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Abstract  
Dieback disease caused by Fusarium and Lasiodiplodia species is a major threat to 

cocoa production in Ghana and elsewhere in West Africa. Current recommendations 

involve insecticide application to control mirid bugs whose feeding punctures provide 

entry points for these fungi.  Little is known about the true identity of the causal 

pathogens of this disease. Earlier work implicated F. decemcellulare as the causal 

agent and more rarely L. theobromae (Cotterell, 1927; Crowdy, 1947). A total of 117 

single spore fungal cultures was established from diseased cocoa stems imported from 

Ghana. On morphological grounds cultures could be designated as either Fusarium or 

Lasiodiplodia spp. The Fusarium cultures exhibited inter-isolate variability with 

respect to macroscopic appearance and macro-conidium morphology, suggesting the 

presence of more than a single species. The isolates were further characterised by 

PCR amplification and sequencing of the ITS region of rDNA and comparison with 

authentic reference cultures. Thirty-seven Fusarium isolates were identified to twenty 

F. chlamydosporum, nine F. solani and four isolates each of F. oxysporum and F. 

proliferatum. The thirty-six Lasiodiplodia isolates were identified to two species, 

twenty-seven L. pseudotheobromae and nine L. theobromae. In pathogenicity tests, F. 

chlamydosporum, F. oxysporum, F. proliferatum, F. solani and L. pseudotheobromae, 

previously unknown as pathogens of either cocoa or any member of the Malvaceae, 

caused significant wilting and dieback in Amelonado seedlings similar to that 

observed in the field. All isolates exhibited optimal growth at 30 ºC on PDA. Disease 

incidence in 29 and 15 cocoa germplasm lines in the laboratory and greenhouse, 

respectively, showed reproducible differences in their reaction to necrotic lesion and 

dieback infection. LCTEEN 37/F was one of the most susceptible genotypes. CATIE 

1000, T85/799 and MXC 67 were the most tolerant and could be used in cocoa 

breeding programmes for resistance to dieback.  
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1 Chapter 1 
1.1. Literature review 

1.1.1.  Origin, history, geographic distribution 
and diseases of cocoa  

 
Cocoa originated in the foothills of the Andes in the Amazon and Orinoco basins of 

South America and has been consumed in Mesoamerica since at least 600 BC (Hurst 

et al., 2002). Cocoa was introduced into Central America by the ancient Mayas, and 

cultivated in Mexico by the Toltecs and later by the Aztecs. It is now grown 

predominantly in West Africa, Latin America and Southeast Asia (Cheesman, 1944; 

Motamayor et al., 2003; Sereno et al., 2006). 

 

Archaeologically, the Maya traders, who developed cocoa as a domesticated crop, 

drank cocoa as early as 400 BC in Costa Rica, and they believed the tree was a gift 

from a god. A drink from the roasted beans, often used in ceremonies and rituals, was 

called xocolati, from which the word ‘chocolate’ was derived. There is also extensive 

documentation of medicinal uses of cocoa that can be traced to ancient Aztec 

documents. A surviving document, the Florentine Codex compiled in 1590 by a 

Spanish priest extensively documents cocoa-based preparations and the illnesses that 

they were used to prevent or cure (Bennett, 2003). 

 

Cocoa is believed to have been introduced into Trinidad in 1525, into Southeast Asia 

in 1560 and westwards from Acapulco to the Philippines in 1614 (Wood and Lass, 

2001). According to this author, by 1700, cocoa was being grown throughout Central 

America and on many of the islands in the Caribbean, as well as in areas adjacent to 

the Andes in South America.  

 

Amelonado type cocoa was sent from the Amazon Basin of Brazil to Bahia in 1746 

and to West Africa in 1822 at Principe, from where it was taken to Sao Tomé and 

Fernando Po (now Bioko) in 1830 and 1854, respectively (Wood and Lass, 2001). 

Nigeria and Ghana received their seed from Fernando Po in 1874 and 1879, 
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respectively, while Sri Lanka (then Ceylon) had her first and second introductions in 

1834-35 and 1880 from Trinidad. The cocoa from Ceylon was said to have been 

distributed to Singapore and Fiji in 1880, to Samoa in 1893, to Queensland, Australia, 

in 1886 and to Bombay in 1887. The Ceylon material was also introduced into 

Zanzibar and then German East Africa (Tanganyika) in 1887 and 1893, respectively, 

and later, into Madagascar (Wood, 1991).  

 

1.1.2.  Biology and ecology of cocoa 
Cocoa is an understorey forest plant that grows in the wet, humid tropics within 

latitudes 20° north and south of the equator, usually below 300 m (Cobley and Steele, 

1976). The plant is particularly adapted to uniformly high temperatures, minimum 13 

°C and maximum 33.5 °C (mean = 26 °C), mean annual  rainfall of 1000 to 3000 mm 

and deep well-drained soils, free from iron concretions but high in nutrient content 

and organic matter (Hartemink, 2005). The prevailing weather condition at Tafo 

within the cocoa-growing belt of the Eastern Region of Ghana is shown in Figure 1. 

 

 
Figure 1. Cocoa Research Institute of Ghana, Akim-Tafo weather: 11-year averages and 
standard errors 1997-2007.  
 
 
 
 
Reed (1976) established that cocoa is a cauliflorous (i.e. it produces flowers on the 

older branches or main stem) (Figure 2) and semi-deciduous plant usually reaching 5 
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to 10 m high. At 1 to 1.5 m, the terminal bud breaks into 3 to 5 meristems to give rise 

to several lateral branches (Figure 3). Vegetative shoots arising from the base of the 

main trunk (chupons) have leaves arranged in ⅝ pattern of leaf arrangement 

(phyllotaxy) while lateral branches have ½ pattern of arrangement (Figure 4). The 

petiole has two joined cushion-like swellings (pulvini), one at the base and the other at 

the point of insertion of the leaf. Stipules are two and deciduous. The leaf blade 

(lamina) is elliptical-oblong or obovate, simple, 10 to 60 cm long, 4 to 20 cm broad; 

generally smooth, sometimes hairy, rounded and obtuse at the base with a pointed 

apex. The roots are mostly a mass of surface-feeding roots, with the taproot 

penetrating to 2 m in friable soil, less deeply when compacted. The arrangement of 

flowers on the stem is dichasial (i.e. two lateral flowers originating from opposite 

points beneath the flower stalk). The primary peduncle is very short, often thick and 

lignified. The flower peduncle is 1 to 4 cm long and there are five sepals, which are 

triangular and whitish or reddish in colour.  

 

The five petals are joined at the base into a cuplike  structure. They are whitish-

yellow with dark purple bands at the underside; ligules are spathulate and yellowish. 

There are five fertile stamens alternating with staminodes, the two whorls uniting to 

form a tube. There are two anthers each about 0.4 mm long, with fused stamens. The 

ovary is superior with a single style terminating in five sticky stigmatic surfaces. The 

pods are indehiscent and variable in size and in shape. They range from 10 to 32 cm 

long, and may be ovoid, near spherical, oblong, pointed or blunt at the base. The outer 

surfaces of pods usually have 5 to 10 furrows. Unripe pods are green, red or purple, 

ripening to yellow, red or purple and contain 20 to 60 seeds (beans) per pod, arranged 

in five rows, variable in size, 2 to 4 cm long, and 1.2 to 2 cm broad, ovoid or elliptic. 

Placentation is axile with seeds embedded in mucilage, flat or round with white or 

purple cotyledons; seeds per kg range from 625 to 1125. It has a complex system of 

self-incompatibility. After successful pollination, fertilization takes place within 36 

hours; the sepals, petals and staminodes drop away and the stamens and pistil wither. 

The young pod, known as the cherelle, begins to develop by longitudinal elongation, 

followed by increase in width. It takes five months or so for a pod to develop from 

fertilization to maturity depending on the variety (Glendinning, 1972). Flowering in 

Ghana occurs at definite peak periods. It is low and irregular in the January to March 

dry season, then very heavy at the beginning of the rains usually in April. It then 
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declines to become almost nil during the peak of the main crop. Thus, in Ghana, the 

crop ripens in two main periods, ‘minor crop’ roughly from mid-May to mid-July, and 

the ‘main crop’ from September normally to December and sometimes to February. 

Currently, where weather conditions are more uniform throughout the year, cropping 

of some newer varieties may be almost continuous.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Cocoa flowers developing from cushions on a main stem. Photo: R. A-A. 
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Figure 3. The main terminal bud forms three to five branches  
(the jorquette) that grow out as fan branches. Photo: R. A-A. 
 

 

 

    

Figure 4. Leaf arrangement on cocoa stem: ⅝ pattern (A); ½ pattern (B). Photo: R. A-A 
 

 

 

A 

B
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1.1.3.  Pollinators 
 
The cocoa plant is naturally out-breeding (Wood and Lass, 2001). Although there is 

general belief that small insects are the pollinating agents, there is no general 

agreement as to which insects are primarily responsible. Many authorities credit 

midges, especially Forcipomyia quasiingrami Macfie and Lasiohela nana Macfie 

(Macfie, 1944; Chatt 1953; Saunders, 1959; Barroga, 1964; Fontanilla-Barroga, 1965; 

Kaufman, 1973) while others believe it is mainly by ants (e.g. Crematogaster spp.), 

aphids (Aphis gossypii Glover and Toxoptera spp.), thrips (Frankliniella parvula 

Hood), and wild bees (Jones,1912; Harland, 1925; Cope, 1940; Voelcker, 1940; 

Billes, 1941; Posnette, 1942; Muntzing, 1947; Posnette and Entwistle, 1957; 

Urquhart, 1961;). 
 

1.1.4.  Taxonomy of cocoa 
The genus Theobroma has about twenty-two species, but only Theobroma cacao L. is 

grown on a large scale (PMN No. 12, 2001). Theobroma cacao until recently 

belonged to the family Sterculiaceae (Wood and Lass, 2001) and was divided into 

three distinct groups: Forastero, Criollo and Trinitario based on the morphology of the 

pod (Figure 5). The first comprises 95 % of the world production of the crop and is 

the most widely used (Amoah, 1995). Forastero cocoa is vigorous and the most 

resistant to diseases (Lerceteau et al., 1997) but the highest quality cocoa comes from 

the Criollo, which is unfortunately, poor yielding, highly susceptible to pests and 

diseases and difficult to produce. Consequently, very few countries produce it, with 

the greatest production coming from Venezuela. Trinitario cocoa is considered to 

have originated by natural hybridization between the first two groups and has 

different characteristics including good aromatic pods and beans (seeds) (Lerceteau et 

al., 1997; Motamayor et al., 2003; Sereno et al., 2006). The Criollos have elongated, 

ridged, and pointed pods whereas the Forasteros have short, roundish, and smooth 

pods. Forastero cocoa is further divided into Lower and Upper Amazon Forastero 

according to its geographical origin. The classification of some cocoa clones, 

however, remains uncertain: for example, the cocoa identified as Nacional from 

Ecuador and classified as Forastero (Cheesman, 1944; Soria, 1970) was recently 

placed among the Criollos (Enriquez, 1992). A number of subspecies and forms of 
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cocoa have now been recognized, from which a great number of cultivars have been 

developed. Several cultivars are named according to the place where they were 

developed.  

 

 

Figure 5. Morphology of pods from different cocoa types: A, Forastero; B, Trinitario; C, Criollo. 
Source: Cocoa Atlas 2002.  
 
 

Efforts are being made to reduce the number of botanical descriptors used in cocoa 

identification in order to facilitate genotype characterization (Lerceteau et al., 1997). 

The use of molecular data for systematics in cases where morphological characters are 

conflicting or missing has been addressed by several authors. Based on isozyme data, 

Upper Amazonia is considered the primary centre of diversity (Lanaud, 1987; Warren, 

1994). Laurent et al. (1994) observed mitochondrial, chloroplastic, ribosomal and 

cDNA polymorphisms and were able to provide some insight into the evolution of 

cocoa, underlying the complementary aspects of all these markers. Random amplified 

polymorphic DNA (RAPD) technology (William et al., 1990) has also been 

successfully used to infer genetic relationships within many species, including T. 

cacao (Figuera et al., 1994; N’goran et al., 1994). After a study of the genetic 

variability among cocoa accessions using RAPD and RFLP markers, Lerceteau et al. 

(1997) concluded that the Nacional type cocoa was genetically distinct and different 

from well-known types such as Forastero, Criollo and Trinitario. 

 

Recent phylogenetic investigations on the plastid atpB, ndhF and rbcL sequences, 

morphological, and chemical characterisation have suggested the inclusion of the 

A B C 
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Sterculiaceae into the distinct family Malvaceae (Alverson et al., 1999; Bayer et al., 

1999; Judd and Manchester 1997; Whitlock et al., 2001). The most parsimonious trees 

derived from the nucleotide sequences corroborated the sectional classification of 

Theobroma and Herrania, which had been based on morphology (Figure 6). 

 

 
 

Figure 6. Strict consensus of 16 most parsimonious trees generated from nucleotide sequence of 
the trypsin inhibitor gene from Theobroma and Herrania species. Length¼273 steps; 
C.I.¼0.7839; H.I.¼0.2161; R.I.¼0.8628; R.C.¼0.6763. Percent of 1,000 bootstrap replications is 
given above the branches. Decay index values are shown below the branches. Source: Silva and 
Figueira (2005). 
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1.1.5.  Cultivation 
Cocoa cultivation has been examined in some detail by a number of authors (Amoah, 

1995; Wood and Lass, 2001). The crop is traditionally grown in cleared forest 

following logging, and is inter-cropped with food crops during the first three years 

(Figure 7). Cocoa has historically been grown from seed with the seed generally 

grown in a nursery in polybags to produce seedlings or they are sown directly. The 

seeds germinate within 7 to 10 days and do not pass through a dormancy period. 

Recently, alternative propagation approaches have been proposed. Vegetative 

propagation is becoming popular as the genetics of the tree are then known, and can 

be controlled. This is also desirable because bean quality and size, time to fruit 

bearing and productivity of trees are improved. Budded trees for example, are smaller 

than trees produced from seed. Consequently, more trees per hectare can be planted, 

and the pods are borne closer to the ground to aid harvest.  

 

 

 

 

Figure 7. A new cocoa farm showing food-crops planted to protect the young 
 plants from direct solar radiation. Photo: USDA, SPCL. 
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When the seedlings are six months old, or have reached about 0.6 m tall, they are 

transplanted into shaded fields at 2.5 m × 2.5 m or 3.0 m × 3.0 m apart (Amoah, 

1995). Plantain appears to meet most of cocoa’s shade requirements in this respect, 

whereas bananas compete heavily for moisture during the dry season. Intercropping of 

cocoa with food crops such as maize, cassava, cocoyam, yams, plantain and coconut 

is a normal practice in W. Africa. Cocoa trees respond to fertilizers especially in the 

absence of shade. The common fertilizers and their doses are 100 g of N, 40 g of P2O5 

and 140 g of K2O per plant per year in 2 split doses. Trees younger than three years 

require only half or three-fourths of these rates.   

 

Farm husbandry such as weeding and temporary shade is essential during the first 

three to four years. Average yields range from 0.5 to 10 kg per tree (Duke, 1983) and 

although pods mature throughout the season, there are two main crops in a year in 

West Africa: in September-January and in April-June. The original art of hand 

harvesting the pods, using the traditional long handled sickles, is still practised today 

in Ghana when they are ripe or have achieved a yellow colour (for most varieties) 

(Figure 8) The harvested pods are collected, broken open, usually with a wooden 

baton and the wet beans (covered with sweet mucilage) removed by hand. The fresh 

beans are fermented for up to 6 or 7 days on plantain or banana leaves, and then 

covered with more leaves to aid the development of the chocolate flavour when they 

are roasted in the factory. Fermentation usually is done under shade (away from direct 

sunlight) and larger heaps (i.e. more than 90 kg) are turned after three days to ensure 

uniform conditions throughout the heap. Perforated plastic sheets and wooden boxes 

are sometimes used in the absence of plantain or banana leaves. After fermentation, 

the beans are sun-dried on raised bamboo, palm or raffia mats (Figure 9) for 7 to 14 

days or longer on cloudy/rainy days to the desired 7.5 % moisture content. 
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Figure 8. Mature mixed hybrid cocoa tree bearing ripe yellow pods.  
Photo R. A-A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 9. Sun drying of fermented cocoa beans by a Ghanaian cocoa farmer. 

Photo: R. A-A 
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1.1.6.  World cocoa production 
The world cocoa trade is worth about $30 billion annually and this has grown at a rate 

of about 5 % per year in the past few years (ICCO, 2005). Almost 4 million metric 

tons (MMT) of beans were produced in 2005, and the 2.7 MMT that were traded 

internationally in 2003 were worth $4.2 billion. In 2001, the global chocolate market 

was worth $73 billion (Ploetz, 2007). In 2003 and 2004, global production of dry 

cocoa beans reached an all time record of 3.5 million tons. At present, African 

countries account for about 80 % of the world cocoa export (Figure 10 and Figure 11) 

with the Ivory Coast alone accounting for 34 % (Table 1). In Ghana, cocoa and cocoa 

products account for two-thirds of export revenue and in the forest belt (Figure 12), its 

importance as a cash crop is paramount. 

 

 
Figure 10. Regional trends in global cocoa production since 1830.    
Source: (Ploetz, 2007). 

http://apsjournals.apsnet.org/action/showImage?doi=10.1094%2FPHYTO-97-12-1634&iName=master.img-000.jpg&type=master
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Figure 11. World cocoa production figure for year 2002, Source: World Cocoa Foundation. 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 
 
Figure 12. Map of Ghana showing the cocoa growing areas. 
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Table 1. The ten most important cocoa producing countries in year 2005. Source: Ploetz, 
2007. 
 
Country Production (MT) % Total 

Ivory Coast 

Ghana 

Indonesia 

Nigeria 

Brazil 

Cameroon 

Ecuador 

Colombia 

Mexico 

Papua New Guinea 

World Total 

1,330,000 

736,000 

610,000 

366,000 

214,0774 

180,000 

137,178 

55,298 

48,405 

42,500 

3,923,183 

33.9 

18.8 

15.5 

9.3 

5.5 

4.6 

3.5 

1.4 

1.2 

1.1 

Other: 5.2 

Africa: 67.85 

Asia and Oceania: 18.08 

Western Hemisphere: 14.06 

 

 

In Ghana, smallholder farmers often with 1 to 2 hectares (ha), grow cocoa under 

extensive management systems (Amoah, 1995; Padi and Owusu, 2001). Some 

800,000 smallholder farmers in Ghana grow cocoa on an area of about 1,268,000 ha 

of land and it is estimated that over 10 million people in West Africa are supported by 

some 1.2 million independent family cocoa farms. Consequently, there was an 

initiative by the Ghana Government and the Ghana COCOBOD in 2001 to help 

farmers with the supply of planting material, labour-efficient cropping systems, pest 

and disease control, and harvesting, fermentation and drying. 

 

1.1.7.  Major diseases of cocoa 
 
Since 1879, cocoa has occupied a place of economic importance in Ghana and it is the 

crop with the largest total acreage in the forest belt of the country (Amoah, 1995) 

(Figure 12). Cocoa is also a key foreign exchange earner to many West African 



 29

economies (Amoah, 1995). However, many diseases and pests affect cocoa, with 

some estimates putting losses as high as 30 to 40 % of global production. There are 

many hundreds of insect pests and pathogens recorded (Entwistle, 1972; Purdy et al., 

1998; Aime and Phillips-Mora, 2005). Of these, only a fraction is economically 

important, and diseases rather than insects, are the biggest problem (PMN No. 12, 

2001). Thorold (1975) has extensively covered the major diseases of cocoa in an 

excellent book. He categorises cocoa diseases according to the plant tissues involved 

such as diseases of stems, trunk, leaves, pods, flowers and roots among others.  

 

1.1.7.1. Dieback disease 
 

In addition to fungal pathogens, non-pathogenic saprophytic fungal associates of 

cocoa have been found as epiphytes or endophytes, many of which have the potential 

to become parasites when conditions favour increased aggressiveness (Purdy et al., 

1998). Arnold and Herre (2003) reported that more than 800 strains and more than 

500 morphospecies of endophytic fungi were isolated from cocoa in Panama. Turner 

(1967) reported the presence of more than 80 species of fungi associated with the 

dieback of cocoa trees in West Africa. None of these was said to be a primary 

pathogen of cocoa, but all had been reported as opportunistic species that attacked 

cocoa stressed by insects such as mirids. 

 

Mirid and fungi-related dieback accounts for losses of millions of dollars each year in 

West Africa (Padi and Owusu, 2001). Strategies to combat these losses based on 

finding or broadening plant resistance to pathogens have received little attention. The 

disease has been linked to at least seven causal organisms, but most records centre on 

two fungus species, Albonectria rigidiuscula (Berk. & Broome) Saccardo [anamorph: 

Fusarium decemcellulare Brick] and Botryosphaeria rhodina (Berks & Curtis) von 

Arx [anamorph: Lasiodiplodia theobromae (Pat.) Griffon & Maubl.] (Owen, 1956) 

(Tables 2 and 3). Most literature refers to the anamorph names which are used 

routinely in this thesis. 
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Table 2. Taxonomy of Albonectria rigidiuscula (formerly Calonectria rigidiuscula 
anamorph:  Fusarium decemcellulare. 
 
Albonectria rigidiuscula 

 

Scientific classification 

Kingdom: Fungi 

Phylum: Ascomycota 

Class: Sordariomycetes 

Subclass: Hypocreomycetidae 

Order: Hypocreales 

Family: Nectriaceae 

Genus: Albonectria 

Species: A. rigidiuscula  
Binomial name 

Albonectria rigidiuscula (Berk. & Broome) Rossman & Samuels, (1999) 

Synonyms 
Calonectria eburnea Rehm, (1888)  
Calonectria lichenigena Speg., (1889) 
Calonectria rigidiuscula (Berk. & Broome) Sacc., (1878) 
Calonectria sulcata Starbäck, (1899) 
Calonectria tetraspora (Seaver) Sacc. & Trotter, (1913) 
Fusarium decemcellulare Brick, (1908) 
Fusarium rigidiusculum W.C. Snyder & H.N. Hansen, (1945) 
Fusarium spicariae-colorantis Sacc. & Trotter ex De Jonge [as 'spicariae-colorantis']  
Nectria rigidiuscula Berk. & Broome, (1873) 
Scoleconectria tetraspora Seaver, (1910) 
Spicaria colorans De Jonge, (1909) 
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Table 3. Taxonomy of Botryosphaeria rhodina (anamorph Lasiodiplodia theobromae- formerly 
Botryodiplodia theobromae). 
 
Botryosphaeria rhodina 

 

Scientific classification 

Kingdom: Fungi 

Phylum: Ascomycota 

Class: Dothideomycetes 

Subclass: Incertae sedis 

Order: Botryosphaeriales 

Family: Botryosphaeriaceae

Genus: Botryosphaeria 

Species: B. rhodina  
Binomial name 

Botryosphaeria rhodina (Berk. & M.A. Curtis) von Arx, Gen. Fungi Sporul. Cult. (Lehr): 143 
(1970)  

Synonyms 
Botryodiplodia gossypii Ellis & Barthol., J. Mycol. 8: 175 (1902). 
Diplodia cacaoicola Henn., Engler's Bot. Jahrb. 22: 80 (1895). 
Diplodia gossypina Cooke, Grevillea 7 (no. 43): 95 (1879) 
Diplodia natalensis Pole-Evans, Transvaal Dept. of Agricult. Sci. Bull. 4: 15 (1911) [1910]. 
Physalospora fusca N.E. Stevens, Mycologia 18: 210 (1926). 
Physalospora glandicola N.E. Stevens, (1933). 
Physalospora gossypina F. Stevens 
Physalospora rhodina Berk. & M.A. Curtis, Grevillea 17 (no. 84): 92 (1889) 

Botryodiplodia theobromae 

Lasiodiplodia theobromae 
 

 

The association of F. decemcellulare and Lasiodiplodia with dieback of cocoa was 

first described by Crowdy (1947). The two important mirid species (Heteroptera: 

Miridae) in West Africa are Sahlbergella singularis Hagl. and Distantiella theobroma 

(Dist.) which feed on shoots and pods. If the feeding punctures become infected with 

F. decemcellulare or L. theobromae, large shoots and trees may be killed. As noted by 

Crowdy (1947), neither the insect nor the fungus alone normally does serious damage 

to the tree, but in combination, the damage is one of the serious problems facing the 
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cocoa industry in West Africa. The most conspicuous symptoms of F. decemcellulare 

and Lasiodiplodia damage occur on shoots beginning with chlorotic mottling of 

leaves and necrosis and defoliation proceeding to vascular browning of stems 

(Entwistle, 1972). In some cases, leaf symptoms are less frequent but stems may still 

be infected.  

 

There is currently no recommended control for dieback of cocoa. The spores of F. 

decemcellulare are known to survive in wood for years and can be moved accidentally 

in contaminated tissue (Crowdy, 1947). Synthetic insecticides against mirids came 

into commercial use in the 1940s (Owusu-Manu, 1990; 1995). Since then several 

hundreds of other compounds with diverse modes of action covering all the major 

insecticide groups have become available for use on cocoa. However, global pest 

management strategies are currently focused on environmental protection and human 

well-being, and chemical spraying of crops is discouraged wherever possible. 

Moreover, the world market demand for high quality and residue-free cocoa, together 

with increasingly strict governmental restrictions on pesticide use, has increased the 

pressure to develop more effective and sustainable disease control methods. 

 

Conventional methods to detect or isolate the causal disease pathogens, F. 

decemcellulare and L. theobromae, have been described by Crowdy (1947) and Owen 

(1956) and visual disease assessment is based on the recognition of the usual 

symptoms of dieback such as wilting of leaves and branches. Also at present, no 

reliable and rapid molecular methods to detect these pathogens in cocoa have been 

reported.  

 

1.1.7.1.1. Taxonomy and life cycle of Fusarium decemcellulare 
and Lasiodiplodia theobromae associated with dieback 
disease of cocoa 

 
Fusarium species are common soil-borne fungi usually found in natural and cultivated 

soils (Nelson et al., 1983). Various species attack perennial crops in the tropics 

(Ploetz, 2007). For example, the formae speciales of Fusarium oxysporum cause wilt 

diseases in more than 100 plant species (Armstrong and Armstrong, 1981) while F. 
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solani attacks at least 111 plant species belonging to 87 different genera (Kolattukudy 

and Gamble, 1995). Fusarium decemcellulare Brick (teleomorph: Albonectria 

rigidiuscula) causes green-point-gall and dieback of cocoa (Crowdy, 1947; Booth 

1971). It is a weak parasite and requires wounds to infect cocoa (Holliday, 1980). To 

date, most descriptive information on F. decemcellulare is based on morphological 

characters such as the size and shape of the conidia, the presence or absence of 

chlamydospores, and the structure of conidiophores (Windels, 1992). Potato dextrose 

agar (PDA) cultures (Figure 13) were used to assess pigmentation and colony 

morphology of different Fusarium species (Summerell et al., 2003). The pink to red 

pigmentation together with yellow sporodochia and the large size of the macroconidia 

are definitive characters of this species. Fusarium decemcellulare also affects avocado 

(Darvas and Kotze, 1987) and mango (Ploetz et al., 1996). 

 

On cocoa, F. decemcellulare attack results from complex interactions with other 

pathogens and pests. Homothallic and heterothallic isolates of the rare teleomorph, 

Albonectria rigidiuscula, have been reported on cocoa, but only heterothallic strains 

are known to cause disease (Holliday, 1980). Perithecial isolates on cocoa were 

homothallic and non-pathogenic (Ford et al., 1967). Recently, a dichotomous key on 

this species and other related Nectria-like fungi was published (Watling et al., 2002). 

The present nomenclature is shown in Table 2.  
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Figure 13. Colony morphology of Fusarium species on potato dextrose agar. The top plate in each 
pair is the upper surface and the lower plate is the under surface. A, F. poae. B, F. oxysporum. C, 
F. acuminatum. D, F. nelsonii. E, F. subglutinans. F, F. nygamai. G, F. pseudonygamai. H, F. 
lateritium. I, F. thapsinum. J, F. decemcellulare. K, F. verticillioides. L, F. culmorum. Source: 
Summerell et al., 2003. 
 

 

Lasiodiplodia theobromae is also an important fungal pathogen of higher plants from 

tropical and sub-tropical regions (Cardoso and Wilkinson, 2008). The fungus is 

ubiquitous and able to infect over 500 plant species, causing symptoms ranging from 

seed rot to the discolouration and dieback of timber (Punithalingam, 1976). The 

affected plants include cassava (Manihot esculenta L), avocado and mango. Infection 

is generally limited to wounded or stress-weakened plants (Britton and Hendrix, 

1986). Lasiodiplodia theobromae reproduces mainly by asexual macroconidia, with 

the sexual stage rarely being observed under field conditions (Punithalingam, 1976). 

The extensive list of synonyms that apply to the species demonstrates the confusion 

that exists over its taxonomic and phylogenetic status. The standard taxonomic 

treatment of L. theobromae was entirely based on culture characteristics and asexual 

reproductive structures (e.g. pycnidium, conidiophore, and conidiospores) 

(Punithalingam, 1976). However, recently, simple sequence repeat (SSR) or 

microsatellite analysis is widely acknowledged as the method of choice for molecular 

studies of population genetic structure, relationship, genotype diagnosis and genetic 

evolution (Cardoso and Wilkinson, 2008). 
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The two fungal pathogens described above are thought to be introduced into fields on 

contaminated wood or in infested soils. Once introduced, they have been found to 

survive for many years in soil or in dead wood. Both fungi invade the plant through 

wounds and disrupt water and mineral uptake. Infection and disease development are 

favoured by warm temperatures.  

 

1.1.7.2. Black pod disease 

Black pod (Figure 14), caused by several species of Phytophthora, is the most 

widespread disease of cocoa and is found in all cocoa growing regions of the world 

(Appiah et al., 2003; Opoku et al., 2005). The disease is responsible for estimated 

losses of about 450,000 metric tons of global production annually (Langham, 2004). It 

attacks pods at all stages of their development, and is unique in that there are probably 

five or more different species of Phytophthora that cause pod rot, seedling diseases, 

and cankers of stems (Appiah et al., 2003). Phytophthora palmivora is nearly 

pandemic wherever cocoa is grown, and has a very large host range. Phytophthora 

capsici and P. citrophthora may be restricted to the Americas, and P. heveae probably 

is present in South America and Malaysia. On the other hand, P. megakarya is present 

only in West Africa where it attacks only cocoa (Erwin and Ribeiro, 1996; Opoku et 

al., 2005). The disease cycle is difficult to identify because of the several species 

involved. Wood and Lass (2001) showed that P. palmivora does not normally produce 

sporangia on the surface of diseased pods whereas P. megakarya does so abundantly. 

