distances, d = 1 and d = 2, were
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A. Quartz B. Cork

E. Beach F. Grass
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Fig. 3.2 Natural Textures Used in Ranking
and Texture Similarity Measurements
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used in feature computation, corresponding to neighbourhood sizes of 

3 x 3  and 5 x 5  respectively. These average values of features were 

used to rank the textures. The texture having the highest average 

value for a given feature was given a rank of 1 with respect to that 

feature, and the one with the least value a rank of 10. In the 

computation of the features fcos and fstr» the value of e was put at 

10-7. The rankingS are presented in Table T3.1.

3-5.2 Comparison of Human and Feature Rankings
In order to make a comparison between the rankings produced by 

humans and those by features, it was first of all necessary to 

determine a representative human ranking for each texture property 

from the rankings produced by the 88 subjects. The Psychometric 

¥ Method of Rank Order, discussed in [28], was adapted to determine

these representative, or composite, rankings.

The technique involves the computation of a quantity called the 

sum of rank values. Assuming that n objects are ranked, the sum of 

rank values for the jth object is given

Zj - j ^  fJ k Rk (3-11)

where fjk is the frequency of giving the rank k (k = 1,2,....,n) to 

the jth object. This is the same as the number of subjects that give 

the jth object the rank k.

The frequencies of ranks for the ten textures are presented in

Table T-A1.1 in Appendix A-1.
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FEATURES
Ranks fcos fxcon flbus 20m fstr
(k) d=1 d=2 d=1 d=2 d=1 d=2 d=1 d=2 d=1 d=;

1 G E G G C H B B A A
2 E G B B H C F F G E
3 A A F F D B C C E G
4 I I E C B D G H F F
5 J J C E I F I I B B
6 F F I H F I E G I I
7 C B H I J J H E C J
8 B D A A G G A A J C
9 H C D D E E J J H H

10 D H J J A A D D D D

Table T3.1
Ranking of Textures Using Features

Computed at Two Distances: d=1 and d=2

Ranks Representative Ranking According To:
(k) Coarseness Contrast Busyness Complexity T.Strength

1 G G D C G
2 A E H F E
3 E C F H C
4 I H B I A
5 C F C G H
6 F I J E I
7 B B I B F
8 H J E D B
9 J A G J D

10 D D A A J

Table T3.2
Representative Human Rankings of Textures 

using Textural Properties
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Rk is a series made up of rank values. These values are in 

exact reverse order to the rank k. Rk is related to k by the 

equation

Rk = n - k + 1 (3.12)

The sums of rank values are then used to obtain the representative 

ranking. The object (and in the present case the texture) whose sum 

of rank values is highest is assigned a rank of 1, that with the 

second highest a rank of 2, and so on. The resulting representative 

human rankings for the five textural properties are shown in Table 

T3.2.

The comparison of human and feature rankings involved the 

determination of the degree of correspondences between them. In this 

regard, the well-known Spearman’s coefficient of rank correlation was 

used. This coefficient is given as

rs
6P

n 3-n
(3-13)

where D, called the summed squared difference, is given by

D
N
i (rikk=1

2 (3.1*0

and r^k and rjk are the ranks given to the kth object in the ith and 

jth ranking respectively. N is the number of objects ranked; in the 

present case, N = 10.

The value of rs is between -1 and 1. The value -1 corresponds 

to complete disagreement between the two rankings, and the value 1 

indicates complete agreement. Equation (3.13) assumes that, as in
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the present case, there are no ties in ranks, i.e. no two or more 

objects are given the same rank in any of the rankings. A more 

complex expression exists for situations where there are ties - see 

[69] for details.

Using equations (3.13) and (3.1*0* the coefficients of rank 

correlation were determined for the following:

(i) between each feature ranking and the representative human 

ranking for each textural property

(ii) between each feature ranking and every other feature ranking

(iii) between the representative ranking for each property and the 

representative ranking for every other property

The results are presented in Table T3.3(a-e).

The results in Table T3.3(a) and (b) show that each feature is 

more correlated with the appropriate texture property than the other 

properties, except for the feature fS£r . There is a stronger 

correlation of this feature with coarseness than texture strength. A 

strong correlation also exists between the features fcos and fstp, 

and between fcos and texture strength. It is very likely that the 

two features, and perhaps the two properties as well (as they are 

also very correlated) convey essentially the same information about

a texture.



63

Textural Textural Properties
Features Coarseness Contrast Busyness Complexity T.Strength

fcos 0.856 0.442 -0.927 -0.152 0.612

fcon 0.527 0.685 -0.176 0.467 0.515

fbus -0.600 -0.018 0.782 0.552 -0.272
fcom 0.321 0.503 -0.006 0.600 0.261

^str 0.879 0.321 -0.794 -0.139 0.600

(a) Between Human and Feature Rankings 
(Features Computed at d=1)

Textural Textural Properties
Features Coarseness Contrast Busyness Complexity T.Strength

fcos 0.721 0.224 -0.842 -0.382 0.418

fcon 0.455 0.697 -0.079 0.539 0.515

fbus -0.624 0.018 0.830 0.564 -0.297
ficom 0.091 0.406 0.236 0.685 0.127

fstr 0.806 0.248 -0.794 -0.248 0.503

(b) Between Human and Feature Rankings
(Features Computed at d=2)

fstr fAcom fAbus fAcon

fcos 0.806- 0.079 -0.830 0.152
fAcon 0.552 0.867 -0.079
•pAbus -0.782 0.176
fAcom 0.370

(c) Between Feature Rankings 
(Features Computed at d-1)

Continued over page



64

fstr **com fbus *con

fcos 0.830 -0.345 -0.939 0.079

fcon 0.345 0.745 0.164

fbus -0.794 0.539
fcom 0.042

(d) Between Feature Rankings
(Features Computed at d=2)

T.Strength Complexity Busyness Contrast

Coarseness 0.842 0.091 -0.855 0.539
Contrast 0.782 0.661 -0.261
Busyness -0.588 0.309
Complexity 0.345

(e) Between Representative Human Rankings 

Table T3.3
Coefficients of Rank Correlations
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There is also a strong correlation between the features fcon and 

fcom, and between the properties of contrast and complexity, though 

not as strong as that between fCQS and fstr» and coarseness and 

texture strength respectively. The feature f ^ g  is shown to be the 

most independent feature.

3-5-3 Measurement of Texture Similarity
In this experiment, subjects were told to find a most similar, 

and a second most similar, texture to each of the ten textures; 

similarity need not be reciprocal. For instance, if B was considered 

to be most similar to A, this did not necessarily mean that A was 

most similar to B; C might be more similar to A than B. The number 

of subjects that considered a given texture as the most similar, or 

second most similar, to a reference texture constitutes the frequency 

of assignment of the given texture as the most similar or second most 

similar one to the reference texture. These frequencies were used 

to obtain representative human similarity assignments. The texture 

which had the highest frequency as being the most similar to a 

reference texture was considered to be the representative most 

similar texture. The same applied for the second most similar case. 

The human representative similarity assignments obtained are given in 

Table T3.^« The frequencies of similarity assignments are shown in 

Table T-A1.2 in Appendix A-1.

For the automatic case, five different combinations of features 

were used, and two distance criteria were employed to measure 

similarity. The first criterion finds for each texture the one 

having the maximum likelihood from amongst the other nine or eight 

textures. This corresponds to finding, from amongst the other 

textures, the one with the minimum (squared) Mahalanobis distance to
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Reference
Texture

Most Similar 
Texture

Second Most
Similar Texture

A E G

B F I

C H D

D H C

E G A

F B I

G E A

H C D

I F B and F

J F B

Table 13.4

Representative Human Similarity Assignments
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Reference Feature Combination
Texture (d»1)

Feature Combination 
(d-2 )

fAcos fcos ^bus fcos **con ^cos ^cos ^bus fcos ^conf1 con fcon ^com ^con fbus fcon fcon ^com ^con fbus
^bus ^com fstr **busf

1 com
fcom
fstr

fbus ^com fstr ^bus
^com

fcom
fstr

A E G E G G E E G G E E G E G G E E G G E

B F I F C F I F I F I F C F C F H F C F C

C I F B F H G H F G H F B B F H G F B G F

D J H J C J C J C J G J C J B J C J C J C

E G A G A G A G A G A G A G A G A G A G A

F B I B C B I B I B I B C B C B C B C B C

G E A E A E J E A E A E A E A E J E A E A

H C D C B C G C F C G C B C D C G C B C G

I C J C F C H C D C F J D J D F G D F F G

J D H D B D C D C C G D F D B D F D C D G

No. of 6 6 6 5 6 4 7 6 5 4 6 4 7 5 7 2 6 4 6 3
Agree
ments (a)
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Reference Feature Combination
•xture (d“1) (d -2)

f1 cos f cos f bus fcos fcon f cos fcos fbus fcos fconf1 con fcon fcom fcon fbus fcon fcon fcom fcon fbus
fbus fcom fs tr fbus fcom fbus fcom fs tr fbus fcomf1 com fs tr fcom fs tr

A E G E I E G E G E G E G E G E G E G E G

B F C F C F C F C F C F C F C F C F C F C

C H B I H H I H I H I H D H F H I H B H B

D J I J H J H J H J H J I J I J I J I J I

E A G G A A G A G A G A G A G A G A G A G

F B C B C B C B C B C B I B C B C B C B C

G E A E A E A E A E A E A E A E A E A E A

H C I I C C I C I C I C I I C C I C I C I

I H D H C C H H C H C D J H C J D J D J H

J D I D H D I D I D I D I D I D I D I D I

). of 6 2 5 2 6 2 6 2 6 2 6 3 5 2 6 2 6 2 6 2

Feature Combination

Agree
ments

(b)

Table T3.5
Computer Similarity Assignments

(a) using Maximum Likelihood Criterion
(b) using Euclidean Distance Criterion
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the mean of the reference texture. The second distance criterion is 

a normalized Euclidean distance, where the result of normalization is 

such as to constrain all feature values to lie between zero and one. 

This kind of normalization procedure is described in Chapter Five.

The similarity assignments for the two distance criteria and for 

the five combinations of features are shown in Table T3.5(a) and (b). 

Under each feature combination, there are two columns, the one on 

the left being for the most similar assignment, and the one on the 

right for the second most similar. A letter in bold type corresponds 

to an agreement with the representative human similarity assignment. 

The total number of such agreements is written under each column.

The results show that, for the most-similar assignment category, 

there is agreement between the human and computer similarity 

assignments for at least half of the number of textures for the two 

distance criteria. For the second most similar assignments, the 

results are not as good. Overall, however, the results are very 

encouraging. They indicate that the features, to some extent, 

approximate visual perception.

3*6 Conclusion
An attempt has been made to develop measures that 

correspond to some textural properties, and therefore to visual 

perception of textures. Five basic properties of texture; namely, 

coarseness, contrast, busyness, complexity, and the strength of 

texture, were conceptually defined or expressed in terms of spatial 

changes in intensity. The conceptual expressions were then put into 

computational forms. In this approach, a one-dimensional matrix, 

called a Neighbourhood Gray Tone Difference Matrix (NGTDM), was
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computed for a given image, and from this matrix the features were 

derived. The method is computationally efficient, as the features 

are quickly computable and the memory requirement is very small.

The measures were used in two experiments which also involved 

perceptual measurements by human subjects. One experiment involved 

the ranking, by humans, of a set of natural textures according to the 

degree to which they possessed a given textural property; the 

computer performed a similar task using the features. The second 

experiment was the measurement of texture similarity, both by humans 

and by the computer, the latter using certain combinations of the 

features.

With respect to ranking, very successful results were obtained. 

The results show not only that there are very high levels of 

correspondences between computational and perceptual measurements, 

but also that each feature relates more to the appropriate textural 

property, except for the feature fstr. This feature is found to be 

slightly more correlated to coarseness than to texture strength for 

the textures used in the experiments. In any case, the two features 

fcos and fstr are very correlated with each other. There is a high 

likelihood that they convey essentially the same information about a 

texture.

For the experiments designed to indicate similarity between 

different textural patterns, the results were also encouraging. The 

most similar pattern was correctly identified by the computer for at 

least five of the ten test textures for each of the five feature 

combinations used. The results for the second most similar textures 

varied more widely. Only in two to six cases did the computer 

results agree with the representative human similarity assignments. 

However, it should be realised that the representative human
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similarity assignments were derived using a "vote-type11 count (i.e. a 

simple majority), and not taking into consideration the variations 

between the assignments of the individual subjects. If the 

variations are taken into account, then the results obtained could be 

considered as very successful, especially if one also considers the 

results of similar experiments in [7^]. It is also probable that the 

differences between human and computer similarity assignments arise 

from the fact that the mechanism of human usage of multiple cues may 

be much more complex than the maximum likelihood and Euclidean 

distance criteria used by machine.

The results also show that the features computed at the two 

distances used produced similar rankings and similarity measurements. 

However, the feature computation at d = 1 involved a smaller amount 

of computation. Therefore, one may consider this distance as 

optimum for the computation of these features.

Finally, based upon the results obtained, it is hoped that any 

combination of three or four features would produce satisfactory 

results in image classification problems. For three-feature 

combination, the feature fbus can be combined with either fcon or 

fcom and either fcos or ^str * In the case of four features, any 

combination not inclusive of both fcos and fstr is recommended.
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CHAPTER FOUR

TEXTURE-BASED IMAGE CLASSIFICATION AND SEGMENTATION

4.1 Introduction
As mentioned in Chapter Three, texture analysis is an important 

aspect of scene interpretation. It is the characterization or 

description of a texture, such that either or both of the following 

problems may be solved:-

(a) A sample image can be classified or identified on the basis 

of its textural pattern.

(b) Given an image with differently textured regions, the image can 

be partitioned into component areas corresponding to the 

textured regions.

These two problems are generally referred to as "texture 

classification" and "textural segmentation" respectively.

4.1.1 Texture Classification
In texture classification, the interest is in the extraction of 

a set of texture measures for the automatic discrimination between 

different texture classes. The perception-related features developed 

in Chapter Three, and almost all the texture analysis methods 

mentioned in Chapter Two, are attempts made in this direction. The 

performance criterion in any texture classification problem, (and as 

a result, the evaluation of any texture analysis technique for image
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classification), is the accuracy of classification. The general 

procedure is to consider groups of images belonging to different 

texture classes, where images within any one group belong to a single 

class. For each class, the images are arbitrarily divided into two 

sets; a training set and a testing set. The images in the training 

set are called the training samples, while those in the testing set 

are the testing samples.

Features are computed on images in the training set, and used to 

train a classifier. Features are also computed for each image in the 

testing set. After training, each testing sample is presented to the 

classifier to identify. This approach to the division of the images 

in a class into training and testing sets is followed when there are 

many sample images. When there are few samples available for a 

class, the method of leaving-one-out is used. In this method, also 

called the method of training on the data [18], a sample is left out 

for that class, while the classifier is trained on the remaining 

samples. The sample that was omitted is then presented to the 

classifier for identification. The process is repeated, each sample 

in turn being the one left out. The accuracy of classification in 

either approach is: the ratio of the number of correctly identified 

samples to the total number of samples presented for identification, 

expressed in percentage. That is,

No. of Correctly Identified 
Samples

x 100% (4.1)Classification
Accuracy

Total No. of Samples 
Presented for Identification
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In section 4.2, the perception-related features developed in 

Chapter Three are applied in two image classification tasks; one 

involving twelve natural textures (subsection 4.2.1), and the other, 

agricultural land-use categories (subsection 4.2.2). The 

performances of the texture features developed in this work are then 

compared with two existing texture analysis methods for the same 

classification problems mentioned above.

4.1.2 Textural Segmentation

There are two approaches to textural segmentation. One approach 

is to assign a unique label to all image points belonging to the same 

textural pattern in the image, as in supervised segmentation. The 

other is to locate or trace the boundaries between areas of different 

textures - a process also known as "texture edge detection". The 

performance criterion in the first approach may also be percentage 

classification accuracy, particularly in situations where the number 

of image points belonging to each textural pattern is known. For the 

second approach, the criterion is edge identification accuracy. In 

either approach, the task is to associate each pixel with the texture 

region in the image to which it belongs. This necessitates the 

extraction of features at local level. However, texture is a 

neighbourhood property. An image point on its own possesses no 

texture, and this also applies to a very small neighbourhood. Thus, 

there exists a contradiction between texture as a neighbourhood 

property and the local-level requirement for segmentation.

Texture characterization with respect to segmentation has 

received only little attention compared with texture classification. 

The use of the existing texture analysis approaches for segmentation 

would result in great computational burden. In section 4.3, two
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features are developed specifically for texture-based image 

segmentation, with the additional aim of minimizing computational 

cost. The application of the features in the segmentation of some 

textured images is presented. The concluding part of the Chapter is 

in section

k.2 Application of Perception-Related Texture Features in Image
Classification
In this section, the results of image classification experiments 

using the texture features that have been developed are presented.

The corresponding results using two classical texture analysis 

methods are also given, and a comparison is made between the present 

approach and these classical techniques. In all the classification 

experiments, the so-called "minimum error-rate classifier", described 

in [18,Chapter Two], was used. For this classifier, the training 

process involves the computation of the mean feature vectors and 

feature covariance matrices for each of the classes. Once these are 

obtained, the feature space is partitioned into n number of regions 

separated by hyperplanes, where n is the number of classes. By 

obtaining the feature vector of a testing sample, and determining 

into which of the n regions in the feature space it falls, the 

testing sample is classified. Further discussion of the classifier 

is given in Appendix A-2. In the experiments, a 3x3 neighbourhood 

(i.e. distance, d ** 1) was used in the computation of the NGTDM, and 

for features fcog and fstr, the value of e  was put at 1 0 ” ^ .
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4.2.1 Classification of Natural Textures
Twelve classes of natural textures (also taken from .

Brodatz»s album [5]) were used in the experiments. Nine of the 

textures were also used in the previous experiments of ranking and 

texture similarity measurements. The twelve textures are:

oriental glass fibre cloth (D79)

grass lawn (D9)

straw matting (D55)

beach pebbles (D23)

pigskin (D92)

crushed rose quartz (D98)

seafan fossilized with coral covering (D87)

herringbone weave (D1 6)

straw - North Beach, Long Island (D15)

fur of unborn calf (D93)

handwoven oriental rattan (D65)

depressed cork (D4)

The textures will simply be referred to as fibre, grass, 

matting, pebbles, pigskin, quartz, seafan, weave, straw, calf, rattan 

and cork; and they correspond to classes 1 to 12 respectively.

The textures cover a wide range of different types. Among them, 

cork, calf, grass and weave can be regarded as fine, while quartz and 

pebbles belong to a very coarse category. Matting, pebbles and 

seafan display high contrast, while calf, straw, seafan and rattan 

are rich in directionality. From a subjective point of view,
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Class 4. PebblesClass 1. Fibre

Class 2. Grass Class 5. Pigskin

Class 3. Matting Class 6. Quartz
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Class 10. CalfClass 7. Seafan

Class 9. Straw Class 12. Cork

Fig. 4.1 Twelve Classes of Natural Textures 
Used in Classification
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matting, seafan and grass may be considered as very busy textures, 

while pebbles and seafan would be considered very attractive in 

appearance.

Each texture class was a 384 x 384 digital image. Prints of the 

images are shown in Fig. 4.1. Each image was divided into thirty-six 

64 x 64 subimages. For each class, twenty-four subimages were 

randomly selected and used for training the classifier, while the 

remaining twelve were used as testing samples. Thus, there was a 

total of 288 training samples and 144 testing samples in all.

The five features - fcos, f00n, fbus> foom and fstr - were 

computed for each of the training samples and also for each of the 

testing samples. Ten different combinations of the features were 

used in classification; six combinations of three features, three 

combinations of four features, and the five features together. For 

each feature combination, the features computed for the training 

samples were used to train the classifier, after which the feature 

set for each of the 144 testing samples was presented for 

identification. Table T4.1 shows the mean values of the features 

for the classes. The number of correctly identified samples per 

class; the total number of correctly identified samples; and the 

percentage classification accuracy, are shown in Table T4.2 for the 

given feature combination. The range plots for the five features and 

for_ th.e twelve classes are given in Fig. 4.2(a-e).

4.2.2 Agricultural Land-Use Classification
In this application, a black-and-white aerial picture of an 

agricultural area was obtained from the Ministry of Agriculture in 

Cambridge. The area consists mainly of agricultural fields (wheat, 

potato and winter barley), and forests (coniferous trees under



80

CLASS FEATURES

fcos ^con ^bus fcom

1. Fibre 0.00165 0.77004 0.05241 14.54081
2. Grass 0.00174 1.15642 0.03710 26.12795
3. Matting 0.00173 1.01351 0.05177 18.63201
4. Pebbles 0.00309 1.38273 0.02671 17.60530
5. Pigskin 0.00189 0.81238 0.04042 15.73748
6. Quartz 0.00311 0.68346 0.01626 14.11043
7. Seafan 0.00127 3.95989 0.06132 41.52526
8. Weave 0.00159 0.47815 0.04185 9.08838
9. Straw 0.00150 1.69606 0.06092 30.17628
10. Calf 0.00172 0.49481 0.03937 9.90405
11. Rattan 0.00190 1.30975 0.02217 25.17763
12. Cork 0.00171 1.21351 0.04138 24.95346

Table T4.1
Mean Values of Features

fstr

6.04796 
9.77911 
8.04669 
21.94452 
8.39689 
22.72552 
10.82443 
4.53459 
10.61665 
6.11509 
18.58795 
8.74924

for Natural Textures
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FEATURES NUMBER OF CORRRECTLY CLASSIFIED TOTAL ACCURACY
SAMPLES PER CLASS NO Of IN ($)

CORRECTLY
CLASSIFIED
SAMPLES

1 2 3 4 5 6 7 8 9 10 11 12

f■.con*
{com* 8 7 4 8 6 11 12 11 10 12 12 9 110 76.39
f str
fAcos»
■.con* 6 5 5 9 7 12 12 11 12 8 9 7 103 71.53
r com
fJ.COS,
I com» 6 6 6 10 6 11 10 11 10 9 12 9 106 73.61
f str

^bus ’f com* 7 10 5 11 7 9 9 11 11 11 12 9 112 77.78
f str
f con*
£bus* 7 7 9 9 6 10 12 8 12 10 12 4 106 73.61
A com
fAcos*f1 con* 8 6 10 11 8 12 12 11 12 9 12 8 119 82.64
f bus
fAcos*f1 con’ 8 8 6 9 7 12 12 11 12 10 12 11 118 81.94fA com’
f str
fAcon*
**bus’ 8 10 8 11 7 10 12 12 12 12 12 9 123 85.42
f1 com’
f s tr
fAcos*
^con’ 6 7 11 11 9 11 12 12 12 10 12 8 121 84.03
f bus»
f com
fAcos*
f con*
f bus* 9 8 12 11 8 11 12 12 11 10 12 10 126 87.50

com*
str

Table T4.2
Classification Results for Natural Textures 
Using Features Developed in this Work
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Fig. 4.2 Range Plots of Features for 
Twelve Natural Textures
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planting, young coniferous trees, mature coniferous trees and 

deciduous woodland). As a result of the ground survey that they 

carried out, specific parts of the image were associated with 

particular crop or forest types. This provided the ground truth 

information.

The picture was rephotographed and digitized into a 102-4 x 1024 

digital image. A print of the digital image and a sketch of the 

ground truth information provided are shown in Fig. 4.3. Five plant- 

cover types were chosen for the classification experiment. They 

were: wheat, potato, winter barley, coniferous trees under planting, 

and young coniferous trees. Twenty subimages, each of size 54 x 54, 

were obtained for each of the five agricultural classes. Thus, there 

were 100 sample subimages in all, and the five features developed in 

this work were computed for each sample.

In the classification, the method of training on the data was 

used, leaving out four samples each time for each of the classes, and 

training the classifier on the remaining sixteen. After this, the 

four left out for each class were presented for identification. 

