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Abstract

A key challenge in combustion research is to model complex turbulence-chemistry

interactions during extinction and re-ignition of non-premixed flames. These are

caused when the scalar dissipation, χ, is above (or below) certain limits such that

the diffusive temperature flux from the flame is much larger (or smaller) than chem-

ical heat-release. χ is characterised by its small-scale intermittency, i.e. large fluc-

tuations in χ are frequent and localised in space. This behaviour severely constrains

its resolvability and has implications for modelling extinction/re-ignition processes.

Scalar field statistics from the direct numerical simulation (DNS) database of a

spatially-evolving, turbulent jet flame with multi-step chemistry by Pantano (2004)

are studied using three different approaches, namely analysis of dissipation-spectra,

direct investigation of dissipation contours and spatial filtering of the instantaneous

dissipation signals. Out of these the spatial filtering method is found to be most

suited for capturing the intermittent dissipation length scales and an Re−1
δ scaling is

proposed for ’adequate’ χ-resolution in turbulent jet flame experiments/simulations.

Furthermore, a Multiple Mapping Conditioning (MMC) approach with two refer-

ence variables is used to model extinction/re-ignition in inhomogeneous turbulent jet

flames. A new sub-model for the convective velocity term is employed that does not

need to presume Gaussian statistics and consistent closures for MMC drift and diffu-

sion coefficients are derived. Effect of temperature fluctuations on scalar diffusivity

is also accounted for. Joint scalar PDFs, conditional dissipation and conditional

species predictions from MMC, and also conditional species concentrations from

conventional singly- and doubly-conditioned moment closure (CMC1 and CMC2),

are assessed against the Pantano DNS database. CMC1 expectedly over-predicts ex-

tinction and does not capture re-ignition, whereas extinction and re-ignition effects

on species concentrations (including atomic H-radical) are captured satisfactorily

using CMC2 and MMC. However, MMC scores over CMC2 because models for

the joint scalar PDF evolution and conditional dissipation are self-contained in the

former.
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nξ Number of points on the reference grid (= 64)

Nij, NIJ Scalar dissipation variable for (i, j)th and (I, J)th scalar pairs

Ns Stoichiometric value of the scalar dissipation rate

N0
ij Temperature-invariant scalar dissipation variable

〈N0′′2

11 |η1〉 Conditional variance of scalar dissipation of mixture fraction

Nx, Ny, Nz Number of points in the DNS grid along x-, y- and z-axes
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Pφ Joint scalar distribution

Pφmaj
Joint distribution of major scalars

PX Joint distribution of surrogate scalars

Qι, Q
′′
ι Singly-conditioned mean and conditional fluctuation of ιth species

Qι,Q′′
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(1)
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(1)
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∗
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y Cross-stream coordinate direction



36 Nomenclature

z Spanwise coordinate direction

Z,Zs Mixture fraction/Conserved scalar and its stoichiometric value
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ε viscous dissipation rate
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ηKmin
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ηZ, ηZs Characteristic dissipation length-scale and its spectral estimate

η Sample space of all scalars
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∗
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ϑ, ϑ1, ϑ2 Arbitrary turbulent quantities

κ Turbulent kinetic energy

λ2d, λ3d Planar- and volumetric-estimates of dissipation scales from level-sets

Λ Reynolds number scaling coefficient for intermittent dissipation scales

Λ0 Reynolds number scaling coefficient for mean dissipation scales

Λ3d Reynolds number scaling coefficient for corrected dissipation layer thicknesses

µ Dynamic viscosity

µχ Ensemble average of scalar dissipation

ν Kinematic viscosity

νo Reference value of kinematic viscosity at 298K

ξ Sample space of reference variables

ξ1, ξ2 Reference sample spaces for mixture fraction and sensible enthalpy

ξ1p Discretised value on the reference grid

∆ξp,∆ξq Local grid sizes on the reference grid

∆ξnξ
,∆ξ0 Grid sizes at the extremities of the reference grid

π ' 3.141592

ρ Density of the gaseous mixture

ρo Reference density value of air at 298K

ρξ Density conditionally averaged on the reference space

% Out-of-plane angle of the scalar gradient vector from planar dissipation layers

σ0, σ1, σ2 Linear coefficients for the planar model for conditionally averaged temperature

σχ Standard deviation of the scalar dissipation rate

ΣI Chemical production rate per unit mass conditioned on the reference space

τ Turbulent eddy-turnover time scale

τc Chemical time scale

τK Kolmogorov time scale

τres Scalar residence time scale

τij Reynolds stress tensor

φ Set of all scalars
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φe
ι ιth species dependence on mixture fraction at equilibrium

Φ Fuel-air equivalence ratio

ϕ Exponential function in reference space

χ Scalar dissipation rate of the mixture fraction

χij Scalar dissipation of any (i, j)th combination of major scalars

〈χy〉 Ensemble average of cross-stream scalar dissipation

〈χy〉s Spectral estimate of 〈χy〉

χmax Global maximum of scalar dissipation

χloc Local maximum of scalar dissipation

χf,peak Filtered scalar dissipation

χ∆,peak Grid-resolved scalar dissipation

χ0,peak ’Fully-resolved’ estimate of scalar dissipation

ψ Statistical correlation coefficient

ωH Chemical source term for enthalpy of the mixture

ωhs Chemical source term for sensible enthalpy of the mixture

ωI Chemical source term for the I th scalar
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Subscripts
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f Filtered value

i Global reaction sub-step index

I Scalar field index

i, j Major scalar indices

i, j, k Coordinate indices

k, l, p, q Reference manifold indices

MMC Value from the MMC computation

o Reference thermodynamic value for non-dimensionalisation

s Estimate from dissipation spectra (used for mean values)

s Stoichiometric value (used for instantaneous values)

ε Chemical element index

ι Minor scalar (chemical species) index

ξ Reference space

φ Scalar space

1, 2 Fuel, Oxidiser stream index

Superscripts

0 Invariance in the reference manifold

e Equilibrium concentration

n Discrete nth streamwise step

n′ Intermediate value after explicit sub-stepping at n

Operators

boldface Vector
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〈 〉, Statistical ensemble average

〈 |〉 Statistical conditional average

˜ Density-weighed average

′ Superimposed Reynolds fluctuation

′′ Superimposed Favre fluctuation

Shorthands

atm Atmospheres

CMC Conditional Moment Closure

CDF Cumulative Distribution Function

Da Damköhler number

DNS Direct Numerical Simulation

FCM Fast Chemistry Model

GAUSS Gaussian distribution

J Joule

K Kelvin

Ka Karlovitz number

Le Lewis number

LES Large Eddy Simulation

LFM Laminar Flamelet Model

mm Millimetres

mol Mole

MMC Multiple Mapping Conditioning

PDF Partial Differential Equation

PDF Probability Density Function

Pr Prandtl number for air

Re Jet-exit Reynolds number
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Reλ Taylor-scale turbulent Reynolds number

RMS Root Mean Square

Sc Schmidt number
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Chapter 1

Introduction

1.1 Motivation

Combustion is one of the most important methods of harnessing energy (Peters,

2000). With the major contribution to the world’s energy supply stemming from the

use of fossil fuels, combustion is a primary technology for the generation of electricity

and is also utilised in propulsion related devices. In spite of the on-going innovations

in various other types of renewable/non-renewable energy sources, the contribution

of fossil fuels to the global energy production is not expected to reduce in the near

or mid-term future (Energy Review Report, 2006). It is also becoming increasingly

evident that the products of Hydrocarbon combustion are responsible for a series

of large-scale deleterious effects on the human environment. Various environmental

and health hazards such as ozone depletion, smog, acid rains, respiratory ailments

etc of major pollutants like nitrogen/sulfur oxides (NOx/SOx) or particulates are

well-documented (Beer, 2000). Besides these, there is a steadily mounting body of

scientific evidence (Energy Review Report, 2006) for global warming and climate

change linked to anthropogenic carbon dioxide (CO2) emissions. In view of all the
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present and future combustion applications and their environmental impact, a deep

understanding of the basic mechanisms of combustion is essential to improve the

performance, reliability, safety, and environmental impact of combustion systems.

Various topics in combustion theory such as the gaseous deflagrations, effects of

detailed chemistry, hydrodynamic theory, the interplay between the intrinsic in-

stabilities and noise in wrinkled flames have seen a lot of progress (Bilger et al.,

2005; Buckmaster et al., 2005; Westbrook et al., 2005). Other aspects of study

include anomalous characteristics of deflagrations in nonuniform flows, triple flame

structures, combustion of solid propellants, theory of ignition, theory of gaseous det-

onations and turbulent combustion to name a few. The technological need for clean

energy production, efficient propulsion and the associated environmental hazards

has driven most of the research and development in this field to date. Supersonic

propulsion and new methods of combustion using bio-derived and reduced carbon-

content fuels are seen (Buckmaster et al., 2005; Williams, 1994) as new thrust areas

of application. In particular, the latter application will continue to complement the

technological advancements in alternative energy sources (Energy Review Report,

2006).

Fluid turbulence is one of the oldest unresolved problems of classical mechanics and

its complete physical description remains problematic in spite of numerous efforts of

modern engineering science (Leslie, 1972; Bray, 1996). A major source of difficulty

in the mathematical treatment and simulation of fluid-flow phenomena is the pres-

ence of very large ranges of length- and time-scales that occur even in nominally

simple problems. Examples include the presence of a few molecular mean-free paths

thick shock-wave region ahead of a wedge in supersonic flow or the bright-yellow

soot formation zone in a standard laboratory bunsen flame. These phenomena are

analogous in that the thickness of the aforesaid regions is very much smaller than

their extent in other two spatial dimensions. Therefore, such flow events represent a
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wide range of characteristic spatial scales. Turbulence presents the ultimate hurdle

of this type, because the fluid-flow in the state of turbulence is filled with simul-

taneously existing and interacting eddies and vortex tubes, of all sizes and in all

three dimensions, representing local flow events on a very large range of scales of

measurement/resolution (Cant, 1999). On the other hand, combustion in laminar

(non-turbulent) flows is an intrinsically complex process involving a large range of

chemical length and time scales. Some of the crucial chemical kinetics phenom-

ena controlling flames take place in short periods over thin layers and are associated

with very large gradients of reacting species concentration, temperature and density.

Thus, the addition of chemical kinetics and thermodynamics (heat-release) to tur-

bulent flow further complicates the problem due to the introduction new small scales

of combustion, which in turn interact with the mixing scales of turbulence (Poinsot

& Veynante, 2001).

The phenomenon of turbulence is ubiquitously present in all practical combus-

tors (Libby & Williams, 1980; Pope, 1985; Kuznetsov & Sabelnikov, 1989; Klimenko

& Bilger, 1999; Peters, 2000; Klimenko, 2003b; Bilger et al., 2005), ranging from

simple devices like a blow torch or domestic boilers to more complex industrial

burners for process heating, spark-ignition/Diesel car engines, air-borne/stationary

gas turbines, etc. The energy output of these combustion devices spans six orders-

of-magnitude from 10−1 kWh to 102 MWh (Cant & Mastorakos, 2008). Only a

fraction of this order-of-magnitude increase in energy output is achieved by increas-

ing the volume and the pressure rating of the combustor, while increasing the rate of

the chemical reaction underlying the combustion process accounts for the rest of the

energy increment. The evident increase in combustion efficiency per unit volume is

a direct consequence of the increased rate of mixing and thermal transport caused

by the turbulence in the working fluid of the combustor (Cant & Mastorakos, 2008).

Therefore, understanding (and modelling) the complex interaction between fluid
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turbulence and the kinetics and thermodynamics of chemical reactions is a central

pre-requisite for designing modern and efficient combustion chambers. Due to the

mathematically intractable nature of the problem of turbulence, it would have been

extremely difficult to make any progress in this matter without the availability of

the modern tools of computational fluid dynamics (CFD) and turbulent combustion

modelling to engineers (Libby & Williams, 1980; Kuznetsov & Sabelnikov, 1989;

Peters, 2000; Bilger et al., 2005). While significant progress has been made in the

direct numerical simulation (DNS) of turbulence with a small number of reacting

species and approximate evaluation of the chemical kinetics, a joint simulation of

complex fluid flow turbulence and realistic chemistry will remain beyond the ability

of the best supercomputers for some time. The lack of ’brute force’ computational

resources and the increasing industrial relevance of designing clean and efficient

combustors has spurred the development of sophisticated and computationally in-

expensive turbulent combustion models. The aim of these models is to simulate the

turbulent flow-field statistics and the thermochemistry with adequate complexity

and simultaneously capture the important turbulence-chemistry interactions with

reliable accuracy.

A major classification of turbulent reacting flows, which aids their physical under-

standing and modelling, is based on whether the reactant species are fully mixed

before ignition or not. Such flows are termed as turbulent premixed or non-premixed

flows, respectively. It is easy to see that the reactants mix and burn simultaneously

when they are not premixed and the fuel combustion process in such cases is com-

pletely dependent on the rate of scalar mixing. The primary aim of the present

study is to understand and model the dynamics of turbulent scalar mixing and,

as such, the focus throughout is limited to turbulent non-premixed combustion.

Fig. 1.1 gives schematics of some characteristic industrial flames with non-premixed

reactants, where the mixing process is aided by turbulence.
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Figure 1.1: Schematic representations of turbulent non-premixed reacting flows in
various industrial applications, viz. flame for furnace heating, aero-engine gas tur-
bine, gaseous Hydrogen Chloride production and the atmospheric plume of a power-
station. Adapted from Cant & Mastorakos (2008).

The instantaneous state of the fuel-oxidiser mixture in non-premixed combustion is

quantified by a normalised measure of fuel concentration called the mixture frac-

tion, which ranges from zero for the pure-oxidiser stream to unity for the pure-fuel

stream. The transport equation for the mixture fraction has no chemical production

component as it only describes the state of the mixing process and is, thus, advected

like any other passive scalar by the turbulent (fluctuating) velocity field. The rate

of dissipation of the resultant fluctuations in the mixture fraction is referred to as

the scalar dissipation rate1, and it quantifies the rate at which turbulent eddies

enforce mixing between the reactants. The dissipation rate of the mixture frac-

tion fluctuations is central to the description of turbulent mixing in non-premixed

combustion (Bilger, 1980; Williams, 1985; Pitts et al., 1999; Peters, 2000; Bilger,

2004).

Most of the contributions to the statistics for scalar dissipation come from the finest

1The text also refers to the same physical quantity as ’scalar dissipation’ and sometimes only
as ’dissipation’.
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mixing scales of turbulence (Bilger, 2004; Sreenivasan, 2004), which necessitates high

spatial-resolution for measuring this important quantity. In addition to the small-

scale contributions to the dissipative process, its instantaneous statistics are highly

intermittent, i.e. characterised by very large and frequent fluctuations. Therefore,

reliable scalar dissipation rate measurement requires not just high spatial- but also

high temporal-resolution. The problem of reliable measurements of scalar dissipation

is further complicated by the trade-off between higher resolution, corresponding to

smaller experimental probe-width, and greater signal-to-noise ratio. Thus, analysis

of resolution requirements of the scalar dissipation in terms of esily measurable

properties of turbulence, e.g. Reynolds number, is of paramount importance. Owing

to these inherent experimental diagnostic limitations, studies like Buch & Dahm

(1996, 1998), Pitts et al. (1999), Su & Clemens (2003) and Kushnir et al. (2006b)

have attempted to characterise the scalar dissipation dynamics in non-reacting flows

and extend the findings to turbulent combustion. All these approaches use individual

numerical techniques to isolate the spatial-scales associated with scalar dissipation

and no attempt was made in these studies to assess the computed dissipation scale

statistics from individual methods against each other. Furthermore, the dissipation

scaling criteria computed in the aforesaid studies are based on the assumption of

self-similarity of jet flows in the far downstream region, whereas much stronger

dissipative events are prevalent upstream owing to larger scalar gradients closer

to the nozzle. The studies also fail to account for the effect of strong small-scale

intermittency of the instantaneous scalar dissipation on its spatial-resolution. As

explained in Sec. 1.3, all of these issues have been addressed in the present research.

In combustion related devices, the time-scales of mixing and combustion are crucial

as they determine the dynamics of the coupling between the turbulence and ther-

mochemistry and these relevant time-scales must be assessed appropriately (Kuo,

1986; Veynante & Vervisch, 2002; Bilger et al., 2005). Prediction of the effects of
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such turbulence-chemistry coupling in non-premixed combustion is critically depen-

dent on the values acquired by the ratio of the large-eddy turnover (or residence)

time-scale of turbulence, τres, to the characteristic chemical time-scale, τc. This ratio

is denoted by the Damköhler number, Da = τres/τc. Turbulent non-premixed com-

bustion is asymptotically (Linán, 1974) limited by the two regimes of pure-mixing

without reaction and infinitely fast2 chemistry, which correspond to very small and

very large Da values respectively. Assumptions of very small and very large values of

this ratio are of little practical significance in turbulent combustion problems. The

chemistry proceeds at finite rates comparable to the turbulent mixing dynamics in

many real-world problems. For example, in the case of gas turbines, the avoidance of

flame quenching/extinction is an important consideration from a safety point of view

and equally important is the ability to relight the combustor if extinction does occur.

The phenomena of extinction, re-ignition and pollutant formation are direct conse-

quences of finite-rate chemistry and, hence, a majority of the current research on

turbulent combustion modelling is focussed on such problems. A common assump-

tion underlying such research is about the localisation of the combustion process

in thin reaction zones that are physically aligned with the spatial contours of the

stoichiometric mixture fraction value normal to the scalar-gradient vector (Turns,

1996). The thickness of these regions is presumed to be less than the smallest

mixing scale of turbulence. Hence, the combustion localised within such regions is

essentially laminar and they are termed as ’laminar flamelets’ by Peters (1984). For

non-premixed combustion in a laminar (non-fluctuating) velocity field, the amount

of heat transported away from the reaction zone by diffusion is exactly balanced

by the heat-release from combustion. In turbulent mixing, flamelet extinction (or

re-ignition) occurs when local velocity fluctuations cause a much larger (smaller)

diffusive heat flux away from the reaction zone than the chemical heat production.

In other words, extinction or re-ignition implies that the rate of turbulent mixing

2This implies the reactants ignite and fully burn as soon as they are mixed.
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(or scalar dissipation rate) is either far too high for the chemistry to catch up or so

low that chemical reaction dominates, as described in the schematic in Fig. 1.2.

Figure 1.2: Typical S-curve heat-release response versus the Damköhler number, Da,
for a non-premixed flame under turbulent strain. Adapted from Veynante & Vervisch
(2002). The dashed line bounding the S-curve denotes the infinitely fast chemistry
limit. Dax and Dar are critical Damköhler values at the quenching/extinction and
ignition limits, respectively. The upper branch represents the increase in heat-
release due to combustion as the reactants are mixed (and Da decreases), until
the stirring becomes too fast for the chemical reaction to keep up with, leading to
flame quenching at Da = Dax. The lower branch signifies that any reduction in
the mixing rate (increase in Da) makes chemical reaction easier to happen until
the whole mixture re-ignites at Da = Dar. The S-curve is broken at the middle
branch indicating a low probability (Oberlack et al., 2000) of response due to flame
instability.

A series of modelling approaches, viz. fast chemistry model (FCM) by Bilger (1980),

laminar flamelet model (LFM) by Peters (2000) and conditional moment closure

(CMC) by Klimenko (1990); Klimenko & Bilger (1999), are directly based on mix-

ture fraction as one of the major independent variables (Bilger, 1980). The strong

dependence of the combustion process on the mixture fraction (especially at values

close to stoichiometric) allows for a fairly accurate characterisation of the combus-

tion process using these approaches. The governing equations for these models have

a similar structure, i.e. a balance between the terms for the chemical production and
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diffusion in the mixture fraction space. Although the models differ in the specifica-

tion of the modelling coefficients and the physical interpretation of the constituent

terms. FCM is a simple and convenient model, but is restricted by the modelling

requirement of fast and near-equilibrium state chemical reactions (Bilger, 1980).

As explained before, this over-simplification is not at all suitable for determining

important finite-chemistry effects. In its traditional formulation, LFM allows for

larger deviations in species concentrations from their equilibrium values. Nonethe-

less, the model presumes all species concentrations as deterministic functions of the

mixture fraction by disregarding all statistical deviations from the imposed func-

tional dependence. Furthermore, it is only valid in the immediate neighbourhood

of the thin reaction zone and is, therefore, not designed to specify reaction and

turbulent transport processes in the rest of the flow. This is again a limitation in

accurately predicting phenomena like pollutant formation that can depend on tur-

bulent transport beyond the reaction zone. A notable advantage of the LFM model

lies in its ability to predict the extinguishing effect of turbulent straining on the

flamelet with reasonable accuracy, as the scalar dissipation term occurs explicitly

in its governing equation. The LFM method has also been used in a Lagrangian

framework (Mauss et al., 1990) and with transient effects (Haworth et al., 1988). The

CMC model is a statistical generalisation of the LFM approach and operates with

species concentrations that are conditionally averaged (but not functionally depen-

dent) on the mixture fraction. CMC is designed to deal with both global and local

transport processes but, in its singly-conditioned first-order formulation, neglects

fluctuations of the scalar dissipation and the fluctuations around conditional means.