Sporangia develop when temperatures are 25 to 30 °C with the relative humidity 

above 80 %, and germinate to produce mycelia, further sporangia or zoospores. 

Phytophthora species are differentiated on the basis of morphological characteristics 

(Erwin and Ribeiro, 1996) and more recently by molecular-biological means (Appiah 

et al., 2003). The common environmental factors, wind, rain and temperature, 

influence disease spread, the most important being water. 
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Figure 14. Black pod disease caused by Phytophthora spp.  
Photo: USDA, SPCL. 

 

1.1.7.3. Witches’ broom disease 

Witches' broom (Figure 15) caused by Crinipellis perniciosa (Stahel) Singer, is a 

serious fungal disease of cocoa in Latin America (Pereira, 1999). Indigenous to the 

Amazon, it is now present in most of the cocoa growing regions in South America and 

several Caribbean islands. It occurs in Bolivia, Brazil, Colombia, Ecuador, Grenada, 

Guyana, Panama (on the South American side of the canal), Peru, St. Vincent, 

Surinam, Tobago, Trinidad, and Venezuela (Purdy and Schmidt, 1996). In 1989, 

witches' broom was detected for the first time in Bahia state of Brazil. It had invaded 

the major growing area of Brazil and ravaged production with yields in Bahia 

decreasing by 60 % from 1990 to 1994. It prevents cocoa pods from being formed and 

infects mature pods and, therefore, deters many smallholder farmers from growing the 

crop. C. perniciosa, the witches’ broom pathogen, is a basidiomycete fungus (Figure 

15) believed to have co-evolved with cocoa in its centre of genetic diversity (Allen, 

1987; Wheeler and Mepsted, 1988; Purdy and Schmidt, 1996). Witches’ broom 

apparently was observed in the 1700s, but the scientific investigation of this 

devastating disease began in Surinam in the 1890s (Stahel, 1915) Basidiospores are 

dispersed by wind, and if they land on dry surfaces, they immediately lose their 

viability. Moisture must remain on the plant surface for at least 6 hours during which 

basidiospores germinate, enter cocoa mostly through natural openings, and establish 
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an infection. Initial infection by C. perniciosa occurs in actively growing meristems 

such as buds, young leaves, flower cushions or pods, causing a characteristic 

disorganized proliferation of new shoots in the host termed “witches’ brooms” (Isaac 

et al., 1993). Potential crop is lost when clusters of flowers produced on cushions on 

the main trunk and older branches are infected, thus producing seedless strawberry or 

carrot-shaped fruits (Pereira, 1999).  

 

 

 

      

Figure 15. Witches’ broom (left) caused by Crinipellis perniciosa (right = basidiocarp). Photo: 
USDA, SPCL. 
 

1.1.7.4. Frosty pod disease 

Frosty pod (Figure 16) was once a disease of cocoa that occurred only in the coastal 

hill region of Ecuador (Phillips-Mora, 2003). The fungus that caused the disease was 

placed in the genus Monilia, and was designated Monilia roreri (Phillips-Mora, 

2003). The disease has carried different names such as Quevedo disease, frosty pod, 

helada, hielo, moniliasis, podredumbre acuosa, watery pod rot and Monilia pod rot. 

There is speculation that the pathogen evolved from some unknown source in the 

rainforest of coastal Ecuador, and spread subsequently into western Colombia. 
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Phillips-Mora (2003) reviewed the taxonomy of the pathogen of frosty pod and 

showed that the valid name for the pathogen is Moniliophthora roreri, the name 

selected by Evans (1978). They proposed a close relationship between C. perniciosa 

and M. roreri mainly because they are both basidiomycete species and recent 

molecular-biological studies show that C. perniciosa and M. roreri are sister taxa that 

belong in the Marasmiaceae (Aime and Phillips-Mora, 2005). 

 

 

 

Figure 16.  Frosty Pod caused by Moniliophthora roreri  
Photo: USDA, SPCL. 

 

1.1.7.5. Vascular streak dieback 

Vascular streak dieback caused by the fungus Oncobasidium theobromae is a problem 

in South and Southeast Asia (Wood and Lass, 2001). It attacks the vascular tissues, 

which transport water and nutrients around the plant. New shoots of infected plants 

rarely grow more than 20 cm before dying. Vascular streak dieback is distinct from 

other dieback diseases and was given the name because of the brown streaking of the 

vascular tissues in diseased plants. The only known host of the pathogen is cocoa 

(Purdy et al., 1998). 
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1.1.7.6. Cushion galls 

This disease is characterized by distortions of flower cushions (Hardy, 1960; Thomas, 

1973). Usually the cushion is stripped of its potential to produce normal flowers, or it 

produces only a few flowers that do not set pods. Hutchins and Siller (1960) studied 

cushion gall and discussed the symptoms that developed from infection by the fungal 

pathogen, Nectria rigidiuscula (Fusarium decemcellulare. The disease is controlled 

by simple removal and burning of infected trees (Hardy, 1960).  

 

1.1.8.  Insects associated with cocoa dieback 
disease and their management 

 
1.1.8.1. Mirids  

Of the more than 1500 species of insects and mites recorded as minor and major pests 

of cocoa, mirids are the most important (Entwistle, 1972). They are commonly 

associated with fungal diseases, including tree cankers and pod rots. The association 

with mirids simply involves creation of an infection point through wound lesions. 

Cocoa is infested throughout the world by mirids and forty species are known 

(Entwistle, 1972). They all belong to the subfamily Bryocorinae, which is separated 

into two tribes, Monaloniini or Odoniellini. The Monaloniini include the two genera, 

Helopeltis and Monalonion, whilst the Odoniellini include the eight genera Boxia, 

Boxiopsis, Bryocoropsis, Distantiella (Figure 17), Odoniella, Platyngomiriodes, 

Pseudodoniella and Sahlbergella. Distantiella theobroma (Dist.), Sahlbergella 

singularis Hagl., Bryocoropsis laticollis Schum and  Helopeltis species are the main 

mirids occurring on cocoa in West Africa (Squire, 1947), but the most important are 

D. theobroma and S. singularis.   
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Figure 17. Adult female mirids: A = Distantiella theobroma B = Sahlbergella singularis.  
Photo: Nick Jessop. Bar = 1 mm. 
 

A 

B 
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1.1.8.1.1. Biology and ecology of mirids  
 
Mirids feed on unhardened plant tissue by piercing and sucking plant sap. The 

components of the mouthparts are the same as the mandibulate type but highly 

modified to form a system of sharp, elongated piercing organs (stylets) and tubes for 

drawing up liquid food. The mandibles and maxillae form the needle-like stylets that 

are protected by a sheath formed from the labium. The whole is called the proboscis 

or rostrum and measures about 3 mm in length. When the stylets are inserted into the 

plant the sheath folds outwards. The stylets are grooved and arranged in such a way 

that saliva is injected down one tube into the tissue while plant juices are sucked up a 

separate tube. The proboscis extends underneath the body when not in use.  

 

The life history as well as a detailed morphological study of all stages of mirids has 

been worked out by Cotterell (1926, 1943) and Entwistle (1965). Adult females, with 

their saw-like ovipositor, insert their eggs into pods and stems. They bury their eggs 

in plant tissue except for two hair-like filaments that arise from the end of the egg. 

Cobben (1968) considered the filaments to be bundles of isolated aeropyles, which 

open individually to the outside in the apical part of the horn. Each horn presumably 

encloses a single micropyle. The function of the horns is uncertain but Squire (1947) 

suggested that they draw moisture away from the operculum, thus presumably 

facilitating respiration. Mating takes place readily in captivity and has been observed 

to last from one to two hours. The low numerical levels, even at peak mirid 

populations, suggest a chemical attractant must be involved (Cotterell, 1926). Males 

of D. theobroma were attracted to cages containing females but not to cages 

containing both sexes. On the other hand, olfactometer studies with this species using 

laboratory virgin adults, which had never flown, showed no indication of sex 

attractants (Anon, 1968).  

 

There are five juvenile stages called nymphs. During the last three stages, the wings 

do not fully develop until the adult stage. The time to egg hatch varies from 13-17 

days whilst each of the nymphal stages may last from 3-6 days. Adult females begin 

to lay eggs about a week after emergence and may lay 30-40 eggs each. There are 
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insufficient accurate data on the duration of adult longevity due largely to the 

difficulty of maintaining mirids in captivity. However, most sources suggest that 

adults of both D. theobroma and S. singularis live for less than one month. On cut 

shoots of Ceiba pentandra in water, a mean adult longevity of 16.6 days and a mean 

fecundity of 100 eggs (maximum of 276 eggs) have been recorded for D. theobroma 

in Ghana. With S. singularis on stems of cocoa in water, a mean of 57 days and 

maximum of 179 eggs have been noted (Anon, 1969). If food is available and the 

climate is favourable, they breed throughout the year. Longevities have been recorded 

of 7 to 42 days (mean 24.5 days) and 24 to 32 days (mean 28.0 days) for male and 

female S. singularis on the fruit of Desplatsia dewevrei under ambient environmental 

conditions in the insectary. Mirids do not appear to feed during the heat of the day, 

but rest at the fork and branch unions on the underside of pod stalks, in other 

protected situations, and are relatively inactive. Patterson (1914) stated that feeding 

does not begin until 5.30 p.m. unless conditions are dull and wet. If the morning is 

sunless, they may feed to 10 a.m.  

 

There are generally low population densities of mirids on cocoa but highest numbers 

occur after the abatement of the major rains. In West Africa, mirids have a distinct 

population cycle with minimum numbers occurring in the period February to July and 

maximum numbers from August to January, the position of the maxima and minima 

varying somewhat from year to year (Entwistle, 1965; Padi and Adu-Acheampong, 

2003). It has been suggested that humidity has a direct influence on population 

changes in West Africa. (Gibbs et al., 1968). The preference of S. singularis fifth-

instar nymphs in laboratory experiments is for high humidity (90 to 95 %) and a 

temperature (in saturated air) between 18.5 to 23.5 ˚C (Prins, 1965). Choice 

experiments demonstrated the dominance of the light response over that of humidity, 

dark situations being chosen irrespective of humidity levels. In view of the 

susceptibility of mirid nymphs to desiccation, this is a striking result and may well 

indicate that concealment from predators is of more importance than protection from 

desiccation (Entwistle, 1972). Its bearing on aggregation of mirids on the tree is 

obvious but its significance, if any, to inter-tree distribution is uncertain.  

 

Although individual trees may develop high populations, mirids are not particularly 

numerous on a typical cocoa farm. An average of as few as 112 mirids per ha is 
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capable of causing very serious damage to cocoa trees (Collingwood, 1971). It is often 

a source of confusion that such low numbers of mirids should be associated with so 

much damage. This confusion arises partly because the damage is most impressive 

after peak numbers have passed and partly because peak numbers are genuinely small 

compared with many other types of insect pests.  

 

1.1.8.1.2. Symptoms and damage 
 
Mirid feeding lesions on pods and shoots (Figure 18 and 18) provide entry points for 

spores of pathogenic fungi notably F. decemcellulare and L. theobromae. The insect 

itself is not necessarily the source of the pathogens. In Ghana, Crowdy (1947) 

described a characteristic dieback with three distinct zones in the xylem. The blackish 

grey dead wood contained both F. decemcellulare and L. theobromae; the more 

recently infected zone contained only F. decemcellulare while the straw-coloured, 

water-soaked line separating the infected area from the healthy xylem, rarely 

contained any fungus. Owen (1956) found that such a zonation was not always 

evident, and although F. decemcellulare was often isolated, it was not always.  

 

 
 

 

 

 

 

 

 

 

 

 

Figure 18. Mirid feeding lesions (brown spots) on pods. Photo: Nguessan.  
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  Figure 19. Mirid stem canker on a cocoa tree. Photo: R. A-A. 
 

 

Canker and dieback are the result when F. decemcellulare and L. theobromae invade 

feeding lesions (Cotterell, 1927; Crowdy, 1947). Estimates of the extent of infection 

of lesions by F. decemcellulare in Ghana vary from 80 to 100 % (Hammond, 1957). 

Fungal infection is not associated only with mirid attack, but may enter through 

wounds of any kind. From the primary lesion, the fungus invades the xylem, phloem, 

and medullary rays, with the mycelium confined mainly to lignified tissue. Infected 

lesions are healed by a growth of callus tissue from the edges, which eventually 

occludes an area of severely damaged cells in the xylem (Crowdy, 1947). The affected 

area is recognized by the overlying bark being characteristically rough. The roughness 

persists for many years and F. decemcellulare has been found occluded beneath as 

much as 7.5 cm of living tissue (Crowdy, 1947). The significance of F. 

decemcellulare lies in the fact that it is a weak parasite, which can be occluded by 

new growth in healthy trees where it can be dormant for many years only moving into 

an active phase when the tree becomes weakened. Mirids can kill only young green 

shoots and such damage is restricted to periods of flush when this type of tissue is 

present. Young cocoa is particularly susceptible to mirid attack. Thus, mirids make 
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cocoa difficult to establish and can delay the time for it to come into bearing by 

several years. In West Africa, there are two predominant patterns of mirid attack 

known as the ‘capsid blast’ and ‘capsid pockets’ (Figure 20).   

 

 

 

 

 

Figure 20. Cocoa trees showing leaf blast and dieback on cocoa farms following fungal infection. 
Photos: A, R. A-A; B, Nguessan. 
 

‘Blast’ is recognized by a concentration of attack on fan branches, which results in 

their death. The dead leaves remain attached to the trees for some time and give a 

characteristic scorched or blasted appearance. In Ghana, blast is mostly a dry season 

phenomenon (January-March) and may have very little effect on the tree. In areas 

where the overhead shade is less dense, degradation of the cocoa canopy itself has 

consequences that are more serious. ‘Pockets’ occur when the canopy of trees, up to 

around one hundred in number, is strongly degraded by intensive feeding on fan 

branches. If damage persists, trees in the pocket cease to yield and finally die.   

 

Williams (1953) found that ‘capsid pockets’ were frequently initiated by shade trees 

falling and breaking the cocoa canopy. Chupon growth was thus encouraged, 

providing ideal conditions for rapid multiplication of mirids. Stag-headed trees result 

from the death of the crown following persistent mirid feeding and F. decemcellulare 

dieback on fans and shoots, with mainly dead canopy branches remaining. By total 

A B 
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loss of the canopy remnants, the bare pole stage is reached. The trunk of such trees 

may have many weak outgrowths.  

 

Damage is not uniformly distributed and severely damaged and healthy trees may 

occur together. Posnette (1943) found that certain trees appeared to be susceptible to 

mirid attack while others seemed tolerant, but none of these selections maintained its 

field behaviour under laboratory conditions.  

 

Mirids on pods feed largely in the parenchymatous husk tissue but the depth of stylet 

penetration is not known. Cherelles (new pods) may wilt, and pods less than three 

months old have very little chance of surviving, usually dying from mirid damage or 

from fungi entering the pods through the lesions (Gerard, 1968). In West Africa, crop 

losses resulting from this are believed to be negligible because the tree compensates 

by shedding fewer fruits by cherelle wilt. Well-grown pods seldom seem directly 

affected. A comparison between ripe pods that had been heavily attacked (more than 

half the surface blackened by feeding) by S. singularis in Nigeria and clean pods 

revealed no significant differences in dimensions, pod weight, number of beans or 

weight of peeled beans.  

 

1.1.8.1.3.  Host range  
 

Distantiella theobroma and S. singularis are native to West Africa. Since cocoa is not 

indigenous to the region, it is believed that mirids originally fed on native trees 

(Leston, 1970; Entwistle, 1972), and with the introduction of cocoa, which proved 

more nutritious, switched from the wild plants to cocoa (Leston, 1970). Entwistle 

(1972) has listed alternative host plants for the different cocoa mirids.  

 

1.1.8.1.4.  Geographic distribution 
 
Entwistle (1972) has given a good account of the distribution of cocoa mirids. 

Sahlbergella, Distantiella, Bryocoropsis, and Odoniella occur only in West and 

Central Africa. In Cote d'Ivoire, D. theobroma was said to form about 15 % of the 

mirid population (Lavabre et al., 1963). In Nigeria, it constituted only 3 % of all mirid 
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collections and is largely restricted to the Western Region (Entwistle, 1964). In the 

Cameroon, D. theobroma has been reported in the proportion of 1:140 (D. theobroma: 

S. singularis) (Lavabre, 1957). In the Central African Republic, it was rare (Boulard, 

1967).  

 

1.1.8.1.5.  Economic impact of attack 
 
 Attempts to estimate losses due to mirids are always complicated by the inadequacy 

of records and the complexity of losses from other causes such as fungus and virus 

diseases and physiological dieback (Entwistle, 1965; 1972). However, crop losses in 

Ghana were estimated at 60,000 to 80,000 tons of dry cocoa (i.e. about 25 %) in 1957.  

 

1.1.8.1.6.  Mirid control methods  

Biological control  

The need for a permanent, cheap, and effective control for cocoa mirids led 

entomologists to search for natural control agents. Unfortunately, mirids have very 

few effective natural enemies with only some 20 parasitoid and predator groups being 

recorded (Entwistle, 1972). There is no known effective mirid predator or parasitoid 

except casual predation of accidentally exposed nymphs by the ant Oecophylla 

longinoda (Leston, 1970). The predatory ants fall into three, canopy-nesting ants 

(Oecophylla, Crematogaster and Macromischoides) and two ground or stump nesting 

ants (Pheidole and Platythyrea). A salticid spider, Plexipus paykulli, has also been 

recorded, and Reduviid predators include Rhinocoris obtusus Beau. and R. carmelitis 

Stal. Parasites include Euphorus sahlbergellae Wlk., Euphorus helopeltides Ferr. and 

Encyrtus cotterelli Watson (Hymenoptera: Encyrtidae). A number of these were once 

eagerly sought in Ghana as biological control agents (Lodos, 1968; Entwistle, 1972; 

King, 1971), but the benefits were doubtful even when these predators and parasites 

became established. They are therefore no specific natural enemies of mirids. 

 

Chemical control of mirids in Ghana  
Cocoa dieback management in W. Africa largely involves the use of conventional 

insecticides against mirids (Padi and Owusu, 2001), as a great deal of the research on 
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mirid damage control focuses on control of the insect, rather than on any associated 

pathogen. No methods have been developed over the past 50 years for control of F. 

decemcellulare or Lasiodiplodia since Crowdy (1947), and Owen (1956) measured 

pathogenicity of the fungus in W. Africa. Long-residual insecticides such as dieldrin, 

aldrin and γ-BHC (Entwistle, 1972) were used in the middle of the last century. 

Although two to three applications could control mirids for over a year in the early 

days of their use, the combination of resistance build-up and governmental restrictions 

on the use of persistent chlorinated hydrocarbons led to a changeover to carbamates, 

newer nitroguanidines, and pyrethroids, such as promecarb, imidacloprid and 

bifenthrin, respectively (Padi and Owusu, 2001). These, however, also pose problems 

as chemical control is not an environmentally friendly option and consumers are 

conscious about residues. Input costs are increasing, which are not conducive to 

increasing profitability. Non-chemical mirid control measures as part of an integrated 

pest management strategy are therefore essential for the success of the crop. Recent 

studies on the use of sex pheromones, botanical pesticides and myco-insecticides offer 

hope for the future (Padi et al., 2001). 

 

1.1.9. Prospects for the use of host plant 
resistance for the   control of mirid-related 
dieback of cocoa 

 
West Africa produces about 70 % of the world’s cocoa but the region suffers from 

severe disease and pest attack notably by Phytophthora species and mirids. Mirid 

related dieback is estimated to cause annual economic losses of several million dollars 

in Ghana alone, and the higher losses are slowing farmers’ interest in cultivating the 

crop. Further, as such losses of produce from disease are serious enough to warrant 

the application of pesticides, the possibility of contamination of the environment. In 

2007, the government of Ghana spent ¢ 479.91 billion (USD 51 million) for the year’s 

Cocoa Diseases and Pests Control (CODAPEC) programme (The Ghanaian Observer, 

Wednesday, June 06 2007). Breeding plants for resistance to pathogens is another 

form of biological pest control where researchers look for genetic traits that reduce a 

plant’s susceptibility to attack or injury by its pathogens. Disease resistance is a 

fundamental component in IPM and sustainable agriculture. The idea is not new and a 
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number of examples have been described including leaf blights in maize, late blight in 

potatoes, rice blast, stripe rust of wheat, rust in groundnut and powdery mildew in 

barley (Jacobs and Parlevliet, 1993).  

 

Following the chemical revolution of the early 20th Century, research into alternative 

control measures for plant diseases, prompted by environmental concerns, has shifted 

from pest control utilising chemicals towards more sustainable methods including 

biological controls, genetic resistance, integrated pest management (IPM) and natural 

products (Cook and Baker, 1996). Current interest in host plant resistance in cocoa 

stems from environmental and socioeconomic policy concerns including global 

climate change, local air and water quality, pesticide residues and security of cocoa 

supply. Resistant cocoa germplasm will provide good yields at minimal costs with no 

adverse effects on non-target organisms and zero pesticide residues. Further, the 

environment with greater biodiversity of both plants and animals will likely provide 

ecosystems with greater resiliency. In that case, the cocoa supplies system will be 

more secure. 

 

1.2. Overall thesis objective:  
The overall objective of this thesis was to evaluate responses of some cocoa 

genotypes to infection in terms of dieback disease and necrotic canker caused by F. 

decemcellulare and other pathogenic fungi. To be able to engage the problem, 

detailed studies of the different pathogens and their genetic diversity, along with 

assessments of their pathogenicity was needed.  Specifically, an understanding of the 

following questions was needed: How many pathogenic species are involved with 

dieback and canker? Are the different species equally pathogenic, and does 

aggressiveness change allowing a particular species to overcome others at a particular 

circumstance? How do environmental conditions affect the pathogenicity of the 

isolates? What will be a suitable and reliable method of artificial inoculation? Finally, 

to understand the reaction of different cocoa genotypes to infection and to select 

resistant plants, knowledge of some resistance variables was needed, including 

incubation period, rate and direction of fungal spread within the plant, time course of 

development of necrotic lesions and dieback severity.  Several million Ghanaian cedis 

are spent annually on controlling dieback disease through the national mass-cocoa 
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spraying programme (against mirids), and therefore, the selection of resistance clones 

is critically needed now more than ever. 

1.2.1. Thesis outline 
 
The study was aimed at sustaining West African cocoa breeding programmes with 

respect to resistance to Fusarium decemcellulare and Lasiodiplodia theobromae, the 

causal agents of dieback disease with the view to minimising pesticide use. Chapter 1 

is a review of the general literature accumulated over the past 100 years on fungal 

diseases of cocoa, dieback disease, F. decemcellulare, L. theobromae and mirid 

insects. It was necessary to review the present knowledge about F. decemcellulare 

and L. theobromae-cocoa interaction to gain insight into the problems of breeding for 

dieback disease control. The review covers all aspects pertaining to the cocoa ecology 

and production, F. decemcellulare and L. theobromae taxonomy and pathogenicity. 

Chapter 2 reports work in the laboratory and the greenhouse on the morphological 

variability and pathogenicity of isolates obtained from diseased cocoa trees. Chapter 3 

deals with the genetic diversity within and between the different isolates. Chapter 4 

explains the reaction of a range of cocoa clonal genotypes to infection by F. 

decemcellulare and L. theobromae and shows the results of laboratory and greenhouse 

methods and their use in identifying resistant clones. Inoculation techniques initially 

developed in late 1940s and ‘50s were improved and used to screen cocoa in 

greenhouse tests. From the laboratory and greenhouse screenings, which were carried 

out with some F. decemcellulare and L. theobromae isolates, a few resistant clones 

were identified, including CATIE 1000, T85/799, and MXC 76. The thesis concludes 

with a general discussion (Chapter 5). In this chapter the results from the previous 

chapters are reviewed, and their implications for cocoa dieback research and practical 

breeding for resistance to F. decemcellulare and L. theobromae are discussed.  
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2. Chapter 2 

2.1. Characterization and pathogenicity 
of isolates of Fusarium and 
Lasiodiplodia species from dieback 
lesions of cocoa in Ghana 

 

2.2. Introduction  
Fungal pathogens are very common on plants (Agrios, 2005) and they have assumed 

greater importance in both developed and developing countries particularly due to the 

increased intensity of agriculture and the introduction of highly improved planting 

materials. The hot-humid tropics and subtropics offer very conducive conditions for 

fungal disease spread. A group of ascomycete fungi that require wounds to infect, 

cause dieback of cocoa as mentioned in the preceding chapter. The technical 

presentation of this disease, though very typical of fungal infection, is often confused 

with insect disorders mainly due to the relationship between mirid feeding punctures 

and disease occurrence. This probably led to mismanagement of the disease in the 

past through uncontrolled application of broad-spectrum insecticides leading to 

resistance development in mirids (Dunn, 1963). This chapter presents results on 

morphological characterisation and pathogenicity of the causal pathogens of dieback, 

and the effects of drought and relative humidity on disease development in the 

greenhouse.  

 

By analogy with other disease complexes, variation in pathogenicity among the 

isolates could result from genetic differences between isolates of a single species or 

may stem from the presence of multiple species. The objectives of this chapter were to 

address the role and identity of the different fungi associated with dieback disease of 

cocoa in Ghana. Information needed includes (a) whether cocoa is infected by a fairly 

uniform and stable population of fungi, (b) whether this population can, under natural 

conditions, cause dieback disease of cocoa, (c) whether there are other fungi present 

which have not been identified because the cocoa that is grown is not susceptible, (d) 
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whether the isolates affecting cocoa in West Africa are the same as those attacking it 

in other regions (e) whether the fungal population can be determined as distinct on 

some simple independent basis such as colony morphology, temperature requirement, 

pathogenicity or growth rate? Answers to these questions would enable more realistic 

conclusion to be drawn on questions of relationship and biology of the pathogen 

populations. 

 

2.3. Materials and methods 

2.3.1.  Comparative isolation rates of different 
fungi from infected cocoa stems on different 
culture media 

 

Stems of cocoa trees measuring about 15 cm long from trees showing dieback 

symptoms were obtained from cocoa farms in the Eastern Region of Ghana. A 

modified procedure of Owen (1956) was used to isolate Fusarium and Lasiodiplodia 

theobromae from the infected cocoa stems. Four different media formulations were 

screened in initial trials, namely:  

a) Potato dextrose agar (PDA): as per manufacturer’s instructions 

PDA (Merck, Germany)   39 g 

    Distilled water  to   1 litre 

b) Potato carrot agar (PCA) 

    Grated potato    20 g 

    Grated carrot    20 g 

    Purified agar (OXOID®)  20g 

    Tap water to    1 litre 

c) Carnation leaf agar (CLA) 

    Fresh carnation leaves   20 g 

    Purified agar (OXOID®)  20g 

    Tap water to    1 litre 

d) Cocoa pod husk agar (CPHA) 

    Dry (chopped) cocoa pod husk 20 g 

    Purified agar (OXOID®)  20g 

    Tap water to    1 litre 
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All media preparations were sterilised at 121 ˚C for 15 min. The sterilised media were 

mixed thoroughly and poured into Petri dishes (20 ml per 9-cm plate). The infected 

stems were cut and sliced to smaller pieces, cleaned externally with 70 % ethanol for 

about 10 seconds followed by 0.5 % sodium hypochlorite for 1min. They were then 

rinsed in sterile de-ionized water and blotted dry on sterile paper towel prior to being 

placed in the Petri plates. The tissues were incubated at 30.0 ± 2.0 ºC with 12 hours of 

light and 12 hours of darkness for 14 days to isolate the pathogens and other 

endophytic organisms. Potato dextrose agar was taken as the standard medium for 

primary isolation and the others were compared with it. The efficiency of the four 

media used for isolation of the fungi was compared based on the extent of growth of 

the colonies on the plates.  

 

The geographic origin of the isolates is given in Table 4 (page 63). Isolates were 

identified provisionally, using standard mycological keys, and grouped into genera. 

One hundred and seventeen (117) Ghanaian isolates belonging to either Fusarium 

spp. (75 isolates) or L. theobromae (36 isolates) (Table 4) were obtained from the 

diseased stems. Four Fusarium isolates included in the samples evaluated were 

received as PDA cultures collected from cocoa in the Sefwi-Boako area of the 

Western Region of Ghana. These were stored on sterile PDA at 4 ºC.   

 

2.3.2.  Pure cultures from single spore isolates 
Each of the 117 isolates was treated as a separate individual. After confirmation of 

their vegetative structures, conidia were transferred to PDA slants and incubated as 

before. To obtain pure cultures from single spores, concentrations of spore 

suspensions were adjusted to approximately 10 spores per microlitre. A permanent 

marker was used to draw circles (about 3 mm diameter) on the bottom of each PDA 

plate (9 cm diameter). A 1.0 µl drop of the spore suspension was placed on the surface 

of the PDA above each circle. After incubation at 30 °C for 24 hours, each circle was 

inspected under a light microscope at × 100 magnification from the bottom of the 

plate. Those circles containing single germinating spores were marked and the spores 

in them transferred to fresh PDA plates. All isolates were stored as mycelium on PDA 

slants at 4 °C.  
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2.3.3.  Morphological Studies 

2.3.3.1. Colony and conidial morphology 

A total of 117 isolates were obtained from infected cocoa stems from the Eastern 

(Tafo) and Western (Sefwi-Boako) Regions of Ghana. Thirty-six were identified as L. 

theobromae from morphological features while the remainder produced Fusarium-

type spores (Leslie and Summerell, 2006). Two reference isolates of F. 

decemcellulare (IMI 380504 and IMI 361352) and one L. theobromae isolate (IMI 

333797) were obtained from the CABI Fungal Genetic Resource Collection. Dr Gary 

Samuels of the United States Department of Agriculture (USDA) also kindly provided 

two-reference Fusarium decemcellulare isolates (GJS 03-81 and GJS 01-170).   

 

A mycelial block about 5 × 5 × 5 mm was cut from the advancing margin of each 

single spore culture and placed in the centre of a Petri dish filled with PDA. Using the 

key of Nobles (1958), the macroscopic characters (colour, sector, border, and texture) 

of each colony were recorded at 24-hour interval until the colonies had reached the 

rim of the plate. Measurements of conidia from 20 to 25 observations per isolate were 

made with a light microscope at × 400 magnification. A count of spores was done in a 

haemocytometer (Fuchs-Rosenthal). For most measurements, 10 haemocytometer 

squares (0.25 × 0.25 mm) were counted per slide.  

 

2.3.3.2. Growth rate measurement of colonies 

To determine the linear growth rate of isolates, one 12-mm diameter plug of PDA 

with mycelium was removed from each of 7-day-old cultures using a sterile cork 

borer, and placed at the centre of a PDA plate, five replicates being made for each 

isolate. The five sets of each isolate were grown upside down in Petri plates to 

minimise moisture accumulation on the agar surface. The plates were incubated in 

darkness at temperatures ranging from 10 to 35 ˚C at 5 ˚C intervals. Mycelial growth 

measurements were recorded at 24-hour interval until one of the colonies had reached 

the border of the plate.  
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2.3.3.3. The longevity of conidia   

The longevity of the four reference isolates of F. decemcellulare and four isolates 

each of Fusarium spp. and L. theobromae were investigated in the laboratory. 