Therefore, in all, there were five runs of training and testing, and 

for each run there was a total of eighty training samples and twenty 

testing samples. The mean values of the features for the five 

agricultural land-use classes are given in Table T4.3, while Table 

T4.4 shows the classification results for the different feature 

combinations. Fig. 4.4 gives the range plots of the features.
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(b)

Fig. 4.3 (a)
(b)

Aerial Photograph of Agricultural Area 
"Ground Truth" Map of Agricultural Area
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CLASS FEATURES

fcos fcon fbus ^com fstr

Wheat 0.001455 0.08118 0.06781 0.80708 2.1423149
Potato 0.0014142 0.19956 0.05063 1 .814235 2.71362
Winter Barley 0.001473 0.29700 0.033H8 14.861470 6.08927
Young Coniferous 
Trees

0.00275 1.59757 0.06393 70.714030 19.87066

Coniferous Trees 
Under Planting

0.00383 0.81911 0.02968 140.21661 16.23721

Table T4.3
Mean Values of Features

for Agricultural Land-Use Classes
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FEATURES NUMBER OF CORRECTLY CLASSIFIED
SAMPLES PER CLASS

WH POT WB YCT CTP

TOTAL NUMBER ACCURACY
OF CORRECTLY IN (56)
CLASSIFIED 
SAMPLES

con* 
bus • 
str

cos*
con*
bus

cos» 
bus* 
str

bus * 
com* 
str

con* 
bus» 
com

cos» 
con’ 
com

cos * 
con* 
bus * 
str

con* 
bus ’ 
com* 
str

cos * 
con* 
bus * 
com
fcos*fcon’
b̂us*f

1 corn’ 
fstr

13 12 14 19 19

16 13 17 19 17

14 12 16 20 19

15 11 16 19 20

11 15 16 20 17

13 8 19 20 17

16 12 17 20 18

14 13 17 19 18

16 13 17 20 18

15 13 16 20 18

77

82

81

81

79

77

83

81

84

82

77

82

81

81

79

77

83

81

84

82

Table T4.4
Classification Results for Agricultural Land-Use Classes 

Using Features Developed in this Work
(WH=Wheat; P0T=Potato; WB=Winter Barley; YCT=Young Coniferous Trees; 

CTP=Coniferous Trees Under Planting)
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*1.2.3 Comparison of Perception-Related Features with Classical 

Texture Analysis Methods
For the purpose of comparison of performance, the two 

classification experiments described above were repeated using 

features from two existing analysis techniques:

(i) the Spatial Gray Level Dependence Method (SGLDM), 

developed by Haralick et al [32], and

(ii) the Gray Level Difference Method (GLDM), 

of Weszka et al [80]

These two methods are considered in the literature to be the 

best texture analysis techniques [13,80].

Four features have been used in each of the methods. They are: 

Angular Second Moment (ASM), Contrast (CON), Correlation (COR), and 

Entropy (ENT), for the SGLDM. For the GLDM, the features are: 

contrast (con), angular second moment (asm), entropy (ent), and Mean 

(MN). The first three features are abbreviated in small letters in 

order to distinguish them from features of the same name in the 

SGLDM. The SGLDM and GLDM are discussed in Appendix A-3, where the 

computational expressions for the above features are also given. For 

both methods, the distance used in feature computation was d=1; 

that is, an intersample spacing of 1. The classification results for 

the two methods, employing the same minimum error-rate classifier, 

are given in Table TM.5.

Considering a combination of four features in Tables T4.2 and 

T*1.4, there is improved performance in terms of accuracy using the 

features developed in this thesis over the two classical techniques. 

Furthermore, the method that has been developed here is



NUMBER OF CORRECTLY CLASSIFIED NUMBER OF CORRECTLY CLASSIFIED
SAMPLES PER CLASS SAMPLES PER CLASS

CLASS CLASS
ASM, CON, ENT, COR asm, con, ent, MN ASM, CON, ENT, COR asm, con, e

(SGLDM) (GLDM) (SGLDM) (GLDM)

1 9 12 Wheat 17 19
2 10 3
3 10 11 Potato 11 13
*1 12 12
5 7 9 Winter 17 19
6 8 7 Barley
7 12 10
8 9 11 Young
9 11 12 Coniferous 19 12
10 2 8 Trees
11 12 11
12 6 11 Coniferous

Trees Under 19 19
TOTAL 108 117 Planting

ACCURACY
IN ( % ) 75 81.25 TOTAL 83 82

ACCURACY IN ( % ) 83 82

(a) Natural Textures (b) Agricultural Land-Use

MN

VOV̂J

Table T4.5
Classification Results using Features 

from SGLDM and GLDM
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computationally more efficient. For instance, the SGLDM and GLDM 

require about four times as much computation in extracting features 

from their respective matrices than does the method presented here. 

This is because, in the SGLDM and the GLDM, the features have to be 

computed over four matrices; whereas, for the approach presented in 

this work, there is only one matrix. Moreover, compared with the two 

earlier methods, the present technique requires less memory. For an 

image with gray level range 0 - 255, only one matrix of size 256 x 1 

need be stored, whereas the SGLDM would require the storage of four 

matrices, each of size 256 x 256. The corresponding storage for the 

GLDM would be four 256 x 1 matrices. Thus, the computational cost 

involved in using the features developed here is small compared with 

the two classical techniques.

4.3 Textural Features for Image Partitioning
Two textural features are developed for texture-based 

partitioning of an image.

Let the average gray level in a window of size W centred on a 

pixel at point (i,j) be as defined in equation (3.1); that is

AijCd) l l F(i+m, j+n) 
m=-d n=-d

F(i,j) (4.2)

where A ^ C d )  is the average gray level of the window.

The size W is specified by a distance parameter d, and is given 

by W = ( 2d+1) (2d+1) . F(i,j) is the gray level of the pixel at the 

point (i,j).

Also, let the difference between the pixel gray level F(i,j) and 

the mean A^j(d) be denoted as Sjj(d). That is
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S ±J(d) = F(i,j) - AjjCd) (4.3)

Then, the following two features are defined for the pixel at the 

point (i,j)

(i)
d=1 Sij(d) (4.4)

(ii)
L L -

" l  I  I S±i (d! ) -  Si i (d2) I (4.5)
d1 =1 d2=1

The distance L specifies the maximum window size for computing the 

matrix j . This window shall henceforth be referred to as the 

feature window (W^).

Equation (4.H) is a summation of the differences between a pixel 

gray level and the average gray level of its neighbourhood over 

different neighbourhood sizes. In coarse texture, the gray level of 

a pixel would be similar to that of its neighbours, while there tend 

to be differences in the case of fine textures. Therefore, f-j would 

take higher values for fine textures than for coarse textures. The 

feature f2 is essentially a summation of the differences between the 

average gray levels of different neighbourhood sizes centred on a 

pixel. For a very busy and/or fine texture, the spatial rate of 

change in intensity is high. Consequently, the average gray levels 

of neighbourhoods of different sizes would tend to be significantly 

different, and the value of f2 would be high. Therefore, one may 

refer to f1 and f2 as the "local-level equivalents" of the features
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fCOs and ^bus (defined in section 3*^). Thus, using the two 

features, an image could be partitioned into component areas 

corresponding to textures with different levels of coarseness.

4.4 Image Partition Experiments and Results
In the experiments, two test images were used. One is an 

artificially generated textured image, and the other a satellite 

image of a terrain. The images are shown in Fig. 4.5(a-b). Each 

image is of size 512 x 512 and consists of four different textured 

regions. The partitioning was performed by supervised classification 

of the pixels; that is, supervised segmentation. An area was 

specified for each texture region for training a classifier, and the 

classifier used was the minimum error-rate classifier. The two 

features were computed for each image pixel. However, the values 

actually used in the classification were the averages of the computed 

features in a much larger window centred on each pixel. This window 

shall be referred to as the characterization window W c . The 

averaging was performed to minimize intra-region variation in pixel 

feature values. After averaging, the feature values of the pixels in 

the specified areas were used to train the classifier; subsequently, 

each pixel was classified. The size of W f was fixed at 7 x 7, 

corresponding to L = 3, and that of W c was 19 x 19. The resulting 

segmentations are shown in Fig. 4.5(c-d).

. 4.4.1 Segmentation Accuracy using Features
A further experiment was performed to evaluate the performance 

of the two features, and also to investigate the effect of varying 

sizes of Wf and W c on the segmentation result. A composite image was 

created from the images of four natural textures (Fig. 4.6(a)), and



97

IfIfI
tI

(a) Artificial Image (c) Segmentation of
Artificial Image

(b) Satellite Image 
of a Terrain

(d) Segmentation of 
Terrain Image

Fig. 4.5 Test Images for Textural Segmentation 
and Results
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(b) Output Segmentation
Wr = 7x7; W = 19x19 f ’ c

(d) Output Segmentation
W„ = 7x7; W = 33x33 f ’ c

Fig. 4.6 Test Image for Evaluation of Segmentation
Performance and Output Segmentations for
Different Combinations of W-, and Wt c
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taken as a test image on which the accuracy of segmentation was 

evaluated. It was a 256 x 256 image, and each of the four texture 

regions consisted of (128 x 128) pixels. The segmentation accuracy 

was determined as a percentage ratio of the total number of pixels 

correctly labelled for their respective texture region to the total 

number of image pixels; that is

In the experiments, three sizes of W f - 5x5, 7x7 and 9x9 - 

corresponding to L = 2, 3 and 4 respectively; and four sizes of W Q - 

15x15, 19x19, 25x25 and 33x33 - were used. The accuracy of 

segmentation using the two features, and for different combinations 

of VTp and W Q , is shown in Table T4.6.

Feature Characterization Window, W Q
Window, W f

Total No of Pixels Correctly Classified 
in the Four Texture Regions

Segmentation
Accuracy x 100$

Total Number of Image Pixels

15 x 15 19 x 19 25 x 25 33 x 33

5 x 5 7*4. 43 83.33 87.75 92.83

7 x 7 76.01 83.47 88.07 92.89

9 x 9 75.08 82.98 88.05 90.46

Table T4.6

Accuracy of Segmentation for Combinations
of Different Sizes of and (in Per Cent)
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The corresponding segmentations for and W c combinations of (7x7, 

19x19), (7x7, 25x25), and (7x7, 33x33) are presented in Fig. 4.6(b-d) 

respectively.

From the results in Table 4.6, it is clear that there is no 

practical difference in accuracy for the three sizes of for the 

same size of W c . This indicates that the ability of the features to 

discriminate between the texture regions is not significantly 

dependent upon the choice of feature window size. On the other hand, 

the segmentation accuracy shows improvement when the size of W c is 

increased. Thus, the use of a large characterization window is 

desirable, as this improves the quality of segmentation.

Fortunately, as the partitioning is classification-based, the use of 

a large characterization window did not lead to what has been 

referred to in the literature as the "window problem" [64]. This is 

because the classifier is able to assign pixels to the correct 

region, even if the window overlaps two or more regions of different 

textures.

4.5 Conclusion
A set of images covering a wide range of texture classes was 

classified on the basis of their textures. The perception-related 

features developed in this work, and also features from two classical 

text?tire analysis approaches (the spatial gray level dependence method 

and the gray level difference method), were used in two image 

classification experiments. Two features for texture-based image 

segmentation were also developed and applied in the supervised 

segmentation of three images consisting of different textured

regions.
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As regards classification, the features developed in this work 

produced higher classification accuracy compared with the features 

from the two classical techniques. The method presented here also 

involved less computational cost compared with the two classical 

methods, as it required less computation and less memory. The 

classification results showed that the combination of fcos, fcon and 

f^us was tlie best of the six combinations of three features. For the 

four-feature category, the combinations of fcos, fcon, fbus and fcom; 

and fcon, fbus, fcom and fstr produced comparable results, and these 

results were about the same as those produced using all five 

features. Thus, either of these two combinations can be considered as 

adequate for image classification problems.

In the case of segmentation, the two features developed in this 

work produced satisfactory results. Further experiments, carried out 

to evaluate the performance of the features, and also to investigate 

the effect of variations in the size of windows used in feature 

computation, produced high levels of segmentation accuracy. The 

results indicated that the choice of feature window size does not 

significantly affect the output segmentation; while there was general 

improvement with increase in the size of the characterization window. 

However, the larger the sizes of windows, the greater is the cost of 

computation. In any case, the choice of characterization window size 

may be a function of the degree of coarseness of the textures 

involved. For instance, for very fine textures, small sizes may be 

used, while for coarse textures, large sizes are recommended. This 

is to ensure that averaging is done over a number of texture

primitives.
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Lastly, it is pertinent to mention that the two features may not 

be able to distinguish between two regions of different textures with 

comparable levels of coarseness but different contrast. A third 

feature that conveys information about contrast would be necessary in 

such situations. Such a feature might be the variance of the gray 

level values of pixels within the characterization window centred on 

each pixel. The results obtained using this additional feature in 

similar segmentation experiments are presented in Chapter Six.
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CHAPTER FIVE

WEIGHTED-FEATURE MINIMUM DISTANCE CLASSIFIER

5.1 Introduction
There are two kinds of approaches which are generally used in 

the design of classifiers. One set of techniques employs statistical 

criteria in classification decision making, while methods in the 

second group are distribution-free schemes which make use of simple 

measures of similarity or distance metrics. Some statistical methods 

are the Bayesian rule, the maximum likelihood rule, the min-max rule, 

the Neyman-Pearson rule, and a host of discriminant functions. 

Statistical classifiers are described in [18,22,66].

In the use of statistical criteria, two inherent assumptions are 

made about the data; normal density as the underlying probability 

distribution, and independence between samples in the data set. 

However, for images, there is some degree of dependency between 

samples. Secondly, the assumption of normality is not valid in many 

applications, as the image data are not normal [15]. Therefore, for 

general applicability, it is necessary that distribution-free 

techniques are considered in the design of image classifiers. 

Moreover, techniques which assume a distribution are generally 

complex in design and computationally expensive, as compared with 

techniques which are distribution-free and employ simple distance 

metrics.

The most commonly used, and perhaps also the simplest distance 

metric is the Euclidean distance. However, a Euclidean-distance 

classifier has two major disadvantages. One is the dominance of
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distance calculations by features having large numerical values. The 

second is the equal weighting of the features in the classification 

decision making. In most situations, however, the ability of some 

features to discriminate between the classes is greater than that of 

others. It is desirable that the contribution of such features to 

the decision-making process be increased, so that the effectiveness 

of these features is enhanced.

The usual approach for eliminating the first disadvantage is to 

normalize the features, such that each has zero mean and unit 

variance [18]. However, such a normalization process takes a fair 

amount of computation time, as it involves the calculation of feature 

values and the standard deviations in values.

In the approach developed here, the design is still based on the 

Euclidean distance metric, but a different kind of normalization 

procedure is used. The features are normalized in such a way that 

they are constrained to take values between zero and one inclusive. 

The method requires only the computation of average feature values. 

Furthermore, in this scheme, the features are weighted so that the 

contribution of each feature to the classification decision depends 

on its relative ability to discriminate between the classes. Feature 

normalization is described in subsection 5.2.1, while the derivation 

of weighting factors for the features is presented in subsection

5.2.2. In section 5.3, the performance of the classifier developed 

here is compared with that of the maximum likelihood and Euclidean- 

distance classifiers.

In this regard, three experiments were performed. Both the 

classifier designed here, and the Euclidean-distance classifier, were 

applied to the image classification problems described in subsections

4.2.1 and 4.2.2; namely, identification of natural textures, and
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texture-based classification of agricultural land-use categories. In 

the third experiment, the three classifiers were applied in the 

classification of image blocks belonging to five agricultural 

land-cover types using spectral features.

5.2 Design of Classifier
Let there be c number of classes with the ith class having a 

mean feature vector X^, where is a column vector having m 

components. That is,

Xi

Xi1

x i2

x,.mlm

x ik f k 1y2y m

Also, let Y be an unknown sample vector given by

*1

*2

ym

The Euclidean distance between the class i and sample Y is given by
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d(i,Y) = I I X ± - Y I I

m
l (5lk - yk ) 

k=1
(5.1)

5.2.1 Feature Normalization

Now, let xik be a normalized version of x^k , given by

x ik &x ik (5.2)

subject to the condition that

c
I iik - 1 (5.3)

where B is a normalizing factor. 

Therefore

I Bxlk

from which

B i *iki=1
(5.4)
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Hence, from equation (5.2)

x ik - x i k / ^  xik 

This ensures that

0 ^ik —  1 ’ for all i and k

(5.5)

The normalized Euclidean distance between the ith class and sample Y 

is given by

d(i,Y)
m
l  ( x ik -  yk)2

k=1
(5.6)

where yk = Byk (5.7)

5-2.2 Feature Weighting Factors

One of the simplest indicators of the degree of difference 

between two regions or categories (say i and j) in terms of feature k 

is the "contrast" between them in terms of that feature. Levine and 

Nazif [43] give an expression for this as:

d ijk
x ik ~ xjk 

x ik + xjk
(5.8)
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where x^k and Xjk are the mean values of the feature k for the two 

categories. It is reasonable to take the quantity djjk as a measure 

of the ability of the kth feature to separate between the classes i 

and j. A large value for dij k would indicate a high measure of 

separability.

For c number of categories, one can define a total measure of 

separability for the kth feature as the summation of the pairwise 

contrast measures between the classes. Denoting this as Dk , it is 

given by

c-1
1

i-1 j=i+1 jk (5.9)

c-1

I
i-1 j=i+1

x ik - xjk (5.10)
xik + xjk

Then, the feature whose value of k, (k = 1,2...... m), for which Dk

is largest, has the greatest ability to discriminate between the 

classes and would have the largest weight in the classification 

decision making. However, as the classification is based on minimum 

distance, the weighting factor for each feature is such that the 

value of the weight is smallest for the feature with the highest 

measure of separability.

Therefore, the weighting factor denoted as W k is then given by

W, (5.11)
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where Dn = max {Dk }
■ V- k e m

Thus the feature with the highest measure of separability has its 

weight always equal to 1, and the weights for the other features are 

greater than 1.

The normalized and weighted-feature Euclidean distance between 

the unknown vector Y and the ith class is therefore given (from 

equation 5.6) by

m
3 ( 1 , T) - l wk (S i k  - yk) (5.12)

k-1

The decision rule is that Y be assigned to the nth class if

d(n,Y) = min (d(i,Y)}
V i  * c

5-3 Application in Classification and Comparison with
Maximum Likelihood and Euclidean-Distance Classifiers
The classifier designed here was applied in three classification 

problems, in order to evaluate its performance vis-a-vis the maximum 

likelihood classifier and the ordinary Euclidean-distance classifier 

(i.e. of the type given in equation 5.1). Three image classification 

experiments were performed. In two of them, textural features were 

employed, while in the third experiment, the input features were 

spectral.
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5.3.1 Texture-Based Image Identification
The classifier developed in this work and the Euclidean-distance 

classifier were applied to the texture classification problems 

described in Chapter 4; identification of images of natural textures, 

and classification of agricultural land-use classes. Six 

combinations of features were used in the experiments. Four of the 

combinations consisted of the texture features that have been 

developed here, while the fifth and sixth combinations were the four 

features from the SGLDM and the GLDM respectively.

The training process for the classifier designed here involved 

the computation of the mean values of features for the classes and 

the determination of feature weighting factors. The training and 

testing of the classifiers were performed in exactly the same way as 

in subsections 4.2.1 and 4.2.2. That is, for the natural textures, 

the same training and testing samples as in the previous experiment 

were used, while for the agricultural land-use identification, the 

method of leaving-four-out was also used. The classification results 

are shown in Tables T5.1 and T5.2. The corresponding results for the 

maximum likelihood classifier for the given feature combinations 

(extracted from Tables T4.2 and T4.3) are also included. The results 

show that, given the same feature set, the accuracy of the 

classifier developed in this work is much better than that of the 

Euclidean-distance classifier, and is not far below that of the 

maximum likelihood classifier.

The mean and normalized mean values of features for the five 

agricultural land-use categories, obtained in one of the five 

classification runs and for the feature combination of fcon, fbU S ,

f com and fstr» are giyen in Table T5.3 as an example. The 

corresponding weighting factors for each of the features are also
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Classification Accuracy of Classifiers (in Per Cent)
Features

Maximum
Likelihood
Classifier

Weighted-Feature
Minimum-Distance
Classifier

Euclidean-
Distance
Classifier

fcos
fbus

* **con 82.64 78.47 31.25

fcosfcom
* fcon
* fstr

81 .94 71.53 56.25

fconfcom
* ^bus
• **str

85.42 72.22 56.25

^cos
fbus

* fconf* 1 com
84.03 74.31 31.25

ASM, CON 
ENT, COR 
(SGLDM)

75.00 64.58 35.42

asm, 
ent,

con,
MN 81 .25 71.53 45.83

(GLDM)

Table T5-1

Accuracy of Classifiers in the Identification of Natural Textures
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Classifiction Accuracy of Classifiers (in Per Cent)
Features

Maximum Weighted-Feature Euclidean-
Likelihood Minimum-Distance Distance
Classifier Classifier Classifier

f f cos» A con
fbus

77 76 74

f f cos* Acon f r bus 9 1str
83 78 54

f *  f >con* Abus f f* com* Astr
81 78 68

f f cos’ Acon
^bus* **com

84 78 74

ASM, CON
ENT, COR 
(SGLDM)

83 72 47

asm, con
ent, MN 
(GLDM)

82 73 64

Table T5.2
Accuracy of Classifiers in Agricultural Land-Use Classification



Classes
Mean Values of Features Normalized Mean 

Values of Features

fcon ^bus f1 com ^str f1 con fbus ^com ^str
Wheat 0.08559 0.07088 0.76037 2.20420 0.02841 0.29245 0.00634 0.04544

Potato 0.19735 0.04669 1.91229 2.77607 0.06551 0.19265 0.01594 0.05723

Winter
Barley

0.28854 0.03279 5.19142 6.65104 0.09578 0.13530 0.04328 0.13710

Young
Coniferous
Trees

1.62469 0.06058 74.74767 22.18845 0.53929 0.24996 0.62313 0.45739

Coniferous
Trees under 
Planting

0.81648 0.03142 37.34303 14.69147 0.27102 0.12965 0.31131 0.30285

Feature Weighting Factors (Wk ): fcon (1.289); fbus (3.408); fcom (1.000); f3tr (1.431)

Table T5.3
Mean Values, Normalized Mean Values, and Weighting Factors 

of Features for Agricultural Land-Use Categories
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shown. For that particular run, the most effective feature in the 

classification decision making is fcom* Its effectivenes is about

3.4 times that of fjjU S » 1.43 times that of fstr, anc* 1*29 times that 

of fQOn; while the effectiveness of fcon is 2.65 times 

(i.e. 3.40/1.29) that of fbus.

5-3-2 Spectral Classification of Agricultural Land-Cover Types
For this application, ninety image blocks, each of size 32 x 32, 

were obtained from a multispectral image of an agricultural area, 

•situated near Gedney Hill, Lincolnshire, England. It is a 7-band 

Aerial Thematic Mapper (ATM) image. The ninety blocks belong to five 

agricultural land-cover classes: Orchard, Wheat, Potato, Spring 

Barley and Bare Soil. There were eighteen image blocks per class.

The mean spectral responses (gray levels) of the blocks in three of 

the bands (bands 3,5,7) were used as input features to the 

classifiers. These bands were considered because they were found in 

earlier work1 to be the three most decorrelated bands. A false 

colour composite2 of the three bands taken in black-and-white, and 

the ground truth map for the image, are shown in Fig. 5.1. The mean 

spectral responses in each of the three bands were computed for each 

of the blocks. The mean values for a block therefore constitute a 

sample feature vector. Thus, there are eighteen sample vectors for

xWork done by the Remote Sensing Group at Imperial College, in the 
classification of agricultural crop types for the given image 
using spectral signatures.
2The three bands were displayed as a colour image on a colour 
monitor by feeding the bands 7, 5 and 3 images into the red, 
green and blue channels of the monitor respectively.
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(a)

WHEAT

s p RlNG b a r l e y  
PASTURE

(b)

F ig . 5.1 (a ) ATM Image o f  A g r ic u ltu ra l Area
(b ) "Ground Tru th" Map fo r Image
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each category. Employing the classification technique of training on 

the data, and in this case leaving three out at a time, all the 

samples were classified in six runs of training and identification.

The classification results using the classifier developed here, 

the maximum likelihood classifier, and the Euclidean-distance 

classifier, are given in Table T5.1!. The results also show that the 

accuracy of the classifier designed here is comparable with that of 

the maximum likelihood classifier. The mean spectral responses for 

the five agricultural land-cover types, their corresponding 

normalized values, and the weighting factors for each of the three 

bands obtained in one of the classification runs, are given in Table 

T5.5. The weighting factors show that, using spectral responses, the 

five categories are most separable in band 7. The effectiveness of 

this band in classification decision is about 3.98 times that of 

band 3.

