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Abstract

Abstract interpretation is the name applied to a number of techniques for reasoning
about programs by evaluating them over non-standard domains whose elements
denote properties over the standard domains. This thesis is concerned with higher-
order functional languages and abstract interpretations with a formal semantic basis.

[t is known how abstract interpretation for the simply typed lambda calculus can
be formalised by using binary logical relations. This has the advantage of making
correctness and other semantic concerns straightforward to reason about. Its main
disadvantage is that it enforces the identification of properties as sets. This thesis
shows how the known formalism can be generalised by the use of ternary logical
relations, and in particular how this allows abstract values to denote properties as
partial equivalence relations. A framework based on this generalisation is developed,
with the issues of induced interpretations for constants and the treatment of recursive
types being considered in some detail.

Certain kinds of program properties can be captured by the use of projections, and
analyses capturing these properties have previously been developed for first-order
languages. It is shown how these same properties can be understood as partial
equivalence relations and, using the above framework, how they can be captured by
abstract interpretations for higher-order languages.

One of the most costly operations involved in automating analyses based on
. abstract interpretation is the computation of fixed points. For the case of first-order
languages and interpretations based on the two-point lattice, there is an efficient
algorithm for finding fixed points which uses the frontier representation for abstract
functions. It is shown how frontiers may be understood as representations of upper-
closed and lower-closed subsets of a function’s domain and how a frontiers algorithm
can be understood in these terms.

It is then shown how this view of frontiers may itself be seen as a special case
of Birkhoff’s Representation Theorem for finite distributive lattices. This allows
frontiers to be applied in a far wider setting and a generalised frontiers algorithm is
developed to take advantage of this.

Finally, it is observed that for many functions, especially in the higher-order case,
finding fixed points in an abstract interpretation is an intractable problem because
of the sizes of the abstract domains. A solution to this problem is developed which
uses Galois connections to place upper and lower bounds on the values of fixed points

in large lattices by working within smaller lattices.
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Chapter 1
Introduction

Functional languages have many advantages over more traditional imperative lan-
guages: run-time efficiency is not one of them. By abstracting away from ‘low-level’
details such as the management of store, functional languages focus attention on
what is to be computed rather than how it is to be done. For each input A, a func-
tional program specifies an output B, but much of the burden of working out the best
route from A to B falls on the compiler. Thus for functional languages the provision
of highly optimising compilers is of crucial importance. This thesis is concerned with
techniques for constructing and implementing provably correct automated program

analyses for use within optimising compilers for functional languages.

1.1 The Theory of Abstract Interpretation

Abstract interpretation is a mathematical framework in which program analyses can
be formalised and proved correct. It is based on the idea of evaluating a program over
a non-standard domain, whose.elements denote properties over the domain of the
standard interpretation. Of course, the intention is that an abstract interpretation
should be correct: the property denoted by the abstract interpretation of a program
should be one which is satisfied by the standard interpretation of that program. It
is also intended that the abstract interpretation can be computed in finite time. For
most properties of interest, this requirement implies that in general the property
computed will only be approximate: an abstract interpretation may be able to
determine that for all inputs a program computes a non-negative integer, whereas
in fact the result is always in the range 0-255.

The theory of abstract interpretation was developed for imperative flow-chart
languages by Patrick and Radhia Cousot ([CC77]). It was later adapted and ap-

11



12 CHAPTER 1. INTRODUCTION
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Figure 1.1: Two Approaches to Correctness.

plied to first-order functional languages by Alan Mycroft ([Myc81]) to formalise
strictness analysis: an analysis for lazy functional languages to detect function pa-
rameters which are always evaluated. Mycroft’s work was in turn extended to higher-
order functional languages by Geoffrey Burn, Chris Hankin and Samson Abramsky
([BHAS86]). Despite the common underlying idea, the theories of abstract interpreta-
tion for imperative and functional languages tend to be rather different in character.
In particular, the original work of the Cousots was based on an essentially opera-
tional semantic framework, whereas Mycroft’s work and that which has followed it
is based on the use of denotational semantics, in which terms are mapped to values
in some (usually structured) domain. Flemming Nielson ([Nie84]) developed a very
general framework for abstract interpretation in a denotational setting, although it
was not immediately applicable to higher-order functional languages. In this thesis
we follow the [Myc81, BHAS86] line of development in using denotational semantics.

The key issue in abstract interpretation is that of correctness. Figure 1.1 shows
two schemes for formalising the notion of correctness. In both diagrams the map
labeled S takes the term e to its standard denotation s, and the map labeled J takes
e to its abstract interpretation a. In (i) correctness is captured by the requirement
that s satisfies P, written s : P, where P is the property denoted by the abstract
interpretation a. The map v taking a to the property it denotes, is known as a
concretisation map. In (i) correctness is captured by the requirement that s and a
be related by some correctness relation R.

The concretisation map and correctness relation approaches to correctness are
really two sides of the same coin. In the relational framework due to Samson Abram-
sky ([Abr90]) the equivalence of the two approaches takes the form of identifying
v(a) with the set {d | d R a}. Thus in this case satisfaction is just set membership:
s: P < s &€ P. We will see that in some respects this view of correctness is

overly restrictive. By using ternary instead of binary correctness relations, and by
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using partial equivalence relations instead of sets as properties, we can significantly
extend the applicability of abstract interpretation.

The diagrams of Figure 1.1 hide all the internal structure of an abstract inter-
pretation and the fact that the real challenge is to construct a framework in which
correctness can be reasoned about in a compositional way. The Cousots had already
done this for the imperative case but functional languages, and particularly higher-
order languages, posed new problems. The approach of [Myc81, BHAS86, Nie84] was
to concentrate on the concretisation maps (and the associated abstraction maps, see
Chapter 4) and this entailed the use of various power domains. By contrast, [MJ85]!
concentrated on the correctness relation itself, the key insight being the relevance
of logical relations ([Plo73]) to the theory of abstract interpretation of higher-order
functional languages. In [Abr90] this idea was refined and applied to the simply
typed rather than the untyped lambda calculus, and the connection with the earlier

power domain approaches was made clear. We take [Abr90] as our starting point.

1.2 The Practice of Abstract Interpretation

To be of any use, the abstract interpretation of a term must be computable in finite
time. In the abstract interpretation of functional languages this is usually ensured
by using finite lattices as abstract domains. However, just because the abstract in-
terpretation of a term is computable in theory, doesn’t mean we automatically have
an efficient method for computing it. The real problems in this regard are caused
by recursively defined functions. For reasons which are outlined in Chapter 7, in
the implementation of an abstract interpretation, unlike the implementation of the
standard interpretation, it is necessary to explicitly compute the graph of a recur-
sively defined function. This involves an iterative process, generating a sequence of
approximations to the least fixed point of a function and checking for convergence
on each iteration. The use of finite lattices means that the function graphs are
themselves finite and that the fixed point iteration always terminates, but the cost
of computing the graph of a function can be very high, both in space and time.
Economical representations for the graphs of the abstract functions occurring in
first-order strictness analysis, known as frontiers, and an algorithm for construct-
ing them, were developed by Chris Clack and Simon Peyton Jones ([CJ85, JC8T]).

First-order strictness analysis uses the lattice 2, which has two elements 0 and 1 with

1A similar idea is already present in [Nie84].
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0 <1, and the functions used in abstract interpretation are monotone. The naive
representation of a function’s graph is just the look-up table {(a,b) | f(a) = b}, but
if f is a monotone function into 2 and a < @', then once it has been established that
f(a) =1, it is known without any more calculation that f(a’) =1 as well. The fron-
tiers technique exploits this structure to reduce the space taken up in representing
a function’s graph, and to reduce the amount of effort involved in computing it.

This original work was subsequently extended to functions over a larger class
of lattices, together with methods for coping with higher-order functions, by Chris
Martin and Chris Hankin ([MH87, Mar89]). The original formulations of the fron-
tiers algorithm, and those of its subsequent extensions, were rather complex. We
are able to offer a much clearer explanation of the algorithm by exposing connec-
tions with the theory of finite lattices. Furthermore, once these connections have
been exposed it 1s possible to generalise the use of frontiers in a very strong way, by
exploiting Birkhoff’s Representation Theorem for finite distributive lattices.

Even with clever representations such as frontiers, some of the lattices which
occur in the abstract interpretation of higher-order functions are so large that the
problem of establishing the graph of a function becomes intractable. In the setting of
imperative languages, the Cousot’s characterised a class of approximation techniques
known as widening and narrowing to cope with similar problems (in fact, in the
Cousots’ work approximation is unavoidable since the lattices are not required to be
finite). We describe an example of such an approximation technique, appropriate
for functional languages, which uses Galois connections to move between larger and
smaller lattices, allowing us to establish upper and lower bounds on the least fixed

points of functions.

1.3 Alternative Analysis Techniques

There are other ways of formalising program analyses, and there are analyses which
do not appear to fall within the remit of the abstract interpretation frameworks
we have mentioned. Particularly interesting in the setting of functional languages,
are those analyses which have been formalised using projections (a class of domain
retractions). Projections were first used for this purpose by Phil Wadler and John
Hughes ([WHS8T]), to formalise a kind of strictness analysis. One of the striking fea-
tures of this work was that a new strictness property known as head-strictness was
identified, which the abstract interpretation technique of [BHA86] and [Abr90] could
not capture. Projections were subsequently used by John Launchbury ([Lau89]) to
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formalise an analysis known as binding time analysis. Again, abstract interpreta-
tion in the style of [BHA86, Abr90] was unable to capture the relevant property.
However, a drawback of these projection based analysis techniques is that they are
restricted to first-order languages. We will show how the elusive properties can
be captured within abstract interpretations for higher-order languages, by using an

abstract interpretation framework based on partial equivalence relations.

1.4 Overview of Thesis

The current chapter concludes with a section introducing our basic notation and

terminology. The rest of the thesis divides roughly into two parts:

e Chapters 2 to 6 deal with the underlying mathematical framework which for-
malises the definition of abstract interpretation and in which analyses can be

specified and proved correct;

e Chapters 7 to 9 deal with the practice of abstract interpretation, and in particu-
lar with methods of constructing representations for the abstract interpretations

of recursive definitions.

The reader is warned that our treatment of the practice of abstract interpretation is
itself quite theoretical. However, we have endeavored to take the work to the point
where the step to an actual implementation is a small one, and in fact the work
of Chapters 7 and 9 has been successfully incorporated in the implementation of a
strictness analyser for a higher-order functional language.

In Chapter 2 we introduce a simply typed lambda calculus with constants. The
notion of interpretation, an assignment of domains to types and values to constants,
is described and the standard interpretation is specified. We give the definition of a
binary logical relation (a type-indexed family of relations) between interpretations.
Using strictness analysis as an example, we summarise [Abr90]’s use of the Binary
Logical Relations Theorem in formalising correctness for abstract interpretation.
We introduce the idea of presenting a logical relation as a type-indexed family of
concretisation maps, where a concretisation map takes an abstract value to the set
of values from the standard interpretation which are related to it.

In Chapter 3 we highlight the limitation of the binary logical relations frame-
work, using constancy as an example of a property which cannot naturally be cap-

tured using sets. We review Launchbury’s use of projections to capture this property,
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and go on to show how equivalence relations can be used as an alternative to pro-
jections. We then introduce partial equivalence relations (pers), which generalise
equivalence relations, and the lattice of complete pers, which are the appropriate
pers for domains. We describe ternary logical relations and the Ternary Logical
Relations Theorem. We show how a ternary logical relation can also be represented
as a family of concretisation maps, but in this case a concretisation map takes each
abstract value to a relation instead of a set. We show how the property of a family
of relations being logical can be characterised as a property of its associated family
of concretisation maps: we call a family of maps with this property a logical con-
cretisation map. We show that if each base-type member of a logical concretisation
map is a well defined map into the lattice of complete pers, then so is every higher-
type member. This introduces the idea of inheritance for logical relations/logical
concretisation maps and we describe some key examples of inherited properties.

In Chapter 4 we use the correspondence between pers and ternary logical rela-
tions to develop a framework for abstract interpretation. We formalise the notion
of correctness in this setting and show that the correctness of an interpretation is
implied by the correctness of the interpretations of the individual constants. We
adapt [Abr90]’s result concerning least fixed point interpretations. We go on to in-
troduce the idea of best interpretations for constants and show their existence to be
guaranteed if the base-type concretisation maps preserve meets. This leads to the
definition of abstraction maps, which give the best interpretation for a constant as
a function of its standard interpretation. We discuss the way in which non-injective
concretisation maps can interfere with the derivation of best interpretations.

In Chapter 5 we present two example abstract interpretations. The first is
designed to capture the property of constancy introduced in Chapter 3. We show the
concretisation maps for this interpretation to be non-injective. The second example
interpretation is designed to capture the head-strictness property of [WH87]. To
do this we have to extend our language of types with list types. We show how the
framework developed in Chapters 3 and 4 can be adapted to allow this.

In Chapter 6 we consider the implications of extending our language with recur-
sive types. We introduce a category of complete pers and show how the framework of
[SP82] can be used to give meaning to recursive descriptions of pers on the standard
domain interpretation of a recursive type. We go on to consider the extension of
the abstract interpretation framework to the new language. We find that in spite of
being able to give meaning to recursively described pers, we are only able to induce

finite lattices for abstract interpretations if we restrict the use of — in recursive
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types. Under this restriction we describe an extended framework and illustrate its
use by applying it to the constancy analysis of Chapter 5. We show that the ex-
tended framework does not generalise strictness analyses such as the head-strictness
analysis of Chapter 5.

In Chapter 7 we explain the need to computc the complete graph of recur-
sively defined functions when implementing abstract interpretations. We introduce
[JC8T]’s frontier representations, which apply to a restricted form of monotone func-
tion. We observe that such frontiers correspond to lower and upper subsets of a
function’s argument domain, and based on this observation we derive an algorithm
for computing the frontier representations of a function.

In Chapter 8 we observe that the finite lattices used in abstract interpretation
are typically distributive. We show how this observation leads to a generalised defi-
nition of frontiers as representations of upper and lower sets of irreducible elements.
We develop an algorithm for constructing these generalised frontier representations.
We then introduce a family of finite distributive lattices, suitable for use in abstract
interpretation, and give the details of how the various operations required by the
generalised frontiers algorithm can be implemented for lattices in this family.

In Chapter 9 we show that the abstract lattice interpretations for types which
occur in quite simple programs can be so large that computing the whole graph of
a function on such lattices is intractable. We describe a way of coping with this
problem by using a certain family of Galois connections to approximate values in
large lattices by values in smaller ones. The key result is that the fixed points of the
approximations of a function in a small lattice, can be used to place upper and lower
bounds on the fixed point of the original function in the larger lattice. We consider
briefly the interaction of this approximation technique with the use of frontiers.

In Chapter 10 we review the main contributions of the thesis and suggest some

directions for future work.

1.5 Notation and Terminology
In this section we review some basic lattice and domain theoretic notation and

terminology. An excellent introduction to lattice theory is [DP90].

Posets

A poset is a pair (P, <) where P is a set, known as the carrier of the poset, and

< is a partial order (a reflexive, transitive and anti-symmetric relation) on P. We
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will follow usual practice in writing P both for the carrier and the poset, allowing
context to determine which is intended. Two posets P and () are said to be order

isomorphic if there is a one-one and onto map f : P — @, such that for all z,y € P

f@) < fly) &= = <y.

The one-element poset {-} is written 1.

Chains

An w-chain in P is a countably infinite family {z,},.,, of elements of P such that

Ty < Tpqq for all n € w.

Lattices

Given z,y € P, an element z € P such that z < z and y < z is called an upper
bound for  and y. As its name suggests, a least upper bound (also known as a join)
for z and y is an upper bound z such that if 2’ is any other upper bound for z and y,
then z < 2’. The notions of lower bounds and greatest lower bounds (also known as
meets) are defined analogously. If the join (meet) of z and y exists, it is ne.cessarily
unique and is written z Vy (z A y).

A join semi-lattice (meet semi-lattice) is a poset in which every pair of elements
has a join (meet). A lattice is a poset in which every pair of elements has both a
join and a meet. The two-point lattice 2, has carrier {0,1} ordered by 0 < 1.

The definitions of least upper bound and greatest lower bound can clearly be
generalised to apply to arbitrary subsets of elements, not just pairs. A complete
lattice has least upper bounds and greatest lower bounds of all subsets X, written

V X and A X respectively. Any finite lattice is automatically complete.

Duality

For any poset P = (P, <), the opposite of P, written P°F, is the poset (P,>). The
notion of opposite gives rise to the notion of duality: for example the concepts of join
and meet are dual because xVy in P is the same as £ Ay in P°F. Hence the opposite
of a join semi-lattice is a meet-semi lattice and vice versa. Note that lattices are
self dual in that L is a lattice if and only if L°F is a lattice. The importance of this
concept of duality is that it allows us to reduce repetition of definitions and proofs

which are essentially the same apart from the ‘orientation’ of the partial orders



1.5. NOTATION AND TERMINOLOGY 19

involved. We will see numerous examples in the rest of this section and in the latter

part of this thesis.

Upper and Lower Sets

Let P be a poset. An upper closed (or just upper) subset X C P is one for which
t€Pandx <z’ =2 €P.

The lower sets are defined dually. A subset X C P is upper if and only if its
complement P \ X is lower. Hence X is lower if and only if P \ X is upper. The
collection of all lower subsets of P forms a complete lattice £(P) when ordered
by subset inclusion. The collection of all upper subsets of P also forms a complete
lattice U(P), but we order this by reverse inclusion: for Y, Y’ € U(P),Y <YV’
Y’ C Y. Defined in this way the lattices #(P) and L(P) are order isomorphic, with
the isomorphism being given by X — P \ X in both directions.

The lattices £(X) and U(X) are both closed under intersection and union: in
L(X) intersection gives meets and union gives joins, while in (X)) union gives meets

and intersection gives joins. The upward closure of a subset X C P is the upper set
1 X={z'eP|IzreX.zCz'}.

The lower closure | X is defined dually. It is easy to see that a set X is upper if and
only if X = 1X, and that X is lower if and only if X = | X.

Monotone Functions

Let A and B be posets. A map f: A — B is monotone if a < ¢’ = f(a) < f(d').
The pointwise ordering on monotone maps is a partial order defined by f < g <=
Va € A. f(a) < g(a). The poset of all monotone maps under the pointwise ordering
is written [A —,, B]. If B is a lattice then so is [A —,, B]. The posets [A —,, B]
and [A°F —,, B°F] are dual, that is to say:

[AOP -, BOP] — [A . B]OP'

Products and Sums

Let A; and A, be posets. The product of A; and A, is the cartesian product A; x A,
ordered by (a1,a;) < (a},ay) < a; < @} and a; < a). If A; and A, are both
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lattices then so is A; X Aj. The separated sum of A; and A,, written A; + As, has
as carrier the set {L} U {in1(a1) | a1 € A1} U {in2(az) | az € Az}, and is ordered by
1 <z forall z € Ay + A; and ini(a) < inj(df) < ¢ = j and a < d’. Both

products and separated sums can be generalised to the n-ary case.

Lifting and Topping

The lifting of a poset A, written Ay, has as carrier the set {L} U {lift(a) | @ € A},
and is ordered by L < z for all « € A, and lift(a) < lift(a’) <= a < o’. The
topping of A, written AT, has as carrier { T} U {colift(a) | a € A}, and is ordered by
z<Tforallz € AT and colift(a) < colift(a') < a < d'.

Domains

We assume some familiarity with domain theory. The partial order on a domain is
usually written C and joins and meets are usually written Ul y and z M y. In this
thesis we take a domain to be a Scott domain, i.e., a bounded-complete w-algebraic
cpo with least element (a cpo is a poset in which every w-chain has a least upper
bound). The reader unfamiliar with these notions is referred to [GS90]. Any finite
lattice is a domain. If D and E are domains then so are D X F, D+ F and D,.

Continuous Functions

Let D and E be domains. A map f: D — FE is continuous if for all w-chains {z,},
fU{zn}) = U{f(zn)}. The collection of all continuous maps from D to E under
the pointwise ordering forms a domain, which we write [D — E]. Note that for

finite domains, [D — E] and [D —,, E] are the same thing.

Category Theory

In Chapter 6 we assume some familiarity with category theory. Although the cat-
egory theory used is not very advanced, we do not attempt to make Chapter 6

self-contained. A very good introduction to category theory for computing science

is [BW90].



Chapter 2

Abstract Interpretation
Using Sets

In this chapter we introduce a framework for the abstract interpretation of higher-
order functional languages. The key limitation of this framework is that it enforces
an understanding of properties as sets. In subsequent chapters we show how the
framework can be extended to overcome this limitation.

We begin by describing our functional language, a simply typed lambda calculus

with constants.

2.1 A Simply Typed Lambda Calculus

We assume a finite set of base types
1,3 € To,
which includes bool and int. Our language of types is then:
o,r€T =101 X 03| 01— 00

At each type we assume the sets Var, and Con,, from which are drawn variables
and constants:

z,Y,... € Var = U,er Var,
c€ Con = Uyer Con,
These sets are subject to the following conditions:
1. if 0 and 7 are distinct types then Var, and Var, are disjoint;

21
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z:0 if z € Var,

c:o if ce Con,

e: T i e1:0—=T e : 0
— ifz € Var,
Azx.e:o—T €1 €2: T
€1 :01 €y . 02 €01 X 09 € .01 X 09
(e1,€2) 1 01 X 09 fst(e) : oy snd(e) : oy

Figure 2.1: Typing Axiom and Rule Schemata for Ar

2. if o and 7 are distinct types then Con, and Con, are disjoint;
3. Var and Con are disjoint.

Remark Because of these disjointness conditions we may think of each vari-
able and constant as being decorated with its type, so the type system
described below is essentially a Church (explicit) system rather than a
Curry (implicit) system ([Bar91b]). We have avoided explicit type deco-

rations to reduce notational clutter.

The syntax of terms is then given by:
e€Ar n=z|c|Az.e|ere]| (er,er) | fst(e) | snd(e)

Terms are assumed well-formed according to the typing axiom and rule schemata
shown in Figure 2.1. Note that the disjointness conditions on Var and Con ensure
that each well-formed term has exactly one type.

The constants are assumed to include the following;:
en:int, n Ew;

e plus, minus, mult : int — int — int ;

e true,false : bool ;

e iszero : int — bool ;

o if, : bool - 0 — 0 — o, for each 0 € T

e Y,: (0 =0)—o,foreacho€7.
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2.2 Interpretations

An interpretation I, is a pair

{0} AKX}, s

where:

1. Each D! is a domain : the interpretation of base type ¢. The interpretation for
L p p p

base types is extended to an interpretation for all types {Dg} or 3 follows:

Dil Xog = Dgl X D({'z
D;.. = [D]— Dj].

2. Each K! is a map Con, — DI : the interpretation of constants of type o.

The least element of DI is written L. and, when it exists, the greatest element is
written TZ. For ¢ € Con,, we will write ¢! to mean K/[c].

An I-environment is a partial map p from Var to U,ecr DI with finite domain,
denoted dom(p), and such that if z € Var, and = € dom(p), then p(z) € DI
The set of all J-environments is written Env!. For p € Emv!, 2 € Var,, d € D,
let p[z — d] be the I-environment with domain dom(p) U {z} which maps z to d
and is everywhere else equal to p. The semantic valuation function induced by [
is [.]" : Ar = Env! — U,er DI, defined in Figure 2.2. It will always be assumed
that when an expression e is evaluated in an environment p, the free variables of
e are contained in dom(p). Our use of A-abstraction on the right hand side of
the definition of [_]’ may be justified by the fact that the category of domains and
continuous maps is cartesian closed (see [LS86]).

A simple induction on the structure of terms serves to show that for any environ-
ment p € Env!, if e : o then ([e] p) € DL. If e is closed then the value of [e]’p does

not depend on p and in this case we will sometimes just write [e]’ for this value.

Definition 2.2.1 If an interpretation J is such that D! is a finite lattice for each

o € T, we say that J is a finite interpretation.

Note that for interpretations as we have defined them over 7, an interpretation J
is finite if and only if D} is a finite lattice for each « € 7y. Note also that for a finite
interpretation, [DJ — DJ] is just the finite lattice of monotone maps from DJ to

DY. For any finite interpretation, assuming a (necessarily finite) tabulation of the
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1" : Ar = Env! — | D

oc€T
Ll = o)
[]'p = d
[Nz.e)’s = AdeDI.[e)'plz— d] ifze Var,

[eseal’s = ([ea]p)([e=]'p)
[[(61a62)]]IP = (|[61]]I/)a [62]11/))
[fst(e)]’s = mi([el'p)
[snd(e)]’p = ma([e]’p)

Figure 2.2: The Semantic Valuation Function Induced by I

interpretation for each constant, the interpretation of any term can also be finitely
tabulated. Put another way, let J be a finite interpretation, let p € Env’ and for
each o let the predicate P, be defined by

Po(e,) <= [lp=a

for ¢ : 0 and a@ € D’. Then if the predicate P,(c,-) is decidable for each constant

c: 7, it follows that the predicate P,(e,-) is decidable for each expression ¢ : o.

2.2.1 The Standard Interpretation

The standard interpretation, S (S for Standard) is shown in Figure 2.3 and hopefully
contains no surprises. The standard interpretations of bool and int are the flat
domains of booleans and integers respectively. The boolean and integer constants
are interpreted accordingly. Each if, is interpreted as a conditional and each Y, is

interpreted as a least fixed point operator.

2.3 Strictness and Scott-Closed Sets

In this section we sketch the way in which the Scott-closed subsets of a domain can
be viewed as a class of properties related to the strictness of functions over those
domains.

Let D and E be domains (more generally, they could just be posets with least
elements). A function f : D — E is said to be strict if f(Lp) = Lpg. Informa-



2.3. STRICTNESS AND SCOTT-CLOSED SETS

ot = B ={tt, ff}, D, =Z={..,-1,0,1,...},
nS=n
true® = it false® = ff
1 ifn=1
iszero°n=<¢ # ifn=0
ff  otherwise
lus® n m = L fn=LlLorm=_1
P “ ]l n+m otherwise
. s L ifn=4lLorm=1
minus”° n m = )
n —m otherwise
s L ifn=lLorm=_1
mult®> n m = .
n+m otherwise
L5 ifv=1
iffvdd=9d ifv=tt
d ifv=ff
Y; f=LUf L3
1€w

Figure 2.3: The Standard Interpretation
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tion about the strictness of functions can be useful when compiling lazy functional
languages, because knowing that a function is strict allows evaluation order to be
changed without compromising the intended semantics of a program, thus increas-
ing scope for optimisation and exploitation of parallelism. See [Myc81], [BHAS6],
[Bur87] and [Bur91] for extensive discussions of the motivations.

An idea which is implicit in [BHA86], and one which is brought out more explicitly
in [Bur87], is that non-empty Scott-closed sets can be used to describe a range of
properties, which we call strictness properties, including that of a function simply
being strict. Let D be a domain and let X C D. Then X is Scott-closed if:

1. X is lower;

2. whenever {d,} is an w-chain in D such that each d,, € X, then | |{d,} € X.

Let Y C D: the Scott closure of Y, written Y™, is the smallest Scott-closed subset of
D containing Y. The set of all non-empty Scott-closed subsets of D, written Py(D)
is known as the Hoare power domain and forms a complete meet semi-lattice when
ordered by subset inclusion, with arbitrary meets given by intersection (adopting
the convention that @ = D). Note that the least element of Py(D) is just {L}.
The general form of a strictness property for a function f : D — E is taken to
be:
fx)cy (2.3.1)

with X € Py(D) and Y € Py(E), where f(X) = {f(d) | d € X}. Strictness of f can
be described easily in this form, since f(Lp) = Lg if and only if f({Lp}) C {LE}.
The usefulness of the general form of strictness property is most easily seen by an
example involving lists (although our language does not cater for functions on lists
we will consider extensions to 7 and A7 which remedy this in Chapter 6). Suppose
that L is a domain of finite, partial and infinite lists of elements from Z. Let len

and sum be functions in [L — Z] such that

len [] =0 sum[] =0
lenn:l = 1+ (lenl) sumn:l = n+ (suml)

where [] is the empty list and n : [ is the list with head n and tail I. The function
len calculates the length of a list of integers and sum is the function which sums the
members of a list of integers. It should be reasonably clear that both these functions

are strict, but we can say more than this. For example, len [ = L whenever [ is
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either L, or ends in Ly, or is infinite. Let Inf be the set of all such I:
{ni:..oing: Lp | k> 0,nq,...,n € Z}

(another description of Inf is as the set of all those elements of L which are not
lists ending in [1). We can also see that sum is “stricter” than len, in the sense that
sum | = L whenever [ is either in Inf or contains an undefined element. Let ["in be

the set:
InfU{n;:...:ng: 1 k>1,n4,...,n, €Z,30:1<i< k.n;= 1}

Both Inf and Fin are non-empty Scott-closed sets. Thus we can describe properties

of len and sum in form (2.3.1) which are more informative than simple strictness:

len(Inf) C {1}

sum(Fin) C {Ll}.

If len and sum were defined in a lazy functional programming language, knowledge of
these strictness properties could be used to advantage when compiling or interpreting
their definitions. They tell us not only that arguments to len and sum can be
evaluated eagerly or in parallel with evaluation of the application but that they can
be evaluated further than the outermost constructor: the whole structure of the list
can be evaluated and in the case of sum all the elements can be evaluated to normal
form (see [Bur87, Bur91}). To see how strictness properties can be composed, define
sing : Z — L by

singm=n:[l

Now although sing is not strict, it is the case that (sing n) € Fin ifn = 1, i.e,,
sing({L}) C Fin.
Combining this with our knowledge of sum, we can conclude that
sumo sing({1}) € {1},

i.e., that sum o sing is strict. (This is not true for len o sing, since sing({L}) € Inf.)
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2.4 Abstract Interpretation

In this section we outline the development of a framework for abstract interpretation
of the simply typed lambda calculus due to Abramsky ([Abr90]!). Our main aim
is to introduce the central ideas on which the following chapters are based. A
secondary aim is to convince the reader that the framework is conceptually simple,
has a well developed theory, and hence that extending its applicability to a richer
class of program analyses is a worthwhile enterprise. We proceed by way of a well
known example - strictness analysis. The particular analysis we consider is that
developed in [BHAS86)], which was the first such analysis formalised using abstract

interpretation for a higher-order functional language.