Colonies of the different isolates on PDA were kept in the incubator at 25 ˚C under 

cool white light and the viability of 100 macroconidia from each plate was examined 

by simple germination tests on microscope slides once every month.  

2.3.3.4. Competition in culture 

Isolates of F. decemcellulare, Fusarium spp. and L. theobromae were grown on PDA 

plates at 30 °C for two weeks. Plugs (5 mm diam.) were aseptically removed from 

actively growing colonies and transferred, singly or two or three fungi together, to 

plates of PDA. The plugs were placed at the centre of the plates when the fungi were 

singly grown, or at the corners of a triangle, 2 cm from the centre, when they were 

grown together. The experiment was run with 10 replicates. All plates were sealed 

with Parafilm and incubated at 30 °C in the dark. Growth of the colonies was 

measured daily for one week. 

 

2.3.4.  Greenhouse pathogenicity tests 
Three trials were conducted during 2006 and 2007 to test the pathogenicity of 

Fusarium species (including four reference F. decemcellulare isolates) and 

Lasiodiplodia isolates collected from field-infected cocoa trees from Ghana. Unless 

otherwise stated, observations of treated plants ended after 12 weeks. 

 

2.3.4.1. Plant materials and growth conditions 

Pods of the Amelonado cocoa variety were obtained from research plots at the Cocoa 

Research Institute of Ghana (CRIG). The seeds were washed under tap water, surface-

sterilized in 0.5 % sodium hypochlorite for one minute, rinsed in distilled water for 

five minutes, and air-dried for thirty minutes. The seeds were planted 20 mm deep 

into 50 cm × 50 cm plastic trays filled with autoclaved soil consisting of a 2: 2: 1 

mixture of multi-purpose compost, loam, and sharp sand. When the plants were at the 

true leaf stage (i.e. after 14 days), two seedlings were transplanted into 18 cm × 12 cm 
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plastic pots containing sterilised soil, and after 28 days, these were thinned to one 

plant per pot (Figure 21). Growing temperatures in the greenhouse ranged from 27 to 

45 during the day and 20 to 22 °C at night.  

 

 

 
Figure 21. Amelonado cocoa seedlings growing in the greenhouse. Photo: R. A-A. 
 

 

In the summer of 2006, the greenhouse compartment became overheated and it was 

essential to provide additional shading. This was achieved by transferring plants 

underneath the benches with large trays arranged on top of the benches. The plants 

were watered as necessary and, when needed, fertilized with ‘GrowMore’, a source of 

nitrogen, phosphorus and potassium. Pod husks were autoclaved before disposal. All 

seedlings were maintained in the greenhouse until fungal pathogenicity studies began. 

At the beginning of the study, all plants were two months old and had an average 

height of 32 ± 6 cm. Thus, Amelonado seedlings were used both for the pathogenicity 

tests as well as the rootstock for the cocoa genotypes discussed in Chapter 4, as this 

variety is known to be susceptible to both F. decemcellulare and L. theobromae 

canker under natural conditions (Owen, 1956). 
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In order to determine pathogenicity, four plants of Amelonado seedlings were tested 

for each isolate from diseased cocoa trees from Ghana and the five reference isolates 

from CABI and USDA. The plants were inoculated at two-month old using two 

alternative methods (i. scalpel wound-mycelium plug and ii. needle-wound conidial 

suspension inoculation). The fungal cultures (Fusarium species, F. decemcellulare 

and L. theobromae) were maintained for up to four months on PDA slants in a 

refrigerator at 4 ˚C before being transferred to new PDA slants. Fourteen days prior to 

inoculation, cultures were transferred from slant tubes to PDA plates. After 

inoculation and during the subsequent three days, potted plants were kept in a dew 

chamber at 27 ˚C. The experiment was conducted under high soil moisture and the 

surrounding air humidity in the greenhouse was maintained at 50 to 90 % by daily 

spraying with water. Isolates were considered non-pathogenic if no wilt symptoms 

occurred after 45 days in all plants inoculated with that isolate. 

 

2.3.4.2. Agar plug inoculation 

 
A small wound (5 mm2) was made on the stem of each seedling after surface 

sterilization with 70 % ethanol, by removing the bark and exposing the cambium. 

Mycelial plugs of similar size in mm overgrown with the test fungi were placed into 

each wound with the mycelium facing the cambium. Inoculated wounds were covered 

with Parafilm tape to prevent desiccation of the inoculum. For control inoculations, 

sterile PDA plugs were inserted into wounds on the stems of four plants.  

 

2.3.4.3. Spore inoculation 

 
Macroconidia from isolates (excluding those that did not produce visible symptoms in 

the agar plug inoculation described above) were harvested from ten-day old PDA 

cultures grown at 25 °C by flooding them with sterile distilled water containing 

0.025% Tween 20. Pycnidia of L. theobromae were crushed into the water. The 

resulting aqueous suspension of macroconidia was vortexed and serial dilutions made 

to the following concentrations, 1 × 103, 1 × 104 1 × 105 and 1 × 106 conidia per ml. 

The spore concentrations were determined using a Fuchs-Rosenthal haemocytometer 
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(depth 0.2 mm, ¹/16 mm2). These concentrations, with the addition of a sterile distilled 

water control, were inoculated into Amelonado seedlings (four plants per 

concentration) by puncturing the bark of the main stem with a needle and 10-µl 

inoculum injected with a syringe and needle into the small puncture of each seedling. 

The sites of inoculation were covered with strips of sterile moist paper towels or 

cotton wool and Parafilm to maintain high humidity. After inoculation, the plants 

were kept in a dew chamber for three days and were then transferred to the 

greenhouse at 23 to 27 ˚C and 60 to 90 % relative humidity for disease development. 

The minimum effective dose was defined as the lowest conidial concentration that 

produced dieback in 90 % of the plants relative to the control.  

 

In both the agar plug and spore inoculation tests, the treated seedlings were kept 

physically separated to avoid cross contamination. They were examined weekly for 12 

weeks to reveal differences in the development of dieback and internal stem necrosis. 

First, a diagrammatic scale consisting of four scores based on stem and crown death 

was used (Figure 22). In this scale, score 1 = plants with no visual symptoms, 3 = 

slight distortion of apical leaves and visible browning on leaves, or those that show 

signs of recovery 6 = isolated patches of dead leaves appearing half-wilted, half-

green, and score 9 = dead plant i.e. no green tissue left. Secondly, the stems were 

sliced and the visible internal dark-brown lesions most likely resulting from infection 

were observed and measured under magnification. Thirdly, the length of the 

incubation period was recorded. The experiment was set up in a randomized complete 

block design with four replicates and was repeated once. Isolates that caused neither 

wilt symptoms nor vascular necrosis were considered non-pathogenic and excluded 

from further tests. 
 

 

 

 

 

 

 

 

 

 

 



 59

 

Pictorial guide (1-9) score Damage to foliage and shoot 

 

1 No infection observable 

 

3 Wilting of lowest  leaves 

 

6 Foliage appears ½ wilted ½ green  

 

9 Leaves/stem dead - no green tissue left

    
Figure 22. A pictorial guide used for assessing the level of infection of inoculated plants. 
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2.3.4.4. Effect of relative humidity and soil moisture 

on disease development in Amelonado seedlings 

 
The effects of relative humidity (r.h.) and soil moisture on disease development were 

studied using four isolates, AC371, AC845, IMI380505 and IMI361352. Two month-

old Amelonado cocoa seedlings were inoculated with 10 µl of spore suspension per 

plant (at a concentration of 1 × 106 conidia per ml). The experiment was conducted in 

two adjacent greenhouse compartments (8.5 × 7.5 m) designated as high and low r.h. 

environments. Both environments had two groups of plants. One group received high 

soil moisture, the other low soil moisture. The greenhouse was misted each morning 

with a hose misting system and pots watered every other day with tap water. In the set 

of plants maintained at low soil moisture, water deficit was achieved by withholding 

water two weeks prior to, and two weeks after inoculation and then supplementary 

water provided to maintain the plants at approximately the same level of stress. Each 

treatment was replicated five times. An Oregon scientific thermo hygrometer MPT 

1340 was installed to monitor temperature and humidity conditions in each 

compartment. Temperature was controlled by an automatic venting system. The 

incubation period and the number of plants showing signs of disease were recorded at 

the end of the trial (i.e. 4 weeks after inoculation).  

 

2.3.4.5. Effect of route of entry, inoculum type and 

plant part on disease development in 

Amelonado seedlings 

 

The principles underlying these experiments were similar to those discussed above for 

the effects of relative humidity and water deficit but the methods used differed. The 

top three fully expanded leaves were inoculated with 10 µl of macroconidial 

suspension (1 × 106 per ml in sterile distilled water) of four isolates, AC371, AC845, 

IMI380505 and IMI361352 using a micropipette. Leaves were inoculated by applying 

the spore suspension or agar to needle wounds on the under surface of each leaf. For 

agar plug inoculation, the petiole or pulvinus was wounded with a needle, and 
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inoculated with a small block of fungal mycelium. As a control, leaves were treated 

with sterile distilled water or sterile agar only. As described above, the plants were 

placed inside a dew chamber for three days to maintain a saturated environment 

favourable for infection then subsequently returned to the greenhouse. Pathogenicity 

to leaf petioles and pulvini, under the same conditions as those used for the leaf 

inoculation, was also studied.  

 

2.3.4.6. Inoculation on stem and leaf discs 

 
A laboratory in-vitro test involved freehand stem sections (2 mm thick,  3-4 mm 

diameter) and detached leaf discs (12 mm diameter discs punched out with a sterile 

cork borer) (Figure 23). The stem sections and leaf discs were washed in 70 % ethanol 

for 5 to 10 seconds, followed by 0.5 % sodium hypochlorite for 1 minute, washed 

three times in distilled water, blotted dry, and transferred (lower leaf surface up) to a 

special transparent cover box (28.5 × 15.5 × 8.5 cm) lined with moist tissue paper to 

maintain a near-saturated atmosphere. Spore suspensions were prepared separately for 

the four isolates in sterile distilled water in a test tube as described above, agitated for 

one minute with a Vortex mixer, and the concentration for each isolate adjusted to 1 × 

106 macroconidia per ml. The stem sections and leaf discs were inoculated with 5 µl 

of spore suspension using an Eppendorf micropipette. As a control, stem sections and 

leaf discs were treated with 5 µl of sterile distilled water. Inoculated tissues were 

incubated under high humidity at room temperature and observed for the growth of 

mycelium. For light microscopy, leaf discs were cleared with a saturated solution of 

chloral hydrate and stained with cotton blue in lactophenol. 
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Figure 23. Set-up of in-vitro leaf discs and stem section inoculation using spore 
suspension. 
 

2.3.4.7. Re-isolation of pathogens from inoculated plants 

 
Isolations were made from cankers on samples of seedlings to determine whether the 

disease had been caused by the inoculated fungi. This was done by cutting infected 

plant tissue both above and below the wound, into a number of stem segments, and 

surface sterilizing them in 70 % ethanol for 5 to 10 seconds, followed by 0.5 % 

sodium hypochlorite for one minute, and washing three times in distilled water. The 

plant cuttings were plated on PDA and the plates were checked at intervals.  

 

2.3.4.8. Data analysis 

Whenever possible, ANOVA, regression and Kruskal-Wallis non-parametric tests 

were applied to the data, and Least Significant Difference test (P ≤ 0.05) used to 

determine the differences between isolates. All statistical analyses were performed 

using the Statistical Package for Social Sciences (SPSS), Minitab, Microsoft Excel 

and R. 
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2.4. Results 
2.4.1. Pathogen isolation and description 

A total of 117 specimens from the infected stems (including the four PDA cultures 

from Ghana) were grown for two weeks on PDA and the different colonies were 

subcultured for purity. Microscopic examination showed that 81 isolates were 

Fusarium spp. while 36 were L. theobromae based on colony and conidial 

morphology of the reference isolates (Table 4). Figure 24 illustrates the relative 

frequencies with which the main fungi associated with dieback disease were 

recovered from diseased cocoa trees from Ghana in 2005. Fusarium spp. was the 

primary group from the diseased trees followed by L. theobromae.  Lasiodiplodia 

theobromae was the single most isolated species from the canker lesions found in 

cocoa from the Eastern Region of Ghana. This fungus is known to cause cankers and 

dieback on a wide range of woody hosts, and although not closely related to 

Fusarium, it produced cankers and dieback on cocoa visually indistinguishable from 

those produced by the Fusarium isolates.  In general, Fusarium spp. were found in 

plants that were also infected by L. theobromae, but they were significantly more 

abundant than L. theobromae. No cultures corresponding to reference isolates of F. 

decemcellulare were found. This study provides the first evidence that species of 

Fusarium other than F. decemcellulare also cause dieback disease in cocoa seedlings. 

As shown in Table 5 below, all the isolates grew on all the four media tested, but they 

grew best on PDA followed by PCA medium. Cocoa-pod-husk agar and CLA 

generated lower numbers of fungal colonies which grew more slowly.  

 

When PDA plates were subcultured via spores, both F. decemcellulare and Fusarium 

spp. retained their pinkish-red to creamy-white characters but they lost a great deal of 

their colour after successive subculturing on PDA by mycelial transfer. The associated 

loss of pinkish or creamy coloration over generations varied among the isolates, but 

examination showed that conidial cultures were consistently more uniform based on 

their colour than when the colonies were developed from mass agar transfers. Usually 

the colours of the latter changed from creamy-white to white.   
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Table 4. Characteristics of Fusarium decemcellulare, Fusarium spp. and Lasiodiplodia 
theobromae isolates on PDA 

Morphological characteristics 
Fungus Isolate Geographic origin 

Colony colour *Conidium length a  ± 
s.e. 

*Conidium width a ± 
s.e. 

F. decemcellulare 
 
 
 
Fusarium species 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lasiodiplodia species 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IMI 380504 
IMI 361352 
GJS 03-81 
GJS 01-170 
AC 037 
AC 110 
AC 120 
AC 174 
AC 197 
AC 206 
AC 229 
AC 255 
AC 276 
AC 284 
AC 328 
AC 330 
AC 402 
AC 451 
AC 593 
AC 638 
AC 656 
AC 705 
AC 773 
AC 914 
AC 317 
AC 511 
AC 787 
AC 806 
AC 031 
AC 392 
AC 748 
AC 767 
AC 076 
AC 211 
AC 219 
AC 361 
AC 551 
AC 580 
AC 739 
AC 768 
AC 995 
IMI 333797 
AC 008 
AC 036 
AC 064 
AC 068 
AC 280 
AC 318 
AC 322 
AC 329 
AC 360 
AC 371 
AC 375 
AC 383 
AC 407 
AC 450 
AC 492 
AC 536 
AC 564 
AC 568 
AC 581 
AC 640 
AC 644 
AC 680 
AC 742 
AC 810 
AC 845 
AC 857 
AC 972 
AC 220 
AC 420 
AC 456 
AC 487 
AC 496 
AC523 
AC 639 
AC 673 
AC 718 

Ghana 
Malaysia 
Brazil 
Cameroon 
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Western, Ghana  
Western, Ghana  
Western, Ghana  
Western, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Nigeria 
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  
Eastern, Ghana  

Pinkish 
Pinkish 
Pinkish 
Pinkish 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Creamy-white 
Pinkish-white 
Pinkish-white 
Pinkish-white 
Pinkish-white 
Pinkish-white 
Pinkish-white 
Pinkish-white 
Pinkish-white 
Pinkish-white 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 
Grey to black 

66.00 ± 0.086 
66.00 ± 0.106 
66.22 ± 0.065 
65.85 ± 0.117 
39.77 ± 0.074 
37.90 ± 0.044 
37.97 ± 0.065 
37.85 ± 0.062 
38.92 ± 0.039 
36.57 ± 0.101 
38.45 ± 0.092 
37.80 ± 0.074 
35.87 ± 0.048  
36.77 ± 0.074 
38.90 ± 0.044 
34.80 ± 0.074 
39.90 ± 0.044 
38.80 ± 0.074 
38.85 ± 0.071 
37.97 ± 0.042 
35.92 ± 0.039 
38.85 ± 0.062 
38.87 ± 0.059 
37.82 ± 0.073 
41.92 ± 0.063 
41.97 ± 0.042 
41.90 ± 0.057 
41.87 ± 0.059 
42.92 ± 0.063 
41.85 ± 0.071 
42.02 ± 0.065 
43.97 ± 0.065 
61.80 ± 0.074 
59.95 ± 0.078 
58.05 ± 0.069 
62.02 ± 0.065 
60.95 ± 0.060 
60.87 ± 0.069 
58.85 ± 0.062 
61.84 ± 0.078 
60.87 ± 0.059 
22.44 ± 0.133 
22.02 ± 0.065 
21.90 ± 0.057 
21.97 ± 0.082 
21.92 ± 0.095 
22.05 ± 0.048 
22.10 ± 0.067 
22.07 ± 0.053 
22.05 ± 0.060 
22.00 ± 0.100 
22.10 ± 0.067 
22.05 ± 0.085 
21.95 ± 0.069 
22.12 ± 0.085 
22.05 ± 0.048 
22.12 ± 0.059 
22.07 ± 0.053 
22.17 ± 0.063 
22.12 ± 0.063 
22.05 ± 0.048 
22.17 ± 0.063 
22.05 ± 0.048 
22.02 ± 0.065 
22.20 ± 0.054 
22.27 ± 0.074 
22.07 ± 0.053 
22.07 ± 0.039 
22.15 ± 0.062 
22.17 ± 0.053 
22.27 ± 0.074 
22.17 ± 0.063 
22.10 ± 0.057 
22.12 ± 0.048 
22.05 ± 0.048 
22.15 ± 0.062 
22.20 ± 0.065  
22.20 ± 0.054 

9.10 ± 0.044  
9.10 ± 0.057 
9.25 ± 0.055 
9.12 ± 0.048 
3.17 ±  0.055  
3.42 ± 0.053 
3.30 ± 0.067 
3.36 ± 0.062 
3.20 ± 0.057 
3.47 ± 0.048 
3.22 ± 0.055 
3.50 ± 0.044 
3.35 ± 0.051 
3.43 ± 0.053 
3.27 ± 0.048 
3.50 ± 0.044 
3.02 ± 0.039 
3.41 ± 0.044 
3.32 ± 0.039 
3.35 ± 0.033 
3.22 ± 0.039 
3.40 ± 0.044 
3.42 ± 0.039 
3.31 ± 0.044 
3.65 ± 0.033 
3.47 ± 0.042 
3.42 ± 0.039 
3.50 ± 0.044 
3.15 ± 0.048 
3.32 ± 0.039 
3.30 ± 0.060 
3.02 ± 0.065 
4.67 ± 0.048 
4.02 ± 0.065 
3.97 ± 0.042 
4.25 ± 0.033 
4.95 ± 0.033 
5.03 ± 0.033 
4.90 ± 0.044 
4.55 ± 0.048 
4.50 ± 0.044 
12.25 ± 0.119 
12.10 ± 0.156 
11.90 ± 0.057 
12.02 ± 0.042  
11.97 ± 0.065 
12.00 ± 0.061 
12.07 ± 0.063 
12.05 ± 0.048 
12.02 ± 0.055 
12.02 ± 0.065 
12.10 ± 0.067 
12.10 ± 0.057 
11.97 ± 0.065 
12.07 ± 0.053 
12.05 ± 0.048 
12.10 ± 0.057  
12.05 ± 0.048 
12.10 ± 0.044 
12.15 ± 0.062 
12.02 ± 0.042 
12.17 ± 0.063 
12.00 ± 0.061 
12.00 ± 0.070 
12.20 ± 0.054 
12.20 ± 0.074 
12.07 ± 0.053 
12.05 ± 0.048 
12.15 ± 0.062 
12.15 ± 0.062 
12.22 ± 0.074 
12.15 ± 0.071 
12.02 ± 0.055 
12.07 ± 0.063 
12.02 ± 0.055 
12.12 ± 0.069 
12.00 ± 0.061 
12.05 ± 0.069 

a All measurements are in µm; values are means of 20 macroconidial* measurements. 
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Figure 24. The frequency distribution (number of times isolated) of the different fungi in infected 
wood. FS = occurrence of Fusarium species; LT = occurrence of Lasiodiplodia species; FSLT = 
occurrence of both fungi in the same wood (n = 82). 
 

 

The colonies of the four F. decemcellulare accessions and those of the other Fusarium 

isolates were slow growing. The mycelium of F. decemcellulare was initially white 

then turning cream to pinkish-red due to a pinkish or reddish pigmentation produced 

in the agar (Figure 25). The cultures later produced yellow sporodochia from which 

droplets of exudates formed to give the colony a moist appearance. Microconidia were 

abundant in the aerial mycelia of younger colonies, and were oval to cylindrical, 

hyaline, typically thin walled and 0-1 septate. Macroconidia were hyaline, sickle 

shaped, generally 5 to 9 septate and 65.8 to 66.0 × 9.1 to 9.2 µm (Figure 26). The 

other Fusarium spp. produced fluffy creamy white to pink concentric-ringed colonies 

(Figure 27) and their macroconidia (3 to 6 septate) (Figure 28) measured 34.8 to 62.0 

× 3.0 to 5.0 µm (Table 4).    
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Figure 25. Colony appearance of 14-day old cultures of F. decemcellulare IMI380504.  
Photo: R. A-A 
 
 

 
Figure 26. Macroconidia of F. decemcellulare IMI380504. (Bar = 10µm) 
Photo: R. A-A 
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Figure 27. Colony appearance of 14-day old cultures from some Fusarium isolate cultures: A, 
AC748; B, AC511; C, AC110; D, AC995.  
 

 

 

 
Figure 28 Macroconidia of Fusarium sp. Isolate AC995 (bar = 10µm) 
Photo: R. A-A 

 
 

The Lasiodiplodia isolates on the other hand, presented little variation in mycelium 

colour. The colonies were fast growing (section 2.4.2) and, in a comparative study of 

features of growth and sporulation under light and dark conditions, L. theobromae 

colonies were dense with an appressed mycelial mat. The aerial mycelium was 

initially white, turning greyish with age under light conditions, or sooty black when 

grown in continuous darkness (Figure 29). Small black raised fruiting bodies 

A B 

C D 
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(pycnidia) of the fungus were produced in the presence of light and would develop as 

superficial outgrowths. They were mostly solitary, conical, cylindrical or roundish and 

shiny black. The young conidia of L. theobromae were hyaline and unicellular, and in 

shape, rounded to ellipsoidal. Mature conidia were two-celled, dark brown in colour 

(Figure 30), and measured 21.9 to 22.4 × 11.9 to 12.2 µm. The cultural characteristics 

of all 36 L. theobromae obtained from infected cocoa tissue from Ghana were similar 

on PDA and identical to reference isolate IMI333797 identified by CABI and spore 

dimensions were consistent between replicates and in daughter colonies. The observed 

characteristics conform to published descriptions of the species (Pavlic et al., 2004).  

 

 

 

    

          
 
Figure 29. Colony appearance of some Lasiodiplodia isolates grown  under 12hour alternating 
light and darkness. A, AC 008. B, AC 371. C, IMI 333797. D, AC 972. Photo: R. A-A. 
 
 

 

 

A B 

C D 
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Figure 30. Conidia of some L. theobromae isolates grown under light conditions. A, AC 371. B, 
IMI 333797. Photo: R. A-A. ( Bar =10 µm) 
 
 
 
Table 5. Suitability of different media for isolation and support of growth of different fungi from 
infected cocoa stems (n = 82). 

Growth on  Fungal isolates 

PDA PCA CLA CPHA 

Fusarium spp. 

L. theobromae 

++++ 

++++ 

+++ 

++++ 

+ 

+ 

++ 

+++ 

+ Poor colony; ++ moderate colony; +++ good; ++++ very good colony.  

2.4.2. Growth rate studies 
All isolates grew within the range 15 to 35 °C In general, radial growth rates in L. 

theobromae isolates were higher (14.75 mm per day) than in F. decemcellulare (1.50 

mm per day) or the other Fusarium spp. (2.00 mm per day). Overall, the different 

isolates studied had growth optima at 30 °C (Figure 31). Results from a mean of five 

replicates are presented in Figure 31 which are representative of the overall results of 

all the isolates on PDA at the temperatures studied (see Appendix 1).  

 

A B 
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Figure 31. Radial growth rates (mm per 24 hours) of fungi from cocoa stems. Mean 
of 5 replicates. Bar indicates standard error.  

 
 
 

2.4.3. The longevity of conidia in culture 
The results of spore germination tests on five isolates including isolates of L. 

theobromae, F. decemcellulare and the other Fusarium spp. at different aging times 

are given in Figure 32. Significant differences in conidial viability over time were 

detected for each of the isolates utilised in this study and there was a steady decline in 

spore germination. Loss of viability was approximately linear with time, (Figure 33) 

with 60 % viability at 3 months declining to <10 % at 6 months. All the fungi lost 

viability of conidia at similar rates.  
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Figure 32. Graph showing percentage germination of conidia on PDA over time (Bar indicates 
standard error).  

 
 
 
 

 
Figure 33. Pearson’s product-moment correlation of percentage spore germination of five isolates 
against longevity in months r = -0.9, t = -41.9688, df = 88, p-value = <2.2e-16; alternative 
hypothesis; true correlation is not equal to 0; 95 % confidence interval ranges from -0.9841157 to 
-0.9635682. 
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2.4.4. Competition between isolates in culture 
 
There was evidence of differential competition between L. theobromae and the two 

species of Fusarium when they were grown in-vitro on PDA plates. When singly 

grown, L. theobromae colonies grew faster than either single-grown F. 

decemcellulare or Fusarium spp. colonies. In dual culture, colonies of F. 

decemcellulare and Fusarium spp. grew at similar rates and each covered 50 % area 

of the PDA plate. Nevertheless, growth of both F. decemcellulare and Fusarium spp. 

colonies was halted when they approached a colony of L. theobromae (Figure 34). 

The margin of L. theobromae colonies then became thicker, with aerial hyphae 

forming a ridge-like barrier between the two following which L. theobromae 

eventually completely overgrew colonies of F. decemcellulare and Fusarium spp.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  Figure 34. Competition between isolates in culture (the creamy-pink spot 
 on the left plate is F. decemcellulare IMI380504 while that on the right 

plate is Fusarium spp. AC705. The dark spots to the right on both plates  
represent isolate Lasiodiplodia theobromae AC371).  

 
 
 



 73

2.4.5. Pathogenicity tests 

2.4.5.1. Mycelium plug inoculation test 

 
A total of seventy-eight isolates induced dieback symptoms on Amelonado cocoa in 

this preliminary test. The number included all 36 L. theobromae from cocoa, the 

reference L. theobromae isolate from CABI (IMI333797), four F. decemcellulare 

reference isolates, two each from CABI (IMI 380504 & IMI 361352) and USDA 

(GJS03-81 & GJS01-170).  The aggregate of Fusarium spp. contained relatively 

fewer pathogenic isolates (37 representing 45.6 %). Thus, forty-four of the Fusarium 

isolates produced neither visible nor systemic symptoms, as the inoculated plants 

grew at the same rate as the controls. Moreover, recovery experiments yielded no 

growth in culture, indicating that these fungi had not established in the plants. The 

number of days for symptom expression and dieback scores are shown in Table 6.  

Symptoms of disease were similar for the different fungi including wilting and 

drooping of leaves, browning of vascular tissue (Figure 35), and death of the apical 

shoot back into older tissue. Ultimately, the leaves dried and in some plants detached 

from the branches leaving a leafless stem. Lesions on main stems ranged from dark 

brown to black colouration at wounding sites of all inoculated plants and they spread 

both up and down the stem from the inoculation site, and the more pathogenic isolates 

could kill the plant in four weeks. On primary branches, however, lesions spread both 

up and down from inoculation sites but dieback occurred only on the inoculated 

branch. Lesions on these stems (branches) were dark brown to black in colour. Mean 

number of days for disease symptoms to appear (incubation period) and the severity 

of dieback were recorded for each isolate after 12 weeks (Table 6). Isolates with the 

greatest lesion size were considered most pathogenic whilst isolates with the smallest 

lesion size were considered least pathogenic. Isolates that produced neither lesions nor 

dieback were considered non pathogenic. An analysis of variance showed that there 

were significant differences among the isolates (P ≤ 0.05).  

 

The control plants and those plants inoculated with one Cephalosporium isolate and 

some 44 Fusarium isolates grew normally during the assay period. These healthy 

plants continued to produce new flush leaves and stem growth was visible. They 
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showed no symptoms of chlorosis, wilting nor canker formation and all re-isolations 

were negative. One other CABI isolate that was supplied as a Lasiodiplodia from 

mango (IMI297320) was non pathogenic and did not resemble the fungus in any 

respect. Overall re-isolation success was 80 % and included at least one successful 

recovery for each isolate. Failure to recover the pathogens was commonly associated 

with the presence of ‘contaminant’ microorganisms, principally Penicillium spp. that 

were also isolated from many wounds inoculated with sterile agar. Culturing of the re-

isolated fungi produced the same type of cultures as those from which the inoculations 

were made, and when they were re-inoculated onto healthy plants, they produced 

similar symptoms. It was assumed, therefore, that the disease observed on the 

inoculated plants was caused by the fungal isolates, satisfying Koch’s postulates. 

 

 

   
Figure 35. Internal tissues of an inoculated plant (left) and a control plant (right). 
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Table 6. Mean incubation period (inoculation to symptom appearance in days) and dieback 
incidence (present or absent) on 2 month-old Amelonado seedlings inoculated (agar plug) with a 
range of isolates of Fusarium and Lasiodiplodia. Data were taken 12 weeks after inoculation. 
 