5-1* Conclusion

A minimum distance classifier based essentially on the Euclidean 

distance metric has been developed. In this scheme, the features are 

normalized such that they are constrained to take values betwen zero 

and one inclusive. The features are also weighted such that the 

contribution made by a feature in classification decision depends on 

its relative ability to discriminate between the classes. The 

classifier was used in three classification tasks in which the 

Euclidean-distance and maximum likelihood classifiers were also 

employed. In terms of accuracy, the classifier developed here is 

considerably better than the Euclidean-distance classifier, and



Number of Correctly Classified 
Samples per Class

Total Number of 
Correctly Classified 
Samples

Accuracy 
(in Per Cent)

Classifier
Type Orchard Wheat Potato Spring

Barley

Maximum
Likelihood 18 18 16 13

Feature-
Weighted
Minimum
Distance

18 16 10 17

Euclidean-
Distance 15 15 10 15

Bare Soil

18 83 92.22

18 79 87.78

16 71 78.89

Table T5.4
Accuracy of Classifiers in Spectral Classification 

of Agricultural Land-Cover Types

117



Class

Mean Spectral 
Responses

Normalized Mean 
Spectral Responses

Band 3 Band 5 Band 7 Band 3 Band 5 Band 7
Orchard 59.87 51.45 67.12 0.1727 0.1671 0.1986

Wheat 77.71* 74.12 52.98 0.2242 0.2407 * 0.1568

Potato 67.94 59.29 87.67 0.1959 0.1925 0.2594

Spring
Barley 69.85 60.24 93.22 0.2014 0.1956 0.2758

Bare
Soil 71.39 62.87 37.00 0.2059 0.2042 0.1095

Weighting Factors: Band 3 (3.982); Band 5 (2.893); Band 7 (1.000)

Table T5.5
Mean and Normalized Mean Values of Spectral Responses 

for Agricultural Land-Cover Types
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comparable to the maximum likelihood classifier. However, in terms 

of implementation and speed, the classifier designed here is better 

than the maximum likelihood classsifier. For example, for an 

m-dimensional feature space, the amount of computation performed by 

the maximum likelihood classifier is proportional to m (as the 

covariance and inverse covariance matrices used in decision making 

are m x m). For the classifier developed in this work, the amount of 

computation is, as for the Euclidean-distance classifier, 

proportional to m. Furthermore, the classifier presented here is 

simple to implement and requires no storage of matrices. Thus, this 

classifier has a high degree of accuracy and low computational cost.
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CHAPTER SIX

IMAGE SEGMENTATION VIA AGGLOMERATIVE CLUSTERING 
OF UNIFORM NEIGHBOURHOODS

6.1 Introduction
A number of approaches have been developed for the.segmentation 

of images. Some techniques seek within an image for points of abrupt 

changes or discontinuities in feature activity. Other techniques 

group together pixels which have sufficient degree of similarity in 

feature values, to form regions. In the development of a 

segmentation scheme, one may consider three conditions as being 

necessary for the good performance of the scheme. These conditions 

are particularly important for images of large scenes; for example, 

remotely sensed images of terrains.

(i) The method should be able to produce segmentation in which all 

areas corresponding to identical objects or to the same category, 

even if they are at different locations in the scene, appear the same 

in the segmented image.

(ii) The scheme should be able to use more than one feature 

simultaneously, as this enhances the characteristic differences 

between the different categories or objects.
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(iii) The approach should be able to partition a scene into a given 

number of categories or regions depending on the level of detail 

desired - the hierarchical order of importance referred to by Morris 

and Constantinides [52],

The segmentation methods with the ability to meet all the above 

stated conditions are the clustering techniques and the region 

growing schemes. Clustering methods, in general, are computationally 

expensive, and may also require considerable memory. Region growing 

schemes of the graph-theoretic type [34,52,56,70,71] are also very 

demanding as regards memory requirement, and could be computationally 

expensive as well. On the other hand, those region growing methods 

which first identify uniform areas in an image and then grow regions 

from them [4,35,44,53,54,60] are generally less expensive, both in 

terms of computation and memory requirement. However, this latter 

type of method has two major drawbacks. One is the production of 

many regions; thus pixels belonging to identical objects, or to the 

same category at different locations in the scene, may be labelled 

differently. A second problem is the determination of "similar 

enough" criteria.

However, one can combine the region growing concept of seeking 

uniform areas with clustering techniques, to produce a segmentation 

scheme in which an image can be partitioned into a specified number 

of categories or regions; at the same time, the cost of computation, 

and the memory requirement, are minimized. The present method 

follows this approach. A description of the method is given in 

section 6.2. An important parameter used in the scheme, and called 

the uniformity criterion, is discussed in subsection 6.2.1. There 

are two variants of the algorithm, which are described in subsections
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6.3.1 and 6.3.2. In section 6.4, the experimental results of 

segmentation are presented. Six different images were used as test 

images. These include: a human passport photograph, an X-ray image 

of part of a human hand, an outdoor scene, two satellite multi- 

spectral images of terrains, and a composite image consisting of 

parts belonging to three different texture classes. In the 

segmentations, spectral features, textural features, or a combination 

of both, were used, depending on the particular image. For the 

black-and-white and the monochrome images (passport photograph and 

X-ray), only the pixel gray levels were used as measures of 

brightness. Spectral features were employed in the case of the 

multispectral images, textural features for the composite image, and 

a combination of texture and brightness for the outdoor scene.

The conclusion to this chapter is given in section 6.5.

6.2 Segmentation Method

The segmentation method that has been developed in this work is 

a pixel classification based scheme employing clustering and region 

growing techniques. In this approach, the number of categories into 

which an image is to be partitioned is specified. The image is first 

divided into a number of non-overlapping neighbourhoods (square 

blocks). On the basis of a defined criterion (described in 

subsection 6.2.1), those neighbourhoods that could be considered 

uniform in terms of all features are located in an image. The mean 

feature values of such neighbourhoods constitute feature vectors, 

which are agglomeratively clustered to produce the mean feature 

vectors for the different categories present in the image. These 

mean feature vectors are then used to classify the image pixels.
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Two assumptions are made in this development. One is that there 

is at least one uniform neighbourhood representative of each of the 

categories present in the image. The second is that the feature 

vectors of neighbourhoods representative of a particular category are 

similar to each other, and different from those of neighbourhoods 

belonging to other categories.

Suppose an image is to be partitioned into n number of 

categories, and N number of uniform neighbourhoods are found in the 

image (N > n). Therefore, there are N feature vectors to be 

clustered. Using a normalized Euclidean distance as a measure of 

similarity, the two most similar feature vectors are determined.

These two vectors are considered to be from neighbourhoods belonging 

to the same category. The two vectors are ’’merged” together, and the 

number of vectors is reduced by one. This merging process is 

peformed iteratively until the number of mean feature vectors equals 

the specified number of categories. Thus, the merging process is the 

same as agglomerative clustering of the uniform neighbourhoods. At 

any stage in the iteration, a ’’resultant" mean feature vector, and 

the number of image pixels used in its determination, is as follows 

Consider and Xj to be the two most similar mean vectors. Let

be the number of pixels (already) used in determining X ^ ,  and Nj

the corresponding one for X j .

Given that the vectors are m-dimensional, defined by
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X i 1

xi2 * j 2

II■H
I
X

•
- x i k and Xj

•
=

1--
--
--
-

XI C_1
.

1 __
__

x i m E 1 
• 

IX
_________1

k = 1,2,...,m

the resultant mean value for the kth feature (component) resulting 

from the merging of and Xj is given by

xijk
îxik + ĵxjk

N i + N j

(6.1)

and the corrresponding resultant mean feature vector is

x i j 1

xij2
xijk

X.-ijm

(6.2)

The total number of pixels used in determining X . ■ is given by
A J
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In the experiments that were performed, the feature 

normalization procedure described in subsection 5.2.2 was used in the 

determination of the most similar vectors during the agglomerative 

clustering process. For the classification of the image pixels, the 

weighted-feature minimum distance classifier was employed. However, 

if a different kind of normalization and/or classifier is employed 

which requires the use of variances in feature values, the variance 

for the kth feature can be updated during the clustering iteration 

using the following expression:

s2ijk
N i<*ik + sik> + Nj<*jk + sjk>

N i + Nj

2
Xijk

(6.4)

where x^k and Xjk are the kth components of the ith and jth vectors 

(that is, the mean values of the kth feature for the ith and jth 

clusters); and s?k and s?k are the corresponding variances. The 

proof of equation (6.4) is given in Appendix A-ff.

6.2.1 Uniformity Criterion
The uniformity criterion as used in the experiments is defined 

as follows:

A neighbourhood (block) is considered to be uniform provided 

that the ratio of the minimum of the mean feature value for the 

neighbourhood and the corresponding value for a quarter of the
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neighbourhood to the maximum of the two mean values be no smaller 

than a certain threshold, a, for all features and for each of the 

quarters, i.e.

min neighbourhood* fquarter^---- -------------- --------  > a
max {fneighbourhood* fquarter^

for all features 
and for each 
of the quarters

where fneighbourhood = mean feature value for neighbourhood

fquarter = mean feature value for a quarter 

a is the threshold

The criterion implies that, for a neighbourhood to be considered 

uniform, there should be no significant difference between the mean 

values of features for the neighbourhood and for each of its 

quarters. Chen and Pavlidis [9] also suggest this type of criterion 

for determining region uniformity.

6*3 Segmentation Algorithms

A satisfactory peformance of the segmentation technique 

described depends to a considerable extent upon the two parameters, 

uniformity criterion and neighbourhood size. Either or both of them 

may be varied. In one implementation of the scheme, the sizes of 

neighbourhood were the same and fixed, while the uniformity criterion 

was varied. This is Algorithm I. In a second approach, Algorithm 

II, the uniformity criterion was fixed and the size of neighbourhood 

varied from one part of the image to another.
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6.3.1 Algorithm I: Fixed Neighbourhood Size and Variable 
Uniformity Criterion

The choice of a value for the uniformity criterion is very 

important. A satisfactory value would lead to reasonably good 

segmentation results, as well as a reasonable cost of computation.

Too relaxed a criterion may lead to the detection of many uniform 

neighbourhoods; consequently, many feature vectors would be used in 

the clustering iteration, and the process would take a long time. On 

the other hand, if the criterion is too strict, only a few 

neighbourhoods may be considered uniform, and all may well belong to 

the same category, or to a number of categories less than that 

desired. This would lead to poor results. Thus, a compromise has to 

be reached between a large number of detected uniform neighbourhoods 

as a result of too relaxed a criterion, and a few uniform 

neighbourhoods due to too strict a criterion.

A constraint was therefore introduced specifying the allowable 

maximum and minimum number of neighbourhoods that could be considered 

uniform. (In practice, it is desirable that this minimum is greater 

than the number of categories.) Thus, on the basis of these 

constraints, the initially stated value of a then becomes only a 

starting value, to be referred to as the starting uniformity 

criterion. Depending on the situation, it is either increased or 

decreased. An increase corresponds to making the criterion stricter, 

and a decrease represents a relaxation of the criterion. A flow 

chart of the algorithm is shown in Fig. 6.1.
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INPUT IMAGE

OUTPUT
SEGMENTATION

Fig. 6.1 Flow Chart of Segmentation Algorithm I.
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6.3-2 Algorithm II: Variable Neighbourhood Size and Fixed 

Uniformity Criterion

The size of neighbourhoods used in seeking uniform areas is 

another parameter which is of fundamental importance in the 

segmentation scheme described here. Too large a size of neighbour

hood may result in a small number of mutually exclusive neighbour

hoods in the image, and many of these may well consist of parts 

belonging to different categories. Hence, they will be non-uniform. 

On the other hand, very small neighbourhoods are likely to be 

uniform. A large number of uniform neighbourhoods would be detected, 

resulting in a large number of vectors being clustered. This would 

be computationally expensive. In Algorithm I, the uniformity 

criterion would be made stricter in such situations under the imposed 

constraint of the allowable maximum number of uniform neighbourhoods.

However, in images where areas belonging to some categories are 

very uniform and large, and those belonging to other categories are 

not so uniform, no uniform neighbourhoods may be found for the latter 

categories. This is because, as the criterion is made stricter and 

stricter, it may become so stringent that uniform neighbourhoods are 

not found for some categories. As a result, these categories are 

missed out, and pixels belonging to them would be misclassified, 

leading to very poor results. Moreover, a feature vector obtained 

from a very small neighbourhood may not be a good representative of 

the particular category to which the neighbourhood belongs, 

especially if this is the only neighbourhood found for that category.

Thus, it is possible that the neighbourhood size which produces 

reasonably good results in one application may perform poorly in 

another. One solution to the problem is to use varying sizes of 

neighbourhoods for different parts of the image, depending on the
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degree of uniformity. For areas with a high level of uniformity, 

large neighbourhoods can be used, and smaller sizes for the not-so- 

uniform areas. This is done in Algorithm II. Varying sizes of 

neighbourhoods are obtained using a quad-tree approach.

The image is first divided into mutually exclusive 

neighbourhoods of size N-j x . Each is tested for uniformity. 

Non-uniform ones are subdivided into four blocks, each of size 

N2 x N2 (N2 = N^/2). The four blocks are tested for uniformity.

Any one not found to be uniform is again split into four parts, each
p

of size Ng x Ng (N^ = N2 /2 = N-|/2 ), and each part is tested.

The splitting and testing for uniformity is continued until the 

desired smallest neighbourhood size Nn x Nn is reached, where 

Nn = N.|/2n“ ^. The x N 1 neighbourhood constitutes the largest

search block for seeking uniform areas in the image, and corresponds 

to the level 1 neighbourhood of the quad-tree. The Nn x Nn 

neighbourhood is the smallest search block, and corresponds to the 

level n neighbourhood of the quad-tree. A flow chart of the 

algorithm is shown in Fig. 6.2.

6.4 Segmentation Experiments and Results

The feasibility of the segmentation techniques developed here 

was evaluated using six different images as test images. These 

include: two satellite multispectral images of terrains; a human 

passport photograph; an X-ray image of part of a human hand; an 

outdoor scene; and a composite image of three texture types. The 

passport photograph, X-ray image and composite texture image are
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Fig. 6.2 Flow Chart of Segmentation Algorithm II.
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256 x 256 images, while the outdoor scene and multispectral images 

are of size 512 x 512. One of the multispectral images is a 

Landsat multispectral scanner (MSS) image, while the other is a 

thematic mapper (TM) image. The passport photograph and X-ray image 

are gray tone dominated images; that is, they consist of parts that 

are essentially different only in their levels of brightness.

In all the experiments, the values of the required segmentation 

parameters were fixed as follows:-

Algorithm

Starting Uniformity Criterion, a:

Incremental/Decremental Value :

Neighbourhood Size:

Allowable Maximum Number of 

Uniform Neighbourhoods:

(i) Images of Size 512 x 512 - 

One-third of the number of mutually exclusive 

neighbourhoods in image (i.e. one-third of 

1024 = 3^1)

(ii) Images of Size 256 x 256 - 

Three-quarters of the number of mutually exclusive 

neighbourhoods in image (i.e. three-quarters of 

256 = 192)

Allowable Minimum Number of

I
0.95 

0.001 

1 6 x 16

Uniform Neighbourhoods: One-third of the allowable maximum
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Algorithm II

Uniformity Criterion, a: 0.97

Largest Search Neighbourhood (N1 x ): 64 x 64

Smallest Search Neighbourhood (Nn x Nn ): 16 x 16

6.4.1 Segmentation of Multispectral Images 
(a) Multispectral Scanner (MSS) Image

The MSS image is a scene in West Central Nigeria - Kainji Lake 

and its surrounding lands. The images in three of the spectral bands 

(bands 4, 5 and 7) were used in the experiment. These images are 

shown in Fig. 6.3(a-c). A human expert who is familiar with the 

area, and who is also a remote sensing scientist, supplied the 

"ground truth information” . For this image, the expert categorized 

the area into four main land-cover types. These are:

(1) water body (i.e. Lake Kainji and parts of the river Niger)

(2) areas of good vegetation (tree cover)

(3) areas corresponding to burnt grassland

(4) farmlands

The expert also identified areas in other portions of the 

Landsat image (not part of the test image) that are representative of 

each of the four categories. The mean spectral responses from these

areas are as follows:
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(a) Band 4 (c) Band 7

F ig .  6 .3  ( a - c )  T e st L an d sa t MSS Image
(d ) F o u r-C a te go ry  P a r t i t io n  o f  MSS Image 

by Su p e rv ise d  C l a s s i f i c a t i o n  u s in g  
T r a in in g  A reas P rov ided  by Expert
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Band 4 Band 5 Band 7 Category

85.75 115.32 46.13 Water Body
61.36 79.73 82.74 Tree Cover
60.92 78.52 70.01 Burnt Area
65.05 87.06 88.67 Farmland

Table T6.1
Mean Spectral Responses of Representative 

Area of Each Category

These mean values were used in the classification of the pixels. 

The resulting segmentation is shown in Fig. 6.3(d). The image was 

partitioned using the two algorithms. For Algorithm I, two other 

neighbourhood sizes, 12 x 12 and 14 x 14, were also used, in addition 

to the 16 x 16 size, to investigate the effect of different 

neighbourhood sizes on the results. Thus, the image being of size 

512 x 512, the allowable maximum number of uniform neighbourhoods for 

these two neighbourhood sizes corresponds to 588 and 432 

respectively.

The mean spectral responses obtained from the algorithms for the 

four categories are given in Table T6.2. The corresponding 

segmentations are shown in Fig. 6.4(a-d). The CPU process times for 

each segmentation are also indicated for a VAX 11/780, Version VMS 

•4.1 computer. It is seen, from Table T6-.2, that the mean spectral 

responses obtained from both algorithms are very similar, and close 

to those obtained from the representative areas provided by the 

expert (Table T6.1). In Table T6.3, the number of neighbourhoods 

considered uniform in Algorithm I at the initial value of a (i.e.

0.95), and for the three neighbourhood sizes, is presented. The
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(a) 12 x 12
(CPU Time: 22 mins 46.09 secs)

(b) 14 x 14
(CPU Time: 12 mins 56.15 secs)

(c) 16 x 16
(CPU Time: 8 mins 29.67 secs)

(d)
(CPU Time: 7 mins 33.35 secs)

Fig. 6.4 Four-Category Partitions of MSS Image Generated 
by Algorithms:
(a-c) Algorithm I for the three neighbourhood sizes
(d) Algorithm II
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NEIGHBOURHOOD MEAN SPECTRAL RESPONSES CATEGORY TYPE
SIZE BAND 4 BAND 5 BAND 7

85.66 119.33 46.13 Water Body
61.67 80.24 83.49 Tree Cover

12 x 12 62.16 79.23 69.72 Burnt Area
65.38 87.89 89.57 Farmland

85.54 119.06 46.17 Water Body
62.59 81.86 84.65 Tree Cover

14 x 14 60.76 78.40 69.24 Burnt Area
66.07 89.55 90.41 Farmland

85.73 119.27 46.12 Water Body
61.50 79.87 82.45 Tree Cover

16 x 16 61.03 78.84 70.47 Burnt Area
65.06 87.08 88.57 Farmland

(a)

BAND 4 BAND 5 BAND 7 CATEGORY TYPE

85.72 119.29 46.22 Water Body
62.73 81.96 83.72 Tree Cover
60.95 78.46 72.09 Burnt Area
65.79 89.01 87.72 Farmland

(b)

Table T6.2
Mean Spectral Responses Obtained for the Four Categories
(a) from Algorithm I for the Three Neighbourhood Sizes
(b) from Algorithm II
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NEIGHBOURHOOD NUMBER OF UNIFORM 
SIZE NEIGHBOURHOODS

AT a  = 0.95

12 x 12 1085

14 x 14 773

1 6 x 16 574

FINAL NUMBER OF FINAL
NEIGHBOURHOODS VALUE
CONSIDERED 
UNIFORM UNDER 
THE ALLOWABLE 
MAXIMUM CONSTRAINT

OF a

581 0.982

417 0.976

319 0.969

Table T6.3
Initial and Final Number of Neighbourhoods 

for the Three Neighbourhood Sizes
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final number of neighbourhoods considered uniform under the allowable 

maximum constraint, and the corresponding final value of a, are also 

included in this table. In Algorithm II, 221 feature vectors were 

clustered.

In one other investigation, two experiments were performed to 

determine how well the algorithm can partition an image depending 

upon the desired level of detail. In this regard, the following 

question was posed to the expert:

"If you were to partition this test image into

(i) three categories and

(ii) five categories

with each category being a significant proportion of the image, what 

would be the partitions?"

His answer is given below.

(i) For three-category partition:-

(c) Areas with plant cover, comprising the two categories of

farmland and tree cover, because one would consider these two to 

be most similar in physical terms, as well as in reflectance 

values

(ii) For five-category partition:-
(a) Tree cover area remains the same

(b) Burnt area remains the same

(c) Farmland remains the same

(d) Silt water (a split of the category

(e) Clear Water

(a) Water body remains the same

(b) Burnt area remains the same

of water body)
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MEAN SPECTRAL ]RESPONSES CATEGORY TYPE
BAND 4 BAND 5 BAND 7

85.76 119.33 46.13 Water Body
Algorithm I 60.92 78.52 70.01 Burnt Area

63.76 84.46 86.58 Areas with
Plant Cover

85.72 119.29 46.22 Water Body
Algorithm II 60.95 78.116 72.09 Burnt Area

63.68 811.14 85.81 Areas with
Plant Cover

(a)

MEAN SPECTRAL ]RESPONSES CATEGORY TYPE
BAND 4 BAND 5 BAND 7

83.12 113.68 44.43 Silt Water
86.25 120.39 46.45 Clear Water

Algorithm I 61.38 79.73 82.74 Tree Cover
65.06 87.06 88.67 Farmland
60.92 78.52 70.01 Burnt Area

82.79 113.41 43.98 Silt Water
86.32 120.84 47.03 Clear Water

Algorithm II 62.58 81 .93 83.70 Tree Cover
65.78 89.05 87.97 Farmland
61.02 78.49 72.13 Burnt Area

(b)

Table T6.4
Mean Spectral Responses Obtained from Algorithms
(a) Three-Category Partitions and
(b) Five-Category Partitions
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(a) Algorithm I 
(CPU Time: 7 mins 36.13 secs)

(c) Algorithm I 
(CPU Time: 9 mins 44.05 secs)

(d) Algorithm II 
(CPU Time: 8 mins 19.63 secs)

Fig. 6.5 (a and b) Three-Category Partitions of
MSS Image

(c and d) Five-Category Partitions of 
MSS Image
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In the first experiment, the number of categories present in the 

image was put at three. The mean spectral responses for the three 

categories are given in Table T6.1J(a) for the two algorithms, and the 

corresponding segmentations are shown in Fig. 6.5(a) and (b). It is 

seen that the areas corresponding to the farmland and tree cover 

categories have been compounded into one, with the boundaries of the 

areas corresponding to water body and burnt area remaining more or 

less the same.

In the second experiment, the number of categories was put at 

five. The -mean spectral responses for the categories are shown in 

Table T6.Mb). The segmentations (Fig. 6.5(c-d)) show the 

partitioning of the lake into two categories, while the boundaries of 

the categories of tree cover, burnt area and farmland remain more or 

less unchanged (compare Fig. 6.5(a-d) with Fig. 6.4(a-d)).

(b) Thematic Mapper Image
This is an image of a part of the east coast of Spain. The gray 

levels in three of the spectral bands (bands *1, 5 and 7) were also 

used as input features for the segmentation. The three bands are 

shown in Fig. 6.6(a-c). The sea is clearly identifiable in the 

images. A false colour image of the scene showed a dominance of four 

colours in the land portion. This indicated the presence of four 

major land-cover types in this part of the image. Thus, including 

the sea, there are five categories in all. However, as there was no 

ground truth information available for this image, these land-cover 

types could not be identified.
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Fig. 6.6 Test Thematic Mapper Image
(a) Band 4 (b) Band 5 (c) Band 7
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(a) (CPU Time: 10 mins 34.80 secs)

(b) (CPU Time: 6 mins 17.64 secs)

Fig. 6.7 Five-Category Partitions of TM Image 
Generated by:
(a) Algorithm I
(b) Algorithm II
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The two algorithms were applied to the image and the number of 

categories specified was five. For Algorithm I, the number of 

uniform neighbourhoods found in the image at the starting a value 

(0.95) was 480. The final number under the allowable maximum 

constraint was 278; while for Algorithm II, the number of vectors 

that was clustered was 173. The segmentations are shown in Fig. 

6.7(a) and (b). The respective CPU times are also indicated.

Clearly, the segmentation result from Algorithm I for this image is 

poor. The reason for this is that no uniform neighbourhood was found 

for one of the categories in the land portion of the image, as the 

uniformity criterion became very stringent under the allowable 

maximum constraint. The sea was instead split into two categories.

6.4.2 Segmentation of Gray Tone Dominated Images
In these images, the only information available for segmentation 

is brightness. Thus, the input features for segmentation were the 

gray levels of the image pixels.

(a) Passport Photograph

The photograph is shown in Fig. 6.8(a). In this image, the 

number of categories easily identified as having different average 

brightness levels depends upon the level of detail that is desired, 

but there are about five brightness levels that are dominant. The 

two algorithms were applied to the picture, with the number of 

categories put at four. However, for this kind of image, a 

segmentation showing outlines of boundaries is more desirable. In 

this regard, an edge detection operation was performed on the outputs
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(a)

(b) Algorithm I 
(CPU Time: 50.01 secs)

(c) Algorithm II 
(CPU Time: 42.34 secs)

Fig. 6.8 (a) Passport Photograph
(b and c) Four-Category Segmentations 

of Passport Photograph
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(a) Algorithm I 
(CPU Time: 51.06 secs)

(b) Algorithm II 
(CPU Time: 43.28 secs)

(c) Algorithm I 
(CPU Time: 54.36 secs)

(d) Algorithm II 
(CPU Time: 45.22 secs)

Fig. 6.9 (a and b) Five-Category Segmentations of
Passport Photograph

(c and d) Six-Category Segmentations of 
Passport Photograph

>
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from the algorithms. These results are shown in Fig. 6.8(b) and

(c). The results from both algorithms are similar. The indicated 

CPU times are the "actual" segmentation times; that is, they do not 

include those for the edge detection operations.