2.4.1 A Finite Interpretation for Strictness Analysis

We wish to reason about the strictness properties of functions defined in A7 under
the standard interpretation. For each type o, we have identified a complete meet
semi-lattice of properties of interest, namely Pg(D$). The goal is to construct a
finite interpretation B (B for BHA) such that for a term e : ¢ — 7, the finite
interpretation [e]” will allow us to infer strictness properties of form (2.3.1) for the
standard interpretation [e]°. The elements of D? are known as abstract values (of
type o) and by contrast, the elements of D] are known as concrete values. The idea
is that each abstract value of type o should correspond to a property of concrete
values of type o, which in this case is taken to mean a member of Py(D3).

In accordance with our requirement that B be finite, we choose a finite subset of
properties with which to work. At the base types an obvious choice is to settle for the
two extremes, the least and greatest elements of Py (D?), these being {L,} and D?
respectively. The finite interpretation of each base type DP is thus chosen to be the
two point lattice 2 = {0,1}, where 0 C 1. The intention is that the bottom point 0
corresponds to {L,} and the top point 1 corresponds to D?. One way of formalising

this correspondence is in terms of concretisation maps v? : DP? — Py (D7), defined

by

. '7? 0= {J-c};

e 21 =D

1Earlier versions of [Abr90] were circulated to a number of researchers in manuscript form
from September 1985 onwards, one version going under the title ‘Strictness Analysis via Logical
Relations’.
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Given this understanding of the base types, what might we expect for the con-
stants? Consider plus. We may think of an application of the finite interpretation
of plus, say (plus® a b) as representing a set of applications of the standard inter-
pretation:

B
= c I 1
X={plus®nm|nec(y),a),me (v, 0b}.

Clearly, since plus® is strict in both arguments, X will be {L} if either ¢« = 0 or
b = 0. On the other hand, if both ¢ =1 and b = 1, then X will just be Z. We want

the value of plus® a b to be consistent with this view, so we define plus® by

0 fa=0o0rb=0

1 otherwise

plus® a b= {

or, more concisely, plus® a@ b = a M b. Now consider the first-order conditional if;y;
in the same way. Corresponding to an application (if;, @ b ') we may think of the

set:
Y = {if5, vd d' | v € (V0 a),d € (7ine 8),d" € (i V) }

If a = 0 then Y is {L}. If @ = 1 then, since 72, 1 = {L,#, [}, we have
Y = {L}U(B, b)U (B, V). A little thought will show that this is just 2, (b U 0')%

leading to the definition of if ., as:

0 ifa=0

if2, abd = .
bUb otherwise

The full interpretation B is shown in Figure 2.4. Note that as in the standard
interpretation, each Y. is a least fixed point operator. The justification for this
is discussed in Chapter 4 at the end of Section 4.1.  The formalisation of the
correspondence between points in 2 and sets in Py(D?), and the extension of this
correspondence to the higher types, is the key to a full understanding of the inter-
pretations of constants in B and to showing how B can be used to reason about
strictness properties in S. This is the subject of sub-section 2.4.3 but first we pause

to introduce some notation for relations.

2To some extent this is a happy accident, since in general joins are not preserved by concreti-
sation maps.
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1
D?=2: |
0

n® =1 (the top of 2, not the integer!)
true® = false® =1

iszero® a = a

plus®Pab=amlb

minus® = mult® = plus®

B - _L? ifa=0
if, “blbz‘{ biUb, ifa=1

Yo f= 7L

1€Ew

Figure 2.4: A Finite Interpretation for Strictness Analysis

2.4.2 Relations

We write R : A < B tomean that R is a relation between sets A and B. The domain
of a relation R is the set {a | 3b.a R b}, the range of R is the set {b| Ja.a R b},
and the graph of R is the set {(a,b) | a R b}. The set of all relations between A and
B is denoted R(A, B). Equality on relations is extensional, that is, P = () means
a Pb < a Qb Relations P,Q € R(A, B) are naturally ordered by implication,
defined thus:

PLQ < aPb=aQhb

This is a partial order, in particular P=Q <= P < Q and Q < P.

For {R;},.; a family of relations in R(A, B), the conjunction of the R; is written
Nier Ri and is defined by a (A;e; Ri) b <= Vi € I.a R; b. Note that if I = {)
then A;cr Ri is the universal relation between A and B (we should really decorate
A to specify A and B but we will rely on context instead). It is easy to see that
(R(A, B),<, ) is a complete meet semi-lattice and hence a complete lattice. For
P : Ay & By and P, : Ay < By, the product of P, and Py is Py X Py : A} X Ay &
B; X By, defined by

(al,az) P x P (bl,bz) — (a1 P bl) and ((1,2 P, b2)
Meets of products can be calculated elementwise, i.e., (a1,a2) (Aics Pi1 X Pi2)

(bl, bz) — 4 (/\ie[ -Pi,l) bl and az (/\iEI Pi,2) bz.

We could have been more economical with our notation and simply taken a
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relation between A and B to be a subset of A X B, identifying R with its graph.
In this case P < @ would be synonymous with P C @) and A;c; R; would just be
Nicr Ri. Note however, that the product of P, and P, would not be the cartesian
product of the sets Py and P,. It is partly to avoid the possibility of such confusions

adopt this slightly more abstract notion of relation.

2.4.3 Concretisation Maps and Logical Relations

There are a number of ways in which the relation between a finite interpretation and
the standard interpretation might be formalised. The approach we began to sketch
above, and shall develop further, is to concentrate on the concretisation maps (our y°
maps). This is also the basis of the approach taken by the Cousots in their original
work on abstract interpretation of imperative flow-chart languages. Mycroft’s devel-
opment of an abstract interpretation technique for first-order functional languages
([Myc81]) focussed on the use of an abstraction map, abs, from a standard domain
to the corresponding abstract domain such that abs(d) was the ‘best’ abstract value
which correctly described d (see Subsection 2.4.4). From this starting point, Mycroft
induced concretisation maps of a similar nature to the 4, maps informally described
above, but using the Plotkin power domain rather than the Hoare power domain.
This idea was extended to the higher-order case in [BHAS6], this time using thc
Hoare power domain. By contrast with both of these approaches, [Abr90] takes a
directly relational approach to the problem. (It should be pointed out that this was
not the first approach to using relations in this way. The idea dates back at least
to [Nie84]. Closer to [Abr90] is the relational framework of [MJ85] which considers
the untyped lambda calculus.)

At each type o, [Abr90] defines a binary relation R, : DS < DP? to describe the
way in which abstract and concrete values are related. This approach eliminates the
need to use any theory of power domains and leads to an extremely simple proof of

correctness. The development hinges on the following definition, an instance of an
idea originally due to M. Gordon ([Plo73]).

Definition 2.4.1 (Binary Logical Relation) Let I and J be interpretations. A
relation R between I and J, written R : I « J, is a type indezed family of binary
relations {R,},c7 with R, : D! & DJ. Such an R is logical if for all 0,7 € T :

1. fRopmsr h <= Vde D! ae DI.d R, a = (f d) R, (k a);

2, (dl,dz) Rg’l Xop (al,az) < d1 Rcrl ay and d2 ‘Ro-2 as.
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Informally, a logical relation is one which relates functions which map related argu-
ments to related results, and which relates pairs elementwise. Note that a logical
relation is completely determined by its base type members, so that to specify a
logical relation R we need only define the R,. A relation R : I < J can be extended
to environments in a pointwise manner: let p € Env! and § € Env”’, then we write
p R 6 to mean that dom(p) = dom(é) and p(z) R, é(z) for all z € dom(p) N Var,,
for all o.

Definition 2.4.2 An abstract interpretation is a pair (J, R’) where J is a finite

interpretation and R7: S « J is a logical relation.

If we wish to understand abstract interpretation in terms of concretisation maps
instead of relations, we can easily do so by exploiting the isomorphism R(A,C) &
C — PA: given a logical relation R : S « J, we define the family of concretisation

maps {7, },e7 With 7, : D] — ©DS, by:
Yoa={d€ D5 |dR,a}. (2.4.3)

The logical relation used to establish correctness of B is R®: S <+ B, defined as

follows:
e dRP (0 <= d= 13
e dR?1forallde D}.

Note that if we define {72} in terms of R® via (2.4.3), the base type members P
will have the same definition as in Subsection 2.4.1.

The correctness requirement for B is that whenever d and a are the standard and
finite interpretations respectively of some closed® term e : o, then it is always the
case that d R a. To see that this is what we need, consider the case of e : ¢t —
with standard interpretation f and finite interpretation h. Suppose that 2 0 = 0.
Now if f R?,, h then since R® is logical and L} R} 0, we have (f L7) R? (h0) =0.
But the only d € D} such that d RY 0is L7, so f L} = L15. Thus the proposed
correctness condition guarantees that for expressions denoting functions at the base
types, strictness of the finite interpretation implies strictness of the standard inter-

pretation. It can easily be shown ([Abr90]) that this implication holds for functions

3This is just a convenience which allows us to consider the interpretations of e without specifying
an environment. The restriction is dropped in the formal statement and proof of correctness.



2.4. ABSTRACT INTERPRETATION 33

at all types. The importance of this fact is that strictness in the finite interpreta-
tion is decidable so we have a sound and effective test for strictness in the standard
interpretation. (This does not mean that a practical implementation of the test is
straightforward: see Chapters 7-9 and [HH91].) While sound, the test cannot be
complete, since in our language, which has the power of a universal Turing machine,
any test for termination can easily be reduced to a test for strictness. A simple
example illustrating the weakness of the test is given by the term A x.if;,; true x 3,
which clearly denotes a strict function under the standard interpretation but which
has finite interpretation Aa € 2.1. Chapter 4 contains a rather more detailed dis-
cussion of how correctness allows us to reason in a useful way about the standard
interpretation of terms.

The formal proof of correctness of B uses the following theorem, due in this
particular form to [Abr90] (Proposition 3.2) but originally due to Plotkin ([Plo80],

Proposition 1, see also [Sta85], Fundamental Theorem of Logical Relations).

Theorem 2.4.4 (The Binary Logical Relations Theorem) Let I and J be in-
terpretations and let R : I « J be a logical relation. Suppose that c! R.c’ for each
7 and for each c: 7. Then for all o, for all e : o, for all p € Env! and § € Env’:

p R &= ([el'p) R, ([el6).

The formal statement of correctness for B is as follows: B is correct if for all o, for
all e : o, for all p € Env® and 6§ € Env®:

p B 6 = ([el°p) B2 ([I9).

Since RP is logical, the Binary Logical Relations Theorem implies that for B to
be correct it is sufficient that the c® be correct, i.e., that ¢® R? ¢® for each ¢ : 7
(it is also clearly necessary, since the expressions include the constants). This idea
of reducing a global correctness condition to local conditions on the constants is a
central one in the Cousots’ original work ([CC77]), and can fairly be said to be the
cornerstone of any abstract interpretation framework.

The correctness of the constants is easily established for B ([Abr90]) but in itself
this is rather weak because RP is T-universal, which is to say that each D? has
a greatest element T%, and d RZ T2 for all d € D$. This means that it would
be correct to take ¢® = T2 for all ¢ : o, but of course the resulting strictness test
would be extremely poor. However, it can be shown that the interpretations of the

constants in B are not only correct but are actually the best possible interpretations,
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given the interpretations of the types and the definition of RP.

2.4.4 Best Interpretations for Constants

To see that best interpretations exist, it helps to re-introduce the concretisation
maps described above (this is not quite the approach taken in [Abr90] but seems
more intuitive in some respects). The P are extended to a type indexed family
B = {y2} with 42 : DB — Py(D5) by taking

vea={de D}|dR? a}

for each a € D2. One way of verifying that this makes the v2 well defined (i.e., that
each 72 a is non-empty and Scott-closed) is to demonstrate ([Abr90]) that each R2

is:
1. strict: L5 R2 12;
2. S-monotone : d CTd RE a C o' = d R2 dy

3. inductive : whenever {d,} and {a,} are w-chains such that d, R? a, for all n,

then | |{d.} RE U{an}-

S-monotonicity also ensures that the 4® maps are monotone. The statement that
c® is a correct interpretation for ¢ : o is then equivalent to the statement that
¢S € (v2 c®). Now the smaller the c® are, the smaller will be the value of [e]” for any
given e : o, and hence, since 4® is monotone, the smaller the set (42 [e]?). Clearly,
assuming the correctness of B, the smaller (42 [e]®) the more we know about [e]®
(in the extreme case that 42 [e]® = {L}, we know that [¢]° = L). The question
naturally arises: for any ¢ € Con, is there a least value for ¢® which is correct?
More generally: for any d € D3, is there a least a € D2 such that d € (y? a)? The

answer is yes, and this can be shown by demonstrating the following:

Fact 2.4.5 Fach 2 preserves meets, i.e., for any S C DP?

7% (M8) = (7 a)

a€S
(this can be proved by a simple adaptation of the proof of our Proposition 4.2.5).

The import of this fact is that it follows (see Section 4.2) that 42 has a left adjoint

(here just the lower component of a Galois connection), that is to say, a monotone
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map af : Py (DS) — DP such that for all X € P,(D3) and a € DZ:
XC(1a) = o(X)Ca
Now for any X € Py(D3), d € X if and only if |d C X, and so for any a € DP:
e (1P a) <= ldC (1P a) = a2(ld)C e

In other words, a2(]d) is the least a € D2 such that d € (y2 a). The family of maps
abs = {abs,} with abs, : D — D2, is therefore defined by taking abs,(d) = a2 (ld)
so that the best finite interpretation for any constant ¢ : o is given by setting

c® = abs,(c®). [Abr90] shows how the family abs may be defined inductively by:

0 ifd=L1

1 otherwise

e abs,(d) = {

o abs,—.(f) =XAa € D2. |{abs,(f d) | abs,(d) C a}
o abs,x-(d,d') = (abs,(d), abs,(d')).

(The last clause is our own addition since [Abr90] does not consider product types.)

2.5 Polymorphism

The language we have chosen to consider is only simply typed and thus does not allow
polymorphic function definitions. This is a serious limitation, since polymorphic
type systems contribute greatly to the expressive power and clarity of functional
languages such as Miranda and ML. The failure to deal with polymorphism is not
something which can easily be remedied, since giving a semantics to polymorphic
languages is rather harder than for simply typed languages. In fact, the development
of a good semantic model for polymorphism is still very much the subject of active
research ([Fre89, BFSS90, AMSW90, AP90]). For languages using Hindley-Milner
style polymorphism, there is one rather crude way of adapting analyses intended for
simply typed languages. That is to resolve a polymorphic function definition into the
set of its monomorphic instances which are actually used in a given program. Since
there may be many such instances for each polymorphic definition and, since the
instantiated types may be rather complex (hence their finite lattice interpretations

may be rather large), this can lead to a very computationally expensive analysis.
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One way of avoiding this expense is to establish that a polymorphic invariance
result holds for the property of interest ([Abr86]). Given an expression of polymor-
phic function type e : Va. o1(a) — o2(a), we will write the instantiation of e with
a7 as e;. In [Abr86] it is shown that for the [BHAS86] interpretation, strictness

analysis is a polymorphic invariant, by which it is meant that:
B B
(V7. le]” Lo = Loyin) &= (led” L5,y = 1o0):

where 7 ranges over all types and ¢ is any base type. This says that the [BHAS86]
analysis can either find the simplest instance of a polymorphic function to be strict,
in which case all instances are strict, or it can find no instance to be strict. Thus if
we wish to know whether various e, are strict, we need only interpret e,. Abramsky’s
proof of the polymorphic invariance result is very syntactic and rather heavy going.
By contrast, the same result is proved much more elegantly in [AJ91], using a
categorical semantics for Hindley-Milner style polymorphism based on a relational
analogue to functors (this work builds on [Hug88], a precursor of [HLI1]: see below).
In future we hope to be able to adapt this technique to the analyses we describe in
later chapters.

Unfortunately, polymorphic invariance does not give us all that we need. The B
interpretation of a term can carry more information than just whether a function is
strict. Let twice be the lambda term Af.Ax.f(f x). In the polymorphic lambda
calculus this can be given the type Va. (e — o) — o — «. In the simply typed
lambda calculus we have to use a distinct lambda term A f..Ax..£.(f; x,), with
f,:7 — 7 and x, : 7, for each instance twice, required. Now the B interpretation
of the term

twiceipinint (Ag.An.plus1 (g n))

is just the identity on [2 — 2], which shows the term to denote a strict function
under S. But this cannot be determined from the B interpretation of twice, using
Abramsky’s polymorphic invariance result, which only reveals that twice;,;—in: is
strict in its first argument?

An alternative to [Myc81, BHAS86] style abstract interpretation for functional
languages, is the projection based analysis technique of [WHS87]. This is limited to

4Baraki’s recent work ([Bar91a)), using a semantic model of polymorphism very similar to that
used in [AJ91], indicates that it may be possible to do better than this by using the abstract
interpretation of the simplest instance of a polymorphic function to place an upper bound on the
abstract interpretation of more complex instances.
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first-order languages but is able to capture properties which cannot be expressed
in the [Myc81, BHAS86] frameworks. For strictness analysis of first-order functions
using projections, [HLI1] shows that using polymorphic projections can give us rather
more than polymorphic invariance. However, this work exploits the correspondence
between polymorphic functions and natural transformations (a fundamental notion
in category theory), which only holds in the first-order case. In the following chapters
we show how some aspects of the use of projections in program analysis can be
generalised by the use of a certain class of binary relations, and that this allows
analyses which can capture the same properties as projections to be defined for
higher-order languages. It remains to be seen whether the ideas of [HL91] can
be adapted to the higher-order case, but it is interesting to note that the partial
equivalence relations used in the framework developed in the next two chapters
play a prominent role in some of the above cited work on semantic models for

polymorphism.



Chapter 3

Pers and Ternary Logical

Relations

The abstract interpretation framework described in the previous chapter hinges on
the use of a binary logical relation. We have seen that the framework allows us to
infer properties of functions in the following way. A finite interpretation J and a
logical relation R’ : S «» J are defined such that J is correct with respect to R”.
Then if £ : DS — DS and f7 : DJ — DJ are the alternative interpretations of
_. 7. I 47 is derived from R’
via (2.4.3), it is not hard to show (see Section 4.1 in the next chapter) that to say
that fSRZ__f’ is equivalent to saying that for any a € D and b € D7:

o—T

some term e : ¢ — T, we are guaranteed that f5 R

fla=b= f*(y; a) S (7] b

This was implicit in the strictness analysis example. In that example the relation R®
was such that the sets (72 a) were always Scott-closed but in general this need not
be the case: another analysis described in [Abr90] is a termination analysis based
on an interpretation T and logical relation RT such that the sets (7X a) are always
upwards closed. The point we wish to bring out here is that whatever kinds of sets
they are, the (77 a) are always sets, and the properties of functions which may be
inferred using abstract interpretations within Abramsky’s framework are always of
the form f3(v/ a) C (v b). It is important to be clear about this limitation, because
there are many properties of interest which cannot be captured in this way. In this
chapter and the next we develop a generalised version of Abramsky’s framework
which allows us to construct abstract interpretations for reasoning about some of

these properties.

38



3.1. BTA, PROJECTIONS AND EQUIVALENCE RELATIONS 39

3.1 Binding Time Analysis, Projections

and Equivalence Relations

One type of program analysis which exposes the above mentioned limitation is the
binding time analysis ([Jon88]) used in partial evaluation. The goal of this analysis
is to determine which parts of a program can be evaluated given partial information
about the program’s inputs. Suppose we have an interpreter eval : code x input —

output, defined in a functional language in terms of a number of auxiliary function

definitions
fi(z) = @
fz(il?) = €2
fk(:l:) = €.

The arguments to eval are the program to be interpreted and a vector of values
for the program’s run-time parameters. A much studied partial evaluation problem
is the automatic generation of a compiler from the definition of the interpreter.
Each time the generated compiler is applied to some program, say p, it produces
as output a version of the interpreter which is specialised to p. To generate such
a compiler, it is necessary to know, for each use of each f; in the interpreter, how
much of the argument to f; will be known when the code to be compiled becomes
known. In the partial evaluation literature, inputs, or arguments, or more generally,
sub-expressions that will be known are termed static and those which will not be
known are termed dynamic. The role of binding time analysis is to identify (a subset
of) the static parts of a program. The core of a binding time analysis is a method
which, for each f; defined in a program, can determine how much of f;(z) will be
static given information about how much of z is static. It is important to note that
a method is required which does not need to know the actual value which z is to
take, since a compiler must be generated without knowing what programs are to be
compiled.

To illustrate the idea, let A and B be domains, let b € B and consider the three
functions c: A — B, fst : AX B — A and swap: A x B — B x A, with definitions:

c(z) = b
fst(z,y) = =
swap(z,y) = (y,z).
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Intuitively, ¢(z) is static even if z is dynamic, since c is a constant function’, while
fst(z,y) is static as long as x is static, even if y is dynamic. Since swap computes a
pair, it makes sense to ask whether either component of swap(z,y) is static. Clearly,
the second component of swap(z,y) is static if z is, even if y is dynamic, and the
first component of swap(z,y) is static if y is, even if = is dynamic. Intuitively, it
is probably helpful to think of the different properties of ¢, fst and swap as being
different degrees of constancy. The function ¢ is constant, fst is constant in its
second argument, while swap is constant in its first argument if we only look at the
second component of its result and vice versa.

We now consider two ways in which the concepts of ‘static’ and ‘dynamic’ may be
formalised, using the above examples as illustrations. The first way uses projections

and the second uses equivalence relations.

3.1.1 Projections

Definition 3.1.1 Let D be a domain. A projection is a continuous map a : D — D

such that « C idp and aoa = a.

The set of all projections on D forms a complete lattice, Proj(D) when ordered by
the usual pointwise ordering. Joins are inherited from [D — D] but meets are not.
The least projection on D is Absp, the constant bottom function, and the greatest
projection is Idp, the identity.

In [Lau88] it was suggested that ‘static’ be equated with Id and that ‘dynamic’
be equated with Abs. More generally, Launchbury proposed that for expressions
taking their value in some structured domain, various notions of ‘partly static’ be
formalised by projections which mapped the dynamic components to bottom and
left static components alone. For a product domain A x B, projections describing
‘partial staticness’ may be formed by taking the product of projections on A and B
(the product of two projections o and 3 is defined in the usual way, by o x 8(a,b) =
(e @, 8 b)). Thus if z is static and y is dynamic, the staticness of swap’s argument
(z,y) is described by the projection Id4 x Absg, and that of the expression swap(z,y)
by AbSB X IdA.

From the point of view of binding time analysis, the key notion to be formalised
is that of a function transforming the degree of staticness of its argument into a

degree of staticness of its result. In [Lau89] it was shown that this could be done

1This assumes a non-strict semantics for the language. See the discussion in Chapter 5.
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using the ‘strictness relation’ introduced in [WHS87]. Suppose that the staticness of
z is safely described by the projection a. (By ‘safely’ we mean that z is at lcast
as static as «, though somec larger projection may be more accurate. Thus Abs is

always safe.) Then the fact that the staticness of f(z) is safely described by f is

formalised as the equation:
Bof=pofoa. (3.1.2)

The simplest way to motivate this is by some examples.
First consider c¢. Now

Boc=pPocow

for any « and f, since ¢ = co « for any a. So in particular:
Idgoc=1dg oco Absy.

This formalises the fact that ¢(z) is static even if z is dynamic.
For fst we have
aofst =ao fsto(axf),

since o(fst(a a,B b)) = (e a) = « a, using the idempotence of the projection a.
Thus v
Ids o fst =1d4 0 fst o (Id4 X Absg),

formalising the fact that fst(z,y) is static as long as « is.

Finally, it is easy to see that
(B X &) o swap = (B x a) o swap o (a X B),
and hence that
(Idp x Absy) o swap = (Idp X Absy) o swap o (Absy x Idg),
(the first component of swap(z,y) is static if y is) and
(Absp x Id4) o swap = (Absp x Id4) o swap o (Id4 X Absp),

(the second component of swap(z,y) is static if z is).
In [Lau89], Launchbury presents a binding time analysis for a first-order func-
tional language. The analysis is based on a non-standard semantics which interprets

function definitions as maps between finite sub-lattices of projections, such that if f#
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and f are, respectively, the non-standard and standard interpretations of a function

definition, then
fH@)=B=PBof=PBofoa

Another analysis based on projections is the strictness analysis described in
[WHB8T]. Again the analysis is for a first-order language, but in this case it is based
on a backwards semantics. Thus the definition of a function f: A; x --- A, — B is

interpreted as a family of maps {f* : Proj(B) — Proj(A,-)}lSiSn such that:
fiB)=a=Bof=Pofo(lds x -+ xIds_, x @ xIda,, x++xIda,).

A distinctive feature of this analysis is that it is able to identify an interesting
form of strictness for functions over lists, known as head-strictness, which cannot
be discovered via a [BHAS6| style analysis. In Chapter 5 we describe a forwards

analysis for a higher-order language, which can also discover head-strictness.

3.1.2 Equivalence Relations

In [Lau88] it is noted that there is a natural way to associate an equivalence relation
to a projection a € Proj(D), namely the relation which equates those elements of
D which « maps to the same value. In fact this can be done for any function, not

just projections, and is a standard construction:

Definition 3.1.3 For a function f : A — B, the kernel of f is the equivalence
relation ker f : A « A defined by

a(kerf)d <= fa=fd.

By concentrating on the equivalence relations rather than the projections, we
arrive at an alternative (but equivalent) formalisation of the terms ‘static’ and ‘dy-

namic’.

Definition 3.1.4 For each domain D, we define Idp : D < D to be kerIdp, hence
Idp is just equality on D, and we define Allp : D <> D to be ker Absp, hence Allp

1s the universal relation on D:
d Allp d for all d,d' € D.

We will write Id, to mean Idps and similarly for All,.
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Now ‘static’ is interpreted by Idp and ‘dynamic’ by Allp. To formalise the notion
of a function transforming ‘staticness’ in this setting we introduce the following
notation® for f: A — B and binary relations P: A & A and Q : B «+ B we write
f: P = (@ to mean
fla,

JOTT

aPd=> f(n.)Q

£ & 7 J A"

Now consider ¢ again. Because ¢ is constant, it is clear that c¢(a) = c¢(a’) for any

a,a’ € A, or put another way, that a All4 o' = ¢(a) Idp c¢(a’). Thus
c: Ally = Idp

In fact this could be taken as a rather natural definition of constancy: it says that
no matter how z varies (however dynamic z is), ¢(z) remains fixed (static).

Recall that the product of two relations is defined such that (a,d) P x @ (a’, 1)
iffa Pa’and 6 Q V. So (a,b) (Ids x Allg) (d',b') <= a=a'. Thus

fst : Idy x Allg = Id 4.
Similarly, we can see that
swap : Idy x Allg = Allg x Id4

and
swap AllA X IdB = IdB X AllA

The explication of the terms ‘static’ and ‘dynamic’ directly in terms of equivalence
relations rather than projections may seem more intuitive than the use of projections,

though as the following result shows the two approaches are equivalent.

Proposition 3.1.5 Let « : A — A and f : B — B be projections. Then for any
function f: A— B:

Bof=Pofoa < f: (kera)= (kerpB)

Proof For the implication from left to right, suppose a (ker @) @’. Then ¢ a = a a'.

But by assumption, A(f(a a)) = B(f a) and B(f(a a')) = B(f a'). Hence B(f a) =

2The resemblance of this notation to an assertion that f has a certain function type is not
accidental since binary relations can indeed be used to give a semantics to types in such a way
that = is the natural interpretation for —. See [Rey83, CL90] for example.



44 CHAPTER 3. PERS AND TERNARY LOGICAL RELATIONS

B(f o) and so (f a) (ker B) (f o).
For the implication from right to left, for any a € A, o a = a(a a), and so a (kera)
(o @). But then by assumption, (f a) (ker #) f(« a), hence B(f a) = B(f(« a)).

(Note that there is a somewhat more general result lurking here, since the only

property of the projections which is used is idempotence of «.) O

Remark The natural ordering on projections is the usual pointwise ordering
on functions, while the natural ordering on relations is inclusion. It is not
too hard to see that for projections and their kernels these orderings are

dual, in the sense that
al B < (kerB) < (kera).

When comparing the analyses we develop in the rest of this thesis with
analyses based on projections, this reversal of order should be born in

mind.

3.2 Complete Partial Equivalence Relations

The above discussion shows that by using equivalence relations (or projections) it is
easy to describe the property of constancy. On the other hand, it is not possible to
capture the fact that f : A — B is constant via the use of a pair of sets in the form
f(X) CY, as allowed by the abstract interpretation framework described in the
previous chapter. Clearly, we can describe the fact that f is the particular constant
function with value b, by the statement that f(A) C {b}, but we cannot simply
assert that f is constant in this way. This suggests that it would be worthwhile to
consider ways of constructing program analyses for reasoning about properties of

functions f : D — FE which can be expressed in the form
f:P=Q (3.2.1)

where P : D & D and Q : E «< E are equivalence relations. In fact, for such
analyses to work in the higher-order case we need to work with a less restricted class
of relations than the equivalence relations. To understand why, we must consider a
new construction on relations which may be viewed as the function type analogue
of the product construction defined in Subsection 2.4.2. For projections there does

not seem to be a natural construction for function types.
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Let D and F be domains. Let P: D < D and let QQ : E < E. The relation
(P=Q):[D— E] & [D— E] is defined thus:

F(P=Q)f < Vd,d eD.dPd = f(d)Q f(d).

For a binary relation P : D « D, we write |P| to mean the set {d|d P d} and
we write d : P to mean d € |P|. This notation is actually consistent with that

introduced in Section 3.1 because now

f:P=Q
= fel|P=Q|
— f(P=Q)f

e Vd,deD.dPd = f(d)Q f(d).

A useful result concerning the set |P| for binary relation P is the following:

Lemma 3.2.2 Let {P;},.; be a family of binary relations on D. Then

IAPI=IE.

iel iel
Proof Trivial. O

We have seen that binding time analysis is based on properties which may be
described at the base types using the equivalence relations All and Id. However, even
if P and @) are equivalence relations, P = () may not be. As a simple example of this,
consider the relation Allp = Idg. Now f (Allp = Idg) f' iff Vd,d'. f(d) = f'(d).
Clearly this entails that f = f’, but it also entails that f is constant. Thus assuming
that neither D nor E are trivial, so that non-constant functions exist, Allp = Idg is
not reflexive. A class of relations which includes the equivalence relations as a special
case and is closed under the = construction (and has many other useful closure

properties besides) is obtained simply by dropping the requirement of reflexivity:

Definition 3.2.3 Let D be a set. A binary relation P : D « D is a partial equiv-

alence relation (per) if
1. P is symmetric: d P d = d' P d;
2. P is transitive: d Pd P d" = d P d".