Isolates Host of isolation Identity Days to symptom expression Dieback disease 

development1 
IMI 380504 
IMI 361352 
IMI 333797 
IMI 297320 
GJS03-81 
GJS01-170 
AC581 
AC375 
AC639 
AC680 
AC640 
AC742 
AC008 
AC857 
AC718 
AC523 
AC036 
AC845 
AC456 
AC496 
AC420 
AC673 
AC284 
AC593 
AC255 
AC197 
AC914 
AC110 
AC174 
AC705 
AC328 
AC402 
AC773 
AC768 
AC219 
AC739 
AC580 
AC211 
AC076 
AC551 
AC361 
AC451 
AC330 
AC037 
AC120 
AC229 
AC511 
AC317 
AC206 
AC787 
AC806 
AC845 
AC810 
AC220 
AC644 
AC748 
AC767 
AC392 
AC031 
AC068 
AC564 
AC972 
AC360 
AC280 
AC450 
AC371 
AC536 

Ceiba pentandra 
T. cacao 
Manihot esculenta 
Mangifera indica 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 

F. decemcellulare 
F. decemcellulare 
L. theobromae 
L. theobromae? 
F. decemcellulare 
F. decemcellulare 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
Fusarium 
Fusarium 
L. theobromae 
Fusarium 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 

16-20 
10-18 
7- 15 

 
7-17 

12-23 
6-10 
5-10 
6-12 
6-10 
6-10 
7-10 
8-13 
8-12 
9-13 
8-11 
7-13 

11-13 
11-16 
10-14 
11-16 
11-17 
7-14 
6-13 
8-14 

11-17 
7-12 
7-11 
8-18 
9-13 
8-10 
7-14 
7-16 
8-20 
9-17 
8-11 
8-17 
9-15 

10-16 
9-25 
9-19 

10-19 
9-15 
9-18 
9-14 
8-15 
8-12 
9-11 
8-12 
8-15 

10-14 
12-18 
11-15 
13-20 
13-16 
14-21 
10-17 
11-14 
11-14 
12-16 
11-16 
10-17 
12-15 
10-14 
11-17 
10-17 
12-16 

++ 
+++ 
+++ 

- 
+++ 
++ 

+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 

+ 
+ 
+ 

++ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+++ 
+ 
+ 

+++ 
++ 

+++ 
+++ 
+++ 
++ 
+ 
+ 
+ 

++ 
+ 
+ 
+ 
+ 
+ 

++ 
+++ 

+ 
+ 
+ 
+ 

+++ 
+ 

+++ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
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AC329 
AC568 
AC064 
AC492 
AC318 
AC656 
AC276 
AC322 
AC407 
AC383 
AC296 
AC714 
AC274 
AC114 
AC226 
AC113 
AC965 
AC081 
AC670 
AC695 
AC209 
AC844 
AC243 
AC583 
AC346 
AC521 
AC770 
AC489 
AC820 
AC231 
AC514 
AC972 
AC964 
AC956 
AC680 
AC638 
AC275 
AC335 
AC645 
AC539 
AC108 
AC424 
AC619 
AC881 
AC418 
AC274 
AC856 
AC803 
AC377 
AC668 
AC381 
AC291 
AC367 
AC614 
AC774 

T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 
T. cacao 

L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
Fusarium 
Fusarium 
L. theobromae 
L. theobromae 
L. theobromae 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Cephalosporium?  
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 
Fusarium 

5-10 
7-11 
4-12 
7-14 

13-21 
8-14 
7-13 

12-18 
13-21 
8-19 

 

+ 
+ 

++ 
+++ 
+++ 

+ 
+ 
+ 

+++ 
+++ 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

1- Nil, + poor, ++ fair, and +++ severe. 
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2.4.5.2. Spore inoculation test 

 
Six hours after inoculation onto Amelonado seedlings using conidia, nearly all spores 

had germinated and germ tubes had formed as indicated by microscopic observation. 

By 24 hours, hyphal growth had increased and attempted penetrations were visible. 

Plants were observed for signs of disease for periods up to 12 weeks. Adverse effects 

of wounding were minimal or absent in all plants. Consistent with the mycelium plug 

inoculation test, all isolates previously scored as pathogenic caused disease when 

inoculated with spores.  

 

 At the point of inoculation, a wound tissue reaction of gumming and swelling 

occurred, and both the inoculated and control plants showed the same pattern of 

formation of callus tissue and complete healing. By the 35th day after inoculation, the 

pathogenic isolates had largely established, though the internal growth of Fusarium 

spp. was somewhat lower than Lasiodiplodia since recovery isolation by subculturing 

always yielded a lower proportion of positives than with F. decemcellulare and L. 

theobromae. The agreement in effectiveness among 37 isolates of Fusarium in 

inducing wood necrosis and dieback disease in Amelonado seedlings indicates that 

these species of Fusarium are truly pathogenic. All 37 L. theobromae isolates 

including the reference isolate were able to cause dieback symptoms on Amelonado 

cocoa seedlings. The susceptibility of Amelonado seedlings to the 78 different fungal 

isolates using spore inoculation is summarised in Table 7. The control plants 

developed no visible disease symptoms and the inoculation sites of the seedlings were 

closed by callus tissue after 12 weeks. From parallel trials (section 2.4.5.1) it was 

evident that the seedlings inoculated with isolates from each group of pathogen (F. 

decemcellulare, Fusarium spp. and L. theobromae) became equally diseased 

irrespective of whether they were inoculated with mycelium plugs or spore 

suspension. In both cases plants drooped and eventually died. Spore concentration had 

a significant effect (P ≤ 0.05) on the level of infection (Figure 36). At the lower end of 

the spore concentration series (1 × 103 per ml), there was no disease visible and plant 

growth was similar to that of the water-treated controls. However, a concentration of 1 

× 106 conidia per ml reduced growth of the plants, and on the whole, 90 % of such 
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plants had a disease score of six or more. Mean dieback score in individual isolate 

treatments ranged from 5.2 to 9.0 for Fusarium and 7.7 to 9.0 for L. theobromae. 

 

 
Figure 36. Effect of spore concentration of isolate IMI 380504 on disease development. The bars 
represent percentage of healthy plants 8 wks after inoculation. Bar indicates standard error. 
 
 

Dieback symptoms appeared 9 to 25 days after inoculation. Thus, Amelonado showed 

a very susceptible reaction to 78 isolates tested using spore inoculation. Fusarium 

decemcellulare, Fusarium spp. and L. theobromae caused similar disease symptoms 

but there were significant differences (P ≤ 0.05) between isolates in lesion sizes and 

dieback scores. The largest values were recorded for L. theobromae and the smallest 

for Fusarium spp. Mean lesion lengths caused by L. theobromae ranged from 37 mm 

to 51 mm, whereas those of F. decemcellulare ranged from 31 mm to 43 mm (Table 

7). The initial signs of attack included yellowing and wilting of leaves followed by 

death of the tops. Occasionally, small necrotic lesions on the bark coalesced to form 

large necrotic patches on the stem. These are characteristic symptoms of the disease 

as it occurs in the field. Seventy-eight isolates (including those from CABI and USDA 

and all the L. theobromae isolates) induced dieback symptoms on Amelonado cocoa 

and were consistently re-isolated from the lesions on inoculated seedlings and never 

from control plants. To satisfy Koch’s postulates, the re-isolated fungi from the 

inoculated plants were cultured on sterile PDA. They were found to produce the same 

type of cultures as those from which they came. When these strains were inoculated 

into healthy plants, they produced similar symptoms as before. This observation gives 

the strong impression that the disease commonly observed on diseased cocoa trees in 
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Ghana and those found on the inoculated plants was caused by these pathogens. It is 

worthy to mention that the proportion of ‘contaminant’ microorganisms, principally 

Penicillium spp. was high from some wounds.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7. Pathogenicity following conidial inoculation of Fusarium decemcellulare, Fusarium spp. 
and Lasiodiplodia theobromae on West African Amelonado cocoa seedlings. 

Pathogenicity 
Fungus 

Isolate 
Days to visible 

infection 
Mean lesion length (mm)  ± s.e. x Mean dieback score (1-9)¶ 

F. decemcellulare 
 
 
 
Fusarium species 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lasiodiplodia species 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IMI 380504 
IMI 361352 
GJS 03-81 
GJS 01-170 
AC 037 
AC 110 
AC 120 
AC 174 
AC 197 
AC 206 
AC 229 
AC 255 
AC 276 
AC 284 
AC 328 
AC 330 
AC 402 
AC 451 
AC 593 
AC 638 
AC 656 
AC 705 
AC 773 
AC 914 
AC 317 
AC 511 
AC 787 
AC 806 
AC 031 
AC 392 
AC 748 
AC 767 
AC 076 
AC 211 
AC 219 
AC 361 
AC 551 
AC 580 
AC 739 
AC 768 
AC 995 
IMI 333797 
AC 008 
AC 036 
AC 064 
AC 068 
AC 280 
AC 318 
AC 322 
AC 329 
AC 360 
AC 371 
AC 375 
AC 383 
AC 407 
AC 450 
AC 492 
AC 536 
AC 564 
AC 568 
AC 581 
AC 640 
AC 644 
AC 680 
AC 742 
AC 810 
AC 845 
AC 857 
AC 972 
AC 220 
AC 420 
AC 456 
AC 487 
AC 496 
AC523 
AC 639 
AC 673 
AC 718 

 

12-20 
14-23 
18-24 
14-18 
16-19 
14-23 
14-20 
12-16 
14-19 
13-23 
16-22 
13-17 
13-22 
14-22 
13-20 
13-19 
12-18 
12-19 
14-16 
13-15 
14-20 
14-24 
16-19 
12-19 
15-19 
13-17 
14-22 
13-22 
11-18 
17-22 
13-19 
14-18 
13-16 
19-26 
15-22 
13-25 
12-21 
13-20 
10-19 
12-17 
15-24 
12-20 
13-18 
12-18 
9-17 
12-16 
13-20 
10-14 
13-21 
12-18 
8-16 
12-15 
10-17 
10-15 
13-18 
13-21 
11-16 
11-17 
11-16 
12-18 
9-14 
10-17 
12-16 
12-16 
11-16 
10-15 
11-15 
11-17 
11-15 
13-16 
11-17 
11-15 
14-18 
11-16 
11-15 
11-13 
12-17 
10-17 

42.3 ± 2.35 
41.2 ± 1.85 
31.8 ± 5.94 
43.5 ± 2.08 
40.2 ± 2.92 
38.0 ± 3.57 
31.8 ± 5.76 
26.2 ± 4.95 
31.3 ± 2.84 
31.6 ± 6.33 
34.5 ± 5.96 
29.5 ± 5.26 
38.8 ± 2.93 
29.1 ± 5.31 
35.0 ± 2.26 
37.4 ± 6.49 
33.5 ± 1.51 
34.6 ± 5.73 
35.3 ± 6.57 
34.3 ± 3.61 
34.4 ± 6.36 
37.9 ± 3.41 
33.5 ± 2.36 
39.7 ± 3.35 
40.1 ± 2.20 
33.4 ± 5.07 
30.8 ± 5.10 
30.6 ± 4.16 
33.1 ± 1.55 
30.2 ± 6.48 
34.4 ± 4.73 
44.9 ± 3.27 
33.2 ± 3.16 
30.0 ± 6.99 
33.4 ± 3.83 
36.0 ± 3.70 
30.6 ± 6.71 
32.3 ± 5.58 
25.4 ± 3.89 
33.6 ± 2.20 
27.0 ± 6.65 
45.9 ± 2.73 
49.9 ± 1.80 
41.6 ± 3.51 
48.6 ± 0.46 
44.1 ± 3.23 
39.7 ± 4.89 
45.4 ± 3.75 
39.8 ± 3.88 
45.6 ± 3.85 
48.0 ± 0.75 
43.6 ± 3.52 
51.9 ± 1.32 
39.7 ± 4.69 
49.7 ± 1.62 
44.1 ± 3.05 
44.4 ± 3.23 
46.7 ± 2.12 
44.2 ± 3.87 
38.4 ± 4.34 
44.2 ± 1.54 
37.8 ± 5.69 
35.2 ± 3.03 
44.4 ± 2.68 
42.1 ± 3.25 
37.3 ± 5.31 
45.8 ± 2.86 
39.1 ± 4.20 
43.7 ± 1.34 
46.1 ± 1.52 
42.2 ± 5.47 
38.1± 5.27 
34.0 ± 5.50 
41.1 ± 1.14 
39.6 ± 1.57 
49.1 ± 2.67 
38.3 ± 2.12 
47.2 ± 3.29 

9.0 
8.2 
6.0 
4.2 
4.5 
5.5 
3.0 
6.0 
6.0 
6.7 
6.0 
5.2 
6.7 
6.0 
3.0 
6.7 
6.0 
6.0 
6.0 
6.7 
6.0 
6.7 
6.0 
6.7 
7.5 
6.7 
6.0 
6.0 
3.0 
5.2 
3.0 
4.4 
6.0 
8.4 
6.7 
7.5 
6.0 
8.2 
7.5 
7.5 
6.2 
8.2 
9.0 
7.5 
9.0 
8.2 
7.5 
8.2 
7.5 
8.2 
9.0 
8.2 
9.0 
7.5 
9.0 
8.2 
8.2 
9.0 
8.2 
6.7 
8.2 
7.5 
7.5 
8.2 
7.5 
7.5 
8.2 
8.2 
9.0 
9.0 
8.2 
8.2 
7.5 
6.7 
8.2 
9.0 
8.2 
8.2 

¶ Mean dieback score = dieback disease score recorded after 6 weeks on a 1-9 scale, where 1 = 0 % infection with no visible infection and 9 = 
100% infection or complete plant death.x  
.  
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2.4.5.3. Effect of humidity on disease development 

There was a significant effect of post-inoculation high relative humidity on dieback 

infection caused by isolates AC371, AC845, IMI380505 and IMI361352. For all 

isolates there was a strong trend of high disease incidence with high humidity possibly 

due to increased spore germination (Figure 37) and germ tube penetration after 12 h 

incubation in the dew chamber. In the low humidity treatment, the spore suspensions 

were dry after 12 hours and spore germination and subsequent penetration were 

dramatically reduced. 

 

   
Figure 37. Typical conidia germination in-vitro 12 hours after inoculation: left = L. theobromae 
(AC371) and right photo = F. decemcellulare (IMI380504). 
 

 

In the higher relative humidity environment the plants produced early disease 

symptoms and a greater proportion of inoculated plants became infected while more 

time was required to produce the same symptoms in plants kept at low humidity.  The 

latter showed early symptoms only after 18 days (Table 8). Thirty-nine of the 40 

plants held at high humidity compared with three in the low humidity environment 

developed signs of dieback.  Thus, the results showed that growth and development of 

the pathogens within the stem, and the induction of dieback were significantly 

enhanced by high air humidity but the effect of soil water status seemed to be 

minimal.  
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Table 8. Effect of varying relative humidity and soil moisture on disease development. 
 

Fungal isolates 

AC371 AC 845 IMI361352 IMI380504 

Relative 
humidity 
range1 

Number of 
seedlings 
tested per 
isolate 

First 
symptoms 

(days) 

No. of  
diseased 
plants 

First 
symptoms 

(days) 

No. of  
diseased 
plants 

First 
symptoms 

(days) 

No. of  
diseased 
plants 

First 
symptoms 

(days) 

No. of  
diseased 
plants 

HrHs 
HrLs 
LrHs 
LrLs 

5 
5 
5 
5 

6 
9 

22 
25 

5 
5 
1 
1 

7 
8 

18 
- 

5 
5 
1 
0 

10 
10 
- 
- 

4 
5 
0 
0 

7 
9 
- 
- 

5 
5 
0 
0 

1HrHs = high relative humidity, high soil moisture; HrLs = high relative humidity, low soil moisture; LrHs = low 
relative humidity, high soil moisture; LrLs = low relative humidity, low soil moisture. 

 

2.4.5.4. Inoculum type, access and inoculation of 

different plant parts on disease development  

 
To determine the most effective route(s) of entry of the pathogens into cocoa, 

different plant parts were variously inoculated as described above and observed for 

disease symptoms. Petioles, pulvini and intact leaves were not infected with any of the 

tested isolates despite being in contact with spores or agar plugs for more than 28 days 

whereas placing the inoculum on needle or scalpel wounds on the stem resulted in 100 

per cent infection (Table 9). Inoculation sites that were not wounded supported some 

superficial hyphal growth but never became infected. It was apparent that the means 

by which conidia are brought in contact with the xylem strongly influences the 

development of disease. It is suggested that the comparatively large amount of 

damage caused by scalpel incision compared with needle wounding may have added 

to the success of the mycelium plug method. Nevertheless, frequencies of dieback 

formation were similar for both pathogenic species (F. decemcellulare and L. 

theobromae).   

 

On the excised tissue discs, spores of both L. theobromae and F. decemcellulare 

germinated and infected the stems but not the leaf discs. Thus fungal hyphae were 

observed neither in the leaf cells nor in the veins (Figure 38). The cells in inoculated 

tissues did not differ visibly from those in uninfected cells. In inoculated leaf discs of 

Amelonado, black spots occurred in some cases. Since these black dots were absent 
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from tissues of non-infected plants it is assumed that they represent plant responses 

such as hypersensitive reaction.  

 
Table 9. Effects of inoculation method, inoculum type and plant part in Amelonado seedlings on 
infection success. 

Isolate Plant part Number of seedlings 
tested 

Inoculation method Number of seedlings with dieback 

AC371 Stem 
Stem 
Stem 
Stem 
Intact leaf 
Intact leaf 
Intact leaf 
Intact leaf 
Petiole 
Petiole 
Petiole 
Petiole 
Pulvini 
Pulvini 
Pulvini 
Pulvini 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 

3 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

AC845 Stem 
Stem 
Stem 
Stem 
Intact leaf 
Intact leaf 
Intact leaf 
Intact leaf 
Petiole 
Petiole 
Petiole 
Petiole 
Pulvini 
Pulvini 
Pulvini 
Pulvini 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 

2 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

IMI 380504 Stem 
Stem 
Stem 
Stem 
Intact leaf 
Intact leaf 
Intact leaf 
Intact leaf 
Petiole 
Petiole 
Petiole 
Petiole 
Pulvini 
Pulvini 
Pulvini 
Pulvini 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 

3 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

IMI 361 352 Stem 
Stem 
Stem 
Stem 
Intact leaf 
Intact leaf 
Intact leaf 
Intact leaf 
Petiole 
Petiole 
Petiole 
Petiole 
Pulvini 
Pulvini 
Pulvini 
Pulvini 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 
Wound, mycelium plug 
Wound, spores 
No wound, mycelium plug  
No wound spores 

2 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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2.4.5.5. Response of leaf and stem discs to 

inoculation with isolates of F. decemcellulare 

and L. theobromae  

 
Differences were observed between infection of stem and leaf discs following 

inoculation with isolates of F. decemcellulare and L. theobromae. Brown necrotic 

lesions were microscopically visible in stem discs but not in the leaf discs although 

attempted penetration was seen on the latter (Figure 38). The mean lesion size for 

individual isolates ranged from 2.21 to 2.58 mm for F. decemcellulare while in L. 

theobromae, the range was 2.72 to 2.95 mm (Table 10).  

 
Table 10. Leaf and stem disc necrosis (lesion length, mm) in response to spore inoculation with 
isolates of F. decemcellulare and L. theobromae isolates. 
 
Fungus species Isolate Mean1 lesion 

length in stem disc 
Mean lesion length 
in leaf disc 

F. decemcellulare 
 
L. theobromae 

IMI361352 
IMI380504 
AC371 
AC845 

2.21± 0.22a 
2.58 ± 0.10a 
2.95 ± 0.12b 
2.72 ± 0.10b 

0.0 
0.0 
0.0 
0.0 

1Mean from 15 measurements. Means followed by different letters are significantly different at P < 
0.05 (Tukey HSD test). 
 
 
 
 

    
Figure 38. An inoculated site showing a penetrating germ tube (arrowed) and control water-inoculated leaf 
showing many intact cells. Photo: R. A-A. 
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2.5. Discussion 
Cocoa dieback is reported as being caused by F. decemcellulare and L. theobromae 

(Crowdy, 1947; Owen, 1956). Currently, there is little information on the 

environmental requirements optimal for each pathogen, their relative frequency of 

occurrence and their relationships to each other in-vivo. Similarly, no information is 

available about the extent to which other fungi induce dieback disease in cocoa. The 

present results build on previous studies that presented a view of the occurrence and 

pathogenicity of F. decemcellulare: that this fungus is the main cause of dieback and 

that it remains active in wood for ten years or more, and can spread or cause disease if 

the tree becomes weakened in some way.  

 

Different selective media have been used for fungal isolation, in particular for 

Fusarium (Tsao 1970; Thrane, 1996) with the objective of optimising isolation and 

enumeration. The most widely used medium has been of Nash and Snyder (1962) 

employing the soil fungicide PCNB, which partially inhibits many fungal 

contaminants but allows the normal development of Fusarium spp. Other selective 

agents used in Fusarium isolation media are dichloran (Andrews and Pitt, 1986) a 

mixture of dichloran and iprodione (Abildgren et al., 1987), and Rose Bengal, 

benomyl, and captan (Elad and Chet, 1983), but all are known to allow the growth of 

some other fungal taxa. Only malachite green has been reported to be highly selective 

for Fusarium spp. and restrictive to other microorganisms (Singh and Nene, 1965). 

Among the media used in the current study, the fungi grew best on PDA medium 

followed by PCA with carnation leaf agar and cocoa pod husk agar being the poorest. 

The reason for this is unknown, but the high carbohydrate status of PDA with rich 

constituents may have played a part. PDA is a complex medium that includes dextrose 

and soluble starch and proteins. The use of complex selective media (other than the 

addition of streptomycin) was not judged necessary in the present investigation since, 

compared with soil, cocoa stem is already a selective substrate allowing the growth of 

relatively few species.   

 

The fungi obtained from cocoa proved easy to handle. Thirty-six of them were L. 

theobromae while the remainder were Fusarium spp. None of these isolates was 



 

 86

identical to F. decemcellulare, but there is no doubt that the spores of Fusarium and 

L. theobromae are present at all periods during the development of dieback in cocoa 

plants. This was in contrast to observations published previously from Ghana by 

Crowdy (1947) and Owen (1956), citing F. decemcellulare as the most frequently 

isolated fungal pathogen from dieback lesions. The deadly effects of F. 

decemcellulare have received a good deal of attention in the past and the absence of 

the fungus in infected wood in the current study is surprising. The present role of F. 

decemcellulare in dieback disease in Ghana is not certain, as there is no obvious 

reason for its absence from the infected tissues collected from the field. Possibly, 

changes in fungal succession over the years might have affected occurrence but this 

must await a better understanding of how succession in fungi occurs in the cocoa 

ecosystem in relation to dieback disease. Only isolates from diseased trees from the 

Eastern and Western Regions of Ghana were available in the present study and I hope 

these findings will encourage others to develop comparative studies across a wider 

geographical range. Thus, future studies need to consider collection of isolates in 

other regions and should strive to sample all accessible cocoa growing areas. Such 

tests will increase our understanding of the present role that F. decemcellulare has in 

cocoa dieback disease in Ghana and other West African cocoa-growing regions. 

Though some differences in frequencies of isolation between F. decemcellulare and L. 

theobromae were reported earlier (Crowdy, 1947; Owen, 1956), these were not 

related to pathogenic ability. Owen (1956), for instance, made a number of fungal 

isolations from diseased cocoa in the field and found significant variation in the 

proportions in which F. decemcellulare and L. theobromae occurred. Further, at that 

time, the importance of other Fusarium species as being responsible for dieback was 

not recognised and emphasis was only on F. decemcellulare. It is possible that other 

Fusarium species were present in earlier studies but remained unnoticed due to the 

more aggressive pathogenicity (Table 7) of F. decemcellulare. 

 

Substrate use patterns in-vivo may also be linked to changes in abundance or 

occurrence of the different fungi. In in-vitro studies, the interaction among the three 

fungal groups was shown to be competitive and the rather reduced growth of 

Fusarium could be related to nutritional stress due to competition with the more 

aggressive Lasiodiplodia. In the case of F. decemcellulare and Fusarium spp., both 

fungi competed for the substratum though not directly challenging to the other of the 
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two fungi. Their colonies overlapped to some extent. However, L. theobromae was 

aggressive and inhibited the growth of both F. decemcellulare and Fusarium spp. The 

aggressiveness of L. theobromae on the woody tissue of cocoa may significantly have 

limited the presence of F. decemcellulare from the fields surveyed, therefore 

establishing the dominance of the former pathogen. At present the interactions 

between the fungal groups in-vivo can only be surmised and may differ substantially 

from that seen on agar. The apparent decline of F. decemcellulare might be linked to 

the presence of these newly detected Fusarium species, including those apparently 

non-pathogenic on their own. A study of competitiveness between fungi in cocoa stem 

tissue might be a fertile area for investigating possible biocontrol in the future. 

 

The dominant occurrence of L. theobromae over F. decemcellulare may also be partly 

explained by the practice in Ghana nowadays where farmers use cassava (Manihot 

esculenta Crantz) as a temporary shade crop during the establishment of new cocoa 

farms (Osei-Bonsu et al., 1998). Besides being a revenue-generating crop, cassava 

may also have complementary effects on dieback disease of cocoa. For example, after 

cassava is harvested the residue is left to decompose in the soil and the decomposition 

of the tuberous roots can support prolific growth and sporulation of L. theobromae 

macroconidia (Onyeka et al., 2005). If planted into a farm with a history of cassava, 

or if cassava is used for temporary shading, young cocoa will be exposed to an 

elevated number of infective macroconidia of L. theobromae, as cassava is known to 

be a host of this pathogen.  

 

 The morphology of F. decemcellulare isolates from Brazil and Cameroon (Table 4) 

was indistinguishable from that from Ghana obtained from CABI. The microconidia 

of all of them were oval and non-septate. Chlamydospores were absent and the fungus 

grew very slowly on artificial media. Fusarium decemcellulare produced a mixture of 

pink and red pigments in the agar, and most characteristically, the cultures produced 

yellow sporodochia from which droplets of exudate formed to give the colony a moist 

appearance. This observation conforms to the characteristics published by Leslie and 

Summerell (2006). Moreover, conidial measurements were within the size ranges 

published by Crowdy (1947). The other Fusarium isolates, however, differed from F. 

decemcellulare in that their colonies were white to creamy-pink with considerable 

differences in spore morphology. Their macroconidia were smaller than those of F. 
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decemcellulare but with a continuum of dimensions that gave no clues to identity or 

whether a single or multiple species were represented.  

 

A study of the longevity of a selection of isolates from the different groups revealed 

that these fungi are short-lived on artificial media contrary to the observation by 

Crowdy (1947) that the macroconidia could survive in dead wood for up to 10 years. 

The maximum longevity of macroconidia on PDA at 25 ˚C was six months (Figure 

32). Although the two environments are dissimilar the results suggest that re-

investigation of longevity of inoculum in the field is needed. 

 

In the pathogenicity tests, all three fungal groups acted as primary pathogens and that, 

to invade and to degrade the woody tissue of cocoa, they needed prior stem wounding. 

Spore germination (by microscopic observation) and host penetration occurred 

quickly after inoculation but isolates of Fusarium and Lasiodiplodia appeared to 

require up to 72 hours of continuous dew for maximum infection on cocoa at 27 ˚C. 

Temperature and humidity were probably the main environmental factors influencing 

the development of the fungi. In general the agreement between two inoculation 

methods was good, with the incubation period common to both inoculation methods 

ranging from 6 to 25 days (Table 6 and Table 7). Overall, either the needle and 

syringe application of spore suspensions or the use of wound and mycelium plugs 

gave comparable results when used for inoculation of Amelonado cocoa seedlings in 

the experimental work.  

 

That Fusarium and Lasiodiplodia apparently required a wound to cause infection in 

cocoa can be associated with the common observation that insecticide applications aid 

in control of dieback in cocoa farms since mirid control probably reduces injuries on 

the stem and therefore reduces disease incidence of necrosis and dieback in cocoa. As 

it is not uncommon under field conditions for the incidence of dieback to be low even 

under very conducive conditions for disease development, it is most likely that mirid 

feeding lesions together with high spore levels are necessary to cause infections in the 

field. Sanitation by removal of infected chupons and/or branches before sporulation 

should be a very effective cultural practice to reduce dieback incidence in the field. 

The Amelonado cocoa variety evaluated in the present study is susceptible to both 

fungal groups and infection could spread from an inoculated main stem to non  
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inoculated branches but not the other way round. The reason for this observation is 

not clear at present and must be verified in future studies for information that would 

be useful for developing integrated management programmes for dieback disease of 

cocoa. 

 

 In the greenhouse, the average air temperature of 30.6 ± 4.3 ºC and a mean relative 

humidity of 65 % were conducive to infection and supported the development of 

dieback. The maintenance of high humidity in the greenhouse and the use of the dew 

chamber in the first three days after inoculation, helped to create the conditions 

needed for the survival of spores and infection of plants. The present findings also 

associate dieback disease incidence strongly to high air humidity in the surrounding 

environment. The light, temperature and relative humidity conditions experienced in 

the greenhouse were probably close to those tropical climatic conditions under which 

cocoa is grown. This presents a challenge for dieback management in West Africa 

where the weather is typically warm and humid in the rainy season (March to 

October), with average temperatures fluctuating around minimum, 22ºC (and 

maximum, 33 ˚C (Figure 1). Dieback incidence is often highest in July-October in 

Ghana, a time when the weather is usually cool and humid and this, coupled with 

intermittent wetness associated with rain, is likely to be conducive to fungal infection; 

the stem surface on which spores land may possibly have a film of water from rain or 

dew which can have a marked effect on the germination of spores.   

 

Presence or absence of abundant soil moisture was not critical for disease 

development since the proportion of infected plants in dry soil was similar to those of 

drenched soil. The results support a hypothesis that drought conditions primarily 

inhibit spore germination, because a rise in dieback on cocoa farms is most noticeable 

during the rainy season. Evidence from other fungal diseases has repeatedly shown 

the importance of appropriate temperature and relative humidity to disease 

development. For example, a relative humidity above 87 % was essential for 

Colletotrichum gloeosporioides f. sp. manihotis Henn (Penn.) to cause anthracnose 

disease in cassava (Harrison and Williamson, 1994). In the case of the wheat pathogen 

F. graminearum macroconidia were produced at an optimal temperature of 28 to 32 

˚C and their production was inhibited below 16 ˚C and above 36 ˚C (Tschanz et al., 

1976). On wheat spikelets, Andersen (1948) showed that millions of conidia of F. 
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graminearum were produced on moist wheat heads at 20 to 30 ˚C, and lesser numbers 

at 15 ˚C. Moreover, macroconidia appeared within 5 days at 20 ˚C and within 3 days 

at 25 to 30 ˚C. Exposure of spikelets to moisture reduced conidial formation time to 

one to 2 days, with conidial numbers increasing with increasing humidity. Examples 

of fungal infections where high humidity is essential for sporulation and/or infection 

are widely reported in the literature (Agrios, 2005). 

 

In the current study the first characteristic symptoms of dieback were observed after a 

period that corresponded to the reported latent period of this disease under field 

conditions according to Crowdy (1947), thus indicating that the infection process in 

the greenhouse environment was similar to that expected in the field.  

 

The testing of the isolates in the greenhouse against susceptible West African 

Amelonado cocoa seedlings was useful as a first step in the pathogenicity screening 

process; using this biological assay, those isolates with the ability to incite disease 

development were identified. The results selected a substantial number of potential 

pathogens, yet it succeeded in eliminating some 45 % of the Fusarium isolates as non-

pathogenic. Significant differences were observed in pathogenicity among the isolates 

mainly between the Fusarium and Lasiodiplodia. The mean disease scores of isolates 

from Fusarium and Lasiodiplodia were 6.2 and 8.2, respectively, indicating that 

isolates of Lasiodiplodia were, on average, more aggressive than those of Fusarium. 