The experiments were repeated putting the number of categories 

at five and six respectively, so as to increase the level of detail. 

The corresponding segmentations are shown in Fig. 6.9(a-d). A 

comparison of the four-category partition and the five-category case 

for each algorithm (i.e. Fig. 6.8(b) and Fig. 6.9(a); Fig. 6.8(c) and 

Fig. 6.9(b)) shows that there is an increase in the number of 

boundaries in the five-category partitions, but with the boundaries 

produced in the four-category segmentations remaining relatively 

unchanged. The same trend is shown for the five-category and 

six-category cases.

(b) X-ray Image

This is an image of a human wrist. For this image, shown in 

Fig. 6.10(a), the main objective was to identify the outline between 

the bones and their fleshy background. The image consists of two 

bones, which have essentially the same level of brightness. In the 

background, two regions of different average brightness can be 

noticed. Thus, in all, there are three categories in the image with 

different average brightness levels, with the bones being the 

brightest regions.

In the segmentation experiments, therefore, the number of 

categories was put at three. However, as the interest was to 

distinguish the bones from the background, a condition was imposed on 

the algorithms such that, after clustering, only the two highest 

average gray level values were used in classifying the pixels. These
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(b) Algorithm I 
(CPU Time: 51.47 secs)

(c) Algorithm II 
(CPU Time: 46.14 secs)

Fig. 6.10 (a) X-ray Image
(b and c) Segmentations of X-ray Image
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two values therefore correspond to the bones and the brightest part 

of the background. An edge detection operation was then performed on 

the output of the algorithms to produce the boundary outlines. The 

overall segmentation results are shown in Fig. 6.10(b) and (c). The 

CPU times for the overall segmentations are also indicated.

6.4.3 Segmentation of Outdoor Scene
The outdoor scene, shown in Fig. 6.11(a), is a picture of a man 

walking across a garden. The image is a fairly complex one, 

consisting of many component regions. However, the number of regions 

of interest depends upon the level of description that is desired. 

Most of the regions differ in texture as well as in average 

brightness. Therefore, the image was segmented on the basis of both 

texture and brightness. The two textural features described in 

section 4.3 were employed. Feature window and characterization 

window sizes of 5 x 5 and 25 x 25 respectively were used. The 

average gray level in the characterization window was used to 

represent the level of brightness at each image point.

The image was first partitioned into five categories.. These 

partitions, using both algorithms, are shown in Fig. 6.11(b) and (c). 

The corresponding boundary outlines are in Fig. 6.11(d) and (e). The 

image was also partitioned into six and seven categories in order to 

increase the level of description. The boundary outlines of the 

resulting segmentations are shown in Fig. 6.12(a-d). The indicated 

CPU times are the times for the "actual" segmentation operations; 

that is, for the textural feature computation and application of 

algorithms. They do not include those for the outlining of

boundaries.
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(b) Algorithm I 
(CPU Time: 38 mins 26.38 secs)

(d)

(c) Algorithm II 
(CPU Time: 36 mins 4.30 secs)

(e)

Fig. 6.11 (a) Outdoor Scene
(b and c) Five-Category Partitions of Outdoor 

Scene
(d and e) Boundary Outlines of Five-Category 

Partitions
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(a) Algorithm I 
(CPU Time: 39 mins 19.92 secs)
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(b) Algorithm II 
(CPU Time: 36 mins 54.54 secs)

(c) Algorithm I 
(CPU Time: 40 mins 34.30 secs)

(d) Algorithm II 
(CPU Time: 38 mins 4.38 secs)

Fig. 6.12 Boundary Outlines of Six-Category and
Seven-Category Partitions of Outdoor Scene 
(a and b) Six-Category Partitions 
(c and d) Seven-Category Partitions
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6.11.4 Segmentation of Composite Textured Image

This composite image, shown in Fig. 6.13(a)» consists of three 

regions of different textures. Two of the regions are very similar 

in terms of coarseness, but fairly different in their levels of 

contrast. As mentioned in section 4.5, the two textural features 

developed in this work for segmentation may not be able to 

discriminate between the two regions satisfactorily. A feature that 

is strongly related to contrast is needed. The variance in gray 

level values as a feature was also suggested in the above mentioned 

section.

In this regard, the variance in gray level values in the 

characterization window centred on each pixel was used as an 

additional feature. As in the previous experiments, the feature and 

characterization window sizes were 5 x 5  and 25 x 25 respectively. 

The segmentation results for the image are shown in Fig. 6.13(b) and

(c).

6.5 Conclusion

A segmentation method is presented which combines clustering 

with the region growing concept of locating uniform areas in an 

image. Essentially, the technique involves the computation of the 

mean feature values of uniform neighbourhoods in an image. These 

mean feature values are agglomeratively clustered to produce the mean 

feature vectors for the different categories present in the image, 

and these vectors are then used to classify the pixels. The 

clustering process introduces the notion of hierarchy.

The method has been applied to the partitioning of six different 

images, including three at different levels of description (i.e. 

number of categories specified), with considerable success. The
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(CPU Time: 13 mins 14.74 secs) (CPU Time: 10 mins 52.07 secs)

F ig .  6.13 (a )  Com posite Textured  Image
(b and c )  Segm entation s o f  Com posite Textured  Image
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choice of the two parameters used in the scheme - neighbourhood size 

and uniformity criterion - is of paramount importance, particularly 

in relation to accuracy and cost of computation. Either or both of 

these parameters can be varied.

In this regard, two algorithms were designed for the 

implementation of the scheme. In Algorithm I, a fixed neighbourhood 

size was used for all parts of the image, while the uniformity 

criterion was varied subject to some constraints. In Algorithm II, 

the uniformity criterion was fixed, while the size of neighbourhood 

was varied from one region of the image to another, depending on the 

degree of uniformity. This variation in neighbourhood size was 

accomplished using a quad-tree approach.

The results obtained in the segmentation of the different images 

used in the experiments confirm the general applicability of the 

approach presented in this work. The CPU process times for the 

segmentations indicate the feasibility of the method for real-time 

applications. Algorithm II, in addition to being very fast, also 

produces more accurate segmentations than Algorithm I. This is 

therefore the recommended algorithm for the implementation of the 

technique described here.

The choice of the largest and smallest search neighbourhoods 

depends upon the degree of uniformity, as well as the anticipated 

sizes of the categories in the image. The sizes of the categories 

may in turn be dependent upon the level of description desired. For 

instance, if the desired level of detail is high, the areas 

corresponding to some of the categories may be small. In such 

situations, it is only natural that the size of the smallest search 

neighbourhood should be small. On the other hand, the size of the 

largest search neighbourhood should be large if areas corresponding
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to some categories are very uniform and make up a significant 

proportion of the image. This would ensure that the number of 

feature vectors obtained from such areas is small, and consequently 

minimize the cost of computation.

Moreover, the value of the uniformity criterion may be dependent 

upon the desired level of splitting of non-uniform neighbourhoods - 

in other words, upon the size of the smallest search block. In 

general, a very small neighbourhood is likely to be uniform. 

Therefore, the smaller the size of the smallest search neighbourhood, 

the stricter could be the criterion. Alternatively, different values 

of the uniformity parameter may be used at different levels in the 

quad-tree splitting of non-uniform neighbourhoods, with the value 

increasing (i.e. making the uniformity criterion stricter) with 

increased level of splitting. With careful selection of the 

parameters; namely, sizes of the largest and smallest search 

neighbourhoods, and uniformity criterion, it is expected that the 

scheme can be applied to segment any kind of image at reasonable cost 

and with satisfactory accuracy.
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CHAPTER SEVEN

CONCLUSIONS

The problem of scene interpretation at low cost has been 

investigated. Attention has been focu^eS on three aspects of scene 

interpretation: namely, texture characterization, design of image 

classifier, and image segmentation. Attempts have been made to 

develop computationally-efficient and generally-applicable methods in 

order to minimize cost, at the same time ensuring that the methods 

are satisfactory with respect to accuracy of analysis.

In the area of texture characterization, the two issues of 

texture classification and textural segmentation were considered.

With regard to texture classification, five features were developed. 

These features, though statistical, were derived from the conceptual 

relationship of some textural properties to spatial changes in 

intensity or gray tones. These properties are: coarseness, contrast, 

busyness, complexity, and strength of texture. Each property was 

conceptually defined in terms of spatial changes in image gray tones, 

and the conceptual definition was approximated in computational form 

to produce the related textural feature. The features are quickly 

computable, and their computation requires much less memory than 

other systems.

The features were applied in two sets of experiments that also 

involved human perceptual measurements. One set of experiments 

involved the rank ordering of ten natural textures by human subjects 

using each of the five textural properties. The computer performed 

the same task using the features that have been developed. The second
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set of experiments was the measurment of similarity between different 

textural patterns by humans, and also by the computer, the latter 

using certain combinations of the features. With respect to ranking, 

there was a high level of correspondence between the perceptual and 

computational measurements. For the texture similarity measurements, 

the most similar pattern was correctly identified by the computer for 

five or more of the ten textures. This degree of correspondence, 

while not as good as in the case of ranking, is nevertheless very 

encouraging, particularly with regard to the result of similar 

experiments described in [7^]. Better classification accuracy was 

also obtained using the features developed here, as compared with the 

methods of Haralick et al [32] and Weszka et al [80]. Moreover, in 

terms of cost, the computation of these features is considerably less 

expensive when compared with the other two methods.

For textural segmentation, two features were also developed. The 

application of these features in the segmentation of a number of 

images produced satisfactory results. A distribution-free classifier 

based upon the Euclidean distance metric was also designed. In this 

design, features are constrained to take values between zero and one 

inclusive. Features are also weighted such that the effectiveness of 

each feature in classification decision depends upon its relative 

ability to discriminate between the classes. The classifier has a 

level of accuracy which is comparable with that of the maximum 

likelihood classifier. The design is simple, and it is considerably 

faster than the maximum likelihood classifier in terms of speed.

Thus, the classifier which has been designed here has a high level of 

accuracy, at low computational cost.
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In the area of image segmentation, a method was developed which 

combines the concept of clustering with the region growing concept of 

locating uniform areas in an image. The technique involves the 

computation of the mean feature values of uniform neighbourhoods in 

an image. These mean feature values are agglomeratively clustered to 

produce the mean feature vectors for the different categories present 

in the image, and these vectors are then used to classify the image 

pixels. The clustering process introduces the notion of hierarchy. 

The method was successfully applied to segment six different images, 

three of them at different levels of description. Two algorithms 

were designed for the implementation of the segmentation scheme, 

varying either one of the two parameters used in the scheme, i.e. 

uniformity criterion and neighbourhood size. In Algorithm I, the 

same neighbourhood size is used for all parts of the image, while the 

uniformity criterion is varied subject to some constraints. In 

Algorithm II, the uniformity criterion is fixed at a given value, and 

the size of neighbourhood varied from one part of the image to 

another, depending upon the degree of uniformity. This variation in 

neighbourhood size is accomplished using the approach of a quad-tree. 

The CPU process times for different applications indicate the 

feasibility of the approach for use in real time, in particular with 

regard to Algorithm II. This algorithm is very fast, and also has 

better accuracy; therefore it is the recommended algorithm for the 

implementation of the segmentation method.

Suggestions for Further Work
As indicated by the better classification accuracy obtained 

using the features developed in this thesis, it is highly desirable 

that further efforts are directed towards the development of
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perception-related textural features. Perhaps, in this regard, more 

work needs to be done in the psychological field, to provide a better 

understanding of the visual perception mechanism. Also, the problem 

of texture characterization with respect to segmentation needs much 

more attention than it has hitherto been given.

In the area of classifier design, further research is needed to 

investigate the use of other simple measures of similarity (other 

than the Euclidean distance metric) in a framework similar to the 

classifier developed here. This is necessary, as the results 

obtained using this classifier show that high levels of accuracy can 

be achieved using simple designs, and at minimal computational cost. 

In this respect, the use of other kinds of criteria for feature 

weighting also deserves investigation, particularly those criteria 

which take into consideration the overlaps or variances in feature 

values; for example, the Fisher’s distance.

With regard to segmentation, the use of high-level information 

or knowledge for the improvement of results needs investigation. In 

other words, effort is needed to develop segmentation algorithms that 

are self-tuning; that is, algorithms that are capable of employing 

high-level knowledge to modify the segmentation process in one way or 

another until acceptable or reasonable results are obtained. 

High-level knowledge may consist of topological descriptors [25], or 

other kinds of information that can be adequately described. Such 

information may include: the expected sizes of the categories/ 

regions, their shapes, the angular position of one desired region 

with respect to another, or the distance between any two regions.
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Furthermore, such information should be made to have some 

relationship to segmentation parameters; therefore, depending upon 

the results obtained, these parameters are modified and the relevant 

stage(s) of the segmentation process repeated. Systems using such 

algorithms would then be capable of asking the question: "Is this 

segmentation result reasonable, and if not, why is it not reasonable, 

and which parameter and/or stage of the process should be modified?" 

With an adequate knowledge base, greater accuracy would be realized, 

and more complex problems, such as the analysis of dynamic scenes, 

would be made easier.
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APPENDIX A-1

FREQUENCY OF RANKS AND TEXTURE SIMILARITY ASSIGNMENTS 

A) Frequency of Ranks
In Table T-A1.1(a-e), the frequencies of ranks for the ten 

textures are presented. These are the same as the number of subjects 

who gave a particular rank to each of the textures. A blank in the 

table indicates zero frequency.

Ranks
(k) A

Frequency of 
B C D

Ranks
E

for
F

Each
G

Texture 
H I J

1 40 1 47

2 26 1 24 36 1

3 18 1 2 57 4 1 5

4 2 2 14 3 2 5 3 50 7

5 2 5 26 1 1 27 7 11 7

6 24 12 1 22 18 5 5

7 26 14 2 1 22 21 3

8 21 10 3 8 26 6 13

9 7 8 15 3 1 11 4 39

10 2 2 62 1 1 3 17

(a) Coarseness
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Ranks Frequency of Ranksi for Each Texture
(k) A B C D E F G H I J

1 1 11 2 6 2 58 5 3

2 4 10 1 41 5 11 9 3 4

3 8 5 21 11 15 1 18 8 1

4 7 5 15 6 12 3 20 15 5

5 3 6 8 4 6 21 2 20 11 7

6 3 10 11 8 20 4 7 13 8

7 12 27 3 2 5 7 2 6 10 14

8 10 23 5 3 2 5 2 2 13 23

9 26 6 2 28 1 1 3 1 4 16

10 19 1 2 44 2 2 11 7

(b) Contrast

Ranks Frequency of Ranksi for Each Texture
(k) A B C D E F G H I J

1 2 10 39 4 9 3 9 2 10

2 10 9 6 2 15 5 20 2 19

3 16 13 9 3 15 2 15 7 8

4 2 21 11 6 1 11 1 15 11 9

5 1 18 6 2 4 20 2 12 16 7

6 2 9 21 6 7 14 4 4 16 5

7 8 4 10 4 4 4 7 10 25 12

8 12 6 5 2 39 15 3 1 5

9 19 3 5 21 29 2 9

10 1)4 2 9 3 20 6 4

(c) Busyness



1
2

3

4

5

6

7

8
9

10

J

7

2
5

7

2
10

10

7

22
16

164

Frequency of Ranks for Each Texture
A B C D E F G H I

7 23 7 3 14 18 4 5

1 10 9 6 14 11 8 19 8

4 10 15 9 7 7 8 12 11

9 8 7 5 14 15 4 10 9

6 5 8 7 7 15 8 9 21

12 6 10 6 6 8 7 15 8

9 16 7 4 9 5 4 11 13

19 9 4 6 13 10 9 6 5

16 11 3 7 11 3 11 2 2

12 6 2 31 4 11 6

(d) Complexity
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Ranks Frequency of Ranks for Each Texture
(k) A B C D E F G H I J

1 8 23 1 6 48 2

2 8 10 3 37 1 16 10 3

3 33 2 11 5 14 1 9 7 5 1

4 10 6 18 12 8 5 11 10 8

5 11 11 5 6 6 15 1 21 9 3

6 8 6 4 13 5 16 12 21 3

7 5 25 6 8 4 14 3 6 14 3

8 4 20 7 9 4 14 1 10 10 9

9 1 15 21 15 5 9 3 19

10 3 4 22 4 2 11 42

(e) Texture Strength 

Table T-A1.1
Frequency of Ranks for Textures 

Using Texture Properties

B) Frequency of Similarity Assignments
The frequency of assignment of a given texture (i.e. the number 

of subjects who considered a given texture as most similar to, or 

second most similar to, a reference texture) is shown in Table 

T-A1.2. The frequencies are in two columns for each texture. The 

first column is for the assignment as a most similar texture to the 

reference one, while the second column is for the assignment as the 

second most similar one. For instance, 58 subjects considered 

texture F to be most similar to texture B, while 25 subjects



considered it as the second most similar. Again, a blank indicates 

zero assignment.

Reference

Texture • A B C D E F G H I J

A 2 2 1 50 32 2 3 26 46 6 3 1 2

B 5 2 2 58 25 1 2 27 42 1 11

C 1 4 9 10 56 4 1 66 8 6 11

D 1 1 2 6 12' 41 1 1 1 54 23 3 4 15 11

E 14 64 1 1 2- 7 71 14 1 1

F 46 36 1 4 37 39 4 10

G 3 73 2 1 1 2 81 3 5 1 1 2 1

H 3 9 44 30 32 37 3 5 2 6 5

I 1 1 38 36 2 4 1 4 2 1 43 36 1 6

J
__________________

26 28 2 19 8 36 26 2 4 20 1 4

Table T-A1.2
Frequency of Assignments of Textures 

as Most Similar and Second Most Similar 
to Reference Texture
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APPENDIX A-2

THE MINIMUM ERROR-RATE (MAXIMUM LIKELIHOOD) CLASSIFIER

The classifier design is such as to obtain minimum rate of 

misclassification.

Let X be a d-dimensional column vector representing the features 

of a sample. The d-dimensional conditional Gaussian density function 

for X, given class i, with mean feature vector M̂  ̂ and covariance 

matrix E.̂ , is given by

gi(X) = (2Tr)"d/2llil”1/2 exp[-1/2(X - Mi)tli1(X - M ^ ]  (A2.1)

where E ^  is the inverse of the matrix E^. It is assumed that the 

matrix is non-singular.

IE^I is the determinant of E ^  and the superscript t denotes the 

transpose of a matrix.

It is shown in [18] that minimum error-rate classification can 

be achieved by the use of the discriminant function

G ^ X )  = in gA (X) + in p t (A2.2)

where Pj is the a priori probability that X belongs to class i.

Assuming that there are c number of classes, to one of which X 
belongs, then the decision rule is: decide class i if

GjCX) = max {Gj(X)} (A2.3)

j  = 1 , 2 , . . . , c
Substituting (A2.1) into (A2.2), we have

G1(x ) = -1 /2  (X - M j)1 z j  (X - H i) - d/2 in  2ir - 1/2 in  IE ± I + in  Pj

(A2.1))
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If we define a new term G i (X) given by

GiCX) = - Gi(X)

= 1/2 (X - H i )t zi1 (X - Mj) + d/2 i n  2ir 1/2 inllj - in
(A2.5)

the decision rule then becomes: decide class i if

G± (X) = min {Gj(X)}, j = 1,2.....c

The term d/2 An 2tt is a constant and is common to all the 

classes, and hence can be dropped from equation (A2.5). We then have

G^X) = 1/2 (X - M ^  ZT1 (X - Mi) + 1/2 Jin 12^ I - Jin (A2.6)

The last two terms on the right hand side of equation (A2.6) do not 

involve the vector X. They are simply constants that represent a 

certain bias towards class i, and in practice, eliminating them from 

the equation hardly affects the result of classification.

Therefore, equation (A2.6) can be written as

GjCX) = 1/2 (X - M 1)t ZJ1 (X - Mi) (A2.7)

Gi(X) is actually the squared Mahalanobis distance from the vector X

to M i .
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We would then use the decision rule and assign X to class i if

G ^ X )  = min {Gj(X)}, j = 1,2,...,c

In order to use the decision algorithm, a training set of data 

is required to obtain the mean vector and covariance matrix for each 

class.

If the number of the representative samples of category i is 

then the mean feature vector and feature covariance matrix for the 

ith category are given by

where Xn is the feature vector of the nth sample in the ith category 

It is desirable that the number of training samples, N p  (for 

each category) is large, for the following reasons

(i) to ensure non-singularity of the covariance matrix, as the 

matrix will be singular if N i < d.

(ii) for a training set to be representative of a category, the

(A2.8)

Mi) (Xn -  Mi) t (A2.9)

training set must include a variety of the samples in the category.
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APPENDIX A-3

TEXTURE CHARACTERIZATION TECHNIQUES: 
SPATIAL GRAY LEVEL DEPENDENCE METHOD 

AND GRAY LEVEL DIFFERENCE METHOD

A. Spatial Gray Level Dependence Method (SGLDM)
This technique, suggested by Haralick et al [32], assumes that 

the texture information in an image is contained in the overall or 

’'average” spatial relationship which the gray tones in the image have 

to one another. Mathematically, it is assumed that the texture 

information is adequately specified by a set of gray-tone 

spatial-dependence matrices.

A matrix is computed for an image in which an entry,

(p(i>j)/d,0), is the probability of finding two gray tones i and j in 

the image separated by distance d and in angular direction 0. Thus, 

the entry (p(i,j)/d,0) is a second-order joint probability density of 

gray tones i and j, given that the intersample spacing is d, and the 

angular direction is 0. From henceforth, it will simply be written 

as p (i ,j ) for a given d and specified 0.

If a texture is coarse, and d is small compared to the sizes of 

‘the texture primitives, the pairs of points at separation d would 

tend to have similar gray levels. This results in the concentration 

of high-value entries in the matrix along its main diagonal; while 

the values in the matrix should spread out more uniformly in the case 

of fine texture for the same value of d. Some features for texture 

can be derived by computing some measures of the scatter of the



171

entries around the main diagonal. Four of these features are 

considered to be most useful [80], and were used in the experiments. 

They are:-

(i) Angular Second Moment (ASM)

where N q  is the number of gray levels in the picture from which the 

matrix was extracted. The ASM is a measure of homogeneity; it has 

small value when the matrix elements are evenly spread out and high 

value when the elements cluster around the main diagonal.

(ii) Contrast (CON)
This is given by

This feature gives the moment of inertia of the matrix around 

its main diagonal; i.e. it is a measure of spread of matrix values.

(ill) Entropy (ENT)

n g- 1 Nq -1
ASM = £ l [p(i,j)]2

i=0 j=0
(A3-1)

Nc-1 Nq-1
CON - l  l (i-j )2 p(i,j )

1=0 j=0
(A3.2)

ENT
V 1 n g - ’
I I p(i,j) log p(i, j ) 

1=0 j=0
(A3.3)
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This measure is largest for equal p(i,j) and small when they are 

very unequal. The matrix values tend to be equal and evenly spread 

out when there are many gray levels in the image and the image has 

some measure of complexity.

(iv) Correlation (COR)

COR
V 1
I

i=0
Ujp(i.j)} - Mx Myl / :°xai (A3.*0

where ux and ax are the mean and standard deviation of the row sums 

of the matrix, and yy and ay are the analogous statistics of the 

column sums. They are given by:

^x
Np-1 Nr-1 
I i l P(i,j) 

i-0 j-0

uy

Nr-1 Np-1 
I j l P(i.j) 

j-0 i-0

Ng-1
I

i=0
(i-yx )2

Nq -1
I

j-0
P(i,j)

n g - i

I (j-^y)2
J - o

n g - i

I
i-0

P(ifj)



173

The COR is a measure of the degree to which the rows (or 

columns) of the matrix resemble each other. It has a high value when 

the entries in the matrix are uniformly distributed, and a low value 

otherwise.

The features are all functions of distance and angle. For a 

specified distance d, matrices are usually computed for four 6 

values: 0°, 45°, 90° and 135°, and features are derived from each 

matrix. The value of each feature that is actually used in 

classification is the average of the features from the four matrices. 

This ensures that classification results are invariant to the angular 

orientation of an image. The study in [80] also showed that better 

results are obtained using small values of d; say, d = 1 or 2. Hence 

d = 1 was used in the experiments.

B. Gray Level Difference Method (GLDM)
The gray level difference method, suggested by Weszka et al 

[80], considers the absolute differences between pairs of gray levels 

at a given distance from one another and in a specified angular 

direction.