If P is a per then « P z’ implies that ' P z (by symmetry) and hence that z P z
and z’ P 2’ (both by transitivity). It follows that the domain and range of a per
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P are both equal to |P|. Furthermore, the restriction of P to |P| is an equivalence

relation (a total one).

3.2.1 Complete Pers

We will actually be considering pers over domains and it is natural to consider
restricted classes of pers which take account of the domain structure. In particular,

for any domain D, we will be interested in those pers P : D <> D which are both:
1. strict: L P L;

2. inductive: whenever {d,} C D and {d],} C D are w-chains such that d, P d],
for all n, then | [{d.} P LI{d.}.

Such pers are said to be complete by [AP90] (but note that [Ama91] uses the term
complete where we have used inductive). For any domain D, the equivalence relations
Allp and Idp are clearly complete pers on D. More generally, given any continuous
function f, the equivalence relation ker f is a complete per: it is strict because it is

reflexive and it is inductive because f is continuous.

Remark In [AP90] a per P is said to be meet closed if the following holds:
ien' X' = {zi}iep if 2 Pz} for all
i € I, then MX P MX'. It is well known ([GHK*80]) that projections

preserve meets and it follows that for any projection «, the equivalence

for all non-empty families X = {z;}

relation ker o is meet closed. The results of [AP90] are sufficient to es-
tablish that all the pers arising in the example analyses considered in this
thesis (Chapter 5) are meet closed, though as yet we have found no way

of exploiting this fact.
The following proposition sums up some other basic facts about complete pers.

Proposition 3.2.4 Let D and E be domains. Let P and P’ be complete pers on D,

let {P;};cr be a family of complete pers on D and let Q and Q' be complete pers on
E. Then the following hold:

1. P = @ is a complete per on [D — EJ;
2. P= Allg = Allip_.g);
3. ldp = Idg = Id[D_,E];

4. P x @ ts a complete per on D X E;
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5. Nier Pi is a complete per on D;

6. the map - = _: CPER(D) X CPER(E) — CPER([D — E]) is monotone in ils

second argument and anti-monotone in its first:

P<PandQ<Q'=(P=Q)<(P=0Q).

Proof These are all well known (see, for example, [Ama9l, Asp90]) and easy to

verify. We prove 1 and 5 by way of illustration.

For 1, suppose d P d'. Then Lpp_g)(d) = Lip-g(d) = Lg and so, since @
is strict, Lip~g)(d) @ Lip-g(d). Thus Lip_g (P= Q) Lip—pg. Now assume
that {f,} and {f.} are w-chains such that f, (P = Q) f. for all n. Suppose
that d P d'. Then f,(d) Q fi(d'), for each n. Hence (U{fn})(d) = U{fa(d)} @
U{fi(d)} = U{fL})(d'), by inductiveness of @ and continuity of the functions.
Thus U {fu} (P = Q) U/}

For 5, firstly L P; L for all ¢ € I, hence L (Aje; Pi) L. Now let {d,} and {d}} be
w-chains such that d, (A;e; Pi) d, for all n. Then for all 7 € I, d, P; d], for all n

and hence L {d.} P I{d,}. Thus Ll{dn} (Aeer P) LI{d,}. o

Closure under conjunction (part 5 of the above proposition) implies that for any
given domain D the set of all complete pers on D forms a complete meet semi-
lattice (hence a complete lattice) with partial order (<) and meets (A) inherited
from R(D, D) (see Subsection 2.4.2). We denote this lattice by CPER(D). The least
and greatest elements of CPER(D) are Botp and Allp respectively, where Botp is
defined to be the per such that

dBotpd < d=d = 1.

As for All and Id, we will write Bot, to mean Botps.

Our aim is to construct a framework for defining program analyses based on
complete pers, in a way which is analogous to the use of Scott-closed sets described
in Section 2.4. As a clue to how this might be done, we observe that binary logical
relations and pers are intimately related via the x and = constructions on relations.
Looking back to the definition in Chapter 2, we can see that a binary logical relation
is a family {R,} such that R,x, = R, X R, and R,_., = R, = R,. Now consider
a binary logical relation R : S < S relating the standard interpretation to itself. It

follows from Proposition 3.2.4 that if each base type member of R is a (complete)
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per, then every member of R is a (complete) per. However, we need rather more
than this. We wish to reason about finite interpretations in which each point in the
finite lattice interpretation of a type corresponds to a per over the standard domain

interpretation. To do this we have to use a more general notion of logical relation.

3.3 Ternary Logical Relations

The Binary Logical Relations Theorem (2.4.4) is actually an instance of a more
general theorem ([P1o80]) which concerns relations between & interpretations, where
£ is any ordinal. Although the general theorem is straightforward to state and
prove, it is rather cumbersome notationally. The only other instance which we need

to consider is the ternary case, which we now describe.

Definition 3.3.1 (Ternary Logical Relation) Let I, I' and J be interpretations.
A ternary relation R between I, I' and J, written R : I x I' < J, is a type-indezed
family of relations {R,},.; where R, : (DI x DI') & DJ. Such an R is logical if
foradlo,7€7T:

1. (£, ) Rosr h
& VdeD!LdeDI'acD! (dd)R,a= (fd f d) R, (ha)

2. ((dlad2)7 (dlladlz)) R01X02 (aha?) <~ (dhd,l) Rdl a1 and (dZ’dg) Rffz as.

As in the binary case, we extend R : I X I' < J to environments. For p € Env!,p’' €
Env!" and 6 € Env’ we write (p, p') R § to mean that dom(p) = dom(p') = dom()
and (p(z), p'(z)) Ry 6(z) for all € dom(p) N Var,, for all o.

Remark Although R : I xI' < J is essentially a ternary relation, by grouping
the first two arguments together we have reduced it to a binary one. In
some ways it would have been better to work with genuine ternary rela-
tions, say R : I « I' & J. An advantage would be that the appropriate
definitions of X and = for ternary relations would have allowed us to define
a logical relation as one for which R,x. = R, X R; and R,_,, = R, = R..
But in practice we only have need for the restricted case in which I = I,
and we will be thinking of R as describing how each a € J corresponds
to a set of pairs (in fact, to a complete per). The choice we have made is
thus quite suggestive and (we hope) helps give a clearer picture of how we
actually exploit the extra expressive power which ternary logical relations

give us over binary ones.
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Theorem 3.3.2 (The Ternary Logical Relations Theorem) Let I, I’ and J
be interpretations and let R : I x I' < J be a logical relation. Supposc thal
(c!, " YR.c! for each T and for each ¢ : 7. Then for all o, for all e : o, for all
p € Env!, p' € Env' and § € Env’:

(p:0") B8 = ([e)p,[e]"'p') Ro ([e]"6).

Proof By induction on the structure of e. The base cases (variables and constants)
are immediate from the hypothesis of the Theorem. The remaining cases are as

follows, where it is assumed that (p, p’) R é:

l.e=Az.e,withaz :oand ¢ : 7. Let d € DL, ' € D! and a € D! be such
that (d,d") R, a. Then (plz — d},p'[z — d']) R é[z — a], so by induction
hypothesis:

([[e']]lp[:v — d], |[e’]]pp'[a: — d']) R. [[e']]J(S[m — al.

But by the definition of []" Wé have the equalities:
e Dol d= [T olz > d]
e Pzl d =[] Pl d),
o [Mz.e]’8a=[e]"6[z — d

Hence ([Az.e']'p, [Az. 1" p') Roesr [Az. €76

2. e = ey ey, with e; : 0 — 7 and e; : 0. By induction hypothesis we have that

(Tea] p, [[el]]I’p') Ry [e1]’ 6 and similarly for e;. So, since R is logical,

((Tead’ p) (el p), (Texl” ') ([eal” #)) R- ([ex]”8)([e]”6).

But, by the definition of [.]’ we have:
o [ex ez]IIP = ([[el]llp)([[eﬂllﬂ),
o [es 62]]I’P' = (l[el]]I’P')(ﬂez]]P/"),
o [e1 e2)"6 = ([e]”6)([e=]”6).
Hence ([e; 62]]Ip, [e1 62]]Ilp’) R. ey 62]]J5.

3. e = (e1, €2). Since (e1, €7) is interpreted as a pair and logical relations are defined

elementwise on products, this follows easily from the induction hypothesis.

4. e = fst(e') or e = snd(e’) with €’ : o1 X 03. See previous case.
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3.4 Logical Concretisation Maps

We could have given an even more restricted version of Theorem 3.3.2 since, as
remarked above, we only actually need it in the case that I = I’. We will be
considering finite interpretations J related to the standard interpretation by logical
relations R7: S? « J. We extend the term abstract interpretation to include the
case that R’ is a ternary logical relation of this form. Our intention is to associate
with each such logical relation the family of concretisation maps v’/ = {fy(‘,’ } with
each 7/ : DJ — cPER(DS), such that (y] a) is the relation which relates d to d’
exactly when R relates (d,d’) to a:

d(v! a)d < (d,d)R] a (3.4.1)

Certainly, this will not be well defined (the (7. a) will not be complete pers) for
arbitrary R’. For now, let us consider the general case of interpretations I and J
and relation R : I? < J to which we associate a family of maps v = {v,} with
each v, : DI — R(DL,DI) defined as in (3.4.1). We can see v simply as a re-
presentation of R, exploiting the isomorphism R(A x B,C) 2 C — R(A, B). It is
useful to consider how the property of R being logical manifests itself as a property

of ~.

Theorem 3.4.2 (The Logical Concretisation Map Theorem) The relation
R : I? & J is logical if and only if for all o,7:

1. Yoeor h = /\ Yo @ = Y- (h a);
a€DJ

2. Yo1xo2 (blv bz) = (701 bl) X (702 b2)a

for all k€ D?_ _ and (b1,b;) € DI

oc—T g1 X0 *

Proof We show that 1 and 2 are equivalent to the two respective clauses in Defini-
tion 3.3.1. Firstly, note that to say two relations P and () are equal, is to say that
fPf < fQ f'. By the definitions,

f(fya—"”' h) f, Aand (f’f’) Ra—n-h

and

TN voa=p(ha) ff <= VYae D] f (v a= v (ha)) f.
a€D]
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Now
f(to a=7.(ha)) f <= Vd,d € D!.d(v,a)d = fd(v.(ha)) f d.

But by definition d (v, a) d' iff (d,d') R, a and f d (y.(ha)) f'd'iff (f d, f d') R,

(h a). Hence 1 is equivalent to the statement that
(f,f) Rosr b <= VYa€ D}.¥d,d € D!.(d,d) Ry a = (f d,f'd') R. (h a).

This is just a re-statement of the first part of Definition 3.3.1 specialised to the casc

that I = I’. The argument for part 2 is similar. o

We now have an alternative way to define a logical relation R : I? « J. At
the base types we define maps 7, : DY — R(D!, DF) which are then extended to
a family v = {y,} by using clauses 1 and 2 of the Logical Concretisation Map
Theorem as definitions at the higher types. We will refer to such a family as a
logical concretisation map. The associated logical relation R is obtained by taking
(d,d') Ry a <= d (v, a) d’' as a definition of each R,.

Proposition 3.4.3 Suppose that R : I? « J is logical and that (v, a) € CPER(D!)
for each v € Ty, a € D’. Then (v, b) € CPER(D!) for each o € T, b€ DZ.

Proof By inductionon o. The base cases (o € Tp) are given by the hypothesis of the
Proposition. For function types, let k € [D] — DJ]. By the Logical Concretisation
Map Theorem, we have v,.; b = Ayeps Ve @ = 7-(h a). By induction hypothesis,
¥» @ and ,(h a) are complete pers for all @ € DJ. Thus, by Proposition 3.2.4
part 1, 7, @ = 7,(h a) is a complete per for all a € D}, hence Ayepy Yo a = ¥-(h a)
is a complete per by Proposition 3.2.4 part 5. The case for product types follows
immediately from the induction hypothesis by Proposition 3.2.4 part 4. a

3.4.1 Co-Step Functions as Basic Properties

The Logical Concretisation Map Theorem gives an interesting insight into the way
in which we will be using abstract function spaces to describe properties over their
concrete counterparts. It seems reasonable to consider pers of the form P = @
as being the ‘basic’ properties for function types. If R : I? « J is logical, the
Logical Concretisation Map Theorem shows that the property (per) represented via
concretisation by an abstract function, is a conjunction of such basic properties.
The following definition and proposition show that corresponding to these basic

properties there are ‘basic’ functions in J.
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Definition 3.4.4 Let A and B be complete lattices and let a € A and b € B.

1. The step function [a,b| : A — B is defined by

b ifad" Jda
1p  otherwise.

[a,0] (a) = {

2. The co-step function |a,b| : A — B is defined dually by

b ifd Ca
La, b} (a) = { Tg  otherwise.
We shall really only be interested in the co-step functions for the moment, but in
Chapter 8 we find a practical use for both the step and the co-step functions (we will
also see that there are sound lattice theoretic reasons for considering such functions
to be ‘basic’).

Proposition 3.4.5 Suppose R : I?> < J is a logical relation such that each associ-
ated 7, is top preserving and monotone. Let o,7 € T. Then for any a € D! and
be D!

Yoor(la, b)) =70 @ = 77 b.

Proof By the Logical Concretisation Map Theorem we know that

70—»1('_0', bJ) = /\ Yo a = ’YT(I.GG b.l (a,))‘

a'eD]

The required result follows by showing that (7, @ = ~, b) is the smallest member
of the family {7, ¢’ = v-(|a,b] (a')) },ie py- Firstly it is in the family, since a € D’
and |a,b] (a) = b. For every other (7, a’ = 7, V') in the family there are two cases.
In the first case a’ C a, and then v, a’ < 9, a (7, monotone) and ' = b (definition
of |a,b]) hence by part 6 of Proposition 3.2.4, (v, @ = 7, b) < (7, ' = 7, V'); in
the second case @’ Z a, in which case b’ = T and so (7, @’ = 7, V) = (7, ¢’ =
Allpr) = Allp:__, by Proposition 3.2.4, part 2. 0

Thus each co-step function corresponds to a property of the form P = (). Further-
more, it is easily seen that each abstract function A € [DJ — D] can be expressed

as a meet of co-step functions:

h= T1 |a,ha].

a€DJ
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This may suggest viewing an abstract interpretation as a form of program logic,
with the co-step functions corresponding to formulae of the form ¢ — 1 and mecets
in the abstract lattices corresponding to conjunction of formulae, which is the idca
explored in [Jen91]. Although [Jen91] is concerned with strictness analysis (and

implicitly with Scott-clesed sets) the approach should extend to analyses based on

the use of pers.

3.5 Inherited Properties

Proposition 3.4.3 is an example of what [Abr90] calls inheritance. A property P =
{P,} of ternary relations is inherited if for each logical relation R: I x I' & J:

(Ve € To. P.(R))) = Vo € T. P,(R,).

If P,(R,) for each o, we say that P holds of R. The property in question in
Proposition 3.4.3 is that of (v, a) being a complete per for each a € DJ. From now
on we will refer to this as property CP.

The following definition gathers together some other properties of interest.
Definition 3.5.1 For a ternary relation R : I?> « J, each R, may be:

1. L-reflecting: (d,d') R, L) = d=d = 11;

2. T-universal: D/ has greatest element T and Vd,d' € D!.(d,d") R, TZ;

8. strict: (LI, L) R, LJ;

4. inductive: whenever {d,},{d,} and {a,} are w-chains such that (d,,d,,) R, an
for all n, then (U{d.},U{d.}) Rs L{an};

5. right-monotone: (d,d') R, a C b= (d,d') R, b;
6. left- L-universal: Va € D. (LI, LI) R, a;

7. locally inductive: whenever w-chains {d,} and {d,} and a € D! are such that

(dn,d}) Ro a for all n, then (U{d.},U{d,}) Rs a;
8. locally symmetric: (d,d’) Ry a = (d',d) R, a;

9. locally transitive: (d,d') R, a and (d',d") R, a = (d,d") R, a.
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Some of these properties of R,, or combinations of them, are equivalent to familiar

properties of v,. We list these equivalences below.

e R, is strict and L-reflecting iff 4, is strict (i.e., 7, LJ = Bot pI, recalling that

Botpr is the least complete per on DIy;

* R, is T-universal iff 4, is top preserving (i.e., v, T] = Allp:);

[

e R, is right-monotone iff -, is monotone;
e the conjunction of properties 69 is just property CP.

The following lemmas state which properties are inherited and describe the key

inter-relations between the different properties.
Lemma 3.5.2 The following hold for properties 1-9:
e properties 2-8 are independently inherited;
o | -reflectivity (1) is inherited in the presence of T-universality (2);

o local transitivity (9) is inherited in the presence of local symmetry (8);

Proof The proofs are all straightforward inductions over 7. That T-universality,
strictness and inductiveness are inherited and that L-reflectivity is inherited in the
presence of T-universality, are the obvious generalisations to the ternary case of the
corresponding parts of [Abr90)’s Proposition 3.4. For the purposes of illustration
we prove that right-monotonicity is inherited. Let R : I? < J be a logical relation.

The base cases are given.

For the case of function types, suppose that (f, f') R, h C g. Since R is logical,
(d,d') R, a = (f d,f'd) R, (ha). But hC g = h a C g a, so by the induction
hypothesis, (d,d') R, a = (f d,f" d') R; (¢ a). Hence, again since R is logical,
(f, 1) Romsr 9. |

For the case of product types, suppose ((di,dz),(d},d3)) Roxr (a1,a2) T (b, b2).
Then since R is logical, (di,d}) R, a1 C b; and (ds,d,) R, az C b;. By the
induction hypothesis, (dy,d}) R, by and (dz,d3) R; by. Hence, since R is logical,
((dy, d2), (dy, d3)) Roxr (by, b2)- O

Note that Proposition 3.4.3 is a corollary of Lemma 3.5.2.
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Lemma 3.5.3 The following implications hold between properties 1-9:
o left-1 -universality (6) = striciness (3);
e inductiveness (4) = local inductiveness (7);

o if D is of finite height then local inductiveness (7) = inductiveness (/).

Proof The first two are obvious. For the third, assume that D/ is of finite height
and that R, is locally inductive. Let {d,}, {d],} and {a,} be w-chains such that
(dn,d) Ry a, for all n. Then local inductiveness implies that ([1{d.},{d,}) R-

U{ax.}, since {a,} is eventually constant. o



Chapter 4

Abstract Interpretation
Using Pers

We are now in a position to give the details of how abstract interpretation can be
used to reason about function definitions in terms of properties of their denotations

which may be expressed using pers. The results of this chapter assume the following:
e (J,R’: S & J) is an abstract interpretation;
o R’ satisfies property CP;

oyl = {7;,7 } is the associated logical concretisation map (with each 47 : DJ —
CPER(D3) defined as in (3.4.1)).

Taking our lead from Abramsky’s (binary) logical relations framework, there are
two important questions which we might ask given this situation. Firstly, what does
it mean for J to be correct? Secondly, given the appropriate notion of correctness,

do best interpretations exist for the constants?

4.1 Correctness

Our definition of what it means for J to be correct will be guided by the basic
idea that if f € [D — E] is the standard denotation of some term, we wish to
be able to test for conditions of the form f : P = (), where P € CPER(D) and
Q € CPER(E). Suppose that f5: DS — DS and f7 : D/ — D! are the standard
and abstract denotations respectively of some closed term e : ¢ — 7. Each a € D/

and b € D! correspond to complete pers, namely (v a) and (77 b). By analogy
56
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with the strictness analysis described in Section 2.4 we require that
fla=b= f%: (7] a) = (] b),

giving us a sound and effective test for the condition that f5: (7 a) = (v b). The
following lemma and corollary show that this idea generalises pleasantly to include

both nullary functions and curried functions of more than one argument.

Lemma 4.1.1 Let f, f': Dy —» ... — D, — E be continuous functions on domains,
where n > 0 (if n = 0 then we just mean f,f' € E). Let P; be a complete per on
D;, 1 <1< n, and let Q be a complete per on E. Then f (PL= ...= P, = Q) [
if and only if

Vs, ... do V..., d.
(dy Pyd)) and...and (d, P, d) = (fdi...dn) Q (f' dy...d),

where borrowing the types convention, we write P, = ... = P, = () to mean
P=(..(Ph=Q)...).

Proof By induction on n. For n = 0, the two sides of the claimed equivalence are
both just f @ f'. For the inductive case, by definition f (P, = P, = ... = P, = Q)
fhiff

Vdi Vdy.dy Pody = (fdi) (Po=...=> P, = Q) (f d))

But by induction hypothesis, (f d1) (P2 = ...= P, = Q) (f' d}) iff

Vdy,...,d,. Vdy, ..., d,.
(d2 P dy) and ... and(d, P, d)) = (fdidz...dy) Q (f dy dy...dL).

The rest is just a straightforward logical equivalence. O

Corollary 4.1.2 Let f be given as in the statement of the Lemma. Then f : P, =
c..=> P, = Q if and only if

Vdy,...,d, Vd,, ..., d.
(dy P dy) and... and (dy P d) = (fdy...dy) Q (f d}...d.).

Note that whenn =0, f : P, = ... = P, = () just asserts that f : Q (equivalently,
that f € |@] or that f @ f). Forn > 2, if welet f*: D; x ... x D, — E be the

‘uncurried’ version of f, comparison of the above with the definition of product for
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relations (Subsection 2.4.2) will reveal that f : P, = ... = P, = Q if and only if
f*: P x...x P, = (@, as we might hope.
So our correctness requirement should be such that for any closed expression

e:07 —...0, — 7 with standard denotation f® and abstract denotation f’
flag..can=b= (v a)) = ... = (7], a,) = (1] b),

foralla; € D! ,...,a, € D! and b € DJ. A simple rephrasing of this according to
on b g g

o1

the definitions and Lemma 3.2.2 yields the equivalent

oA oo A ((a)=.= (0 an) = (0 (F ar...a0)). (41.3)

a1 EDg:l an€DJ,,
Although it may not be immediately obvious, this is precisely the content of the
following formal definition of correctness.

Definition 4.1.4 The interpretation J is correct if for each p € Env® and § €

Env’, for every expression e : o
)

(p,p) R’ § = [e]*p : 7] ([e]”6).

Correctness of J implies that ¢ : 47 ¢’ for each ¢ : 7. Accordingly, the interpretation

of an individual constant c : T is said to be correct if ¢S : v ¢’.
To see that this really is what we want, we need the following result.

Lemma 4.1.5 Let D and E be domains. Let P : D < D and let {Q;},.; be a

family with each Q; : E < E. Then

i€l

P=(AQ)=N\P=Q).

i€l i€l
Proof For relations S and S’ recall that S = 5" if and only if S < S’ and S' < S.

To show P = (Aie1 Qi) < Nier(P = Q:), assume that f (P = (Aier @:)) f'- Now
let j € I. Suppose d P d’. Then by assumption (f d) (Aic;@:) (f' d') and so
(fd) Q; (f' d). Hence f (P = Q) f'. But j was chosen arbitrarily from I, so
Viel.f(P=Q;)f.

To show the reverse implication, assume that f (A;e;(P = Q:)) f'. Suppose d P d'.
Let j € I. Then by assumption f (P = Q;) f' and so (f d) Q; (f" d'). But
J was arbitrary, so Vi € I.(f d) Qi (f &), i.e., (f d) (Nier Qi) (f' d'). Hence
T (P = (Nier @) [ w
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We then have the following equivalence:

Proposition 4.1.6 Let h: D] — ... — D! — D;] be monotonic. Then

Booenthi= A o N O @) (0 @) = (7 0 a).
aleDgl anEDgn

Proof By induction on n. For n = 0 both sides are just v/ h. Let n = k+1. By the
Logical Concretisation Map Theorem (3.4.2), 7], _, _.h = Aayepy, (v a1) =

(v -..—on—r(h a1)). Then by induction hypothesis v _, _,, _..(h ay) is just
A o N (L a)=.. (7 a)= (v (haias...a.)).
aZEDgz anED&’n

The required result follows by & applications of Lemma 4.1.5 (induction on k). O

Using this we can see that the requirement expressed by (4.1.3) is precisely what it

means for a closed term to be correct according to Definition 4.1.4.

Theorem 4.1.7 (The Correctness Theorem) If ¢® : v ¢/ for all types T and

for all constants c : T, then J is correct.

Proof By the definition of the concretisation maps, d : 77 a iff (d,d) R a. The
proof is then just an instantiation of the Ternary Logical Relations Theorem (3.3.2)
.with I =1'"=S and p = p'. m

4.1.1 Least Fixed Point Interpretations

We saw in Section 2.4 that the interpretation of Y, in B is the least fixed point
operator (Figure 2.4), just as it is in the standard interpretation. Interpretations
with this property are said by [Abr90] to be least fized point interpretations (in
earlier versions of [Abr90] they were termed normal interpretations). The following
result is a straightforward adaptation of Proposition 3.5 from [Abr90] to the ternary

case.

Proposition 4.1.8 Let I and K be least fized point interpretations. Let R : I? « K
be a logical relation with associated v defined as in (3.4.1). If the logical relation R

s strict and inductive then

Yf; . "Y(o—m)—w Yf
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Proof Let f, f', h besuch that (f, ') Ry, . We must show that (Y f, YL f) R,
(YX h). Since I and K are, by assumption, least fixed point interpretations, this

amounts to showing that

(L fLe, L s L2) Re [ R L

i€w i€w i€w
Since R is assumed to be inductive, it suffices to show that (f* LI, f* 1I) R,
(h* LK) for all .. We proceed by induction on i. For i = 0 we just require that
R is strict, which is true by assumption. For ¢« = n 4 1, by induction hypothesis
(fm LI fm 15y R, (k™ LE). But then since (f,f’) Rs—o h and R is logical,
(F(F* L2), S/(f™ L7)) Ro (™ LT). -

Corollary 4.1.9 If J is a least fized point interpretation then Y : 7({,_’0)_,0 Y.

Proof Firstly, note that S is a least fixed point interpretation. We have assumed
that R’ satisfies CP, or equivalently, properties 6-9 of Definition 3.5.1, so in par-
ticular R’ is strict and locally inductive. Furthermore, J is assumed to be a finite
interpretation and so each DY is of finite height. Then by Lemma 3.5.3, R is strict

and inductive, so the Theorem applies. 0

4.1.2 Monotone Concretisation Maps

A typical situation which arises (see the examples of the next chapter) when we '
attempt to derive a correct interpretation for a constant, say ¢ : ¢ — 7 is the
following: for some a, by, b, we know that for all d,d' such that d (v a) &', either
c(d) (v b)) S(d'), or 3(d) (7! b2) (d'). In this situation, if the concretisation
map 7. is monotone, the answer is simple: set ¢/ @ = b U b,. Monotonicity of
47 then ensures that 47 b; < ~4J(b; U by) and 47 b, < 4/(b1 U b,), and hence that
d (v a) d = S(d) (7)(b1 U b)) ¢3(d'). More generally, monotonicity implies that
it is always safe to approximate upwards in the abstract lattices, in the sense that
if @ 1s a correct interpretation for ¢ and a E o/, then @’ must also be correct. This
is such a heavily used property when deriving correct interpretations for constants
that monotonicity of the concretisation maps is effectively indispensable. All the
abstract interpretations we are aware of, and certainly all the examples considered
in this thesis, are based on monotone concretisation maps or their equivalent. In
Chapter 6, we are forced to reject a possible scheme for the abstract interpretation

of recursive types, because the induced concretisation maps are not monotone.



4.2. BEST INTERPRETATIONS FOR CONSTANTS 61

4.2 Best Interpretations for Constants

[n Subsection 2.4.4 in Chapter 2, we discussed the existence of best interpretations
for the constants in B and it is an issue of interest for any abstract interpretation
(both [Nie89] and [Abr90] discuss the question at some length as it applies to the
particular frameworks they consider). Although the (y2 a) were sets and our (7! b)
are pers, the basic idea of best interpretations for constants is the same. Let ¢ be
a closed term. Suppose we know that [e]® : P for some per P (this is precisely
the situation guaranteed by correctness of J if we take P = vJ([e]”)). Then the
smaller that P is, the greater will be our knowledge of [e]°. So if we can choose
correct interpretations for the constants in such a way as to minimise the size of
o ([[e]]‘]) for all e : o, we can thus maximise the accuracy of any analysis based on
J. If we assume that the 4/ are monotone, this can be achieved by minimising the
abstract interpretations of the constants, ¢/. Just as in the example of strictness
analysis, this will be possible if for each type o and for each d € DS, there is a least
a € DY such that a correctly describes d, which in the current setting means such

that d : v a. This motivates the following definition.

Definition 4.2.1 For a constant c : ¢ we say that ¢’ is the best interpretation for
c if ¢’ is the least value in DI such that ¢S : 7 ¢’. More generally, we say that
a € D! is best for d € DS if a is the least value in D such that d: v/ a.

To obtain a maximally accurate analysis it is clearly sufficient that the interpretation
of each constant be best. Whether it is also necessary is not so clear. We return to
this question in Section 4.3.

We will show that a sufficient condition for the existence of best interpretations

for the constants is that each 47/ has a left adjoint.

4.2.1 Left Adjoints for Concretisation Maps

Definition 4.2.2 Let A and B be complete lattices and let f : A — B and g: B —
A be monotone maps. Then f and g are said to form an adjunction (alternatively, a

Galois connection) with left (or lower) component f and right (or upper) component
g ifforallae A and b € B:

fla) Cb < aC g(b).

In that case, g is said to have left adjoint f and f is said to have right adjoint g.
The statement that f and g form such an adjunction is abbreviated as f - g.
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Proposition 4.2.3 Let A and B be complete lattices and let f : A — B and g :

B — A be monotone maps. Then the following are equivalent:
1. f-g
2. fogCidp and go f didy
3. f preserves joins and g(b) =|J{a € A| f(a) C b}
4. g preserves meets and f(a) =M {be B|aC g(b)}

Proof These are all standard ((GHK*80]). ]

Corollary 4.2.4 The components of an adjunction between complete lattices deter-

mine each other uniquely (parts 3 and 4 of the Proposition).