Significant variation (P ≤ 0.05) within F. decemcellulare was also detected. For 

instance, isolate GJS 03-81, collected as a Fusarium endophyte from cocoa leaves in 

Brazil (Gary Samuels, personal communication) was less pathogenic than isolate GJS 

01-170 collected as ascospores from Cameroon. However, no significant differences 

were detected (P > 0.05) between Lasiodiplodia collected from cocoa and the one 

isolate from cassava.  

   

 

 

 

 

 

 



 

 91

3. Chapter 3 

3.1. Molecular characterisation of 

Fusarium and Lasiodiplodia species 

causing dieback of cocoa based on ITS 

sequence analysis 

 
3.2. Introduction  
Identification of fungi traditionally has relied upon visual examination of microscopic 

features, especially sporing structures, augmented by gross morphology of 

macroscopic features in situ, colony characteristics on artificial media, and 

biochemical reactions (Hawksworth, 1991; Sutton and Cundell, 2004). Such 

approaches have served well in the past but specialist knowledge is often needed to 

differentiate to species level in large and complex genera such as Penicillium, 

Aspergillus, and Fusarium (Larone, 1995; Henry et al., 2000; Leslie and Summerell, 

2006).  The range of isolates described in Chapter 2 exhibit considerable 

morphological diversity, and for Fusarium the macroconidial dimensions frequently 

fell outside the range previously reported for Fusarium decemcellulare on cocoa 

(Leslie and Summerell, 2006). Given the desirability of accurate identification of 

isolates to be used when screening for resistance and the potential for mixed 

infections with multiple species there is a clear need for reliable identification of all 

species involved in dieback disease. The potential advantages of using molecular 

biology techniques for the diagnosis of a number of diseases have been widely 

discussed lately. In the last decade, numerous DNA-based methods have been 

developed to improve the diagnosis of fungal infections and the identification of plant 

pathogenic and other fungi (Gottfredsson et al., 1998; Walsh and Chanock, 1998). 

These methods are particularly promising because of their simplicity, specificity, 

sensitivity and potential for scaling up to handle large numbers of isolates. For 
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example, PCR methods targeting different genes have been described elsewhere for 

identification of Cryptococcus neoformans (Tanaka et al., 1996), Aspergillus 

fumigatus (Kobayashi et al., 1999; Skladny et al., 1999), and species of Candida 

(Hidalgo et al., 2000). A number of studies have also described probes, restriction 

fragment length polymorphism, or other methods to identify unique ribosomal DNA 

(rDNA) sequences (Evertsson et al., 2000; Kauffman et al., 2000; Loeffler et al., 

2000). The most common approaches have targeted portions of the fungal rDNA and 

sequence information on a wide range of fungi has accumulated in the public database 

(Braun et al., 2000). Even with the proviso of occasional mis-identification of 

deposited sequences, this represents an invaluable resource with which to compare 

unnamed isolates or to confirm identity of the already assigned name. This study 

presents results from PCR and ITS1-5.8S-ITS2 region sequence analysis of Fusarium 

and Lasiodiplodia isolates described in Chapter 2. 

 

3.3. Materials and Methods 
3.3.1. Fungal samples and preparation of 

genomic DNA 
The samples evaluated here were the pathogenic isolates previously characterised by 

morphology in Chapter 2. For DNA extraction, a single colony of each culture was 

transferred to a PDA plate and grown for ten days at 30 °C followed by DNA 

isolation with the Qiagen DNeasy Plant Mini Kit (Qiagen Ltd., Qiagen House, 

Fleming Way, West Sussex, UK). Approximately 100 mg of macerated mycelium 

was transferred to a clean Eppendorff tube and 400 µl of Buffer AP1 and 4 µl of 

RNase-A were added followed by incubation at 65 °C for 10 minutes. Lysis Buffer 

AP2 (130 µl) was added and the lysate mixed gently by inverting and then incubated 

on ice for 5 minutes. The solution was centrifuged for 5 min at 13,000 × g and the 

supernatant transferred to a QIAshredder spin column tube. This was centrifuged for 2 

min at 13,000 × g and the flow-through fraction transferred to a new tube without 

disturbing the pellet. Typically, 450 µl of lysate was recovered so one and a-half 

volumes of Buffer AP3/E (i.e. 675 µl) was added to the lysate and mixed by pipetting. 

Six hundred and fifty microlitres (650 µl) of the mixture including any precipitate, 
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were transferred to a DNeasy mini spin column tube and recentrifuged for 1 minute at 

6,000 × g. The flow-through was discarded but the sediment in the collection tube was 

washed twice with 500 µl wash Buffer (AW) and centrifuged to dry the membrane of 

the column. Two successive elutions were performed with 100 µl of preheated (65 °C) 

Buffer AE placed directly onto the DNeasy membrane at room temperature. The 

eluate containing the DNA was pooled and stored at -20 ˚C until use. The presence of 

DNA was confirmed at this stage by running the samples on Tris-acetic acid-EDTA-

agarose gel (0.8 %, w/v), and their concentrations determined using an automated 

Eppendorf BioPhotometer and 1:20 dilutions of each DNA sample (Figure 39). 

 

 
Figure 39. The Eppendorf BioPhotometer used for measuring DNA concentration. 
 

3.3.2. PCR Amplification of Ribosomal DNA 

Regions 

The internal transcribed spacer (ITS) fragment which includes the ITS1, the 5.8S 

rDNA gene and the ITS2 regions (Figure 40) was amplified using two primers, ITS1 

(5’-TCCGTAGGTGAACCTGCGG) and ITS4 (5’-TCCTCCGCTTATTGATATGC) 

White et al. (1990). Each of the 25-μl PCR reaction mixtures consisted of 12 µl PCR 
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BiomixTM Red (Bioline), 2.5 ng of template genomic DNA, 0.5 µl of each primer (10 

pmol), 0.5 µl of MgCl2 (50 mM), and 9 µl of DNase free water. Control 

amplifications using primers only were made to ensure that the reagents used were not 

contaminated with extraneous DNA. PCR reaction was conducted using a Whatman 

Biometra T1 Thermocycler according to the following protocol: initial denaturing at 

95 ˚C for 5 minutes, 94 ˚C for 1 minute, annealing at 50 ˚C for 1 minute, and 

extension at 72 ˚C for 45 seconds. These cycles were repeated 35 times with a final 

step at 72 °C for 7 minutes, and then storage at 4 °C. The PCR products were detected 

by agarose gel [0.8 % (w/v)] electrophoresis and staining with GelRedTM Nucleic 

Acid Gel Stain with subsequent visualisation and photography under UV 

transilluminator.  

 

 

 
 
             ITS Region 
       
Figure 40. Diagrammatic representation of arrangement of ribosomal DNA including 
coding regions for the 5.8S and 28S rRNA and PCR primer binding sites. ITS = internal 
transcribed spacer region. Primers used to amplify single-stranded DNA for sequencing 
(“ITS1” and “ITS4”) were designed and named by White et al. (1990).  
 
 
 

3.3.3. PCR cycle sequencing reaction 

PCR-generated DNAs as above, were purified from agarose gel using Genomics 

Montage Millipore gel extraction kit (Millipore Corporation, Bedford, MA 01730 

USA) and directly sequenced in both forward and reverse directions using the Big 

Dye terminator system, version 3.1 (Applied Biosystems, Foster City, California) 

using an ABI 377 sequencer. The protocol per reaction done in a 96-well plate (10 µl 

reaction) is shown in Table 11. There were 35 PCR cycles and thereafter, 80 µl of 

absolute ethanol was added to each reaction well. The microtitre plate was incubated 

at room temperature for 15 minutes and centrifuged at ≈ 20 ˚C for 45 minutes at 4000 

18S ribosomal  rRNA 5.8S 
rRNA ITS1 ITS2 

28S ribosomal rRNA 
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rpm. The supernatant was drained by blotting on tissue paper followed by addition of 

150 µl of 70 % ethanol.   

 
Table 11. Reagents and their quantities used per 10 µl in a 96-well plate. 
Reagent Quantity 
Template DNA 2.0 µl 
Primer (10 pmol) 1.0 µl 
5X BigDye Buffer 1.75 µl 
ABI BigDye (v3.1) Mix 0.5 µl 
ddH2O 4.75 µl 
 

 

The sample was run in a Thermal Cycler (Uno II, Biometra) using the following steps: 

Lid temperature -   105 °C 

Step 1 - Incubation at 94 °C for 2 minutes 

Step 2 – Incubation at 96 °C for 15 seconds 

Step 3 – Incubation at 50 °C for 15 seconds 

Step 4 – Incubation at 60 °C for 4 minutes 

Step 5 – Repeated to step 1 for 35 times 

Step 6 – Incubation at 10 °C hold 

3.3.4. Sequence alignment and phylogenetic 
analysis 

The sequence chromatograms were edited using Sequencher 4.8 software (Genecodes 

Corp., Ann Arbor, Michigan), and searches were carried out in BLAST 

(http://www.ncbi.nlm.nih.gov/BLAST/) to determine the closest matches in the public 

database. The ITS sequences of Fusarium and Lasiodiplodia were manually aligned 

with MacClade 4.06 OSX. A likelihood bootstrap analysis was performed with 100 

replications using RAxML 7.0.4 (Stamatakis et al., 2008).  
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3.4. Results 
3.4.1. Amplification of ITS regions 

The ITS sequences of all isolates were determined and their information deposited at 

GenBank that gave accession numbers FJ545330 to FJ545407 (Table 13). Two 

phylogenetic trees were constructed using RAxML for Fusarium and Lasiodiplodia. 

An assessment of the action of the primers on the extracted genomic DNA indicated 

that the primers amplified products of the test DNA samples, and resolved prominent 

bands of around 550 bp at the selected annealing temperature of 50 °C. Figure 41 

shows PCR products (amplicons) of some of the fungal isolates on agarose gels. As 

expected, the universal primers produced amplicons that were identical and 

indistinguishable between the different isolates. The 18S ribosomal RNA gene, partial 

sequence; internal transcribed spacer 1, 5.8S ribosomal RNA, and internal transcribed 

spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence of all 

isolates from Ghana and the CABI reference isolates (Chapter 2) were successfully 

amplified from DNA by the fungus-specific universal primer pair ITS1-ITS4. 

Alignment of sequences of all fungal DNAs required one or more gaps and 

occasionally nucleotides of unknown identity denoted by question marks. The 

variation (deletions or insertions) along the entire stretch of sequences was limited to 

a few bases in the isolates studied. The alignment of the Fusarium species showed 

that the stretches 1-106 (18S ribosomal RNA), 311-428 (5.8S ribosomal RNA) and 

522 to >550 (28S ribosomal RNA) were highly conserved (less than 20 nucleotide 

substitutions) and that variability was mostly restricted to stretches 107-310 (internal 

transcribed spacer 1) and 429-511 (internal transcribed spacer 2). When comparing 

the Lasiodiplodia alignments with GenBank sequences, it was observed that the 

stretches 1-3 (18S ribosomal RNA), 140-298 (5.8S ribosomal RNA) and 462 to >480 

(28S ribosomal RNA) were evolutionarily conserved and that variability was limited 

to stretches 4-139 (internal transcribed spacer 1) and 299-461 (internal transcribed 

spacer 2. Aligned DNA sequences of ITS1, the 5.8S subunit and ITS2 from five of the 

studied isolates are presented in (Table 12). The 18S ribosomal RNA region of the 

Lasiodiplodia species was shorter because rejecting bits off the ends of ambiguous 



 

 97

sequences during the alignment process may have trimmed away some sections of 

that region.  

 
Table 12. DNA sequence information of two Lasiodiplodia and three Fusarium species. 
 

L. pseudotheobromae 
AC008 

ttaccgagttttcgggctt- 
ggtcgactctcccaccctttgtgaacgtacctctgttgctttggcggctccggccgccaaaggacctccaaactccagtcagtaaacgcagacgtctgataaacaa
gttaataaactaaaactttcaacaacggatctcttggttctggcatcgatgaagaacgcagcgaaatgcgataagtaatgtgaattgcagaattcagtgaatcatcg
aatctttgaacgcacattgcgccccttggtattccggggggcatgcctgttcgagcgtcattacaaccctcaagctctgcttggaattgggcaccgtccatcctgcgg
acgcgcctaaagacctcggcggtggctgttcagccctcaagcgtagtagaatacacctcgctttggagtggttggcgtcgcccgccggacgaaccttctgaactttt
ctcaaggtagacctcggatcaggtagga-t-cccg   [482 bp] 
 

L. pseudotheobromae 
IMI333797 

?????gagttttcgagctccggctcgactcttccaccctttgtgaacgtacctctgttgctttggcggctccggccgccaaaggacctccaaactccagtcagtaaac
gcagacgtctgataaacaagttaataaactaaaactttcaacaacggatctcttggttctggcatcgatgaagaacgcagcgaaatgcgataagtaatgtgaattg
cagaattcagtgaatcatcgaatctttgaacgcacattgcgccccttggtattccggggggcatgcctgttcgagcgtcattacaaccctcaagctctgcttggaattg
ggcaccgtcctcactgcggacgcgcctcaaagacctcggcggtggctgttcagccctcaagcgtagtagaatacacctcgctttggagcggttggcgtcgcccgc
cggacgaaccttctgaacttttctcaaggttgacctcggatcaggtaggaa-acccg   [484 bp] 
 

F. solani 
AC580 

---------ttcctccgc-tttat--gatatgcttaagttcag-cg-ggtattcct-acctgattcgaggtca---ytt-cagaaagagttg-ggtgtttt-
acggcgtggccgcgccgctctctccagtcgcgaggtgttagc-tactacgcgatggaagctgcggcgggaccgccactgtatttg-gggg-a-cggcgt-g-tg---
ccc-a-cggggggct—ccgccgatccccaacgccaggcccgggggcctgagggttgtaatgacgctcgaacaggcatgcccgccagaa-
tactggcgggcgcaatgtggcgttcaaagattcgatgattcactgaattctgcaattcacattacttatcgcatttcgctgcgttcttcatcgatgccagagccaagaga
tccgttgttgaaagttttaatttatttgc-ttgttttactcagaagaaacattatagaaa-
cagagttaagggtcctctggcgggggcccgtttcacggggccgtctattcccgccgaagcaacgtttaggtagttcacagggttgatgagtgaaaactcggtaatg
atccctccgcaggttcacctacgga---   [563 bp] 
 

 F. decemcellulare 
IMI361352 

--------tttcctccgc-tttat—gatatgcttaagttcagtcgcggtattcct-acctgatccgaggtcaa-catt-caga—agttggggggttt-
aacggcttggccgcgccgcgttccagttgcgaggtgttagc-tactacgcaatggaggctacagcgagaccgccactagatttg-gggg-a-c—----ggc-g—
a-ctatc-gc---
cgatccccaacaccaagccctagggcttgagggttgaaatgacgctcgaacaggcatgcccgccagaatactggcgggcgcaatgtgcgttcaaagattcgat
gattcactgaattctgcaattcacattacttatcgcatttcgctgcgttcttcatcgatgccagaaccaagagatccgttgttgaaagttttgatttatttgttttgttttactcag
aagatccacaagaatacatagagtttggggttcctctggcagcgagcggcgcccgatttctcggagcaccgtcgttgagtctgccgaggcaaattataggtatgttc
acagggtttgggagttgtaaactcggaagtgatccctccgcagtcc----------    [558 bp] 

F. chlamydosporum 
AC174 

----------tcctccgc—ttatt-gatatgcttaagttcag-cg-ggtattcct-acctgatccgaggtcaa-catt-caga—agttg—gggtttt-
acggcgtggccgcgacgattaccagtaacgaggtgtatgattactacgctatggaagctcga-cgtgaccgccaatcgatttg-ggg-aa-c------gc-ggg—t-
t-a—cc-g-cgagtcccaacaccaagc---
tgagcttgagggttgaaatgacgctcgaacaggcatgcccgccagaatactggcgggcgcaatgtgcgttcaaagattcgatgattcactgaattctgcaattcac
attacttatcgcattttgctgcgttcttcatcgatgccagaaccaagagatccgttgttgaaagttttgatttatttgtttgttttactcagaagttccactaaaaacagagttta
ggg-tcctcgggccgtcccgttttacggggcgggctgatccgccgaggcaacgtataggtatgttcac-agggg-tttggg-
agttgtaaactcggtaatgatccctccgcaggtccacctacgg-----------        [544 bp] 

 
Each sequence contains coding sequence for 18S ribosomal RNA, internal transcribed spacer 1, 5.8S ribosomal 
RNA, internal transcribed spacer 2, and 28S ribosomal RNA. Sequence symbols: a, c, g, t = dATP, dCTP, dGTP, 
dTTP, respectively; r = a or g; y = c or t; hyphens = gaps; question marks = missing nucleotides or nucleotides of 
unknown identity. 
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Table 13. List of Fusarium and Lasiodiplodia species (isolated from diseased cocoa trees) 
identified by ITS sequence analysis. 

Fungus species Isolate number 
Base pair length GenBank accession no. 

F. decemcellulare 
F. decemcellulare 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. chlamydosporum 
F. oxysporum 
F. oxysporum 
F. oxysporum 
F. oxysporum 
F. proliferatum 
F. proliferatum 
F. proliferatum 
F. proliferatum 
F. solani 
F. solani 
F. solani 
F. solani 
F. solani 
F. solani 
F. solani 
F. solani 
F. solani 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. pseudotheobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 
L. theobromae 

IMI 380504 
IMI 361352 

AC 037 
AC 110 
AC 120 
AC 174 
AC 197 
AC 206 
AC 229 
AC 255 
AC 276 
AC 284 
AC 328 
AC 330 
AC 402 
AC 451 
AC 593 
AC 638 
AC 656 
AC 705 
AC 773 
AC 914 
AC 317 
AC 511 
AC 787 
AC 806 
AC 031 
AC 392 
AC 748 
AC 767 
AC 076 
AC 211 
AC 219 
AC 361 
AC 551 
AC 580 
AC 739 
AC 768 
AC 995 

IMI 333797 
AC 008 
AC 036 
AC 064 
AC 068 
AC 280 
AC 318 
AC 322 
AC 329 
AC 360 
AC 371 
AC 375 
AC 383 
AC 407 
AC 450 
AC 492 
AC 536 
AC 564 
AC 568 
AC 581 
AC 640 
AC 644 
AC 680 
AC 742 
AC 810 
AC 845 
AC 857 
AC 972 
AC 220 
AC 420 
AC 456 
AC 487 
AC 496 
AC523 
AC 639 
AC 673 
AC 718 

551 
558 
480 
550 
471 
544 
486 
473 
477 
544 
542 
545 
535 
505 
533 
512 
547 
543 
547 
546 
546 
546 
477 
511 
512 
516 
559 
549 
521 
478 
493 
515 
565 
521 
565 
563 
510 
566 
505 
484 
482 
482 
485 
484 
485 
483 
484 
484 
485 
484 
484 
483 
484 
484 
485 
485 
484 
484 
484 
485 
484 
485 
485 
485 
485 
485 
484 
481 
482 
484 
485 
485 
484 
483 
483 
481 

FJ545369 
FJ545370 
FJ545407 
FJ545384 
FJ545385 
FJ545386 
FJ545387 
FJ545388 
FJ545389 
FJ545390 
FJ545391 
FJ545392 
FJ545393 
FJ545394 
FJ545395 
FJ545396 
FJ545398 
FJ545399 
FJ545400 
FJ545401 
FJ545402 
FJ545405 
FJ545406 
FJ545397 
FJ545403 
FJ545404 
FJ545371 
FJ545376 
FJ545380 
FJ545381 
FJ545372 
FJ545374 
FJ545383 
FJ545375 
FJ545377 
FJ545378 
FJ545379 
FJ545382 
FJ545373 
FJ545364 
FJ545331 
FJ545332 
FJ545333 
FJ545334 
FJ545336 
FJ545337 
FJ545338 
FJ545339 
FJ545340 
FJ545341 
FJ545342 
FJ545343 
FJ545344 
FJ545346 
FJ545366 
FJ545330 
FJ545351 
FJ545352 
FJ545353 
FJ545355 
FJ545356 
FJ545358 
FJ545360 
FJ545361 
FJ545365 
FJ545362 
FJ545363 
FJ545335 
FJ545345 
FJ545347 
FJ545348 
FJ545349 
FJ545350 
FJ545354 
FJ545357 
FJ545359 
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Figure 41. Amplification products of some Fusarium and Lasiodiplodia isolates by primers ITS 1 
and ITS 4; lane M, 100-bp DNA length ladder; (hyper ladder iv); lane 1, isolate IMI 380504; lane 
2, isolate IMI 361352; lane 3, isolate AC 995; lane 4, isolate AC806; lane 5, isolate AC 511; lane 6, 
isolate AC 551; lane 7, isolate AC 638; lane 8, isolate, 773; lane 9, isolate IMI 333797, lane 10, AC 
492; lane 11, AC 845; lane 12, AC 972; lane 13, AC 857; lane 14, AC 680; lane 15, AC 810.  
 

 

3.4.2. Identification of Fusarium isolates by ITS 

sequence analysis. 
The 39 isolated dieback-associated fungal strains (AC037-AC995) (Table 13) were 

previously listed as 37 unidentified Fusarium spp. and two F. decemcellulare isolates 

by means of colony and macroconidia morphology (Table 4 and Table 6). The two 

latter isolates were confirmed as Nectria rigidiuscula (anamorph F. decemcellulare) 

by likelihood cladogram analysis in the current study. The ITS sequence of the 

remaining 37 isolates showed close matches to the ITS sequence of four other 

Fusarium species namely, F. chlamydosporum, F. oxysporum, F. proliferatum and F. 

solani (Table 13). Together with F. decemcellulare, the phylogenetic tree (Figure 42) 

divided them into four clades: one clade consisted of nine isolates of F. solani and the 

two reference isolates of F. decemcellulare. In this clade, F. decemcellulare was 

derived first and F. solani later. The total of eleven species included here formed a 

monophyletic group. The homology of nucleotide sequences among members of this 

clade was significant with between 56 and 100 % bootstrap support. The F. 

decemcellulare isolates 380504 and IMI362352 presented identical profiles and were 

grouped at a 100 % similarity level. The isolates F. solani AC076, F. solani AC211, F. 

solani AC219, F. solani AC361, F solani AC551, F. solani AC580, F. solani AC739, 

F. solani AC768, and F. solani AC995, grouped into a clade at 74 % with the 

reference F. decemcellulare isolates from CABI. 

 

M 1 2 3 4 5 6 7 8 9 10 

11  

12 13 14 15 

550bp
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The general phylogeny of the Fusarium species analysed is given in Figure 42. None 

of the Fusarium isolates from the diseased cocoa stems was tightly linked to F. 

decemcellulare although F. solani isolates showed the closest relatedness. The 

isolates of Fusarium solani and Fusarium decemcellulare represented two similar 

branches within clade 1 of the Fusarium species with 75 % bootstrap support to the 

other isolates. A BLAST search revealed that the F. oxysporum isolates used in this 

study had their ITS sequences matching closely with those from the GenBank 

(GenBank accession no. AY928409). The output of the BLAST search of the ITS 

sequence of F. decemcellulare IMI380504 and  F. decemcellulare IMI362352 showed 

99 % sequence identity with Nectria rigidiuscula (GenBank accession no. FJ478113). 

Likewise searches of the sequences of F. solani isolates matched the ITS sequence 

(99 % identity) of reference F. solani (GenBank accession no. FJ478128), the F. 

chlamydosporum isolates had 99 % sequence identify with reference F. 

chlamydosporum (GenBank accession no. DQ489296), and F. proliferatum isolates 

were 99 % identical with F. proliferatum (GenBank accession no. EU151487).   

 

The second major clade from the cladogram further divided into two sub-clades; one 

cluster consisting of F. oxysporum, and the other of F. chlamydosporum. However, 

there was no bootstrap support for these clusters in the data (bootstrap value <50 %). 

The last clade containing F. proliferatum was well defined and its monophyly 

supported to 95 % in bootstrap value. This group was less closely related to the other 

Fusarium species and it is noteworthy that all F. proliferatum species were collected 

from the same source (Table 4, Chapter 2). Fusarium proliferatum species formed a 

sister-group with Fusarium chlamydosporum but with a low bootstrap support value. 

The ITS sequences has thus permitted distinguishing the existence of four species of 

Fusarium attacking cocoa in Ghana other than F. decemcellulare. However, no more 

conclusions could be made as only isolates from the Eastern and Western Regions 

were used in the study.   
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3.4.3. Identification of Lasiodiplodia isolates by 

ITS sequence analysis.  

 
A total of 37 field isolates, including one reference CABI isolate, IMI333797 were 

analysed. Results of phylogenetic analysis using MacClade alignment and RAxML 

tree construction supported the results of BLAST analyses of the ITS sequences. The 

BLAST search using matching sequences in the GenBank database indicated that all 

Lasiodiplodia species sequences were closely related to each other and belonged to 

either L. theobromae or L. pseudotheobromae. Twenty-seven of these isolates most 

consistently aligned with L. pseudotheobromae with up to 99 % sequence identity 

whilst the rest were classified as L. theobromae (Table 13). Lasiodiplodia sequences 

varied at several positions but they remained more related to each other than to any 

other species. Because all samples were most closely related to these two species it 

suggests that other Lasiodiplodia infections were not present in the dieback-diseased 

plants from the area surveyed. Figure 43 shows comparisons of the ITS sequence 

relatedness of the isolates. The bootstrap values supporting the clades of 

Lasiodiplodia sequences ranged from about 63 to 72 % and many had low values less 

< 50 %. This suggests that there may have been variation in the different sequences 

that were not accounted for by the cladogram. All isolates clustered into five clades. 

One clade contained the following isolates L. pseudotheobromae AC008, L. 

pseudotheobromae AC280, L. pseudotheobromae AC360, L. pseudotheobromae 

AC008, L. pseudotheobromae AC375, L. pseudotheobromae AC383, L. 

pseudotheobromae AC450, L. pseudotheobromae AC536, L. theobromae AC639, L. 

theobromae AC718, L. pseudotheobromae AC845 and L. pseudotheobromae 

IMI333797 while the isolates L. theobromae AC220, L. theobromae AC420, L. 

theobromae AC456, L. theobromae AC487, L. theobromae AC496, L. theobromae 

AC523 and L. theobromae AC673 belonged to another clade. The following isolates, 

L. pseudotheobromae AC064, L. pseudotheobromae AC318, L. pseudotheobromae 

AC322, L. pseudotheobromae AC329, L. pseudotheobromae AC492, L. 

pseudotheobromae AC568, L. pseudotheobromae AC581, L. pseudotheobromae 

AC640, L. pseudotheobromae AC644, L. pseudotheobromae AC680 and L. 

pseudotheobromae AC810 all clustered well into a separate clade while the two 
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remaining isolates, L. pseudotheobromae AC036 and L. pseudotheobromae AC407 

each constituted a separate clade on its own.  Despite CABI isolate IMI333797 being 

supplied as L. theobromae it was found to be more closely related to isolates of L. 

pseudotheobromae than to any of the other L. theobromae. BLAST analysis of its ITS 

sequence suggested that IMI333797 most likely belongs to L. pseudotheobromae 

because the degree of nucleotide sequence identity between it and the closest L. 

theobromae species relative was low whereas the match with L. pseudotheobromae 

ITS segments was closer. The output of the BLAST search of the ITS sequence of 

isolate IMI333797 and  Lasiodiplodia isolate AC220 showed 99 % sequence identity 

with L. pseudotheobromae (GenBank accession no. EF622081) and Botryosphaeria 

rhodina (anamorph: L. theobromae) (GenBank accession no. EU600925), respectively. 
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Figure 42. Cladogram revealing the relatedness of isolates of Fusarium based on 400 – 500 nucleotides from ITS1 and ITS2 rDNA. The DNA sequences were 
aligned with MacClade and trees were constructed with RAxML. The tree was rooted with Penicillium corylophilum. Numbers given on branches are bootstrap 
values indicating the confidence level from a 100-replicate bootstrap sampling. (Frequencies below 50% are not included).  
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Figure 43. Cladogram revealing the relatedness of isolates of Lasiodiplodia based on 400 - 500 nucleotides from ITS1 and ITS2 rDNA. The tree was rooted with 
Penicillium corylophilum. Numbers given on branches indicate the confidence level from 100-replicate bootstrap sampling. (Frequencies below 50% are not 
included).
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3.5.  Discussion 
A few fungi have been recognized as important stem canker pathogens of cocoa in 

West Africa, the most well known being Fusarium decemcellulare and Lasiodiplodia 

theobromae that have historically been isolated from diseased trees (Cotterell, 1927; 

Crowdy, 1947; Owen, 1956). The current observations (Chapter 2) indicated, however, 

that other Fusarium spp. could cause dieback disease in the sub-region. The true 

identities of these potential pathogens were unknown which partly prompted this 

study with the view to developing control measures for dieback disease. There was an 

obvious variation of pathogenicity rates across these isolates (Chapter 2) and this was 

probably due to differences inherent in the fungal populations and the geographical 

areas from where they were collected.  

 

Traditional characterisation studies apply mainly morphological and cultural methods, 

but these tend to be time consuming and often provide equivocal results with what are 

widely regarded as ‘difficult’ genera such as Fusarium. Very few studies have been 

carried out on canker pathogens of cocoa and only a minority have involved 

molecular methods. Molecular techniques have been applied widely in ecological 

studies (Wirgin et al., 1997) and wildlife conservation (Avise and Hamrick, 1996) in 

the past several years. In many studies, the polymerase chain reaction (PCR) has 

proved powerful in detecting obscure genetic variation; for instance, in the DNA of 

symbionts that cannot be cultured and separated from their co-symbionts, and in the 

microbial floristic composition (Haddad et al., 1995; Hansen and Hanson, 1996). For 

systematic and ecological studies, sets of universal primers have been designed, which 

may be used across a range of taxa (Dumolin-Lapegue et al., 1997; Chiang et al., 

1998; Chow and Hazama, 1998). The primer sequences of the internal transcribed 

spacer (ITS) regions of the nuclear ribosomal DNA have been widely used for 

resolving phylogenetic relationships at the species or generic levels (White et al., 

1990; Baldwin, 1992). Previous reports have documented the amplification of fungal 

sequences from plant foliage (Liston et al., 1996; Klein and Smith, 1996); and 

employing phylogenetic analysis, Camacho et al. (1997) was able to identify the 

endophytic fungi in Picea based on the ITS nucleotide sequences.  
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The current study presents a phylogenetic analysis of a few dozens of isolates 

obtained from diseased cocoa that were morphologically identified to the genera 

Fusarium and Lasiodiplodia.  A blast search of the rDNA genome sequence defined 

by the universal fungal primers ITS1 and ITS4 suggested that some of the pathogenic 

isolates are F. solani while others belong to the species F. chlamydosporum, F. 

oxysporum and F. proliferatum (sexual stage Gibberella intermedia, O’Donnell et al., 

1998). The sequence data provided evidence that Fusarium isolates from cocoa and 

the two reference isolates from CABI (F. decemcellulare IMI380504 and IMI362352) 

were separate species. Fusarium decemcellulare surprisingly had very limited 

information in the public database probably due to little work that has been carried out 

on the fungus. Numerous challenges exist regarding the identification of Fusarium 

spp. and several taxonomic systems have been proposed (Booth, 1971; Matuo, 1980; 

Nelson et al., 1983; Booth and Sutton, 1984; Leslie and Summerell, 2006). For 

example, the isolate named as F. fusarioides in Booth's system (Booth, 1971) was 

later referred to as F. chlamydosporum in the system of Nelson et al. (1983) whereas 

the fungus named as F. roseum and F. semitectum, by Booth (Booth, 1971) and 

Matuo and Snyder (1973), respectively was later named Fusarium pallidoroseum 

(Booth and Sutton, 1984). What was remarkable in the current study was that, 

contrary to prior expectation, none of the Fusarium isolates from cocoa was F. 

decemcellulare.  