Second-order CMC closures by Klimenko & Bilger (1999), Roomina & Bilger (2001)

and Kim et al. (2002) employing conditional variance equations provide marginally

better modelling in flames with local extinction and re-ignition. Better simulation

of the extinction/re-ignition physics is provided by the doubly-conditioned CMC

using either the scalar dissipation (Cha et al., 2001) or, preferably, sensible en-
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thalpy (Kronenburg, 2004) as the second conditioning variable. A key shortcoming

of the doubly-conditioned CMC methods is the lack of closure for the important

scalar dissipation variables that describe the turbulent mixing. Another powerful

approach is represented by the probability density function (PDF) models (Dopazo,

1975; Pope, 1976, 1985). The PDF method involves the evaluation of the joint

stochastic distribution of all chemical species and allows for a rigorous evaluation

of the convective transport and the chemical source term. The joint PDF trans-

port equation is also consistent with the coefficients of the CMC model for reactive

species, whereas LFM is not constrained by the PDF conservation. Like CMC, the

PDF methods need closure hypotheses to simulate turbulent mixing and require

substantial computational resources to resolve the statistics for all key species.

Generalisation of the stochastic modelling framework that forms the basis for PDF

and CMC concepts results in the Multiple Mapping Conditioning (MMC) approach

by Klimenko & Pope (2003). The MMC model solves for the conditional expecta-

tions of all scalars, conditioned on a set of generic reference variables with a pre-

sumed (Gaussian) joint distribution. Knowledge of the joint reference distribution

and the conditional expectations gives the actual scalar PDF. Both CMC and PDF

governing equations can be recovered from the MMC framework, depending on how

the variables in the reference manifold are chosen. The main advantage of using

MMC over all other models for turbulent non-premixed combustion is the ease of

modelling the MMC diffusion coefficients and, thereby, recovering the scalar dissipa-

tion rate. A few recent studies by Cleary & Kronenburg (2007a) and Kronenburg &

Cleary (2008) have applied ’fully-closed’ MMC to stationary homogeneous decaying

turbulence for extinction/re-ignition modelling of a non-premixed flame. Due to the

stationary homogeneous nature of turbulence no spatial convective transport model

was required in these cases and there are no convincing models available for spatially

evolving jet diffusion flames in the MMC literature. Furthermore, realistic flames
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involve thermal effects on the diffusion of chemical species, which also changes the

way MMC diffusion coefficients are modelled.

1.2 Objectives

DNS and experimental work is expected to address some crucial questions on the

phenomenology of small-scale mixing turbulence and its effect on non-premixed

flames. Highly resolved, simultaneous measurements of all species concentrations

and flow structures are necessary to assess the validity of closures and modelling

assumptions needed for CMC/MMC approaches, and hence, DNS is better suited

than experimental measurement for the evaluation of these closures. Given this

background the primary aims of this study are summarised as follows:

• Investigate the small-scale intermittent statistics of turbulent scalar dissipa-

tion in the Pantano (2004) DNS and quantify the effect of intermittency on

the resolution of dissipation rate in measurements/simulations in terms of a

measurable bulk flow property, e.g. outer-scale Reynolds number.

• Demonstrate that the analysed DNS satisfies the resolution criterion for mod-

elling scalar dissipation, so that the data can be reliably used to evaluate the

closure modelling of extinction and re-ignition in flames.

• Carry out the CMC and MMC modelling of all scalar quantities in the inhomo-

geneous turbulent jet flame simulation of Pantano (2004) and demonstrate the

accuracy of the MMC model (and its sub-models for velocity, drift, diffusion

coefficients) in capturing the effects of extinction/re-ignition on the chemical

species concentrations.
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1.3 Contributions

The present research is broadly divided into two areas of contribution. Firstly,

spatial length scales associated with the instantaneous scalar dissipation rate in the

near-nozzle region are inferred numerically using a pre-computed DNS database of

a turbulent jet flame. Three different computational methods are employed for this

purpose, using the highly-resolved data of the profiles of mixture fraction and its

scalar dissipation from the Pantano (2004) DNS of a three-dimensional, spatially-

evolving jet flame at a moderate jet-exit Reynolds number. For the ’adequate’

resolution of instantaneous scalar dissipation rate in turbulent reacting jets, a power-

law scaling criterion in terms of a large-scale (measurable) property of turbulence like

the outer-scale turbulent Reynolds number, Reδ, is proposed by using the following

methods:

• The discrete Fourier transforms (DFTs) of the cross-stream correlation coeffi-

cients for scalar turbulence are computed to yield the standard one-dimensional

dissipation spectra. Analysis of the dissipation spectra shows an expected

Reδ
−3/4 (Kolmogorov) scaling with the outer-scale Reynolds number.

• Similar to the approach used in Buch & Dahm (1996, 1998) and Su & Clemens

(2003), thin, sheet-like three-dimensional scalar dissipation structures were di-

rectly investigated. These structures were identified within the computational

domain using level-sets/contours of the scalar dissipation field, and their thick-

nesses were subsequently computed. The study shows, in accordance with ex-

perimental studies, that the captured dissipation-layer thickness also shows a

Kolmogorov scaling with Reδ.

• Lastly, spatial filters of varying widths were applied to the instantaneous mix-

ture fraction field in order to model the averaging effect that takes place with
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some experimental measurement techniques (Barlow & Karpetis, 2005b,a).

The filtered scalar dissipation rate was then calculated from the filtered scalar

field. The peaks in the instantaneous filtered scalar dissipation profiles are ob-

served to decrease exponentially with increasing filter width, yielding estimates

of the ’true’ value of instantaneous dissipation at that spatial location.

Unlike the dissipation length-scales obtained from the spectral analysis and the

level-set method, the length scale estimates from the spatial-filtering method are

found to be proportional to Reδ
−1. This is consistent (Sreenivasan, 2004; Yakhot,

2003) with the small-scale intermittency of scalar dissipation that cannot be cap-

tured by techniques that just resolve the conventional Batchelor/Obukhov-Corrsin

scale. These results have implications when considering resolution requirements for

simulating/measuring scalar dissipation length scales in DNS/experimental flows.

Secondly, extinction/re-ignition in an inhomogeneous turbulence jet flame is mod-

elled using the MMC approach. The initial conditions and fluid properties of the

MMC simulation are the same as that of the aforesaid Pantano (2004) flame. A

new sub-model for the MMC convective transport term is proposed, which is not

limited by the traditional MMC assumption by Klimenko & Pope (2003) of a Gaus-

sian velocity field. Changes are also introduced in the way MMC diffusion coeffi-

cients are modelled in the presence of temperature fluctuations. Drift coefficients

consistent with these amendments are derived from first principles for the MMC

governing equation. Finally, predictions about the PDFs, scalar dissipation vari-

ables and species concentrations from the revised MMC model and those from the

conventional singly- and doubly-conditional moment closure are assessed against

the post-processed Pantano (2004) DNS data. The effects of flame extinction and

re-ignition on the evolution of the joint-scalar PDF and species concentrations are

very well predicted using MMC closure.
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1.4 Thesis Organisation

The above mentioned research is organised as follows in this thesis. The next chap-

ter surveys the existing fuild dynamics and, more specifically, turbulent combustion

literature and builds the physical background for this research. This is achieved by

starting from the Navier-Stokes (NS) mass/momentum/energy conservation equa-

tions, describing the effect of turbulence-chemistry interactions on the solution of

those equations and the development of various modelling approaches to supplement

the NS equations. Introductory discussion and literature review on the statistics and

characteristic length scales of scalar dissipation is also presented in this chapter. The

third chapter deals with the description of the Pantano (2004) DNS database which

is used to analyse the small-scale intermittent statistics of scalar dissipation rate

and, subsequently, to validate the full MMC/CMC closure of inhomogeneous tur-

bulent non-premixed flames. Chapter 4 describes the various computational tech-

niques used to analyse the dissipation statistics, compares the dissipation length

scale statistics captured by all three methods and concludes by proposing a new

Reynolds number scaling criterion to resolve the instantaneous dissipation field.

Chapter 5 explains the MMC approach in further detail and posits the different

sub-models for velocity, drift and diffusion coeffients and chemical source term used

in the MMC closure of non-premixed combustion. The chapter also includes details

on the numerical method and validation of the results against the DNS data. The

conclusions chapter summarises the findings of the research undertaken on dissipa-

tion scaling and mapping closure and charts out the future work required in the

relevant areas. Finally, the appendix gives the derivations of the generalised MMC

governing equation and of the important sub-models used for its closure.



Chapter 2

Background Theory

The starting point for any soundly based analysis of turbulent reacting flows re-

sides in the conservation laws for mass, momentum, scalar transport and internal

energy that describe the three-dimensional motion of reactive gases. The system of

equations, called the Navier-Stokes (NS) equations, formed by these conservation

laws are used along with the gaseous equation of state to provide a comprehensive

description of most turbulent reacting flows of practical interest.

The problem of developing an appropriate statistical formulation to compute turbu-

lent quantities will be presented with an emphasis on determining the basic prop-

erties of relatively simple turbulent flames. Theoretical and experimental studies of

turbulent flames have centred on idealisations of practically occurring situations (Bil-

ger, 1976a,b, 1980, 1989). The particular idealisation (of furnace flames) represented

by the planar jet diffusion flame will be considered in this study.

Relatively simplified theories have been derived (Kuo, 1986; Turns, 2000) for single

phase, gaseous, high-to-moderate Reynolds number flows. Such assumptions avoid

complexities involved in accounting for fuel droplets, particulates, soot formation

and other such effects. Moreover, for gaseous reactants and products, the Prandtl

57
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and Schmidt numbers can be close to unity which can result in further simplifi-

cations (Peters, 2000). Another simplifying assumption is of no acoustic effects

(i.e. low Mach number), ensuring that turbulent pressure fluctuations are not large

enough to affect the rate of chemical reaction (Kakhi, 1994). Finally, a reduced four-

step methane-air chemical reaction mechanism by Peters (2000) is used to counter

the computational costs associated with detailed thermochemical descriptions.

The brief theory presented below aims to provide the physical properties of chemical

species together with the appropriate boundary and initial conditions, the velocity

field, temperature and species concentrations. For the case of laminar flows, this

requires the solution of the conservation equations for mass, momentum, energy and

chemical species. In turbulent flows, due to varying length and time scales, DNS

of the exact transport equations would describe detailed behaviour of the flame at

every instant, including even the smallest scale of fluctuation due to the turbu-

lence and would provide invaluable information for theoretical framework (Hawkes

et al., 2006). However, the solution of these equations with initial conditions and

boundary conditions appropriate to turbulent flows is computationally expensive.

Moreover, DNS in the case of turbulent reacting flows results in further difficulties

given the increased number of scalar transport equations necessary to describe the

entirety of the transported scalar flow field and the coupling of highly non-linear

thermochemically reacting systems (Kuo, 1986; Peters, 2000). Due to these reasons

DNS is limited to relatively simple geometries and reduced chemistry models. An

alternative approach is the large eddy simulation (LES), which provides a partial res-

olution of the turbulent flow motion by filtering out the small, dissipative scales and

allowing for a coarser grid resolution. However, the problem of closure of turbulent

fluxes at the sub-grid scales exists in LES. The limiting case of LES, where some of

the largest energy-containing scales are revolved, is the Reynolds Averaged Navier-

Stokes (RANS) simulation. In the present study, the closure problem for chemically
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reacting (non-premixed) flows is tackled using the conditional moment methods dis-

cussed in Chapter 5 and the input from RANS (or equivalently post-processed DNS

data) is considered sufficient for the purpose of demonstration. Analogous sub-grid

scale conditional moment closure models can also be derived, but they are beyond

the scope of the present thesis.

In the coming sections the conservation equations for mass, momentum, energy, and

chemical species are presented and the assumptions implemented to provide a closed

set of equations for the set of velocity components, u(x, t), and scalar quantities,

φ(x, t). For clarity of presentation, all dependencies on spatio-temporal coordinates

x and t are omitted from here on and exceptions are made where deemed necessary.

Various flow field modelling approaches are discussed in brief. This is followed by

a detailed discussion on the important scalar dissipation rate variable with special

focus on its small-scale intermittent statistics and spatial resolution requirements.

Finally various combustion modelling approaches are introduced and discussed.

2.0.1 Transport equations

Beginning with the NS equations, it can be shown that the properties at any point

in the flame can be determined from the transport equations for the set of velocity

components, u, and the set of scalar mass fractions, φ. In mathematical terms,

φ = {φ1, .., φI, ..., φns}, (2.1)

where ns is the total number of scalar variables to be computed. Conceptually,

the complete scalar set can be further sub-divided into the set of quantities that

govern the mixing properties and the set of quantities that exclusively describe the

chemistry of a turbulent non-premixed flame. The former includes the appropriate
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conserved scalars and the latter includes all the chemical species concentrations.

In addition, thermodynamic properties like temperature1 can also be placed in the

former subset. Thus,

φmaj = {φ1, .., φi, ..., φnr} (2.2)

and

φmin = {φ1, .., φι, ..., φns−nr}, (2.3)

where the number of elements in the former subset is denoted by nr, which puts the

number of chemical species at ns − nr. In accordance with the literature (Klimenko

& Pope, 2003), the individual elements of subsets φmaj and φmin are denoted by

lower-case Roman and Greek subscripts, respectively, whereas the upper-case Ro-

man character, I, is used to denote all the scalars together. This notation will be,

henceforth, consistently followed throughout the text to denote the elements of the

respective sets. Specifically, φ1 and φ2 are considered synonymous with the con-

served scalar (or mixture fraction) and the sensible enthalpy, respectively. It will be

shown in Chapter 5 that this conceptual division is of particular significance to the

CMC/MMC closure modelling of turbulent non-premixed combustion.

The chemical and thermodynamic properties of a reacting system can be charac-

terised by the mass fraction of each chemical species, φI , the mixture enthalpy H,

and the static pressure p. An equation of state relates these quantities to the den-

sity, ρ, and the velocity completes the description of the system of equations. These

variables obey the following conservation equations:

1More generally, quantities sensitive to energy changes, like the sensible enthalpy, can be used.
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∂ρ

∂t
+
∂ρui

∂xi
= 0, (2.4)

∂ρui

∂t
+
∂ρujui

∂xj

= − ∂p

∂xi

− ∂τij
∂xi

+ ρgi, (2.5)

∂ρφI

∂t
+
∂ρujφI

∂xj
= −

∂JI
j

∂xj
+ ωI , (2.6)

where gi is the body force per unit volume in the ith coordinate direction and J I
j

represents the molecular diffusion flux. Both the density ρ and the source term, ωI ,

which represents the net formation rate of the I th species per unit volume, are known

functions of temperature and φI . The source term ωI will be zero if φI is a conserved

scalar like the mixture fraction. The stress term, ∂τij/∂xj gives a description of

the spatial stress gradients where τij is the viscous stress tensor resulting from

local deformation in Newtonian fluids and is dependent on local fluid-mechanical

properties such that:

τij = µ(
∂ui

∂xj
+
∂uj

∂xi
) − 2

3
µ
∂uk

∂xk
δij, (2.7)

where µ is the dynamic viscosity of the fluid and δij denotes the Kronecker delta

function. Cartesian tensor notation is used throughout and summation over repeated

indices is implied. Fick’s law is invoked in the derivation of the scalar equation and

for most combustion processes, particularly for a binary mixture, the form of the

molecular diffusion flux is given by (Peters, 2000; Meyer, 2001):

JI
j = −ρDI

∂φI

∂xj
. (2.8)
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The next equation to be considered relates to the conservation of energy. It can

take on a variety of forms with temperature, enthalpy, sensible enthalpy or internal

energy as the principal variable. Confining our attention to low speed flows with a

characteristic Mach number small compared to unity (< 0.3), the energy equation

in terms of enthalpy (cf. (2.12)) is the most compact and is given by:

∂ρH
∂t

+
∂ρujH
∂xj

=
∂p

∂t
+

∂

∂xj

(
ρα

∂H
∂xj

)
+ ωH, (2.9)

Term ωH, denoting the rate of enthalpy production, is given by,

ωH = −
ns−nr∑

ι=1

[
Hι

∂

∂xj

(
J ι

j + ρα
∂φι

∂xj

)]
. (2.10)

where the summation is done over the total number of chemically reactive species

in the mixture and α is the thermal diffusivity of the gaseous mixture. Hι is the

specific enthalpy of the ιth reactive species and is considered to be a known function

of the temperature T . The heat flux term in (2.9) include contributions from the

conduction of heat arising from temperature gradients (Fourier’s law) and the effect

of enthalpy transport by the diffusive fluxes, J ι
j . The kinetic energy per unit mass

of the mixture is very small compared to the enthalpy per unit mass for low Mach

number flows and is, thus, neglected in (2.9). Also neglected are the radiative heat

transfer, the conversion of mechanical energy to heat by compressibility and viscous

dissipation, work associated with the action of body forces and Soret effects as these

usually represent a small fraction of the overall heat flow (Peters, 2000).

Equation (2.9) is analogous to (2.6) with ωH as the enthalpy source term. By

invoking the assumption of unity Lewis number, defined as LeI = α/DI for all

scalars, the source term ωH vanishes and (2.9) takes a form similar to the transport
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equation for a conserved scalar. LeI = 1 implies that all species diffusivities are equal

and equations (2.6) and (2.9) can be treated as a single system of equations. The

Lewis number can also be expressed as a ratio of two other important dimensionless

constants,

LeI =
ScI
Pr

, (2.11)

where ScI = ν/DI is the Schmidt number for the I th scalar and ν is the kinematic

viscosity of the fluid. The Schmidt number expresses the relation between the dif-

fusion of the momentum due to viscous forces and the diffusion of the species due

to molecular diffusion. The Prandtl number, Pr, quantifies the relation between

the diffusion of temperature and the dissipation of momentum. The unity Lewis

number assumption is not always accurate and its implementation is ideally limited

to specific simplified single phase flow cases (Kim & Williams, 1997). However, in

hydrocarbon flames with sufficiently high Reynolds numbers, the molecular and the

atomic hydrogen are the only species with Lewis numbers deviating significantly

from unity. On the other hand the concentrations of these intermediate species are

low in hydrocarbon flames and, while, the unity Lewis number assumption does not

affect the flame structure significantly, it still may cause errors in predicting H and

H2.

The mixture enthalpy is related to the temperature via the following equation,

H =

ns−nr∑

ι=1

φιHι, (2.12)

where the specific enthalpy of species ι is given by,
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Hι = Hf
ι +

∫ T

To

CpιdT (2.13)

and Hf
ι is the standard heat of formation of the ιth species, To is a reference temper-

ature which is usually the ambient temperature and Cpι is the specific heat capacity

of the ιth species at constant pressure. The standard heat of formation of any species

is defined as the heat released when one kilomole of substance is formed from its

elements and is generally calibrated at standard temperature and pressure (STP)

conditions2.

To express the temperature gradients in terms of the enthalpy gradients, the specific

heat capacity at constant pressure of the mixture is first defined as:

Cp =
ns−nr∑

ι=1

φιCpι (T ) , (2.14)

where Cpι are the specific heats at constant pressure of the individual chemical

species. Using (2.12), (2.13) and (2.14) it can be shown (Peters, 2000) that the

enthalpy is expressed in terms of the specific heat capacity of the mixture as,

H =

∫ T

To

CpdT +
∑

φιHf
ι . (2.15)

At this juncture it is important to introduce a new term,

2Equivalent to a temperature of 298 K and a pressure of 1 atm
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hs = H−
∑

φιHf
ι =

∫ T

To

CpdT, (2.16)

also known as the sensible enthalpy of the gaseous mixture. It is directly dependent

on the temperature increment from the ambient value and the specific heat capacity

of the mixture. The sensible enthalpy term is of great significance to conditional

moment closure models (cf. Sec. 2.3.7) for turbulent combustion due to its strong

temperature and mixture fraction sensitivity and the relative ease of modelling of

its source term. The chemical production rate term for the sensible enthalpy of the

gaseous mixture is given by,

ωhs = −
ns−nr∑

ι=1

ωιHf
ι − ∂

∂xj

[
ns−nr∑

ι=1

ρα
(
1 − Le−1

ι

)
hsι

∂φι

∂xj

]
, (2.17)

where hsι = Hι−Hf
ι is the ιth species-specific sensible enthalpy. It is easy to see that

the unity Lewis number assumption reduces the above source term to a compact

form, viz. −∑ns−nr

ι=1 ωιHf
ι . As mentioned earlier, the Lewis numbers of major species

in hydrocrabon flames do not deviate much from unity and this simplification holds

for them. However, it is largely accurate even for intermediates like H and H2 with

Lewis numbers much less than unity, due to their small concentrations.