For any displacement 5 = (A^Ay), let

f fi(x,y) = I f(x,y) - f(x + Ajj, y + Ay) I 

and p 5 be the probability density of f 5(x,y), where f(x,y) is the 

gray level of the pixel at the point (x,y). If the number of gray 

levels in the image is N Q , p fi has the form of an N G-dimensional 

column vector whose ith component is the probability that f£(x,y)

will have value i.
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For a coarse texture with 6 small compared with the texture 

element size, the pairs of points at separation 6 should usually have 

similar gray levels, so that fg(x,y) would be small, and the values 

of p 5 would be concentrated near i=0. Conversely, values of p 5 

should be concentrated away from i=0 for fine textures. Thus, the 

measure of the spread of values in p fi away from the origin is a good 

way of analysing texture. Five features can be extracted from the 

matrix, of which the following four were used in the experiments. 

Three of the features are abbreviated below in small letters, in 

order to distinguish them from features of the same name in the 

SGLDM. For a given angular direction 0, the features are given by:

(i) Contrast (con)

Nq-1
con = l i2P 6(i) (A3.5)

i=0

This feature gives the moment of inertia about the origin.

(ii) Angular Second Moment (asm)

n G"1
asm = l Cp5(i)]2 (A3.6)

i=0

It is a measure of homogeneity, and generally takes low values

for coarse textures, while the values are high for fine textures.
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(iii) Entropy (ent)

Ng-1
ent = - I P 6(i) l08 PgCi) (A3.7)

i=0

This is largest for equal p5(i), and small when they are very 

unequal. The entries in tend to be equal when there are many gray 

levels; hence ent tend to reflect the level of complexity.

(iv) Mean (MN)

Nr-1
1 G

MN = ---- l i p.(i) (A3.8)
NG

1=0

The value of MN is small when P$(i) are concentrated near the 

origin and large when they are far from the origin.

Again, the features are all functions of distance and angle, 

and, as in the SGLDM, the p^(i ) matrix is computed for four 0 values: 

0°, ^5°, 90° and 135°. The averages of the features over the four

angular directions are used for classification.
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APPENDIX A-n

PROOF OF VARIANCE UPDATING FORMULA

Consider two subpopulations with means m-j and m 2 and variances 

2 2s^ and s2 , and suppose that the number of elements in the 

subpopulations are N.| and N 2 respectively.

Let us denote the ith element in subpopulation 1 as â  ̂ and that 

in subpopulation 2 as b ^ .

Then clearly

N1
I a? = N ^sf + m^) (A4.1)

i=1

and

n2
I b? = Np(sp + ml) (A4.2)

i=1

If the two subpopulations are merged into one population, whose
pkth element is denoted as ck , with mean m^, variance s^ and number of 

elements N^» then

N3 = N1 + N2

and

N
i

3
k=1 4 NjCsl + IDo) (All. 3)
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Therefore

But

.2 _
N3
l

k=1
m 3 (AM.il)

Hence

s3

n3
I e g  =

k-1 K

Nl ?1 af ♦ 
i=1 1

N2 ,
I bf .

i-1

1
N i

i 4
i=1

»2

- I bf

i=1
N1 + N2

and No =

_2
m3

N1 + N 2

(AM.5)

Putting equations (AM.1) and (AM.2) into (AM.5), we have

s 2
3 -------  [N-j (s| + m|) + N2 (s | + m|)]

N-] + N2
m2
3
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APPENDIX A-5

LISTING OF COMPUTER PROGRAMS 
DEVELOPED FOR THE SIMULATION OF ALGORITHMS

The simulations for this research were done on the VAX11/780 

computer belonging to the Imperial College Centre for Remote Sensing 

Image Processing Laboratory. Several programs were developed to 

enhance the investigations, and the relevant ones are included in 

this appendix. Apart from the system routines which are used for 

reading and writing out images, the programs have been written in 

FORTRAN 77.

All the programs were developed by the investigator 

(M. Amadasun) during the period of the research. Great care has been 

taken in preparing the programs in their present form, and there 

should not be any typographical error. However, if there is any such 

error, the original programs are available on a magnetic tape 

deposited with the Digital Communications Section of the Imperial 

College Electrical Engineering Department.

The programs are self-explanatory, and the comment statements 

inserted at the relevant places should make them meaningful. The 

programs have been collated in the order in which they appear in the 

thesis.

M. Amadasun 

January 1988
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PROGRAM ANET
Program to compute the developed texures features; 
fcos,fcon,fbus,fcom and fstr for an image of 
size 64 X 64.

PARAMETER(NYY=64,NXX=64,NG=255)
INTEGERS IMAGE(NYY, NXX) , IC 
INTEGER*2 I,J,K,L,MQ,NQ,K2 
REAL S(0:NG),P(0:NG),IBUS,IVI,TSI,MC,Z3 
REAL FCOS,FCON,FBUS,FCOM,FSTR,DAT,QT,QC 
REAL PP,AB,QP,AC,AD,Z1,Z2,TI,TJ,PMU,PBUS 
INTEGERS STATUSFLAG,LINENUMBER,NAT 
LOGICAL*l FILE(30)
COMMON IMAGE,S,P,MQ,NQ

Supply the distance for specifying neighbourhood size. 
WRITE(6,*)*1NPUT THE DISTANCE FOR SPECIFYING*
WRITE(6,*)* NEIGHBOURHOOD SIZE,IC,.GE.1 AND.LE.4 *
READ(5,*)IC

C Specify the name of the file into which the computed 
C feature values are to be written.

WRITE(6,*)* DEFINE FILE NAME*
READ(5,1)NCH,(FILE(I),1=1,NCH)

1 FORMAT(Q,30A1)
0PEN(UNIT=70,NAME=FILE,TYPE=* NEW*)

C Read in the texture image 
CALL VICINIT(* ANET *)
CALL OPENV(STATUSFLAG,2,0,0,0,0)
DO LINENUMBER=1,NYY
CALL READ(STATUSFLAG,2,0,1,0,NXX,IMAGEO,LINENUMBER),0) 
ENDDO 

C DAT=FL0AT((NYY-2*IC)*(NXX-2*IC))
C Call subroutine to compute Neighbourhood Gray Tone 
C Difference Matrix for image.

CALL COMP(IC)
C Compute the texture measures.
C Compute fcos.

PMU=0.0 
PBUS=0.0 
DO K=MQ,NQ 
PBUS=PBUS+S(K)
PMU=PMU+P(K)*S(K)

ENDDO
FC0S=1.0/(0.0000001+PMU)

C Compute fcon 
IVI=0.0 
Z3=0.0 
DO I=MQ,NQ 
IF(P(I).NE.0.0)THEN 
Z3=Z3+1.0 
DO J=MQ,NQ 
IF(P(J).NE.0.0)THEN 
Z1=FL0AT(I)
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Z2=FLOAT(J)IVI=IVI+(P(I)*P(J))*(Z1-Z2)**2 
ENDIF 
ENDDO 
ENDIF 
ENDDO
Z3=Z3*(Z3-1.0)
IF(Z3.EQ.0.0)Z3=1.0 FC0N=(IVI/Z3)*(PBUS/DAT)

C Compute fbus
IBUS=0.0 
DO I=MQ,NQ IF(P(I).NE.O.O)THEN 

DO J=MQ,NQ IF(P(J).NE.0.0)THEN 
Z1=FL0AT(I)
Z2=FL0AT(J)
AC=ABS((P(I)*Z1)-(P(J)*Z2))
IBUS=IBUS+AC

ENDIF
ENDDOENDIF

ENDDO
IF(IBUS.EQ.0.0)IBUS=1.0 
FBUS=(PMU/IBUS)

C Compute fstr.
TSI=0.0 
DO I=MQ,NQ 
IF(P(I).NE.0.0)THEN 
DO J=MQ,NQ 
IF(P(J).NE.O.0)THEN 
Z1=FL0AT(I)
Z2=FL0AT(J)
AB=(Z1-Z2)**2 TSI=TSI+AB*(P(I)+P(J))
ENDIF
ENDDO

ENDIF
ENDDO
FSTR=TSI/(0.0000001+PBUS)

C Compute fcom.
MC=0.0 
DO I=MQ,NQ 
IF(P(I).NE.0.0)THEN 
DO J=MQ,NQ 
IF(P(J).NE.O.0)THEN 
Z1=FL0AT(I)
Z2=FL0AT(J)
AB=ABS(Z1-Z2)
TI=P(I)*DAT 
TJ=P(J)*DAT
MC=MC+((AB*(P(I)*S(I)+P(J)*S(J)))/(TI+TJ)) 
ENDIF 
ENDDO 
ENDIF
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ENDDO
FCOM=MC/DAT
WRITE(70,70)FC0S,FCON,FBUS,FCOM,FSTR 

70 F0RMAT(5F15.6)END
SUBROUTINE COMP(IC)

C Subroutine to compute Neighbourhood Gray Tone 
C Difference Matrix (NGTDM)

PARAMETER(NYY=64,NXX=64,NG=255) 
INTEGER*2 IMAGE(NYY,NXX),IC,NQ 
INTEGER*2 I, J, K, L, MQ, M, N, K2 
REAL S(0:NG),P(0:NG)
REAL Q1,Q2,DAT,QT,QC,SUMG 
REAL PP
COMMON IMAGE,S,P,MQ,NQ 

C DAT=FL0AT((NYY-2*IC)*(NXX-2*IC)) 
QC=FL0AT((2*IC)+1)
QT=(QC**2)-l. 0 
DO K=0,NG S(K)=0.0 
ENDDO 
NQ=0 
MQ=255
DO J=IC+1,NXX-IC 
DO I=IC+1,NYY-IC 
Q1=FL0AT(IMAGE(I,J))
K2=IMAGE(I,J)
IF(NQ.LT.K2)NQ=K2 
IF(MQ.GT.K2)MQ=K2 
SUMG=0.0 DO L=-IC,IC 
DO K=-IC,IC
Q2=FL0AT(IMAGE(I+K,J+L)) 
SUMG=SUMG+Q2 ENDDO 

ENDDO
SUMG=(SUMG-Q1)/QT 
P(K2)=P(K2)+1.0 S(K2)=S(K2)+ABS(SUMG-Q1)
ENDDO
ENDDO
DO K=MQ,NQ 
P(K)=P(K)/DAT 

ENDDO 
RETURN 
END
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PROGRAM ACLASS
Program to implement the weighted-feature minimum distance 
classifier.
INPUT The mean feature vectors of each class and 

the feature vector(s) of the unknown sample(s).
OUTPUT The class to which the unknown sample(s) is/are 

assigned.
: In the program NZ/NT stands for the number of
: classes, NX/NF for the number of features to be
: used in classification, and NSAMP/ISAMP for the
: total number of unknown samples to be classified.

PARAMETER(NZ=50,NX=10,NSAMP=150)
INTEGERS NT, NF, I, J, K, L 
INTEGER*2 ICHAN,NS,ISAMP,NAT 
REAL AB,DB,KM(NSAMP,NX),TH,ZA,ZC REAL REF(NZ,NX),AZ(NX),QT(NX),ZB 
REAL INC0V(NZ,NX,NX),VAR(NX)
COMMON REF,KM,QT
CALL VICINIT(1ACLASS21)
WRITE(6,*)1 INPUT THE NO. OF LIKELY CLASSES,1 
WRITE(6,*)1less or equal to 50f 
READ(5,*)NT
WRITE(6,*)1INPUT THE NO. OF FEATURES TO BE USED IN1 
WRITE(6,*)fCLASSIFICATION,less or equal to 10f 
READ(5,*)NF
WRITE(6,*)1 INPUT THE TOTAL NO. OF UNKNOWN SAMPLE(S)1 
WRITE(6,*) 1 TO BE CLASSIFIED .MAXIMUM NO. OF UNKNOWN1 
WRITE(6,*)1 SAMPLES THAT CAN BE CLASSIFIED IN ONE1 
WRITE(6,*)1RUN IS 1501 
READ(5,*)ISAMP
WRITER,*)1 INPUT THE CHANNEL NUMBER FOR WRITING FILE1 
READ(5,*)ICHAN

Read in the mean feature vectors for the classes 
DO 1=1,NT
READ(9,70)(REF(I,J),J=1,NF)

70 FORMAT(<NF>F15.6)
ENDDO

Read in the feature vector(s) of the unknown sample(s).
DO 1=1,ISAMP
READ(9,70)(KM(I,J),J=1,NF)ENDDO

Determine weighting factors for features. 
DO L=1,NF
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QT(L)=0.0 DO 1=1,NT-1 
DO J=I+1,NT
ZA=ABS(REF(I,L)-REF(J,L))
ZC=(REF(I,L)+REF(J,L))/2.0 
QT(L)=QT(L)+(ZA/ZC)
ENDDO
ENDDO

ENDDO
ZC=QT(1)
DO L=1,NF
IF(ZC.LT.QT(L))ZC=QT(L)

ENDDO 
DO L=1,NF 
QT(L)=ZC/QT(L)

ENDDO
WRITE(ICHAN,*)’THESE ARE THE WEIGHTING FACTORS FOR1
WRITE(6, *) 1 FEATURES1
WRITE(ICHAN,85)(QT(L),L=1,NF)

Determine normalizing factors for features. 
DO L=1,NF 
AZ(L)=0.0 
DO K=1,NT
AZ(L)=AZ(L)+REF(K,L)
ENDDO

ENDDO
Normalize mean feature values for classes 

DO L=1,NF 
DO K=1,NT
REF(K,L)=REF(K,L)/AZ(L)
ENDDO

ENDDO
Normalize feature values of unknown sample(s) 

DO L=1,NF 
DO K=1,ISAMP 
KM(K,L)=KM(K,L)/AZ(L)
ENDDO

ENDDO
C - 
85 

C
C

FORMAT(<NF>F12.5)
CALL ASSIGN(NT,NF,ISAMP,ICHAN)
END
SUBROUTINE ASSIGN(NT,NF,ISAMP,ICHAN) 

C Subroutine to classify unknown sample(s) 
PARAMETER(NZ=50,NX=10,NSAMP=150) INTEGER*2 NT,NF,N2,ISAMP,ICHAN,KK 
INTEGER*2 LEF(NZ),NAT,MM,J 
REAL REF(NZ,NX),KM(NSAMP,NX)
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REAL D(NX),AB,PP,QQ,G(NZ),QT(NX)
REAL H(NZ,NX),SUM,PAX,P,Q 
COMMON REF,KM,QT
MM=NF
DO J=1,ISAMP 
DO L=1,MM 
D(L)=KM(J,L)ENDDO 
DO K=1,NT 
G(K)=0.0 
DO L=1,MM
PAX=(D(L)-REF(K,L))**2 
G(K)=G(K)+(QT(L)*PAX)
ENDDO 
ENDDO 
PAX=G(1)
KK=1
DO K=1,NT
IF(PAX.GT.G(K))THEN
PAX=G(K)KK=K

ENDIF
ENDDO
IF(ISAMP.GT.1)THEN
WRITE(ICHAN,*)fTHE UNKNOWN SAMPLE',J 
WRITE(ICHAN,*)'BELONGS TO CLASS',KK 
WRITE(ICHAN,*)
WRITE(ICHAN,*)
ELSE
WRITE(ICHAN,*)'THE UNKNOWN SAMPLE BELONGS' 
WRITE(ICHAN,*)'TO CLASS',KK 
ENDIF 

ENDDO 
RETURN END
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PROGRAM SPEG1
Program for segmentation ALGORITHM I for the 
segmentation of any 3-band multispectral image.

INPUT : ANY 3-BAND MULTISPECTRAL IMAGE
OUTPUT : SEGMENTED VERSION OF THE INPUT IMAGE

PARAMETER(NYY=512,NXX=512,MM=3,NZ=150) 
INTEGERS IMAGE(NYY,NXX),KC(NYY,NXX) 
INTEGERS ICHAN, NY, NX, IC, ID, IB, NT, ITEST 
REAL KM(NYY,NXX,MM),KD(NYY,NXX),TH 
REAL REF(NZ,MM),AY(MM),QT(MM),THR 
INTEGERS STATUSFLAG,LINENUMBER 
COMMON IMAGE,KC,KD,KM,REF,AY

Read in the images in the three bands.
CALL VICINIT('SPEG1')
CALL OPENV(STATUSFLAG,2,0,0,0,0)
CALL OPENV(STATISFLAG,3,0,0,0,0)
CALL 0PENV(STATUSFLAG,4,0,0,0,0)
DO LINENUMBER=1,NYY
CALL READ(STATUSFLAG,2,0,1,0,NXX,KC(1,LINENUMBER),0) 
CALL READ(STATUSFLAG,3,0,1,0,NXX,KD(1,LINENUMBER),0) 
CALL READ(STATUSFLAG,4,0,1,0,NXX,IMAGE(1,LINENUMBER),0) 

ENDDO

C

C

C

Supply the required segmentation parameters.
WRITE(6,*)'DO YOU WANT TO USE THE GRAY LEVELS OFT 
WRITE(6,*)1 PIXELS DIRECTLY OR THE AVERAGE GRAY LEVEL1 
WRITE(6,*)1 IN A SMALL WINDOW CENTERED ON PIXEL FOR1 
WRITE(6,*)1 SEGMENTATION?. IF PIXEL GRAY LEVELS INPUT1 
WRITE(6,*)10, OTHERWISE INPUT 1'
READ(5,*)ITEST 
IF(ITEST.EQ.1)THEN
WRITE( 6, * ) 'INPUT THE DISTANCE FOR SPECIFYING THIS1 
WRITE(6,*)’WINDOW SIZE; IB1 
WRITE(6,*)1 NOTE W=(2*IB+1)*(2*IB+1)1 
READ(5,*)IB 
ELSE 
IB-1 ENDIF

WRITE(6,*)'INPUT THE NUMBER OF CATEGORIES; NT1 
READ(5,*)NT
WRITE(6,*)'INPUT THE DISTANCE FOR SPECIFYING DIMENSION' 
WRITE(6,*)'OF SEARCH BLOCKS; NX. NOTE: DIMENSION=NX*NX.' 
READ(5,*)NX
WRITE(6,*)* INPUT THE INITIAL VALUE OF UNIFORMITY'
WRITE(6,*)'CRITERION; THR, AND THE INCREMENTAL/' 
WRITE(6,*)'DECREMENTAL FACTOR; TH.BOTH ARE'
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WRITE(6, *) 1 REAL NUMBERS.1 
READ(5,*)THR,THC -----------------------------------------------------------
WRITE(6,*)1 INPUT THE CHANNEL NUMBER FOR WRITING;ICHAN,' 
WRITE(6,*)fAN INTEGER1 
READ(5,*)ICHAN 

C CALL FEATURE(IB,ITEST)
CALL CLAVECT(NX,NT,QT,ICHAN,THR,TH)
CALL ASSIGN(NT,QT)

C
CALL OPENV(STATUSFLAG,1,1,0,0,0)
CALL ADJUST(1,NYY,NXX)
DO 1=1,NYY
CALL WRITE(STATUSFLAG,1,0,1,0,NXX,IMAGE(1,I),0)

ENDDO
CALL RELAB2(1,NYY,NXX)
END

SUBROUTINE FEATURE(IB,ITEST)
C Subroutine to compute features.PARAMETER(NYY=512,NXX=512,MM=3,NG=255,LL=10,NZ=150)

INTEGER*2 IMAGE(NYY,NXX),KC(NYY,NXX),KD(NYY,NXX)
INTEGER*2 IP1,IP2,IQ1,IQ2,ITEST,IB,ID
INTEGER*2 M,N,I,J,II,J1
REAL KM(NYY,NXX,MM),REF(NZ,MM),QT(MM)
REAL DNAT,DM,DB,DG,AY(MM)
COMMON IMAGE,KC,KD,KM,REF,AY

C -----------------------------------------------------------
C If desired, replace the gray levels of each pixel by the 
C average in a window centered on it.

IF(ITEST.EQ.1)THEN 
DO Jl=l,NXX 
J=J1
DO 11=1,NYY 
1=11
KM(II,J1,1)=0.0
KM(I1,J1,2)=0.0
KM(I1,J1,3)=0.0
IP1=-IB
IP2=IB
IQ1=-IB
IQ2=IB
IF(I.LE.IB)THEN
IP1=IB+1
IP2=IP1+IB+I
1=0ENDIF
IF(I.GT.(NYY-IB))THEN 
IP2=NYY-IB
IP1=IP2-(IB+(NYY-I))1=0ENDIF
IF(J.LE.IB)THEN 
IQ1=IB+1
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IQ2=IQ1+IB+J
J=0
ENDIF
IF(J.GT.(NXX-IB))THEN 
IQ2=NXX-IB
IQ1=IQ2-(IB+(NXX-J))
J=0 
ENDIF 
DNAT=0.0 
DM=0.0 
DB=0.0 
DG=0.0
DO L=IQ1,IQ2 
DO K=IP1,IP2 
DNAT=DNAT+1.0 
DM=DM+FLOAT(KC(I+K,J+L))
DB=DB+FLOAT(KD(I+K,J+L))
DG=DG+FLOAT(IMAGE(I+K,J+L))
ENDDO

ENDDO
KM(II,J1,1)=DM/DNAT 
KM(I1,J1,2)=DB/DNAT 
KM(I1,J1,3)=DG/DNAT 

ENDDO 
ENDDOC --------------------------------------------------------
ELSE
DO J=1,NXX 
DO 1=1,NYY
KM(I,J,1)=FLOAT(KC(I,J))
KM(I,J,2) = FLOAT(KD(I, J))
KM(I,J,3)=FLOAT(IMAGE(I,J))

ENDDO
ENDDO

ENDIF
RETURN
END

SUBROUTINE ASSIGN(NT,QT)
C Subroutine to classify pixels.

PARAMETER(NYY= 512,NXX= 512,MM=3,NZ=15 0)
INTEGERS IMAGE(NYY,NXX),IMA(NZ),NT,KK 
INTEGER*2 PEF(NZ),GL,GINC,IFEAT,N1,N2 
INTEGERS KC(NYY,NXX),KD(NYY,NXX)
REAL KM(NYY,NXX,MM)
REAL REF(NZ,MM),AY(MM),KR1,KR2,PP,QQ 
REAL RK(NZ),RK2,D(MM),SUM,P,Q,PAX,QT(MM)
COMMON IMAGE,KC,KD,KM,REF, AY 

C
DO L=1,MM
IF(AY(L).EQ.0.0)AY(L)=1.0 ENDDO 

Nl = 1 
N2=MM 
GL=40
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GINC=15 
DO K-l.NT 
IF(K.EQ.1)THEN 
IMA(K)=GL 

ELSE
IMA(K)=IMA(K-1)+GINC 

ENDIF 
ENDDO
DO J=1,NXX 
DO 1*1,NYY 
DO L*N1,N2
D(L)*KM(I,J,L)/AY(L)

ENDDO 
DO K=1,NT 
RK(K)*0.0 
DO L=N1,N2
PAX*(D(L)-REF(K,L) )**2 
RK(K)=RK(K)+(QT(L)*PAX)
ENDDO 

ENDDO 
P=RK(1)
Y Y  —  1
DO K*1,NT 
IF(P.GT.RK(K))THEN 
P*RK(K)
KK=K

ENDIF
ENDDO
IMAGE(I,J)=IMA(KK)

ENDDO
ENDDO
RETURN
END
SUBROUTINE CLAVECT(NX,NT,QT,ICHAN,THR,TH)

C Subroutine to determine mean feature vectors of classes 
C or categories and also performs normalisation of features.

PARAMETER(NYY=512,NXX=512,MM=3,NZ=150,NB=64,NL=4096) 
INTEGER*2 IMAGE(NYY.NXX),IC,K,IFAT,NUT,IE,LL1,IW 
INTEGER*2 NAT,LI,L2,NT,JQ,ID,II,12,J1,J2,I,J 
INTEGER*2 ICON(NL),NR,NC.NY,NX,M,N,NN1,NN2,ICHAN 
INTEGER*2 KC(NYY.NXX),KD(NYY,NXX),NY1,NX1,LL2,KOUNT 
REAL KM(NYY,NXX,MM),BG,QT(MM)
REAL FM(MM),FM1(MM),FM2(MM),FM3(MM),FM4(MM)
REAL TNI,TN2,TM1,TM2,TN,THR,TH.PT.DAT,AZ(MM),Z2 
REAL EF(NB,NB.MM),EF1(NB,NB,MM),EF2(NB,NB.MM)
REAL EF3(NB,NB.MM),EF4(NB,NB.MM),DB,UG,ZTT,Z1 
REAL FF(NL,MM),ZA,ZC, DNAT,BF(MM),THD,DET,UB,UM 
REAL REF(NZ,MM),AY(MM),BH,BM,BB,FG1,FG2,FG3,FG4 
COMMON IMAGE,KC,KD,KM,REF,AY 

C NY=NX
NR=NYY/NY
NC=NXX/NX
DAT=FLOAT(NY*NX)
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NYl=NY/2NXl=NX/2
DET=FL0AT(NY1*NX1)

C Determine the allowable maximum and minimum number of 
C neighbourhoods that can be considered uniform. 