Blast search and likelihood analysis of the ITS sequences of the Fusarium species 

from cocoa showed that there were distinct clades although many of the isolates are 

very closely related. This analysis supports the distinct position of the species 

Fusarium decemcellulare. In a comparison of the ITS sequences, the study found that 

F. decemcellulare and F. solani formed a monophyletic group which was distinct 

from separate clades comprising each of F. oxysporum, F. chlamydosporum, and F. 

proliferatum.  Culturally all species looked similar and the symptoms caused were 

indistinguishable in appearance on cocoa (Chapter 2), although the disease developed 

somewhat slower with the isolates of F. oxysporum and F. proliferatum than the 

others. Fusarium oxysporum is responsible for an enormous range of plant diseases, 

usually involving a vascular wilt syndrome (Leslie and Summerell, 2006). The 

majority of F. oxysporum isolates causing vascular wilts are specific strains that infect 

only a small number of host plants, and have been differentiated from each other 
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using the sub-specific term forma specialis (f. sp.). For example, the strains 

commonly attacking banana are assigned to F. oxysporum f. sp. cubense; cotton, F. 

oxysporum f. sp. vasinfectum; and tomato, F. oxysporum f. sp. lycopersici. 

Morphologically these strains are identical, and they also cannot be differentiated 

from non-pathogenic or saprophytic strains, of which there is a huge diversity, 

especially in soil. From a diagnostic point of view, the separation of this species into 

formae speciales has important diagnostic and quarantine implications. Identification 

of these strains has traditionally involved pathogenicity testing with sets of host 

differentials appropriate for the formae speciales in question. However, these tests are 

time-consuming to set up and can require long periods of time, for example, four to 

six months for F. oxysporum f. sp. canariensis, before they could be scored 

definitively. To add to the confusion there are reports (Jiménez-Gasco et al., 2002) 

that formae speciales are not monophyletic, with pathogenicity to plant species arising 

independently on multiple occasions from different genetic backgrounds. The 

relationship of F. oxysporum isolates detected here from cocoa to the species as a 

whole must await further study. 

 

While status of F. solani and F. oxysporum as plant pathogens is well established, F. 

chlamydosporum and F. proliferatum are hitherto regarded as relatively insignificant 

pathogens. On sunflower they are reported as causing collar rot, seedling rot, wilting 

and tip burning (Sharfun-Nahar and Mushtaq, 2007), but otherwise there are few 

records of pathogenesis especially on woody hosts. 

 

The BLAST search using matching sequences in the GenBank database indicated that 

all Lasiodiplodia species’ sequences were most closely related to either L. 

theobromae or L. pseudotheobromae. Based on the ITS phylogeny obtained in the 

present study (Figure 43), five clades could be recognised for these species that have 

anamorphs related to the Botryosphaeriaceae.  Twenty-seven of these isolates most 

consistently aligned with L. pseudotheobromae with up to 99 % sequence homology 

whilst the rest were classified as L. theobromae. A  CABI reference Lasiodiplodia 

isolate (IMI333797) that originally was identified as L. theobromae isolated from 

cassava in Nigeria, phylogenetically was linked to the L. pseudotheobromae group. 

Conidia of these two species are similar, and the CABI isolate was identified as L. 

theobromae because L. pseudotheobromae was differentiated only in 2008 by Alves et al. 
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Very recently, it has been shown that Botryosphaeria comprises several different 

phylogenetic lineages (Alves et al., 2008) that correlate well with morphological 

features of the anamorphs but observable morphological differences were lacking in 

the isolates studied in Chapter 2. The studies by Phillips et al. (2006) suggested 

Botryosphaeria constitutes a relatively small genus consisting of only B. dothidea 

(Moug. Fr.) Ces. & De Not. (the type species of the genus) and B. corticis (a species 

restricted to Vaccinium spp.). The remaining lineages within what was known as 

Botryosphaeria now consist of the anamorph genera Diplodia (including Sphaeropsis), 

Lasiodiplodia, Neofusicoccum, Pseudofusicoccum, Macrophomina, Neoscytalidium 

and Dothiorella (Crous et al., 2006). It was recently determined that Diplodia seriata 

De Not. was the correct name for the anamorph of “Botryosphaeria” obtusa (Phillips 

et al., 2007).  

 

The type species L. theobromae, geographically widespread in the tropics and 

subtropics, has been associated with approximately 500 hosts (Punithalingam, 1980). 

This apparently unspecialized plant pathogen has been reported to cause numerous 

diseases, including dieback, root rot, fruit rots, leaf spot and witches’ broom amongst 

many others (Punithalingam, 1980). It is also said to occur as an endophyte (Mohali et 

al., 2005; Rubini et al., 2005). Less frequently it has been associated with 

keratomycosis and phaeohyphomycosis in humans (Punithalingam, 1976; Rebell and 

Forster, 1976; Summerbell et al., 2004). In view of its widespread occurrence, the 

large number of hosts and its known morphological variability (Punithalingam, 1980) 

it is suggested that L. theobromae might be composed of a number of cryptic species. 

Recently, Pavlic et al. (2004) described a new species L. gonubiensis Pavlic, Slippers 

& M. J. Wingf. on the basis of conidial morphology and dimensions, and ITS 

sequence data. In a similar way, Burgess et al. (2006) described three new 

Lasiodiplodia species (L. crassispora, L. venezuelensis and L. rubropurpurea) from 

the tropics on the basis of their ITS and EF1-α sequence data and morphological 

characters. Lasiodiplodia pseudotheobromae is another such cryptic species but based 

on the phylogeny of Figure 43 the robustness of the separation into two distinct 

species must be in doubt. Sequence analysis of a single region of the genome does not 

in itself provide a definitive phylogeny and support is required from other methods of 

assessing diversity, for example AFLP or RAPD analysis before the existence of a 

second species can be definitely accepted or rejected.  In Pakistan, Khanzada et al. 
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(2004) reported that mango decline was a serious problem and of the pathogens, L. 

theobromae was the most abundant fungus while F. solani was the second most 

frequently isolated. The Lasiodiplodia isolates used in the present study are all 

pathogenic to cocoa (Chapter 2) but their ability to cross-infect other hosts is 

unknown. The natural history of the isolates in West Africa and the extent of their 

pathogenic potential must await further study. 
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4. Chapter 4 

4.1. Resistance to canker and dieback in 

cocoa germplasm 
 

4.2. Introduction  
Ghana is noted for growing several plantation crops, of which the most important are 

cocoa, oil palm, coffee, cotton, and rubber. The main export crop, cocoa, generates 

some 30 to 40 % of foreign exchange earnings for the Ghanaian economy, and in 

2005/2006, the country ranked second in dry cocoa bean production among the 

world’s leading cocoa producing countries (Table 1; Chapter 1). However, losses of up 

to 30 % of potential yield of the crop occur every year because of dieback disease, 

which has symptoms developed from the action of Fusarium decemcellulare, 

Lasiodiplodia theobromae and some other Fusarium species. The Government of 

Ghana spends several million Ghana-cedis to purchase insecticides every year for use 

against mirids, the insects that provide entry points for the aforementioned pathogenic 

fungi.  

 

After nearly 100 years experience of controlling dieback disease, the ideal control 

regimen is still to be found. The recent past years have seen problems with insecticide 

use and misuse (particularly in rural areas where there is the potential for 

contamination of ground water supply): high pesticide residues and the destruction of 

natural ecosystems have attracted much attention in the cocoa industry (Padi and 

Owusu, 2001). This has especially been the case since the introduction of new 

insecticides from Western countries got into full swing. Moreover, there is a 

worldwide demand for a reduction in the use of chemicals in agriculture and, 

therefore, a need to find economic, social and environmentally sound alternatives. 

Consequently, a number of other control approaches against mirids have been tried, 

but none against the fungal pathogens; however there are no effective or practical 

systems ready for adoption by cocoa farmers. 
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Few studies have addressed the effects of host resistance on dieback disease control in 

cocoa. In Ghana, Owen (1956) observed differences in susceptibility among different 

cocoa types to F. decemcellulare, but his collection did not consistently demonstrate 

worthwhile resistance. Although he suggested further testing of the Amelonado and 

Upper Amazon cocoa types, these genotypes, which have been grown for over half a 

century in West Africa, have continuously suffered severe damage.  

 

Since many cocoa farmers are reluctant to rely on insecticides, the potential for 

alternative and sustainable control methods needed to be investigated. Moreover, 

interest has recently turned towards the production of organic cocoa because of 

increasing demand from import/export markets. Therefore, the availability of 

improved and dieback-resistant clones would be beneficial since it could combine 

vigour, high yield, and early maturity with reduction in pesticide use so that cocoa 

farmers can make substantial gains in their net income. In Owen’s work resistance 

was assessed using lesion size but in the current study, a range of different 

independent factors namely, incubation period, lesion expansion, and foliar dieback 

incidence were also used.  

 

4.3. Materials and methods 

4.3.1. Resistance screening  
Resistance of cocoa clones to infection was studied in two different experiments: 1. 

artificial inoculation in the laboratory on detached stems. 2. Greenhouse in-vivo 

inoculation of vegetatively propagated cocoa clones.  
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4.3.2. Experiment 1 

4.3.2.1. Clones and fungal isolates 

Clones screened in the laboratory are listed in Table 14; fan branches of 29 accessions 

of cocoa germplasm with similar vigour were collected from ten-year-old plants 

growing in the field Unit of the International Cocoa Quarantine Centre (ICQC) based 

at the University of Reading, UK. Approximately 5 cm stem segments [diameter 4 to 

5 mm] (four replicates each) were cut from the detached branches. They were washed 

with distilled water and surface sterilized for 10 seconds in a 0.5 % sodium 

hypochlorite solution, followed by four one-minute rinses in sterile distilled water. 

The control consisted of Amelonado, which is susceptible to dieback. All stem 

segments were maintained at room temperature (23 to 27 °C) with 12 h of light per 

day under fluorescent tubes two metres above. Two Lasiodiplodia isolates designated 

AC371 and AC845 and one isolate of Fusarium decemcellulare IMI380504 (Table 

15) obtained from diseased plants (Chapter 2) were selected for the detached stem in-

vitro assay. Isolates AC371 and AC845 were collected as part of the current study 

while the third was originally isolated from a Ceiba tree by CABI, Biosciences, UK. 

The three isolates were chosen for this study based on their previously determined 

differences in greenhouse pathogenicity tests as discussed in Chapter 2.  

 

The fungal inocula were maintained as pure cultures in-vitro on PDA at 4 °C in the 

laboratory at Silwood Park. Prior to inoculations, all cultures were transferred from 

storage onto new PDA plates and incubated under a 14-hour light: 10-hour dark 

photoperiod at 30 °C to allow renewed growth and conidia formation. From these 

actively growing cultures, conidia were collected and suspended in distilled water for 

inoculum preparation following the method of Stack (1989) with the resultant spore 

suspension adjusted to 1 × 106 conidia per ml using a haemocytometer.  
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Table 14. List of cocoa germplasm (including their donor GenBank and GenBank accession 
numbers) used in the laboratory detached stem inoculation.  
Clone Donor GenBank Reading accession number 

AMAZ 15/15 
AMAZ 3/2 
AMAZ 5/2 
AMELONADO 
BE 2 
CATIE 1000 
CRU 100 
CRU 124 
EET 272 
EET 59 
GU 123/V 
GU 125/C 
GU 136/H 
ICS 43 
LCTEEN 37/F 
LCTEEN 37/G  
LCTEEN 37/I 
MXC 67 
NA 149 
PA 107 
PA 120 
PA 137 
PA 7 
POUND 7/B 
SC 20 
SC 9 
SCA 6 
T85/799 
UF 677 

Kew, UK 
ICG, T 
ICG, T 
- 
CATIE  
CIRAD-CP 
ICG, T 
- 
Kew, UK 
CIRAD-CP 
CIRAD-CP 
CIRAD-CP 
CIRAD-CP 
ICG, T 
USDA, Miami 
USDA, Miami 
USDA, Miami 
ICG, T 
ICG, T 
Kew, UK 
CIRAD-CP 
Kew, UK 
SABAH 
Kew, UK 
ICG, T 
ICG, T 
ICG, T 
CIRAD-CP 
ICG, T 

RUQ 1 
RUQ 91 
RUQ 93 
- 
RUQ 117 
RUQ 844 
RUQ 877 
RUQ- 
RUQ 6 
RUQ 845 
RUQ 1068 
RUQ 190 
RUQ 221 
RUQ 144 
RUQ 153 
RUQ 154 
RUQ 156 
RUQ 104 
RUQ 801 
RUQ 35 
RUQ 852 
RUQ 36 
RUQ 113 
RUQ 24 
RUQ 690 
RUQ 1064 
RUQ 234 
RUQ 855 
RUQ 346 

 

 

Table 15. Fusarium decemcellulare*, L. pseudotheobromae++ and L. theobromae+, relative 
aggressiveness, host and origin. 
Isolate Relative pathogenicity1 Host2 Origin3 Source 

IMI380504* 

AC371++ 

AC845+ 

Intermediate 

High 

Low 

Ceiba 

Cocoa 

Cocoa 

Ghana 

Ghana 

Ghana 

CABI, UK 

Silwood Park isolation 

              “ 
1Pathogenicity of isolates was determined using the mycelium-plug inoculation method on Amelonado 
cocoa. 
2Host from which each isolate was taken. 
3Location from where the diseased plant was originally taken. 
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Inoculation was done by making several punctures on the surface of each detached 

stem segment and then immediately the wounded end of the stem was dipped into a 

fungal spore suspension in 0.025 % Tween-20. One inoculation was given to each 

stem. They were marked, and then incubated vertically in humid plastic chambers 

lined with moist paper towels (Figure 44). The lesion length was recorded with a 

calliper 14 days after inoculation, and the lower portion of the stem sampled for 

fungal isolation. Prior to sampling, the epidermis was removed and the stem cut 

transversely open with a sharp, sterile scalpel. Small wood sections were cut out at 

different lengths below the point of inoculation and plated on PDA to obtain the 

fungal colonisation profile within the stem. A clone was considered tolerant if it 

showed necrosis close to the site of inoculation (≤ 2 mm), while susceptible genotypes 

were those with browning > 4 mm from the point of inoculation, recognised by the 

presence of dark brown lesions and viable mycelium when cultured on PDA. The 

experiment was repeated once and it was arranged in a split plot design with four 

replicates. Each stem segment was an experimental unit with isolates as the main plot 

factor and cocoa germplasm randomised within isolates as subplots.  

 

 

 
Figure 44. In-vitro stem-segment inoculation using spore suspension near the top of the 
cuttings. 
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4.3.3. Experiment 2 

4.3.3.1. Greenhouse screening of cocoa germplasm 
In the greenhouse, Amelonado cocoa seeds were germinated, transplanted, and grown 

in a 2: 2: 1 mixture of multi-purpose compost, loam, and sharp sand in 17 cm deep × 

18 cm diameter, ≈ 1.5 L capacity plastic pots. Fifteen clones (including Amelonado) 

were used in the greenhouse because some clones used in the laboratory could not 

provide suitable scion for use in the greenhouse. The fourteen clones (Table 16) 

obtained from the ICQC, were vegetatively propagated using the T-budding 

technique. Budwood cuttings were budded (grafted) on two to three week old 

Amelonado seedling rootstocks. The stem of a seedling was cut just deeply enough to 

slice the bark and make a T-shaped incision two to three centimetres long five to ten 

centimetres from the soil. The flaps of the ‘T’ were opened outwards to reveal the 

cambium layer and a shield of bud was sliced out smoothly including a thin layer of 

the wood from the budwood. The bud was inserted into the slit made on the rootstock 

until it was even with the cross cut. Once set in place, the cut was pulled together by 

winding a 10 to 12 cm long budding rubber around the stem to hold the flaps tightly 

over the bud to prevent drying. The budded clones were grown in the greenhouse (20 

to 30 °C) (Figure 21; Chapter 2). Eight to ten pots were raised for each of the 14 

clones but not all groups had the full complement of eight to ten due to the failure of 

some buds to attach successfully. Consequently, five replicates of each clone were 

used for the tests. Amelonado variety was included as a susceptible check for 

comparison.  
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Table 16. List of cocoa germplasm used in the greenhouse, including donor GenBank and 
GenBank accession numbers.  
Clone Donor GenBank Reading accession number 
AMELONADO 
CATIE 1000 
EET 59 
ICS 1 
ICS 95 
IMC 67 
LCTEEN 37/A 
LCTEEN 37/F 
LCTEEN 37/G 
MXC 67 
PA 7 (PER) 
PNG 418 
POUND 7/B (POU) 
SAN MIGUEL (CHA) 
T85/799 

- 
CIRAD-CP 
CIRAD-CP 
CIRAD-CP 
CIRAD-CP 
ICG, T 
USDA, MIAMI 
USDA, MIAMI 
USDA, MIAMI 
ICG, T 
SABAH 
CIRAD-CP 
KEW, UK 
ICG, T 
CIRAD-CP 

- 
RUQ 844 
RUQ 845 
RUQ 847 
RUQ 1144 
RUQ 1056 
RUQ 148 
RUQ 153 
RUQ 154 
RUQ 104 
RUQ 113 
RUQ 1309 
RUQ 24 
RUQ 142 
RUQ 855 

 
 

Inoculations were made using F. decemcellulare isolate IMI380504 and Lasiodiplodia 

isolate AC371 on the stem of each plant when the grafted buds were one month old. 

The inoculation procedure was adapted from Sacristan (1982): there was one 

inoculation position per plant: near either the top, or middle of the crown. At the 

inoculation position, a petiole was removed, and then a wound was made with a 

sterilised scalpel knife to expose part of the wood tissue, before the inoculum was 

applied. To each wound, a 10-μl spore suspension was applied (macroconidia from 

two-week old cultures having been previously suspended in sterile distilled water to 

which a few drops of 0.025 % Tween-20 had been added and adjusted to 1 × 106 

spores per ml). Wounds were sealed after inoculation with Parafilm M (Pechiney 

Plastic Packaging, Chicago, IL). The Parafilm was removed 2 weeks after inoculation. 

Control plants were inoculated with distilled water only. Following inoculation, the 

plants were placed in a translucent polyethylene enclosure, sprayed with water, and 

returned to the greenhouse benches, where they were arranged in a randomised 

complete block design.  

 

Two distinct symptoms of infection were observed in inoculated plants in the current 

study. These were the distinct leaf and shoot withering, and tissue necrosis within the 

stem, usually brown in colour with dark or pinkish borders. Formerly, only visual 

aspects of the internal necrotic lesions were used to describe susceptibility of 
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germplasm lines (Crowdy, 1947; Owen, 1956) but in the current study various simple, 

visual, non-destructive assessment methods were also employed. The incubation 

period, i.e. number of days between inoculation and appearance of symptoms was 

recorded. Data on the proportion of withered leaves were collected at 4, 8, and 12 

weeks after inoculation. Dieback severity on each plant was scored by visual 

estimation and comparison with the pictorial guide described in Chapter 2. Brown 

necrotic lesions in stems were measured 12 weeks after inoculation. Due to the 

destructive nature of the sampling necessary for this assessment, repeated 

measurements during the growth of the plants were not possible.  The percentage area 

of necrosis on stem sections (cut two millimetres below the point of inoculation) was 

measured with the aid of a sheet of one-millimetre-scaled tracing graph paper and to 

assess the internal growth of lesions into the stems, slices were cut out and the brown 

lesions measured with a hand-held calliper. Sections for light microscopy were cut at 

1-2 mm thickness with a kitchen slicer from different distances from the point of 

inoculation and stained by the technique described by Shipton and Brown (1962): the 

sections were boiled in alcohol and lactophenol-aniline blue and after one hour of 

clearing in saturated chloral hydrate and mounting on slides in lactophenol-glycerol, 

the presence or absence of fungal colonisation was noted. In addition wood fragments 

were removed sequentially from the point of inoculation and fungal colonisation 

determined by culturing on PDA. The inoculated stems were removed and destroyed 

right after the score. 

 

4.3.4. Resistance-indicator data analysis  
The essential methods of experimental design and data analysis have been extensively 

dealt with by Crawley (2005). Data analysis was performed using the four different 

computer packages: Statistical Package for Social Sciences (SPSS), Minitab, 

Microsoft Excel and R. Resistance to dieback disease in cocoa was thought to depend 

on a number of   resistance-indicator variables so analysis was made of those 

considered most likely to influence the overall process, i.e. incubation period, 

proportion of withered leaves, spread of the fungi within stem tissue, lesion length and 

width, lesion area on transverse sections and final disease scores 12 weeks after 

inoculation. Percentage of cross-sectional area of necrosis was transformed by arcsine 
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square root (Sokal and Rohlf, 1995). The Kruskal-Wallis non-parametric ANOVA 

was used to assess differences in disease severity scores.  Analyses of other variables 

were done for treatment combinations averaged across replicates: isolate × clone. Box 

plots (median, 25th and 75th percentiles, and minimum-maximum) and General Linear 

Model Analysis of Variance (GLM ANOVA) tests were done on measurement data to 

evaluate the significance of the different variables considered in the study. This was 

also done to determine the most influential variables: variables were successively 

tested for significance and only included if the residual sum of squares was 

significantly reduced. Least significant difference tests were used to analyse the 

significance of lesion sizes and the changes of withered leaves during the 12 week 

infection period. No procedure was used to identify and remove outlier data points, 

and unless otherwise indicated, a significance level of P ≤ 0.05 was used as arbiter of 

significant differences between clones. Box-plots analysis was conducted for an 

overall descriptive presentation of the data. The cocoa genotype responses to either 

Fusarium or Lasiodiplodia were compared by employing Pearson’s product-moment 

correlation analysis. Prior to all analyses, the statistics of the absolute severity data 

were transformed to arcsine square root. The response was considered positive when 

they showed statistical significance.    

 

4.4. Results 
 

4.4.1. Relative aggressiveness of isolates, lesion 
development, and variation in susceptibility of 
clones in-vitro 

 

Necrotic lesions, characterised by dark brown colouration developed in all twenty-

nine cocoa clones tested. The lesions in stems were darker, and the interface between 

the lesion and apparently healthy tissue was sharper than in non infected tissue. 

Analysis of variance detected significant (P < 0.001) differential responses of the 

cocoa genotypes to the three fungal isolates in the resistance tests on stems (Table 17). 

The LSD values for the isolates (AC845, AC371 and IMI380504) were 0.75, 1.98 and 

0.96 mm, respectively. There was also significant genotype × isolate interaction 
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(Table 17). Sizes of the necrotic lesions caused by the different fungal isolates are 

summarised in Table 18. Isolate AC845 was more aggressive than the other isolates 

on only six genotypes, viz., BE 2, GU 125/C, LCTEEN 37/I, PA 107, PA 120 and SC 

9 while isolate AC371 caused largest lesions on as many as eleven genotypes 

(Amelonado, CATIE 1000, CRU 100, CRU 124, GU 136/H, LCTEEN 37/F, MXC 

67, NA 149, PA 7, SC 20 and UF 677). Isolate IMI380504 ranked highest on nine 

clones- AMAZ 15/15, AMAZ 3/2, AMAZ 5/2, EET 59, GU 123/V, ICS 43, PA 137, 

POUND 7/B and T85/799.  

 

 
Table 17. Results (F and P-values) from univariate ANOVA on lesion size in cocoa stem segments 
from laboratory experiments. Square-root transformed data were used for analysis.  
 

 Df Sum Sq Mean Sq F value Pr(>F) 
Cocoa genotype 
Fungal isolate 
Genotype : Isolate 
Residuals   

28 
2 

56 
261 

2132.72 
242.11 

2117.22 
1268.25    

76.17 
121.05 
37.81 
4.86 

15.6752 
24.9125 
7.7806 

 

< 2.2 e-16 *** 
1.254 e- 10 *** 
< 2.2 e-16 *** 

 

 

Inoculation with AC371 caused the largest stem lesions in-vitro (mean = 4.33 mm, SE 

= 0.97, min = 0.25 mm, max = 20.7 mm) while isolate AC845 caused the smallest 

(mean = 2.41 mm). Considerably larger lesions were observed in genotypes UF 677 

and LCTEEN 37/F than in many of the other clones 14 days after inoculation. The 

lesion lengths for clone LCTEEN 37/F were 2.2, 18.5 and 11.7 mm against isolates 

AC845, AC371 and IMI380504, respectively. The lesion lengths for clone SCA 6 

against the three isolates were respectively 0.5, 0.5 and 0.2 mm. Eight genotypes were 

placed in one group and they represent the lowest level of resistance in this trial (mean 

lesion across isolates > 4 mm). Eleven genotypes (e.g. AMAZ 3/2, AMAZ 5/2, BE 2, 

CATIE 1000, CRU 124, GU 125/C, ICS 43, MXC 67, SC 9, SCA 6 and T85/799) that 

showed the best performance with lesion sizes < 2mm were placed in another group 

while the intermediate group, included ten genotypes (Table 18). The extent to which 

the performance of the three fungal isolates was correlated is shown in Figure 45 to 

Figure 47. All were positive, albeit weakly so. 
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Table 18. Variation in the severity of necrosis (visible lesion length, mm) caused by two 
Lasiodiplodia* isolates and a standard F. decemcellulare+ isolate on inoculated cocoa genotypes 
in-vitro 14 days after inoculation. 
 

Visible lesion length, isolate means1 Cocoa genotype 

AC845* AC371* IMI 380504+ 

Mean lesion 

size ± se 

Rank 

AMAZ 15/15 
AMAZ 3/2 
AMAZ 5/2 
AMELONADO 
BE 2 
CATIE 1000 
CRU 100 
CRU 124 
EET 272 
EET 59 
GU 123/V 
GU 125/C 
GU 136/H 
ICS 43 
LCTEEN 37/F 
LCTEEN 37/G  
LCTEEN 37/I 
MXC 67 
NA 149 
PA 107 
PA 120 
PA 137 
PA 7 
POUND 7/B 
SC 20 
SC 9 
SCA 6 
T85/799 
UF 677 

2.00 
0.75 
0.50 
4.75 
1.75 
2.25 
4.00 
0.25 
2.75 
0.50 
4.00 
2.25 
4.00 
0.25 
2.25 
2.25 
4.00 
0.75 
8.25 
5.25 
5.50 
1.75 
2.00 
0.25 
5.25 
0.75 
0.50 
0.50 
0.75 

2.00 
1.00 
1.00 
8.75 
1.00 
3.50 
8.00 
2.25 
5.75 
0.25 
0.75 
0.75 
6.25 
0.50 
18.5 
5.50 
2.00 
3.75 
9.50 
1.50 
1.00 
1.75 
4.00 
3.25 
11.25 
0.50 
0.50 
0.25 
20.7 

2.75 
1.25 
1.50 
4.75 
0.75 
0.25 
5.00 
1.25 
5.75 
5.75 
6.25 
1.25 
2.75 
1.00 
11.75 
1.00 
1.50 
1.50 
0.50 
1.25 
4.74 
2.75 
3.00 
4.25 
0.50 
0.50 
0.25 
1.50 
4.75 

2.25 ± 0.25b 
1.00 ± 0.14c 
1.16 ± 0.09c 
6.08 ± 0.76a 
1.16 ± 0.30c 
2.00 ± 0.94c 
5.66± 1.20a 
1.25 ± 0.57c 
4.75 ± 1.00a 
2.16 ± 1.79b 
3.66 ± 1.59b 
1.41 ± 0.44c 
4.33 ± 1.02a 
0.58 ± 0.22c 
10.8 ± 4.71a 
2.91 ± 1.34b 
2.50 ± 0.76b 
2.00 ± 0.90c 
6.08 ± 2.81a 
2.66 ± 1.29b 
3.74 ± 1.39b 
2.08 ± 0.33b 
3.00 ± 0.57b 
2.58 ± 1.20b 
5.66 ± 3.11a 
0.58 ± 0.08c 
0.41 ± 0.08c 
0.75 ± 0.38c 
8.73 ± 6.09a 

14th 
5th 
6th 
26th 
7th 
11th 
24th 
8th 
23rd 
13th 
20th 
9th 
22nd 
3rd 
29th 
18th 
15th 
10th 
27th 
17th 
21st 
12th 
19th 
16th 
25th 
2nd 
1st 
4th 
28th 

Mean  2.41 4.33 2.75 

LSD α =0.05 0.75 1.98 0.96 
1Data points are means calculated on four replicates. 
 aSusceptible group. 
 bIntermediate grou.p 
 cTolerant group. 
Mean lesion on water treated control was 0.4 mm 
 

4.4.2. Fungal colonisation of detached stem 
segments  

 
Colonisation occurred in all 29 cocoa genotypes screened and there were differences 

between the fungal isolates (Table 19). Mean colonisation distance from the source 

was 1.8, 9.6 and 6.0 mm for isolates AC845, AC371, and IMI380504, respectively. 

On genotypes PA 137, PA 7, SC 20, SCA 6 and T85/799, isolate AC845 colonised 

the least distance (0.3 mm) compared with the other isolates. Isolate AC845 

progressed only slightly further on BE 2, EET 272, EET 59, GU 136/H, LCTEEN 

37/I and SC 9 (0.5 mm) and AMAZ 3/2, AMAZ 5/2, CRU 100, and PA 120 (1.0 
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mm). Growth of isolate AC371 was severely restricted on AMAZ 3/2, PA 7 and SCA 

6 (0.5 mm) but it developed extensively on UF 677, POUND 7/B and GU 123/V 

among others. Least fungal colonisation across isolates was found in genotypes SCA 

6 (0.4 mm), EET 272 (0.6 mm) and MXC 67 (0.6 mm) whereas the most colonised 

genotypes were NA 149 (11.6 mm), UF 677 (12.9 mm) and GU 123/V (16.1 mm). 