Finally, the system of equations is closed by the equation of state that relates density

to temperature as,

p = ρRT
ns−nr∑

ι=1

φι

Mι

, (2.18)

where Mι denotes the molecular weight of the ιth chemical species. The low Mach

number assumption removes the pressure dependency which originates from the
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mean flow or by turbulent fluctuations (Kakhi, 1994). As a result, coupling of the

momentum and scalar fields is assumed to take place primarily through the density

field determined from the equation of state where ρ = ρ(φι,H, p). Temperature is

also functionally dependent on the same variables where T = T (φι,H, p) through an

auxiliary relation. Since the reaction rate source terms (ωι) are algebraic functions

of p, ρ, T and φι, ωι need only be expressed as a function of the same set of three

variables.

It is possible to scale pressure variation and its effect on the source term. It is

easily shown through dimensional analysis, that the low Mach number assumption

removes the dependence of the source term on pressure variations, ∆p, caused by

the mean flow and turbulent fluctuations. The magnitude of these variations can be

estimated as follows (Kakhi, 1994):

∆p ∝ ρV 2 = Ma2(ρc2s) and
∆p

p
∝ Ma2 (2.19)

where V is a characteristic velocity, Ma is the Mach number, cs = (γp/ρ)1/2 is

the speed of sound and the adiabatic index, γ, is the ratio of specific heats at

constant pressure and volume. Equation (2.19) clearly shows that at low Mach

numbers, the influence of pressure fluctuations will be negligible. Therefore the

pressure fluctuations term (∂p/∂t) in the energy equation (2.9) can be neglected as

this term only plays a role in the propagation of the acoustic waves. Though the

pressure term is disregarded in the current work, effects of pressure variations can be

significant at low Mach numbers in confined flows, e.g. in describing engine cycles

of internal combustion engines (Libby & Williams, 1980).
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2.0.2 Reynolds and Favre Averaging

A statistically averaged set of equations is more advantageous due to the compu-

tational expense involved in resolving the instantaneous variables in (2.4) to (2.18)

directly. The typical approach involves the decomposition of an arbitrary turbulent

quantity, ϑ, into its mean and fluctuating parts as follows:

ϑ = ϑ + ϑ′, (2.20)

where the mean can be defined either through time averaging,

ϑ(x) = lim
∆t→0

1

∆t

∫ t+∆t

t

ϑ(x, t)dt, (2.21)

or through an ensemble average,

〈ϑ(x, t)〉 = lim
N→∞

1

N

N∑

i=1

ϑ(i)(x, t), (2.22)

where i = 1, ....N denotes individual realisations. As a consequence of the ergodic

theorem (Pope, 2000), both averaging methods, denoted by the overbar and angular-

bracket operators, are equivalent so long as the turbulence is statistically stationary.

Henceforth in the text, all mean/averaged quantities will be understood to be func-

tions of the spatial coordinates, x, alone. In the case of variable density flows,

Reynolds averaging produces many unresolved fluctuating density related terms. It



68 Chapter 2. Background Theory

is often convenient to introduce a density weighted average, namely the Favre aver-

age, such that all fluid mechanical quantities, except pressure, are density weighted

as follows,

ϑ̃ =
ρϑ

ρ
, (2.23)

where the bar indicates conventional time averaging and the tilde is the Favre-

averaging operator. Therefore rewriting (2.20) for Favre-averages and fluctuations

around it gives,

ϑ = ϑ̃ + ϑ′′. (2.24)

Here a double-prime superscript is used to denote the fluctuations around the Favre-

mean. The nature of these fluctuations is such that their mean value is non-zero

whereas a mass average makes the term vanish, i.e. ρϑ′′ = 0. An advantage when

considering variable density flow is that fluctuating density terms arising from time

averaging disappear through Favre averaging, resulting in convenient simplifications.

For example, the relative expressions for a typical non-linear convective term arising

out of Reynolds and Favre averaging of the momentum conservation equation (2.5)

are given by (Libby & Williams, 1980),

ρuiuj = ρuiuj + ρu′iu
′
j + uiρ′u′j + ujρ′u′i + ρu′iu

′
j = ρũiũj + ρu′′i u

′′
j , (2.25)

which implies that Favre averaging automatically incorporates these various modes

of momentum exchange into a small number of terms making the approach relatively

simple. This is evidently useful in flows with large density variations. The relative
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simplicity encountered in Favre averaging makes it the preferred choice in describing

the required transport equations for solving turbulent reacting flows. Using the defi-

nition of Favre averaging in (2.23) and (2.24), the velocity and scalars (i.e. enthalpy

and species mass fractions) can be decomposed into their mean (bulk) and fluctu-

ating (turbulence) components. Favre decomposition and statistical averaging on

the conservation equations leads to the following ensemble averaged equations (Kuo,

1986):

∂ρ

∂t
+
∂ρũl

∂xl

= 0 (2.26)

∂ρũi

∂t
+
∂ρũiũl

∂xl
= − ∂p

∂xi
− ∂ρũ′′i u

′′
l

∂xl
− ∂τ̃il
∂xl

+ ρg̃i (2.27)

∂ρφ̃I

∂t
+
∂ρũlφ̃I

∂xl

= −∂ρũ
′′
l φ

′′
I

∂xl

− ∂J̃I
l

∂xl

+ ωI (2.28)

In the context of homogeneous turbulence, gradients of mean diffusion terms such

as the direct molecular stresses, ∂fτil

∂xl
, and the diffusive flux,

∂ eJI
l

∂xl
, are negligible and

the above equations take a form which is identical to their Reynolds averaged coun-

terparts. From a modelling point of view, the various unknowns in these equations,

are the turbulent Reynolds stresses in the momentum equation, ũ′′i u
′′
l , the turbulent

scalar fluxes ũ′′i φ
′′
I and the source term in the scalar transport equations ωI . The

turbulent Reynolds stress and scalar flux terms are traditionally closed using the

gradient transport approximation. However, the mean production rate ωι of the ιth

species per unit volume is particularly complicated and is discussed next.
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2.0.3 Mean Reaction Rates

The averaged source term in (2.28) creates several difficulties due to its nonlinear

dependence on temperature and species concentrations. Consequently, the averag-

ing procedure results in a production of higher moment terms that are statistical

correlations of two or more fluctuating components (Bilger, 1980). This problem can

be illustrated in the limit of an infinitely fast one-step irreversible chemical reaction,

vFuel + Air → (1 + v)Products (2.29)

for which the simplified Arrhenius form of the rate of production ωF of the fuel can

be written as

ωF = −Arρ
2T βrφFφO exp

(−TA

T

)
, (2.30)

where Ar is the Arrhenius pre-exponential constant, TA is the activation temperature

of the reaction and φF , φO are the respective mass fractions of the fuel and oxidiser

(air). Reynolds averaging (2.30) by rewriting the species and temperature quantities

in terms of their mean and fluctuating components and expanding about the mean

states gives,

ωF = −Arρ
2T̄ βr φ̃F φ̃Oexp

(−TA

T

)[
1 +

ρ′2

ρ2
+
φ′

Fφ
′
O

φFφO

+ 2
ρ′φ′

F

ρφF

+
Ta

T
(
φ′

FT
′

φFT
+ ...)

]
,

(2.31)

where the continuation ... is for moments of third and higher order and the prime

indicates a fluctuation about the mean. Higher order moment terms now appear
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as a result of averaging the expression. These terms are usually not of negligible

magnitude and must be retained, e.g. in cases of very rapid reactions in weak tur-

bulence, where the root-mean-square (RMS) of fluctuations in species concentration

are larger than its mean (O’Brien, 1980). Therefore any moment closure model of

ωF should retain most higher-order terms occurring in (2.31). This constraint makes

the use of moment methods very difficult as every higher-order moment represents a

separate closure problem and would ideally require the solution of its own transport

equation.

The next section briefly reviews the relative merits of various flow field modelling

approaches, viz. DNS, LES and moment closures and introduces the important

scalar dissipation parameter to describe turbulent mixing. The statistics of dissipa-

tion length scales and numerical approaches used for estimating these are discussed

before going on to the combustion modelling in detail.

2.1 Flow Field Modelling Approaches

2.1.1 Direct Numerical Simulation

As explained in Sec. 1.1, turbulent combustion is one of the many themes that is

talked about in practical applications. With the continuous developments of nu-

merical combustion, it has become apparent that the unsteady, three dimensional

nature of the interaction between turbulence and the flame must be modelled (Bray,

1996; Kerstein, 2002). Comprehensive studies of unsteady phenomena controlling

turbulence/chemistry interactions are in their infancy. However, with the growth

of computational power previously unthinkable DNS flame calculations can be at-

tempted (Hawkes et al., 2006; Thevenin, 2005; Vervisch, 2000; Pantano, 2004; West-
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brook et al., 2005) allowing basic mechanisms controlling flame/turbulence inter-

actions to be investigated. However, the computational expense involved still re-

quires simplifying assumptions such as low turbulence Reynolds numbers and sim-

plified chemical kinetics. In some cases, the solution of two-dimensional flows is

also required. Even with such simplified approximations, the results are encour-

aging (Hawkes et al., 2006; Pantano, 2004; Westbrook et al., 2005) and provide a

better basis for model developments, where in the past modellers depended partly

on intuition.

DNS makes use of instantaneous conservation equations discussed in the previous

section, where the future state of the flow can in principle be determined precisely,

given exact knowledge of the initial and boundary conditions. In the case of turbu-

lent combustion DNS, the solution of the three-dimensional Navier-Stokes equations

and the equations for chemical species transport are solved. However, the additional

equations mean that a smaller number of grid points must be used as compared to

isothermal flows due to the increased computational time.

A complete turbulent flow simulation using DNS necessitates the resolution of the

finest scales of turbulence. This is esential when analysing highly non-equilibrium

processes such as extinction/re-ignition (Sreenivasan, 2004; Sreedhara & Laksh-

misha, 2000). DNS studies combined with experimental investigation will enable

the development and validation of current and future closures for reacting flows,

especially in the modelling of strongly intermittent quantities like scalar dissipation

that require the knowledge of small-scale statistics. For reproducing the small-scale

statistics faithfully DNS studies with very high numerical accuracy are required.

Both pseudo-spectral methods (Sreedhara & Lakshmisha, 2000) and finite differ-

ence methods with spectral-like resolution (Lele, 1992; Poinsot & Veynante, 2001)

have been used to perform high-resolution simulations. Examples of well-resolved
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DNS studies of turbulent reacting flows include the CH4-air jet flame by Pantano

(2004), hydrogen jet lifted flame by Mizobuchi et al. (2005) and a skeletal CO/H2

jet flame by Hawkes et al. (2006). Direct numerical simulations are unlikely to be in

practical use for industrial design calculations in the near future and their main role

is as a research tool to provide fundamental insight on turbulent reacting flows and

aid the development of improved statistical sub-models, e.g. for turbulent mixing.

Closures can then be applied in engineering codes for use in the design of practical

combustors. Description of the attributes of the Pantano (2004) DNS used for the

present study is detailed in the next chapter.

2.1.2 Large Eddy Simulation

A major difficulty with DNS is the limitation to low or moderate Reynolds number

flows and simplistic geometries. This led to the widespread interest in large eddy

simulation (LES) for turbulent reacting flows which can be applied to a variety of

more complex geometries and elevated Reynolds number flows. The use of LES for

solving turbulent reacting flow problems has increased dramatically within the last

decade. Large scale structures that are well resolved in LES are geometry dependent

in a manner that is difficult to capture through single point Reynolds averaged flow

models (Bray, 1996). These large structures control to an extent the entrainment

rate in a mixing layer which will also clearly affect the composition of the reactive

gas pockets.

Whereas in DNS, much of the computational expense goes into the description of

the small dissipative motions, LES focuses more on the dynamics of the larger-scale

motions which are explicitly computed. In LES, large three-dimensional unsteady

turbulent motions are directly represented and small-scale (high pass filtered) quan-

tities are modelled. Though the small scales are removed through filtering, the
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near-universality of dissipation rates and other small-scale processes makes them

arguably easier to describe in a subgrid scale turbulence model. In LES, localised

spatial averaging is imposed by means of a spatial filter function (Pope, 2000). Large

eddy simulation sets out like DNS to resolve eddying motions in both space and time,

but the computational cells are too large to resolve the smaller scales of motion. In

fact such differencing on a discrete grid is equivalent to obtaining a filtered field

where the filter scale is equal to the grid size. This implicitly filtered field which is

modelled in LES is a representation of a spatially filtered DNS calculation producing

a mean velocity from an unfiltered instantaneous velocity.

A subgrid scale model is introduced to describe the subgrid Reynolds stresses which

arise from the spatial averaging process. The correlation coefficient can be split

up into a resolved part and a fine structure contribution. This fine scale con-

tribution is key to the accuracy of LES. Cost wise, LES lies between one point

Reynolds stress models and DNS and is motivated by the limitations of both these

approaches. Albeit the computational cost for LES is still high, notably when in-

cluding time-averaged information, its application to turbulent reacting flows has

become increasingly important (Bray, 1996; Janicka & Sadiki, 2005; Kempf et al.,

2006). Nonetheless, there are still drawbacks with respect to modelling flow, chem-

istry and turbulence-chemistry interactions. Kinetic energy and scalar dissipation

which occurs at the smaller scales must be modelled as does the coupling between

molecular mixing and chemical kinetics. Even though models for small scale turbu-

lent motions must be applied in a similar fashion to RANS, LES offers significant

improvement because large scale perturbations are explicitly captured. LES in re-

acting flows can in principle better model acoustic disturbances notably combustion

instabilities, a problem which occurs frequently in combustion-related devices (Varo-

quie et al., 2002; Westbrook et al., 2005). However, LES has not yet reached the

maturity required for implementation in a model intended for practical combustors
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with complex geometry and chemistry and the implications for LES are continuously

being assessed (Pope, 2004; Bilger et al., 2005).

2.1.3 Moment Closures

The system of Reynolds/Favre averaged transport equations for a group of turbu-

lence variables contain higher-order statistical correlation terms that are not ac-

counted for in that system of equations. This is the closure problem of turbulence

which exists for all combinations of statistical quantities. It reflects the fact that the

physical variables can provide only a partial description of turbulence because they

are affected by influences other than those that their transport equations describe.

Statistical closures approximate these influences in terms of the known quantities

within the group by providing extra equations for the unknown random variables.

In principle, a higher level closure that considers a larger number of variables de-

scribing turbulent statistics is potentially more accurate than a low level closure as

the former can afford a more complete flow specification (Hanjalic, 1994; Lumley,

1978; Pope, 2000; Speziale, 1995). For incompressible flows, a second order closure

represents a better resolved flow field as transport equations for second moment

quantities such as ũ′′i u
′′
j , ũ

′′
i φ

′′
I , φ̃

′′
Iφ

′′
J and the dissipation rate of turbulent kinetic

energy, ε̃, are solved for. Higher-order triple correlation terms are modelled in terms

of the mean quantities and second moments. The accuracy of the set of equations

will depend on the type of closure modelling implemented. Possible closures to the

Reynolds stress, dissipation and scalar equations are considered in the following

subsection.
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2.1.4 Turbulence Scale Models

To close the set of equations, the Reynolds stresses are often modelled as a function

of a characteristic turbulence velocity, a turbulence length scale and a turbulent

viscosity coefficient, where viscosity is a function of the characteristic length and

velocity parameters. Zero equation models solve a partial differential equation like

(2.27) for the mean velocity field and use an algebraic model to relate the fluc-

tuating quantities to the mean flow. Simple moment closure modelling of scalar

turbulence follows the same pattern but requires analogous mixing parameters, viz.

the characteristic mixing length scale and turbulent species diffusivity. Models of

this type work well enough in simple quasi-steady flows for which the adjusted con-

stants have been calibrated. The assumption is that the turbulence is in equilibrium

with the local mean conditions and the history of turbulence (Pope, 2000) ix not

explicitly considered. These models do not work well for problems in which the

mean conditions change abruptly, e.g. local extinction and re-ignition of turbulent

flames.

One-equation models include partial differential equations for the characteristic tur-

bulence velocity. Two-equation models add a further equation for the turbulence

length scale. The additional partial differential equations describe the evolution of

quantities that are required to calculate the stress tensor in the mean flow equations.

Such models are described as scale evolution models (Lumley, 1978) and relate tur-

bulent transport to a combination of the local features of the mean flow and one or

two parameters of the turbulence. As a result, the evolution model takes explicit

account of the history of the turbulence scales. However, they are still equilibrium

models in that they assume that the mean field and the turbulence parameters are in

local equilibrium. Evolution equations generally give a reasonable first order approx-

imation of the turbulence in simple separated flows or flows with gradual changes in
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boundary conditions but fail in flows with strong rotations, density gradients and

high temperature fluctuations (Sloan et al., 1986).

2.1.5 Second Moment Closures

In second moment methods, the Reynolds stresses are obtained by solution of its

own transport equations (Kuo, 1986). Higher order closure approximations are

employed which enable the full anisotropic characteristics of the Reynolds stresses

to be modelled. Analogous transport equations for turbulent scalar fluxes, ũ′′φ′′,

can be derived and modelled along the same lines. Second moment quantities like

scalar fluxes are crucial to the description of turbulent transport processes, whereas

the strength of the mixing turbulence is quantified in terms of the variance of the

scalar concentration. Since the scope of the present thesis is limited to the dynamics

of the turbulent mixing field, only the generalised Favre-averaged transport equation

for the scalar variance is discussed here.

∂ρφ̃′′2
I

∂t︸ ︷︷ ︸
I

+
∂ρũiφ̃′′2

I

∂xi︸ ︷︷ ︸
II

= TI︸︷︷︸
III

+ P︸︷︷︸
IV

+ u′′iωI︸︷︷︸
V

− ρχ̃II︸︷︷︸
V I

, (2.32)

where

TI = −∂ρũ
′′
i φ

′′2
I

∂xi
P = −2ρũ′′i φ

′′
I

∂φ̃I

∂xi
. (2.33)

The terms on the right-hand side of (2.32) represent, in order, turbulent transport

[term III], turbulent production via the mean scalar gradient [term IV ], scalar-
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mean formation/reaction rate correlation [term V ] and the mean scalar dissipation

of the I th species [term V I]. The rate of dissipation of fluctuations of an arbitrary

I th scalar, represented by χII , has already been introduced in Sec. 1.1 as a key

concept in modelling extinction/re-ignition phenomena in turbulent non-premixed

flames (Bilger, 1980; Williams, 1985; Pitts et al., 1999; Peters, 2000; Bilger, 2004)

and according to (Peters, 2000) is mathematically given by,

χII = 2DI∇φ′′
I · ∇φ′′

I ' 2DI∇φI · ∇φI , (2.34)

where DI is the diffusion coefficient for the I th scalar and the two indices in the sub-

script for χ represent the gradients of the respective scalars on the right-hand side

of (2.34). According to (2.34), χII is directly proportional to the square of the mag-

nitude of the scalar gradient, ∇φI , quantifying the extensive rate-of-strain imposed

on the local scalar distribution by the turbulent eddies. The scalar variance budget

in (2.32) implies that the mean scalar dissipation gives the rate at which the vari-

ance of scalar fluctuations is destroyed in a turbulently advected scalar field. Other

authors like Veynante & Vervisch (2002) also define the mean scalar dissipation rate

as the rate of decay of ’scalar energy’ or φ̃′′2
I /2, which gives

NII =
χII

2
= DI∇φI · ∇φI (2.35)

.

The subscript notation for N follows the same convention as that for χ. It fol-

lows from the aforesaid definition that the rate of scalar dissipation has an inverse-

time dimensionality and governs the local residence time-scale of turbulent mixing.

Therefore, the averaged scalar dissipation, χ̃II , can be expressed in terms of the
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mean viscous dissipation rate, ε̃, by assuming a direct proportionality (Spalding,

1971; Tennekes & Lumley, 1974) between the turbulent scalar (mixing) and fluid-

mechanical time scales,

χ̃II = Cφ
φ̃′′2

I

τ
. (2.36)

Here, the Cφ parameter is the mechanical to scalar time scale ratio, τ = κ̃/ε̃ is

the characteristic turbulent eddy-turnover time based on the Kolmogorov (1941)

scaling estimate and κ̃ is the turbulent kinetic energy. For non-reacting turbulence,

the Cφ parameter varies depending on the flow conditions (Warhaft & Lumley, 1978;

Warhaft, 1980), but a value of 2.0 is generally used (Newman et al., 1981; Pope,

1985).