The corollary to the next result shows that the existence of left adjoints is easily

established since it is an inherited property.

Proposition 4.2.5 If'y;] preserves meets for all ¢ € Ty, then fy(‘,’ preserves meets for
aloceT.

Proof By induction on types. The base cases are given. Product types are simple
since meets are calculated elementwise for products. For function types ¢ — 7, let
{hi};c; be a family in DJ_, .. Then
NierVior hi = NierAeenz(77 @ =7 (hi @)  Theorem 3.4.2

= Aaepi Nier(7] @ = 7] (ki a))

= /\aepg(fy&’ a= Nier7! (hia)) Lemma4.1.5

= Awenz(7d a = 7] (Mier(hi a))) by induction hypothesis

= Naenz(77 @ =77 (Mies bi) a))

= vl (Mier k) Theorem 3.4.2

Note that the penultimate step of the proof uses the equality Mies(hi @) = (Mier k:) a,
which holds because J is finite. More generally it holds for meets of finite families in
continuous function spaces over Scott domains, and for meets of arbitrary families

in monotone function spaces over complete lattices. o

Corollary 4.2.6 If v’ preserves meets for all v € Ty, then v has a left adjoint for
aloceT.

Proof Immediate from the Proposition by Proposition 4.2.3 part 4. O



4.2. BEST INTERPRETATIONS FOR CONSTANTS 63

4.2.2 Abstraction Maps

Suppose that 47 is monotone and has left adjoint «;. Define the ‘forgetful’ map
U : cPER(D]) — (D5 x D3) to take a complete per to its graph and define the

‘free complete per’ map F': (DS x D3) — cPER(DS) by
F(S) = A {Q € cPER(DS) | V(d,d) € S.d Q d'} .

Thus, given the graph of an arbitrary binary relation on D3, the map F' returns
the smallest complete per containing that relation. It is clear that F'o U = id and
UoF > id, hence F 4 U, by Proposition 4.2.3 (note that F o U is actually equal to
the identity, not just dominated by it).

Remark U(P) is really forgetting not that P is a relation but that P is a
complete partial equivalence relation. It is slightly more convenient for our

purposes to define U as we have done, rather than as a map CPER(DS) —
R(D3, D3).

Now adjunctions compose, meaning that
(FAU andal Ay))=alo FHAU o7,

hence o (F(S)) C a <= S C U(y] a). So, sinced : v/ a < d (v a) d and
d (vl a)d <= {(d,d)} CU(y] a), we have

d:v! a <= «(F{(d,d)}) Ca.
But this says precisely that o (F {(d,d)}) is best for d. .

Definition 4.2.7 If each . has left adjoint o, then define the family of abstraction
maps abs” = {abs]} with abs : DS x DS — DY, by abs(d,d') = o} (F {(d,d")}).

Thus the best interpretation for a constant ¢ : 7 is obtained by setting ¢/ =
abs,(c%,c®). In practice, we will want to calculate abs’ directly for the base types
and then give an inductive definition for all other types. Proposition 4.2.9 allows us

to do this, but first we require the following lemma.

Lemma 4.2.8 Suppose that each v has left adjoint o). Let oy,...,0n,7 € T, with
n>1. Let G C (D5 ... r) X (D5, .capsr), and let ay € DY ... a0, € D] .
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Then:

o | F(G)) ay - aqn

g1~ —)an —T

= oJ(F{(gdr dn,g' &+~ d) | (9,9") € G, di (v}, ai) d},1 < i < m}).

Proof We prove the case for n = 1, taking o7 = 0. The result then follows by an
easy induction on n. In the following we make use of the fact that T = M0 and

hence that 7 TY = AQ = All,, since v/ preserves meets.

Let LHS and RHS be the left and right hand sides of the equation. Let b € DJ. We
will show that LHS C b <= RHS C b. It is easy to see that if h € [D — DJ], then
haCb < hLC |a,b| (Definition 3.4.4). Thus LHS C b iff &/ .(F(Q)) C |a,b].
Then, since «)_,, o F HU ovJ_, ., we have LHS C biff G C U(y/_, |a,b]). But by
Proposition 3.4.5, v/__ |a,b] =) a = 4/ b, hence

LHSCb < Y(9,¢) €G.g (v a=~lb) g
Now since o) o F 4 U o4, we have
RHSCb <= {(9d,g' &) |(9,9) € G,d (v] a)d'} SU(] D).
But this may be re-written to give
RHSC b <= Y(g,¢') € G.Vd,d' € D;.d (] a) d' = (g d) (v} b) (4" &),

which is just
RHSC b <= VY(9,9") €G.g (v] a= 7] b) g

O

Proposition 4.2.9 Let o,7 € T. Let f,f' € [DS — D3], let a € D! and let
(d1,d2), (dy, dy) € DGy, Then:
1. absy_,(f, f') a =U{abs{(f d, ' &) | absi(d,d') E a}
2. absyy,((dy, da), (dy, dy)) = (abs;(dy, dy), absy(dz, dy)).
Proof

1. Firstly, we have shown that abs!(d,d') C a <= d (y/ a) &, so by the definition
of abs’, the right hand side of the equation is

LH{ed(FU( 4.5 ) 1d (4] @) &}
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Then using the fact that left adjoints preserve joins, we have

L{al(P{(f d f &) 1 d (] a) d'}
= J(FU{{(fd f d)} | d (3 a)d}))
= oJ(F{(fd, f &) |d (v} a)d}).

But by the Lemma this is just &/_, (F {(f, f)}) a.

2. As we have shown, abs?, ((di,ds),(d},d})) is uniquely determined as the pair
(a1,az) such that for any (by,b;), we have (dy,d2) (72, (b1,05)) (dy,d5) iff
(a1,a3) C (b1, by). Now dy (v by) &} iff abs?(dy,d,) C by, and similarly for abs.
Hence (di,d>) (7&IXT(b1vb2)) (di,d,z) iff (abs;’(dl,d’l),absg(dz,d;)) C (b1,0,),
since 7y, (b1, b2) = (77 b1) x (77 b2).

a

It is interesting to compare our abstraction maps with those of [BHA86]. The
immediate difference is that the [BHA86] maps are from DS to D7, rather than from
DS x DS to DJ. At the ‘top-level’ we only really need a map of the former type,
since we are interested in best interpretations for constants. Thus for the purposes
of comparison we could define the maps abs’, : DS — DJ by abs’ (d) = abs,(d, d).
But the difference between these maps and the abstraction maps of [BHA86] is still
very marked. In particular, the [BHA86] maps are continuous whereas in general,
ours are not even monotone. An example is given in the next chapter. In a sense
this could be construed as an advantage, since a recent result due to Samuel Kamin
([Kam91]) shows that the head-strictness property of [WH87] cannot be discovered
via abstract interpretation based on monotone abstraction maps with finite range.
In Chapter 5 we present an abstract interpretation using pers which is able to detect
head-strictness and the associated abstraction maps are indeed non-monotone (the

analysis is essentially the one described in [Hun90a], which pre-dates Kamin’s result).

4.3 Non-Injective Concretisation Maps

and Expected Forms

The example analyses of Chapter 5 show the condition that the concretisation maps
preserve meets to be met quite naturally. Thus best interpretations are guaranteed
to exist for the constants and are given by the abstraction maps defined above. Note

that there is no way of automating the construction of a totally correct (guaranteed
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to terminate) algorithm for computing abs?(c,c®), so we have to rely on human
ingenuity. Nonetheless, in practice there does usually seem to be a fairly obvious
construction for a correct interpretation for each constant, and if it’s not immediately
evident we can use the definition of the abs’ maps provided by Proposition 4.2.9
to guide us to it, as Burn shows in [Bur87, Bur91]. However, these ‘obvious’ inter-
pretations for the constants are what Nielsen calls ezpected forms ([Nie85]) and in
general are not the same as the best interpretations. We give an example of this be-
low, which illustrates the typical cause of the difference between the expected form
and the best interpretation: in general the concretisation maps are not injective at
the higher types. We would normally assume the base type concretisation maps to
be injective, since this corresponds to defining abstract lattices with no redundant
points but, as is demonstrated by the constancy analysis described in Chapter 5,
injectiveness of the concretisation maps is not an inherited property.

Suppose that for each pair of types o, 7, the set of constants includes zipplymT :

(¢ — 7) — o — 7, with the obvious standard interpretation given by

apply;, fd=fd.

The natural candidate for the abstract interpretation of apply, , simply mimics the
standard interpretation:

applyiT ha=ha.

It should be clear that this will always be correct since v/ is logical, but is it best?
For the rest of this section we will assume that the 47 preserve meets, each having

left adjoint .

Lemma 4.3.1 Let 0,7 € T. Let h € [DJ — DJ] and let a € D]. Then:

ol (k) a=al(F{(fdfd)|f @, k) fdH]a)d}).
Proof Since F o U = id, we have

& (Var B)a
ol (FU(, b)) a
= oJ(F{(fd.f d)|(f,f) €Uy}, h),d (4] a) d'},

where the last step is by Lemma 4.2.8. m]

For any adjoint pair f - g, an easy argument shows that g is injective if and only if

fog=id, so a corollary of this lemma is that if v/_ _ is injective then applyg,T is
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indeed best, since for any h and a:

a{aqr AMT(F {(apply;,,apply5,)}) ha
o (F {(applys, f d,applys, /' d) | f (vi-, b) [';d (v] @) d'})
i (F{(f d, [ @V (S, ]) € Ulw~, B),d (7] @) d'}

s (V5ar h) @

= ha.

Now assume that v is injective (for example 7 could be a base type) but suppose
that v7_,_ is not (this is possible, as shown by the constancy analysis of the next
chapter). Hence there are functions Ay, hy such that v7_, by =4/, hy = P, with
some a such that hy a # hy a. Let app be the best interpretation for apply, ,, i.e.,
app = abs(Jo_,T)_w_w(applyiT, apply; ). By Lemma 4.2.8 it follows that ‘

app hy a = app hy a = &J(F{(f d,f' &) | f P f',d (v] a) d'}), (4.3.2)

) applyg,T is certainly not best, since applygﬂ, hia=hia#hya= applyiT hy a.
We will show that using app as the interpretation for apply, . leads to a more
accurate analysis than the obvious applygﬁ, under the following assumption: there
are closed terms ey, e; and e, with abstract interpretations hq, hy and a, respectively.
To make the comparison in a straightforward way, we will assume that there is an
alternative apply constant altapply, , : (¢ — 7) — ¢ — 7, such that altapply; , =
apply; . but altapplyir = app. To show that using the best interpretation leads
to a more accurate analysis, we show that there are terms e : 7 and ¢’ : 7 which differ
only in that e uses altapplym where €’ uses apply, ., but that v/ [e]” is strictly
smaller than v/[e’]’.

Consider the following pers:

o P, = y/[altapply,, €1 e.]” = ~](app k1 a)
o P, = y/[altapply,, e; e])” =~/ (app b2 a)
o P{ = v]/[apply,,, e1 eo]” = 7](h1 a)

o P = v]/[apply,, ez ea]” = 7! (k2 a)

Since app is best for both apply,, and altapply, ., and since v/ is monotone, it
follows that P, < P{ and P, < P;. Furthermore, P| # P, since « is injective and
hi a # hy a. But by (4.3.2), P, = P,, hence either P is strictly less than P/ or P,
is strictly less than Pj.
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The assumption that was necessary to show that the best interpretation for

apply, . has a practical advantage over the obvious one deserves closer scrutiny.
J

o—T

Given that vJ_ _ is not injective, we could argue that D contains too many
points, since at least two of them (khy; and hy) represent the same property. It is
natural to ask whether all these points are denotable under the abstract interpre-
tation, in particular, do the expressions e; and e; assumed above actually exist?
In fact, it would be interesting to go further than this and look for a a result akin
to full abstraction ([Plo77]). Take a program to be a closed term of base type and
take concretisation as a notion of observation, i.e., say that programs e,e’ : ¢ are
observably equal if and only if v7[e]” = ~/ [€]’. Then assuming that all constants
other than altapply, , are interpreted by their ‘expected forms’, does there exist
a program context C[] such that Clapply,,] and Claltapply, .| are not observ-
ably equal? The glaring obstacle to answering such a question is that we have no
good definition of what an expected form is. One possibility, suggested by the work
of [Nie84, Nie85], would be to attempt to characterise expected forms in terms of
their behaviour on irreducible elements (see Chapter 8). This subject remains to be

investigated.

4.4 Pers Subsume Sets

It is intuitively clear that the use of pers as program properties subsumes the use of
sets. This is simply demonstrated by encoding each subset of a domain X C D as
the per P(X), where

dP(X)d < de X andd € X.

Thus the per P(X) satisfies |P(X)| = X and all d € X belong to the same
equivalence class of P(X). Note that X € Py(D) iff P(X) € cPER(D). (An
alternative is to encode X as the diagonal A(X), whered A(X) d' < d=d € X.
See [Hun90b}.)

Let (K, R) be a set-based (binary logical relation) abstract interpretation with as-
sociated concretisation map v. Let (K, R') be the per-based abstract interpretation
with the same DX and c&, with associated logical concretisation map 7 induced

from the base-types by

7:“=P('7L a).
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Then it is straightforward to show (induction on ¢) that for all o and for all
b e DX:

Yo b= P(75 b).

[t follows that (I, R) is correct if and only if (K, R') is correct. Thus any sct-
based analysis can trivially be presented as a per-based one: the converse does not

appear to be true.



Chapter 5
Example Analyses

We describe two example abstract interpretations based on the framework developed
in previous chapters. The first is what we call a constancy analysis which could
form the basis of a higher-order binding time analysis, as discussed in Section 3.1.
The second is a strictness analysis able to discover the head-strictness property
of [WH87]. Because head-strictness only makes sense for functions over lists we
must extend our language of types. In this chapter this is done in a rather ad-hoc
way. In the next chapter a slightly more satisfactory approach is taken, in which
the language of types is extended to include recursive types. Unfortunately, our
method for inducing abstract interpretations for these types does not generalise the
strictness analysis of this chapter. The point is discussed further at the end of the

next chapter.

5.1 A Constancy Analysis

In Chapter 3 we introduced the property of constancy to illustrate the weakness
of the binary logical relations framework. In this section we present an analysis
for reasoning about constancy which exploits the extra power of the ternary logical
relations framework. This analysis is based on one developed jointly with David
Sands, described in [HS91]. Tt can be seen as generalisation of the basic analysis of
[Lau89] to the higher-order case, although there are a number of important aspects
of that work which we do not address: in particular, domain factorisation, polymor-
phism and the construction of a ‘global’ analysis to propagate the local constancy
information throughout a program.

We postpone giving an example of the analysis ‘in action’ until the next chapter,

where we show how it can be extended to programs using recursively defined types.

70
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5.1.1 The Abstract Domains and Concretisation Maps

Recall that for a function f: D — E, constancy can be expressed as
fAllp = ldg.

It is thus natural to define an interpretation C (C for Constancy) with two-point
base type interpretations

DC=2= l’
¢ S

where as a mnemonic convenience we name the elements of 2 as D (Dynamic) and s
(Static) instead of 1 and 0. The intention is that D and S should correspond to All
and [d (of the appropriate types) respectively. This correspondence is established
by the concretisation maps ¥° : DS — CPER(D?), where

c All, ifa=D
Y a= .
Id, ifa=s.

The logical concretisation map v¢ = {77}, is induced via the Logical Concreti-

sation Map Theorem (3.4.2). The associated logical relation R°: S? « C is that

induced by
(d,d’) RS D for all d,d’ € D
(d,d')RCs < d=4d
Each ~¢ is:
o CP;

e meet-preserving.

By Propositions 3.4.3 and 4.2.5 it is sufficient only to verify these at the base types.
This is trivially done. It is also trivially shown to be the case that the base type
concretisation maps are injective but, as we show in Subsection 5.1.3, this property
is not inherited at the function types.

Since v© preserves meets, we know that each v has a left adjoint a$ and hence
that best interpretations exist for the constants. The base type abstraction maps

are easily verified to be given by:

s ifd=d

D otherwise.

absC(d, d') = {
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D
Df= 1 1°D=All, 7¢s=1i,
n®=s
true® = false® = s
iszero® a = a
plusCab=alb
minus® = mult® = plus®
. ' TS ifa=D
C — o
ity a b 1’2“{ biUby, ifa=s
Y7 f=r 17

1€w

Figure 5.1: An Abstract Interpretation for Constancy Analysis

The simplest function-type abstraction maps are shown by Proposition 4.2.9 to be
given by:
abs’, (f, f)a = |{abs7(f d, f' d') | abs{(d,d') E a}.

It is then straightforward to show that abs®, (f,f) = Aa € 2.5 iff f and f’ are
equal and constant, and similarly that absZ,,(f,f) = Aa € 2.D iff f and f’ are
not equal. The only possibility left is that abs®, (f,f') = Aa € 2.a iff f and f’
are equal and not constant. It follows that the derived map f ~— absC,,(f, f) men-
tioned in the previous chapter (Subsection 4.2.2) is not monotone since, for example,
(An€Z.Ll)—Aa€2.5and (An€Z.10l) = Aa€2.5,but (An€Z.n=1—
1,101) —» Aa € 2.a.

5.1.2 The Interpretations of Constants

The interpretation C, including the interpretations of the constants, is shown in
Figure 5.1. Recall, for a constant ¢ : o, that ¢© is correct if and only if ¢® : 45 ¢©.
We show below that each ¢ is correct, and hence, by the Correctness Theorem
(4.1.7), that the interpretation C is correct.

Nullary Constants

The interpretations of the nullary constants true, false,0,1,... are all S. From the
fact that v, S = Idboot, ¥y S = Idin: and |Idp| = D for any D, correctness of the
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nullary constants is immediate. Clearly, these interpretations are all best since they

arc all least.

Arithmetic Operators and Test for Zero

For the test for zero, since L All;: 0, we must have L i (iszero™ D) it, so
iszero" D has to be D. Like all functions, iszero® : Id = Id, so it is correct to take
iszero® s = s. Thus iszero' is correct (and best).

To show correctness for the binary arithmetic operators, we must show that,

taking f : Z — Z — Z to be any of plus®, minus®, mult®, for all a,b € 2:
[ 0= Yine b= 7 (a U D). (5.1.1)

Now if either ¢ = D or b = D then ¢ U b = D and (5.1.1) is trivially satisfied,
(for any f, not just plus®, minus® and mult®), since 7S, D = All;,;. Otherwise,
a=b=(aUb)=s. But v$, s = Idy: and f : Id;n; = Idint = Idin: clearly holds
(again, for any f).

We can see that these interpretations are also best: suppose towards a contra-
diction that plus® is not best. Then there must be a,b such that a U b = D and
plus® : 78, a = 7S, b = Idin:. But either a or b must be D, so plus® must be
constant in one of its arguments, a contradiction. The same argument obviously

applies to minus and mult.

Conditionals

To justify the interpretation used for the conditionals we will use the abstraction

maps. We require the following result:

Lemma 5.1.2 Let 0 € T and let a € DS. Then there is some d € |7 a| such that
absS(Ls,d)y=TE.

Proof (sketch) First define the family of sets {M,},.; with each M, C D%, by:

o M,=D3\ 1;
L GXT:MO'XMT;
o Mooy ={AdeDs.m|me M,]}.

Then it can be shown that for all o € 7, for all @ € DS and d € M,:

e M, is not empty;
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o My C |7 al;

o L (v$a)d=~Ca=Al,.

The first of these is obvious from the definition. The second and third are by easy
inductions on o. It can further be shown that in addition to being top-preserving,
each 77 is top-reflecting, which is to say that v a = All, = a = TS. Then for any
de M,
absS(L3,d)Ca

= Li(5a)d

= 75 a=All,

= a=T§.

a

Omitting most of the superscripts and subscripts to keep things readable, we have

abs®(if],ifJ) D b c
= U{abs(ifs z y 2,if5 2’ y' 2') | abs(z,z") C D, abs(y,y’) C b, abs(z, 2') C ¢} .
Since D is top, absg ,(z,z') C D for all (z,z’) € B. In particular, absg, ;(L, tt) C D.
Thus the set on the right hand side contains abs$(LS,2) for all 2’ € |4 b, so by
the Lemma, the set contains TS. Thus abs®(if,if]) D b ¢ = TS, which agrees with

our choice for ifC.

Using the fact that < ; S = Idpor, we have:

abs®(if3,if3)s be
= U {absS(L3, 13), absS(y,v), absS () | absS(y, ') E by absS(z, ) C o}

By adjointness considerations this is equivalent to
absC®(if3,if2)sbec = aS(7S b) U aS(7€ ¢).

Now for o such that 4¢ is injective, the right hand side is just b U ¢. So in particular,
for the base types we have shown that the if ¢ are best. In general, as is shown below,
7S is not injective and we only have aS(7S b) U aS(1S ¢) C b U ¢, so the if S are

correct but not necessarily best.

Recursion Combinators

C is a least fixed point interpretation so correctness of Y is given by Corollary 4.1.9.
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he : A(a,d).D
hs: A(a,b).aUb
// \\
hs: A(a,b).a ha: A(a,0).0

hy: A(a,b).s

Figure 5.2: The Lattice [2 x 2 — 2]

5.1.3 Non-Injective Concretisation Maps

As remarked above, the v$ maps are not all injective. To show this we consider the
example of o = int x int — int (the choice of int is not significant, any base typc
would do). The abstract lattice interpretation for this type is [2 x 2 — 2], shown
in Figure 5.2. We will show that 45 hy = 5 ho.

Using the Logical Concretisation Map Theorem, and dropping type subscripts

for the sake of readability, we see that
’}’C h2=P1 /\Pz/\P3/\P4,

where

P = All x All = All
P, = AllxId=1d
P = IldxAl=1d
P, = IdxId= Id.

Using Proposition 3.2.4 we can see that P, = All and P;, P3 < P;. Hence
C
v h2 = P2 A P3.

Similarly, we have

Y hi=Q1 AQaAQsAQu
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where

Q1 = All x All = Id
Qs = All x Id = Id
Qs = Id x All = Id
Qs = Id x Id = Id.

Again using Proposition 3.2.4, we find that @1 < @2, @3, Q4. Thus

7° hy = Q.

Since 1 < Py, P3, we know that v¢ hy < 4° hy. Note that Py = QQ4 = Id, so that
P, P3,Qy < Id. Any per P with this property is completely determined by |P], so
to show that 4© hy = € hy it remains to show that f € |y© k| implies f € |[y© hy|.
Now let f € |y© hs|, and let ny,no,nf,ny € Z. Then f(n1,ns) = f(n],ns), since
[ All x Id = Id, and f(n{,n) = f(n},n}), since f : Id x All = Id. Thus
f(n1,n2) = f(n,n}). Hence f: All x All = Id. We conclude that 5,y inimint f1 =
Vi exint—int T2 and hence that 3, ;. . . is not injective.

The crux of the above argument is in the last few lines which reveal the basic
cause of non-injectiveness for v,y intims: @ binary function is separately constant
in each argument if and only if it is jointly constant in both its arguments. By
mapping (D, S) to S and mapping (S, D) to S, the function h, has already completely
determined a property (per). What it does to (D, D) is really not important. Thus
there is an inherent redundancy in using the full space of monotone functions to
describe properties of functions of more than one argument. (It is not hard to see
that the restriction of ¥$,; y;ni—in: t0 {R3,. .., he} is injective, so the only redundancy
in this particular lattice is caused by having both hy and k,.) In [CC79] it is
suggested that such redundancy be eliminated by quotienting out the superfluous
points: the suggested quotient map is simply af ovy, which does the job admirably.
The problem with that suggestion in this setting is that we have to cope with the full
type structure of 7', which means infinitely many o, and in general we simply don’t
know how to compute af o S. What is required is an alternative characterisation
of those abstract functions which are superfluous.

As yet we don’t have such a characterisation, but we conjecture that one will be
found by adapting Berry’s work on stable functions. We note that the function A,
is distinguished from the other functions in [2 X 2 — 2] by the fact that it doesn’t
preserve binary joins. However, this property alone does not give us the character-
isation we seek, since all functions in [2 — [2 — 2]] preserve binary joins, but the

curried version of h, is superfluous there just as A5 is in [2 X2 — 2]. The answer may
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be to adapt [Ber78] and work with bidomains (perhaps more properly, bilattices)
using the coconsistently additive (ca) functions® (dual to consistently multiplicative)
and the associated ca ordering. This gives rise to a lattice for int x int — int which
is just [2 X 2 — 2] without hs, and a lattice for int — int — int which is just
[2 — [2 — 2]] without the curried version of hy. More generally it gives rise to a
cartesian closed category of finite lattices in which the interpretation C could be
redefined. We do not know whether this is the characterisation we seek. A possible
analogue of Berry’s Function (used to demonstrate that stability # sequentiality),
is suggested by the fact that under the ca ordering, the function space [2 — 2] is

isomorphic to B°F:

T: Aa.D

N\

B: la.s I: da.a

We define the function ¢ : [2 — 2]> — [2 — 2] to be the greatest monotonic function
such that

Q(17B7T) =
q(B,T,I) = ]
oT,1,B) = L

Then ¢ and A(f,g,h).I are distinct functions which are both ca, but we do not
know whether v°(q) = v°(A (f,g,h). ).

5.1.4 Constancy in a Strict Language

The standard semantics assumed for Az is non-strict. We could model a strict
functional language in A7 by providing strict apply combinators sapply, . : (¢ —

7) — o — 7 with standard interpretations:

sapply,, fd =

L ifd=L1
fd otherwise.

A strict language semantics could then be simulated by replacing all applications
ler e2] by [sapply e;1 ez] except where non-strictness is needed (such as the ap-
plication of a conditional to its second and third arguments). Unfortunately, the
resulting analysis would be rather uninteresting. Since we have formalised constancy
of f by

f Al = Id,

A function f is ca if for all pairs a,b which are bounded below, f(a U b) = f(a) U f(b).
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the only constant strict function is the constant bottom function. It follows that, for
example, any correct choice for sapplyy,, ;,,; Will be such that sapplyy,,; ;,, » D = D,
forall h € Df, ;... Thus no term [sapply;,; ;.. €] denoting a strict function will be
found to be constant. It is possible to formulate a modified definition of constancy,

more appropriate for strict languages, as follows. Define the per All}, by
dAll,d < (d# Landd # L)vd=d = L.
Say that a strict function f : D — E is almost constant if
[ Allly = Idg.

Thus a function is almost constant if its restriction to non-L arguments is con-
stant. Now using C we could determine that Ax.((Ay.3) (e x)) denoted a con-
stant function, regardless of what e might be. But to determine that the term
Ax.(sapply (Ay.3) (sapply e x)) denoted an almost constant function, we would

have to determine that e satisfied the condition
[sapply e]® : All' = All'.

Unfortunately, this amounts to determining that [sapply e]® is a total function
(one mapping non- L arguments to non-.L results) and, as the termination analysis
of [Abr90] demonstrates, an analysis based on abstract interpretation which is able
to detect totality is likely to be so poor as to be virtually useless. In practice, binding
time analyses for strict languages analyse programs as though the semantics were
actually non-strict ([Jon88]) and these analyses may be viewed as being based on

some form of partial correctness criterion.

5.2 List Types

The extended language of types is as follows:
o, €T! u=1]| 0y X 03 | 07 — 03 | list(o).

We do not extend the language of terms, relying instead on higher-order constants
to operate on lists. This is not very satisfactory, but it does reduce the amount of

work to be done in adapting the existing framework to incorporate the new types.
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5.2.1 Interpretations

The definition of an interpretation is modified as follows: an interpretation I is now

a pair
({Di}ae’fl ’ {I(J}UET’ )

where the K! assign meanings to constants, as before, and the D! are subject to

the following conditions:

I — I I
‘Dal X0o2 DCI] X Da’z

I _ I I
Da—-»r - [Do'l - Da’z]'

Note that the interpretations of types are no longer induced by the interpretations
of the base types, since complete freedom is allowed for the interpretation of list
types. In practice we expect some uniformity in the interpretation of list types.
One way of imposing this would be to require some functor L over the category
of domains, equipped with some additional structure (e.g. that of a monad), such
that D,Im(a) = L!(D!). We have not done this since we have yet to identify a
structure which is both useful and of sufficient generality to incorporate the standard
interpretation and the abstract interpretations of interest.

The definitions of environments and the semantic valuation functions [[_]]I remain

unaltered.

5.2.2 Logical Relations

Logical relations over 7' are defined exactly as before. As in the case of type
interpretations, this means that a logical relation is no longer uniquely determined
by its base type instances.

Concretisation maps are derived from logical relations in the same way as before,
but to ensure that these maps always return complete pers requires more effort: see
Subsection 5.2.3 below. The Logical Concretisation Map Theorem clearly remains
valid, and the definition of logical concretisation map is retained, though of course
a logical concretisation map is no longer induced by its base type members.

Correctness of an abstract interpretation is defined in the same way as before
(Definition 4.1.4). The Ternary Logical Relations Theorem (3.3.2) remains valid
because the proof is by induction over the structure of terms, which are as before.

Hence the Correctness Theorem also remains valid.
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Remark It may seem as though we are getting something for nothing: we have
added list types without making any requirement that logical relations
respect them, yet we are guaranteed that alternative interpretations of
terms of list type will always be related. The reason is that the only
way we have to construct such terms is via constants of list type, whose
interpretations are related by hypothesis. Thus the extra work which we
might expect to be involved in proving correctness for list types, is simply
postponed until we define and prove correct the interpretations of these

constants.

5.2.3 Inherited Properties

Inheritance of properties is profoundly affected by the addition of list types. In
fact, since logical relations are no longer induced from their base type instances, we
can only expect trivial properties to be inherited. This puts a bit of a hole in the

framework. As a partial repair, we adopt the following definition.

Definition 5.2.1 A property P = {F,} . of T'-indexzed families of relations, is
conditionally inherited if for all ternary logical relations R : I x I' « J: if the

condition

Yo € Tl- Pa(Ra) = Plist(a)(Rlist(a))

holds, then
(Ve € To. P(R))) = Vo € T'. P,(R,).