Genotypes CRU 124, EET 272, ICS 43, SC 20 and SCA 6 were similar with respect 

to their response to isolate IMI380504 (0.5 mm). Isolates within the same genus, for 

example AC845 and AC371 differed in amount of colonisation except on genotype 

MXC 67, for which no significant difference between the two isolates was detected. 

In SCA 6, isolate AC845 was detected only in the 0.3-mm-long section next to the 

inoculation point while isolates AC371 and IMI380504 were both detected 0.5 mm 

away. On clone GU 123/V, the respective distances of isolation of the three fungi 

were 16.8, 18.8 and 12.8 mm. A general observation of the cultures indicated a 

gradient in the amount of fungal biomass (mycelial growth), with the highest levels 

immediately adjacent to the inoculation point. Figure 48 to Figure 50 and appendix 1 

show correlation between colonisation of the three isolates on the cocoa genotypes. 

 

Figure 45. Pearson’s product-moment correlation of necrotic lesions by Lasiodiplodia theobromae 
AC845 and Lasiodiplodia AC371 on different cocoa germplasm lines. r = 0.3, t = 1.3534, df = 27, 
p-value = 0.1872; alternative hypothesis; true correlation is not equal to 0; 95 % confidence 
interval ranges from -0.1261103 to 0.5662434. 
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Figure 46. Pearson’s product-moment correlation of necrotic lesions by Lasiodiplodia AC845 and 
Fusarium decemcellulare IMI380504 on different cocoa germplasm lines. r = 0.1, t = 0.3023, df = 
27, p-value = 0.7648; alternative hypothesis; true correlation is not equal to 0; 95 % confidence 
interval ranges from -0.3151421 to 0.4157285. 
 

 
Figure 47. Pearson’s product-moment correlation of necrotic lesions by Lasiodiplodia AC371 and 
Fusarium decemcellulare IMI380504 on different cocoa germplasm lines. r = 0.5, t = 2.9235, df = 
27, p-value = 0.006925; alternative hypothesis; true correlation is not equal to 0; 95 % confidence 
interval ranges from 0.1509704 to 0.7263203. 
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Table 19. Variation in the distance of spread of viable mycelia (colonisation, mm) of Lasiodiplodia 
and F. decemcellulare within cocoa genotypes in-vitro 14 days after inoculation. 
 

Distance from inoculation point to edge of 

colonisation1 

Mean distance of 

colonisation ± se 

 Genotype 

AC845* AC371* IMI 380504  

Rank 

AMAZ 15/15 
AMAZ 3/2 
AMAZ 5/2 
AMELONADO 
BE 2 
CATIE 1000 
CRU 100 
CRU 124 
EET 272 
EET 59 
GU 123/V 
GU 125/C 
GU 136/H 
ICS 43 
LCTEEN 37/F 
LCTEEN 37/G  
LCTEEN 37/I 
MXC 67 
NA 149 
PA 107 
PA 120 
PA 137 
PA 7 
POUND 7/B 
SC 20 
SC 9 
SCA 6 
T85/799 
UF 677 

7.25 
1.00 
1.00 
2.75 
0.50 
1.25 
1.00 
2.50 
0.50 
0.50 
16.75 
0.25 
0.50 
0.75 
7.25 
0.75 
0.50 
0.75 
2.00 
0.25 
1.00 
0.25 
0.25 
0.75 
0.25 
0.50 
0.25 
0.25 
1.25 

9.00 
0.50 
5.00 
13.75 
9.75 
10.25 
17.50 
17.00 
0.75 
16.00 
18.75 
14.25 
4.75 
1.25 
17.75 
17.50 
2.00 
0.75 
18.50 
1.50 
8.00 
9.00 
0.50 
18.50 
19.00 
2.75 
0.50 
3.00 
19.75 

10.00 
1.00 
8.75 
8.25 
13.75 
8.50 
4.50 
0.50 
0.50 
6.75 
12.75 
1.00 
4.50 
0.50 
2.50 
15.50 
9.25 
0.25 
14.25 
1.25 
7.00 
11.75 
1.25 
5.75 
0.50 
2.00 
0.50 
3.00 
18.00 

8.75 ± 0.80 
0.83 ± 0.16 
4.91 ± 2.23 
8.25 ± 3.17 
8.00 ± 3.92 
6.66 ± 2.75 
7.66 ± 5.01 
6.66 ± 5.19 
0.58 ± 0.08 
7.75 ± 4.50 
16.08 ± 1.76 
5.16 ± 4.54 
3.25 ± 1.37 
0.83 ± 0.22 
9.16 ± 4.50  
11.25 ± 5.28 
3.91 ± 2.70 
0.58 ± 0.16 
11.58 ± 4.94 
1.00 ± 0.38 
5.33 ± 2.18 
7.00 ± 3.46 
0.66 ± 0.30 
8.33 ± 5.28 
6.58 ± 6.20 
1.75 ± 0.66 
0.41 ± 0.08 
2.08 ± 0.91 
12.98 ± 5.90 

24th 
5th 
12th 
22nd 
21st 
16th 
19th 
17th 
2nd 
20th 
29th 
15th 
10th 
6th 
25th 
26th 
11th 
3rd 
27th 
7th 
13th 
18th 
4th 
23rd 
14th 
8th 
1st 
9th 
28th 

Mean  1.81                      9.56 6.00  

LSD α =0.05  1.26 2.76 2.02  
1Data points are means calculated on four replicates. 
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Figure 48. Pearson’s product-moment correlation of stem colonisation by L. theobromae AC845 
and L. pseudotheobromae AC371 on different cocoa germplasm lines. r = 0.4, t = 1.9941, df = 27, 
p-value = 0.05633; alternative hypothesis; true correlation is not equal to 0; 95 % confidence 
interval ranges from -0.009459452 to 0.640665281. 

 

 
Figure 49. Pearson’s product-moment correlation of stem colonisation by Lasiodiplodia 
theobromae AC845 and F. decemcellulare IMI380504 on different cocoa germplasm lines. r = 0.3, 
t = 1.4232, df = 27, p-value = 0.1661; alternative hypothesis; true correlation is not equal to 0; 95 
% confidence interval ranges from -0.1133151 to 0.5749977. 
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Figure 50. Pearson’s product-moment correlation of stem colonisation by Lasiodiplodia 
pseudotheobromae AC371 and F. decemcellulare IMI380504 on different cocoa germplasm lines. r 
= 0.5, t = 2.8077, df = 27, p-value = 0.009154; alternative hypothesis; true correlation is not equal 
to 0; 95 % confidence interval ranges from 0.1318525 to 0.7169720. 
 
 

4.4.3. Comparison of lesion length and fungal 
colonisation in inoculated stem segments in-
vitro 

 
Pearson’s correlation coefficients between lesion length and distance of colonisation 

for the different isolates were positive and significant (Figure 51 to Figure 53). This 

suggests that a general increase or decrease of lesion length in stems was associated 

with either an increase or a decrease of colonisation. The observation from this trial 

has to be interpreted cautiously because while the results of some clones were 

consistent across the three fungal isolates (for both necrotic lesion and colonisation 

assessment methods), there was no definite trend on other genotypes. For example, 

SCA 6 ranked first (most resistant) in both the lesion size and tissue colonisation 

methods. AMAZ 3/2 also consistently expressed partial resistance in both methods, 

ranking the fifth most resistant. Other genotypes such as UF 677 and Amelonado were 

consistently ranked susceptible in both evaluations. On the contrary, the genotype 

EET 272, showed good resistance in the tissue colonisation method, but high 
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susceptibility in the lesion size method. Among the evaluated clones, the study has 

identified a few that developed only small necrotic lesions; SCA 6, SC9 and ICS 43 

seemed to be the most promising ones as judged by the detached stem evaluation 

method. Some clones did not display strong visual symptoms but the distances of 

colonization were relatively high (e.g. IMI380504 on NA 149 and UF 677), which 

suggests latent and symptomless growth of fungi in host tissues. In other 

combinations, however, (e.g. isolate AC371 on POUND 7/B and isolate IMI380504 

on LCTEEN 37/F), the reverse is the case.  

 
Figure 51. Pearson’s product-moment correlation between lesion length and distance of 
colonisation by isolate AC845. r = 0.2, t = 1.1726, df = 27, p-value = 0.2512; alternative 
hypothesis; true correlation is not equal to 0; 95 % confidence interval ranges from -0.1592180 to 
0.5428425. 
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Figure 52. Pearson’s product-moment correlation between lesion length and distance of 
colonisation by isolate AC371. r = 0.5, t = 3.1084, df = 27, p-value = 0.004397; alternative 
hypothesis; true correlation is not equal to 0; 95 % confidence interval ranges from 0.1809016 to 
0.7405407. 
 

 
Figure 53. Pearson’s product-moment correlation between lesion length and distance of 
colonisation by isolate IMI380504. r = 0.4, t = 2.8741, df = 27, p-value = 0.007804; alternative 
hypothesis; true correlation is not equal to 0; 95 % confidence interval ranges from 0.1428571 to 
0.7223788. 
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4.4.4. Greenhouse evaluations  

Fourteen grafted cocoa genotypes were selected for testing in the greenhouse to 

compare their susceptibility to F. decemcellulare isolate IMI 380505 and 

Lasiodiplodia isolate AC371 infection. Amelonado with high susceptibility (Chapter 

2) was included for comparison. The results are given in Table 20 and Table 21. 

Isolates of both F. decemcellulare and Lasiodiplodia were able to colonise and 

develop on some clones, whereas on other clones, pathogen colonisation seems to 

have been hindered thereby resulting in smaller, necrotic lesions. However, the point 

of inoculation of all clones became swollen and a large amount of gum was produced, 

presumably as part of the plant defence response to combat further fungal 

colonisation. Analysis showed non-significant differences in the levels of infection 

between the two fungi as lesion measurements and dieback scores were comparable. 

Both means and variances (indicated by LSD) are similar in the two tables. 



 

 129

Table 20. Components of resistance in fifteen cocoa germplasm clones varying in susceptibility to Fusarium decemcellulare in greenhouse evaluations. 
 

Components of resistance 
Percentage of withered leaves 

 
 
Description of 
clones 

Incubation 
period (days)a 

Dieback 
Score (mean)b 

4 wks 8 wks 12 wks 

Lesion width 
(mm) 

Lesion length 
(mm) 

Distance of 
fungal spread 
(mm) 

% stem cross 
sectional area with 
necrosis c 

AMELONADOd 
CATIE 1000 
EET 59 
ICS 1 
ICS 95 
IMC 67 
LCTEEN 37/A 
LCTEEN 37/F 
LCTEEN 37/G 
MXC 67 
PA 7 (PER) 
PNG 418 
POUND 7/B  
SAN MIGUEL  
T85/799 

  9 
30 
12 
23 
22 
27 
11 
12 
  9 
25 
22 
17 
18 
21 
25 

8.4 
1.8 
6.0 
4.6 
5.0 
3.0 
7.2 
8.4 
7.8 
2.6 
6.2 
6.0 
4.4 
3.8 
2.4 

51.6 
3.7 
32.2 
25.3 
25.7 
16.8 
50.0 
54.6 
60.9 
8.5 
21.4 
25.5 
24.5 
14.0 
6.6 

61.5 
4.0 
41.6 
30.5 
33.6 
20.0 
58.2 
67.6 
72.5 
12.3 
43.1 
45.3 
31.0 
16.0 
10.8 

88.4 
4.3 
52.8 
37.9 
40.5 
21.6 
67.6 
90.8 
88.7 
10.8 
53.3 
53.9 
35.1 
21.6 
9.5 

1.90 
0.36 
1.78 
1.56 
0.96 
1.24 
1.32 
1.78 
1.15 
1.14 
1.06 
1.90 
1.22 
1.30 
1.56 

35.12 
16.24 
33.00 
27.16 
25.80 
17.68 
32.80 
34.32 
35.74 
20.62 
24.70 
20.82 
28.20 
21.64 
16.72 

 26.1 
13.2 
29.4 
25.1 
20.7 
14.5 
27.2 
32.0 
29.3 
16.0 
22.8 
16.3 
22.1 
20.8 
11.1 

36.0 
6.2 
31.0 
26.0 
23.0 
23.0 
28.0 
31.7 
28.2 
16.3 
19.5 
23.8 
19.9 
23.4 
16.5 

Mean 19 5.1 28.1 36.5 45.1 1.34 26.03 21.7 23.5 

LSD α =0.05 4  1.2 10.1 12.0 16.1 0.22 3.84 3.5 4.1 
a Days after inoculation to first visual symptoms; means rounded to the nearest one day. 
b Mean dieback scores recorded using a nine-point disease scale (1 = no visible symptoms, 9 = dead plant). 
c Real figures; analysis was done after arc sine transformation. 
d Susceptible variety.    
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Table 21. Components of resistance in fifteen cocoa germplasm clones varying in susceptibility to Lasiodiplodia in greenhouse evaluations. 
 

Components of resistance 
Percentage of withered leaves c 

 
 
Description of 
clones 
 

Incubation 
period (days)a 

 

Dieback 
Score (mean)b 

4 wks 8 wks 12 wks 

Lesion width 
(mm) 

Lesion length 
(mm) 

Distance of 
fungal spread 
(mm) 

% stem cross 
sectional area with 
necrosis c 

AMELONADOd 
CATIE 1000 
EET 59 
ICS 1 
ICS 95 
IMC 67 
LCTEEN 37/A 
LCTEEN 37/F 
LCTEEN 37/G 
MXC 67 
PA 7 (PER) 
PNG 418 
POUND 7/B  
SAN MIGUEL  
T85/799 

9 
31 
11 
23 
18 
28 
8 
10 
12 
21 
19 
21 
13 
22 
21 

9.0 
2.4 
6.0 
4.0 
4.4 
2.4 
8.4 
9.0 
8.4 
2.2 
6.6 
4.4 
6.0 
4.4 
2.4 

38.6 
5.1 
40.0 
17.4 
25.4 
9.4 
58.8 
68.7 
57.5 
5.7 
41.4 
15.0 
29.6 
21.5 
5.9 

60.2 
6.5 
48.8 
22.7 
29.9 
11.3 
67.9 
74.3 
66.3 
6.4 
51.5 
19.3 
41.8 
24.0 
9.0 

100.0 
10.8 
60.0 
32.1 
38.4 
13.1 
89.7 
100.0 
80.6 
9.8 
63.9 
25.6 
50.3 
31.1 
9.9 

2.18 
0.70 
2.22 
1.18 
1.28 
1.20 
1.24 
1.56 
1.00 
1.18 
1.08 
2.00 
1.94 
1.80 
1.10 

39.16 
16.88 
34.28 
26.52 
26.44 
20.22 
36.30 
36.36 
31.14 
22.56 
25.46 
21.34 
26.80 
21.64 
17.44 

26.0 
14.3 
29.9 
22.3 
20.6 
15.8 
31.0 
34.0 
28.0 
20.2 
23.3 
18.4 
23.6 
17.7 
12.8 

30.6 
6.1 
35.6 
22.3 
24.3 
23.3 
24.4 
34.0 
26.1 
19.4 
22.7 
31.8 
28.6 
33.2 
16.1 

Mean 18 5.3 29.3 35.9 47.6 1.44 26.83 22.5 25.2 

LSD α =0.05 4 1.3 11.5 13.3 18.2 0.25 3.95 3.4 4.2 
a Days after inoculation to first visual symptoms; means rounded to the nearest one day. 
b Mean dieback scores recorded using a nine-point disease scale (1 = no visible symptoms, 9 = dead plant). 
c Real figures; analysis was done after arc sine transformation. 
d Susceptible  variety. 
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Figure 54 shows an example of a budded clone used for the greenhouse resistance 

screening. The rootstock is a parental Amelonado plant while the attached scion, 

marked by an arrow,   is from LCTEEN 37/F. The scion is two month old and shows a 

strong bud-rootstock union. Similar results were obtained with the other clones, but 

there were instances when the implant was unsuccessful and budding had to be 

repeated. 

 

Figure 54. An eight-week-old grafted clone attached to an Amelonado rootstock. 
  

In the greenhouse study, clones were evaluated for incubation period, lesion size and 

dieback, and the measures of shorter incubation periods, larger lesions, and high 

dieback scores implied susceptibility. Visual ratings for dieback of the shoot generally 

corresponded to ratings previously obtained from greenhouse studies on susceptible 

Amelonado cocoa. Disease was not apparent during the first week after inoculation, 

with nearly all the plants able to produce new flush leaves. However, from the second 

week, characteristic foliar symptoms of the disease were observed. Disease symptoms 

were characterised by wilting of apical leaves and necrosis, which developed within 

the stem from the point of inoculation downwards. The incubation period ranged from 

Implanted clone, 
LCTEEN 37/F 
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eight to 30 days during which time drooping and wilting of the leaves became visible. 

After the initial disease symptoms, the most susceptible plants were dead after 12 

weeks. Disease scores varied between cocoa clones and ranged from 1.8 to 9.0 (Table 

20 and Table 21). On CATIE 1000 and T85/799, only 40 percent of the plants 

developed foliar symptoms with an average disease index of 1.8 to 2.4 while the 

remaining plants had no or barely detectable expression of dieback. The five 

populations from LCTEEN 37/A, LCTEEN 37G, LCTEEN 37/F, SANMIGUEL and 

POUND 7/B developed the most severe symptoms which were similar to those shown 

by the infected Amelonado control (Table 20 and Table 21). Between these extremes, 

the populations from PA 7 and IMC 67 had intermediate levels of symptoms. When 

plant sections from cocoa germplasm with symptoms were tested for the presence of 

the fungi, colonies were detected although the density of viable hyphae decreased 

away from the point of inoculation. This observation was true even in symptomless 

plants. Despite this, F. decemcellulare or Lasiodiplodia was still recovered from stem 

tissues 12 weeks after inoculation. These fungi were likely to have come only from 

within the necrotic region around the point of inoculation, where the fungi were 

confined by the host defence response. Neither the xylem in necrotic areas of stems 

nor any other tissues were seen to be filled with fungal hyphae, but rather they 

appeared to be filled with gummy substances. This material probably contained 

phenolic compounds that were produced as a host defence response.  

The assumption for a parametric ANOVA test was however not supported on these 

disease scores. Therefore, a Kruskal-Wallis non-parametric test was carried out on the 

data. The output (Table 22) confirms the test used. The summary information of each 

cocoa clone is given, N being the number of observations as well as the median and 

mean rank. The Z-value is used in the test calculation. The last two lines give the tests 

results depending on how tied observations in the data were treated. Here, the test 

statistic obtained was greater than the critical value H (48.29, d.f. = 13, P < 0.001) and 

therefore the null hypothesis was rejected. The analysis suggests that at least one of 

the clones yielded a median score value was different from that yielded by at least one 

of the other clones. The significant result (P < 0.001) from the Kruskal-Wallis test is 

shown in Table 22.  
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A microscopic observation and measurements was performed on stem sections to 

determine the distribution of necrotic tissues. In transverse section, under light 

microscopy, the stem showed a simple structure. Staining of a transverse section of 

the stem with aniline blue lactophenol revealed the presence of necrotic areas, mainly 

inward from the cortical layer and the xylem vessels in the vascular bundle towards 

the pith.   

4.4.4.1 Incubation period 

The clones used in the study expressed reasonable consistency in the various 

resistance components measured. Incubation period decreased distinctly from resistant 

to susceptible clones. The apparently resistant clone CATIE 1000 had the longest 

incubation period of 30 days compared to 8 days for LCTEEN 37/A. 

 

4.4.4.2. Dieback assessment 

The dieback scores for the two lots of genotypes, one receiving isolate AC371, the 

other isolate IMI380504 were compared. The individual scores are recorded in (Table 

23). The calculations for the test of significance are given at the foot of the table. With 

28 degrees of freedom, the value of t is not significant at the 1 % level. Isolate AC371 

gave comparable average dieback scores as IMI380504 and therefore, the dieback 

susceptibility of the 15 cocoa genotypes tested was not significantly different between 

the two isolates used in the study (P ≤ 0.05). The maximum disease was recorded on 

Amelonado, LCTEEN 37/F and LCTEEN 37/G with mean score of 9.0 followed by 

EET 59, PA 7, and PNG 418 with disease scores ranging between 5 and 7. Four 

clones CATIE 1000, IMC 67, MXC 67, and T85/799 had scores below 3.0. Two 

clones, Amelonado, and LCTEEN 37/F exhibited maximum susceptibility against L. 

theobromae, while minimum disease incidence was observed in CATIE 1000 against 

F. decemcellulare. An example of dieback symptom is shown in Figure 55. 
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Table 22. Kruskal-Wallis test of data from greenhouse experiment to evaluate dieback severity 
scores in different cocoa genotypes. 
 
Clones       N    Median   Ave Rank         Z* 
Amelonado        10     9.000      119.5      3.32 
CATIE 1000       10     1.000       20.0     -4.18 
EET 59           10     6.000       92.3      1.27 
ICS 1            10     6.000       66.4     -0.69 
ICS 95           10     6.000       70.5     -0.37 
IMC 67           10     4.500       58.3     -1.30 
LCTEEN 37/A      10     6.000       84.2      0.66 
LCTEEN 37/F      10     9.000      119.5      3.32 
LCTEEN 37/G      10     6.000       92.3      1.27 
MXC 67           10     2.000       56.9     -1.41 
PA 7             10     3.000       51.5     -1.81 
PNG 418          10     7.500       95.7      1.52 
POUND 7/B        10     6.000       82.8      0.55 
SAN MIUEL        10     6.000       90.3      1.12 
T85/799          10     1.000       32.3     -3.25 
Overall     150                 75.5 
 
H = 60.79  DF = 14  P = 0.000 
H = 66.36  DF = 14  P = 0.000 (adjusted for ties) 
*The Z value for each group is the standardized value of the 
deviation between the Ři for the ith group and its expected value 
(N + 1)/2 under the null hypothesis.  
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Table 23. Testing the difference between the means of dieback scores caused by isolate AC371 
and IMI380504. 
 

Dieback scores Cocoa genotype 
AC371 IMI380504 

Amelonado 
CATIE 1000 
EET 59 
ICS 1 
ICS 95 
IMC 67 
LCTEEN 37/A 
LCTEEN 37/F 
LCTEEN 37/I 
MXC 67 
PA7 (PER) 
PNG 418 
POUND 7/B 
SANMIGUEL 
T85/799 

9.0 
2.4 
6.0 
4.0 
4.4 
2.4 
8.4 
9.0 
8.4 
2.2 
6.6 
4.4 
6.0 
4.4 
2.4 

8.4 
1.8 
6.0 
4.6 
5.0 
3.0 
7.2 
8.4 
7.8 
2.6 
6.2 
6.0 
4.4 
3.8 
2.4 

ΣX 
n 

Mean X’ 
ΣX2 

(ΣX)2/n 

80.0 
15 
5.33 
514.88 
426.66 

77.6 
15 
5.17 
468.96 
401.45 

Σx2 

df 
88.22 
14 

67.51 
14 

                              
                              Pooled s2 =  88.22 + 67.51 = 5.561        df = 28 
                                                       14 + 14  
 
                               sx1’-x2’ = √2s2/n = √2(5.561)/15 = 0.86 
 
                                           t = (X1’-X2’)/ sx1’-x2’ = 0.16/0.86 = 0.186 
 
                              95 % confidence limits for µ1-µ2 were 
                                    0.16 ± t0.05 sx1’-x2’  
 
                                0.16 – (2.048)(0.86) = -1.6 to 1.92                                  
 

 

4.4.4.3. Distance of fungal spread (colonisation) 

In both the Fusarium decemcellulare (IMI380504) and Lasiodiplodia (isolate AC371) 

inoculations the results showed evidence of variation in fungal colonisation of stem 

tissue between the different cocoa genotypes. Analysis of variance yielded highly 

significant (P < 0.05) clonal effects for Isolates IMI380504 and AC371 (Table 20 and 

Table 21). Therefore, for both pathogens, the distance of fungal stem colonisation 

measured depended on the cocoa genotype. LCTEEN 37/F was highly colonised by 

both pathogens while T85/799 and CATIE 1000 were the least colonised. There was a 
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general trend for shorter distance of hyphal growth than visible lesions. That is, viable 

hyphae were only recovered from within the visibly diseased wood. 

 

 

 
Figure 55. An example of the type of dieback symptoms caused by L. Pseudotheobromae 
in young plants of clones PNG 418 and LCTEEN 37/G infected 12 weeks after  
inoculation in the greenhouse.  
 

4.4.4.4. Assessment of necrotic lesions 

Following the use of visible symptoms for scoring of dieback severity, internal tissues 

of stems (Figure 57) were then inspected for damage at the end of the experiment, 

with the view to correlating dieback damage with internal tissue collapse. Table 20 

and Table 21 show the reactions induced by the two fungal isolates on the 15 cocoa 

germplasm types. All 14 clones were susceptible to the two fungi and showed some 

level of necrotic lesions. The lesions were irregularly elongated often with a pinkish-

brown colouration. Inoculation with isolate AC371 appeared to have caused a greater 

across clone mean lesion length than isolate IMI380504, but the differences were not 

significant (P = 0.159). Generally, the across-isolate lesion dimensions were smaller 

on CATIE 1000 and T85/799 than on the other clones. Significant clone × isolate 

interactions were not detected (P > 0.05) for lesion length, lesion width nor for the 
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cross-sectional area of stem surface showing necrosis. This may be partly because a 

similar response to infection in the different germplasm lines was seen when the 

plants were inoculated with either pathogen as mean lesion dimensions on identical 

clones were similar against both isolates. Overall, there was significant correlation 

between results from the two isolates tested (Figure 60–Figure 62). The ANOVA 

showed that there were significant differences (P < 0.05) between the cocoa clones 

used. Amelonado, EET 59, LCTEEN 37/A, LCTEEN 37/F, LCTEEN 37/G and SAN 

MIGUEL were the most severely damaged while CATIE 1000, T85/799, and MXC 

67 were the most resistant against the two isolates with respect to necrotic lesion 

development.  

 

Nine cocoa genotypes (Amelonado, CATIE 1000, EET 59, LCTEEN 37/F, LCTEEN 

37/G, MXC 67, PA 7, POUND 7/B and T85/799) were tested in the laboratory as well 

as the greenhouse. The correlation coefficient between the laboratory assay and the 

greenhouse test of necrotic lesions was 0.56 (n=9) but this was not significant (Figure 

56). 
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Figure 56. Pearson’s product-moment correlation of necrotic lesions caused by isolate AC371 on 
corresponding cocoa germplasm lines. r = 0.5, t = 1.833, df = 7, p-value = 0.1095; alternative 
hypothesis; true correlation is not equal to 0; 95 % confidence interval ranges from -0.1521858 to 
0.8950835. 
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Figure 57. Cross sections of stems of 6-month-old budded cocoa showing necrosis of the xylem 
tissue; a. clone T85/799 12 weeks after inoculation with isolate AC371 (L. pseudotheobromae); b. 
clone LCTEEN 37/F 12 weeks after inoculation with isolate AC371. 1 = pith, 2 = protoxylem, 3 = 
xylem, 4 = phloem, 5 = schlerenchyma (blast fibre) - supporting tissue, 6 = cortex, 7 = epidermis. 
Dark brown portions are necrotic lesions as a consequence of infection by Fusarium and 
Lasiodiplodia species.                    
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Box and whisker plots (Figure 58) constructed to examine the differences between the 

clones across the eight measureable resistance variables confirmed the above 

observation. Figure 58 shows the median, 25th, 75th percentiles and maximum and 

minimum values for four variables on four clones inoculated with isolate AC371. 

From the box-plots, incubation period, lesion length and width and the cross sectional 

area of stem with necrosis showed significant differences between clones. The 

analysis of variance (ANOVA) indicated significant differences among the cocoa 

clones for each resistance component (Table 20 and Table 21).  

 

Further insight could be gained using the correlation matrix in Figure 59, where the 

rows have the ‘response’ variable (the y axis) as labelled by the variable name that 

appears in that row and the columns, the ‘explanatory’ variables as labelled by the 

variable name that appears in that column. There was a strong correlation between 

most of the resistance components evaluated (Figure 59) as well as between the 

results of the two fungal isolates (Figure 60 to Figure 62). There was also a close 

correlation of dieback scores against some of the other resistance variables (Figure 63 

to Figure 66) which is biologically plausible, because shorter incubation period and 

larger lesion size both reflect the activity of the pathogen. The inward growth of 

lesions (estimated from percentage area of systemic lesion) was positively correlated 

with the other resistance components, which were positively correlated with one 

another but negatively correlated with incubation period. However, the relationship 

between lesion width and the proportion of withered leaves after four, eight, and 

twelve weeks is not clear. The data showed that there was a rapid increase in the 

percentage of withered leaves to around 25 % at four weeks followed by a slower 

increase such that by the twelfth week weaker clones had reached a value close to 100 

percent. Although strongly positively correlated with each other (Figure 59) the 

withered leaf values at 4, 8 and 12 weeks often seemed independent of the other 

parameters measured, with marked scatter of points tending to obscure any underlying 

correlation. Within the approximations made, the mean dieback score for the less 

susceptible clones was less than 3.0 for the two fungal isolates. Amelonado was the 

only clone rated most susceptible against isolate IMI380504 whereas two other 

clones, LCTEEN 37/F and LCTEEN 37/G were similar to Amelonado when 

inoculated with isolate AC371.  
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An analysis to determine the complex interaction of the disease variables was done by 

fitting the data to a tree model (Figure 67). The results showed that lesion width was 

by far the most important variable that accounted for the observed measurements of 

necrosis within the stem. When lesion width was less than 0.7 mm, lesion length was 

the next most important variable (Figure 67). When both lesion length and lesion 

width were small, the proportional stem cross sectional area with necrosis was five 

percent. When lesion width was high and lesion length was low, the distance of 

colonisation (spread) became important.  



 

 141

    
 
 

CATIE.1000 EET.59 LCTEEN.37.F T85.799

10
15

20
25

30
35

in
cu

ba
tin

g.
tim

e

CATIE.1000 EET.59 LCTEEN.37.F T85.799
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

le
si

on
.w

id
th

 
 
 

CATIE.1000 EET.59 LCTEEN.37.F T85.799

15
20

25
30

35
40

le
si

on
.le

ng
th

CATIE.1000 EET.59 LCTEEN.37.F T85.799

10
20

30
40

ar
ea

.o
f.s

ys
te

m
ic

.le
si

on

 
 
 
Figure 58. Box and whisker plots of selected resistance variables of selected clones (CATIE 1000, EET 59, LCTEEN 37/F and 
T85/799) showing the mean, 25th, 75th percentiles and non-outlier maximum and minimum- (inoculation with L. theobromae).  
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Figure 59. Relationships between variables used to evaluate resistance performance of cocoa 
germplasm to F. decemcellulare and L. theobromae studied in the greenhouse and for dieback 
disease in cocoa clones. Xsectional = percentage necrotic area of stem; lesion.length = lesion 
length; lesion.width = lesion width; spread.within = fungal colonisation of stem; cubation.peri = 
incubation period; withered.4wks = proportion of withered leaves 4 weeks after inoculation; 
withered.8wks = proportion of withered leaves 8 weeks after inoculation; withered.8wks; 
withered.12wks = proportion of withered leaves 12 weeks after inoculation; withered.8wks.    
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Figure 60. Pearson’s product-moment correlation of dieback scores by Lasiodiplodia 
pseudotheobromae AC371 and F. decemcellulare IMI380504 on different cocoa germplasm lines. r 
= 0.9, t = 10.7629, df = 13, p-value = 7.6188-08; alternative hypothesis; true correlation is not 
equal to 0; 95 % confidence interval ranges from 0.8477011 to 0.9829978. 
 