2.2 Scalar dissipation statistics

The general concept of the dissipation rate of turbulent fluctuations of an arbitrary

scalar was introduced in the previous section. Characterising the mixing dynamics

of conserved scalars is of particular significance to the studies of passive/reacting

turbulent flows (Dimotakis, 2005). According to (2.34), the mathematical form for

the scalar dissipation rate of any conserved scalar, Z, in passive scalar turbulence3

is given by

χ = 2D∇Z · ∇Z, (2.37)

where D is the diffusivity of the conserved scalar (or mixture fraction). Henceforth

3The turbulent reacting flow counterpart for the conserved scalar is the mixture fraction, for-
mally introduced in the next section
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in the text, all instances of χ (or N = χ/2) without subscripts refer to the scalar

dissipation rate of the conserved scalar or mixture fraction. Before moving on to the

discussion of closure modelling for turbulent non-premixed combustion, it is neces-

sary to review the small-scale statistics of the scalar dissipation variable that plays

a key role in these modelling approaches. This section reviews studies concerning

the small-scale statistics and intermittency of scalar dissipation with a special focus

on its spatial resolution requirements and classifies computational approaches to

analyse the characteristic dissipation length scales. Application of these methods to

post-process dissipation statistics from highly resolved DNS studies is also discussed.

This is followed by the description of the combustion models in the next section.

While there is good evidence to suggest that the statistics of scalar dissipation

have some properties of near-universal nature (Monin & Yaglom, 1971; Tennekes

& Lumley, 1974; Newman et al., 1981; Nelkin, 1994; Sreenivasan & Antonia, 1997;

Wang et al., 1999) that can be applied to many mixing environments, including

the ocean, the atmosphere and internal flows of engineering importance, the de-

partures from the universal behaviour (specifically for the inertial-subrange) have

also been well documented (Frisch, 1991; Sreenivasan & Stolovitzky, 1996; Noullez

et al., 1997). Frisch (1995) gives a detailed review of these aspects in the theory of

small-scale turbulence. In this study, we concentrate primarily on results pertaining

to reacting flows, for which turbulent scalar mixing is less well-studied in spite of its

crucial role in such flows (Bilger, 1980). Understanding the statistical properties of

a random quantity like scalar dissipation is the starting point to develop improved

models for mixing and for non-premixed combustion. It is experimentally observed

that the strongly intermittent behaviour of scalar dissipation is somewhat similar

to that of the instantaneous turbulent viscous dissipation (Sreenivasan, 2004). In

other words, a frequent occurrence of instantaneous values much larger than the

mean is observed. This observation is quantified in Fig. 2.1, which shows that
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dissipative events at over 4.5 standard deviations from the mean are a thousand

times more likely to occur than similarly large fluctuations in a common Gaussian

process. However, the frequency and magnitudes of the fluctuations in scalar dissi-

pation are characteristically larger than those in viscous dissipation. Nonetheless,

both variables show a skewed probability distribution that has a large tail. It follows

from various studies (Batchelor & Townsend, 1949; Grant et al., 1962; Meneveau

& Sreenivasan, 1991) that the average value of the viscous dissipation is not com-

pletely representative of its physical characteristics, and the reader is referred to

recent reviews by Sreenivasan (2004) and Schumacher et al. (2005). Attempts to

incorporate the high-variability properties of viscous dissipation into a turbulence

theory led to the well-known work of Kolmogorov (1962). In this respect, Oboukhov

(1949) and Corrsin (1951) were the first to naturally assume that many aspects of

turbulent mixing are similar to turbulence itself and predicted the scaling of the

inertial subranges of structure functions and spectra.

Experimental measurement of the scalar dissipation entails the difficult task of ob-

taining the instantaneous spatial derivative (in at least one dimension) of the mix-

ture fraction with sufficient resolution such that these frequent large-magnitude

excursions are not overlooked (Gibson, 1991). The experimental study by Dahm &

Southerland (1997) gives an assessment of the accuracy of Taylor’s hypothesis in

approximating the magnitude of the scalar dissipation rate from such one- or two-

dimensional spatio-temporal measurements of the scalar gradients. Furthermore, the

study quantifies the extent of the departure from the true magnitudes using such

measurements and gives a generalised analytical framework to maximise the correla-

tion between the measured and true dissipation rates. There have been many other

recent attempts (experimental and numerical studies) to quantify scalar dissipation

in turbulent axisymmetric and planar jets, like those by Dahm et al. (1991), Buch

& Dahm (1996), Buch & Dahm (1998), Dahm & Southerland (1999), Pitts et al.
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Figure 2.1: Illustration of the small-scale intermittency of scalar dissipation rate
computed at an arbitrarily chosen spatial location (x/H = 2.8, y/H = 5.2) from
the Pantano (2004) DNS dataset described in Chapter 3. Notation µχ and σχ

denote the mean and standard deviation of the scalar dissipation rate at the aforesaid
spatial location. The solid line is the probability density of the instantaneous scalar
dissipation rate and the dashed line denotes the ratio of the actual probability
density to the Gaussian density computed at the same mean and standard deviation
(or variance).

(1999), Tsurikov & Clemens (2002), Su & Clemens (2003) and Barlow & Karpetis

(2005b). An additional difficulty encountered in reacting flows is that the mixture

fraction itself does not exist on its own as part of the experimental flow. It is gener-

ally derived from the composition of the mixture (Bilger et al., 1990). This requires

simultaneous measurements of multiple species concentrations in a high-temperature

environment as a prelude to obtaining the scalar dissipation. This interest is moti-

vated by a desire to characterise this fundamental turbulence property and to model

its behaviour owing to its key role in mixture-fraction based models for turbulent

non-premixed or partially-premixed combustion.

2.2.1 Average and instantaneous dissipation length scales

The Kolmogorov length scale of turbulence is defined as
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ηK =

(
ν3

〈ε〉

)1/4

, (2.38)

where 〈ε〉 denotes the mean of the turbulence kinetic energy dissipation rate, ε (x, t),

and ν is the kinematic viscosity. The mechanism of formation of turbulent fluid-

elements with a characteristic thickness of ηK can be explained in terms of the vor-

ticity transport equation that describes the evolution of the vorticity field subject

to the balance between vortex-stretching due to the mean strain-rate field (resulting

in an elongation and thinning of the vortex-tube structures) and the re-connection

effects induced by viscous-diffusion. The result is a vortex tube with O(ηK) thick-

ness, characterising the length-scale at which the viscous dissipation of turbulent

kinetic energy predominates.

The average dissipation length-scale ηK is undoubtedly important from a theoretical

and practical standpoint. However, due to the attested departure from Gaussianity

in the dissipation range (Monin & Yaglom, 1971), it is unable to fully characterise

the distribution of dissipation scales in turbulent flow. This multiplicity of dissipa-

tion length-scales is characteristic of the small-scale intermittency and its physical

explanation involves the addition of a new feature to the traditional eddy-cascade

picture of turbulence by Kolmogorov (1941).

She et al. (1990) and She (1991) describe the canonical picture of turbulence as

consisting of a hierarchy of small-scale coherent structures in addition to the known

random eddy-cascade with near-Gaussian statistics. These coherent structures are

local and intermittent and, thus, show strongly non-Gaussian statistics. The afore-

said mechanism of formation of coherent vortex structures, based on the strain-

diffusion balance, is supplemented in the revised picture. She et al. (1990) describe

that the coherent vortex structures are subjected to an additional strain field caused

by the vortex structures themselves in the event of large vorticity magnitudes. To
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Figure 2.2: Schematic representation of the strain-diffusion balance for a coherent
vortex-tube structure in mixing turbulence. The dimensions of the structure in
terms of the characteristic velocities and length-scales of turbulence are illustrated.
Here, uK denotes the eddy-turnover velocity at the Kolmogorov scales and Lλ is the
Taylor microscale.

account for this self-stretching component of strain-rate, the strain-rate tensor is sub-

divided into the self-stretching and mean-strain components. The former component

becomes dominant at high vorticity (or, equivalently, large velocity-gradient) mag-

nitudes. The balance between the dominant self-stretching component of strain-rate

and the viscous diffusion leads to the formation of structures with sub-Kolmogorov

thicknesses and results in the wide dissipation length-scale distribution characteris-

tic of intermittency. It is important to note here that the descriptions of turbulence

intermittency in Kolmogorov (1962) and related studies presume the dissipation-

scale statistics as lognormal-like. Unlike She et al. (1990) and She (1991), these

descriptions do not fully explain/model the turbulence dynamics underlying such

statistics.

For the reasons described above and in some circumstances, it becomes useful to
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define a local, instantaneous, viscous dissipation length scale, called the local Kol-

mogorov scale by Schumacher et al. (2005) and denoted here by η ′K. The concept of

a locally-defined, fluctuating dissipation length-scale is not new, and has also been

put forth in the multifractal analysis of the small-scale turbulence structure by Frisch

& Vergassola (1991). This local quantity follows from (2.38) according to the same

dimensional arguments used to define ηK , giving η′K (x, t) ∼ (ν3/ε (x, t))1/4. Since

ν is not expected to have very intermittent statistics, it largely depends on some

smooth function of the temperature, the majority of the variability of η ′K results

from the statistics of ε. The abundance of local values of ε that are much larger

than 〈ε〉 (owing to its intermittent distribution) gives rise to a significant range of

instantaneous dissipation length scales smaller than ηK . Accurately measuring the

probability distribution function (or PDF) of ε requires that the minimum measur-

ing scale, ηKmin ∼ (ν3/εmax)
1/4

, be such that the probability that ε > εmax is very

small, say 1% (Sreenivasan, 2004).

The same argument of small-scale intermittency can be extended to turbulent mix-

ing dynamics, as explained in reviews by Sreenivasan (1991, 2004) and Bilger (2004),

to hypothesise the existence and significance of local scalar dissipation length scales,

or ηZ = ηK · Sc−3/4, where ηZ denotes the Obukhov-Corrsin scale. This ex-

pression is valid for Schmidt numbers, Sc, smaller than one, and Sc is defined as

Sc = ν/D (Tennekes & Lumley, 1974). For large Schmidt numbers, Sc ≥ 1,

the corresponding balance of turbulent stretching and molecular diffusion leads to

the Batchelor (1959) scale, defined as ηZ = ηK · Sc−1/2. While the definition of

the Batchelor scale is strictly valid for Schmidt numbers greater than or equal to

unity (Buch & Dahm, 1998), the label is commonly used to imply the finest mix-

ing scale in the turbulence and combustion literature. Henceforth, for the sake of

convenience, all references to the Batchelor scale will imply the finest mixing length

scale in the broadest sense, whereas the symbol ηZ will be used to denote the specific
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Schmidt number scaling for the present case of Sc = 0.7. It should be noted that the

difference in value between the Batchelor and Obukhov-Corrsin scales is negligible

for Schmidt numbers of order unity.

2.2.2 Categorisation of the measurement methods

The experimental or numerical measurement of spatial-scales associated with scalar

dissipation can be broadly categorised into approaches that either involve the com-

putation of two-point spatial correlations of scalar fluctuations (scalar spectra), or

the determination of the spatial distribution of the scalar dissipation using scalar-

gradients.

The method involving scalar spectra uses the standard eddy-cascade theory of tur-

bulence to arrive at estimates for the Batchelor length scale and is described in

Sec. 4.1. On the other hand, information about the spatial-distribution of χ can, in

turn, be acquired through two independent approaches used in the literature that

either compute the spatial variation of χ by plotting its iso-contours or level-sets at

various fractional-values of the local peak, keeping the grid-size fixed, or that model

the decay of the local peak-values in the χ-profiles for incremental increases in the

effective spatial-discretisation (or filter-width) of the sampling volume.

The former level-set (fixed filter-width) approach has been used in various numer-

ical and experimental studies, like those by Buch & Dahm (1996, 1998), Kushnir

et al. (2006b), Su & Clemens (2003) and Tsurikov & Clemens (2002), to investigate

the thin, planar, three-dimensional scalar dissipation structures and ascertain their

thicknesses. The thicknesses thus computed are characterised as the spatial-scales

associated with scalar dissipation. The application of this approach to the present

study has been detailed in Sec. 4.2. Other experimental studies by Barlow & Kar-

petis (2005a,b) estimate χ using the latter spatial-filtering approach. As described
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further in Sec. 4.3, this method in particular seems better suited for characterising

the small-scale intermittency of the scalar dissipation process.

2.2.3 The DNS database

Traditionally, simulations involving the solution of the scalar advection-diffusion

equation with the Navier-Stokes equations have resolved no more than the Batchelor

scale. Experiments in non-reacting flows by Buch & Dahm (1996, 1998), Pitts et al.

(1999) and Su & Clemens (2003) among others have also suggested that accurate

measurements of the scalar dissipation rate require a spatial resolution comparable

to (or even smaller than) the Batchelor scale, using scaling laws and self-similarity

arguments. However, as Barlow & Karpetis (2005b) suggest, applicability of these

scaling relationships to estimate the Batchelor scale in laboratory-scale flames is un-

clear. Such estimates are hinged on the assumption of self-similarity of the flow that

is valid only far downstream, if present at all in common flame geometries (Sreeni-

vasan, 2004). Furthermore, owing to the reasons described in the preceding section,

the intermittent character of the scalar dissipation process introduces additional con-

straints on its spatial resolution and the Batchelor scale estimate is no longer enough

for moments higher than the mean. Hence, various reviews by Bilger (2004), Sreeni-

vasan (2004), Barlow & Karpetis (2005b), and Schumacher et al. (2005) concur that

published χ-measurements from experiments or simulations of turbulent jet-flames

can frequently have questionable spatial resolution, especially at high Reynolds num-

bers.

Many recent well-resolved simulations of turbulent scalar mixing that exist in lit-

erature are in the low (Yeung et al., 2004; Schumacher et al., 2005; Kushnir et al.,

2006b) and moderate (She et al., 1993; Wang et al., 1999; Vedula et al., 2001)

Reynolds number range, with perhaps the recent exception of Yeung et al. (2005).
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However, they all tackle the problem of turbulent mixing in its simplest form, i.e.

between passive scalars. Donzis et al. (2005) gives a good account of the attributes

of such DNS studies to date. For the low-to-moderate Reynolds number range

evidenced in the present DNS, the small scale evolution for reacting cases can be

expected to markedly differ from the evolution in non-reacting cases owing to dilata-

tion and relaminarisation of the flow. DNS of constant density flows can therefore

not be used to quantify dissipative structures in reaction zones for such Reynolds

numbers. However, DNS studies for the complex case of turbulent mixing with

reaction, e.g. in the aforesaid case of turbulent jet-flames (Boersma, 1999) or in

channel flows (Brethouwer & Nieuwstadt, 2001), tend to be invariably limited to

the low-to-moderate range of Reynolds numbers with simplistic chemistry and res-

olution limited to about ηK . Even the relatively good resolution of the turbulent

diffusion flame DNS by Mizobuchi et al. (2005), using a varying 23 − 400 million

grid-point computational domain, is incapable of reproducing intermittency effects

accurately owing to the high Reynolds number it attempts to simulate and is, there-

fore, unsuitable for our present purpose. Therefore, an extremely well-resolved DNS

of a turbulent reacting jet at a moderate jet-exit Reynolds number of 3000 and with

relatively detailed 4-step chemistry (Pantano, 2004) has been chosen in the present

study to implement the numerical approaches mentioned in Sec. 2.2.2. Further rel-

evant details on the DNS can be found in Chapter 3. It is important to note that

Kolmogorov’s first hypothesis regarding the universal behaviour of the fine dissipa-

tion length scales holds in the low-to-moderate Reynolds number range (She et al.,

1993; Saddoughi & Veeravalli, 1994; Nelkin, 1994; Pope, 2000; Yeung et al., 2004;

Kushnir et al., 2006b; Wang et al., 2007b). This justifies the rationale of the present

study that concerns itself with the spatial-scales of dissipation and does not depend

on the existence of a well-defined inertial subrange in the turbulence spectrum. The

reader is referred to Secs. 4.1.2 and 4.1.3 in Chapter 4 for further discussion on this

important issue.
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2.3 Combustion Models

Reacting flows are more complex that isothermal flows due to the variable density

effects that result from the heat release due to chemical reactions. This in turn

affects the velocity flow field which alters the chemistry. This coupling through the

effect of turbulence-chemistry interactions is the key to properly modelling turbulent

reacting flows. Generally, chemical reactions take place in a shorter time compared

to turbulent mixing rates which produce large temporal and spatial fluctuations in

the flow field. As mentioned earlier, the treatment of the reaction source term is

the cause of most of the difficulty due to its non-linearity through the Arrhenius

expression. Such turbulence fluctuations of species mass fractions that appeared in

(2.31) produce order of magnitude changes in the chemical reaction rates which alter

individual species mass fractions and surrounding temperature. For computationally

tractable equations, higher moments are dropped from the mean source term, which

results in large errors, notably when the activation energy is larger. The various

combustion models used in literature to approach the problem of modelling the

turbulence-chemistry interactions are introduced and discussed in this section.

2.3.1 Combustion Regimes

Combustion requires that fuel and oxidiser be mixed at the molecular level. In tur-

bulent non-premixed combustion specifically, the way in which this process happens

depends on the turbulent mixing process. Once a range of different size eddies has

developed, strain and shear at the interface between the eddies enhances the mix-

ing process. Similarly, an eddy break up process will increase strain and shear and

steepen the concentration gradients at the interface between the unmixed reactants,

where molecular mixing of fuel and oxidiser generally takes place. As chemical reac-
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tions consume the fuel and oxidiser and steepen the gradients at the interface, the

mixing process is further modified. Thus classical scaling laws for isothermal flows,

such as Reynolds number independence in open jets, are no longer valid. This is fur-

ther complicated by the fact that various chemical reactions occur on different time

scales, leading to chemical and turbulent interaction at the large scales of the inertial

subrange. Furthermore, heat release by combustion induces an increase in temper-

ature which in turn accelerates combustion chemistry. The chain branching and

breaking reactions sensitive to temperature changes can cause ignition and extinc-

tion phenomena. Therefore, identifying different combustion regimes through local

time and length scales forms the basis for establishing various combustion models

in turbulent reacting flows, as their formulation usually involves various combustion

regime assumptions.

The laminar flamelet approach (Peters, 2000) covers both premixed and non-premixed

regimes of combustion and its main feature is the assumption of relatively fast chem-

istry. Within the context of turbulent flames, these flamelets appear as an ensemble

of thin, locally laminar, one-dimensional structures embedded within the turbulent

flow field. A criterion for the chemistry to be fast is then determined with respect to

the relevant time and length scales of the chemistry and turbulence. Provided that

the characteristic time scale of the thermochemistry is small in comparison to the

Kolmogorov time scale, the combustive process is assumed to be completed within

the turn over time of the smallest eddies.

Characteristic time and length scales for turbulence are well established (Pope, 2000)

where a typical large eddy integral time and length scale is equal to τres = κ̃/ε̃ and

lT = κ̃3/2/ε̃ respectively. The typical turbulent Reynolds number is then equal to

Re = κ̃1/2lT/ν ≡ κ̃2/ε̃ν. In the description of turbulent combustion it is necessary to

define further nondimensional parameters namely the Damköhler number (Da) and

the Karlovitz number (Ka). The former (cf. Sec. 1.1) corresponds to the ratio of
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the turbulent residence time scale τres to the chemical time scale, τc. The residence

time scale of turbulence is usually considered to be in direct proportion with the

integral length scale and is governed by the rate of scalar dissipation through (2.36).

The Damköhler number is a measure of the importance of the interaction between

chemistry and turbulence. Most combustion models are placed at the extremes

of the Da number. For example if Da << 1, the turbulence is much faster than

the chemistry and vice versa. The former regime is the well-stirred reactor, where

products and reactants are rapidly mixed.

On the other hand, the Karlovitz number corresponds to the ratio of chemical time

scale τc and smallest (Kolmogorov) turbulent time scale, τK.

Ka ≡ τc
τK

(2.39)

If Ka << 1 the chemical reactions occur much faster than all turbulent scales.

Turbulence does not alter the flame structure and the chemical region is in laminar

conditions. The Karlovitz number can be linked to the Damköhler number as follows:

Ka =
1

Da
κ̃

(
ε̃

ν

)(1/2)

(2.40)

Using their definitions, the Re, Da and Ka numbers can be combined and are related

by Re = Da2Ka2 provided that the Schmidt number (Sc = ν/D) is unity and thus

only two out of the three parameters are independent. For Da >> 1 and Ka < 1,

the chemical time scale is shorter than any turbulent time scale This condition, also

known as the Klimov-Williams limit, is the laminar flamelet regime. In this regime,
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the turbulence is unlikely to affect the inner flame structure which remains close to

a laminar flame wrinkled by the effect of turbulent eddies.