It is routinely verified that Lemma 3.5.2 remains valid for logical relations over 7*
if ‘inherited’ is replaced throughout by ‘conditionally inherited’. Furthermore, the
proofs of Proposition 3.4.3 and Proposition 4.2.5 can be easily modified to show
that in the current setting, the property CP and preservation of meets by (hence
the existence of left adjoints for) the concretisation maps are conditionally inherited.
Of course, to make use of the fact that a property is conditionally inherited when
reasoning about any given R, we will have to show both that the property holds for
the R, and that the condition specified by Definition 5.2.1 is actually met.

5.2.4 List Constants and the Standard Interpretation

The constants we assume for lists are, for each o, 7 € T

e nil, : list(o);
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Dlsist(a) = hSt(D?r)

nil} = (]
consl x ts = : &$
13 ifl=1
case; [ fd=q fzas ifl=z:2s
d if 1 =1l

Figure 5.3: Extensions to the Standard Interpretation
e cons, : ¢ — list(o) — list(o);
e case,, : list(o) = (¢ = list(c) > 7) > 7> 7.

For any domain D, the domain list(D) is defined to be the usual domain of
partial, finite and infinite lists of elements in D, obtained as an initial solution to

the domain equation

list(D) 2 1 + (D x list(D))

where + is separated sum. (See [SP82] and the next chapter.) We will write the
isomorphic images of iny(-) and iny(d, ) in list(D) as [] and d : [ respectively.
Extensions to the standard interpretation S of Chapter 2 to incorporate list types

and the new constants are shown in Figure 5.3.

5.3 A Head-Strictness Analysis

In [WH87] Phil Wadler and John Hughes described a strictness analysis technique
for first-order functional languages. Two features distinguish this technique from
strictness analyses in the [Myc81, BHAS6] style:

1. it uses a non-standard backwards semantics;

2. it uses projections to formalise strictness properties rather than Scott-closed

sets.

The way projections are used to describe strictness properties is via the equation
(3.1.2) introduced in Chapter 3:

Bof=pfofoa.
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By using projections in this way, Wadler and Hughes were able to capture a
novel form of strictness, known as head-strictness. This is defined in terms of the

projection Hp:

Definition 5.3.1 For each domain D, the projection Hp : list(D) — list(D) is
defined by

Hp(L) = L

Hp(l) = 1]

Hp(d:1) = {L fd=Lp

d:Hp(l) otherwise.

For o € T we will write H, to mean Hps.

A function f : list(A) — B is said to be head-strict if f = f o H, which put into
form (3.1.2) is:
IdBOfZIdBOfOHA.

Intuitively, a head-strict function is one which never ‘looks at’ a tail of its argument
without looking at the head of that tail. An example is given at the end of this
section. By Proposition 3.1.5, it is equivalent to define a head-strict function as one
for which

fi(kerHy) = Idp.

This enables us to construct an analysis for head-strictness based on complete pers.
There would appear to be no equivalent definition of head-strictness using sets in
the form f(X) C Y, so the [BHA86, Abr90] frameworks are unable to capture head-
strictness. (In [Bur90], Burn investigates what common ground there is between
[BHA86] and [WHS7].)

The interest of head-strictness, as suggested in [WHS8T], is as follows. Let e; :
list(c) — 7 and ey : list(o) be closed terms. Suppose we were able to establish that

the function [e;]° satisfied the property
[ea]” = [ea]” o Ho,

so that [e; e2]® = [e1]*(Ho([e2]’)). We could then modify the code generation for
the sub-expression e; to implement every call to cons, which contributed to the
output of e; by a left-strict cons operation, thus avoiding the need to build and
maintain closures and increasing the opportunities for parallelism.

It is not quite so easy to describe ordinary strictness in terms of projections. The

approach taken in [WH87] involves lifting all the domains and functions involved:
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given a continuous map f : A — B, the lifting of fis f1 : Ay — By, given by

flo= L ife=1
U G o) if @ = lift(a).

For each domain A the projection Stry : Ay — A, is defined by

1 ife=_1
Straz=¢ L if ¢ = lift(La)
lft(a) if z = lift(a),a # La.

It is then easily seen that f : A — B is strict if and only if
Strg o fy = Strp o f) o Stry.

Here we avoid the need for lifting by exploiting the fact that unlike projections, pers
can be partial: we can use the per Bot to describe strictness, since f : A — B is
strict if and only if

f : Bot4 = Botpg.

However, one of the most pleasing aspects of the [WH8T] approach is the natural
way in which projections over the lifted domains can be combined to capture a rich
family of strictness properties over recursively defined types. Our approach does not
seem to generalise in the same way. We return to this point at the end of the next

chapter.

5.3.1 The Abstract Domains and Concretisation Maps

We define an interpretation H (H for Head-strictness) with the following lattice

interpretations for base types and list types:

D
|

Dl'=3= ? ‘D;;‘Ist(a'):‘l:
B

W= —=m=—-

Product and function type interpretations are induced in the usual way.
The intention is that D and S be interpreted as in the constancy analysis, that
B should correspond to Bot and that H should correspond to ker H. Thus for base



84 CHAPTER 5. EXAMPLE ANALYSES

types we define
B = Bot, yPs=1d, y*p=Al,

and for list types we define

’Yﬁ'{st(a) B = B"tlist(a) 7!1;'Ist(¢7) 5= Idlist(cr) %?st(a) H = kerH, 7II;'Ist(a) b= A”h’st(v)'

This is extended to the logical concretisation map v* = {y}'} .p: via the Logical
Concretisation Map Theorem. The associated logical relation is called R*. Note
that our interpretation of list(c) is rather crude: we are always restricted to the

same four properties, regardless of what o is. Each 4 is:
e CP;
e meet preserving;
o strict.

Recall from Section 3.5 that to say that ~)' is strict is equivalent to saying that
R is strict and L-reflecting, and that «4}' is CP implies that R is strict. Thus
it remains to show that each 74}’ is CP and meet preserving and that each R is
1 -reflecting. Furthermore, if 4}’ preserves meets then it preserves T, which implies
that R} is T-universal. It follows that as a corollary of Propositions 3.4.3 and 4.2.5,
and Lemma 3.5.2 (modified as described in Subsection 5.2.3), the combination of
& being CP, meet preserving and strict, is conditionally inherited. Thus we must

show two things:

1. each 4™ is CP, meet preserving and strict;

2. for each o € T*, if v is CP then so is /%, ,, and similarly for meet preservation
Yo ’ylzst(a) y p

and strictness.

It is immediate from the definitions that both these conditions are met (in fact,

Viist(s) 18 CP, meet preserving and strict independently of any properties of ~}').

5.3.2 Testing For Strictness and Head-Strictness

To test a function definition for head-strictness we will show there to be an element
S; € D¥ for each 7 € 7', such that y¥ s, = Id,. Then given correct interpretations
for the constants we can analyse a closed term e : list(0) — 7 for head-strictness by
checking whether:

[e]” H = s,.
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The family {S;}, o is inductively defined by:
S, =S
® Soxr = (S4,Sr)
® Siist(c) =S
® Syr = [Ss,57]

The only non-obvious case is Sy—,. This is justified by the conjunction of Proposi-
tion 3.4.5, which says that v!',  [Ss,S-| = 7 S, = 7' S,, and Proposition 3.2.4,
which says that Id, = Id, = Id,—,,.

To test a function definition for strictness we use the fact that each ! is strict.

Sofor f:vy . oor B

hSoy - Soiy L Soiyy "Se, =L

implies that
fild,, = -+ = Id;,_, = Bot = lds,,, = -+ = Id,, = Bot,

which says that f is strict in its ¢th argument.

5.3.3 The Interpretations of Constants

The interpretations of the constants are shown in Figure 5.4. Most superscripts and
subscripts are omitted. We do not prove correctness of all the constants in detail,

concentrating only on the more interesting and less obvious cases.

Arithmetic Operators

These are justified essentially as in the constancy analysis together with the fact that
they are each strict in both arguments. For example, plus® 1. n = L = plus® L n'/
for any n,n’ € Z, hence plus® : Bot = P = Bot for any P.

Conditionals

Consider if," a b; b;. For a = B the definition is justified by the fact that if] is

strict in its first argument. For ¢ = S the argument is as for if ¢ above. For a = D
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n=s
true® = false® = s
iszero™ ¢ = ¢

o B ifa=Borb=8B
plus” a b=

alUb otherwise

minus” = mult” = plus”

L ifa=8B
bubdb, ifa=s
er —_ 1 2
lfaab1b2— L ifazDandblz_Landb2:J—
T if @ = D, otherwise
nill! =s
(s ibCs,aCs,
H ifblZs,a= L
consy a b= ¢
b ifbZs,a# L,aCs,
D otherwise
case]’l, Bhb = L
casel’ Shb = bU(hS,S)
bU(hs,H) ifhLls=_L1
case; Hhb =
T otherwise
1 ifb=1landh=L1
case; Dhb =
T otherwise
Yrf=1]FfL

i€w

Figure 5.4: Interpretations Of Constants for Head-Strictness Analysis
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and by = b, = B the definition is justified by the fact that if] is jointly strict in its

second and third arguments, i.c.,
if5d11=1,

for any d € B. In the remaining cases if}' a b; b, = T, which is correct since v!'(T) =
All,. (John Hughes has pointed out that this definition is open to improvement:

for example, for any a,b € D} it would be correct to take
if;x; D (a, L) (b, L) = (T, L).

Although we have not done so, it is not too hard to see how the definition could be

modified to take account of this observation.)

List Constructors

The correctness of cons! is demonstrated by showing for all @ and b, that d (7} a)
d" and 1 (7 b) I' implies that d : I (4%, (cons; a b)) ' : I'. This can be done
by a case analysis following the four clauses in the definition of consf. We consider
the first two.

Recall that v¥ s, = Id, and 4! is monotone for all 7. Suppose that b C s and
a C ;. Then I (f(,) b) I and d (73" a) d’ implies that I = I' and d = &', and hence
that d: 1 (Vi) S) @' 2 1.

Now suppose that b [Z s but that a = L. Since 4} is strict, we know that
d(v#1)d < d=d = L. Now for any [,I' we have H,(L : ) = L =H,(L:1").
Thus d (75" L) &' and  (vj4,) b) I implies that d : [ (kerH,) d' : I".

Case Constants

We consider only the second and third clauses in the definition of casey , the other
two being routine.

For the second clause, assume that f (v;%, 40y, #) f and d (v b) d'. Since
’Yllilst(a) S = Idjisys), we must show that (casefm [ fd) and (casef I f' d') are

related by v;(b U (A S, S)), for all I. There are three cases for I:

l.I=1. Thencasej Ll fd= 1 =case] L f'd,and L P L for any complete
per P.

2. 1 =1[l. Then case} [l fd=d and case§, [l f/d' = d'. Since 7 is monotone,
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d (vF b) d’ implies that d (y3(bU (k s, 8))) d'.

3. l=x:2s. Then case], (z:2s) fd= fx s and case] (z:zs) f'd =
f" = zs. Now by the Logical Concretisation Map Theorem, f (¥3_ 5(0)—r ) f'
implies that

f (7;{ Se = 7l}z'lst(0') S = Vﬂl'{(h So S)) fl'

Thus, (f = zs) (v7(k S S)) (f' z zs), since & Id, x and zs Idjsy ) ©s. Again,

monotonicity of 4 finishes the job.

For the third clause, assume that I (y** H) I’ (which is to say that H 1 = H I),
that f (y™ &) f' and that d (y™ b) d'. The interesting case is when A L s = L,
so assume this holds. We must show that (case], ! f d) and (case§ . I' f' d') are
related by v¥(b U (h S, H)). A simple case analysis based on the definition of H
shows there to be six ways in which H I = H !’ can be true. We consider each of

these in turn.
1. l=1'"= 1. See case 1 in the argument for the second clause above.
2. [ =1"=1]. See case 2 in the argument for the second clause.

3.l=z:2s and I' = z : zs’, with H zs = H zs’. Essentially as for case 3 in the
argument for the second clause, except that instead of zs Idjisi(s) s, we only

have xs (kerH,) zs’.

4. l=1:zsand l'=1. Since h L S= 1 and f:~" h, we know that f is strict
in its first argument, so case} (L:zs) fd=f Ll aes= 1 =casel 1 f'd,

and L P L for any complete per P.
5. I'= 1L :2s and | = L. Symmetric with the previous case.
6. l=L_1:zs and I'= L : zs’. Essentially as for the previous two cases.

Recursion Combinators

H is a least fixed point interpretation so correctness of Y3 is given by Corollary 4.1.9.
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5.3.4 An Example Analysis for Head Strictness

Let the functions thz% € [list(Z) — list(Z)] and tbz" € [4 — 4] be the standard and

H interpretations, respectively, of the following term:

Y Atbz.A1l.casel
An.Ans.if (iszeron)
nil
cons n (tbz ns)

nil

The standard interpretation tbz® is the function which returns its argument trun-
cated just before the first zero element. Intuitively, it is clear that this function is
head-strict, because whenever it looks at a tail of its argument it also looks at the
head of that tail to see if it’s zero. To use the abstract interpretation tbz* to confirm
this we must show that

thz" H=s.

Since H is a least fixed point interpretation, tbz* is the limit of the sequence
{tbzg, th2", . ..}, generated by

Bt b = B
thzyi 1 b = case™ b
Aa €20V €4.if" a s (cons™ a (tbz2 V')
S

(we use the fact that iszero™ a = a and nil™ = s). This sequence must converge to
its limit after a finite number of terms since the lattice [4 — 4] is of finite height.
In an automated analysis the limit could be calculated explicitly by tabulating
successive iterates until two were found to be equal (see Chapters 7-9). Since that
would be rather tedious to do by hand, we will be more economical and show that
tbz™ H = s by showing (by induction on n) that bz}, H =S for all n. For n =0

we have thz}' H = case® H h S, where

b= Xae2. XV €4.if" a s (cons™ a (thz§ V'))
= Xa€2.2V c4.if" as (cons” aB).
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Now h Bs =if" B S (cons” B B) = B, and

hsH = if"ss (cons”sB)
S U (cons” s B)
sus

= 8.

Hence case® HhS =8 UsS=8. Forn =k+1 we have tbz},, H = case” H A’ s,

where
B = Aa€2.A €4.if" as (cons™ a (b2}l V')).

Then i’ B s = if” B s (cons” B (tbz},, S)) = B, and
KsH = if"ss (cons™s (thz}; H))
= s U (cons™ss) (byinduction hypothesis)

= SsUus
S.

Hence case® HA'S=sS LS =s.



Chapter 6
Recursive Types

In this chapter we consider the implications of enriching our language with recur-
sively defined types. We are able to give meaning to recursively described properties
for recursively defined types, adapting the method of [Lau89] to the world of pers and
higher-order functions. However, for recursive types which use — in an unrestricted
way, we are unable (because of contravariance problems) to give a construction for

finite lattices of such properties suitable for use in abstract interpretation.

6.1 Enriching the Languages of Types and Terms

We extend the language of types by introducing the unit type, sum types and recur-
sive types. To simplify the exposition we allow only one type variable in recursive
definitions and stratify the type system to distinguish between bodies of recursive
definitions, which may contain free occurrences of the type variable, and ordinary

types, which are always closed.
c€eTH u=1|loyX0o2| 01— 02101+ 02| pa.o®

c* €T u=co|ofx0§|of >0 |of+ 0S|

The extended language of terms Azx is shown in Figure 6.1 (the syntax is taken
from [Gun91]). The typing rules are as for A7 together with the additional rules

shown in Figure 6.2.

91
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e€Arn n=z|c|Az.e|erea| ()|
(e1,e2) | fst(e) | snd(e) |
inl,, 5, (€) | inry, 4,(e) | case e of inl(z) = €; or inr(y) = e |
fold,«(e) | unfold,«(e)

Figure 6.1: The Language of Terms Az

e: 01 €09

inl,, 5,(e) : o1 + o2 inry, ,,(€) : 01 + 02

e: 01+ o9 e1: T ey : T

- - if z € Var,,,y € Var,
case e of inl(z) = e; orinr(y) = ez : 7 1Y 2

e:o%a— pa.o? e: po.o”

fold,a(e) : par.o® unfold,«(e) : o[ = pa. 09

Figure 6.2: The Additional Typing Rules for Az



6.2. THE INTERPRETATION OF UNIT AND SUM TYPES 93

6.2 The Interpretation of Unit and Sum Types

In the following sections we outline a method for interpreting recursive types and
interpreting terms over such types. For now we just deal with the interpretation of
the unit type and sum types. Our notion of interpretation for A7 is far less general
than that for Ar: we define the standard interpretation and abstract interpretation
in essentially different ways.

The types 1 and o7 + o2 have standard interpretations given by

DS =1
‘D§1+62 = D<§1+D§27

where the + on the right hand side is separated sum.

Any finite interpretation J used for abstract interpretation is assumed to be
defined as for 7 for function types and product types, and on the unit type and
sum types by:

D{ =1
Dgl-l-dz = (Dgl X Dgz)-r'

The use of product as an abstract interpretation for sum is an idea used in [Nie84]
where it is motivated by appeal to the isomorphism £(A + B) = £(A) x £(B).
In this setting the most straightforward motivation we can give is to consider the
construction described below for concretisation maps at the sum types.

For the concretisation maps v’ = {yj }aeﬂ used in an abstract interpretation
J, it is required that each v be a monotone map from D? to CPER(DS) and that
7). and 7). are ‘logical’ as in the Logical Concretisation Map Theorem (3.4.2).

It is further required that the definition of 4 and Y 4oy bE:

() = Bots
g [ Al fa=T
Titen () a1) + (7], a2) if a = colift(aq, az),

where the sum of two pers P + (@ is defined to be the per with graph

{(L, D} U {(in1(a), in1(a’)) | @ P a'} U {(ina(D), ina(¥)) | 5 Q V'}.

What we need now is a way of inducing finite lattices of useful properties over the

recursive types. The approach taken in [Lau89] is to base the description of a finite
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family of properties for a recursive type on the syntax of the type definition. The
properties themselves are recursively described and “treat every level of recursion
identically”. The idea is illustrated by the following example: let bintree® be the
T* type int + («a X «) and let bintree be the type pa . bintree®. Assuming a standard
interpretation of this type as a domain of binary trees with integers at the leaves,
one obvious property is just Allp;niree. Two other properties of interest are the per
@ which relates any two trees having the same structure, and the per S which only
relates trees having the same structure and the same integers at their leaves. These

pers are naturally described recursively:

Q = Alz+(QxQ)
S = Idz+(Sx9).

Of course S should just be Idpipiree- In the following sections we show how this
example is generalised and how such recursive descriptions can be given meaning.
Because our types include function types and - = _ is anti-monotone in its first
argument, we cannot use a simple least fixed point semantics as in [Lau89]. Instead
we use the category-theoretic framework of [SP82]. A further difference between
our treatment and Launchbury’s is that within our framework we make a clear
distinction between the abstract lattices and the lattices of properties to which they
correspond, whereas in [Lau89] (and in [WH87]) no such distinction is made. Since
concretisation maps are not guaranteed to be injective in the higher-order case, we
really have no choice but to make the distinction. In fact it is not completely obvious
that the syntactic descriptions of projections which [Lau89]’s inference rules assign to
a recursive type, and the projections which those descriptions denote, are in one-one
correspondence either: the question of whether syntactically distinct descriptions
can describe the same projection is not actually discussed, and a disadvantage of
de-emphasising the distinction between syntax and semantics is that it becomes

rather hard to pose such questions.

6.3 Domains and O-Categories

Let Dom be the category of domains and continuous maps and let Dom, be the
sub-category of domains and strict continuous maps. Both these categories are ex-
amples of [SP82]’s O-categories when the hom-sets are ordered in the usual (point-

wise) way. For any O-category K, the category of embedding projection pairs K°P
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has the same objects as K and embedding-projection pairs as morphisms, i.c., a
morphism ¢ : A — B in K is a pair (¢°,¢7) where ¢ : A = B and ¢* : B — A
are morphisms in X such that

1. #” 0 ¢° = id 4

2. ¢% o ¢? C idp.
The identity on A in K is just (id4,¢ds). Composition of embedding-projection
pairs ¢ : A — B and 1 : B — C is given by

ho¢=(y°o 4% ¢ or?).

For Dom and Dom, we have Dom® = Dom?.
To interpret a recursively defined type pa.o®, the parameterised type o® is
interpreted as a functor Fy« : Dom® — Dom®. The standard interpretation

D3, .« is then obtained as an initial solution to the equation
Fya(D) = D,

using the techniques of [SP82].

6.3.1 Functors on Dom; and Dom®

The bi-functors X, + and — over Dom, are defined on objects to be, respectively,
cartesian product, separated sum and continuous function space. On morphisms

they are given by
(f xg)(@1,22) = (f(z1),9(x2))

L ife=1
(f + 9)(x) = ing(f(z1)) if 2= ing(21)
ing(g(z2)) if z = ing(z2)

(f—9)h) = gohof,

for f:A— B,g:C — D, h € [B— C]. Note that — is contravariant in its first
argument. In addition to these functors we have the identity functor idDomL and for
each domain A the constant functor K4, where K4(B) = A and Ka(f) = id4 for
any object B and morphism f. Using the technique described in [SP82], all these
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functors can be converted into functors on Dom® in such a way that each of them
(including —) becomes covariant. On objects they are as before, on morphisms they

become:

bx 9 = (4 X954 X 97)
bHe = (P )

(¢ = ¥)(f) = Y°ofog?
(¢ —¥)P(9) = YPogog®

idpomer(¢p) = ¢

K4(9) = (ida,id4).
Given functors F': C — C; and G : C — Cs, their pairing (F,G) : C — C; x C;

is defined in the obvious way. Each parameterised type o € 7“ is interpreted as a

functor F,« : Dom® — Dom® as follows:

F, = Kps
Fogag = x0(Fug,Fog)
Fogmog = =0 (Fug, Fog)
Foprog = +0(Fop, Fog)

FCY == idDomCP .

6.4 A Category of Complete Pers

One likely choice of category in which to interpret recursive descriptions of pers
would be the one defined by Abadi and Plotkin in [AP90], since that work shows
how recursive types can be interpreted as pers. However, viewed as objects in
their category the pers Bot and All are isomorphic which does not seem to be
appropriate in the current setting. The basic category we use is an adaptation of
[SP82]’s category of w-complete relations. Nielson also uses a similar category (the
category SIM of [Nie89]), the essential difference between Nielson’s use and ours

being that we do not attempt to induce a logical relation for recursive types, but
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settle less ambitiously for a way of understanding recursively described pers over

such types.

Definition 6.4.1 The category CPD has as objects pairs (D, P), where D is a
domain and P € CPER(D). By an abuse of notation we will often refer to such a
pair by P alone, writing D(P) for the domain component when necessary. A CPD
morphism f : P — @ is a strict continuous map f : D(P) — D(Q) such that

f: P = Q. Identities and compositions are inherited from Dom, .

Verifying that CPD is well defined (in particular that if f: P = Q and g: Q = R
then go f : P = R) and that ordering the hom-sets of CPD by the usual pointwise
ordering on functions makes CPD an O-category, is straightforward. We can thus
form the category CPD®” in which morphisms ¢ : P — @ are embedding-projection
pairs from D(P) to D(Q) in Dom® such that ¢°: P = @ and ¢?: Q = P.

Since CPD is derived from Dom, by adding extra structure to the objects and
requiring morphisms to preserve the additional structure, it is natural to define the
forgetful functor U : CPD — Dom | such that U(P) = D(P) and U(f) = f. We
will also denote the forgetful functor CPD* — Dom® by U, relying on context to

determine which is intended.

6.4.1 Functors on CPD and CPD¢

The functors x, + and — over Dom, can be extended to functors over CPD.

Their operation on morphisms is as before. On objects they are defined as follows:

(A,P)x (B,Q) = (AxB,PxQ)
(4,P)+(B,Q) = (A+B,P+Q)

(A,P)— (B,Q) = ([A— B],P=Q).
The following result verifies that these functors are well defined.

Lemma6.4.2 Let f : P —» @ and g : R — S be CPD morphisms. Then the
following hold:

L. (fxg):(PxR)=(QxS9);
2.(f+9):(P+R)=(Q+5);

3.(f—9):(@=R)=(P=09).
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Proof

1. If (a,c) (P x R) (d/,) then a P a' and ¢ R ¢/. By assumption, f(a) Q f(a')
and g(c) S g(¢'), hence (f % g)(a,c) (P x R) (f x g)(d', ).

2. Suppose z (P + R) z'. By the definition of + on pers, there are three cases
to consider. The first case, z = &' = L, is clear since (f + g) is strict and so
are the pers. The second case is that 2 = ini(a) and 2’ = iny(a’) with a P '
Then (f + g)(z) = m1(f(a)) and (f + g)(z') = ini1(f(a’)). By assumption
f(a) @ f(a'), hence (f + g)(z) (@ +5) (f + g)(z'). The third case, z = iny(c)

and z' = iny(c’), is similar.

3. Suppose that h (@ = R) h'. We must show that goho f (P = S5) goh'of.
So assume that a P a’. Then f(a) Q@ f(a’), hence h(f(a)) R #'(f(a’)), hence

9(h(f(a))) S g(R'(f(d))).

Again, we also have the identity functor and the constant functors on CPD. Using
[SP82)’s technique, all these functors can be converted to covariant functors over
CPD*?, with the same definition on objects and acting as the corresponding Dom®?
functors on morphisms.

Assuming finite lattices DJ and concretisation maps 7 satisfying the require-
ments outlined in Section 6.2, we define for each parameterised type o2, a set P,a

of formal expressions denoting functors on CPD:

Py = {Ei |a € Dg}

Pogxog = {Pl X p2 | p1 € Pog,pa € Pag}
Pogmog = {P1 — p2 | p1 € Poa,p2 € ’Pa;}
Posyog = {:':} U {Pl +p2 | p1 € Poe,pz € 730;}

P, = {a}.
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Each p € Pya is interpreted as a functor F, : CPD® — CPD® as follows:

Po . P = Kps

e a)

Pooxog + Fpyxp, = X 0 (Fpy,y Iy)

Pogosag + Fpymp, = = 0 (B, I,)

F2(A,P) = (Foprag(A), Allpg, o)
Pogtog = ) F2(8) = Fopyop(9)

Fy o, = +o (Fp, Fp,)
P : Fy =idcpper.

The definition of Fx for the sum case is valid because ¢ : All = All and 9P : All =
All for any 1.
The following result shows that for p € P,a, the functor F), is essentially Fya

combined with a map on pers.

Lemma 6.4.3 Let 0% € T* and let p € Py«. Let A be a domain, let P € CPER(A)
and let ¢ be a morphism in CPD®?. Then:

1. U(F,(A, P)) = F,a(A);
2. U(Fp(9)) = Foa(4).

Proof Routine induction on the structure of o. O

6.5 Solving Recursive Equations in CPD®

To apply the techniques of [SP82] to solving ‘equations’
Fy(D, P) = (D, P)

in CPD®, it is required that:

1. the CPD functors x, 4, —, K4 p) and idcpp are locally continuous;

2. all w®?-chains in CPD have limits.

Given complete pers P, () and an w-chain {f,} of continuous maps such that f, :
P = Q for all n, it is easy to see that | [{f.}: P = Q. It follows that the functors
are locally continuous just as their Dom  counterparts are. The next result shows

that the second requirement is also satisfied.
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Lemma 6.5.1 Let A be an w°F-chain in CPD:
fo bjl f2
(Do, Po) «<— (D1, P1) <— (D3, P) <— ---
By applying the forgetful functor we obtain an w°F-chain U(A) in Dom,| :

S f f
Dy <=— Dy <~ D, <=

It is known that Dom, has limits of all w°F-chains, so let v : A — U(A) be a
limiting cone in Dom | and define the relation P(A,v): A < A by

y P(Av) Y <= Vn.u(y) P va(y').
Then the cone v : (A, P(A,v)) — A is well defined and limiting in CPD.

Proof We must show:

1. P(A,v) is a complete per on A;
2. Vn.v, : P(A,v) = Py;

3.if v/ : (A", P) - A is any other cone, then the unique mediating morphism
U@/ v
a: A" — A from A’ -—(—)> U(A) to A——> U(A) satisfies a : P = P(A,v).

For 1, since each v, and each P, is strict we have L4 P(A,v) L4. Now sup-
pose that {y»} and {y,,} are w-chains in A such that Ym.y,, P(A,v) y,., ie.,
Vm.Vn. vp(Ym) Pa va(y.,). For any n, since v, is continuous we have v, (LI {yn}) =
U{vn(ym)}, and similarly for {y;,}. Then inductiveness of the P, implies that
V. U {gm) Po L), hence U ym} P(A,9) Lot

2 is immediate by the construction of P(A,v).

For 3, firstly it is clear that U(v') : A" — U(A) actually is a cone. Now suppose
z P 2. Then v, (z) P, v.(2') for any n, since v/, : P = P,. But v/, = v, o a, hence
Vn. vn(a(2)) Pn vn(a(2')), hence az) P(A,v) a(2'). 0

The initial object of Dom® is the one-point domain 1 (note that this is indeed
initial in Dom®, while being terminal in Dom). For any domain A the unique
morphism from 1 to A is denoted 04 and is just + — L 4. The initial object of
CPD* is just (1, Boty) and for any (A, P) the unique morphism from (1, Bot1) to
(A, P) is again 04.
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I'or a functor I : Dom® — Dom*®, define the w-chain A to be:

F(0 F2(0
L0 F(1) (04) (1) (04)

Similarly, for F': CPD® — CPD*®, define Ar to be:

0 F(04) F2(0,4)
(1, Bot) —=> F(1, Bot;) —> F*(1, Boty) ——> - --
For 0% € T# and p € P,a, we let Aja abbreviate Ap . and A, abbreviate Ap,.

The Basic Lemma of [SP82] shows that an interpretation for a type ua .o, i.e., an

initial solution to

Fo«(D) = D,

is given by a colimiting cone D <— A« in Dom®. Similarly, for each p € Py,

we can obtain an initial solution to

Fy(D, P) = (D, P)
as a colimit (D, P) <~— A, in CPD®. By using the following lemma, we are able
to construct the per solutions given the domain solution: ’

Lemma 6.5.2 Let 0 € 7% and let p € Pya. Then U(A,) = Aga.

Proof A simple corollary of Lemma 6.4.3. O

Armed with this lemma we obtain the following result via [SP82]’s Theorem 2:

Proposition 6.5.3 Let o € T and assume D <— Ay« to be colimiting in Dom®
with unique mediating isomorphism ¢ : F,o(D) — D. Then for each p € Py,
(D, P(A,,v)) <— A, is colimiting in CPD® and the unique mediating isomor-
phism from F,(D, P(Ap,v)) to (D, P(A,,v)) is also .