 

 
Figure 61. Pearson’s product-moment correlation of incubation period by Lasiodiplodia 
pseudotheobromae AC371 and F. decemcellulare IMI380504 on different cocoa germplasm lines. r 
= 0.9, t = 8.7386, df = 13, p-value = 8.396e-07; alternative hypothesis; true correlation is not equal 
to 0; 95 % confidence interval ranges from 0.7828533 to 0.9749783. 
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Figure 62. Pearson’s product-moment correlation of percentage stem necrosis by Lasiodiplodia 
isolate AC371 and F. decemcellulare IMI380504 on different cocoa germplasm lines. r = 0.8, t = 
5.0282, df = 13, p-value = 0.0002312; alternative hypothesis true; correlation is not equal to 0; 95 
% confidence interval ranges from 0.5146415 to 0.9354851. 
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Figure 63. Pearson's product-moment correlation of incubation period versus dieback scores by 
Lasiodiplodia isolate AC371 and F. decemcellulare isolate IMI380504 (pooled data) on different 
cocoa germplasm lines. r = -0.9, t = -10.5149, df = 28, p-value = 3.141e-11; alternative hypothesis 
true; correlation is not equal to 0; 95 % confidence interval ranges from -0.9483432 to -
0.7859186. 
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Figure 64. Pearson's product-moment correlation of lesion length versus dieback scores by 
Lasiodiplodia isolate AC371 and F. decemcellulare isolate IMI380504 (pooled data) on different 
cocoa germplasm lines. r = 0.9, t = 10.5416, df = 28, p-value = 2.967e-11; alternative hypothesis 
true; correlation is not equal to 0; 95 % confidence interval ranges from 0.786784 to 0.948571. 
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Figure 65. Pearson's product-moment correlation of colonisation versus dieback scores by 
Lasiodiplodia isolate AC371 and F. decemcellulare isolate IMI380504 (pooled data) on different 
cocoa germplasm lines. r = 0.8, t = 8.9593, df = 28, p-value = 1.027e-09; alternative hypothesis 
true; correlation is not equal to 0; 95 % confidence interval ranges from 0.7259651 to 0.9321486. 
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Figure 66. Pearson’s product-moment correlation of dieback scores vs. percentage stem necrosis 
by Lasiodiplodia isolate AC371 and F. decemcellulare IMI380504 on different cocoa germplasm 
lines. r = 0.7, t = 5.0807, df = 28, p-value = 2.224e-05; alternative hypothesis; true correlation is 
not equal to 0; 95 % confidence interval ranges from 0.43428178 to 0.8426144. 
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Figure 67. An illustration of how the different explanatory resistance variables influenced 
percentage necrotic area of stem (when the latter was used as a main response variable) using 
generalised additive model (gam) for the determination of those variables that significantly 
affected stem necrosis and, therefore, dieback in cocoa. The lengths of branches are proportional 
to explained variation in the response variable. Figures at the ends are the mean response values.   
If lesion width < 1.15 but > 0.65, the response variable is 18.1. If lesion width > 2.25 the response 
variable is 40.87. Spread within only matters if lesion width is > 1.15 but < 1.85. Lesion width is 
by far the most important explanatory variable.    
 
 

4.4.4.5 Comparison of stem lesion and colonisation in 

laboratory and greenhouse studies 

Results for the two pathogens, isolates AC371 and IMI380504 from the greenhouse 

studies were analysed separately even though they were not significantly different (P 

> 0.05). Possibly due to differences in the length of time the experiments were run or 

other unknown factors, all across-clone and all across-isolate mean lesion sizes were 

smaller in the laboratory detached stem trial compared with the greenhouse 

experiment (Table 20 and Table 21). Inoculation with isolate AC 371 caused 

|
lesion.width < 1.15

lesion.width < 0.65 

lesion.length < 23.6 

lesion.width < 1.85 
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significantly longer lesions than isolate IMI 380504 in the laboratory, but in the 

greenhouse, their effects were similar.  

 

4.5 Discussion 
Screening for sources of resistance to diseases is the first step in a genetic 

improvement-breeding programme. The aim of the present study was to investigate 

differences in the host–pathogen interaction between cocoa and its principal dieback 

pathogens, F. decemcellulare and L. theobromae. To gain an insight into whether the 

differences in resistance among the different clones reflect natural field infection, 

greenhouse-budded plants were wound inoculated with spore suspension of isolates of 

the two fungi. The germplasm lines used in the laboratory and greenhouse are given 

in Table 14 and Table 16 according to their responses to the isolates investigated. 

Symptom development in stem segments and whole plants was observed from the 

initial infection through to the appearance of signs of foliar dieback, and finally death 

of the plant. The laboratory and greenhouse resistance screening methods described in 

the present investigation of detached stems as well as whole plants provides a double 

opportunity of identifying resistance in cocoa germplasm.  

 

The lack of suitable criteria for interpretation of resistance was recognised earlier 

(Owen, 1956), hence in the present study several resistance components were used for 

determining overall response in the greenhouse. Unlike past evaluation methods that 

measured only lesions, the current method has the advantage of potential scale-up so 

it can be applied to large sample of clones. Moreover, these methods can be 

performed in a standardised way so they can be repeated regularly, giving a measure 

of the trend in the resistant plants. In the current study, a multivariate analysis of the 

resistance components was carried out, enabling correlations among them to be 

assessed. The laboratory and greenhouse resistance screening methods were simple 

but the results were inconsistent.  However, before they could be applied on a broader 

scale for the rapid selection of dieback-resistant clones, they would need to be 

validated by field testing in a range of tropical environments. The correlation of 

pathogenicity between the different isolates was investigated. In the laboratory test, a 

correlation between the ability to colonise and induce necrosis by Lasiodiplodia 

isolate AC845 and F. decemcellulare IMI380504 or Lasiodiplodia AC371 was not 
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straightforward. There is a significant relationship, however, between colonisation 

and the induction of necrosis by F. decemcellulare isolate IMI380504 or 

Lasiodiplodia isolate AC371 (Figure 47 and Figure 50). Many of the graphs appear to 

show outlier points (i.e. values in the dataset positioned at unusually large distances 

from the rest). These points look very similar in corresponding graphs. However 

because the data of the measurements of lesion and the distance of spread are normal, 

these 'outliers' may be linked to the response of particular clones e.g. GU 123/V and 

not necessarily to non-normality. 

 

The various clones showed differences in response to the two fungal isolates in terms 

of both the sizes of necrotic lesions and the degree of tissue colonisation. In the 

greenhouse test to compare necrotic symptoms and dieback, the two isolates (F. 

decemcellulare IMI380504 and Lasiodiplodia isolate AC371) produced similar 

symptoms. As noted in Chapter 2, the results showed slight differences in the 

pathogenicity between the isolates, which was consistent over the two trials i.e. in the 

laboratory and in the greenhouse, but the basis for this variation was not established. 

These fungi presumably produce toxic metabolites within the host tissue that may 

have a role in the expression of dieback symptoms.  

 

The infection of cocoa by both fungi was characterised by progressive degradation 

and death of the woody tissue and this was followed by foliar symptoms that 

developed within 25 days of inoculation. The action of the pathogens was consistent 

on the different clones and probably the development of dieback symptoms was 

preceded by symptomless infection characterised by the formation of dark brown 

necrotic lesions in the stem tissues.  

 

In the laboratory detached stem evaluation, all the cocoa clones developed visible and 

measurable necrotic lesions. There was none without necrotic lesions among the 29 

clones tested under conditions of the study. Symptoms consisted primarily of necrotic 

lesions near the point of inoculation, and a brown band of colour along the vertical 

axis of the stem, where the fungus may have spread in the tissue. Necrotic lesions 

developed throughout the stem, but commonly downward from the point of 

inoculation. The results show considerable variation in response among the different 

cocoa germplasm lines studied.  
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The average size of lesions in the different cocoa stem segments was larger than has 

previously been reported (Owen, 1956). The larger sizes of the lesions found in the 

present study may be related to the age of the budded plants (three months), which 

was younger than the seedling age reported in the infection studies by Owen (1956) of 

two to three years. On the other hand, the necrotic lesions in this study had a similar 

elliptical shape to those reported by Crowdy (1947) and Owen (1956). Large necrotic 

lesions did not develop in some clones for example NA 149 against IMI380504, but 

the plants did show substantial colonisation. Table 18 and Table 21 indicate those 

genotypes with good performance to Lasiodiplodia and Fusarium infections, SCA 6 

was the most ‘resistant’ detached clone. SCA 6 could have common resistance genes 

controlling both necrotic lesion development and stem colonisation.  The results of 

the in-vitro studies suggest the possibility of identifying cocoa genotypes with 

adequate level of resistance to both Lasiodiplodia and Fusarium infections. Further 

experiments are needed to evaluate the repeatability of the results. 

 

In the greenhouse evaluation, one of the variables investigated was the internal 

infection of the different clones as assessed by the extent of necrosis as well as tissue 

colonisation by the fungus. Systemic infection consisted primarily of necrotic lesions 

near to the point of inoculation, and a brown band of colour and brown patches along 

the vertical axis of the stem, where the fungus may have spread in the tissue. Necrotic 

lesions developed throughout the stem, but commonly downward from the point of 

inoculation. However, the study demonstrated that the greenhouse inoculation 

method, which incorporated an estimate of dieback severity among other things, 

revealed clonal resistance differences more clearly than those which assessed only 

lesion size and stem colonisation. This apparent conflict may be resolved when 

considering the fact that the activation of defense reactions by some plants can 

presumably result in the production of biologically active and toxic compounds that 

can cause host cell destruction, necrotic responses, and tissue death. 

 

The in-vitro laboratory studies have shown that the three isolates varied both in their 

ability to cause lesions and colonize different cocoa genotypes. The two assessment 

methods employed probably measured different resistance factors, and it may be that 

resistance factors which control tissue death are different from those controlling 
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fungal progression in the plant tissue. Though it was found that there was a wide 

range of tolerance among the genotypes, it is too early at this point to draw 

conclusions about the factors involved in limiting fungal spread in the tolerant 

genotypes.  

 

As some isolates were not sufficiently aggressive to differentiate between cocoa 

genotypes, it appears important to take into consideration both aggressiveness and 

diversity of isolates for testing Lasiodiplodia and Fusarium stem canker resistance in 

cocoa in-vivo. 

 

Table 20 and Table 21 show that the distance of spread by F. decemcellulare and 

Lasiodiplodia in the stem tissue was in the range 15 to 20 mm on Amelonado and 

LCTEEN 37/F, whereas in CATIE 1000 pathogen growth was limited to  5 and 10 

mm. In the assessment carried out 6 weeks after inoculation, the distance by which the 

fungi had spread up the plant from the point of inoculation was 5 mm in Amelonado, 

EET 59, LCTEEN 37/A, LCTEEN 37/F and none in CATIE 1000, T85/799 and MXC 

67. In the susceptible clones such as Amelonado, LCTEEN 37/A, LCTEEN 37/F, 

LCTEEN 37/G  and PNG 418, the rate of fungal spread within the stem was faster 

than in the resistant clones such as CATIE 1000 and T85/799. Results from this study 

indicated that stem colonisation can lead to dieback symptoms as there was a positive 

correlation between the two variables. It was evident from these results that both fungi 

induced dieback by comparable amounts as shown by the correlation coefficient 

values (Figure 60 to Figure 62), and therefore, control strategies developed against 

either of the two pathogens may be able to perform to the same measure against the 

other. While the results reported here suggest a relationship between ability of both 

fungi to induce disease, it will be necessary to analyse and study more isolates as they 

become available. 

 

Owen’s (1956) method of determining susceptibility of cocoa types to F. 

decemcellulare was limited because he only assessed necrotic lesions to determine 

resistance. The method described here analyses the level of resistance in the different 

clones by measuring necrotic lesions as well as dieback symptoms, internal 

colonisation and incubation period. The reaction of the different cocoa clones to F. 

decemcellulare or Lasiodiplodia differed under the greenhouse conditions and there 
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were a few replicates that showed no dieback disease symptom. The implication of 

this observation will require further work as these plants may have escaped infection.  

The traditionally cultivated West African Amelonado variety and some of the newer 

clones were the most susceptible to dieback and symptoms closely reflect natural field 

infection. The one asymptomatic Amelonado control in the F. decemcellulare group 

was most probably an escape caused by reduced fungus inoculum received by the 

plant. When necrotic lesions, which have so far mostly been used, were compared 

with foliar symptoms based on visual observations, a clear distinction between 

susceptible and resistant interactions were observed. The incubation periods and 

fungal colonisation were also good indicators for assessing resistance in the different 

cocoa genotypes as there is a linear relationship between them and the internal stem 

necrosis. To avoid the limitations of earlier studies that were based on undefined 

mixtures of fungal genotypes, a large number of cocoa accessions were here screened 

with single conidial isolates. The use of single-conidial isolates is important to avoid 

mixed host responses resulting from combinations of compatible and incompatible 

interactions.  

 

The variability in tolerance will be influenced by host plant genetics and other 

unexplained factors. Numerous investigations on the resistance of cocoa to fungal 

diseases have been reported in the literature. Capriles et al. (1964), Capriles and Reys 

(1968), Brownlee et al. (1990), Cooper et al. (1995) and Resende et al. (1996) 

investigated different compounds produced during infection in cocoa, and concluded 

that the amounts of phenolic compounds, tannins, polymeric procyanidins and 

elemental sulphur were part of the plant’s response to infection and contributed to 

inhibition of disease progression. Nojosa and colleagues (2003) showed that oxidative 

enzymes influenced cocoa genotypes’ resistance to the frosty pod pathogen, 

Crinipellis perniciosa. Likewise, ongoing research on cocoa by Verica and Maximova 

(2004) have shown that defence responses are activated via endogenous signalling 

molecules such as salicylic acid, jasmonic acid and ethylene through changes in the 

expression of a number of genes. Thevenin et al. (2005) suggested that witches’ 

broom resistance in some cocoa genotypes was most likely physiological, and broom 

development was possible when the point of infection was near to the meristematic 

region. Many studies including those of Evans and Bastos (1975) and Danquah (1986) 

have shown that basidiospores have slower germ tube growth in extracts from SCA 6 
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than extracts from susceptible germplasm. Surujdeo-Maharaj and Umaharan (2004), 

working with fourteen cocoa germplasm lines (SCA 6, SCA 12, ICS 1, ICS 84, ICS 

95, IMC 57, IMC 67, JA 6/4 [POU], JA 5/19 [POU], JA 5/41 [POU], UF 11, Hybrid 

19, M 8, and West African Amelonado) also reported a decline in witches’ broom 

development in the SCA and IMC clones through delayed colonisation of 

meristematic tissues. 

 

Results from the current study indicate that the two fungi tested have a similar ability 

to cause disease and that fungal growth was slow and establishment within stem tissue 

was low in resistant clones. Where attack was successful, host reaction may have 

acted to slow disease expression, giving an increased incubation period and slowing 

the development of necrotic lesions and dieback. The components of resistance 

evaluated in the current study were grouped in five categories, each related to a 

different aspect of response to disease: longitudinal spread of necrotic lesions, lateral 

spread of lesions, incubation period, distance of spread of viable hyphae and dieback 

severity scores. In addition, significantly delayed symptom development was 

demonstrated by a decrease in the disease severity scores of the resistant clones by a 

factor of about 60 % compared with the susceptible clones (P ≤ 0.05) (Table 20 and 

Table 21). Thus, in the susceptible clones (e.g. LCTEEN 37/F) the foliar symptom of 

dieback was detected from the tenth day whereas in the resistant clone T85/799, foliar 

symptoms became observable only after 20 days.  

 

The results also showed a significant linear relationship between visual estimates of 

dieback and lesion size. Clones with large lateral necrotic lesions tended to be more 

susceptible to dieback, whereas clones with small lateral lesions showed some 

‘resistance’. It is of great importance that in cocoa germplasm a certain correlation 

can be demonstrated between resistance to dieback and other easily determinable 

variables such as lateral lesion size. Visual symptoms have the advantage of non-

destructive assessment and can be made progressively over time. Their positive 

correlation with the internal criteria of pathogen progress is reassuring. 

 

Responses of cocoa germplasm to dieback disease have been evaluated in two ways: 

using detached stem segments in the laboratory, and intact plants in the greenhouse. 

In view of the fact that the laboratory stem-segment experimental methods were 
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reproducible but gave results inconsistent with the greenhouse whole-plant 

inoculation methods (Figure 56). The results suggest that some cocoa germplasm lines 

retard the development of F. decemcellulare and L. theobromae in the plant but the 

question of mechanism of resistance remains unanswered. The search for resistance 

has paid off with a promising result in that some dieback-resistant plants have been 

identified among the cocoa genotypes studied. A breeding programme to improve the 

level of dieback resistance in cocoa can be successful by discarding all relatively 

susceptible clones and direct selection for resistance under field conditions. Further 

screening of CATIE 1000 and T85/799 is warranted for field use and possibly for 

control of dieback disease in West Africa. The expression of ‘resistance’ in only a few 

but not all the clones studied indicates a need for further studies on a larger number of 

clones for disease resistance. 

 

In the present study, plants were inoculated once only, at a single point, and at a 

young stage of growth, contrasting with a real cocoa farm in which multiple 

inoculations occur through mirid feeding punctures. Although the results demonstrate 

that differences in plant response exist among the different cocoa germplasms, the 

range of values for disease obtained in this trial may not adequately reflect what is 

possible under field conditions. Nine of the ten plants budded with CATIE 1000 

material, which was maintained in the greenhouse, survived to the end of the year. 

The report from Capriles et al. (1964) about the high resistance of clone IMC 67 to 

Ceratocystis fimbriata correlates weakly with its response to the pathogens used in the 

current study, emphasising the importance of knowing precisely which pathogen one 

is dealing with. 

 

In summary, twenty-nine and fifteen lines of cocoa germplasm were screened in the 

laboratory and the greenhouse, respectively, for resistance to isolates of F. 

decemcellulare and L. theobromae. The laboratory screening method lasted three to 

five weeks less than the greenhouse testing (including time for plant propagation, 

inoculation, and assessment and used less than 10 percent of the space required for 

greenhouse plants. Moreover, fourteen more clones were tested in the laboratory than 

were tested in the greenhouse. Though in-vitro screening of dieback-resistant plants 

can only augment eventual greenhouse and field testing, this report suggests that it 

can be an efficient initial selection method, which could significantly reduce the time 
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and cost of plant selection and breeding. Furthermore, in-vitro methods may have 

utility in the screening of resistance to other diseases (e.g. black pod). The use of stem 

segments in this study provided a simplified experimental system that allowed the 

testing of a large number of clones with results that correlated well with the reactions 

given by whole plants. At the other end of the scale, field-grown plants would involve 

a long period of waiting for plants to mature, would be more expensive and open to 

the possibility of pest infestation and complications from other diseases. Though the 

typical dieback disease symptoms seen on infected plants grown in the greenhouse 

were not obvious on detached stems infected in-vitro, measurement of lesions and 

detection of fungi by culturing was reproducible for both situations and represents an 

objective testing method. Greenhouse inoculation of the clones did appear to produce 

bigger lesions than laboratory inoculation, but this is probably due to the longer 

period of exposure in the greenhouse.  

 

Genotypic differences were found in both tests among the different cocoa germplasms 

studied and the clones showed a wide range of disease reactions from nearly resistant 

to very susceptible. The pathogenicity of F. decemcellulare IMI380504 and 

Lasiodiplodia AC371 were found to be similar in this study which suggests that a 

breeding programme for controlling one of the pathogens can have benefit against the 

other. Direct significant correlations (r = 0.7) (P ≤ 0.01) were obtained between visual 

dieback assessment scores and the percentage of stem necrosis (Figure 66). In 

addition, the response of inoculated stem segments corresponded to the reaction of 

budded intact plants to F. decemcellulare and L. theobromae. On the basis of the 

aggregate results, the study identified three clones (i.e. CATIE 1000, T85/799 and 

MXC 67) with high levels of dieback ‘resistance’ that could act as donor germplasm 

in a programme of genetic improvement. It is unlikely that the resistant clones 

detected here could be used directly by farmers as the reproducibility of these results 

would require validation in field trials.  Detailed field testing, therefore, is needed to 

provide an absolute assurance for their use. 
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5. Chapter 5 
5.1.General discussion and conclusions 
Theobroma cacao L. has a rich history of human use dating from the ancient Olmec 

and Mayan folks of the Eastern Mexican gulf (Dillinger et al., 2000; Bennett, 2003). 

Over the centuries, however, the earlier medicinal uses of cocoa have declined until 

current research established the role of cocoa in promoting cardiovascular health 

(Kris-Etherton and Keen, 2002). This is allegedly dependent on certain polyphenols 

(catechins and flavanols) that are potent antioxidants that can ease inflammatory 

processes in atherosclerosis by blocking expression of cellular adhesion molecules.  

 

The cocoa plant received increased attention towards the end of the nineteenth century 

because of its high yield of pods, which are rich in juice, aroma, and butter, and 

because of its presumed potential for cultivation with organic production methods 

(Amoah, 1995). In the 1930s, an extensive collection of cocoa germplasm was made 

in the Peruvian Amazon region (maintained in Trinidad) in order to provide a wide 

genetic resource (Pound, 1938).  But commercial cocoa still has a rather narrow 

genetic base as there has been little use of the germplasm for conventional breeding, 

which is why cocoa production in the state of Bahia, Brazil was ruined in the 1990s 

by witches’ broom disease (Bennett, 2003). Thus, the crop has been left exposed in 

the face of these assaults, by not incorporating resistance and effective defence 

mechanisms to prevent or limit infection.  

 

In West Africa where about 70 % of the world cocoa is produced, numerous factors 

limit cocoa production including a wide array of diseases and abiotic stresses. 

Significant financial losses due to black pod and dieback diseases continue to 

discourage farmers from going to the land (Amoah, 1995). Additionally, insect pests 

such as mirids, stinkbugs, and stem borers affect production and necessitate the use of 

conventional commercial pesticides (Adu-Acheampong, 1997; Adu-Acheampong and 

Ackonor, 2005). The frequent application of insecticides needed to control mirids that 

are associated with dieback might be reduced if clones with sufficient levels of 

resistance become available, together with husbandry practices that discourage them. 
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Given that the microbial causes of dieback have remained obscure until now it is 

hardly surprising that there has been little progress in understanding its epidemiology 

or in selecting cocoa germplasm for resistance. The following conclusions can be 

drawn from the current investigation: 

 

 Morphological and molecular methods showed the presence of four Fusarium 

and two Lasiodiplodia species in dieback lesions. Fusarium decemcellulare 

was not isolated in the course of the study, contradicting established literature 

on the subject.  

 All of the Lasiodiplodia isolates were able to cause dieback, whereas 44 of the 

isolated Fusarium isolates could not. Some of these non-pathogenic organisms 

deserve further study for potential use in biological control programmes. 

 Examination of freehand-cut sections by light microscopy did not show fungal 

hyphae but stems dissected for evaluation of fungal attack and plated onto agar 

revealed the extent of colonisation. 

 Duration of symptoms prior to tree death was considerably shorter in the 

susceptible group of cocoa clones and this group was more likely to shed their 

leaves. These observations resemble the field symptoms of dieback disease 

and this may be the true experimental picture of Fusarium spp. and 

Lasiodiplodia theobromae infection. 

 There was no significant correlation (P < 0.05) between in vitro and 

greenhouse results of screening for resistance.  The results from this study 

showed that the in vitro test was only suitable for selecting very resistant 

genotypes and, therefore, will only serve as an initial selection method. 

 There was a positive correlation between dieback scores and both visible 

lesion length and extent of fungal colonisation (P < 0.001). Any of these 

would be a suitable criterion for future evaluation of resistance of cocoa 

genotypes. 

 CATIE 1000, MXC 67 and T85/799 exhibited longer incubation periods and 

lower dieback scores than the other germplasm lines and it would be 

interesting to see whether they would maintain this position under field 

conditions. 
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5.1.1. Recommendations for future research direction 
Significant control of dieback disease of cocoa will most likely depend on resistant 

clones developed through conventional breeding using as partial parentage those 

plants that consistently express resistance against the causal pathogens. Should 

research be intensified in this direction in the medium term, the identification of 

highly resistant clones will not only contribute to reducing dieback, but also may 

contribute to control of other fungal disease-causing agents. It is likely that resistant 

cocoa clones could be disseminated very rapidly across West Africa, driven by 

farmers' demand for disease control methods that will reduce exposure to hazardous 

pesticides and incidences of poisoning. The indication is that the use of resistant 

cocoa will be extremely valuable to the over 800,000 smallholder farmers in Ghana. 

They will be able to increase their yield per ha, reduce pesticide costs, and thereby 

increase their income. The current situation where farmers purchase their planting 

materials from the Seed Garden Unit of the Ghana Cocoa Board (COCOBOD) gives 

hope that farmers will make the informed decisions to adopt clones based on their 

assessment of the costs and benefits. As they find it profitable, we would expect cocoa 

farmers on small farms in many other West African countries to achieve similar gains, 

especially in the Ivory Coast, Nigeria, and the Cameroon where cocoa farmers face 

the same mirid-fungi-dieback problem, and where mirids have become resistant to 

many of the most common pesticides. The foregoing, including the discussion 

regarding the research's future prospects, contains certain forward-looking statements 

that involve hopes for the farmer with limited resources.   

 

To this end a research proposal is outlined for screening of cocoa germplasm lines 

against dieback disease. 
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Proposals for future work 

Goals: 
 

 To increase our understanding of the morphological, physiological, genetical, 

and/or biochemical basis of resistance to Fusarium and Lasiodiplodia-

associated dieback in cocoa genotypes and to transfer the identified resistance 

into clones possessing good quality traits such as good chocolate flavour, 

desirable aroma, larger bean size and desirable agronomic characteristics. 

 

 To develop clones with durable resistant genes effective under West African 

conditions to sustain rural cocoa farming by reducing frequency of pesticide 

spraying, increasing yield, and improving the green vegetation cover and 

conditions in the dry season.  

 

Rationale and significance  
Cocoa (Theobroma cacao L.) is the most widely cultivated cash crop in West Africa 

and its economic significance is comparable only to minerals and timber. Dieback 

disease causes yield losses of 25 to 30%. However, on young cocoa trees, and under 

conditions favourable for disease development, losses can be higher than 60 % 

(Owusu-Manu, Personal communication). This is coupled with significant delay in the 

time to fruiting. Most of the commonly grown hybrid cultivars are susceptible to 

dieback, hence the importance of developing resistant germplasm lines. The major 

objective of this study is to identify the genetic basis of resistance effective against 

dieback and transfer it into existing elite cocoa genotypes. The germplasm so 

developed will be evaluated for agronomic and quality traits and released as improved 

cultivars to be grown in Ghana. 

 

Approaches: 
 National survey to sample and characterise fungi associated with dieback of 

cocoa.  

 Collection and characterisation of cocoa genetic resources. 
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 Laboratory, greenhouse and field inoculation tests coupled with comparison 

between natural infections and artificial inoculations. 

 Breeding: employing DNA-based crop selection techniques, interspecific 

hybridizations and appropriate cytogenetic manipulations. 

 Participatory varietal selection. 

 

Relationship to present work and research plan: 
In this thesis, the reaction of a number of international cocoa germplasm lines kept at 

the University of Reading, UK were evaluated. Few genotypes showed resistant 

reactions under greenhouse conditions but three clones (CATIE 1000, MXC 67 and 

T85/799), were found to be good sources of resistance to dieback disease. The 

Amelonado cultivar was susceptible and a number of Fusarium isolates collected 

from field infected dieback lesions were non pathogenic. It is hereby proposed that a 

national survey is conducted to collect fungi associated with dieback in all cocoa 

growing regions of Ghana and elsewhere in West Africa for further screening. 

Additional laboratory and greenhouse inoculation tests will be conducted on a diverse 

germplasm collection (from the Reading stock) from which promising genotypes will 

be selected. Detailed studies on the infection process of Fusarium and Lasiodiplodia 

will be carried out by biochemical, molecular and ultrastructural techniques to 

understand the mechanism of resistance.  Subsequently, in-vitro and greenhouse 

results will be validated in field trials. Hybridisation and other methods of crop 

improvement will be employed to increase the genetic base of the resistant plants and 

combine resistance with desirable quality traits and agronomic characteristics. The 

newly identified sources of resistance will be graded, hybridised with superior 

germplasm and tested in greenhouse and inoculated-field tests. Previously identified 

molecular markers linked to other resistance genes in cocoa (Meyers et al., 1998) 

would be used to confirm the presence of resistance genes in these lines. The resistant 

lines will be screened in the field in multi-location facilities and artificially inoculated. 

The field screening will also give opportunity for evaluation of agronomic 

performance of these genotypes. Superior germplasm lines that combine high yield, 

quality and multiple disease resistance genes will be released to be grown by farmers 

to improve the economic efficiency of cocoa production.  
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Appendix 1. Linear growth rate (mm per day) of isolates of F. 
decemcellulare, Lasiodiplodia theobromae and Fusarium spp. isolated from 
cocoa. Values within columns followed by the same superscript letter do not 
differ significantly at P ≤ 0.05). 
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2.4 b 
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2.4 b 
2.4 b 
25 b 
2.4 b 
2.4 b 
2.4 b 
2.5 b 
2.4 b 
2.3 b 
2.5 b 
2.4 b 
2.5 b 
2.5 b 
2.6 b 
2.4 b 
2.3 b 
2.4 b 
2.5 b 
2.5 b 
2.4 b 
2.5 b 
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2.4 b 
2.4 b 
2.5 b 
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Appendix 2. Fungal colonisation* of stems of cocoa germplasm lines in the 
laboratory. 
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*Differences between isolate effects shown on the vertical axis was exaggerated by default in excel. 
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What can I give Him 

Poor as I am; 

If I were a shepherd, 

I would give Him a lamb. 

If I were a wise man, 

I would do my part- 

But what can I give Him? 

I will give Him my heart. 

 

- Christina Rossetti 

 

To God be the Glory 
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