For τK < τc < τres, the turbulent integral time scale is still larger than the chemical

time. However the small scales of turbulence (Kolmogorov) are smaller than the

flame thickness and will influence the inner flame structure. For example, the flame

will be quenched as a result of exceeding flame stretch induced by the Kolmogorov

scales. For non-premixed flames (Bray & Peters, 1993) define a flamelet regime

in mixture fraction space, Z. Provided that the mixture fraction variance, Z̃ ′′2

about the mean stoichiometry is small, it is readily established that reactions are

sufficiently fast everywhere and reaction zones are connected. Conversely, if the

variance is pronounced, the diffusion flame structure will separate.

An important phenomenon in diffusion flames is the extinction which occurs on the

upper branch of the S-curve in Fig. 1.2 when the Da is decreased by increasing

the main jet velocity for example. Commonly, a critical value is reached where this

phenomenon occurs which causes a rapid transition to the lower branch. By defining

the residence time as τres = 1/S, where S is a strain rate parameter along the fuel

and air interface, increasing the strain rate (or decreasing Da in Fig. 1.2) will cause

the flame to extinguish provided that τc is larger or comparable to τK .

2.3.2 Conserved Scalar Formalism

The laminar flame concept describes turbulent diffusion flames as an ensemble of

stretched laminar flamelets (Peters, 2000) where profiles from laminar diffusion flame

simulations are used to calculate mean and variances in turbulent flames. These

laminar flames are typically characterised by a single conserved scalar, namely the

mixture fraction, Z. Writing aιε as the number of atoms of element ε in a molecule of



2.3. Combustion Models 93

species ι, wι as the mass of the ιth chemical species and Mε as the molecular weight

of the element, the mass of all atoms of ε in the system is given by,

wε =

ns−nr∑

ι=1

aιεMε

Mι
wι (2.41)

Therefore, the mass fraction of element ε in the gaseous mixture of mass w is

Zε =
wε

w
=

ns−nr∑

ι=1

aιεMε

Mι
φι (2.42)

The conservation equation for Zε is then given by:

∂ρZε

∂t
+
∂ρukZε

∂xk
= − ∂

∂xk

(
ns−nr∑

ι=1

aιεMε

Mι
J ι

k

)
(2.43)

Clearly the chemical source term is removed as a result of conserving mass fraction.

Assuming Fickian diffusion and molecular diffusivity, D, (2.43) can be modified into

the convenient form shown below:

∂ρZε

∂t
+
∂ρukZε

∂xk
= − ∂

∂xk

(
ρD

∂Zε

∂xk

)
(2.44)

The global chemical reaction equation for complete combustion for a hydrocarbon
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fuel CiHj can be written as (Peters, 2000):

vFCiHj + vO2
O2 → vCO2

CO2 + vH2OH2O, (2.45)

where v with the subscripts denotes the chemical coefficients of the respective species

in the above reaction. Let ZC , ZH and ZO represent the elemental mass fractions

of C, H, and O and MC , MH and MO be their respective molecular weights. The

normalised function, F , where:

F =
ZC

i ·MC
+

ZH

j ·MH
− 2

ZO

vO2
MO2

(2.46)

will be zero provided the conditions are stoichiometric. The most commonly adopted

definition of the mixture fraction is due to Bilger (1988), and is obtained by nor-

malising the function, F , such that it varies between zero and unity.

Z =
F − F2

F1 − F2

=
Zc/(iMc) + ZH/(jMH) + 2(φO2,2 − ZO)/(vO2

MO2
)

ZC,1/(iMc) + ZH,1/(jMH) + 2(φO2,2/(vO2
MO2

)

=
2ZC/MC + 1/2ZH/MH + 2(ZO,2 − ZO)/MO

2ZC/MC + 1/2ZH,1/MH + ZO,2MO
(2.47)

The subscripts 1 and 2 refer to the fuel and air streams, respectively. The formula-

tion is often used to determine the mixture fraction from experimental or numerical

data of mass fraction that are available. In the flow field calculation, Z is normalised

to values between zero and unity in the pure air and fuel streams respectively. Its
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conservation equation is identical to (2.44) with Z replacing Zε as the conserved

scalar. For unity Lewis numbers the transport equation (2.9) for the enthalpy also

takes the same form as (2.44), provided we neglect the radiative source and the tran-

sient pressure terms in the former. This allows the enthalpy to be linearly related

to the mixture fraction such that:

H = H1Z + H2(1 − Z) (2.48)

where H1 and H2 are the enthalpy contents of the fuel and air streams, respectively.

2.3.3 Thermochemical Models

Any chemical element can be represented by a normalised scalar (Peters, 2000) as

that represented in the previous section but there are restrictions that the presence

of chemical elements impose on the combustion process. This can be more clearly

seen through the Burke-Schumann solution and then the equilibrium solution, both

of which are a function of such a conserved scalar, namely the mixture fraction.

In the limit of an infinitely fast one-step irreversible reaction there exists a thin

non-equilibrium region, usually within the shear layer where Z = Zs. Outside this

region the mass fractions are either negligible or piecewise linear functions of the

conserved scalar Z,

φF = φF,1

(
Z − Zs

1 − Zs

)
, φO = 0, Z ≥ Zs (2.49)
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φO = φO,2

(
1 − Z

Zs

)
, φF = 0, Z ≤ Zs (2.50)

Here φF,1 and φO,2 are the fixed mass fractions of pure fuel and oxidiser in the respec-

tive fuel and air streams. The Burke-Schumann solution of profiles of φF , φO and

temperature for complete combustion are now linear functions of mixture fraction,

with the assumption of a unity Lewis number, equal diffusivity, constant pressure

and negligible radiative heat transfer. All species are in chemical equilibrium with

one another. However, this is not true for real flames and nonequilibrium effects

(e.g. extinction and re-ignition) must be accounted for to better represent actual

measured species and temperature profiles. Some of the most promising techniques

to predict the physics of extinction and re-ignition are based on:

• presumed probability density function (PDF) approach,

• the solution of the joint-PDF of the turbulent-combustion variables,

• steady and transient flamelet-based modelling (FM),

• conditional moment closure (CMC) of the advection-diffusion equations and

• solution of the transport equations for scalar surrogates or mapping functions

conditioned on a set of reference variables with a presumed PDF.

2.3.4 Presumed PDF Approaches

The presumed PDF approach is based on the underlying assumption that the shape

of the PDF is known and can be described as a function of a random variable, e.g. a

conserved scalar, and its first two moments, namely the mean and the variance. Bil-

ger (1980) showed that the shape of the scalar PDF is dependent upon the spatial
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Figure 2.3: Schematic showing the inner structure of non-premixed flames. Variation
of fuel and oxidiser mass fractions and temperature in the mixture fraction space is
bounded by the inifinitely fast chemistry limit on the upper side and by the pure-
mixing case on the lower side. ld is the characteristic diffusive thickness and depends
on the scalar dissipation rate, N , whereas the reaction zone thickness, lr, depends
on ld and the Damköhler number. Figure reproduced from Veynante & Vervisch
(2002).

location. Within the proximity of the shear layer, the PDF will tend to resemble a

number of spikes due to intermittent effects resulting from the continuous entrain-
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ment of fresh unburnt fluid into the turbulent flow. Towards the core of the jet, the

profiles are reminiscent of a Gaussian shape. When considering a function containing

a greater number of random variables, determining an appropriate shape is more dif-

ficult and multivariate presumed PDF approaches are intrinsically complicated due

to the required PDF needed to account for unrealisable scalar spaces (Borghi, 1988).

Consider two arbitrary random variables, ϑ1 and ϑ2, with sample spaces, ζ1 and ζ2,

respectively. Then the conditional average of ϑ1 on ϑ2 is given by, 〈ϑ1|ϑ2 = ζ2〉 and

is related to the unconditional average, 〈ϑ1〉 by,

〈ϑ1〉 =

∫ ∞

−∞

〈ϑ1|ϑ2 = ζ2〉Pϑ2
(ζ2)dζ2 (2.51)

where Pϑ2
is the marginal PDF of the conditioning variable, ϑ2. In the same fashion,

the mass fraction of a species in a turbulent flow can be written in such a way as

to depend (conditionally) on the local value of mixture fraction, Z. Therefore it is

possible to write an averaged species mass fraction conditional on mixture fraction

such that:

〈φι〉 =

∫ ∞

−∞

〈φι|Z = η1〉PZ(η1)dη1 =

∫ ∞

−∞

〈φι|η1〉PZ(η1)dη1 (2.52)

Following the nomenclature for the scalar mass fractions introduced in Sec. 2.0.1,

consistent subscript notation is used for their sample space variables denoted by

ηmaj = {η1, .., ηi, ..., ηnr}. Therefore, η1 in (2.52) denotes the sample space of the

mixture fraction, φ1 ≡ Z. The reactive scalars can be modelled in terms of their

fluctuations in mixture fraction space using the above equation. Klimenko & Bilger

(1999) give the transport equation for the mixture fraction PDF, PZ(η1), as
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∂〈ρ|η1〉PZ(η1)

∂t
+ ∇ · 〈ρu|η1〉PZ(η1) = −∂

2〈ρN |η1〉PZ(η1)

∂η2
1

, (2.53)

where N is the dissipation rate of the mixture fraction defined in (2.37). Presum-

ing the shape of the PDF simplifies the problem of solving this partial differential

equation. Instead, only the mean and variance transport equations for the mixture

fraction are solved for. The mean thermochemical properties are then obtained by

assuming the chemical equilibrium of a laminar flame profile and integrating using

the presumed shape PDF over the sample mixture fraction space to obtain Favre av-

eraged mean values. Previous studies have shown (Borghi, 1988; Peters, 2000) that

the optimal shape which best describes the major parts of the flow is a beta-PDF

profile. The difficulty with such an approach lies in the fact that concentrations of

minor species such as CO and NO which are time dependent, and usually slower in

formation, are over-estimated as a result.

2.3.5 PDF Methods

The PDF method (Pope, 1985) is based on the computation of the joint stochas-

tic distribution of all reactive and conserved scalars as the turbulent reacting flow

evolves in space and time. There are several recognisable types of PDF transport

approaches which lead to closure, e.g. the joint scalar or joint velocity-scalar lev-

els. The main advantage of PDF methods stems from the fact that the previously

averaged non-linear source term now appears in its exact closed form in the PDF

transport equation. Consequently multi-step chemical mechanisms for finite rate

thermochemistry can be included without the need for approximations. Due to the

dimensionality of the PDF, a finite volume technique is prohibitive and a stochastic

approach, usually of a Monte Carlo type, featuring tracking of particles in a La-
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grangian framework, is used to extract the evolution of the PDF. The advantage of

such an approach is that the computational cost is linear with the number of solved

random variables included in the PDF function. As a result, the computation be-

comes more tractable when considering a larger number of scalars, for instance with

the use of augmented reduced chemical mechanisms. This allows for the inclusion of

a sufficient number of species and a more complete description of extinction and ig-

nition phenomena in combustion related devices (Lindstedt, 2000). The method can

be effective in modelling the extinction and re-ignition processes as it (potentially)

allows for an accurate evaluation of the extent of scalar fluctuations. However, there

still remain some uncertainities about the universality of the mixing models used

in this approach, especially due to the heuristic nature of the presumption of the

Cφ value to adjust the mixing time scales. The need for mixing models is obviated

in deterministic approaches like FM or CMC and their lower dimensionality makes

them equally (if not more) desirable than PDF methods.

2.3.6 Flamelet Models

The nature of turbulent flows is such that the flamelets will themselves vary over

space and time. So long as the reaction zone thickness remains below the Kol-

mogorov scale, combustion will occur in the semi-laminar flow trapped within that

eddy and through convenient coordinate transformations, Peters (1984) obtains the

following transport equation to be solved:

ρ
∂φι

∂t
=

ρ

Leι

N
∂2φι

∂Z2
+ ωι, (2.54)

In the context of (2.54), fluctuations of the species mass fraction, φι, are negligible

but the reaction rate, ωι, must now be considered. For the steady case, (2.54) can
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be integrated over mixture fraction space. However the numerical integration is too

costly. Consequently, as the unsteady flamelet will clearly depend upon both Z

and N , the PDF function is simply adjusted to include effects of scalar dissipation,

which now has a statistical distribution attached to it. With this in mind, a more

appropriate PDF is defined as a function of Z and N and by assuming that within

the shear layers N approximately equals its stoichiometric value, Ns. Bilger (1980)

first proposed a statistical independence between both random variables such that

the joint PDF can be split into two components,

PZ,Ns = PNsPZ (2.55)

In steady LFM (i.e. for ∂φι/∂t = 0), flamelet tables in the form of φι = φι(Z,N)

functions are pre-computed for a range of Z and N values appropriate to the flame

under investigation. PZ is generally taken to be a β-function, whereas the PDF for

the scalar dissipation is required to be lognormal (Peters, 1984). Recent experiments

and DNS data (Karpetis & Barlow, 2002; Hawkes et al., 2006) corroborate this.

However, by neglecting the unsteady part of the flamelet equation, Pitsch (2000)

shows that one cannot include the transient behaviour of flamelets, which inhibits

the profiles from undergoing changes while they are transported convectively down-

stream of the jet nozzle exit. Both Peters (2000) and Pitsch (2000) argue that in

a Lagrangian treatment of the flamelet development the streamwise location, x, of

the flamelet is uniquely related to the time interval, ∆t, of convection

∆t =

∫ x

0

1

〈u(x′)|Z = Zs〉
dx′, (2.56)

where one representative flamelet is solved simultaneously and coupled with the
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flow field calculation. In order to produce reasonable results, the input into the

combustion model (to determine the flamelet table) must be well specified. This

will depend on the axial velocity at the stoichiometric mixture, the mean mixture

fraction and the variance of the mixture fraction. A stochastic mixing approach to

predict the local scalar dissipation rate and a defined re-ignition parameter using

simplified stochastic differential equations has also been devised recently (Pitsch

et al., 2003). This approach enhances the description of the effects of extinction and

relight in unsteady LFM, but discrepancies remain when compared to DNS data.

2.3.7 Conditional Moment and Mapping Closures

In its traditional formulation the flamelet model does allow for moderate devia-

tions of scalar concentrations from their equilibrium values (cf. Sec. 2.3.6). These

deviations are limited to the reaction zone, which is presumed to be thin. This

makes the model inherently unsuitable in describing reaction or transport processes

outside of the thin reaction zone, such as those related to pollutant formation. Fur-

thermore, the flamelet model assumes an explicit functional dependence of scalar

concentrations on the mixture fraction and therefore neglects the scalar fluctuations

around these values. On the other hand, CMC modelling (Klimenko & Bilger, 1999)

approaches the problem by considering chemical species, or (minor) quantities, con-

ditionally averaged on one or two (major4) quantities that govern the fluctuating

behaviour of the turbulent reacting system. It follows that a suitable choice of major

quantities amongst all scalars will result in negligible fluctuations around the afore-

said conditional means. Computing/presuming the joint distribution of only the

major quantities, instead of the whole joint scalar-PDF, is required to model extinc-

tion and re-ignition phenomena in turbulent non-premixed flames. It is generally

4The ’major-minor’ terminology is not common in CMC literature. This has been used here for
explanatory consistency with MMC.
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recognised that the fluctuations in the scalar concentrations (chemical species and

temperature) for many finite-rate reactions in non-premixed combustion are mainly

governed by the mixture fraction fluctuations. Therefore, the singly-conditioned

CMC formalism recognises the mixture fraction as a major source of fluctuations

and relaxes the flamelet assumption of expressing the species concentration as a

function of Z. The species mass fractions exhibit relatively low variations about

the mean conditioned on the mixture fraction i.e. 〈φι|Z = η1〉. In the limit where

these fluctuations about the conditional mean become negligible, the chemical source

term in the Favre averaged species transport equation can be arguably re-written as

〈ωι(φ)|Z = η1〉 ' ωι(〈φ|Z = η1〉). Consequently models for the conditional means

terms combined with a presumed PDF in mixture fraction space are sufficient to

provide closure.

Scalar conditional averages are modelled at a single point and time and denoted by

Qι(η1) which corresponds to a conditioning of species mass fraction with respect to

the mixture fraction space variable η1, where

Qι(η1) = 〈φι|Z = η1〉 ≡ 〈φι|η1〉 (2.57)

and the conditional fluctuations, Q′′
ι , complete the description

φι = Qι(η1) +Q′′
ι . (2.58)

By applying conditional statistics in the context of high Reynolds number flows, Kli-

menko & Bilger (1999) obtain the following transport equation for the ιth singly-

conditioned species mass fraction,
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ρη
∂Qι

∂t
+ 〈ρu|η1〉 · ∇Qι = 〈ωι|η1〉 + ρη〈Dι∇Z · ∇Z|η1〉

∂2Qι

∂η2
1

+ eq,1 + ey,1, (2.59)

where

eq,1 =

〈
∇ · [ρDι∇Qι] + ρDι∇Z · ∇∂Qι

∂η1

+ ∇ · [ρ(Dι −D)∇Z]
∂Qι

∂η1

∣∣∣∣ η1

〉
, (2.60)

and

ey,1 = −
〈
ρ
∂Q′′

ι

∂t
+ ρu · ∇Q′′

ι − ∇ · [ρD∇Q′′
ι ]

∣∣∣∣ η1

〉
(2.61)

Here, Dι andD are the diffusivities of the ιth species and the mixture fraction, respec-

tively. Term ρη = 〈ρ|η1〉 denotes the conditionally averaged density, 〈Dι∇Z ·∇Z|η1〉

is the conditional scalar dissipation and 〈ωι|η1〉 is the conditional chemical source

term. There is a clear similarity between the flamelet equation (2.54) and the singly-

conditioned CMC equation (2.59), other than the convective terms in the latter.

Both equations essentially describe the reactive-diffusive balance at the reaction zone

of a non-premixed turbulent flame. However, the main difference between the two

models is that the CMC equation does not require approximations as all variables

are conditioned on mixture fraction, whereas the flamelet equations assume a very

thin reaction zone and near-stoichiometric composition for scalar dissipation. Most

of the terms in (2.59) are unclosed and require modelled approximations. A linear

model is commonly used to model the conditional velocity (Klimenko & Bilger, 1999;

Roomina & Bilger, 2001), and the singly-conditioned scalar dissipation rate is often
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modelled using amplitude mapping closure (Chen et al., 1989; Girimaji, 1992). A

simpler approach to approximate conditional dissipation by its unconditional mean

value is also employed, but is accurate only in Gaussian turbulence (Klimenko &

Bilger, 1999). Another closure strategy is to use a presumed form of the PDF and

integrate the conditional PDF transport equation (2.53) in η1-space.

Due to the reactive-diffusive structure of the non-premixed flames, the gradient of

chemical species mass fraction with respect to the mixture fraction or ∂Qι/∂η1, is

negligible compared to species diffusion in the mixture fraction space, i.e. ∂2Qι/∂η
2
1 ,

especially close to the stoichiometric composition. The same is not true of the diffu-

sion in physical space, i.e. 〈∇ · [ρD∇Qι]|η1〉, which is dominated by the convective

transport, 〈ρu|η1〉 ·∇Qι. Combining these observations with the lack of differential

diffusion effects implies that all constituents of the eq,1 term can be safely neglected

from (2.59) without seriously compromising the conditional species predictions. In

addition, first-order CMC also assumes negligible fluctuations around the singly-

conditioned mean, i.e. ey,1 = 0 and only uses the conditional averages in the compu-

tation of the reaction rate term. This has produced good results for a variety of non-

premixed flows, e.g. simple jet flames (Smith et al., 1993, 1995), lifted flames (De-

vaud & Bray, 2003), bluff-body flames (Kim et al., 2000, 2007; Navarro-Martinez

& Kronenburg, 2007), furnaces (Rogerson et al., 2005) and enclosure fires (Cleary

& Kent, 2005). However, singly-conditioned, first-order CMC is not capable of ac-

curately predicting species concentrations in the presence of local extinction and

re-ignition, due to large conditional fluctuations in such cases. Thus, either second-

order closure (modelling of conditional variance terms) or double-conditioning (on

mixture fraction and an additional variable) can be used to compensate for these

shortcomings.

Second order closures applied to the source term have been incorporated and ex-

amined by Kim and co-workers (Kim & Huh, 2002; Kim et al., 2002) and include
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equations for conditional variances and co-variances initially in the context of a

reduced chemical mechanism. This is due to the difficulty of its computational im-

plementation leaving an insufficient description of intermediate and minor species.

Recently, Kim et al. (2004) applied a detailed chemical mechanism to predict the

structure of a turbulent diffusion flame, comparing both first and second order clo-

sures. Kim et al. (2004) argued that higher order corrections do not influence major

species so much and higher order closures should only be applied to key intermedi-

ate and minor species reactions since they are shown to have a beneficial effect on

species such as CO and NO, leaving major species unchanged.