In what follows we assume for each ¢* € 7% some chosen colimiting cone
Vda . . . . .
Dya <— Aja. The mediating Dom® isomorphism from F,a(D,a) to Do is de-
noted @ya.
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L] :Ar — Em® — | D

gETH
[0F» =
il @ = ina([el0)
[intoo,@Fp = ina(lel*)
[case e of inl(z) = e; or inr(y) = e2]°p
L if [e]°p = L

= [ealPple = di]  if [e]®p = ina(dr)
[e2lply = do]  if [e]°p = ina(d2)
[fold,«(e)]’p = foldZa([el’p)
[unfold,a(e)]*p = unfoldi.([e]*p)

Figure 6.3: The Standard Interpretation of Terms in Az

6.6 The Standard Interpretation of Terms and

Recursive Types
The standard interpretation of a recursive type is taken to be:
Dia g — Do-a B

The standard interpretation of terms involving fold and unfold is determined by
defining fold® : F,a(Dya) — Dya and unfold® : Dya — Fya(Dye) to be ¢¢a and ¢«
respectively. The standard interpretation of terms in Azx is then as for Ay together

with the additional clauses shown in Figure 6.3.

6.7 The Abstract Interpretation of Terms and

Recursive Types

In Subsection 6.4.1, assuming a finite lattice interpretation D? and a concretisation
map 7 for each ¢ € T#, we defined, for each 0 € T, a finite set of expressions P«

with each p € P« denoting a CPD? functor. In Section 6.4.1 we saw how we could

s

go on to interpret each such functor as defining a complete per on Dy« = D5, o,
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namely the per component P(A,, v,«) of an initial solution to the equation
F,(D,P) = (D, P).

It is thus natural to want to take D’ to be Pya and to define 77, , by

no .o
J
Vioe.on P = P(Dp, Vo).

The obvious definition of a partial order making each P,« into a complete lattice is

as follows:
Ps :da<d <= aCd
Pogxag + (p1 X p2) < (py X py) <= p1 < py andpy < pj
Pogoog t (p1—p2) < (p1 = p3) < pi < p1andp: <py

(pr+p2) S (P +py) <= p < pjandp, < pj

Pogrog ¢+ 4 (p1+p2) ST
T<T
Po : a<a.

With this ordering we will denote the meet and join operations on the P,« by A and
V respectively.

6.7.1 An Unsolved Monotonicity Problem

Not all the P,a« lattices defined above are acceptable. To see why, consider the
following example: let lam® be the 7% type int + (o — «) and let lam be the type
pee. lam®. Thus lam is a data type over which we might define an interpreter for an
untyped lambda calculus. Suppose J at the base types to be as for the interpretation
C of the previous chapter. Then Pigpa is:

_/[\_
D+ (a— a)

S+ (a—a)
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With the suggested definition of ;. , it is clear that ~; T = P(Az, Vigma) =
Alljym- The other two points are recursive specifications of pers which we will write

informally as

Tem@+(@—a)) = Q@ = Al +(Q=Q)
'yl‘(fzm(’s\—k(a—)oz)) = S = Ld+(S=29).

It is easy to show (by a simple mathematical induction) that S is just Idjs,. It
is not nearly so clear how to gain an intuitive understanding of the per ). How-
ever, we can understand just enough of it to realise that something is awry with
our chosen ordering on Pigpa. Let v be vigme and let f i Diygme — Digme be a
continuous function such that (suppressing the applications of the mediating iso-
morphism) f(in1(0)) = inq1(0) and f(in1(101)) = iny(g) for some g. It should be
clear that such a function exists. Now from the construction of P(A,r) we know

that if ina(f) € |Q], then
vWoforv]:Q1= Qy,

where @1 = Allg + (Bot1 = Bot1) is the second approximation to . But
v¢(in1(n)) = ini(n) and vf(inz(g) = ing(01) for any n € DomZ and g € Digme.
Then since 0 All 101, iny(f) € |@Q| implies that in1(0) (All + (Bot = Bot)) in,(01),
which is false by the definition of + on pers.

What we have shown is that there are elements of Dj,,« which are not in |Q)].
Thus Id < @ does not hold, and so our suggested ordering on Pjg,e« results in a

non-monotone concretisation map. Worse than that, the ordering on the pers All, Q)

and Id is:
All
Q Id

Thus there is no ordering on Pigme making Plama a complete lattice and vy, 4,,a
monotone. The use of — in lam® is the cause of the problem, as we can see if we

define the following restricted language of types:
c€TF u=1|oy X0y |01 209|101+ 02| pa.o®

6 €T® u=0|o¢xas|of+0d]|a

Thus 7* is the subset of 7# for which free occurrences of o never occur in the

arguments of —, so — is not ‘active’ in recursive definitions. For such types the
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ordering on Py« does result in monotone concretisation maps, as shown by the

corollary to the following lemma.

Lemma 6.7.1 Let 0% € T, let p,p’ € Pya and let P and P’ be objects in CPD
such that D(P) = D(P'). Then

1. p <p' = F(P) < Fp(P);
2. P < P = F,(P) < F,(P).

Proof The first part is by an easy induction on o* (this part also goes through
for % € T%). The second part amounts to the assertion that the constant functors
and + and x are all monotone when viewed as maps over lattices of pers, which is
easily verified. The banning of — from 7° types is clearly essential since - = _ is

not monotone in its first argument. a

Corollary 6.7.2 Let 0® € T% and let p,p’ € P,«. Then
P S p, = P(Ap, I/ga) S P(Apl,l/aa)-

Proof Follows in the obvious way from the Lemma by the construction of P(A, v).
d

Remark Both the Lemma and the Corollary could be generalised by weaken-
ing the restriction on types in 7% so that — was allowed but only in such
a way that all free occurrences of « were ‘positive’. This is a well known
syntactic condition which guarantees that the resulting map on pers is
monotone, for example see [Ama91]. We do not do this since the resulting

class of types does not seem to be significantly more useful than 7.

The language of terms over Azy is defined the same way as A7u but of course the
well formed (i.e. well typed) terms are assumed only to have types in Azz.

So far we know of no other solution to the monotonicity problem than to restrict
attention to A;z. Clearly, this is something of a disappointment. Since we are forced
to restrict things in this Way, we could have used more straightforward least fixed
point semantics to give meaning to the recursively described pers we wish to use as
properties over recursive types. On the other hand, if we hadn’t developed a way of
giving meaning to recursively described pers over the more general class of types,
we would not have been able to reveal the monotonicity problem. We have every
hope that a solution to the problem will be found, but for now we will have to settle

for defining abstract interpretations in the restricted setting.
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6.7.2 Abstract Interpretation for The Restricted Case

The type component of an abstract interpretation J for A;x is induced from the

following for each ¢ € 7Ty:
e a finite lattice D/;
e a monotone concretisation map v’ : DY — cPER(DS).

These are extended to o € T# as specified in Section 6.2 for product, function, unit

and sum types, and by setting

D;{a.af" = ,PG"‘
7l{a.a“p = P(AP’VU"‘)’

It is straightforward to verify that each «J is then monotone and top preserving.
The relation R’ is defined by (d,d') R’ @ <= d (7] a) d'. Applying the definition
of logical relation for 7 without change to 7%, we can see from the proof of the
Logical Concretisation Map Theorem that R’ is logical.

The term component of J consists of an interpretation ¢’ for each constant to-
gether with monotone functions

unfold’, : Py« — D

o [ar—pa . 0%

J . nd
foldaa . Daa[aH”a'aa] s oYy

for each 0 € 7% The induced abstract semantic valuation function is as in the
general definition of interpretations for A7, together with the additional clauses
shown in Figure 6.4.

For the remainder of this section let J be an abstract interpretation as specified

above.

6.7.3 Correctness

Correctness is defined as before for constants. The correctness condition for unfoldga
and fold, is just as for the constants, i.e., unfold’, is correct if unfoldS, :

~7 unfold., and similarly for fold.

Proposition 6.7.3 IfcS : v/ ¢’ for all constants ¢ : 7, with T € TF, and ifunfoldga

and fold’. are correct for all o € TZ, then J is correct.
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]
[[_]]J :Arm — B’ — | DY
ceTH
10176 = -
linl,, - (e)]’6 = colift([e]’§, L)
[inre, o, (e)]’6 = colift(L],[e]’9)
[case e of inl(z) = ¢; or inr(y) = e,]’6
T if[e]’6=T
_ [[61]]J5[a: — @]
- u if [e]”8 = colift(ay, az)
[es]76ly + as]
[fold,«(e)]’6 = foldl.([e]’6)
[unfold,e(e)]’6 = unfold’.([¢]’6)

Figure 6.4: The Abstract Interpretation of Terms in A=

Proof Under the assumption that the hypotheses of the Proposition hold, we will

show for all types o € T# and for all expressions e : o in Azx, that

(p,0") B? § = ([e°p, [e]*P) R. ([e]”6).

The proof is by induction on the structure of e. The base cases and inductive cases
for A-abstraction, application, pairing and product projections are as in the proof
of the Ternary Logical Relations Theorem (3.3.2). The case for () : 1 is trivial and
the cases for fold(e) and unfold(e) are as for the case for application. This leaves
inl(e), inr(e) and case e of inl(z) = e; or inr(y) = e;. The first two follow
more or less immediately from the induction hypothesis. For case expressions,
if |[e]]J6 = T then we are done, since v’/ is top preserving. Otherwise [[e]]J(S =
colift(a1, az). Now v7(colift(a1,az)) = (v’ a1)+ (v’ az) and by induction hypothesis
[el®p (77 colift(ay,as)) [e]®p’. There are then three possibilities.

1. [e]’p = [e]’p’ = L. Then [case e ...]°p = [case e ...]°p)' = L and
L (y'([casee .. .]]‘16)) 1, since complete pers are strict.

2. [e]’p = ini(d) and [e]®p' = ini(d'), with d (y7 a1) d’. We must show that
([e1]*plz — d]) and ([ea]*p'[z +— d]) are related by /(b U by), where by =
[e1]”8[z — 1] and by = [es]” 6]y — as). But d (y/ a1) ' implies that (p[z —
d,p'lz — d']) R é[z — a1], so by induction hypothesis ([e,]*p[z — d]) and
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([ea]®p'[z — d']) are related by 7 b;, and monotonicity of 4/ does the rest.
3. [el’p = ina(d) and [e]°p’ = ino(d'), with d (v’ a2) d'. Symmetrical with

previous case.

6.7.4 Defining fold and unfold

It is fairly obvious how to obtain a correct definition for unfold’.. Given p € P,
and b € D!, we define (subst p b) € Dc{a[a,_,T] as follows:

o . substabd = a
o x o8 : subst (p1 X p2) b = (subst py b, subst ps b)
{ T ifp="T

oc®+oy : substpb =
1 2 P colift(subst py b, subst pa b) if p=p; + p2

o . subst ab = b

As the following lemma shows, substituting a value b for free occurrences of « in p

is a syntactic counterpart to applying the functor F, to the per 47 b.
Lemma 6.7.4 Let 0* € T%, let p € Poa. Let T € TF and let b € D). Then

77 (subst p b) = F,(D3,7; b)

(again we identify F'(A, P) with its per component).
Proof Routine induction on o?. 0O

Then the following result gives us a correct interpretation for unfold”.

Proposition 6.7.5 For each 0% € T? it is correct to set
unfold’. p = subst p p.

Proof Let p € P,a. By the Lemma, y/(subst p p) = Fo(D3, ,a,7’ p) =
Fy(Dgey P(Ap, vpa)). But by Proposition 6.5.3,

unfoldS. : P(A,, Vea) = Fy(P(Ay, vse))
and P(A,, vya) is just 47 p. So for all p € DY

po . o*

unfolds. : 77 p = 47 (subst p p).
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Thus unfolds € Nyep,o |7 P = 7/ (subst p p)| = |7/ (A p € Pya. subst p p)|. 0

Given the above definition for unfold?

. a, the following result gives us a suflicient

condition for fold’. to be correct:

Lemma 6.7.6 Assume that unfold’. is defined as in the Proposition. Then
unfold!, o fold/, J id

implies that fold’s is correct.

Proof It is easy to see that because (foldj.,unfoldS.) : F,(Dsa, P(A,, Vea)) —

(Dga, P(Ap, Vga)) is an isomorphism, we have the equivalences:
d v’ (unfold” p) d' <= d F,(y’ p) d' <= (fold® d) (v’ p) (fold® ).

Now let @ € D}ajps . 5o) and suppose that d (y7 a) d'. Then d 47 (unfold” (fold” a))
d', since unfold’ o fold” J id and 4’ is monotone. But then by the equivalences

noted above,

(fold® d) v/ (fold” a) (fold® d'),
and we are done. 0

A definition of fold” satisfying unfold’ o fold” I id can be obtained using the
method described in [Lau89]. The basic idea is as follows. Each a € D({a[aH“a‘da]
can be seen as some p € P,« having n free occurrences of «, in which for 1 <z < n,
the ith occurrence of a has been replaced by some p; € P,o. What is needed is a
q € Psa such that a T subst q ¢, and this can be obtained by identifying p (this
is done by [Lau89]’s mask function), identifying the p; (this is done by [Lau89]’s
extract function), and taking ¢ to be V{p,p1,...,pn}. As an example, consider
the type of binary trees described in Section 6.2 and suppose that J is the extension

to T# of the constancy interpretation C of the previous chapter. Then Pyinireea is:

Take a € (D, x (Dj.

1 bintree

X Diiriree)) T t0 be colift(s, (5 + (a x a),b + (a x @))).

bintree

Then p =S+ (a X a), pp =5+ (@ X a) and p; = D + (a X ). Thus we would take
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fold’ a=pVp Vp, =D+ (a X a).
The details of a general definition for fold” along these lines are somewhat tedious

and we trust the idea is sufficiently clear without them.

6.7.5 Meet Preservation Is Not Inherited

It is interesting to ask whether the above described definitions for unfold”’ and fold’
are best. The answer is that in general they cannot be best, since in general there
are no best definitions for unfold’ and fold”. This is shown by demonstrating that
there are ® € T for which 7}, ,« does not preserve meets.

Let t* be the 7% type int x (o + a) and let ¢ be the type uc.t*. Then P is:

az/a4\a3
N

where a1 =5 X (a + ), a2=§><1:, az = D X (o + @) and a; =D x T. Applying

7/ to each of these points we obtain the pers

P /All\@
NS

where P and @) are informally described by:

P = Idz X Allt+t
Q = Allzx(Q+Q).

Now we can see that P A @ is the per informally described by Idz x (Q + @), which
is not equal to Id. Thus 7/ does not preserve meets. If we take a € DE{r[aHt] to
be (s, colift(p,p)) with p = D x (e + «), then v/ ¢ = P A Q. Thus a; and a3
are both minimal values which would be correct for fold” a. It is interesting to
note that the actual value given by the definition of fold” sketched above, would be

a1V az V az = ag, which is optimal. We do not know whether this holds in general.
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Since this example does not involve function types, it applies equally well in the

first-order setting of [Lau89].

6.7.6 An Exampie

Assume C to be extended to 7#. Let zlist™ be the T type 1 + (int X «) and let
zlist be the type pe. zlist®. Thus D3, is just list(Z) (up to isomorphism). The

abstract domain DZ;,, (i-e., Peiste) is:

-
?+AXQ)

T+ (S x )

In what follows we will write SPINE(a) to mean <+ (@ X ). The point T describes
‘dynamic’ lists, SPINE(D) describes lists with ‘static structure’ but dynamic elements,
and SPINE(S) describes completely static lists.

The ‘unfolded’ lattice Dg; aiamtisy 18 (1 x (2 X Pgiiste)) " and for any a € 2 and
b € P,ist« we have:

fold®(colift(+,(a,b))) = SPINE(a) U b.

Let the functions map® € [[Z — Z] — [list(Z) — lst(Z)]] and map® € [[2 —
2] = [Paiste = Paiisi=]] be the standard and C interpretations, respectively, of the

following term (of type (int — int) — zlist — zlist):

Y Amap.)f.)\1.case unfold(1) of
inl(x) = fold(inl(())) or
inr(y) = fold(inr(f fst(y), map £ snd(y)))

We can make this a bit more readable by writing nil for fold(inl(())) and cons(es, €)
for fold(inr(ey, e2)):

Y Amap.Af.\A1.case unfold(1) of
inl(x) = nil or
inr(y) = cons(f fst(y), map £ snd(y))
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The standard interpretation map® is the function which maps a function over a list
of integers. The abstract interpretation map®© is given as the limit of the sequence

{map§, map§, ...} generated by:

mapy hb = SPINE(S) :
T if unfold®b=T
fold®(colift(-, (s, SPINE(S))))
u if unfold® b = colift(+, (a,¥))

fold®(colift(+, (h a, mapS h 1))

mapy, hb =

Consider the cases for unfold®(b) with b € Pga: either b = :I\—, in which case
unfold®(b) = T, or b = SPINE(a), in which case unfold®(b) = colift(-, (a,SPINE(a))).

Thus the second iterate in the chain of approximations for map® is

~

T ifb=T
SPINE(S) U SPINE(S)
u if b = SPINE(a),
SPINE(h a) U (map§ h SPINE(a))

mapf hb =

which simplifies to:

. T ifb=T
map{ hb = .
SPINE(h a) if b = SPINE(a).

The third iterate is

fb=T

—»

SPINE(S) U SPINE(S)
u if b = SPINE(a),
SPINE(k a) U (map§ h SPINE(a))

mapy hb =

which simplifies to:

—~

T ifo=T

Shb =
map { sPINE(h a)  if b = SPINE(a).

So the sequence converges after the second iterate to map® = map¥.
Thus for h such that ~ D = s we have map® h SPINE(D) = SPINE(kh D) =
SPINE(S), so as we might hope, the constancy interpretation tells us that mapping
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a constant function over a list with static structure but dynamic clements, yields a

completely static list.

6.8 Strictness Analysis

In Chapter 5 we described an analysis for detecting head-strictness, involving an
ad hoc extension to 7 to include lists. The notion of head-strictness was originally
defined in [WHS87| using projections. Unlike [WH87] where all the domains were
lifted and the projection Str was introduced in order to capture ordinary strictness.
we used the per Bot in a rather simple way. (Note that our analysis would not be
able to detect head-strictness if it were not also able to detect ordinary strictness:
consider the third clause in the definition of case™.) However, there is a very
important advantage to using the lifting method. In [WH87] and [HL91] it is shown
how various interesting strictness properties over recursive types can be described in
a rather natural way using the per Str. First the types are interpreted using coalesced
sum and smash product, rather than separated sum and cartesian product (this can
be seen as a consequence of lifting the domains): thus the domain of lists of integers

is a solution to the equation
list(Z) =1, & (Z, ® list(Z)L).
Then the projection H can be recursively described by:
H=1d,, & (Strz @ Hy),

where @ and ® are defined on projections in the obvious way. Another projection

with a simple recursive definition is:
T =1Id1, ®(Ildz, @ StroT}).

Then the tail-strict functions can be characterised as those for which
Stro f =Stro fo (StroTy).

In fact T is capturing the same property as Wadler’s abstract lattice point oo,
which denotes the Scott-closed set of all lists not ending in [] (the set Inf described
in Chapter 2, Section 2.3).

Unfortunately these properties are not among those induced by applying the ideas



114 CHAPTER 6. RECURSIVE TYPES

of this chapter to an abstract interpretation which uses Bot to capture ordinary
strictness. Suppose we define an abstract interpretation J for strictness analysis
with:

D All ifa=D

7o 7 og— oo
D;.. = I Ymea=4q Id ifa=s
B Bot ifa=B.

For the type zlist defined in Subsection 6.7.6, the lattice P;sia is:

—

"+ (B x )

The top point denotes the per All, the next one down denotes the per which relates
all lists with the same structure and the next denotes Id. The bottom point denotes

a per informally described by:
@ = Bot1 + (Botgz x Q).

Just as Bot captures the set {1}, the per @) captures the set of all lists all of whose
elements are 1. While it is conceivable that this property could play a useful role
in reasoning about termination properties, it is probably not nearly as useful as the
pers ker H and ker T, which are conspicuous by their absence from our lattice of four
properties.

Thus our way of capturing ordinary strictness does not seem to combine very well
with the [Lau89] scheme for inducing finite lattices of properties over the recursive
types. It may be that a better way of capturing strictness would be to extend the
lifting technique of [WH87] to the setting of higher-order languages.



Chapter 7

The Frontiers Algorithm

In the preceding chapters we have discussed using non-standard interpretations of
terms over finite lattices as a way of performing program analysis. The motivation
for using finite lattices is that questions of the form, “[Y(Ah.e)]” § a = b?”, with
h,e : ¢ — 7, are decidable. However, this fact alone does not tell us how such a
question may be decided. Assuming that J is a least fixed point interpretation, the
‘obvious’ method is as follows. From the definitions, [Y(Ah.e)]” 8 is the limit f of
the w-chain {f,} generated by:

fo = 1]

=T

fn+1 = I[e]]J5[fon]°

Now assuming that we are given some way of computing the interpretation of each
constant, and given the graph for f,, it is possible to explicitly construct the graph
of fut1, by computing [[e]]Jé[f — f,] @’ for each o’ € D. Since D/ is finite, each
such graph will clearly be finite. We can then compare the graph of f,4; with that
of f,: if they are equal we have reached the least fixed point, if not we iterate
this process until we do reach it. That the iteration will eventually terminate is
guaranteed, since the sequence fo, f1, f2, ... is increasing and the lattice [DJ — D]
is finite, so in particular it is of finite height. Once we reach the fixed point we can
simply ‘look-up’ the value of f(a) in the graph.

Now this method may seem rather inefficient, since it involves calculating the
whole graph of f, even though we only wanted the value of f(a). Unfortunately,
in general we know of no other method. In an implementation of the standard
interpretation of course, this is not the way recursion is dealt with. But in the
implementation of the standard interpretation, if the value of f(d) is L, we don’t

expect an attempt to evaluate f(d) to terminate. By contrast, we insist that the

115
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evaluation of f(a) always terminates, even if f(a) = L. Indeed “f(a) = L?” is very
often precisely the question we ask.

The search for ways to avoid calculating the whole graph of recursively defined
abstract functions is still going on. In the first-order case, techniques such as pending
analysis ([YH86]) (related to the idea of minimal function graphs ([JM86])), have
been successfully employed in implementations of program analyses (such as that
described in [Lau89]). This is in spite of the fact that even for first-order languages,
the problem of deciding questions such as the one described above is known to be
of exponential complexity ([Mey85, HY86]). However, it has proved impossible (so
far) to adapt these methods to the higher-order case. A detailed examination of
such techniques and a description of the problems posed by higher-order functions
may be found in [Mar89]. For the time being at least, we have to accept that in
general it is necessary to construct the whole graph of abstract functions with recur-
sive definitions. The frontiers algorithm was developed by Clack and Peyton Jones
([CJ85, JC8T7]) as a way of exploiting the monotonicity of the abstract functions to
make the construction of their graphs more efficient. In this chapter and the next

we describe various extensions of the frontiers method.

7.1 Exploiting Monotonicity

The original work on frontiers was concerned with representations for monotone
functions f : 2" — 2. Although the algorithm developed by Clack and Peyton
Jones depended on the function space having this precise form, the principle behind
the frontier representation itself applies generally to monotone functions f: P — 2

for any finite poset P. Let f be such a function. The graph of f is the set:

{(z,y) € Px 2| f(z) =y}.

It is obvious that this is far from being an optimal representation for f. For example,

f could be represented just as well by the set
{zeP|f(z)=1},

since f(z) # 1 <= f(z) = 0. But this second representation is still open to
improvement. Suppose that there are two elements z,2’ € P such that 2’ C z
and f(z) = f(z') = 1. Now since f is monotone, it would actually be sufficient to

record explicitly only the fact that f(2’) = 1, since monotonicity of f means that
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&' Ca = f(a') C f(x). Taking this idea to its logical conclusion we arrive at the

following candidate representation for f:
{eeP|flz)=1,(Ve'. f(2')=1and2’' Cz = 2 =2")}.

In words, this is the set of minimal elements of the subset of P which f maps to
1. This is the set which Clack and Peyton Jones call the minimum-1-frontier for
f. The mazimum-0-frontier for f is defined dually as the maximal elements of the
subset of P which f maps to 0. In principle, either representation would suffice but
in practice, as we shall see in the next chapter (Subsection 8.4.2), it is natural to
construct both representations at the same time and in the higher-order case it is
also necessary to keep both representations.

As was mentioned above, the algorithm developed by Clack and Peyton Jones for
establishing the frontier representations of a function depended on the function space
having the form [2" —,, 2]. The work of [MH87, Mar89] extended Clack and Peyton
Jones’s algorithm by removing that restriction, allowing the frontiers method to be
applied to the representation of functions in [L —,, 2], and indirectly to functions in
[L —,, L'] for any finite lattices L, L'. The description of both the original frontiers
algorithm and its subsequent extensions are rather complex. In [Hun89] and [HH91]
a greatly simplified description of a frontiers algorithm was arrived at by making
explicit what had been implicit in the previous work: the minimum-1-frontier for f
represents an upper set — the set f~! {1} - and the maximum-0-frontier represents
a lower set — the set f~! {0}.

To explain more clearly the basis of our frontiers algorithm, we begin with the
case of monotone functions f : P — 2, for finite poset P. In the next chapter the

algorithm is generalised to the case of f € L, for finite distributive lattice L.

7.2 A Basic Frontiers Representation

Definition 7.2.1 Let P be a poset and let X C P. Then Mazp(X) and Minp(X)

are defined to be, respectively, the mazimal and minimal elements of X, i.e.:
1. Mazp(X)={z e X |V'e X.2Cz' =z =1'};
2. Minp(X)={ze X |Vi'e X.2' Cz =z =12}

When P is clear from the context we just write Maz(X) and Min(X).
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Although the following result is fairly obvious, we use it so heavily that it is worth

stating explicitly.

Lemma 7.2.2 Let P be a poset and let X C P be finite. Then
1. | X = | Maz(X);
2. 1X = TMin(X).

Proof See Appendix. o

Corollary 7.2.3 Let P be a finite poset. Then
1. X € L(P) <= X = |Maz(X);
2. X elU(P) <= X =TMin(X).

The frontiers algorithm(s) depend centrally on the representation of upper sets
by their maximal elements and, dually, the representation of lower sets by their min-
imal elements. The use of sets of maximal and minimal elements as representations
is motivated by the fact that they are irredundant, i.e., that they contain no com-
parable elements (which in this context would indeed imply a certain redundancy).
For the case of finite posets we have a one-one correspondence between irredundant
subsets and lower subsets, and a dual correspondence between irredundant subsets
and upper subsets. We can formalise this by defining two orderings on the set of

irredundant subsets.

Definition 7.2.4 Let P be a poset. The lattices (Z,,(P),<,) and (Z;(P),<;) have

as elements the irredundant subsets of P, with order given respectively by:
1. X<, X' << VeeX'.zeX.zC2;
2V <Y «— VyeVY.IecY . yCy'.

Then for finite poset P, using Lemma 7.2.2 and Corollary 7.2.3 it is straightforward
to show that Min viewed as a map U(P) — Z,(P) is an isomorphism with inverse
X — 17X and Maz viewed as a map L(P) — Z;(P) is an isomorphism with inverse
Y > |V. Thus X <, X' <= X 21X and Y <, Y’ <= |V C |V,

Let P be a finite poset and let f : P — 2 be a monotone function. We will rep-
resent f using its maximum-0-frontier, F-0(f), and its minimum-1-frontier, F-1(f),

defined as:
F-0(f) = Maz{z € P| f(z) =0}

F-1(f) = Min{z € P| f(z) =1}.
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Ao := P
A] = P
{ Invariant: (I1) and (12) }
while (Ao N A;) # 0
choose = from AgN A;
if f(z) =0
then A; := A\ |2
else Ap := Ag\ Tz
endwhile

Figure 7.1: Algorithm A: an algorithm to find f~ {0} and f~1 {1}

7.3 The Basic Frontiers Algorithm

As remarked above, the set {z € P | f(z) =0} is lower and {z € P | f(z) =1} is
upper. This observation enables a simple derivation of an algorithm to calculate
F-0(f) and F-1(f). We start with an algorithm, Algorithm A shown in Figure 7.1,
which determines the whole of the sets {z € P | f(z) = 0} (the final value of Ap)
and {z € P | f(z) =1} (the final value of A;). The components of the invariant
of Figure 7.1 are:

(Il) Ve e P. f(z)=0=>z € Agand f(z)=1=z € Ay;
(I2) Ao is lower and A; is upper.

(Only the first of these is required for the proof of correctness. The second is useful
in adapting Algorithm A to compute frontiers.) The semantics of “choose = from
X?” is not specified beyond requiring that it assigns some value from the finite set
X to the variable z (to simplify what follows we assume that the choice made is a
function of X). Although the choice of value does not affect the correctness of the
algorithm, it can have a significant effect on the performance of the final version of
the algorithm. This point is discussed in detail in [Mar89).

The proof that Algorithm A is correct is straightforward. The initial assignments
clearly establish (I1) and (I2). That (I1) is an invariant of the loop follows from
monotonicity of f. Recall from Section 1.5 that the complement of a lower set is
upper (and vice versa) and that /(P) and L(P) are closed under intersection. That
(I2) is an invariant then follows from the observation that A; \ |z = A; N (P \ |2)
and Ag \ Tz = Ao N (P \ Tz). On termination we have f(z) =1 = 2z € A, by
(I1), and z € A; = z & Ao, from the condition of the loop. Thus we have f(z) #
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By := Maz(P)
By := Min(P)
{ Invariant: (I11') }
while (|BoN1B1) # 0
choose z from | By N 1B;
if f(z) =0
then B; := Min(1B; NP\ |z)
else By := Maz(|By N P\ Tz)
endwhile

Figure 7.2: Algorithm B: a naive algorithm to find F-0(f) and F-1(f)

0= f(z) =1= 2 ¢ Agand f(z) =0 =z € Ag, e,z € Ay < f(z) =0.
Similarly, z € A; <= f(z) = 1. To show termination we show that |Aq N A;]
strictly decreases each time the body of the loop is executed. Let Aj and Aj be
the values of Ay and A; before the body of the loop is executed, let Aj and AY be
the values afterwards and let & be the value chosen from Aj N A] when the body is
entered. It is clear that Aj C Aj and A} C A] and furthermore that z ¢ Ay N AY
(consider the then branch of the conditional: € |z, hence z ¢ A} \ |z C Aj}).
Thus |Ag N AY] < (|Ag N Aj| —1).