LLl=(NR*NC)/3 
LL2=LL1/3 

C
Ll = l L2=MM
DB=FLOAT(MM)
K0UNT=0C -------------------------------------------------------

C Divide the image into blocks and compute the mean feature 
C values for block and for each of its quarters.

DO Jl-l.NC 
DO 11=1,NR 
DO L=L1,L2 
FM(L)=0.0 
FM1(L)=0.0 
FM2(L)=0.0 FM3(L)=0.0 
FM4(L)=0.0 

ENDDO 
DO N=1,NX 
J=(Jl-1)*NX+N 
DO M=1,NY 
1=(11-1)*NY+M 
DO L=L1,L2
FM(L)=FM(L)+KM(I,J,L)

IF((M.LE.NY1).AND.(N.LE.NX1))THEN 
FM1(L)=FM1(L)+KM(I,J,L)

ENDIF
IF((M.LE.NY1).AND.(N.GT.NX1))THEN 
FM2(L)=FM2(L)+KM(I, J, L)
ENDIF
IF((M.GT.NY1).AND.(N.LE.NX1))THEN 
FM3(L)=FM3(L)+KM(I,J,L)
ENDIF
IF((M.GT.NY1).AND.(N.GT.NX1))THEN 
FM4(L)=FM4(L)+KM(I,J,L)

ENDIF
ENDDO
ENDDO
ENDDO
DO L=L1,L2EF(I1,J1,L)=FM(L)/DAT 
EF1(II,J1,L)=FM1(L)/DET 
EF2(I1,J1,L)=FM2(L)/DET 
EF3(I1,J1,L)=FM3(L)/DET 
EF4(I1,J1,L)=FM4(L)/DET ENDDO 

ENDDO 
ENDDOC --------------------------------------------------------
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C Determine those blocks that can be considered uniform 
C terms of all the features. IE counts the number of 
C such blocks.
200 IE=0

DO Jl=l,NC 
DO 11=1,NR 
BM=0.0
DO L=L1,L2 
BB=0.0IF(EF(I1,J1,L).GE.EF1(I1,J1,L))THEN 
Z1=EF(I1,J1,L)
Z2=EF1(I1,J1,L)
ELSE
Z1=EF1(II,J1,L)
Z2=EF(I1,J1,L)
ENDIF
THD=THR*Z1IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(I1,J1,L).GE.EF2(I1,J1,L))THEN 
Z1=EF(I1,J1,L)
Z2=EF2(II,J1,L)ELSE
Z1=EF2(II,J1,L)
Z2=EF(II,J1,L)
ENDIF
THD=THR*Z1IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(I1,J1,L).GE.EF3(I1,J1,L))THEN 
Z1=EF(II,J1,L)
Z2=EF3(I1,J1,L)
ELSE
Z1=EF3(II,J1,L)
Z2=EF(II,J1,L)

ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(I1,J1,L).GE.EF4(I1,J1,L))THEN 
Z1=EF(I1,J1,L)
Z2=EF4(I1,J1,L)
ELSE
Z1=EF4(I1,J1,L)
Z2=EF(I1,J1,L)ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0
IF(BB.EQ.4.0)BM=BM+1.0 

ENDDO
IF(BM.EQ.DB)THEN 
IE=IE+1 
DO L=L1,L2
FF(IE,L)=EF(I1,J1,L)

ENDDO
IC0N(IE)=1

ENDIF

in
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C
C
c
c
c

c

ENDDO
ENDDO
IF(KOUNT.EQ.O)THENWRITE(ICHAN,*)1 NUMBER OF NEIGHBOURHOODS CONSIDERED' 
WRITE(ICHAN,*)1 UNIFORM AT THE INITIAL VALUE OF* 
WRITE(ICHAN,*)1 UNIFORMITY CRITERION= f,IE 
KOUNT=KOUNT+l 

ENDIF
If the number of uniform blocks is greater than the 
allowable maximum, make the criterion stricter and 
determine the blocks considered uniform using the 
new criterion.

IF(IE.GT.LL1)THEN 
THR=THR+TH 
GO TO 200 

ENDIF
C If the number of uniform blocks is less than the allowable 
C minimum, relax the criterion and determine the 
C blocks considered uniform using the new criterion.IF(IE.LT.LL2)THEN 

THR=THR-TH 
GO TO 200 

ENDIF
C ---------------------------------------------------------
C If the number of uniform neighbourhoods is allowable, then 
C cluster the mean feature vectors agglomeratively.
202 IC=IE
203 ZTT=10000000.0 

DO L=L1,L2
AZ(L)=0.0 
DO K=1,IE
AZ(L)=AZ(L)+FF(K,L)

ENDDO
IF(AZ(L).EQ.0.0)AZ(L)=1.0

ENDDO
C DO 1=1,IE

IF(IC0N(I).NE.0)THEN 
DO J=I+1,IE 
IF(IC0N(J).NE.0)THEN 
DNAT=0.0 
DO L=L1,L2
DNAT=DNAT+((FF(I,L)-FF(J,L))/AZ(L))**2

ENDDO
IF(ZTT.GT.DNAT)THEN 
ZTT=DNAT 
NN1 = I 
NN2=J 
ENDIF 

ENDIF 
ENDDO 

ENDIF 
ENDDO
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C

TN1=FL0AT(IC0N(NN1))
TN2=FL0AT(IC0N(NN2))
TN=(TN1+TN2)*DAT TM1=TN1*DAT 
TM2=TN2*DAT 
DO L=L1,L2
BF(L)=(TM1*FF(NN1,L)+TM2*FF(NN2,L))/TN 

ENDDO 
DO L=L1,L2 
FF(NN1,L)=BF(L)
FF(NN2,L)=0.0

ENDDO
ICON(NNl)=ICON(NNl)+ICON(NN2)
IC0N(NN2)=0
IC=IC-1
IF(IC.GT.NT)GO TO 203

A / o / o A / o / o A / o 'o / a / o
WRITE(ICHAN,*)* THE FINAL VALUE OF UNIFORMITY* 
WRITE(ICHAN,*)1 CRITERION. =*,THR
WRITE(ICHAN,*)1 NO. OF MEAN VECTORS clustered = *,IE
NUT=0DO 1=1,IE
IF(ICON(I).NE.O)THEN 
NUT=NUT+1 
DO L=L1,L2 
REF(NUT,L)=FF(I,L)

ENDDO
ENDIF
ENDDO
WRITE(ICHAN,*)* THESE ARE AVERAGE VALUES OF FEATURES* 
WRITE(ICHAN,*)*FOR CATEGORIES*
WRITE(ICHAN,70)((REF(I,J),J=L1,L2),1=1,NUT)

70 FORMAT (<MM>F13.6)C ---------------------------------------------------------
C Determine the feature normalizing factors and normalize 
C the mean feature values.

DO L=L1,L2 
AY(L)=0.0 
DO K=1,NT
AY(L)=AY(L)+REF(K,L)ENDDO
IF(AY(L).EQ.0.0)AY(L)=1.0ENDDO

DO L=L1,L2 
DO K=1,NT
REF(K,L)=REF(K,L)/AY(L)ENDDO

ENDDO
C Determine the feature weighting factors using distance 
C between means (contrast) criterion.

DO L=L1,L2 
QT(L)=0.0 
DO 1=1,NT-1 
DO J=I+1,NT
ZA=ABS(REF(I,L)-REF(J,L))



193

ZC=REF(I,L)+REF(J,L)
IF(ZC.EQ.0.0)ZC=1.0 
QT(L)=QT(L)+(ZA/ZC)
ENDDO 
ENDDO 

ENDDO 
ZC=0.0 
DO L=L1,L2
IF(ZC.LT.QT(L))ZC=QT(L)

ENDDO
DO L=L1,L2
IF(QT(L).NE.0.0)QT(L)=ZC/QT(L)

ENDDO
WRITE(ICHAN,*)1 WEIGHTING FACTORS USING DISTANCE* 
WRI-TE(ICHAN, *) f BETWEEN MEANS CRITERION*

C
WRITE(ICHAN,85)(QT(L),L=1,MM)

85 FORMAT (<MM>F10.5)
C ----------------------------------------------------------------

RETURN
END
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PROGRAM SPEG2
This a program for segmentation ALGORITHM II for 
the segmentation of any 3-band multispectral image.

INPUT : ANY 3-BAND MULTISPECTRAL IMAGE.
OUTPUT : SEGMENTED VERSION OF THE INPUT IMAGE

PARAMETER(NYY=512,NXX=512,MM=3,NZ=150)
INTEGER*2 IMAGE(NYY,NXX),KC(NYY,NXX),IC 
INTEGER*2 KD(NYY,NXX),IB,NT,ID,NX,ICHAN 
REAL KM(NYY,NXX,MM),QT(MM)
REAL REF(NZ,MM),THR,AY(MM)
INTEGER*4 STATUSFLAG,LINENUMBER 
COMMON IMAGE,KM,KC,KD,REF,AY 

C CALL VICINIT(’SPEG2 ')
CALL OPENV(STATUSFLAG,2,0,0,0,0)
CALL OPENV(STATUSFLAG,3,0,0,0,0)
CALL OPENV(STATUSFLAG,4,0,0,0,0)
DO LINENUMBER=1,NYY
CALL READ(STATUSFLAG,2,0,1,0,NXX,KC(1,LINENUMBER),0)
CALL READ(STATUSFLAG,3,0,1,0,NXX,KD(1,LINENUMBER),0)
CALL READ(STATUSFLAG,4,0,1,0,NXX,IMAGE(1,LINENUMBER),0) 
ENDDO 

C
WRITE(6,*)'DO YOU WANT TO USE THE GRAY LEVELS OFf 
WRITE(6,*)’PIXELS DIRECTLY OR THE AVERAGE GRAY LEVEL’ 
WRITE(6,*) ’ IN A SMALL WINDOW CENTERED ON A PIXEL, FOR’ 
WRITE(6,*)’ SEGMENTATION?. IF PIXEL GRAY LEVELS INPUTf 
WRITE(6,*)*0, OTHERWISE INPUT l1 
READ(5,*)ITEST 
IF(ITEST.EQ.1)THENWRITE(6,*)’INPUT THE DISTANCE FOR SPECIFYING THE SIZE OF’ 
WRITE(6,*)’THIS WINDOW; IB. NOTE W=(2*IB+1)*(2*IB+1)' 
READ(5,*)IB 
ELSE 
IB-1 
ENDIF 

C WRITE(6,*)’INPUT THE NUMBER OF CATEGORIES; NT’
READ(5,*)NT

C
WRITE(6,*)'INPUT THE DISTANCE FOR SPECIFYING DIMENSION’ 
WRITE(6,*) ’OF LARGEST SEARCH BLOCKS; NX.’
WRITE(6,*)’NOTE: DIMENSION=NX*NX.’READ(5,*)NX

C WRITE(6,*)’INPUT THE VALUE OF THE UNIFORMITY’
WRITE(6,*)’CRITERION; THR, A REAL NUMBER.’
READ(5,*)THR

C ------------------------------------------------------------------------
WRITE(6,*)’INPUT THE CHANNEL NUMBER FOR WRITING;ICHAN’
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READ(5,*)ICHAN 
C CALL FEATURE(IB,ITEST)

CALL CLAVECT(NX,NT,QT,ICHAN,THR)
CALL ASSIGN(NT,QT)

Write out the segmented image
CALL OPENV(STATUSFLAG,1,1,0,0,0)
CALL ADJUST(1,NYY,NXX)
DO 1=1,NYYCALL WRITE(STATUSFLAG,1,0,1,0,NXX,IMAGE(1,I),0) 
ENDDO
CALL RELAB2(1,NYY,NXX)
END

SUBROUTINE FEATURE(IB,ITEST)
C Subroutine to compute features.

PARAMETER(NYY=512,NXX=512,MM=3,NG=255,LL=10,NZ=150) 
INTEGER*2 IMAGE(NYY,NXX),KC(NYY,NXX)
INTEGER*2 IP1,IP2,IQ1,IQ2,ITEST,IB,ID 
INTEGER*2 M,N,I,J,I1,J1,KD(NYY,NXX)REAL REF(NZ,MM),QT(MM),DNAT
REAL DM,DB,DG,AY(MM),KM(NYY,NXX,MM)
COMMON IMAGE,KM,KC,KD,REF,AY

C If desired, replace the gray level of each pixel by the 
C average gray level in a window centered on it.

IF(ITEST.EQ.1)THEN 
DO Jl=l,NXX 
J=J1
DO 11=1,NYY 
1=11
KM(II,J1,1)=0.0
KM(I1,J1,2)=0.0
KM(I1,J1,3)=0.0
IP1=-IB
IP2=IBIQ1=-IB
IQ2=IB
IF(I.LE.IB)THEN 
IP1=IB+1 
IP2=IP1+IB+I 
1=0 ENDIF
IF(I.GT.(NYY-IB))THEN 
IP2=NYY-IB
IP1=IP2-(IB+(NYY-I))
1=0ENDIF

IF(J.LE.IB)THEN 
IQ1=IB+1 
IQ2=IQ1+IB+J 
J=0 

ENDIF
IF(J.GT.(NXX-IB))THEN
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IQ2=NXX-IB
IQ1=IQ2-(IB+(NXX-J))
J=0 

ENDIF 
DNAT=0.0 
DM=0.0 
DB=0.0 
DG=0.0
DO L=IQ1,IQ2 
DO K=IP1,IP2 
DNAT=DNAT+1.0 
DM=DM+FLOAT(KC(I+K,J+L))
DB=DB+FLOAT(KD(I+K,J+L))
DG=DG+FLOAT(IMAGE(I+K,J+L))
ENDDO

ENDDO
KM(I1,J1,1)=DM/DNAT 
KM(I1,J1,2)=DB/DNAT 
KM(I1,J1,3)=DG/DNAT 
ENDDO 
ENDDOC -------------------------------------------------------
ELSE
DO J=1,NXX 
DO 1=1,NYY
KM(I,J,1)=FLOAT(KC(I,J))
KM(I,J,2)=FLOAT(KD(I,J))
KM(I,J,3)=FLOAT(IMAGE(I,J))
ENDDO
ENDDO

ENDIF
RETURN
END

SUBROUTINE ASSIGN(NT,QT)
C Subroutine to classify pixels.

PARAMETER(NYY=512,NXX=512,MM=3,NZ=150)
INTEGER*2 IMAGE(NYY,NXX),IMA(NZ),NT,KK 
INTEGER*2 PEF(NZ),GL,GINC,IFEAT,N1,N2 
INTEGER*2 KC(NYY,NXX),KD(NYY,NXX)
REAL KM(NYY,NXX,MM),QT(MM)
REAL REF(NZ,MM),AY(MM),KR1,KR2,PP,QQ 
REAL RK(NZ),RK2,D(MM),SUM,P,Q,PAX 
COMMON IMAGE,KM,KC,KD,REF,AY 

C
DO L=1,MM
IF(AY(L).EQ.0.0)AY(L)=1.0 

ENDDO 
Nl = l N2=MM 
GL=40 GINC=15 
DO K=1,NT 
IF(K.EQ.1)THEN 
IMA(K)=GL
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ELSE
IMA(K)=IMA(K-l)+GINC 

ENDIF 
ENDDO
DO J=1,NXX 
DO 1=1,NYY 
DO L=N1,N2
D(L)=KM(I,J,L)/AY(L)
ENDDO 
DO K=1,NT 
RK(K)=0.0 
DO L=N1,N2
PAX=(D(L)-REF(K,L))**2 
RK(K)=RK(K)+(QT(L)*PAX)
ENDDO 
ENDDO 
P=RK(1)
KK=1
DO K=1,NT 
IF(P.GT.RK(K))THEN 
P=RK(K)KK=K
ENDIF

ENDDO
IMAGE(I,J)=IMA(KK)

ENDDO
ENDDO
RETURN
END

SUBROUTINE CLAVECT(NX,NT,QT,ICHAN,THR)
C Subroutine to determine mean feature vectors for classes 
C or categories and also performs normalisation of features. 
C There are presently only two levels of splitting of non- 
C uniform neighbourhoods i.e from NX X NX to NX/n X NX/n,
C where n=2**2

PARAMETER(NYY=512,NXX=512,MM=3,NZ=150,NB=64,NL=4096) 
INTEGERS IMAGE(NYY,NXX),IC,K,IFEAT,NUT,KOUNT 
INTEGER*2 LI,L2,NT,JQ,ID,II,12,J1,J2,I,ED2(2,2) 
INTEGERS NX,M, N, NN1, NN2, ICHAN, IE, J, ITEST, IFAT, NC 
INTEGERS KC(NYY,NXX),KD(NYY,NXX),MX1,MX2,MX3,NR 
REAL KM(NYY,NXX,MM),REF(NZ,MM),BG,QT(MM),ZTT 
REAL TNI,TN2,TM1,TM2,TN,DF(MM),AZ(MM)
REAL FF(NL,MM),ZA,ZC,DNAT,BF(MM),THR,DET 
REAL ICAN(NL),UB,UM,UG,AY(MM),IMAG3(NB,NB,MM)
REAL IMAG1(NB,NB,MM),IMAG2(NB,NB,MM)
COMMON IMAGE,KM,KC,KD,REF,AY 

C
MX1=NX
NR=NYY/NX
NC=NXX/NXIE=0
Ll = lL2=MM
IFAT=(L2-L1)+l
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C
C
C
C
Divide the image into blocks of size NX*NX and test 
for uniformity of blocks.compute the average feaure 
values for blocks considered uniform.

DO JJ=1,NC 
DO 11=1,NR 
DO N=1,MX1 
J=(JJ-1)*MX1+N 
DO M=1,MX1 
I=(II-1)*MX1+M 
DO L=L1,L2
IMAG1(M,N,L)=KM(I,J,L)

ENDDO
ENDDO
ENDDO
CALL UNIF0RM(IMAG1,MX1,ITEST,DF,LI,L2,THR) 
IF(ITEST.EQ.1)THEN 
IE=IE+1
ICAN(IE)=FL0AT(MX1**2)
DO L=L1,L2 
FF(IE,L)=DF(L)

ENDDO 
GO TO 100 
ENDIFC ---------------------------------------------------

C If block of size NX*NX is not uniform, split it into 
C four subblocks of size MX2*MX2 (where MX2=NX/2).Test 
C uniformity of each subblock and compute the average 
C feature values for those considered uniform.

MX2=MX1/2 
K0UNT=0 
DO Jl=l,2 
DO 11=1,2 
ED2(II,J1)=0 
DO N=1,MX2 
J=(Jl-1)*MX2+N 
DO M=1,MX2 
1=(I1-1)*MX2+M 
DO L=L1,L2
IMAG2(M,N,L)=IMAG1(I,J,L)

ENDDO
ENDDO
ENDDO
CALL UNIF0RM(IMAG2,MX2,ITEST,DF,LI,L2,THR)
IF(ITEST.EQ.1)THEN 
IE=IE+1
ICAN(IE)=FL0AT(MX2**2)
DO L=L1,L2 
FF(IE,L)=DF(L)
ENDDO
ED2(II,J1)=1 
K0UNT=K0UNT+1 

ENDIF 
ENDDO 
ENDDO

four
for
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IF(K0UNT.EQ.4)G0 TO 100C ----------------------------------------------------
C If any of the subblock of size MX2*MX2 is not uniform, 
C split the subblock further into four portions,
C each of size MX3*MX3 (where MX3=MX2/2). Test for 
C uniformity of each portion and compute the average 
C feature values for those considered uniform.

MX3=MX2/2 
DO Jl=l,2 
DO 11=1,2
IF(ED2(I1,J1).NE.1)THEN 
DO N=1,MX2 
J=(Jl-1)*MX2+N 
DO M=1,MX2 
I=(I1-1)*MX2+M 
DO L=L1,L2
IMAG2(M,N,L)=IMAG1(I,J,L)

ENDDO 
ENDDO 

ENDDO 
DO J2=l,2 
DO 12=1,2 
DO N=1,MX3 
J=(J2-1)*MX3+N 
DO M=1,MX3 
I=(I2-1)*MX3+M 
DO L=L1,L2
IMAG3(M,N,L)=IMAG2(I,J,L)

ENDDO
ENDDO
ENDDO
CALL UNIF0RM(IMAG3,MX3,ITEST,DF,LI,L2,THR) 
IF(ITEST.EQ.1)THEN 
IE=IE+1
ICAN(IE)=FL0AT(MX3**2)
DO L=L1,L2 
FF(IE,L)=DF(L)

ENDDO
ENDIF

ENDDO
ENDDO
ENDIF
ENDDO

ENDDOC -----------------------------------------------------
100 CONTINUE 

ENDDO 
ENDDO

C Cluster the mean vectors agglomeratively•
202 IC=IE
203 ZTT=10000000.0 

DO L=L1,L2
AZ(L)=0.0 
DO K=1,IE
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AZ(L)=AZ(L)+FF(K,L)
ENDDO 
ENDDO 
DO 1=1,IE
IF(ICAN(I).NE.0.0)THEN 
DO J=I+1,IE 
IF(ICAN(J).NE.O.O)THEN 
DNAT=0.0 
DO L=L1,L2DNAT=DNAT+((FF(I,L)-FF(J,L))/AZ(L))**2
ENDDO
IF(ZTT.GT.DNAT)THEN 
ZTT=DNAT 
NN1 = I 
NN2=J ENDIF 

ENDIF 
ENDDO 

ENDIF 
ENDDO
TM1=ICAN(NN1)
TM2=ICAN(NN2)
TN=TM1+TM2 
DO L=L1,L2BF(L)=(TM1*FF(NN1,L)+TM2*FF(NN2,L))/TN
ENDDO
DO L=L1,L2 
FF(NN1,L)=BF(L)
FF(NN2,L)=0.0 

ENDDO
ICAN(NN1)=ICAN(NN1)+ICAN(NN2)
ICAN(NN2)=0.0
IC=IC-1
IF(IC.GT.NT)GO TO 203

C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%^%^%%%%%%%%%%%%%%%%%%%%% 
WRITE(ICHAN, *) 1 NO. OF VECTORS CLUSTERED = *,IE 
NUT=0 
DO 1=1,IE
IF(ICAN(I).NE.0.0)THEN 
NUT=NUT+1 
DO L=L1,L2 
REF(NUT,L)=FF(I,L)
ENDDO
ENDIF

ENDDO
WRITE(ICHAN,*)'THESE ARE AVERAGE VALUES OF FEATURES1 
WRITE(6,*)* FOR CATEGORIES*
WRITE(ICHAN,70)((REF(I,J),J=L1,L2),1=1,NUT)

70 FORMAT(<IFAT>F13.6)

Determine the feature normalizing factors and normalize 
the mean feature values.

DO L = L 1 , L 2  
A Y ( L ) = 0 .0
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DO K=1,NT
AY(L)=AY(L)+REF(K,L)
ENDDO
IF(AY(L).EQ.0.0)AY(L)=1.0

ENDDO
DO L=L1,L2 
DO K=1,NT
REF(K,L)=REF(K,L)/AY(L)
ENDDO
ENDDOC Determine the feature weighting factors using distance 

C between means criterion.
DO L=L1,L2 
QT(L)=0.0 
DO 1=1,NT-1 
DO J=I+1,NTZA=ABS(REF(I,L)-REF(J,L))
ZC=REF(I,L)+REF(J,Lj 
IF(ZC.EQ.0.0)ZC=1.0 
QT(L)=QT(L)+(ZA/ZC)
ENDDO 

ENDDO 
ENDDO 
ZC=0.0 
DO L=L1,L2
IF(ZC.LT.QT(L))ZC=QT(L)

ENDDO
DO L=L1,L2
IF(QT(L).NE.0.0)QT(L)=ZC/QT(L)

ENDDO
WRITE(ICHAN,*)’WEIGHTING FACTORS USING DISTANCET 
WRITE(ICHAN,*)1 BETWEEN MEANS CRITERION’

C
WRITE(ICHAN,85)(QT(L),L=1,MM)

85 F0RMAT(<IFAT>F10.5)
C ---------------------------------------------------------

RETURN
END

SUBROUTINE UNIFORM(IMAG,MX,ITEST,DF,LI,L2,THR)
C Subroutine to determine uniformity of neighbourhoods. 