An alternative approach is to consider multiple conditioning variables to reduce

the conditional fluctuations (Bilger, 1992). Scalar dissipation was clearly the initial

choice as a direct consequence of its effect on scalar fluctuations. Studies by Cha and

coworkers (Cha et al., 2000, 2001) showed doubly-conditioned CMC as a better al-

ternative to the singly-conditioned first-order and second-order closure assumptions

for single-step chemistry. These studies followed the LFM approaches to propose

the idea of scalar dissipation rate as a second conditioning variable, which results in

good extinction modelling but predicts re-ignition too prematurely due to significant

fluctuations around the doubly-conditioned mean of the dissipation rate of N . It has

also been demonstrated (Kronenburg, 2004) that fluctuations of temperature from

the mean doubly-conditioned on Z and N are large and as a result the reaction-rate

closure becomes generally inaccurate. Instead, a more cogent argument has been

made for reduced temperature (Bilger, 1992) or, more recently, sensible enthalpy,

hs (Kronenburg, 2004; Kronenburg & Papoutsakis, 2005; Kronenburg & Kostka,

2005), as a physically and computationally more viable alternative to N in doubly-

conditioned moment closure. The exact form of the doubly-conditioned chemical

species transport equation, with mixture fraction and sensible enthalpy as the con-

ditioning variables has been derived by Kronenburg (2004) and for cases without
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differential diffusion it is given by,

〈ρ|η1, η2〉∂Qι

∂t
+ 〈ρu|η1, η2〉 · ∇Qι = 〈ωι|η1, η2〉 − 〈ωhs|η1, η2〉∂Qι

∂η2
+

〈ρDι∇Z · ∇Z|η1, η2〉∂2Qι

∂η2
1

+

2〈ρDι∇Z · ∇hs|η1, η2〉 ∂2Qι

∂η1∂η2
+

〈ρDι∇hs · ∇hs|η1, η2〉∂2Qι

∂η2
2

+ eq,2 + ey,2,

(2.62)

where the sample space for the sensible enthalpy variable, φ2 ≡ hs, is given by η2.

The Qι = 〈φι|η1, η2〉 term denotes the doubly conditioned mean in the composition-

enthalpy space and Q′′
ι represents the fluctuations around it. All terms of the type

〈Dι∇φi · ∇φj|η1, η2〉, where i, j = 1, 2, in (2.62) represent the unclosed doubly

conditioned dissipation variables. The expressions for eq,2 and ey,2 terms are simply

extensions of the singly-conditioned case.

eq,2 =
〈
∇ · [ρDι∇Qι] + ρDι∇Z · ∇∂Qι

∂η1
+ ρDι∇hs · ∇∂Qι

∂η2
+

∇ · [ρ(Dι −D)∇Z]∂Qι

∂η1
+ ∇ · [ρ(Dι − α)∇hs]

∂Qι

∂η2

∣∣∣ η1, η2

〉
,

(2.63)

and

ey,2 = −
〈
ρ
∂Q′′

ι

∂t
+ ρu · ∇Q′′

ι − ∇ · [ρD∇Q′′
ι ]

∣∣∣∣ η1, η2

〉
(2.64)

The double-conditioning introduces the new thermal diffusivity term, α, into the ex-

pression for eq,2. The primary closure hypothesis of setting ey,2 = 0 is very well justi-

fied for conditioning by two scalars. On the other hand, unless differential diffusion

effects predominate, closure of eq,2 = 0 follows the same order-of-magnitude reason-
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ing given for the singly-conditioned CMC terms. This relatively recent approach has

lead to some promising results (Kronenburg, 2004; Kronenburg & Papoutsakis, 2005)

for two- and four-step chemistry in homogeneous decaying turbulence. However, the

method faces a major shortcoming, viz. the lack of closure of the doubly-conditional

scalar dissipation (Kronenburg, 2004) terms and of the joint-PDFs of Z and hs. As-

suming β-function shapes for the PDFs of the conditional sensible enthalpy, 〈hs|Z〉,

has been shown to give partially acceptable results (Kim et al., 2002; Kronenburg &

Papoutsakis, 2005). However, computing the correct PDF shape requires the provi-

sion of the conditional enthalpy variance, 〈hs
′′2|Z〉, and that in turn suffers from the

deficient second-order closure modelling needed to solve the governing equations for

〈hs
′′2|Z〉 (Swaminathan & Bilger, 1999; Kim, 2002; Kim et al., 2002).

Overall, CMC has proven to be a successful method of modelling turbulent jet

flames. While doubly-conditioned CMC improves on the singly-conditioned CMC

predictions for extinction and (more importantly) re-ignition phenomena by mod-

elling the chemical source term accurately, it is limited by the lack of reliable closures

for the scalar dissipation terms. The application of mapping closures has recently

emerged in the context of turbulent non-premixed combustion. The mapping clo-

sure approach for passive scalar turbulence was initially discussed by Chen et al.

(1989) and Pope (1991). For stochastically advected passive scalars in homogeneous

turbulence, fluctuations are solved for by mapping the scalar distribution on to a

set of alternative reference variables with a presumed (joint-Gaussian) PDF. Mul-

tiple mapping conditioning (MMC) applied to turbulent reacting flows (Klimenko

& Pope, 2003) has ramified into deterministic MMC and probabilistic MMC, where

in the case of the former minor fluctuations are ignored and, in the latter, they are

treated with conventional stochastic mixing models. Major fluctuations are solved

by mapping them to a set of prescribed stochastic reference variables. The aim is to

provide an attractive compromise between CMC and joint PDF methods depending
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upon the number of major and minor species groupings that are chosen. A detailed

discussion on the MMC methods can be found in Chapter 5.

The next chapter presents the relevant details on the numerical, thermodynamic and

chemistry modelling implemented in the Pantano (2004) DNS. This DNS database

is primarily used for the post-processing of the scalar dissipation statistics and for

validating the combustion models implemented in the present study.



Chapter 3

Relevant attributes of the

simulation

The following sections describe the various key parameters and attributes of the Pan-

tano (2004) DNS. The physical setup of the three-dimensional turbulent jet flame

simulation is described first, followed by detailed introductions to the thermody-

namics and chemistry models used in the DNS. Finally, we explain the numerical

resolution and extinction/reignition characteristics of the DNS that are particularly

relevant to the present work.

3.1 Setup and Geometry

The present study makes use of the extensive database of a three-dimensional Di-

rect Numerical Simulation (DNS) of a spatially-evolving planar turbulent jet flame

by Pantano (2004). The simulation models the non-premixed combustion of methane

(fuel stream) with air (coflow) using a four-step reduced chemical mechanism (Pe-

ters, 1985). To enhance flame stability at the inflow and avoid flame lift-off or

110
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Figure 3.1: Schematic of the computational domain. The spanwise dimension L3,
not shown here, is orthogonal to the plane of the figure.

blow-out, a pilot is inserted between the jet core and the main co-flow. This pilot

is implemented numerically as a thin, burning coflow at stoichiometric composition

and with a high temperature, equal to the adiabatic flame temperature for the em-

ployed chemistry model. Moreover, the pilot streamwise velocity is slightly higher

than that of the main coflow to avoid recirculation. This technique has been used

by Wall et al. (2000) to stabilize round jet flames. The flame at these pilot condi-

tions burns below the quenching rate of scalar dissipation and remains attached to

the inflow of the domain.

The DNS solves the compressible Navier-Stokes equations Pantano et al. (2003)

for 8 scalar and 5 fluid-mechanical fields at a moderately low Mach number (i.e.

with negligible compressibility effects) on a large cuboidal computational grid of

(Nx = 1024)× (Ny = 512)× (Nz = 192) grid-points, where the x-, y- and z- Carte-

sian coordinate axes are aligned with the streamwise, cross-stream and spanwise

directions, respectively. Fig. 3.1 shows the schematic of the computational domain.

The domain size is L1 in the streamwise direction, L2 in the transverse/cross-stream

direction and L3 in the spanwise direction. The jet nozzle width is denoted by H
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and that of the pilot is denoted by h. The fuel-jet is composed of a mixture of

methane and nitrogen. The coflow is composed of air approximated as a mixture of

oxygen and nitrogen. Both, methane and oxygen, mass fractions are equal to 0.23.

The global chemistry step can be described by

CH4 + 2O2 → CO2 + 2H2O (3.1)

3.2 Thermodynamics

The attributes of the DNS are given in Table 3.1. Here, Uj is the efflux velocity of

the jet, ∆u = Uj − Uc is the velocity difference (at efflux) between the co-flow and

the jet, c1 and c2 are the respective speeds of acoustic propagation in the fuel- and

air- streams, ν0 is the kinematic viscosity of air at STP conditions and Φ is the fuel-

air equivalence ratio. The convective Mach number is denoted by Mc and defined

as in Bogdanoff (1983) and Papamoschou & Roshko (1988). The value of Mc (cf.

Table 3.1) is small enough so that compressibility effects are not important (Pantano

et al., 2003). The jet and coflow have the same density and the influence of density

variation is exclusively associated with heat release. The pressure across the air and

fuel streams is constant. This implies that the fuel-air temperature ratio is equal to

the average molecular weight ratio of the air in the coflow to that of the fuel in the

jet. Thus, the air temperature is 20% higher than the fuel temperature of 298K.

The latter value is maintained as the reference temperature level, To, corresponding

to the mixture density, ρo. Specific heats of the species in the ideal gas mixture

depend on temperature. The specific heats at constant pressure and enthalpy are

obtained from NASA polynomial fits (McBride et al., 1995). The values of these

parameters give an adiabatic flame temperature of Tadia = 2022K.
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Table 3.1: Geometrical specifications of the computational domain of the analyzed
DNS, including the general physical attributes of the simulated flow. The Taylor
Reynolds number, Reλ, is defined according to Pope (2000).

Geometrical attributes

Nozzle width H ∼ 2mm
Pilot width h 0.325H
Computational box dimensions (L1, L2, L3) (15H, 10H, 2.5H)

Physical attributes

Co-flow and Pilot velocities Uc, Up 0.029Uj, 0.29Uj

Convective Mach number Mc = ∆u/ (c1 + c2) 0.3
Damköhler number Da = HMoAo/ (∆uρo) 5000
Jet-exit Reynolds number Re = ∆uH/ν0 3000
centreline Taylor Reynolds nos. Reλ 38 to 58
Prandtl number for air Pr = ν/α 0.7
Stoichiometric mixture fraction Zs = 1/ (Φ + 1) 0.2

Unless specified otherwise, all variables in the DNS formulation and used henceforth

are non-dimensionalised with respect to reference length, mass, time, molar and

temperature units. The reference molecular weight is that of oxygen, O2, and is

denoted by Mo. The time-scale associated with the chemistry is determined in

terms of the characteristic reaction rate, Ao, given by (3.18). The units of length,

velocity, time, density, enthalpy and pressure are H, ∆u, to = H/∆u, ρo, CpOoTo and

ρo∆u
2, respectively. Here CpOo is the specific heat at constant pressure of oxygen

at To.

The DNS introduces certain simplifications in the molecular transport properties.

The viscosity µ is taken to be proportional to Tm, where T denotes the temperature

with the exponent m = 0.7. All scalars are assumed to have diffusion coefficients,

DI with similar temperature dependence,

ρDI =
Tm

RePrLeI
. (3.2)
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Here, ρ is the instantaneous, local density in the jet flow and Re = 3000 is the

jet-exit Reynolds number of the flow at the nozzle conditions. The constancy of

the Prandtl number is also imposed, and the value of Pr = 0.7 (for air) is used

throughout. The reference values of DI and the thermal diffusivity α at To are

obtained from Smooke & Giovangigli (1991). The values of the Lewis numbers,

LeI = α/DI , of the different species are specified in Table 3.2. The thermal effects

on species diffusivities are thereby taken into account in this simplified transport

model. For mixture fraction and sensible enthalpy as the scalars, DI = D = α and

LeI = 1 are used in (3.2).

The stoichiometric mixture fraction, Zs, is given by

Zs =
1

1 + Φ
. (3.3)

It should be noted that the value of the stoichiometric mixture fraction, Zs, in the

present DNS is four to eight times larger than that for pure hydrocarbon-air flames

due to the dilution of the hydrocarbon fuel with nitrogen. The non-dimensional

sensible enthalpy of the mixture can be directly computed from the temperature

values (non-dimensionalised by To) using the form for (2.16) as,

hs =

∫ T

1

CpdT, (3.4)

where Cp is the non-dimensionalised value of the specific heat at constant pressure

of the gaseous mixture and is related to the specific heats of individual species as in

(2.14). The specific heats of the individual chemical species, Cpι (T ), are expressed

as polynomial functions of the temperature with coefficients given by McBride et al.

(1995). For convenience, the non-dimensionalised value is further normalised with
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respect to the maximum sensible enthalpy at the adiabatic flame temperature, Tf =

Tadia/To, given by hsmax =
∫ Tf

1
CpdT . Thus, the normalised value of the sensible

enthalpy is given by

ĥs = hs/hsmax (3.5)

such that ĥs ∈ [0, 1] just like the [0, 1] bounded mixture fraction. In the present

study, the normalised value, ĥs, is used in lieu of the actual hs value for computation.

This, in turn, requires the sensible enthalpy gradient and chemical source terms be

scaled by a factor of 1/hsmax as well. Finally, the non-dimensional equation of state

for the gaseous mixture is given by,

ρT

M̄
=
prealMo

ρoRTo

(3.6)

where preal is the dimensional gas pressure within the mixture andR = 8.314Jmol−1K−1

is the universal gas constant for ideal gases. M̄ is the normalised average molecular

weight of the gaseous mixture and is given in terms of the species molecular weights

Mι as,

M̄ =

(
Mo

ns−nr∑

ι=1

φι

Mι

)−1

. (3.7)

Since the pressure fluctuations due to acoustic effects are negligible in the DNS

formulation and the density variation is exclusively associated with heat release,

the right-hand side of (3.6) can be computed at inlet conditions of standard air

temperature and pressure (i.e. preal = 1 atm and To = 298 K) to give a non-

dimensionalised value of ∼ 1.01. Therefore, the density is computed directly as
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Table 3.2: Constant Lewis numbers (Smooke & Giovangigli, 1991) of all the species
involved in the reduced four-step chemistry model employed for the Pantano (2004)
DNS.

Lewis numbers for the chemical species

CH4 O2 H2O CO2 CO H2 H N2

0.97 1.11 0.83 1.39 1.10 0.30 0.18 1.00

function of temperature and the species mass fractions in the present study.

3.3 Chemistry

In order to reduce the computational cost associated with full chemistry models,

the Pantano (2004) DNS uses a reduced mechanism of Peters (1985) for the com-

bustion of methane. This is a four-step mechanism, derived from a skeletal C-1

mechanism by systematic application of quasi-steady state and partial equilibrium

approximations and by truncating the resulting non-linear relationships between the

mass fractions of the species in quasi-steady state. This renders the algebraic ex-

pressions of the reaction rates explicit. The mechanism involves 8 species, namely,

CH4, O2, H2O, CO2, CO, H2, H and N2. Thus, seven transport equations with

non-zero reaction rates are solved along with the flow variables. The mass fraction

of N2 is obtained from the balance of all species and no transport equation is thus

required for this inert species. Therefore the inert mass fraction of N2 is

φN2
= 1 −

ns−nr∑

ι6=N2

φι (3.8)

where the index ι goes through all the other 7 chemical species and φι denotes the ιth

mass fraction. Peters (1985) reduced mechanism can be represented by the following

global reactions:
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CH4 + 2H + H2O = CO + 4H2 (I)

CO + H2O = CO2 + H2 (II)

H + H + G = H2 + G (III)

O2 + 3H2 = 2H + 2H2O (IV )

The reaction-rate expressions for the rates of production/consumption of the species

are provided as algebraic expressions of the concentrations and temperature as in Se-

shadri & Peters (1988). The non-dimensional reaction rates corresponding to the

global step-reactions above are,

WI = k11CCH4
CH, (3.9)

WII = k10
CH

CH2

(
CCOCH2O − CCO2

CH2

KII

)
, (3.10)

WIII = k5CO2
CHCG, (3.11)

WIV = k1CH

(
CO2

− C2
H

C2
H2O

C3
H2

KIV

)
. (3.12)

The non-dimensional concentration of the ιth chemical species, Cι, is defined by

Cι =
ρφιMo

Mι
(3.13)

,

and the third body concentration, CG, is defined as

CG =
ns−nr∑

ι=1

CιGι, (3.14)
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Table 3.3: Specific dimensional reaction rate parameters appearing in (3.15) for each
reaction sub-step in the reduced chemistry model employed for the Pantano (2004)
DNS. The values are taken from Seshadri & Peters (1988) and the units are in cm,
mole, Kelvin and kJ.

Reaction rate parameters

Reaction Ai βi Ei

k1 1.2 × 1017 −0.91 69.10
k5 2.0 × 1018 −0.8 0.0
k10 1.2656 × 107 1.5247 60.042
k11 2.2 × 104 3.0 36.6

with catalytic efficiencies GCH4 = GH2O = 6.5, GO2
= GN2

= 0.4, GCO2
= 1.5,

GCO = 0.75 and GH2
= GH = 1 as given by Smooke & Giovangigli (1991).

The mechanism given by (I)-(IV ) is a global representation of the chemistry and

should not be confused with the actual paths that the reaction takes. These are

not elementary reactions; their rates are expressed as algebraic functions of rates

appearing in the skeletal C-1 mechanism. The reaction-rate constants, ki
1, are given

in the customary Arrhenius form,

ki = AiT
βiexp

( −Ei

RTTo

)
, (3.15)

where Ai is the non-dimensionalised pre-exponential Arrhenius factor, Ei is the (di-

mensional) activation energy per unit mole for each reaction sub-step and T is the

non-dimensionalised temperature. The remaining constants, KII and KIV in (re-

spectively) (3.10) and (3.12) are determined according to the following expressions:

KII = 0.0039512 T 0.8139 exp

(
16.6247

T

)
, (3.16)

1where i = 1, 5, 10, 11
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Table 3.4: The reaction rate coefficients of all the chemical species for the reduced
chemistry mechanism employed in the Pantano (2004) DNS. The coefficients are
used to compute the rate of production of the ιth chemical species using (3.19), in
terms of the rates for the individual reaction sub-steps given by (3.9)-(3.12).

Species reaction rate coefficients

Chemical species CH4 O2 H2O CO2 CO H2 H
cI −1 0 −1 0 1 4 −2
cII 0 0 −1 1 −1 1 0
cIII 0 0 0 0 0 1 −2
cIV 0 −1 2 0 0 −3 2

KIV = 2.7405 T−0.2484 exp

(
19.262

T

)
. (3.17)

The values of the parameters appearing in (3.15) are obtained by non-dimensionalizing

the dimensional rate constants reported in Table 3.3 by the largest of the rates at

To, in this case, that of reaction k5. This characteristic dimensional reaction rate

(units of moles per unit volume and time) is given by

Ao = A5T
β5

o exp

(−E5

RTo

)
·
(
ρo

Mo

)3

(3.18)

Finally, the rates of production of each ιth chemical species can be defined in terms

of the rates of the individual reaction sub-steps (I)-(IV ) using,

ωι = Da
Mι

Mo
(cIWI + cIIWII + cIIIWIII + cIV WIV ) , (3.19)

where cI-cIV are the species-specific coefficients of the reaction rate model in (3.19)

and their values are laid out in Table 3.4. The species reaction rate ωι is scaled by the

constant Damköhler number specified in Table 3.1. A common difficulty encountered
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in the implementation of reduced mechanisms is the presence of algebraic terms in

the denominator of the reaction rate expressions. When the denominator goes to

zero, the reaction rate becomes infinitely large. In this case, the presence of the

concentration of H2 in the denominator of (3.10) and (3.12) leads to this undesired

behaviour. In regions where there is no H2, these expressions diverge to infinity and

an appropriate regularization must be applied for numerical purposes. As suggested

by Peters (1991), a common regularization is to add a small constant, eo, to the

denominator of (3.10) and (3.12) so that 1/CH2
becomes 1/(CH2

+ eo), in order to

avoid the singularity. Pantano (2004) found that this regularization was sufficient

for a one-dimensional flamelet test calculation but not in the full flame DNS, where

shifting the hydrogen concentration by eo was not satisfactory at all points of the

computational domain. Compact regions with aphysically high values of the reaction

rates were still prevalent far away from the flame. Keeping this in mind, the algebraic

singularity in hydrogen concentration in the reduced chemistry model employed in

the DNS has been regularised with,

1

CH2

→





0, 0 6 CH2
< eo,

tanh
(

CH2
−eo

eo

)
1

3eo
, eo 6 CH2

< 3eo,

1
CH2

, 3eo 6 CH2
.