Figure 7.2 shows a naive algorithm, derived from Algorithm A, for calculating
F-0(f) (the final value of By) and F-1(f) (the final value of B;). A compar-
ison of the two algorithms will reveal that Algorithm B is actually just mimick-
ing Algorithm A: at each corresponding step in the execution of the algorithms,
By = Maz(Ap) and By = Min(A;). (This fact hinges on Corollary 7.2.3 and the
observation made above that A; \ |z = A1 N (P )\ |z) and Ao\ Tz = Ao N (P \ Tz).)
The modified invariant for Algorithm B is:

(I1) Ve e P. f(z)=0=>z € |Byand f(z)=1=z € 1B.

Correctness of Algorithm B is then immediate from that of Algorithm A. To achieve
a realistic algorithm we must eliminate the use of | and T. This is the crux of the
development of a frontiers algorithm.

It is evident from the description of Algorithm B that key operations are calcu-
lating the minimal (maximal) elements of the intersection of two upper (lower) sets.
Proposition 7.3.2 gives a method for doing this starting from the minimal (maximal)
elements of the upper (lower) sets to be intersected. First we need two new binary

operations on posets.
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Definition 7.3.1 Let P be a poset and let z,y € P. The minimal upper bounds

and maximal lower bounds of z and y are given respectively by:
[.2Vy=Min{z€ P|zC zandyC z};
2.xAy=Mar{z€ P|2Cx and z C y}.

Note that if P is a lattice then 2 Vy = {2z Uy} and z Ay = {z N y}.

Proposition 7.3.2 Let P be a finite poset. Let S1,S2 € U(P) and let Ty, T> € L(P).
Then

1. Min(S; N Sy) = Min (U{z1 V 2o | 21 € Min(S1), 22 € Min(S2)});

2. Maz(Ty N Ty) = Maz (U{y1 A y2 | y1 € Maz(Ty),y2 € Maz(Ty)}).

Proof See Appendix. 0

Note that in the case that P is a lattice, 1 aﬁd 2 specialise to:
1. Min(S; N S2) = Min {z, U z2 | 21 € Min(S1),z2 € Min(S2)};
2. Maz(Ty NT3) = Maz {y1 N y2 | y1 € Maz(T1),y2 € Maz(T)}.
To exploit this result we make the following definition.

Definition 7.3.3 Let P be a poset. Let X1,X,,Y1,Y2 € P. The operations NE™
and NB*® are defined by:

1. X1 ﬂ?"" X2 = Min (U {.’171 \7 To I T € Xl,a:g € Xz});
2. Y1 Np= Yy = Maz (U{y1 A 2 | 11 € V1,92 € Ya}).

We can now replace the two assignments in the body of the while loop in Algorithm B

by

e By := By Ng" (Min(P\ lz))

o By := By Np** (Maz (P \ Tz))
In the case that P = 2™, these updates can be seen as corresponding precisely to the
‘shine down’ and ‘shine up’ operations of the original frontiers algorithm ([JC87]).
When implementing these assignments for a specific poset P we will have to show

how Min(P \ |z) and Maz(P \ Tz) can be calculated. We postpone the details of

this until Chapter 8, for now we just give the operations names:
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Definition 7.3.4 Let P be a poset and let © € P. Then the upper and lower

complements of ¢ are defined respectively as:
1. Uempp(z) = Min(P \ |z);
2. Lempp(z) = Maz(P \ Tz).

When P is clear from the context we will just write Uemp(z) and Lemp(z).

Remark Since there is some scope for confusion resulting from our terminol-
ogy we had better spell out the fact that the upper complement of z is the
set of minimal elements of the upper set which is the complement of |z.
Similarly, the lower complement of z is the set of mazimal elements of the

lower set which is the complement of Tz.

Finally, we must consider the test of the while loop and the choosing of an element
from | By N TB;. Here we can fell two birds with one stone. Define the map Fdges :
Zi(P) X Z,(P) — $(P) by

Edges(Bo,B1) ={zx € By |32 € Bo.z C 2} U{2 € Bo |3z € By.2 C z}.

Now let y € P. Then y € |BoNTBy <= 3Jx € B1.32z € Bp.z C y C 2. From this
it follows that:

1. |[BoN 1B =0 < Edges(Bo, By) = 0;
2. Edges(By, B1) € |Bo N 1B;.
Thus the test of the while loop can be replaced by
while Edges(Bo, B1) # 0
and the command to choose a value for = can be replaced by
choose = from Edges(By, By).

The final version of the algorithm, the Basic Frontiers Algorithm is shown in Fig-

ure 7.3.
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Bo := Maz(P)
B; := Min(P)
{ Invariant: (11') }
while Edges(Bo, By) # 0
choose z from FEdges(Bo, B1)
if f(z)=0
then By := B; Ng™ Ucmp(z)
else By := By NE** Lemp(x)
endwhile

Figure 7.3: The Basic Frontiers Algorithm

7.4 The Algorithm as a Search

The best way to gain an intuitive understanding of how the frontiers algorithm works
is to consider it as a search. Consider Figure 7.4 (a) in relation to Algorithm B of
Figure 7.2. The parallel lines indicate the sets By and Bj: think of them as being
‘one element thick’, reflecting the irredundancy of the sets. The set Ay is everything
below (and including) By and the set A; is everything above (and including) B .
The invariant guarantees that A D f~1 {0} and A; D f~{1}. The intersection
of Ap and A;, the space in the middle, represents the search space of Algorithm B.
This is the set of points for which membership of f~! {0} or f~! {1} has yet to be
determined. The point z is the next point to be chosen from the search space.
Figure 7.4 (b) shows the situation after f(z) has been found to evaluate to 1 and
By has been updated accordingly. Because f must map everything above z to 1,
the search space has been cut down by ‘chopping out’ all those points above z.
The Basic Frontiers Algorithm as shown in Figure 7.3, can be understood in
essentially the same way. The key difference with respect to the way the search
space is traversed, is that z is always chosen from the edges of the search space.
Note that any way we can find of reducing the size of the search space could
reduce the time taken to establish the frontiers for a function. When computing the
frontiers for f,41 we will already have the frontiers for f, to hand. Since f, C f,11,
we know that F-0(f,41) <; F-0(f,), and so initialising By to F-0(f,) rather than
Maz(P) will give a reduced initial search space while still establishing the invariant.
In Chapter 9 we consider methods which can give us upper bounds on the fixed
point of a function. The minimum-1-frontier for such an upper bound could be

used to initialise B; when calculating the frontiers for each f,,.
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(a) (b)

Figure 7.4: The Search Space Before and After Update



Chapter 8

The Generalised Frontiers

Algorithm

In [Mar89], the extension of the frontiers representation for functions to cope with
functions f : Ly — L, where Ly # 2, is achieved by using the family of functions
{fa}ee 1, Where each f, : [y — 2 is defined thus:

fi(e) = { 0 iff(z)Ca

1 otherwise

It is clear that each f, is monotone, and so can be represented using frontiers,
and that for any x the value of f(z) can be calculated using the family {f.}. In
[Hun89] and [HH91} we showed that by working with a restricted family of finite
lattices, built up from 2 using product, function space and lifting, a more economical
factorisation of f into a family of maps from L to 2 could be achieved. Here we
take a rather different approach, exploiting the fact that the lattices used in all the

abstract interpretations we have considered are distributive.

8.1 A Brief Review of the Theory of Finite

Distributive Lattices

Although we did not state it explicitly, the use of frontiers to represent functions in

[P —m 2] described in the previous chapter, hinged on the following isomorphisms:

L(P°F) 2 [P —,, 2] = U(P°), (8.1.1)
125
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the first of these isomorphisms being given by

S dzeP. 1 fzeS
0 ifzgs
with inverse
[ {1},

and the second isomorphism being dual. As we saw in the previous chapter, in the
case that P is finite, the set f~' {1} can be represented by its minimal elements
Min(f~*{1}). We will arrive at a novel and powerful generalisation of this basic
frontiers representation by viewing (8.1.1) as (in the case of finite P) a special case

of a well known representation theorem for finite distributive lattices.

Definition 8.1.2 Let L be a lattice. Then L is distributive if for all z,y,z € L
zM(yUz)=(zNy)U (zMz).

A lattice L is distributive if and only if L°F is distributive (see [DP90]), so it would

be equivalent to define a distributive lattice as one for which
zU(yMNz)=(zUy)N(zUz2).

The two point lattice 2 is clearly distributive. The following proposition shows that
all the finite lattices used in the abstract interpretations considered in this thesis

are distributive.

Proposition 8.1.3 Let P be a poset and let L and K be distributive lattices. Then

the following are all distributive lattices:

1.LxK;

4. [P —n L].
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Proof The proofs are all simple. We prove 4 by way of example. For all f,g,h €
[P —,, L], for any z € P:

(S (gUhR)=
= (N ((gUk) 2
= (J2)n(lg=)U (k=)
(fz)N(gz)U((fz)N(hz)) since L is distributive
(fMg)2) U ((f N A)z)
(fNg)u (SN k)=

=
=
(

The representation theorem we shall be exploiting uses the the following class of

elements:

Definition 8.1.4 Let L be a lattice and let x € L. Then z is join irreducible if
1. ® # L (in the case that Ly, exists);
2. forallz',z" € L, ifc =2' U " thenz =1' orz =1".

The meet irreducible elements of L are defined dually. The poset of join irreducible
elements of L with order inherited from L, is written J(L). The poset of meet
irreducible elements, again with order inherited from L, is written M(L). Thus

M(L) = J(L)™.

An extremely useful alternative characterisation of the irreducible elements for dis-

tributive lattices is given by the following result.

Lemma 8.1.5 Let L be a distributive lattice and let « € L with ¢ # L (if L
ezists). Then x is join irreducible if and only if for all non-empty finite X C L

mEUXéEm'GX.xEm'.
Dually, x is meet irreducible if and only if for all non-empty finite X C L
MNMXCz=3z' e X.2' Ca.

Proof See [DP90]. a
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The following representation theorem and its companion, Theorem 8.1.7, place the
class of finite distributive lattices and the class of finite posets in one-one correspon-
dence (up to isomorphism), via the maps L — J(L) and P + L(P). Proofs of both
theorems are described in [DP90].

Theorem 8.1.6 (Birkhoff’s Representation Theorem for Finite Distribu-
tive Lattices) Let L be a finite distributive lattice. Then:

1. L= L(J(L));

2. L=2UM(L)).
Note that 2 follows by duality from 1. The isomorphisms are respectively:

L.z {jeJ(L)|jCa}, with inverse X — || X;

2. z— {m € M(L) |z C m}, with inverse Y — Y.
Theorem 8.1.7 Let P be a finite poset. Then:

1. P= J(L(P));

2. P = M(U(P)).
Now recall from Section 1.5 that for any poset P, the lattices £(P) and U(P)
are isomorphic. Thus by Theorem 8.1.6, if L is a finite distributive lattice, then
LM(L)) 2 UM(L)) = L = L(T(L)), hence LIM(L)) = L(T(L)). But clearly,
if A = B then J(A) & J(B), so by Theorem 8.1.7, M(L) = J(L(M(L))) =
J(L(T(L))) =2 J(L). Thus M(L) and J(L) are isomorphic. In the Appendix we
show that this isomorphism is established by the following pair of maps, which play

a central role in our frontiers algorithm:
Definition 8.1.8 Let L be a finite distributive lattice. Then the maps JtoM :
J(L) = M(L) and MtoJ : M(L) — J(L) are defined as follows: ’
1. JioM(5) = (L \ 15);
2. MtoJ(m) =TM(L\ |m)
(where 15 and |m are both calculated in L).

The key property of this pair of maps, formalised by the following result, is the
rather surprising fact that for any join irreducible element 7 of a finite distributive
lattice L, the sets 17 and |JtoM(j) partition L. Because JtoM and MtoJ form an
isomorphism, it is equivalent to observe that for any meet irreducible element m,
the sets |m and TMtoJ(m) also partition L.
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Proposition 8.1.9 Let L be a finite distributive lattice, let j € J(L) and let m €
M(L). Then:

1 L\ 1 = LJtoM(j);

Y L 9

i J— rs AY
L\ Im = [MioJ(m),

~

.

~

~

where each T and | is calculated in L.

Proof See Appendix. 0O

8.2 A Generalised Frontiers Representation

Our claim that the use of lower and upper subsets of P to represent functions in
[P —m 2] is a special case of Birkhoff’s Representation Theorem is based on the fact
that J([P —n 2]) = P°F. To see that this is so we need the following result, which
characterises the join and meet irreducible elements of finite distributive lattices of
the form [P —,, L] in terms of the step and co-step functions (the step and co-step
functions were defined in Chapter 3, Definition 3.4.4).

Theorem 8.2.1 Let P be a finite poset and let L be a finite distributive lattice.
Then:

1. J([P =m L)) ={[=z,j] |z € P,j € T(L)};

2. M([P = L)) = {|5,m] | = € P,m € M(L)}.
Proof See Appendix. o

The corollary to the following lemma then gives us the isomorphism we seek.
Lemma 8.2.2 Let P be a poset and let L be a distributive lattice.

1. For any z,z' € P and j,j' € J(L):
[z,/]1C [2,)] <= 2'CzandjC "
2. For any z,z' € P and m,m’' € M(L):

lz,m| C |z',m/] <= 2'Cz and mCm'.
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Proof We prove the first directly. The second is dual.
Let z,2',2" € P and let 3,5 € J(L). For the implication from right to left, assume

' C z and j C j'. Then there are two cases: if z C 2", then by assumption z’' C z”,
and so [z,5] (") =7 C j' = [2',5] (¢"); if z £ 2", then [z,j] (z”) = L. For the
implication from left to right, assume [z,j] C [z/,5']. We have j = [z,j] (z) C
[z,7"] (z). Since j is join irreducible we know that j # L, so [/, ] (z) # L. Hence
z'Czand (2,7 (2)=45"27. 0

Corollary 8.2.3 Let P be a finite poset. Let L be finite distributive lattice. Then:
1. J([P —m L]) = P°* x J(L);
2. M([P —n L]) & P°® x M(L).

Now J(2) is just {1}, so we have J([P —, 2]) & P°". Thus the isomorphisms
(8.1.1) on which the frontier representation of f € [P —,, 2] is based, can be seen
as special cases of Birkhoff’s Representation Theorem.

Let L be a finite distributive lattice and let f € L (we will be particularly
interested in the case that L is a function space, but what follows is quite general).

The meet-frontier and join-frontier for f are defined respectively as:
L FA(f) = Min {m € M(L) | f T m};
2. F'(f)=Maz{j € J(L)|J E [}

Thus TF™(f) is the representation of f in U(M(L)) given by Theorem 8.1.6, and
LFY(f) is the dual representation of f in £(J(L)). It is clear that for any subset X of
a finite lattice, M Min(X) = M X and || Maz(X) = || X. Hence, by Theorem 8.1.6,
MOFNf) = f = UFY(f). Since for finite posets the irredundant sets and the upper
sets are in one-one correspondence, it also follows from Theorem 8.1.6 that F”(f)
and FY(f) are the unique irredundant sets satisfying these equations.

In what follows, we make extensive use of the intersection operations N};7, and
N75- It is helpful to bear in mind the following result, which shows that is often

possible to understand these operations as implementing meets and joins.
Proposition 8.2.4 Let L be a finite distributive lattice and let f, f' € L. Then:
L. FNf) (i, B () = FA(F U )

2. FV(f) npes FY(f) =FY(f 1 f').



8.3. THE GENERALISED FRONTIERS ALGORITHM 131

Proof Consider the first case (the second is dual): TF/(f) is the representation
of fin U(M(L)) given by BirkhofP’s Representation Theorem, and similarly for f’.
Then, since joins in U (M(L)) are given by intersections, the representation of f U f
in U(M(L)) is just:

TFAF) O TR,

(W RREES

But by Proposition 7.3.2, F*(f) Ny F*(f') is precisely the set of minimal clements
of this set. =

The correspondence with minimum-1-frontiers and maximum-0-frontiers for f €
[P —m 2] is between F*(f) and F-0(f) on the one hand and between FY(f) and
F-1(f) on the other. Thus

F(f) ={lz,0] | = € F-0(f)}

and

F'(f) ={[z,1] |z € F-1(f)}.

Note that F*(f) is defined as a set of minimal elements but F-0(f) is defined as
a set of mazimal elements. The reason for this reversal in order is simply that
|z,0] C [2/,0] <= 2'C z (Lemma 8.2.2).

8.3 The Generalised Frontiers Algorithm

In this section we develop an algorithm, shown in Figure 8.1, which constructs FV(f)
and F”(f) in a way which is analogous to the construction of the minimum-1 and
maximum-0 frontiers by the Basic Frontiers Algorithm.

Let J € J(L) and M C M(L) be irredundant sets such that MMM C f and
f € UJ (without knowing f we can achieve this by setting M = F"(L) and
J =FY(TL)). These inequalities may be expressed as TF"(f) € TM and |[FV(f) C
lJ. While maintaining irredundancy and the inequalities as invariants, we wish to
progressively refine J and M (as subsets of J(L) and M(L)) until ||J C M M.
When this point is reached we will have irredundant sets J C J(L) and M C M(L)
such that | ]J = MM = f, in other words J = F¥(f) and M = F(f).

We define an operation Disag : Zi(J (L)) x T,(M(L)) — £(J (L) + M(L)) to
play the role of the Fdges operation in the Basic Frontiers Algorithm.

Disag(JM)={je€J|ImeM.jZm}+{meM|3IjeJjZm},
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M := FA(J_L)
J := FV(TL)
{ Invariant: MM C fC||J and M and J irredundant. }
while Disag(J, M) # 0
choose y from Disag(J, M)
case y of
ini(j) i jC f
then M := Raise(M, JtoM(j))
else J := Lower(J,y)
ing(m) : if fCm
then J := Lower(J, MtoJ(m))
else M := Raise(M,m)
endcase
endwhile

Figure 8.1: The Generalised Frontiers Algorithm

where + here is simply disjoint union of the underlying sets. The set Disag(J, M)
may be thought of as a set of ‘disagreements’ between J and M, the two putative
descriptions of f. By the definition of join, |[|[J Em <= Vj € J.j C m and
similarly j EMM <= Vm € M.j C m. From this observation it follows that

| |JCE MM <= Disag(J,M) =10,

thus Disag(J, M) = { is the condition for termination of our algorithm.
Now suppose in1(j) € Disag(J, M). There are two cases to consider.
1. If 7 C f then F*(f) C 1 (since m J f 1 j for every m € F(f)) so M can be
updated to take the new value

Min(1M N 17)

(where TM is calculated in M(L)). Note that TM N Tj is guaranteed to be
strictly smaller than TM since inq(j) € Disag(J, M) implies that Im € M.j £
m. By Proposition 8.1.9 we have that z € {j < =z £ JtoM(j), from which

it is easy to see that the above is equal to
Min(TM 0 (M(L)\ LJtoM(5))).

Now MinTM = M, since M isirredundant and, by Definition 7.3.4, Min(M(L)\
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LVJtoM(3)) = Uemppyry(JtoM(5)).} Thus, using Proposition 7.3.2 and Defini-

tion 7.3.3 we arrive at the following assignment to update M:

M :=M nﬁ&) Uemppy(JtoM (7))

2. If j Z f then FY(f) C J(L)\ 15 (since 5/ C f for every ;' € FY(f) and so
7' € FV(f) = 7 Z j'). Thus J can be updated to take the value

Maz(lJ N (T(L)\ 17)).

The set |J N(J(L) \ 1j) will be strictly smaller than |J since j € J but
7€ T(L)\T7. A dual argument to that used in the previous case, leads to the

assignment:
J 1= J N7 Lempyy (7).

Dually, if iny(m) € Disag(J, M) the two cases are

1. f € m, in which case J is updated: J :=J N335 Lempy,(Mtod (m));

2. f Z m, in which case M is updated: M := M N3, Ucmppey(m).

We encapsulate the update operations on J and M in the following definitions:

1. Raise : T,(M(L)) x M(L) — Z,(M(L))
Raise(M,m) = M N5 Uempyy(m);

2. Lower : )(J (L)) x J(L) = TLi(T (L))
Lower(J,j) = J 055 Lempyy(5)-

The resulting algorithm is shown in Figure 8.1.

8.3.1 Implementing the Tests

It is worth considering how the tests for j € f and f C m are to be implemented,
assuming that f is the abstract interpretation of some term. Suppose that f is
[\z.e]’8. Then deciding whether [a,j] T f reduces to deciding whether j T

1Corollary 8.4.6 shows that this is just " (§). Seen in this light, the update we arrive at amounts
to replacing M by F"(fyr U j) where far is the function represented by M, i.e., far = [1M. This
makes a lot of sense since, by the invariant, far C f and, from the test, j C f: thus far U j C f.
The other updates can be explained similarly.
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2c A
Ae A Ac A
Are A AT e A
AieAd--- A, e A
A; X xA, €A

Aield A, e A
[A1—>mA2]€.A

Figure 8.2: A Family of Finite Distributive Lattices

[e]”&, where § = §[z +— a]. Since the abstract interpretations of constants are
typically defined in terms of meets and joins, this in turn will often reduce either to
the problem of deciding whether j C ([e1]”8") M ([e2]” "), or to deciding whether
JCE ([[el]]J5’) u (|[e2]]J6’). By the definition of meet, the former case is equivalent to
the conjunction of tests for j C [[el]]‘]é' and j C |[62]]J5, : if the one we try first fails
then we can avoid the other test altogether. For the latter case we can exploit the
join irreducibility of 7 by using Lemma 8.1.5, which shows the test to be equivalent
to the disjunction of tests for j C [e1]”6 and j C [e]’8": if the one we try first
succeeds then we can avoid the other test altogether. The consideration of tests
f E m is dual.

8.4 The Operations of the Algorithm

To implement the Generalised Frontiers Algorithm, and to compute with frontiers in
an abstract interpretation, there are a number of operations which we must describe
in a form suitable for an implementation. We begin by defining a family of finite
distributive lattices which is sufficiently rich to enable us to implement any of the
abstract interpretations considered in this thesis. The family A is inductively defined
as shown in Figure 8.2. Note that the rule which allows us to conclude that A € A,
is always unique. We will often appeal to induction on the structure of A € A when
strictly speaking we mean induction on the height of the proof that A € A.

By Lemma 8.1.3 every member of A is a finite distributive lattice. We are there-
fore able to represent the elements of these lattices by their meet and join frontiers.
First we must describe J(A) and M(A) for each A € A.

Figure 8.3 shows an inductive definition of the meet and join irreducible elements
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J(2) = {1} M(2) = {0}

T(A) = {BR(LA)}U{RG) | € T(A)}
M(AL) = {L}U{HR(m) |m € M(A)}
J(AT) = {T}u{eolift(j) | j € T(A)}

M(AT) = {colift(T )} U {colift(m) | m € M(A)}

j(Al Xoeee X An) = {(-Lly . —1,.77—l-i+1’-"7—l-n) |.7 € j(Al)}

M(A; X x A,) = {(Tl, oy Tict,my Tiggy .., Ta) [ m € M(Ai)}

TIC:'.II C-=

where Ly = 14, and Ty = Ty,

J(A—m Bl) = {[a,j]|acAjeT(B)}
M([A—n B]) = {le,m]|ae A,me M(B)}

Figure 8.3: Join and Meet Irreducible Elements for A € A

of every member of A.  We have already explained the characterisation of the
join and meet irreducible elements for function spaces (Theorem 8.2.1). Except
for products, the remaining cases are straightforward. To understand the case for
products, let (aq,...,a,) be join irreducible. Since .L is not join irreducible, at least
one component, say a;, must be non-1. Now suppose that a; is also non-_L, with
¢ # k. But then (a1,...,a5-1, L, ak41,...,a,) and (aq,...,a;-1, L, a;41,...,a,) are
distinct tuples, neither is equal to (a4, ..., a,), and yet they have (ay,...,a,) as their
join: this contradicts the join irreducibility of (as,...,a,). Thus all join irreducible
tuples must be of the form (L,...,L,7,L,..., 1), and it is easy to see that such a
tuple is join irreducible if and only if j is.

The operations required for computing with frontiers for elements in A fall into
two camps: the ‘micro’ operations on the elements of J(A) and M(A) themselves,
and the ‘macro’ operations on the (representations of) elements of A. We consider

these in turn.
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8.4.1 Operations on J(A) and M(A)

Comparisons

Given j,j’ € J(A), we need a method for deciding whether j C j’. For the function
case we use Lemma 8.2.2: assuming [z, j]| and [z, '] to be represented by the pairs

(z,7) and (a', '), comparison is simply given by
[z,/1C [',j'] <= ' CrandjCj"

The other cases are straightforward.

Minimal Upper Bounds and Maximal Lower Bounds

Figure 8.4 gives an inductive definition of the minimal upper bounds and maximal
lower bounds of pairs of elements in J(A) for each A € 4. Symmetrical cases are
left implicit. Observe that for each A € A, for any 7,5’ € J(A), the sets j V j’
and j A j' are either empty or singleton (proof by routine induction on A). This is
because for each A € A, the poset J(A) is isomorphic to a disjoint sum of lattices.
The inductive definition for M(A) is dual. The function case is justified by appeal
to the isomorphism J([A —,, B]) &£ A°* x J(B) (Corollary 8.2.3). Note that the
definition of [a,;] V [¢/, ;'] depends on being able to calculate a M a’. Assuming a

and a’ to be represented by frontiers, this is covered by Lemma 8.2.4.

The Isomorphisms J(A4) & M(A)

Figure 8.5 gives an inductive definition of JtoM and MtoJ for each A € A. As
usual, the less obvious case is that for functions. It suffices to show that |a, JtoM(j)]
is the greatest meet irreducible element of [A —,, B] which is not above [a,j]. To

do this we use the corollary to the following lemma.

Lemma 8.4.1 Let P be a poset and let L be a lattice. Letxz,z' € P and let y,y' € L
withy # L. Then

[z,y] C [¢,y'] <= (zCa'=>yCy").

Proof To show the implication from right to left, assume ¢ C 2’ = y C y’. We
must show that for any a, [z,y] (a) C [2,y] (a). We need only consider the case
when [z,y] (a) # L and |2,y'|(a) # T, i.e., when 2 C a C z’. But then by

assumption, y C y'.
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2
1V1={1} 1A1={1}
Ay
f(La) Vi =g )
Lft(7) v LfRQ;N) = {Uft(G") 13" €3 Vi'y, 53 # La
ft(La) R j = Gft(La) i
Lft(5) A LfQ3) = {Urt@") 15" € Aj'}, 5,3 # La
AT
TV J =T B
colift(j) V colift(y') = {colift(s”) | 5" €3V 5}
T A J = j
colift(j) A colift(j) = {colift(;")|j" € j A j'}
A X - x A,

(LiyeeoyLicty gy Livryeeey Ln) V(Ly, ooy Limg, 3, Ligay oo L)

_ 0 if § £ o
- {(_Ll,...,_Li...l,j”, _L,'.*.l,...,J_n) Ij" Ej \7]’} 1fZ= il

(_L1, .. .,_Li_l,j, J_,'+1, ey _Ln) 7\ (_Ll, .. .,J_i/—laj/,-Li'+1, ceey -Ln)

_ {@ if 7 £ 4!

{(Ly,eeoy Licgy 3" Liga, .o, L) | 5" €5 A5’} ifi=1d

where L = 14,

[A —,, B]
[e,51 V [d,57 = {[and,;"|;"€jVj}
[e,1 A [d,5T = {[aUd,j" 15" €j Ay}

Figure 8.4: Minimal Upper Bounds and Maximal Lower Bounds in [J(A)
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2
JtoM(1) =0 MtoJ(0) =1
AL
JtoM(liﬁ(.LA)) = 1
JoM(fG)) = Hf(oM(), §# La
MtoJ (L) = lift(La)
MtoJ(lift(m)) = ULft(MtoJ(m))
AT
JtoM(T) = colift(T 4)
JtoM (colift(j)) = colift(JtoM(7))
MtoJ(colift(Ta4)) = T
MtoJ (colift(m)) = colift(MtoJ(m)), m+# Ta
A x--- X A,
JtOM(_Ll, ey _L,;_l,j, _Lz'+1, ooy _Ln) = (Tl, ceey Tlg_l, JtOM(]), Ti+1, ceey Tn)

MtOJ(Tl, ceey Ti_l,m, T,‘+1, ceny Tn) = (_L1, ceey —Li—l, MtoJ(m), _L1'+1, ey J_n)

where L = 1,4, and Ty = Ty,

[A —,, B]

JtoM([a,j7]) = |a,JtoM(3)]
MtoJ(|la,m]) = [a, MtoJ(m)]

Figure 8.5: Components of the Isomorphism J(A4) = M(A)
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To show the implication from left to right, assume [z,y] C |2',y'], and x C 2’. We

must show show that y € 3. This is simple since [z,y] (z') =y T |2/,y'] (2') = ¢".

[}
Corollary 8.4.2 Let P, L z,2',y and y’ be given as in the statement of the Lemma.
Then
[z,y] Z |z,y'] & zC 2 andy Zy'
Proof This is just the contraposition of the Lemma. O

This corollary, together with Lemma 8.2.2 shows that to maximise [a,m| such that
[a,7] & |a’,m]|, we minimise a’ € A such that a T o' and maximise m € M(B)
such that j Z m. But then o’ is clearly just a and by the definition of JtoM, m
must be JtoM(j).

Upper and Lower Complements

Figure 8.6 gives an inductive definition of Ucmp,4y for each A € A. The definition
of Lempyay is dual. The definitions in Figure 8.6 assume a method for calculating
the meet frontier of L4 and the join frontier of T,4, for each A € A. We do
not give the details, but they are straightforward. The maps M; : Z,(M(A;)) —
Tu(M(A; X -+ X Ay)), used in the product case, are defined by:

Mt(X) = {(Tl,...,Ti_l,m,Ti_;_l,...,Tn) ]m € X},

where Ty = Ty,.