PARAMETER(NB=64,MM=3)
INTEGER*2 ITEST,MX,LX,LI,L2 
REAL Z1,Z2,THR,BM,EF(MM),EF1(MM)
REAL IMAG(NB,NB,MM),DF(MM),EF2(MM),BB 
REAL DAT,DET,EF3(MM),EF4(MM),DB 

C
LX=MX/2
DAT=FLOAT(MX**2)
DET=FL0AT(LX**2)
DB=FL0AT(L2-L1)+l.0 ITEST=0

C
DO L=L1,L2 
EF(L) = 0.0
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C

EF1(L)=0.0 
EF2(L)=0.0 
EF3(L)=0.0 
EF4(L)=0.0 
DF(L)=0.0 
ENDDO 
DO N=1,MX 
DO M=1,MX 
DO L=L1,L2
EF(L)=EF(L)+IMAG(M,N,L)
IF((M.LE.LX).AND,(N.LE.LX))THEN 
EF1(L)=EF1(L)+IMAG(M,N,L)

ENDIF
IF((M.LE.LX).AND.(N.GT.LX))THEN 
EF2(L)=EF2(L)+IMAG(M,N,L)

ENDIF
IF((M.GT.LX).AND.(N.LE.LX))THEN 
EF3(L)=EF3(L)+IMAG(M,N,L)

ENDIF
IF((M.GT.LX).AND.(N.GT.LX))THEN 
EF4(L)=EF4(L)+IMAG(M,N,L)ENDIF

ENDDO
ENDDO

ENDDO
DO L=L1,L2 
EF(L)=EF(L)/DAT 
EF1(L)=EF1(L)/DET 
EF2(L)=EF2(L)/DET 
EF3(L)=EF3(L)/DET 
EF4(L)=EF4(L)/DET 
ENDDO
BM-O.0 
DO L=L1,L2 
BB=0.0IF(EF(L).GE.EF1(L))THEN 
Z1=EF(L)
Z2=EF1(L)

ELSE
Z1=EF1(L)
Z2=EF(L)

ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(L).GE.EF2(L))THEN 
Z1=EF(L)
Z2=EF2(L)

ELSE
Z1=EF2(L)
Z2=EF(L)ENDIF

THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(L).GE.EF3(L))THEN
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Z1=EF(L)
Z2=EF3(L)
ELSE
Z1=EF3(L)
Z2=EF(L)
ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(L).GE.EF4(L))THEN 
Z1=EF(L)
Z2=EF4(L)
ELSE
Z1=EF4(L)
Z2=EF(L)

ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(BB.EQ.4.0)BM=BM+1.0 

ENDDO
IF(BM.EQ.DB)THEN 
ITEST=1 
DO L=L1,L2 
DF(L)=EF(L)

ENDDO
ENDIF
RETURN
END
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PROGRAM SEG1
Program for segmentation ALGORITHM II for the 
segmentation of black-and-white/monochrome image.
INPUT : ANY BLACK-AND-WHITE OR MONOCHROME IMAGE
OUTPUT : SEGMENTED VERSION OF THE INPUT IMAGE
COMMENTS : Depending on the image, the user may 

: segment on the basis of texture, or 
: brightness ,or on the basis of both.

PARAMETER(NYY=256,NXX=256,MM=3,NZ=150)
INTEGER*2 IMAGE(NYY,NXX),IC,ID,NT,IB,IFEAT,IA 
INTEGERS NY,NX,ISL,ISS,NL,NS,GL,GINC,ICHAN 
REAL KM(NYY,NXX,MM),THR,TH 
REAL REF(NZ, MM) ,AY(MM),QT(MM)
INTEGERS STATUSFLAG,LINENUMBER 
COMMON IMAGE,KM,REF,AY

Read in the image.CALL VICINIT('SEG1')
CALL OPENV(STATUSFLAG,2,0,0,0,0)
DO LINENUMBER=1,NYYCALL READ(STATUSFLAG,2,0,1,0,NXX,IMAGE(1,LINENUMBER),0) 
ENDDO

Supply the required segmentation parameters.
WRITE(6,*)1 WHAT TYPE OF FEATURES ARE TO BE USED FORf 
WRITE(6,*)1 SEGMENTATION; BRIGHTNESS, TEXTURE OR A1 
WRITE(6,*)' COMBINATION OF BOTH?. IF ONLY BRIGHTNESS1 
WRITE(6,*)'INPUT 1, IF ONLY TEXTURE INPUT 2 OR IF' 
WRITE(6,*) ' A COMBINATION OF BOTH INPUT 3'
READ(5,*)IFEAT
IF(IFEAT.GT.1)THEN ID=3
WRITE(6,*)'INPUT THE DISTANCE FOR SPECIFYING THE' 
WRITE(6,*)'CHARACTREIZATION WINDOW SIZE FOR THE' 
WRITE(6,*)'COMPUTATION OF TEXTURAL FEATURES; IB' 
READ(5,*)IB ENDIF
IF(IFEAT.EQ.1)THEN 
ID=1
WRITE(6,*)'NOW, THAT YOU ARE USING ONLY BRIGHTNESS,' 
WRITE(6,*)'DO YOU WANT TO USE THE GRAY LEVELS OF THE' 
WRITE(6,*)'PIXELS DIRECTLY OR THE AVERAGE GRAY LEVEL' 
WRITE(6,*)'IN SMALL WINDOWS CENTERED ON PIXELS?.' 
WRITE(6,*)'IF AVERAGE INPUT 1, OTHERWISE INPUT O' 
READ(5,*)IA IF(IA.EQ.1)THEN
WRITE(6,*)'THEN, INPUT THE DISTANCE FOR SPECIFYING' 
WRITE(6,*)'THE SIZE OF THIS WINDOW; IB'
READ(5,*)IB
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ELSE
IB=0

ENDIF
ENDIF

C
WRITE(6,*)* INPUT THE DISTANCE FOR SPECIFYING1 
WRITE(6,*)TDIMENSIONS OF SEARCH BLOCKS; NXf 
WRITE(6, *) 'NOTE: DIMENSION= NX x NX1 
READ(5,*)NX 

C
WRITE(6,*)'INPUT THE NUMBER OF CATEGORIES; NT1 
READ(5,*)NTWRITE(6,*)1 INPUT THE INITIAL VALUE OF UNIFORMITY1 
WRITE(6,*)'CRITERION; THR AND THE INCREMENTAL/' 
WRITE(6,*)'DECREMENTAL FACTOR; TH, BOTH ARE' 
WRITE(6,*)'REAL NUMBERS.'
READ(5,*)THR,TH

C ------------------------------------------------------
WRITE(6, *) 'INPUT THE CHANNEL NUMBER FOR WRITING' 
WRITE(6,*)'AN INTEGER'
READ(5,*)ICHAN C
CALL FEATURE(IB,ID,IFEAT)
CALL CLAVECT(NX,NT,IFEAT,QT,ICHAN,THR,TH)
CALL ASSIGN(NT,IFEAT,QT)

C
CALL OPENV(STATUSFLAG,1,1,0,0,0)
CALL ADJUST(1,NYY,NXX)
DO 1=1,NYY
CALL WRITE(STATUSFLAG,1,0,1,0,NXX,IMAGE(1,I),0) 

ENDDO
CALL RELAB2(1,NYY,NXX)
END

SUBROUTINE ASSIGN(NT,IFEAT,QT)
C Subroutine to classify pixels.

PARAMETER(NYY=256,NXX=256,MM=3,NZ=150)
INTEGER*2 IMAGE(NYY,NXX),IMA(NZ),NT,KK INTEGERS PEF(NZ),GL,GINC,IFEAT,N1,N2 
REAL KM(NYY,NXX,MM)
REAL REF(NZ,MM),AY(MM),KR1,KR2,PP,QQ 
REAL RK(NZ),RK2,D(MM),SUM,P,Q,PAX,QT(MM)
COMMON IMAGE,KM,REF,AY 

C
IF(IFEAT.EQ.1)THEN 
Nl=3 
N2=3 ENDIF
IF(IFEAT.EQ.2)THEN 
Nl = l 
N2=2 ENDIF
IF(IFEAT.EQ.3)THEN 
Nl = l 
N2=3



206

ENDIF
GL=40
GINC=15

C
DO L=1,MM
IF(AY(L).EQ.0.0)AY(L)=1.0

ENDDO
C

DO K=1,NT 
IF(K.EQ.1)THEN 
IMA(K)=GL 

ELSE
IMA(K)=IMA(K-1)+GINC 

ENDIF 
ENDDO
DO J=1,NXX 
DO 1=1,NYY 
DO L=N1,N2
D(L)=KM(I,J,L)/AY(L)

ENDDO 
DO K=1,NT 
RK(K)=0.0 
DO L=N1,N2
PAX=(D(L)-REF(K,L) )**2 
RK(K)=RK(K)+(QT(L)*PAX)

ENDDO 
ENDDO 
P=RK(1)
Y Y —  1
DO K=1,NT 
IF(P.GT.RK(K))THEN 
P=RK(K)
KK=K
ENDIF
ENDDO
IMAGE(I,J)=IMA(KK)

ENDDO
ENDDO
RETURN
END
SUBROUTINE CLAVECT(NX,NT,IFEAT,QT,ICHAN,THR,TH)

C Subroutine to determine mean feature vectors for classes 
C or categories and also performs normalisation of features. 

PARAMETER(NYY=256, NXX=256,MM=3,NZ«*150, NB=64,NL=4096) 
INTEGERS IMAGE(NYY,NXX),IC,K,IFEAT,NUT,IE,IW 
INTEGER*2 NAT,LI,L2,NT,JQ,ID,II,12, J1, J2,1,J INTEGER*2 LL1,LL2,NY1,NX1,NN1,NN2,ICHAN 
INTEGER*2 ICON(NL),NR,NC, NY,NX,M,N,KOUNT 
REAL FM(MM),FM1(MM),FM2(MM),FM3(MM),FM4(MM)
REAL KM(NYY,NXX,MM),THD,UM,UB,UG,ZTT,BG,QT(MM)
REAL TNI,TN2,TM1,TM2,TN,THR,TH,PT,DAT,AZ(MM)
REAL EF(NB,NB,MM),EF1(NB,NB.MM),EF2(NB,NB,MM)
REAL EF3(NB,NB,MM),EF4(NB,NB.MM)
REAL FF(NL,MM),ZA,ZC,DNAT,BF(MM),DET
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REAL REF(NZ,MM),AY(MM),BH,BM,BB,DB 
COMMON IMAGE,KM,REF,AY 

C
NY=NX
NR=NYY/NY
NC=NXX/NX
DAT=FLOAT(NY*NX)
NYl=NY/2
NXl=NX/2
DET=FL0AT(NY1*NX1)

C ---------------------------------------------------------------------------
C Determine allowable maximum and minimum number 
C of neighbourhoods that can be considered uniform. 

IF(NYY.EQ.512)THEN 
LLl=(NR*NC)/3 

ENDIF
IF(NYY.EQ.256)THEN 
LL1=(3*(NR*NC))/4 
ENDIF 
LL2=LLl/3

C ------------------------------------------------------------
IF(IFEAT.EQ.1)THEN 
Ll = 3 
L2=3 ENDIF
IF(IFEAT.EQ.2)THEN 
Ll = l 
L2=2 

ENDIF
IF(IFEAT.EQ.3)THEN 
Ll = l 
L2=3 
ENDIF
DB=FL0AT(L2-L1)+l.0 
K0UNT=0C --------------------------------------------------

C Divide the image into small blocks and compute the 
C mean feature values for block and for each of its 
C quarters.

DO Jl=l,NC 
DO 11=1,NR 
DO L=L1,L2 
FM(L)=0.0 
FM1(L)=0.0 
FM2(L)=0.0 
FM3(L)=0.0 
FM4(L)=0•0 ENDDO 
DO N=1,NX 
J=(Jl-1)*NX+N DO M=1,NY 
I=(I1-1)*NY+M 
DO L=L1,L2
FM(L)=FM(L)+KM(I,J,L)
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IF((M.LE.NY1).AND.(N.LE.NX1))THEN 
FM1(L)=FM1(L)+KM(I,J,L)
ENDIF
IF((M.LE.NY1).AND.(N.GT.NX1))THEN 
FM2(L)=FM2(L)+KM(I,J,L)

ENDIF
IF((M.GT.NY1).AND.(N.LE.NX1))THEN 
FM3(L)=FM3(L)+KM(I,J,L)

ENDIF
IF((M.GT.NY1).AND.(N.GT.NX1))THEN 
FM4(L)=FM4(L)+KM(I,J,L)
ENDIF
ENDDO
ENDDO

ENDDO
DO L=L1,L2EF(I1,J1,L)=FM(L)/DAT 
EF1(I1,J1,L)=FM1(L)/DET 
EF2(I1,J1,L)=FM2(L)/DET 
EF3(I1,J1,L)=FM3(L)/DET 
EF4(I1,J1,L)=FM4(L)/DET 

ENDDO
ENDDO
ENDDO

C Determine those blocks that can be considered uniform 
C in terms of all the features. IE counts the number of 
C such blocks.
200 IE=0DO Jl = l,NC 

DO 11=1,NR 
BM=0.0 
DO L=L1,L2 
BB=0.0
IF(EF(I1, J1,L) .GE.EFKIl, J1,L))THEN 
Z1=EF(I1,J1,L)
Z2=EF1(II,J1,L)

ELSE
Z1=EF1(II,J1, L)
Z2=EF(I1,J1,L)
ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(I1,J1,L).GE.EF2(I1,J1,L))THEN 
Z1=EF(II,J1,L)
Z2=EF2(I1,J1,L)

ELSE
Z1=EF2(II,J1,L)
Z2=EF(I1,J1,L)
ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(I1,J1,L).GE.EF3(I1,J1,L))THEN 
Z1=EF(II,J1,L)
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Z2=EF3(I1,J1,L)ELSE
Z1=EF3(IX,J1,L)
Z2=EF(I1,J1,L)ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(I1,J1,L).GE.EF4(I1,J1,L))THEN 
Z1=EF(II,J1,L)
Z2=EF4(I1,J1,L)FT 9F
Z1=EF4(I1,J1,L)
Z2=EF(I1,J1,L)

ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 

C IF(BB.EQ.4.0)BM=BM+1•0 
ENDDO
IF(BM.EQ.DB)THEN 
IE=IE+1 
DO L=L1,L2
FF(IE,L)=EF(I1,J1,L)

ENDDO 
ICON(IE)=1 

ENDIF 
ENDDO 

ENDDO
IF(KOUNT.EQ.0)THENWRITE(ICHAN,*)1 NUMBER OF NEIGHBOURHOODS CONSIDERED' 
WRITE(ICHAN,*)UNIFORM AT THE INITIAL VALUE 0FT 
WRITE(ICHAN,*)’UNIFORMITY CRITERION = f,IE 
ENDIFC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%£%%%%%%%%%%£%%%%%%%%%%%%% 

C If the number of uniform blocks is greater than the 
C allowable maximum, make the criterion stricter and 
C determine the blocks considered uniform using the 
C new criterion.

IF(IE.GT.LL1)THEN 
THR=THR+TH 
GO TO 200 
ENDIF

C _____________________________________________________
C If the number of uniform blocks is less than the C allowable minimum, relax the criterion and determine 
C the blocks considered uniform using the new criterion. 

IF(IE.LT.LL2)THEN 
THR=THR-TH 
GO TO 200 

ENDIF
C _______________________________________________________C If the number of uniform neighbourhoods is allowable,
C cluster the mean vectors agglomeratively.
202 IC=IE
203 ZTT=10000000.0
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C

c

DO L=L1,L2 
AZ(L)=0.0 
DO K=1,IE
AZ(L)=AZ(L)+FF(K,L)
ENDDO

ENDDO
DO 1=1,IE
IF(ICON(I).NE.O)THEN 
DO J=I+1,IE 
IF(ICON(J).NE.0)THEN 
DNAT=0.0 
DO L=L1,L2DNAT=DNAT+((FF(I,L)-FF(J,L))/AZ(L))**2 
ENDDO
IF(ZTT.GT.DNAT)THEN 
ZTT=DNAT
NN1 = I 
NN2=J 

ENDIF 
ENDIF 
ENDDO 

ENDIF 
ENDDO
TN1=FL0AT(IC0N(NN1)) 
TN2=FLOAT(ICON(NN2)) 
TN=(TN1+TN2)*DAT 
TM1=TN1*DAT
TM2=TN2*DAT 
DO L=L1,L2BF(L) = (TM1*FF(NN1,L)+TM2*FF(NN2, L))/TN 
ENDDO
DO L=L1,L2 
FF(NN1,L)=BF(L)
FF(NN2,L)=0.0 

ENDDO
IC0N(NN1)=IC0N(NN1)+ICON(NN2)
ICON(NN2)=0 
IC=IC-1
IF(IC.GT.NT)GO TO 203

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%WRITE(ICHAN,*)’ THE FINAL VALUE OF UNIFORMITY1 
WRITE(ICHAN,*)'CRITERION = ’,THR
WRITE(ICHAN,*)* NO. OF MEAN VECTORS CLUSTERED = f,IE
NUT=0
DO 1=1,IE
IF(ICON(I).NE.O)THEN 
NUT=NUT+1 
DO L=L1,L2 
REF(NUT,L)=FF(I,L)

ENDDOENDIF
ENDDO
12=(L2-L1)+l
WRITE(ICHAN,*)’THESE ARE AVERAGE VALUES OF FEATURES’
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WRITE(ICHAN,*)* FOR CATEGORIES*
WRITE(ICHAN,70)((REF(I,J),J=L1,L2),I=1,NUT) 

70 FORMAT(<I2>F13.6 )

Determine the feature normalizing factors and normalize 
the mean feature values.

DO L=L1,L2 
AY(L)=0.0 
DO K=1,NT
AY(L)=AY(L)+REF(K,L)

ENDDO
IF(AY(L).EQ.0.0)AY(L)=1.0 

ENDDO 
DO L=L1,L2 
DO K=1,NT
REF(K,L)=REF(K,L)/AY(L)

ENDDO 
ENDDO

C Determine the feature weighting factors using distance 
C between means (contrast) criterion.

DO L=L1,L2 
QT(L)=0.0 
DO 1=1,NT-1 
DO J=I+1,NT
ZA=ABS(REF(I,L)-REF(J,L))
ZC=REF(I,L)+REF(J,L)
IF(ZC.EQ.0.0)ZC=1.0 
QT(L)=QT(L)+(ZA/ZC)
ENDDO 

ENDDO 
ENDDO 
ZC=0.0 
DO L=L1,L2
IF(ZC.LT.QT(L))ZC=QT(L)

ENDDO
DO L=L1,L2
IF(QT(L).NE.0.0)QT(L)=ZC/QT(L)

ENDDO
WRITE(ICHAN,*)'WEIGHTING FACTORS USING DISTANCE*
WRITE(ICHAN,*)* BETWEEN MEANS CRITERION*C
WRITE(ICHAN,85)(QT(L),L=L1,L2)

85 F0RMAT(<E2>F10.5)C ------------------------------------------- -------------
RETURN
END

C ****** ********************************  ********************  
SUBROUTINE FEATURE(IB,ID,IFEAT)

C Subroutine to compute features.
PARAMETER(NYY=256,NXX=256,MM=3,NG=255,LL=10,NZ=150) INTEGER*2 IMAGE(NYY,NXX),IB,ID,M,N,I,J,II,J1 
INTEGER*2 IP1,IP2,IQ1,IQ2,IFEAT 
REAL BH,BM,BB,S(LL),SUMG3,Q1.Q2.DAT 
REAL KG(NYY,NXX),KM(NYY,NXX,MM),KB(NYY,NXX)
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REAL KC(NYY,NXX),KD(NYY,NXX),DNAT,DH,DM,DB 
REAL REF(NZ,MM),AY(MM),SUMG1,SUMG2 
REAL DNAT1,DNAT2,DNAT3,DNAT4,SUMG4,DG 
COMMON IMAGE,KM,REF,AY

C If texture is to be used in segmentation,compute the 
C textural features,

IF(IFEAT.GT.1)THEN 
DO J=1,NXX 
DO 1=1,NYY 
KC(I,J)=0.0 
KD(I,J)=0.0 IP1=-ID 
IP2=ID 
IQ1=-ID 
IQ2=ID
IF(I.LE.ID)IP1=0 
IF(I.GT.(NYY-ID))IP2=0 
IF(J.LE.ID)IQ1=0 
IF(J.GT.(NXX-ID))IQ2=0 
Q1=FL0AT(IMAGE(I,J))DO L=1,5 
S(L)=0.0 

ENDDO 
SUMG1=0.0 
SUMG2=0.0 
SUMG3=0.0 
SUMG4=0.0 
DNAT1=-1.0 
DNAT2=-1.0 
DNAT3=-1.0 

C
DO L=IQ1,IQ2 
N=ABS(L)
DO K=IP1,IP2 
M=ABS(K)
Q2=FL0AT(IMAGE(I+K,J+L))
IF((M.LE.1).AND,(N.LE.1))THEN SUMG1=SUMG1+Q2 
DNAT1=DNAT1+1.0 

ENDIF
IF((M.LE,2).AND.(N.LE.2))THEN 
SUMG2=SUMG2+Q2 
DNAT2=DNAT2+1.0 

ENDIF
IF((M.LE.3).AND.(N.LE.3))THEN 
SUMG3=SUMG3+Q2 
DNAT3=DNAT3+1.0 ENDIF 

ENDDO 
ENDDO
SUMG1=(SUMG1-Q1)/DNAT1 
SUMG2=(SUMG2-Q1)/DNAT2 
SUMG3=(SUMG3-Q1)/DNAT3
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c

c

S(1)=S(1)+(SUMGl-Ql) 
S(2)=S(2)+(SUMG2-Q1) 
S(3)=S(3)+(SUMG3-Q1)DO L=1,ID
KC(I,J)=KC(I,J)+ABS(S(L))

ENDDO
DO L=1,TD-1 
DO K=L+1,ID
KD(I,J)=KD(I,J)+ABS(S(L)-S(K)) 

ENDDO 
ENDDO
KD(I,J)=2.0*KD(I,J)

ENDDO
ENDDO
DO Jl=l,NXX 
J=J1
DO 11=1,NYY 
1=11
KM(II,J1,1)=0.0
KM(II,J1,2)=0.0
KM(I1,J1,3)=0.0
IP1=-IB
IP2=IB
IQ1=-IB
IQ2=IB
IF(I.LE.IB)THEN
IP1=IB+1
IP2=IP1+IB+I
1=0

ENDIF
IF(I.GT.(NYY-IB))THEN 
IP2=NYY-IB
IP1=IP2-(IB+(NYY-I))
1=0ENDIF
IF(J.LE.IB)THEN 
IQ1=IB+1 
IQ2=IQ1+IB+J 
J=0 
ENDIF
IF(J.GT.(NXX-IB))THEN IQ2=NXX-IB 
IQ1=IQ2-(IB+(NXX-J))
J=0 ENDIF 

DNAT=0.0 
DM=0.0 
DB=0.0 
DG=0.0DO L=IQ1,IQ2 
DO K=IP1,IP2 
DNAT=DNAT+1.0 
DM=DM+KC(I+K,J+L)
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C

DB=DB+KD(I+K,J+L) 
IF(IFEAT.EQ.3)THEN 
DG=DG+IMAGE(I+K,J+L) 
ENDIF 
ENDDO 
ENDDO
KM(I1,J1,1)=DM/DNAT 
KM(I1,J1,2)=DB/DNAT 
KM(I1,J1,3)=DG/DNAT 

ENDDO 
ENDDO 
ENDIF
IF(IFEAT.EQ.1)THEN 
IF(IB.NE.O)THEN 
DO Jl=l,NXX 
J=J1
DO 11=1,NYY 
1=11
KM(I1, J1,1)=0.0
KM(II,J1,2)=0.0KM(I1,J1,3)=0.0
IP1=-IB
IP2=IB
IQ1=-IB
IQ2=IB
IF(I.LE.IB)THEN
IP1=IB+1
IP2=IP1+IB+I
1=0
ENDIF
IF(I.GT.(NYY-IB))THEN 
IP2=NYY-IB
IP1=IP2-(IB+(NYY-I))
1=0
ENDIF
IF(J.LE.IB)THEN
IQ1=IB+1
IQ2=IQ1+IB+J
J=0
ENDIF
IF(J.GT.(NXX-IB))THEN 
IQ2=NXX-IB
IQ1=IQ2-(IB+(NXX-J))
J=0 
ENDIF 
DNAT=0.0 
DG=0.0
DO L=IQ1,IQ2 
DO K=IP1,IP2 
DNAT=DNAT+1.0DG=DG+FLOAT(IMAGE(I+K,J+L)) 

ENDDO 
ENDDO
KM(II,J1,3)=DG/DNAT



215

ENDDO
ENDDO
ELSE
DO J=1,NXX 
DO 1=1,NYY
KM(I,J,3)=FL0AT(IMAGE(I,J)) 
ENDDO 
ENDDO 
ENDIF 

ENDIF
RETURN
END
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PROGRAM SEG2
Program for segmentation ALGORITHM II for the 
segmentation of a black-and-white/monochrome image.
INPUT : ANY BLACK-AND-WHITE OR MONOCHROME IMAGE
OUTPUT : SEGMENTED VERSION OF THE INPUT IMAGE
COMMENTS : Depending on the image, the user may segment

: on the basis of texture, or brightness or on
: the basis of both.