(3.20)

The same regularisation scheme for the H2 concentration has been used in the present

work while encoding the chemistry model for the CMC/MMC calculations described

in Chapter 5. The value of eo was chosen to be approximately equal to 1% of the

maximum concentration of H2 in the simulation, viz. eo ' 1.6 × 105. These choices

allow a very smooth transition of the reaction rates from the flame region to the

regions where CH2
is zero.
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3.4 Resolution and numerical characteristcs

This DNS uses a compact Padé scheme with sixth-order accuracy for the computa-

tion of the spatial derivatives (Lele, 1992). The scheme provides an improved reso-

lution of the finer length scales without numerical dissipation. It is noted that the

grid-discretisation employed in the DNS is fine enough to capture the instantaneous

χ-distribution. This can be deduced from the distribution of the grid-normalised

dissipation length scales that are shown in Fig. 4.16 in Sec. 4.4. This highly-resolved

DNS models the jet flow close to the nozzle, a region important for flame stabili-

sation. The near-nozzle region of jet flames has remained virtually unstudied with

respect to the scaling laws for the estimation of the smallest turbulence scales, but a

better understanding of the spatial-resolution requirements for scalar dissipation in

the stabilization region of the turbulent jet flame are as important as the well-studied

self-similar regions further downstream.

The fuel consumption layer of the methane-air mechanism has been well resolved

in the DNS in order to avoid numerical extinction (Seshadri & Peters, 1988) of the

flame owing to the lack of resolution. A resolution of approximately 10 points across

the fuel consumption layer was used for the DNS. The simulated turbulent jet flame

is partially extinguished, predominantly at the centre of the domain, i.e. around

x = 7.5H. In this region, the large-scale organised vortices shed from the shear

layers have sufficient strength (large rate-of-strain) to extinguish the flame. Pantano

(2004) uses the hydrogen radical field in the methane-air chemistry model to analyse

of the topological structure of the flame reaction zone. Fig. 3.2 gives a good qualita-

tive idea of the flame extinction/re-ignition characteristics in terms of the rendered

instantaneous contours of the hydrogen radical mass fraction in three-dimensions.

The extinguished regions are clearly visible in the centre of the domain as gaps in

the hydrogen radical mass fraction, whereas the continuity of the surface close to
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Figure 3.2: Three-dimensional rendering of the hydrogen radical mass fraction at
an instant in time, reproduced from Pantano (2004). The axis orientations are as
indicated next to each view.

the nozzle indicates a steadily burning pilot. Much of this continuity is regained far

downstream as well, which signifies flame re-ignition.

The next chapter describes the application of the spectral analysis, level-set method

and spatial-filtering techniques to the Pantano (2004) DNS data, in order to quantify

the small-scale statistics of the instantaneous scalar dissipation rate field.



Chapter 4

Scalar dissipation scaling

The main motivation of the present study is to analyse the one-point statistics of

instantaneous scalar dissipation using the computational methods categorised in

Sec. 2.2.2 and to characterise the spatial length scales associated with dissipation in

terms of easily measurable large-scale properties of the flow such as the outer-scale

turbulent Reynolds number. The following sections outline a detailed description

of the aforesaid approaches and the limitations involved in their implementation to

the DNS database. The discussion of (and comparison between) the results from

the different numerical methods is also detailed in the coming sections.

4.1 Spectral analysis

4.1.1 Cross-stream scalar dissipation spectra

The spectral theory of the turbulent velocity field has a direct analogy in turbu-

lent scalar fields (Batchelor, 1959; Tennekes & Lumley, 1974). For sufficiently high

Reynolds numbers and Schmidt numbers close to unity the form of the scalar spectra

123
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is similar to that of the velocity spectra.

In the present study, the one-dimensional scalar spectra, EZ(ky), at wavenumber ky

is computed as the one-dimensional Fourier transform of the two-point cross-stream

correlation, that is equivalent to the power spectrum of scalar fluctuations (Tennekes

& Lumley, 1974; Pope, 2000) at various downstream locations. The two-point cross-

stream correlation coefficient at any point (xc, yc) along the jet centreline is defined

as,

RZ(xc, yc, r) = 〈Z ′(xc, yc, z, t) · Z ′(xc, yc + r, z, t)〉, (4.1)

where r is the cross-stream distance and subscript c indicates jet centreline values.

According to Pantano (2004), the average value is computed as a simultaneous mean

in temporal (t-) and spanwise (z-) directions

〈ϑ〉(x, y) =
1

NTNz
·

NT∑

n=1

Nz∑

k=1

ϑ(x, y, z, t), (4.2)

where NT is the number of time steps and Nz is the number of spanwise planes

over which the average of an arbitrary turbulent field ϑ(x, y, z, t) is computed. This

is because the turbulent flow field at every time step and z = constant spanwise

section is considered as an independent realisation. Therefore, (4.2) represents the

ensemble averaging of an arbitrary turbulent quantity ϑ. However, it should be noted

that the true number of independent samples available to compute the averages at

each (x, y) location will be over an order-of-magnitude less than NT × Nz, due to

some spatial correlation in the turbulent quantities across the spanwise coordinate.

Fig. 4.1 shows the plots of the normalised correlation coefficient,
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Figure 4.1: Variation of the normalised correlation coefficient CZ(xc, yc, r) with the
cross-stream position vector r, at various downstream locations along the jet cen-
treline (yc/H = 5.0). All spatial quantities are shown in terms of jet-width, H. The
one-dimensional dissipation spectra corresponding to the shown correlation coeffi-
cients are plotted in Fig. 4.3.

CZ(xc, yc, r) =
RZ(xc, yc, r)

[
〈Z ′(xc, yc)

2〉·〈Z ′(xc, yc + r)2〉
]1/2

, (4.3)

at various downstream locations along the jet centreline. Owing to the complex

unstable nature of the studied flow and small-size of the computational domain

(x/H ≤ 15), the number of independent realisations is not enough to get RZ

profiles symmetric about the jet centreline. Therefore, isotropy about the centre-

plane is not assumed while computing the correlation coefficients, i.e. in general

RZ(xc, yc, r)6=RZ(xc, yc,−r).

The one-dimensional spectrum is defined as

EZ(ky) =
1

4π

∫ ∞

−∞

exp (−ıkyr)RZ(r)dr, (4.4)
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or equivalently by

RZ(r) = 2

∫ ∞

−∞

exp (ıkyr)EZ(ky)dky, (4.5)

where the dependence on xc and yc has been dropped for clarity. For homogeneous

flow it is possible to relate EZ(ky), using Parseval’s identity, to the dissipation

spectrum, giving

DZ(ky) = 2Dk2
yEZ(ky), (4.6)

where the variation of the molecular diffusion coefficient, D, in the cross-stream

direction due to changes in temperature has been neglected. The choice of locations

for the spectral analysis is quite limited by the evolving nature of the simulated

turbulent jet, where large portions of the upstream flow domain on either side of

the jet are quasi-laminar (Pantano, 2004). Therefore, scalar correlations in such

regions are of little interest. Owing to these constraints, the region along the centre

of the evolving turbulent jet was chosen for the spectral analysis, where the local

turbulent Reynolds number values are high enough for the existence of a ’universal’

dissipation range (cf. Sec. 4.1.2 and Sec. 4.1.3).

It is recognised that the one-dimensional cross-stream spectra do not account for

the streamwise and spanwise contributions of mixture fraction gradients to the total

scalar dissipation. However, determination of the absolute values of scalar dissipa-

tion is not of primary concern here since the length scales will be determined by the

largest gradients, some of which will be aligned with the cross-stream direction. In

planar-jet turbulent flow (with purely streamwise forcing of the jet) the thin shear

layers and, therefore, the thin and elongated scalar dissipation structures are pre-
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dominantly orthogonal to the cross-stream direction in the near-nozzle region. Thus,

the cross-stream scalar spectra are able to capture the average scales (or the average

thicknesses of these structures) at which scalar fluctuations are dissipated for this

flow. In addition, the grid resolution is finest in this direction, enabling the com-

putation of EZ(ky) at the highest possible wavenumbers. The reader should note,

however, that the dissipation field becomes nearly isotropic far downstream (Buch

& Dahm, 1998; Su & Clemens, 2003) and one-dimensional cross-stream spectra may

not capture the smallest scales there.

It remains to say that the character of the simulated jet flame implies that a sizeable

number of data-points in the quasi-laminar region outside the separation surfaces

of the jet will not be relevant for the computation of the dissipation length-scales.

An estimate of the region that contributes significantly to the data-processing al-

gorithms can be based on the normalised correlation coefficient, CZ, introduced

earlier. The regions, where |CZ(xc, yc, r)| remains monotonically less than 1% of

its centreline value of unity, correspond to quasi-laminar regions. Here the flow is

largely uncorrelated with the turbulence within the jet and therefore does not affect

the dissipation of scalar fluctuations. Based on this measure, about 75% of all data

points contribute to the computation of the dissipation length scales. However, none

of the methods described in the present study explicitly discards the quasi-laminar

region of the computational domain for post-processing.

4.1.2 Batchelor length-scale computation

The ’universal’ dissipation subrange of the standard, non-reactive, spectral theory of

turbulence is defined as the region in wavenumber space beyond the diffusive roll-off

limit. In terms of the non-dimensionalised wavenumber, k∗, which is computed by

multiplying the wavenumber with the Kolmogorov- or Batchelor-scale, this subrange
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starts at k∗ ' 0.1 (Pope, 2000).

Figure 4.2: Experimental data showing the dissipation range collapse of suitably
normalised one-dimensional turbulent energy spectra for a variety of turbulent flow
cases at Taylor Reynolds numbers in the range of 23 to 3180. The plot has been re-
produced from Saddoughi & Veeravalli (1994). Quantities on the y-axis, viz. ε̃, ν and
E11 denote the Favre-averaged dissipation rate, coefficient of viscosity and energy
content of the turbulent fluctuations in a single velocity component, respectively.
The corresponding non-dimensionalised wavenumber, k∗, is on the horizontal/x-
axis.

Fig. 4.2 shows a comparison of various experimental results reported by Saddoughi

& Veeravalli (1994), where the scaled one-dimensional spectra collapse on to a single

curve at k∗ > 0.1 for Taylor Reynolds numbers between 23 and 3180. In other words,

they show a ’universal’ dissipation range scaling. Furthermore, it is observed that
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the scaled one-dimensional dissipation spectrum (Pope, 2000) peaks at k∗ ' 0.26.

Since the peak-value occurs at k∗ > 0.1, it can be used to define a spectral estimate of

the Kolmogorov or Batchelor length-scale for the aforesaid range of Taylor Reynolds

numbers. In the case of the scalar field, an analogy can be used to define a spectral

scalar dissipation scale, according to

ηZs =
[k∗]peak

kpeak
' 0.26

kpeak
, (4.7)

where ky = kpeak is the wavenumber of the peak in the computed cross-stream

dissipation spectra. It can be shown that the area up to the k∗ = 1.0 cut-off under

the aforesaid one-dimensional dissipation spectrum contributes around 98% to the

total mean dissipation. Recent high-resolution experiments (Wang et al., 2007a,b)

use a similar technique to arrive at the estimates of the Batchelor scale for axial

jet-flames at locations ≥ 40 nozzle-diameters downstream. The value of the model

spectrum of Pope (2000) at k∗ = 1.0 corresponds to 7.3% of the peak dissipation

level. Thus, the inverse of the wavenumber where the dissipation spectrum reaches

7.3% of its peak value is taken as the Batchelor scale estimate. This wavenumber is

denoted k7.3% and the corresponding Batchelor scale estimate is given by

ηZs '
1

k7.3%

. (4.8)

Wang et al. (2007a,b) use a somewhat more stringent estimate based on the wavenum-

ber where the spectrum reaches 2% of its peak value.

Fig. 4.3 shows the computed non-dimensional scalar dissipation spectra. On scaling

the wavenumber range for the dissipation spectra with ηZs obtained from (4.8), it

is evident that the numerical cut-off limit in the spectra does not set in until well
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Figure 4.3: Scalar dissipation spectra in logarithmic coordinates at various down-
stream locations. The horizontal axis denotes the non-dimensional wavenumber
ky · ηZs and the vertical axis denotes the normalised scalar dissipation spectra,

D∗
Z = DZ(ky)/(〈D〉〈χy〉〈ε〉−1/3ηZs

−1/3). The spectra were initially computed for
512 closely spaced values of ky and averaged into 30 ’bins’ in the wavenumber space.

beyond the Batchelor scale (i.e. at ky · ηZs ' 2.3). As expected, the peaks for the

non-dimensionalised spectra occur at ky ·ηZs ' 0.26, with a slight shift to lower wave

numbers for xc < 5H. The vertical line indicates the approximate non-dimensional

wavenumber limit (around ky ·ηZs = 2.3) beyond which no more meaningful spectral

response is obtained from the database. For wavenumbers beyond this limit, the

turbulence energy spectrum becomes flat and represents a ’noise floor’ (Wang et al.,

2007a). This in turn corresponds to an increase, proportional to ky
2 (cf. Sec. 4.1.1),

evidenced in the dissipation spectra beyond this limit.

The one-dimensional dissipation spectra computed above can be used to extract

information regarding the average downstream evolution of the cross-stream scalar

dissipation, which in turn provides estimates for the Batchelor length scales at the

respective downstream locations. Analogous to the definition of viscous dissipation

in wavenumber-space, the average scalar dissipation at any downstream centreline

location can be recovered from the integral of the one-dimensional dissipation spec-
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Figure 4.4: Comparison of the downstream evolutions (along the jet centre-plane) of
the averaged scalar dissipation rates: calculated from cross-stream scalar-gradients,
〈χy〉, and recovered from one-dimensional dissipation spectra, 〈χy〉s.

trum at that location (Tennekes & Lumley, 1974; Pope, 2000; Mathieu & Scott,

2000). The spectral estimate (denoted by the subscript s) of the average scalar

dissipation rate is, therefore, given by

〈χy〉s = 2

∫ ∞

0

DZ(ky) dky, (4.9)

where DZ is defined in Sec. 4.1.1. The above identity is consistent with the factor

of 2 used in (2.37). It must be noted that the spectral estimate of the average scalar

dissipation rate corresponds only to the dominant cross-stream component of 〈χy〉

given by the spatial-gradient along the y-coordinate only, i.e. 〈χy〉 = 〈2D (∂Z/∂y)2〉.

As expected, there is good agreement between the jet-centreline averaged scalar dis-

sipation rate from spatial and spectral calculations, as functions of the downstream

coordinate, in Fig. 4.4.
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4.1.3 Reynolds number scaling

For the studied flow-configuration, the outer-scale Reynolds number, Reδ, is defined

as:

Reδ =
δ0.5u

′

ν
, (4.10)

where δ0.5 is the outer-scale of the flow, proportional to the integral-scale of turbu-

lence and computed as the jet half-width, i.e. the distance between the points where

the average jet velocity falls to half its centreline value. Here, u′ is the representative

value of the turbulent velocity fluctuations and ν is the local kinematic viscosity.

This parameter is used throughout the thesis to parameterise the dependence of

the dissipation length scales on Reynolds number, as is customary in turbulence

theory. Depending on the method of computation of the (instantaneous or mean)

scalar dissipation length-scales (cf. Sec. 2.2.1), the u′ value at any location will be

taken as the instantaneous value or as the root-mean-square of the local distribution,

respectively.

The non-reacting experimental data in Saddoughi & Veeravalli (1994) show that the

departure from the universal behaviour at low Reynolds numbers mainly arises in the

energy containing range (roughly k∗ > 0.003), while the inertial-subrange (roughly

0.003 < k∗ < 0.1) is diminished. However, as described earlier in Sec. 4.1.2, the

whole range of Reynolds numbers exhibits a ’universal’ dissipation-range scaling

at k∗ > 0.1 (Nelkin, 1994; Pope, 2000) and shows excellent agreement with the

non-dimensional spectrum.

A numerical simulation of isotropic turbulence by She et al. (1993) showed that the

scaled spectra fall onto a universal curve at k∗ ≥ 0.03 for Taylor Reynolds numbers

in the range of 15 ≤ Reλ ≤ 200. In addition, the DNS study of turbulent scalar



4.1. Spectral analysis 133

mixing by Yeung et al. (2004) shows that Kolmogorov’s first hypothesis regarding

the dissipation range of the energy spectrum and, thus, its scaling given by (2.38)

holds at Taylor Reynolds numbers between 8 and 38. The same scaling is obtained

by Kushnir et al. (2006b) for dissipation ’filament’ thicknesses when Taylor-scale

Reynolds numbers equal 10 and 24. Hence, for our present case where Reλ varies

from around 20 to 67 throughout the computational domain (and from 38 to 58

along the centreline), it is expected that the spatial scales in the dissipation range

still possess the ’universal’ behaviour associated with Kolmogorov’s first hypothesis

despite the diminished inertial subrange at such low-to-moderate Reynolds numbers.

Conventionally, the finest mixing length scale is associated with the local turbulent

Reynolds number, Reδ, and Schmidt number via the relationship

ηZ

δ0.5

= Λ0Sc
− 3

4Reδ
− 3

4 , (4.11)

where Λ0 is the proportionality constant or the scaling coefficient. This relationship

is based on dimensional arguments and it must be noted that the Reδ-scaling in

the above definition follows from Kolmogorov’s first hypothesis, which holds (as

remarked above) at the Reynolds numbers that can be found in the present DNS.

The Batchelor scale definition in Pitts et al. (1999) assumes the left-hand-side in the

above equation, i.e. ηZ/δ0.5, to be of the same order-of-magnitude as Sc−3/4Reδ
−3/4

implying that Λ0 ' 1. It should also be noted here that other experimental

studies (Buch & Dahm, 1998; Su & Clemens, 2003) give values of Λ0 in the range

of 5 to 11 for the far-downstream self-similar regions of the jet.

To confirm the Reδ-scaling of (4.11) for the present study, the ηZ term is substituted

by its spectral estimate ηZs from (4.7) and (4.8) along the jet centreline. The

resulting values of the scaling coefficient, Λ0, are then plotted as functions of the
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Figure 4.5: Downstream variation of Λ0 values from (4.11). Computed by replacing
ηZ with its spectrally recovered value ηZs from (4.7) and (4.8).

downstream positions in Fig. 4.5. The values computed using (4.7) slightly oscillate

around a constant mean value of Λ0 ' 0.7, except in the near inflow region (xc < 5H)

of the developing jet-flow, where cross-stream inhomogeneities are quite severe and

the statistics of the velocity field are poorly reflected in those of Z. The Λ0 values

from (4.8) show a similar downstream evolution, however, with appreciably less

fluctuations and remain around 0.5 for locations xc ≥ 5H.

In the region upstream of xc = 5H, the jet-core has not broken up yet and there is

a low amount of scalar mixing along the centreline. Consistently, the small scalar

dissipation rate (i.e. the dissipation spectrum being confined to a relatively small

range of wavenumbers) results in an over-estimation of the Batchelor scale from (4.7)

and (4.8). This seems to be in agreement with the results from the DNS by She et al.

(1993), where the computed kpeak wavenumber was found to be slightly smaller (at

lower Reynolds numbers) than what the proportionality to 1/ηZ would imply. In

other words, the Kolmogorov scale based on 0.26/kpeak is somewhat over-estimated

when Taylor Reynolds numbers are low. However, the roughly constant values of Λ0

seen for most of the downstream section (≥ 5H) in Fig. 4.5, corroborate that the
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spectrally computed estimates using (4.8) are representative of the Batchelor length

scales in the flow.

4.2 Direct computation of scalar dissipation struc-

tures

A measurement method that is similar in spirit to the experimental technique de-

scribed in Su (1998) and Su & Clemens (2003) has been utilised. Thin, sheet-like

three-dimensional regions aligned with the regions of high shear within the computa-

tional domain are directly investigated, where most of the scalar dissipation process

remains concentrated (Buch & Dahm, 1998; Tsurikov & Clemens, 2002). More re-

cently, notable numerical studies of the small-scale topological structure of the tur-

bulent scalar/dissipation field have been done by Wang & Peters (2006) and Kushnir

et al. (2006b). In the former study, the approach has been to identify the regions,

termed as ’dissipation elements’, of monotonic increase (or decrease) of the fluctu-

ating scalar concentration. Analysis of these ’dissipation elements’ also confirms a

high probability of alignment between scalar gradients and the most compressive

rate of strain, as found in the shear-layers of the turbulent jet flow. The latter

study by Kushnir et al. (2006b) analyses the topology of the two-dimensional scalar

dissipation rate field using a sophisticated numerical algorithm described in Kushnir

et al. (2006a). For all points on the two-dimensional field belonging to the regions

delineated by a threshold value of the dissipation level-set, the algorithm computes

a so-called ’proximity graph’, which is updated on successive coarse-graining and

can be used to quantify statistical properties like the density and convexity of the

points at each level of resolution. Finally, a principal component analysis is carried

out on these dissipation ’filaments’ or ’sub-filaments’ identified on the basis of the
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aforementioned statistical properties. The filament thickness is thus characterised

by the eigenvalue of the eigenvector orthogonal to the direction of orientation of the

filament.