Note that for function spaces the definition of Ucmppya—,.5 depends on that of
Lemp 4. Dually, Lempya—.,, sy depends on Ucmp 4. These definitions are dealt with
in Subsection 8.4.2. The case in Figure 8.6 which is most in need of explanation is

that for functions.

Lemma 8.4.3 Let A and B be finite distributive lattices. Let a € A and let m €
M(B). Then Uemppa—msp(la,m]) is Min(X UY), where the sets X and Y are
given by:

X = {ld,m||d € Lempa(a),m’' € F*(Lp)}

Y = {{Ta,m]|m' € Umpym(m)}.

Proof (sketch) We use the fact that Min(X UY') = Min(Min(X)U Min(Y)) (see
Lemma A.1.2 in the Appendix). By definition, Ucmpya—,.sp(|a,m]) is the set of
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M(2)
Uemp(0) =0
M(AL)
Do) — %%lln%'eeFIAfgiﬁi}uxm)}

M(AT)

Uemp(colift(Ta)) = 0 BT ) IX=0
' colift(T 4 if X =
Uemp(colift(m)) = { {colift(m’) | m' € X} if X #0

where m # T4 and X = Uemppay(m)

M(A; X -+ X Ap)

Ucmp((Tl, ceay Ti_l, m, Ti+1, ey Tn))
= Mi( UcmpM(A‘.)(m)) UUi<k<n ki Mk(FA(J—k))

where J_k = J—Ak and Tk = TAk

M([A =, B))

Uemp(la,m|) = {l/,m']|d € Lempa(a),m’ € F*(Lg),m' ¢ Uemp s (m)}
U
{[Ta,m'] | m' € Uempps(m)}

Figure 8.6: Upper Complements in M (A)



8.4. THE OPERATIONS OF THE ALGORITHM 141

minimal meet irreducible elements not below [a,m|. By Lemma 8.2.2, we can divide
the |@',m'] such that |a',m'| IZ |a,m], into those for which m' Z m and thosc for
which @ IZ o’. Taking the minimal elements of these two sets then gives the scts Y

and X respectively. : 0

This result justifies the function case in Figure 8.6 by observing that T ¢ Lemp(a)
for any a, so the only way an element |a’,m'| in X can be comparable with an
element | T,m"] in Y, is if m"” C m/, in which case m’ = m” since m’ € F"(Lp) is

minimal in B.

8.4.2 Operations on A

Comparisons

Given the meet frontiers for a and o’ we must be able to decide whether @ C a’. This
is straightforward: by Birkhoff’s Representation Theorem, a C o’ <= 1F"(d’) C
TF"(a), and 1F"(a/) C TF"(a) <= F"(a’) <, F"(a). The method for deciding
F"(a') <, F"(a) is obvious from the definition of <, (Definition 7.2.4). Dually, we

could use the join frontiers for a and @', since a C o’ <= F"(a) <; F¥(a').

Least Upper Bound and Greatest Lower Bound

Given the meet frontiers for @ and a’, the meet frontier for ¢ U a' is given by
Lemma 8.2.4. The meet frontier for a M o’ is just Min(F"(a) UF"(a')). Dually, the
join frontier for a U o' is Maz(F(a) UFY(a')).

Upper and Lower Complements

For any A € A and a € A, given FV(a) and F”(a) we need to be able to calculate
FVY(a') and F"(a’) for each o’ € Ucmp 4(a) (and dually, for each o’ € Lempa(a)).

This turns out to be simple given the ability to calculate Ucmppay and Lempyay.
Lemma 8.4.4 Let L be a finite distributive lattice and let z € L; Then

1. Uempr(z) = {MtoJ(m) | m € F\(z)};

2. Lempy(s) = {JtoM(j) | j € F¥(2)}.

Proof We prove the first of these directly. The second is dual. By the definition
of Uempy, (7.3.4) and Proposition 8.1.9 we have that Uempr(m) = {MtoJ(m)} for
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any m € M(L). Then

Uempr(z) = Min{a' € L|z'Zz}

Min{z' € L |2’ Z M F"(z)}

Min{z' € L | 3m € F(z).z L m} by definition of meet
= Min (Umel,/\(x) {/el|z¥Z m})

= Min (Umepl\(m) Min{z'e L|zZ m}) by Lemma A.1.2

= Min (UmEF/\(x) UcmpL(m)> by definition of Ucmpy,
= Min (Upeen(e) {Mtod (m)})

= {MtoJ(m)|m € F(z)},

where the last step follows by the fact the MtoJ is an isomorphism from M (L) onto
J (L) (hence an order embedding of M(L) into L), and thus preserves irredundancy.
a

Lemma 8.4.5 Let L be a finite distributive lattice, let m € M(L) and let j € J(L).
Then

1. FN(MtoJ(m)) = Uemppry(m);

2. FY(JtoM(3)) = Lempyy(5)-

Proof By definition, F*(MtoJ(m)) = Min{m' € M(L) | MtoJ(m) E m'}. But
by Proposition 8.1.9, MtoJ(m) T m' <= m' Z m. Thus F"(MtoJ(m)) =
Min {m' € M(L) | m' Z m}, which is just the definition of Uempzy(m). The sec-
ond part is dual. i

Corollary 8.4.6 Let L,m and j be given as in the statement of the Lemma. Then
1. FA(j) = Uemppry(JtoM(5));

2. F¥(m) = Lempyy(MtoJ (m)).

Let L be a finite distributive lattice and let z € L. By Lemma 8.4.4, the elements
of Uempy,(z) are the join irreducible elements MtoJ(m) for m € F"(z). Clearly, for
any join irreducible element j, FV(j) = {j}. Thus the join frontiers for the elements

of the upper complement of z are:

{FY(z') | &' € Uempr(z)} = {{MtoJ(m)} | m € F(z)}.
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By Lemma 8.4.5, the mect frontier for a join irreducible element MtoJ(m) € J(L) is
just Uempuyy(m). Thus the meet frontiers for the elements of the upper complement

of x arc:
{FN") | 2’ € Uempr(z)} = {Ucmpuy(m) | m € FNz)} .

Dual arguments show that the meet frontiers for the elements of the lower com-

plement of z are
{F*(z) | 2’ € Lempy ()} = {{JtoM(j)} | j € F* (=)},
and the join frontiers for the elements of the lower complement of z are
{F¥(z') | 2’ € Lempp(2)} = {Lempyy (7) | 5 € F¥()}

Remark It is the need to calculate upper and lower complements which forces
us to use both the meet frontier and join frontier representations, rather
than one or the other: the above discussion shows that to calculate the
upper complement of £ we need the meet frontier for z, while to calculate

the lower complement of x we need the join frontier for z.



Chapter 9
Approximate Fixed Points

In this chapter we argue that despite the benefits gained from the use of frontiers it
will often be necessary to reduce the size of the abstract domains before attempting
to find the fixed point of a function. We provide a method of doing this without
having to change the original abstract interpretation. In general this will entail

settling for imprecise but safe approximations to the actual fixed point of a function.

9.1 A problem of complexity

For many of the functions which arise in abstract interpretation, establishing the
graph of a function, using any method, will be intractable. To see why this is so,

consider the function definition:

fold(f, nil, z) = z
fold(f, cons(x,y), z) = f x (fold(f, y, z))

We have used a pattern matching recursion equation style of function definition,
but it is obvious that the same definition could be phrased in the language A,z of
Chapter 6. We will address the question of what type fold has in a moment. Sup-
pose we wish to analyse programs using fold for strictness in the style of [BHA86],
using Wadler’s domains for lists (Wad87]). For example, consider the definition of

the catenate function
cat : list(list(int)) — list(int)
cat 1 = fold(append, 1, nil)

144
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where append is assumed to have the usual definition. A little thought will show

that fold must have the rather complex type:
fold: (list(int) — list(int) — list(int)) x list(list(int)) x list(int) — list(int).

In the strictness analysis of [Bur91], the interpretation used for int is 2 and list (o)
is interpreted as (D2) lifted twice. This induces interpretations of (2, ), (written 4)
for list(int) and (4.), (written 6) for list(list(int)). The abstract function for fold
would thus be an element of [[4 — [4 — 4]] x 6 x 4 — 4].

Even taking monotonicity into account, it is not hard to show that the argument
domain alone for this function contains of the order of 10° elements. Clearly, if we
have to evaluate even one of the approximations to fold at a significant proportion
of these elements to establish its value, the operation of finding a fixed point will be

too costly to be considered in any practical compiler.

Remark In most functional languages, fold would be given the polymorphic
type fold : Va,f.(a = B — f) x list(a) x B — (8, which raises the
question of whether it is necessary to interpret fold at all the specific
instances at which it is used. As we saw in Section 2.5, it is not always
possible to avoid this if we want to get good results from our analysis but,
in any case, it would obviously be possible to construct a monomorphic

example of the same complexity.

The kinds of function which are ‘well behaved’ with respect to the frontiers algo-
rithm are described in [JC87]: because the frontiers algorithm searches the argument
lattice from the top and bottom, working towards the middle, well behaved func-
tions are those which have frontiers whose elements are either very low down or
very high up the argument lattice. For such functions the frontier sets are small and
the frontiers algorithm will find them with little effort. On the other hand, badly
behaved functions have frontier sets consisting of elements from the middle of the
lattice and in the worst case the frontiers algorithm will evaluate the function at
every point in the lattice before finding the frontier sets.

Experience with an implementation of a strictness analyser employing the fron-
tiers algorithm suggests that higher-order functions are often badly behaved (as is
certainly the case for fold). One reason for this is that higher-order functions tend
to apply some of their arguments to others and thus behave as more or less ex-
otic variants of the apply function. The problem with apply is that, for example,
apply(f,d) will be high up in the result lattice if either f or d are high in their
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respective lattices: this implies that the minimal and maximal elements of the in-
verse image of any given result value will themselves be neither high nor low in the

argument lattice as a whole.

9.1.1 Reducing the Size of a Lattice

Our solution to the complexity problem described above, is to work in a smaller
lattice to establish bounds on the required fixed point. We use maps, reminiscent
of the @ and ~ maps used in abstract interpretation, to move between larger and
smaller lattices. First we must formalise the notion of one lattice being smaller than

another.

Definition 9.1.1 The abstraction ordering < is defined on A as follows:

2 < B foradl Be A

A1 X...xA, 2 Bix...xB, ifA<B,1<:<n
Ay < By ifA<B

AT < BT ifA<B

[A; — Aj] = [B1 — By if Ay X By and A; X B,.

If A X B, we say that A is an abstraction of B.

Note that the definition of < in the function case is not contravariant. As we
shall see, this is because our notion of when one lattice is smaller than another
is formulated such that when A < B there are Galois connections embedding A
into B. This avoids contravariance in the same way that the use of embedding-
projection pairs avoids it in the solution of recursive domain equations ([SP82], see
also Chapter 6).

We next define two families of Galois connections relating elements of members of
A: the ‘safe’ maps, which give overestimates of values, thus allowing us to derive up-
per bounds on fixed points, and their ‘live’ counterparts, which give underestimates

and allow us to derive lower bounds.
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Definition 9.1.2 Let A, B € A with B X A. The safe maps Absy g : A — B and
Concy 4 : B — A, are defined by:

0 ifa=L1
Abs®, 5 a — fa=La
' 1 otherwise

1 if b =
Concfé’A b = a i 0

lift(Absy g @) if z = lift(a)
Concg, 4, ¢ = + fo=1
o lift(Concy 4 b) if x = lift(D)
T ife=T
colift(Absy g a) if z = colift(a)
T fz=T
colift(Concy 4 b) if z = colift(d)

Abs;T,BT T =

nes T =
OO BT,AT

Absy g @ = { _L fo=1

s _ s s
AbS{p, L4 BioBy) S = Absy, g, 0 fo Concg 4

5 P p S ki
Concip, g, (a1—ay) [ = Concg, 4,0 foAbsy g

ForA=A;x...x A, and B=B; X ... X By:

Absy g(ay,...,an) = (Absy, p, a1,...,Abs% p an)

Concg a(by,..-,bn) = (ConcsBl,Al bi,..., Concy, 4. by)

Definition 9.1.3 The definitions of the live maps are given by substituting Abs' for
Abs® and Conc' for Conc® everywhere in definition 9.1.2, except for the base case
for Abs', which is:

1 fa=Tyu

0 otherwise.

Abs{A,Z a = {

The following lemma shows that the Abs and Conc pairs form Galois connections,
and indeed that they satisfy the stronger property termed ezact adjointness in
[Myc81] (perhaps a better known terminology is that which identifies the Conc'-Abs"
pairs as embedding-projection pairs and the Conc®~Abs® pairs as embedding-closure

pairs).
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Lemma 9.1.4 : For all A,B € A, such that B< A
1. Absg,B o Concg,A = idp = Abs} g o Concg 4
2. Conclg 40 Absil’B C ids C Concy 4 0 Absy g

Proof Straightforward induction on B. a

Corollary 9.1.5 For all A, B € A such that B <X A:
1. Concy 4 and Concy 4 are injective;
2. Absy g and AbslA,B are onto;

8. Abs® p and Absly g are strict.

For each A € A, let fiz4 be the fixed point operator on [A — A]. Somewhat

surprisingly, both the safe and live Abs maps ‘preserve’ fiz.

Lemma 9.1.6 For all lattices A, B € A such that B X A:
1. fixp = Absfis_, a4 B~ B1-B)(fie4);
2. fizxp = Absfy_, g1 a1 B—B)—B)(fir 4)-

Proof

1. Let A’ =[A — A] and B’ = [B — B]. A routine induction on ¢ suffices to show
that for all ¢, for all f € B

AstA’B((COTLCSB/,AI f)z _LA) = fi _LB.
Then, for any f € [B — B],

(Absfia— - a5 51-5) fiza) |
—_ AstA’B(ﬁSUA(ConCSB/,AI f))
= Absyp (U(Conc%,,,y f)iJ-A)
=0

= | |Abs% p((Concys o f) La)  since Abs g monotone, A finite
=0

= Dfi 1B
= fizp f.
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2. The proof for part 1 goes through identically substituting Abs' for Abs® and

Conc' for Conc®.

The next result uses this lemma to show that we can construct safe (upper) and live
(lower) approximations to the fixed point of a function over some member of A, by

abstracting the function to a smaller member of A and finding the fixed point there.

Theorem 9.1.7 For all lattices A, B € A such that B < A, for all f € [A — A]:
I. CORC%,A(ﬁxB(Abs‘[sA—vA]'[B—)B]f)) g ﬁxA f;

Proof

1. Concp 4 o fixp o Absfy_, 4 5B
= Concy 4 0 (Abs{ja, g1, a)[(B—B]-Bf1T4) © Absy_, 4 (BB Lemma 9.1.6
= Concp 40 Abs} g o fiva 0o Concig_,gy1a,a) © AS{a_a), B Def. 9.1.2
3 fixy Lemma 9.1.4

2. Concﬂg’A ofizg o Absz_,A]’[B_,B]
= CO”CIB7A o (Absi[A—»A]—bA],[[B—»B]—)B]ﬁxA) (o] AbSiAﬁA],[B—‘B] Lemma 9.1.6
= Conch 40 Abslygofizso Conc{B_,B],[A_,A] o Absz-»A],[B—»B] Def. 9.1.2
C fiza Lemma 9.1.4

O

9.1.2 Applying Conc to a Frontier

Given a function G € [A — A}, we obtain upper and lower bounds on the value of

fiza G by evaluating
Concg 4(fizrp(Abs) g o G o Concy ,))

and
Conc%vA(ﬁ:cB(Absi"B oGo C’oncﬂg,A))

If we are using the frontier representations described in the previous two chapters

we must be able to implement Abs and Conc on frontiers. The non-function cases
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are straightforward. In the function case, we have so far only worked out the de-
tails (Lemma 9.1.8 below) for coping with the restricted case of Chapter 7, i.e.,
for functions in spaces of the form [A — 2]. In the future we hope to extend the
applicability of this method.

For a function f € [B — 2], we can construct the maximum-0-frontier for

Concip_ oy 1az) f

by using the following result.
Lemma 9.1.8 For A, B € A such that B X A, for f € [B — 2],

(f 0 Abs’y 5)™ {0} = L {Concyy 4 b| be f1{0}}

Proof To show the inclusion from left to right assume y € (f o Abs} 5)~" {0}, i.e.,
y € Aand f(Abs} g y) = 0. Then (Concy 4(Absy g y)) € {Conc%’A blbe f1 {0}}
By lemma 9.1.4, y £ Concy 4(Abs} g y). Hence y € l{C’onc%’A blbe f1 {0}}

For the inclusion from right to left assume y € J,{C'oncf;y 2b|be f1 {0}} Then

y C Concy 4 b, for some b € f~1 {0}. Thus, f(Abs% g y) E f(Absy g(Concy 4 b))
= f b (by lemma 9.1.4). Hence y € (f o Abs’ g)~" {0}, since f b = 0. o

From this it is easy to show that

F-0(Concip_ gy az f) = { Concy 4 b| b € F-0f}

since the Conc maps are injective. We also need to calculate the minimum—1—frontier
for Conc[sB__,z]’[ 4—z2) J- This can be done using the following result, which allows us

to convert a meet frontier into a join frontier.

Lemma 9.1.9 Let L be a finite distributive lattice and let x € L. Then

max

FY(z) = {Lempsry(MtoJ(m)) | m € F\(z)}.
(L)
Proof By Corollary 8.4.6, we know that Lempyy(MtoJ(m)) = FY(m). Then by
Proposition 8.2.4,

max

() {Lempsy(MtoJ(m)) | m € F*(z)}

T(L)

is the join frontier for [1{m | m € F*(z)}, and this is just z. ]

Dual results hold for the live Conc maps.
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9.1.3 Using the Upper and Lower Bounds

How can we make use of the ability to place upper and lower bounds on the value of
a function? Here we outline a possible approach to using Abs and Conc in strictness
analysis.

Suppose that [ € DS is the standard interpretation of the term [Y, ¢], where

e: o0 — ois a closed term with abstract interpretation F' € [A — A], with A € A.

We wish to evaluate f® = | |Fi(L4), but the lattice A may be too large for this to

be practical. In this case wgochoose a smaller lattice, B € A.

First we calculate the fixed point of Absf(i,B oFo Conc%,A, to which we apply
C’onc%’A, giving us a lower bound on f®. Call this f. Using fi we can place
an upper limit on the degree of strictness which our abstract interpretation would
determine if time and space allowed. If we find that even fj; does not imply that f3
is strict in ways in which we are interested, there is no need to proceed any further.
On the other hand, if the lower bound shows that f° may be strict in such ways, we
can go on to calculate an upper bound, say fu, using Absj g and Concy 4. If fus
confirms that f*° is strict our job is done.

In the remaining case, fi and f,; ‘disagree’ concerning the strictness of f5. We
must then decide whether to cut our losses and accept that we are unable to confirm
that f5 is strict, or try to calculate improved upper and lower bounds by repeating
the process using a new lattice B’, with B < B’ < A. In choosing B’ we would have
to be sure that we did not run into the complexity problems we were trying to avoid
in the first place. This would not be entirely dependent on the absolute size of B’,
since Absly p/(fi) and Abs? pi(fus) place lower and upper bounds on the values of
ﬁ‘”B’(AbeA_,A],[B'_.B']F) and fizp/(Absis_, 4 p—pqf)- The lower bound allows us
to start the fixed point iterations at a point above Lp: and the frontiers algorithm
can use both upper and lower bounds as a means of reducing the search space when
establishing the frontier of each approximation. One possibility this raises is that
the work done in the smaller domains might achieve in a few ‘big steps’ what would
take many ‘little steps’ in the original domain.

Further experimentation is needed to determine whether the use of Abs and
Conc to render an abstract interpretation tractable should be an iterative process
of refinement, as is suggested above, or whether we should choose a reasonably sized

domain and stick with it.



Chapter 10
Conclusions

We conclude by summarising the achievements of this thesis and considering direc-

tions for further work.

10.1 Summary

Our contributions to the area of abstract interpretation for higher-order functional
languages can be roughly divided into those which concern the theory of abstract

interpretation and those which concern its practice. We consider these in turn.

Theory

We have presented a new semantic framework for the abstract interpretation of
higher-order functional languages. Its advantage over existing frameworks is that it
captures a wider range of program properties and thus allows new analyses to be
developed and proved correct for higher-order languages.

We saw that the existing frameworks of [BHA86] and [Abr90] were restricted by
identifying properties with sets. In particular we saw that this did not allow these
frameworks to capture properties which could be described in terms of projections,
such as those used in the first-order analyses of [WH87] and [Lau89].

We introduced the idea of using certain equivalence relations, the kernels of pro-
jections, as an alternative to using the projections themselves and showed the two
approaches to be equivalent. We then introduced partial equivalence relations (pers),
and in particular the complete pers, as the natural generalisation of equivalence re-
lations in the setting of domains and higher-order functions.

By moving from the binary logical relations used in [Abr90], to ternary logical
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relations, we were able to develop a framework for abstract interpretation in which
properties are identified with complete pers rather than sets. Of key importance
in the development of this framework was the Logical Concretisation Map Theo-
rem: this allowed us to move freely between the relational and concretisation map
formulations of correctness.

[t was shown that preservation of meets by logical concretisation maps is an
inherited property, and that preservation of meets implies the existence of best
interpretations for constants. We gave an inductive definition of a family of abstrac-
tion maps which map the standard interpretation of a constant to its best abstract
interpretation, but we showed that non-injective concretisation maps could prevent
the natural derivation of best interpretations.

We showed how our basic language could be enriched, and the abstract interpre-
tation framework extended accordingly, both by adding list types and more generally
by adding recursive types. We presented an analysis able to detect head-strictness
in higher-order functional programs. We adapted [Lau89] to construct recursive de-
scriptions of pers as properties for recursive types, and we used the framework of
[SP82] to give meaning to such recursive descriptions in an appropriate category.
We were able to induce abstract interpretations for the enriched language, but only
by restricting the use of — in recursive types. We showed that the concretisation
maps of the induced interpretations need not preserve meets and hence that best

interpretations for constants need not exist.

Practice

We have described a method, based on Birkhoff’s Representation Theorem for fi-
nite distributive lattices, for representing the graphs of functions, and a method for
finding approximate fixed points. Both methods are suitable for use in the imple-
mentation of abstract interpretations.

We began by explaining the need to explicitly calculate the graphs of recursively
defined functions in abstract interpretation. We showed how the frontier represen-
tations for functions in [P — 2], due to [JC87], can be understood in terms of upper
and lower subsets of P. Based on this understanding we were able to develop a
simple algorithm for constructing frontier representations.

We then introduced a strong generalisation of frontiers, our key insight being that
the frontier representations of [JC87] are special cases of Birkhoff’s Representation
Theorem for finite distributive lattices. We developed an algorithm for exploiting

this generalisation, explaining in some detail how the operations of the algorithm
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can be implemented for a particular family of finite distributive lattices.

Finally we argued that the lattices in abstract interpretations for higher-order
types, though finite, can be so large that approximation techniques must be em-
ployed when finding fixed points. We described such a technique based on the use

of Galois connections.

10.2 Swuggestions for Further Work

In this section we consider some of the shortcomings of the material presented in

this thesis and suggest ways in which it could be developed.

Best Interpretations and

Non-Injective Concretisation Maps

The discussion in Chapter 4 about best interpretations and expected forms suggested
that it may be possible to construct a maximally accurate analysis without the
interpretations of the constants necessarily being best. The main problem with this
discussion is the vagueness of some of the central ideas, particularly that of ‘expected
form’. It would be interesting to pursue this topic and to try and give the ideas
precise form, particularly the analogy with full abstraction.

A related but rather more clearly defined issue is that of non-injective concretisa-
tion maps. Apart from causing problems with the derivation of best interpretations,
there is a more fundamental objection to concretisation not being injective: it im-
plies that the abstract lattices contain too many points. As long as we are forced to
compute the full graphs of functions, this is more than a theoretical irritation, since
it entails an obvious inefficiency.

In the case of constancy analysis, we suggested that it might be possible to obtain
injective concretisation maps by using Berry’s theory of bi-domains to construct a
cartesian closed category (CCC) of finite lattices, whose exponents would give the
‘right’ interpretation of function types. This suggestion highlights the fact that in
some respects our definition of interpretation may be too concrete. We could have
further parameterised interpretations by the CCC in which terms were to be given
meaning, with types, environments and lambda abstraction being interpreted in the
CCC structure in the standard way ([L.S86]). To adapt the abstract interpretation
framework to this more general notion of interpretation we would need an appropri-

ately abstract definition of logical relation (although it is probably not wise to get
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too abstract, since for the purposes of implementation we obviously need concrete

representations of the objects and morphisms).

Recursive Types

There are two main problems with our treatment of recursive types. The first is that
we were unable to construct finite lattice interpretations for recursive types in the
general case (unrestricted use of —). We saw that for the type pa.int + (o — «),
in order to obtain a monotone concretisation map, the three induced descriptions of

properties would have to be ordered:
c
a b

We might try to deal with this by foi‘mally completing the poset, i.e., by adding a
new point aAb and setting v’ (aAb) = (7’ a) A (47 b). This raises the question of
whether it is in general decidable what the correct ordering on P,e should be. As
yet we have no answer to this.

The second problem with our treatment of recursive types is that it does not
generalise the head-strictness analysis of Chapter 5. The most promising approach
to solving this problem may be to return to the way projections are used to describe

strictness and use the idea of lifting as in [WHS87], although [HL90] indicates that a

forwards analysis using this approach may be rather weak.

Polymorphism

In Chapter 2 we discussed the fact that our chosen language is only simply typed
and that this is a serious drawback, since polymorphic type systems are such an
important feature of realistic functional languages. This is clearly a prime candidate
for further work. There are two approaches we would like to take here. The first is
to attempt to derive polymorphic invariance results for the properties which can be
described using pers, in particular it seems intuitively clear that constancy should
be a polymorphic invariant. The second approach is to try and adapt the work of
[HLI91]. This work exploits the fact that since projections are just special kinds of
functions, it makes sense to define polymorphic projections: the challenge is to make
it make sense for pers. In both approaches we hope to exploit the fact that pers can

also be used to provide models of polymorphic lambda calculi (e.g., [AP90]).
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Minimal Function Graphs

The generalised frontiers representation and algorithm we have described allow us
to construct graphs of functions in an efficient way. But the fact remains that there
is a huge inherent inefficiency involved in constructing complete graphs when all
we need is a small part of the graph. What we would like to do is calculate the
minimum part of a function’s graph which is sufficient to answer the questions we
want to ask. Because functions may be recursive, this will involve calculating parts
of the graph which are not of direct interest but are needed to evaluate recursive
calls. The problem in higher-order abstract interpretation is to decide when we
have constructed a ‘self-contained’ subset of the graph, known as a minimal function
graph ([JM86]), without having to compute the full graphs of functional arguments.
In the first-order case this is not a problem.

The potential benefits of developing a minimal function graph method which
works properly in the higher-order case are great, making this a priority area for

research.



Appendix
Proofs from Chapters 7 and 8

A.1 Proofs from Chapter 7

We first need to establish some basic results about minimal and maximal elements

for finite sets. We begin by restating and proving Lemma 7.2.2:
Lemma 7.2.2 Let P be a poset and let X C P be finite. Then:
1. |Maz(X) = | X;
2. TMin(X) =17X.

Proof We prove 2 directly, 1 is dual.

Assume z € TMin(X). Then z € 71X since Min(X) € X. Now assume z € TX
and let X’ C X be the set {z' € X | 2’ C z}. Suppose towards a contradiction that
z & TMin(X). Then for all 2’ € X', we must have 2’ ¢ Min(X). But this clearly
requires X' to contain an infinite strictly decreasing chain, which contradicts X

being finite. O

Lemma A.1.1 Let X C P with P a poset. Then:
1. Min(1X) = Min(X);
2. Maz(|X) = Maz(X).

Proof Obvious. O
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Lemma A.1.2 Let P be a finite poset. Let {X;},.; be a family of subsets of P.
Then:

1. Min <U Xi) = Min (U Min(Xi)) ;

i€l i€l
2. Mazx (U Xi) = Max (U Maa:(Xi)) .
el i€l

Proof We prove 1 directly, 2 is dual.

Min (U Xi)

= ;\;jn (TUier Xi) Lemma A.1.1
Min (User 1X:)
Min (U;e; TMin(X;)) Lemma 7.2.2
= Min (T Uier Min(X5))
= Min (U;e; Min(X;)) Lemma A.1.1.

Given these facts we can restate and prove Proposition 7.3.2.

Proposition 7.3.2 Let P be a poset. Let S1,5;, € U(P) and let Ty,T, € L(P).
Then

1. Min(S1 N Sy) = Min (U{z1 V 22 | z1 € Min(S1),z2 € Min(S2)});

2. Maz(T1 NT3) = Maz (U{y1 A y2 | y1 € Maz(Th),y2 € Maz(T3)}).

Proof We prove 1 directly, 2 is dual.

Let My = Min(S;) and let My = Min(S2). Since S; and S; are upper, we have
Sl = TSI and Sz = TS2 Thus

Min(S1 N S2)
= Min(1510152)
= Min(TMin(S1) N TMin(S2)) Lemma 7.2.2
= Min (Uz,enr Ussers, {y € P ly D21 and y I z,})
Min (Uz,enr, Uspers, Min {y € P |y Dz and y J z5}) Lemma A.1.2
= Min (Uz,em, Uspers, 1 V 22) definition of V.
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A.2 Proofs from Chapter 8

Recall from Chapter 8 that for a finite distributive lattice L, the maps JioM :
J(L) — M(L) and MtoJ : M(L) — J(L) are defined by

o JtoM () =L(L\T7)
o MtoJ(m) =L\ |m)

with 77 and |m being calculated in L. As promised, we will show (Theorem A.2.2)
that these maps establish an isomorphism between J (L) and M(L). First we must
show that they are well defined. This is a straightforward corollary to Proposi-

tion 8.1.9, which we now restate and prove.

Proposition 8.1.9 Let L be a finite distributive lattice, let j € J(L) and let m €
M(L). Then:

1. L\ 15 = LU(L\ 15);
2. L\ lm=1M(L\ |m),
where each T and | is calculated in L.

Proof We prove the first directly. The second is dual. Let z € L. We must show
that « C /(L \ 1j) < j Z z. Assume z C ||(L \ Ty) and suppose towards a
contradiction that j C z. We have j C z C ||(L \ 17), but by Lemma 8.1.5 this
implies that j C &’ <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>