PARAMETER(NYY=256,NXX=256,MM=3,NZ=150) INTEGERS IMAGE(NYY, NXX) , IC, ID, NT, IB, IFEAT 
INTEGERS NY,NX,ISL,ISS,NL,NS,ICHAN,IA 
REAL REF(NZ,MM),AY(MM),KM(NYY,NXX,MM)
REAL QT(MM),THR
INTEGER** STATUSFLAG,LINENUMBER 
COMMON IMAGE,KM,REF,AY

Read in the image.
CALL VICINIT(1SEG21)
CALL OPENV(STATUSFLAG,2,0,0,0,0)
DO LINENUMBER=1,NYY
CALL READ(STATUSFLAG,2,0,1,0,NXX,IMAGE(1,LINENUMBER),0) 

ENDDO
Supply the required segmentation parameters.

WRITE(6,*)1WHAT TYPE OF FEATURES ARE TO BE USED FOR 
WRITE(6,*)* SEGMENTATION, BRIGHTNESS, TEXTURE OR A 1 
WRITE(6,*)’COMBINATION OF BOTH?. IF ONLY BRIGHTNESS1 
WRITE(6,*)fINPUT 1, IF ONLY TEXTURE INPUT 2 OR IF* 
WRITE(6,*)fA COMBINATION OF BOTH INPUT 3'
READ(5,*)IFEAT
IF(IFEAT.GT.1)THEN 
ID=3
WRITE(6,*)fINPUT THE DISTANCE FOR SPECIFYING THEf 
WRITE(6,*)1 CHARACTERIZATION WINDOW SIZE FOR THE* 
WRITE(6,*)fCOMPUTATION OF TEXTURAL FEATURES; IB1 
READ(5,*)IB 
ENDIF
IF(IFEAT.EQ.1)THEN 
ID=*1
WRITE(6,*)f NOW, THAT YOU ARE USING ONLY BRIGHTNESS r 
WRITE(6,*)fDO YOU WANT TO USE THE GRAY LEVELS OF THE1 
WRITE(6,*)'PIXELS DIRECTLY OR THE AVERAGE GRAY LEVEL * 
WRITE(6,*)1 IN SMALL WINDOWS CENTERED ON PIXELS?.1 
WRITE(6,*)1IF AVERAGE INPUT 1, OTHERWISE INPUT 0* 
READ(5,*)IA 
IF(IA.EQ.1)THEN
WRITE(6,*)'THEN, INPUT THE DISTANCE FOR SPECIFYING1 
WRITE(6,*)* THE SIZE OF THIS WINDOW; IB1
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READ(5,*)IB 
ELSE 
IB=0 

ENDIF 
ENDIF 

C WRITE(6,*)'INPUT THE DISTANCE FOR SPECIFYING1 
WRITE(6,*)’DIMENSION OF LARGEST SEARCH BLOCKS; NX.1 
WRITE(6,*)'NOTE DIMENSION=NX*NX 1 
READ(5,*)NX 

C
WRITE(6,*)1 INPUT THE NUMBER OF CATEGORIES; NT1 
READ(5,*)NT
WRITE(6,*)'INPUT THE VALUE OF THE UNIFORMITY1 
WRITE(6,*)TCRITERION; THR, A REAL NUMBER'
READ(5,*)THRC ----------------------------------------------------------
WRITE(6,*)'INPUT THE CHANNEL NUMBER FOR WRITING FILE' 
READ(5,*)ICHAN 

C
CALL FEATURE(IB,ID,IFEAT)
CALL CLAVECT(NX,NT,IFEAT,QT,ICHAN,THR)
CALL ASSIGN(NT,IFEAT,QT)

Write out the segmented image
CALL OPENV(STATUSFLAG,1,1,0,0,0)
CALL ADJUST(1,NYY,NXX)
DO 1=1,NYY
CALL WRITE(STATUSFLAG,1,0,1,0,NXX,IMAGE(1,I),0)

ENDDO
CALL RELAB2(1,NYY,NXX)
END

SUBROUTINE FEATURE(IB,ID,IFEAT)
C Subroutine to compute features.

PARAMETER(NYY=256,NXX=256,MM=3,NG=255,LL=10,NZ=150)
INTEGERS IMAGE (NYY, NXX) , IB, ID,M, N, I, J, II, J1
INTEGER*2 IP1,IP2,IQ1,IQ2,IFEAT
REAL BH,BM,BB,S(LL),SUMG3,Q1,Q2, DAT
REAL KG(NYY,NXX),KM(NYY,NXX,MM),KB(NYY,NXX)
REAL KC(NYY,NXX),KD(NYY,NXX),DNAT,DH,DM,DB 
REAL REF(NZ,MM),AY(MM),SUMG1,SUMG2 
REAL DNAT1,DNAT2,DNAT3,DNAT4,SUMG4,DG 
COMMON IMAGE,KM,REF,AY

C ---------------------------------------------------------------------------------
C If texture is to be used for segmentation, compute the 
C textural features.

IF(IFEAT.GT.1)THEN 
DO J=1,NXX 
DO 1=1,NYY 
KC(I,J)=0.0 KD(I,J)=0.0 
IP1=-ID 
IP2=ID 
IQ1=-ID
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IQ2=ID
IF(I.LE.ID)IP1=0 
IF(I.GT.(NYY-ID))IP2=0 
IF(J.LE.ID)IQ1=0 
IF(J.GT.(NXX-ID))IQ2=0 
Q1=FL0AT(IMAGE(I,J))
DO L=1,5 
S(L)=0.0 ENDDO 

SUMG1=0.0 
SUMG2=0.0 
SUMG3=0.0 
SUMG4=0.0 DNAT1=-1.0 
DNAT2=-1.0 
DNAT3=-1.0
DO L=IQ1,IQ2 
N=ABS(L)
DO K=IP1,IP2 
M=ABS(K)Q2=FLOAT(IMAGE(I+K,J+L)) 
IF((M.LE.l).AND.(N.LE.1))THEN 
SUMG1=SUMG1+Q2 
DNAT1=DNAT1+1.0 
ENDIF
IF((M.LE.2).AND.(N.LE.2))THEN 
SUMG2=SUMG2+Q2 
DNAT2=DNAT2+1.0 

ENDIF
IF((M.LE.3).AND.(N.LE.3))THEN 
SUMG3=SUMG3+Q2 
DNAT3=DNAT3+1.0 

ENDIF 
ENDDO 
ENDDO
SUMG1=(SUMG1-Q1)/DNAT1 
SUMG2=(SUMG2-Q1)/DNAT2 
SUMG3=(SUMG3-Q1)/DNAT3 
SUMG4=(SUMG4-Q1)/DNAT4 
S(1)=S(1)+(SUMGl-Ql)
S(2)=S(2)+(SUMG2-Q1) 
S(3)=S(3)+(SUMG3-Q1)
DO L=1,ID
KC(I,J)=KC(I,J)+ABS(S(L))ENDDO

DO L=1,ID-1 
DO K=L+1,ID
KD(I,J)=KD(I,J)+ABS(S(L)-S(K)) 

ENDDO ENDDO
KD(I,J)=2.0*KD(I,J)

ENDDO
ENDDO
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DO Jl=l,NXX 
J=J1
DO 11=1,NYY 
1=11
KM(I1,J1,1)=0.0
KM(I1,J1,2)=0.0
KM(I1,Jl,3)=0.0IP1=-IB
IP2=IB
IQ1=-IB
IQ2=IB
IF(I.LE.IB)THEN 
IP1=IB+1 
IP2=IP1+IB+I 
1=0 

ENDIF
IF(I.GT.(NYY-IB))THEN 
IP2=NYY-IB
IP1=IP2-(IB+(NYY-I)) 
1=0 ENDIF
IF(J.LE.IB)THEN 
IQ1=IB+1 
IQ2=IQ1+IB+J 
J=0 

ENDIF
IF(J.GT.(NXX-IB))THEN 
IQ2=NXX-IB
IQ1=IQ2-(IB+(NXX-J)) 
J=0 
ENDIF 
DNAT=0.0 
DM=0.0 
DB=0.0 
DG=0.0
DO L=IQ1,IQ2 
DO K=IP1,IP2 
DNAT=DNAT+1.0 
DM=DM+KC(I+K,J+L) 
DB=DB+KD(I+K,J+L) 
IF(IFEAT.EQ.3)THEN 
DG=DG+IMAGE(I+K,J+L) 
ENDIF 

ENDDO 
ENDDO
KM(I1,J1,1)=DM/DNAT 
KM(I1,J1,2)=DB/DNAT 
KM(I1,J1,3)=DG/DNAT 
ENDDO 
ENDDO 

ENDIF
IF(IFEAT.EQ.1)THEN 
IF(IB.NE.O)THEN



2 2 0

C

c

DO Jl=l,NXX 
J=J1
DO 11=1,NYY 1=11
KM(I1,J1,1)=0.0
KM(II,J1,2)=0.0
KM(I1,Jl,3)=0.0
IP1=-IB
IP2=IB
IQ1=-IB
IQ2=IB
IF(I.LE.IB)THEN
IP1=IB+1
IP2=IP1+IB+I
1=0ENDIF
IF(I.GT.(NYY-IB))THEN 
IP2=NYY-IB
IP1=IP2-(IB+(NYY-I))
1=0

ENDIF
IF(J.LE.IB)THENIQ1=IB+1
IQ2=IQ1+IB+J
J=0

ENDIF
IF(J.GT.(NXX-IB))THEN 
IQ2=NXX-IB
IQ1=IQ2-(IB+(NXX-J))
J=0 ENDIF 

DNAT=0.0 
DG=0.0
DO L=IQ1,IQ2 
DO K=IP1,IP2 
DNAT=DNAT+1.0
DG=DG+FLOAT(IMAGE(I+K,J+L))

ENDDO
ENDDO
KM(I1,J1,3)=DG/DNAT 

ENDDO 
ENDDO 

ELSEDO J=1,NXX 
DO 1=1,NYY
KM(I,J,3)=FLOAT(IMAGE(I,J))
ENDDO
ENDDO

ENDIF
ENDIF
RETURNEND

sfjsjesJc^^sjcsfcsjeajejJesfc^^sjesfc^sjesjeJjtJjcsjcsJesic^jjcsjejicsJcjIcsfcsicsje^jjejierjcjfcsjcjjcsjcsJcjJcsjcsjesjcsiesjc^sJcjf:#
SUBROUTINE ASSIGN(NT,IFEAT,QT)
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C Subroutine to classify pixels.PARAMETER(NYY=256,NXX=256,MM=3,NZ=150) 
INTEGERS IMAGE(NYY,NXX),IMA(NZ),NT,KK 
INTEGERS PEF(NZ),GL,GINC,IFEAT,N1,N2 
REAL KM(NYY,NXX,MM),QT(MM)
REAL REF(NZ,MM),AY(MM),KR1,KR2,PP,QQ 
REAL RK(NZ),RK2,D(MM),SUM,P,Q,PAX 
COMMON IMAGE,KM,REF,AY 

C
IF(IFEAT.EQ.1)THEN 
Nl=3 
N2=3 ENDIF
IF(IFEAT.EQ.2)THEN 
Nl=l 
N2=2 
ENDIF
IF(IFEAT.EQ.3)THEN 
Nl = l 
N2=3 ENDIF 

GL=40 
GINC=15 

C
DO L=1,MM
IF(AY(L).EQ.0.0)AY(L)=1.0

ENDDO
DO K=1,NT 
IF(K.EQ.1)THEN 
IMA(K)=GL 

ELSE
IMA(K)=IMA(K-1)+GINC

ENDIF
ENDDO
DO J=1,NXX 
DO 1=1,NYY 
DO L=N1,N2
D(L)=KM(I,J,L)/AY(L) 

ENDDO 
DO K=1,NT 
RK(K)=0.0 
DO L=N1,N2
PAX=(D(L)-REF(K,L))**2 
RK(K)=RK(K)+(QT(L)*PAX) 
ENDDO 
ENDDO 
P=RK(1)
77-1
DO K=1,NT
IF(P.GT.RK(K))THEN 
P=RK(K)
KK=K
ENDIF
ENDDO
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IMAGE(I,J)=IMA(KK)
ENDDO
ENDDO
RETURN
END

C  :{c:je:J:5je5{e5)e:J::i[esjc5{c!jej{caJe:{esJc5jesjcj{csJesJ::}s:jc:jcsjesjc5jc3jesjc5je:{e3!c5je:{e5{csje5jesjesjcj{e:jcs!c5je5{e:{e:jejjCi{ejje:j:5jc:j{jjc:{!s5c
SUBROUTINE CLAVECT(NX,NT,IFEAT,QT,ICHAN,THR)

C Subroutine to determine mean feature vectors for 
C classes or categories and also performs normalisation 
C of features.

PARAMETER(NYY=256,NXX=256,MM=3,NZ=150,NB=64,NL=4096) 
INTEGER*2 IMAGE(NYY,NXX),IC,K,IFEAT,NUT 
INTEGERS LI, L2, NT, JQ, ID, II, 12, J1, J2,1, KOUNT 
INTEGER*2 NR,NC,NX,M,N,NN1,NN2,ICHAN,IE,J 
INTEGER*2 IFAT,MX1,MX2,MX3,ITEST,ED2(2,2)
REAL IMAG3(NB,NB,MM),ICAN(NL),UM
REAL KM(NYY,NXX,MM),REF(NZ,MM),BG,QT(MM),ZTT
REAL TNI,TN2,TM1,TM2,TN,DF(MM),AZ(MM)
REAL FF(NL,MM),ZA,ZC,DNAT,BF(MM),THR,DET,UB 
REAL IMAG1(NB,NB,MM),IMAG2(NB,NB,MM),UG,AY(MM)
COMMON IMAGE,KM,REF,AY C

C
C
C
C
C

MX1=NX 
NR=NYY/NX 
NC=NXX/NX 
IF(IFEAT.EQ.1)THEN 
Ll=3
L2=3
ENDIF
IF(IFEAT.EQ.2)THEN 
Ll = l 
L2=2 
ENDIF
IF(IFEAT.EQ.3)THEN 
Ll = l 
L2=3 ENDIF
IE-0IFAT=(L2-L1)+l

09 O7 09 O f O f O f 07 O f 09 09 O f 09 09 09 09 09 09 O f 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 O f&  &  A  A  Zo/ * &  A  A / i / o A / o / o / o / y / o / o / o / y / o / o  A /o  f o / i / i / o  & /o /?  A  &  A  A fa  &  A  /o A /o /o  /o Z? A / *  &  &  A /o  A  /o A> 4 )/)
Divide the image into blocks of size NX*NX and test 
for uniformity of blocks.compute the average 
feature values of blocks considered uniform.

DO JJ=1,NC 
DO 11=1,NR 
DO N=1,MX1 
J=(JJ-1)*MX1+N 
DO M=1,MX1 
I=(II-1)*MX1+M 
DO L=L1,L2
IMAG1(M,N,L)=KM(I,J,L) 

ENDDO 
ENDDO 

ENDDO
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CALL UNIF0RM(IMAG1,MX1,ITEST,DF,LI,L2,THR) 
IF(ITEST.EQ.1)THEN 
IE=IE+1
ICAN(IE)=FLOAT(MXl**2)
DO L=L1,L2 
FF(IE,L)=DF(L)
ENDDO 
GO TO 100 

ENDIFC ----------------------------------------------------
C If block of size NX*NX is not uniform, split it into 
C four subblocks of size MX2*MX2 (where MX2=NX/2).Test 
C for uniformity of each subblock and compute the 
C average feature values for those considered uniform. 

MX2=MXl/2 
K0UNT=0 
DO Jl=l,2 
DO 11=1,2 
ED2(II,J1)=0 
DO N=1,MX2 
J=(J1-1)*MX2+N DO M=1,MX2 
I=(I1-1)*MX2+M 
DO L=L1,L2
IMAG2(M,N,L)=IMAG1(I,J,L)

ENDDO
ENDDO

ENDDO
CALL UNIF0RM(IMAG2,MX2,ITEST,DF,LI,L2,THR)
IF(ITEST.EQ.1)THEN 
IE=IE+1
ICAN(IE)=FL0AT(MX2**2)
DO L=L1,L2 
FF(IE,L)=DF(L)

ENDDO
ED2(II,J1)=1 
K0UNT=K0UNT+1 
ENDIF 

ENDDO 
ENDDO
IF(K0UNT.EQ.4)GO TO 100C --------------------------- -------------------------

C If any of the subblock of size MX2*MX2 is not uniform, 
C split the subblock further into four portions, each of 
C size MX3*MX3 (where MX3=MX2/2). Test for uniformity 
C of each portion and compute the average feature 
C values for those considered uniform.

MX3=MX2/2 
DO Jl-1,2 
DO 11=1,2
IF(ED2(I1,J1).NE.1)THEN DO N=1,MX2 
J=(Jl-1)*MX2+N 
DO M=1,MX2 
I=(I1-1)*MX2+M
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DO L=L1,L2IMAG2(M,N,L)=IMAG1(I,J,L)
ENDDO 

ENDDO 
ENDDO 
DO J2=l,2 
DO 12=1,2 
DO N=1,MX3 
J=(J2-1)*MX3+N 
DO M=1,MX3 
I=(I2-1)*MX3+M 
DO L=L1,L2
IMAG3(M,N,L)=IMAG2(I,J,L)

ENDDO
ENDDO

ENDDO
CALL UNIFORM(IMAG3,MX3,ITEST,DF,LI,L2,THR) 
IF(ITEST.EQ.1)THEN 
IE=IE+1
ICAN(IE)=FLOAT(MX3**2)
DO L=L1,L2 
FF(IE,L)=DF(L)

ENDDO
ENDIF

ENDDO
ENDDO

ENDIF
ENDDO

C
ENDDO

100 CONTINUE ENDDO 
ENDDO

C
C

A  A  A  /o  /o  /3  /o  A  A  /o  /o  /a  /o  /o  /o  A  /5  /d /o /o  / d /o  A  A  /o  /o  /a  /5  /o  A  /o  /o  /o  o  /o  /a  /o  /O 'O /o  /o  6  A  /o  6  /3  /3  /)  A  /3  /o  /o  /a  'a  /o  /o
Cluster the mean vectors agglomeratively.

WRITE(ICHAN,*)* NO.OF VECTORS CLUSTERED =f,IE
202 IC=IE
203 ZTT=10000000.0 

DO L=L1,L2
AZ(L)=0.0 
DO K=1,IE
AZ(L)=AZ(L)+FF(K,L) 
ENDDO 
ENDDO 
DO 1=1,IE
IF(ICAN(I).NE.0.0)THEN 
DO J=I+1,IE 
IF(ICAN(J).NE.0.0)THEN 
DNAT=0.0
DO L=L1,L2
DNAT=DNAT+((FF(I,L)-FF(J,L))/AZ(L))**2 ENDDO
IF(ZTT.GT.DNAT)THEN ZTT=DNAT
NN1 = I
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C %

70

NN2=JENDIF
ENDIF

ENDDO
ENDIF

ENDDO
TM1=ICAN(NN1)
TM2=ICAN(NN2)
TN=TM1+TM2 
DO L=L1,L2BF(L)=(TM1*FF(NN1,L)+TM2*FF(NN2, L))/TN 
ENDDO
DO L=L1,L2 
FF(NN1,L)=BF(L)
FF(NN2,L)=0.0 

ENDDO
ICAN(NN1)=ICAN(NN1)+ICAN(NN2)
ICAN(NN2)=0.0 
IC=IC-1
IF(IC.GT.NT)GO TO 203
NUT=0 
DO 1=1,IE
IF(ICAN(I).NE.0.0)THEN 
NUT=NUT+1 
DO L=L1,L2 
REF(NUT,L)=FF(I,L)

ENDDO
ENDIF
ENDDO
WRITE(ICHAN,*)*THESE ARE AVERAGE VALUES OF FEATURES1 
WRITE(ICHAN,*)f FOR CATEGORIES 1 
WRITE(ICHAN,70)((REF(I,J),J=L1,L2),1=1,NUT) 
F0RMAT(<IFAT>F13.6)

Determine the feature normalizing factors and normalize 
the mean feature values.

DO L=L1,L2 
AY(L)=0.0 DO K=1,NT
AY(L)=AY(L)+REF(K,L)

ENDDO
IF(AY(L).EQ.0.0)AY(L)=1.0 

ENDDO
DO L=L1,L2 
DO K=1,NT
REF(K,L)=REF(K,L)/AY(L)
ENDDO 
ENDDO

C Determine the feature weighting factors using distance C between means criterion.
DO L=L1,L2 
QT(L)=0.0 
DO 1=1,NT-1
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DO J=I+1,NTZA=ABS(REF(I,L)-REF(J,L))
ZC=REF(I,L)+REF(J,L)
IF(ZC.EQ.0.0)ZC=1.0
QT(L)=QT(L)+(ZA/ZC)
ENDDO 
ENDDO 

ENDDO 
ZC=0.0 
DO L=L1,L2
IF(ZC.LT.QT(L))ZC=QT(L)

ENDDO
DO L=L1,L2
IF(QT(L).NE.O.O)QT(L)=ZC/QT(L)

ENDDO
WRITE(ICHAN,*)’WEIGHTING FACTORS USING DISTANCE1 
WRITE(ICHAN,*)1 BETWEEN MEANS CRITERION1 

C
WRITE(ICHAN,85)(QT(L),L=L1,L2)

85 FORMAT (<IFAT>F10.5)
C -------------------------------------------------------------------------------------------------------------------

RETURN
END

Q  j j j  j j ;  j j j  jJ ; jJj  j j j  jJj  jj|* j j j  j J ;  jjc  3jc 3§C 3jc jjc  3$C jJ j  3 ^  3§C ijc  3}!9{(3{C*jC 3$C 3$C 3$C jjc  3}C5$C5§C5$C5$C5$C5$C3}C 3$C jjc jjc  3$C 3$C

SUBROUTINE UNIFORM(IMAG,MX,ITEST,DF,LI,L2,THR)
C Subroutine to determine uniformity of neighbourhoods. 

PARAMETER(NB=64,MM=3)
INTEGER*2 ITEST,MX,LX,LI,L2
REAL Z1,Z2,THR,THD,BM,EF(MM),EF1(MM)
REAL IMAG(NB,NB,MM),DF(MM),EF2(MM),BB 
REAL DAT,DET,EF3(MM),EF4(MM),DB 

C
LX=MX/2
DAT=FLOAT(MX**2)
DET=FLOAT(LX**2)
DB=FLOAT(L2-Ll)+l.0 
ITEST=0 

C
DO L=L1,L2 
EF(L)=0* 0 
EF1(L)=0.0 
■EF2(L)=0.0 
EF3(L)=0.0 
EF4(L)=0.0 
DF(L)=0.0 

ENDDO 
DO N=1,MX 
DO M=1,MX 
DO L=L1,L2
EF(L)=EF(L)+IMAG(M,N,L)
IF((M.LE.LX).AND.(N.LE.LX))THEN EF1(L)=EF1(L)+IMAG(M, N,L)
E N D I F
I F ( ( M . L E . L X ) .A N D . ( N . G T . L X ) ) T H E N  
E F 2 ( L ) = E F 2 ( L ) + I M A G ( M , N , L )
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C

ENDIFIF((M.GT.LX).AND.(N.LE.LX))THEN 
EF3(L)=EF3(L)+IMAG(M,N,L)

ENDIF
IF((M.GT.LX).AND.(N.GT.LX))THEN 
EF4(L)=EF4(L)+IMAG(M,N,L)
ENDIF
ENDDO

ENDDO
ENDDO
DO L=L1,L2 
EF(L)=EF(L)/DAT 
EF1(L)=EF1(L)/DET EF2(L)=EF2(L)/DET 
EF3(TJ)=EF3(L)/DET 
EF4(L)=EF4(L)/DET 

ENDDO
BM=0.0 
DO L=L1,L2 
BB=0.0IF(EF(L).GE.EF1(L))THEN 
Z1=EF(L)
Z2=EF1(L)

ELSE
Z1=EF1(L)
Z2=EF(L)
ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(L).GE.EF2(L))THEN 
Z1=EF(L)
Z2=EF2(L)
ELSE
Z1=EF2(L)
Z2=EF(L)
ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(L).GE.EF3(L))THEN 
Z1=EF(L)
Z2=EF3(L)
ELSE
Z1=EF3(L)
Z2=EF(L)
ENDIF
THD=THR*Z1
IF(Z2.GE.THD)BB=BB+1.0 
IF(EF(L).GE.EF4(L))THEN 
Z1=EF(L)
Z2=EF4(L)ELSE
Z1=EF4(L)
Z2=EF(L)

ENDIF
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THD=THR*Z1IF(Z2.GE.THD)BB=BB+1.0 
IF(BB.EQ.4.0)BM=BM+1.0 

ENDDO 
C

IF(BM.EQ.DB)THEN 
ITEST=1 
DO L=L1,L2 
DF(L)=EF(L)ENDDO

ENDIF
C

RETURN
END
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