4.2.1 Algorithm

An algorithm previously used by Buch & Dahm (1998) and Su & Clemens (2003)

for the computation of the two-dimensional (planar) dissipation layer thicknesses

with a correction for their three-dimensional orientation has been employed in the

present study. The dissipation layers are identified as the contours or level-sets

at fixed values of χ within the instantaneous χ(x, y) field. The fixed values are

chosen as a fraction, βm, of the local maxima in their neighbourhood (x, y) locations.

The local thickness of a dissipation layer, λ2d, at a given value of βm quantifies

the instantaneous two-dimensional dissipation length-scale. This two-dimensional

dissipation length-scale estimate is then corrected by using the three-dimensional

orientation of the scalar gradient vector in terms of the out-of-plane angle, %, to

give the three-dimensional length-scale estimate, λ3d. The algorithm and all the

parameters involved are described in more detail as follows.

The algorithm used for identifying the dissipation layers and computing their lo-

cal thicknesses is shown schematically in Fig. 4.6. It essentially deals with a two-

dimensional dissipation field in the x − y plane. First, the global maximum of the

scalar dissipation, χmax, at a specific plane is determined. Second, all structures,

where χ < 0.5χmax, are discarded to isolate the regions of strongest dissipative be-

haviour. A parameter βm ≡ χ/χloc is introduced, which represents the fraction

of the local maximum, χloc, at any point in the scalar dissipation field. The βm

parameter demarcates the local spiky topology of the dissipation field for our inves-

tigation and values between 50% and 90% are chosen for it. Finally, level-sets or
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Figure 4.6: Schematic representation of the numerical method employed to investi-
gate the instantaneous scalar dissipation structures in the three-dimensional com-
putational domain and to compute their thicknesses. Symbols next to the contours
indicate the constant values of χ used to compute the range of contours at a fixed
fraction, βm, of the local peak-values that vary from the global maximum of the
planar χ-field, or χmax, to χmax/2.

iso-contours of the remaining structures at the iso-level of βmχloc are determined.

It was observed that for the present DNS test-case, scalar dissipation contours at

values less than βm = 0.5 tend to intersect and thus do not correspond to extreme

and isolated dissipative events. This may be an effect of the relatively low Reynolds

number range in the present DNS, as previous experimental studies of dissipation

layers at high Reynolds numbers (Buch & Dahm, 1998) do not show this tendency

at comparable values of βm. However, only the finest scales of the scalar dissipation

are of specific interest here and therefore, contours at values below χ/χloc = 0.5

are not of direct interest in the present study. On the other hand, the reasoning

behind the choice of βm no larger than 0.9 is purely computational. There are too

few occurrences for βm > 0.9 to obtain reasonably accurate statistics.

Once the two-dimensional dissipation layers depicted in Fig. 4.6 have been iden-

tified, each with its point-to-point connectivity, the algorithm processes the data

to compute the median by recognising the elongated topology of the structure and
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Figure 4.7: PDF of the out-of-plane angle % of the scalar-gradient vector for a single
computational time-step at different βm values. The % values have been computed
at all dissipation-layer mid-points, for each βm value, at a single computational
time-step.

its corresponding corners. For each point on the contour, the nearest point that is

not on its branch between the corners is taken as the fellow-point on the opposite

branch. In order to remove computational noise, two points and two corresponding

fellow-points are bunched and averaged to get a layer mid-point. The line joining

these mid-points makes the median for each dissipation layer. Finally, the thickness

attributed to each point on the median is computed by calculating the length of the

segment orthogonal to the median at that point, whose end-points manage to be on

or just inside the layer boundary in either direction. The measured two-dimensional

layer thickness, λ2d, at each layer mid-point, is corrected for three-dimensional ori-

entation by the cosine of the out-of-plane angle of the ∇Z vector (Su & Clemens,

2003), to give

λ3d = λ2d · cos%. (4.12)

This projection becomes less reliable as the dissipation layers align less orthogonally
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with the plane (x−y) of the flame, i.e. as % increases, owing to increasingly significant

layer-curvature effects. In similar experimental studies by Su & Clemens (2003), the

authors do not consider χ-level sets for which % > 60◦. However, the PDFs of the

out-of-plane angle in Fig. 4.7 measured at all locations for different values of βm

show an extremely high preponderance (around 97%) of % ≤ 60◦, which makes the

correction largely reliable.

It is worth noting that the present algorithm introduces some simplifications in the

computations of the dissipation layer thicknesses and it differs from the algorithm

used by Buch & Dahm (1998) and Su & Clemens (2003) in two aspects. Firstly, the

two-dimensional neighbourhood regions that define the dissipative structures may

include more than one local maximum of χ for very low values of βm. As a result,

these regions would appear longer (more elongated) than the dissipation regions

identified by Buch & Dahm (1998). Secondly, variation in the ”local layer-normal

dissipation maximum” (see Buch & Dahm (1998) for its definition) is unaccounted

for along the dissipation layer and this leads to thinner structures than reported

in Buch & Dahm (1998). However, due to our choice of relatively high values for

βm above, the neighbourhood regions tend to isolate the local maxima and the

computed dissipation layer thicknesses will be similar for the two algorithms. In

other words, the differences between the dissipation layer thicknesses reported from

both algorithms will decrease with increasing βm.

Fig. 4.8(a) shows the distribution of the corrected scalar dissipation layer thick-

nesses, λ3d, normalised by the local grid-discretisation, ∆3d = (∆x∆y∆z)
1/3, in the

computational domain. The effective three-dimensional grid-spacing is denoted by

∆3d, where ∆x, ∆y and ∆z are the variable grid-discretisations in the respective

coordinate directions. The detection of values smaller than the minimum grid spac-

ing limit can be primarily associated with locations where the out-of-plane angle %

tends to 90◦. This phenomenon is also amplified by the interpolation between grid
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Figure 4.8: On the left, PDFs of the logarithm of the corrected (three-
dimensional) scalar dissipation layer thicknesses are normalised with the effec-
tive grid-discretisation ∆3d for βm = 0.5, 0.75 and 0.9. The negative values for
ln (λ3d/∆3d) are numerical artefacts due to the thicknesses computed at the very
few locations where %→90◦. On the right, PDFs of λ3d are normalised by the dissi-
pation length-scale ηZ from (4.11) with a unity scaling coefficient.

points near the corners of the dissipation layers when computing the iso-contours.

However, owing to the very small number of such occurrences (cf. Fig. 4.7), their

effect on the analysis is negligible.

In Fig. 4.8(b), the PDFs of the dissipation-layer thicknesses normalised by the mag-

nitude of the local dissipation scale, ηZ, show a negative skews at all values of βm.

In other words, dissipation length-scales smaller than the most frequently-occurring

scale (given by the peak of each PDF) are more likely to occur than those larger

than the most frequently-occurring scale. This is in agreement with the results

in Kushnir et al. (2006b), where a similar negative skew is observed in the nor-

malised dissipation ’filament’ thicknesses. In addition, Fig. 4.8(b) shows that the

formation of dissipative structures with thicknesses of the order of ηZ is conditional

on the chosen value of βm. However, this dependence on βm or any equivalent mea-

sure of spatial-resolution is not apparent in the analysis by Kushnir et al. (2006b).

A majority of their computed dissipation ’filaments’ are reported to be thicker than

ηZ , an observation limited to lower βm values in the present analysis.
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A somewhat different analysis was employed by Schumacher et al. (2005). They

used scalar-increments over the viscous-convective range between the Kolmogorov

and Batchelor scales (for Sc > 1) that yielded a dissipation scale estimate slightly

greater than ηZ. However, unlike Kushnir et al. (2006b), the actual distribution

of dissipation length-scales is not captured in this analysis and this approach is

therefore not used here.

4.2.2 Reδ-scaling of dissipation layer thicknesses

In this section, a local Reynolds number definition has been used, where u′ rep-

resents the local velocity fluctuation. This is necessary in order to account for

the fluctuating nature of λ3d and the necessity to relate instantaneous scales with

Reynolds numbers based on instantaneous or local quantities. This is opposed to the

analysis in Sec. 4.1.3 where a quantity computed from two-point correlations such

as the dissipation spectrum requires Reynolds numbers based on averaged quanti-

ties such as the RMS Fig. 4.9 shows the scalar dissipation thickness as a function

of Reynolds number. The whole range of Reδ values is grouped into 60 bins and

is plotted against the bin-average of λ3d/
(
δ0.5Sc

−1/2
)

in log-log coordinates. The

least-squares fits for several values of βm show a negative slope that approximates

the value −0.75. This is consistent with a Kolmogorov type or Reδ
−3/4 scaling that

is independent of βm and the findings are in agreement with the experimental and

numerical results of Buch & Dahm (1998), Su & Clemens (2003) and Kushnir et al.

(2006b).

It is important to note that the amount of data samples for the dissipation layer

thicknesses, i.e. the number of spatial locations within the computational domain

where the thicknesses have been computed, decreases with increasing βm as resolu-

tion constraints increase. For example, the sample size for βm = 0.5, 0.75 and 0.9 is
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Figure 4.9: Observed Reδ
−0.75 scaling dependence for the corrected dissipation layer

thicknesses, λ3d in log-log coordinates. Data corresponding to a single computational
time-step is shown at βm = 0.5, 0.75 and 0.9.

around 40, 000, 30, 000 and 9, 000 points, respectively. The data variability around

the least-square fits in Fig. 4.9 is caused due to the discontinuous distribution of the

dissipation layers along the streamwise direction at the βm values chosen. Since the

outer-scale Reynolds number is strongly correlated with the downstream evolution

of the jet flow, this data variability is reflected in the means conditioned on Reδ.

Thus, as higher βm values correspond to thinner and shorter layers, the variation

increases with βm.

4.2.3 Variation of scaling coefficient with βm

Assuming the existence of a Reδ
−3/4 scaling of the dissipation layer thicknesses as

evidenced in Fig. 4.9, the current formulation for λ3d can be assumed to scale (similar

to (4.11)) as

λ3d = Λ3dδ0.5Sc
− 3

4Reδ
− 3

4 , (4.13)
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where Λ3d is the scaling coefficient for the dissipation length scales, when expressed

in terms of corrected three-dimensional scalar dissipation layer thicknesses. Values

of the scaling coefficient, Λ3d ' 1.2 to 0.55 determined by (the exponential of) the

y-intercept of the least-square fits shown in Fig. 4.9, are observed to decrease over

the investigated local χ-resolution range given by βm = 0.5 to 0.9. The scatter

around the mean (least-squares) estimate for Λ3d is nearly Gaussian-distributed

over the whole Reynolds number range. The standard deviation in the scaling

coefficient values is around 30% of the mean for each βm value. Thus, the interval

[0.4Λ3d, 1.6Λ3d] represents the 95.4% confidence interval associated with our Λ3d

estimates.

Evidently, the values for the scaling coefficient Λ3d are smaller than those predicted

in Buch & Dahm (1998) and Su & Clemens (2003), though it is of the same order

as the Λ0 value computed in Sec. 4.1.3. This may be explained on account of the

following: in Buch & Dahm (1996, 1998) and Su & Clemens (2003) the dissipation

layer thickness is defined as the distance across the layer between points where

the dissipation rate is 20% of the local peak-value. This would be equivalent to

a βm value of βm = 20% in the present study. However, the choice was made to

compute the dissipation layers at much higher βm values to isolate the most strongly

dissipative regions. These regions determine the finest scales in the scalar field, which

is a principal goal of this study. Relaxation of βm to values of 20% would result in

a thickening of the dissipation layers and would lead to a higher estimate for Λ3d.

Extrapolation of our results to βm values of 0.1− 0.2 would yield Λ3d being around

5.0 − 4.0, which is much closer to the experimental estimates in Buch & Dahm

(1998) and Su & Clemens (2003). Further contributing factors to the differences

are the simplifications in the algorithm described in Sec. 4.2.1 and the fact that the

experimental studies were for the self-similar regions in non-reacting turbulent jet

flows. We stress that an exact determination of Λ3d is not of primary interest here
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(and is, in fact, not possible due to its dependence on βm). We seek to establish the

validity of scaling relationships for the dissipative structures in turbulent reacting

flows with low-to-moderate Reynolds numbers. These scaling relationships appear

to be similar to scaling laws established for non-reacting flows.

4.3 Spatial-filtering analysis

Adequate spatial resolution to capture scalar dissipation means that the scalar gra-

dient should remain sufficiently unchanged over the minimum length scale of dis-

cretisation or experimental probe-width employed for measurement. However, owing

to small-scale intermittency, the fluctuations in scalar gradients (and hence in χ)

can be many orders of magnitude higher than the mean and have a much higher

probability of occurrence (i.e. they show a lognormal-like PDF) than those in the

scalar (Sreenivasan, 2004). Sreenivasan (2004) proposes that the best way to deal

with an intermittent variable like χ is to locally smooth it over a non-overlapping

spatial interval (in other words, filter-width, wf). The properties of the smoothed

variable can then be studied as a function of wf as it is extrapolated to the smallest

scale of interest. In the present study, the analogy of the above approach with the

experimental spatial-filtering technique of Barlow & Karpetis (2005b,a) is utilised.

This is achieved by analysing the decay of the frequently occurring instantaneous

spikes in χ resolved by the DNS as the size, wf , of the applied numerical filter is

increased beyond the computational grid-resolution. The type of decay with wf is

used to reconstruct the hypothetical ’fully-resolved’ χ peak-values corresponding to

zero filter-width. The ratio of the DNS-resolved instantaneous spikes in χ to the

’fully-resolved’ reference limit is investigated.
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4.3.1 Spatial-filtering method

Previous experimental studies of axisymmetric turbulent jet flames by Barlow &

Karpetis (2005b) show that the peak-value of the logarithm of the mean cross-

stream component of χ decreases linearly with increasing filter-width. As explained

above, this linear decay is then exploited to calculate the ’fully-resolved’ limiting

value at zero filter-width. However, it should be pointed out that in the context

of the numerical implementation of this technique to the present DNS, this ’fully-

resolved’ scalar dissipation is a hypothetical maximum that will most likely not

exist at any point in the simulated flow. This theoretical value strictly serves as a

good reference against which the resolution of the spatially-filtered χ peak-values

is quantified. Thus, a suitable fraction of this reference is subsequently chosen as

the effective length scale required for adequate resolution. However, based on

the discussion in Sec. 2.2.1, the instantaneous length scales central to the idea of

adequacy of χ-resolution cannot be captured by linear scaling of (the logarithm

of) the mean dissipation, but of the instantaneous χ-field that exhibits small-scale

intermittency. Therefore, the spatial-filtering method explores the instantaneous

cross-stream profiles of scalar dissipation instead.

In the present DNS database, the planar, top-hat filtered mixture fraction Zf (x, y, z)

given by

Zf(x, y, z) =
1

∆x,f∆y,f

∫ x+
∆x,f

2

x−
∆x,f

2

∫ y+
∆y,f

2

y−
∆y,f

2

Z(x′, y′, z) dx′dy′ (4.14)

is considered, where ∆x,f and ∆y,f denote the filter width at any (x, y) position,

with wf =
√

∆x,f∆y,f . For the filtering operation the z dependence is dropped and,

for simplicity, the scalar dissipation fields at every x − y plane are considered as

mutually independent realisations. The filtered instantaneous scalar dissipation rate
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Figure 4.10: Variation of the instantaneous cross-stream profile of scalar dissipation
rate, χ, and mixture fraction, Z, with increasing filter-width, wf , at an arbitrarily
chosen spatial location (x/H = 2.8, z/H = 0.0). The peak-value of the cross-
stream χ profile appears to drop exponentially with a linear increase in wf . The
inset shows the PDF of the correlation coefficient, ψ, for the least-squares fit between
the actual dependence of χ peak-values on wf and the exponential-decay model in
(4.16). ψ is computed for the χ peak-values at 1024/8 × 192/3 × 30 cross-stream
profiles throughout the present DNS database. The peak is observed for ψ ' 0.99.
Negative signs have been appended to ψ values to indicate negative linear decay, i.e.
for plots with s > 0.

is calculated from the spatially filtered mixture fraction field at each corresponding

grid-point by central-differencing of (2.37),

χf(x, y, z) = 2D

([
δxZf

∆x,f

]2

+

[
δyZf

∆y,f

]2

+

[
δzZf

∆z

]2
)
, (4.15)

where δx, δy and δz are the central-difference operators for the respective coordinate

directions. The smallest resolvable filter-width is given by ∆ =
√

∆x∆y, where

(∆x,∆y,∆z) is the basic grid-discretisation used in the DNS, which varies from

location to location owing to the clustering of the grid nodes in regions close to the

shear layer. Successive iterations of spatial-filtering with successively larger filter-

width values will smear out peak values of instantaneous Z (and hence χ).
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4.3.2 Results and discussion

Effect of the filter width

Fig. 4.10 shows that spatial-filtering has a strong reducing effect on the instan-

taneous peaks of scalar dissipation, with the peak value decreasing drastically for

increasing filter-width. However, the corresponding effect on instantaneous mixture

fraction profiles is practically negligible. If an exponential decay of the maximum

scalar dissipation is assumed as suggested by Barlow & Karpetis (2005b), it is pos-

sible to study the ’fully-resolved’ scalar dissipation maxima as the filter-width is

extrapolated to a sufficiently small value. In other words, the model is a linear

variation of the type:

ln (χf, peak) = ln (χ0, peak) + s · wf , (4.16)

where χf,peak = max (χ(y)) is the maximum scalar dissipation value along the cross-

stream direction for constant x and z (see Fig. 4.10 for illustration), ln (χ0, peak) is the

’fully-resolved’ χ value computed by extrapolating to zero filter-width and s (< 0)

is the slope of decay of the logarithm of the scalar dissipation peak value. The

parameter s quantifies the effect of spatial-filtering on the χ peak-value.

For every downstream location, Nz × NT realisations can be used to establish the

linear relationship described in (4.16), where, NT = 30 is the number of different time

instants being considered. Following the method described by Barlow & Karpetis

(2005b), values of ln (χf, peak) and the corresponding filter-width are accepted only

in cases where the linear correlation coefficient of their least-squares fit, ψ, is 0.99

or better during the spatial-filtering operation. As is customary, ψ = 0 indicates

completely uncorrelated variables and ψ = 1 implies perfect linear correlation. To
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reduce the number of cross-stream profiles to be processed from an extremely large

value of Nx×Nz×NT ∼ 5.9 million, one χ-peak per cross-stream profile is assumed

for each eighth grid-point along the streamwise direction and each third grid-point

along the spanwise direction. Additionally, the condition on ψ limits the very large

number of available spatio-temporal locations to around 75, 500 cases that show

near-perfect linearity described by (4.16). The stringent demand on the choice of

peak-values χf, peak, i.e. ψ → 1 ensures exponential decay with increasing filter-

width and the important intermittent statistics are thus captured. In addition, the

PDF of the ψ-values for all the processed cross-stream profiles in Fig. 4.10 (inset)

shows a very high preponderance of values around ψ ' 0.99. This justifies the

validity of the exponential-decay model described by (4.16) in the present DNS.

The following qualitative observations come to light regarding the effects of spatial-

filtering of the instantaneous χ profiles. First, the scalar dissipation values at the

’fully-resolved’ limit are observed to be finite. Thus, the extrapolation of the peak

scalar dissipation values to the ’fully-resolved’ limit seems valid as shown by Bar-

low & Karpetis (2005b). Second, the PDF of the scalar dissipation peak value is

well captured at the minimum filter width wf = ∆. Fig. 4.11 compares different

PDFs that are obtained by varying the filter-width, wf , in (4.14) and (4.15). The

figure shows that the PDF of the scalar dissipation values at the ’fully-resolved’

limit (i.e. wf → 0) does not show any appreciable change from the PDF captured

at the grid-spacing (i.e. wf = ∆), indicating that the DNS grid captures the range

of dissipation values quite well. For the larger filter width wf = 8∆, the probability

distribution shows a negative skewness as the probability of χ-values being smaller

than the average increases. Third, on average, the effect of spatial-filtering on χ

increases with downstream distance. It peaks at about the centre of the computa-

tional domain (around x/H ' 7.5) beyond which it slightly decreases as shown in

Fig. 4.12. This seems to be directly linked with the trend shown by the outer-scale
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resolved’ limit with increasing filter-width in semi-log coordinates. The reported
results indicate the mean variation, computed by averaging over the PDF (of all
instantaneous spatio-temporal cases) corresponding to each of the three downstream
stations. The horizontal lines indicate 85% and 61% recovery of the ’fully-resolved’
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linear plots represent the extrapolation at wf < ∆ and filter-widths corresponding
to this region do not represent physically resolved dissipation length scales.
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turbulent Reynolds number, Reδ, which also peaks in the centre of the computa-

tional domain and decreases slightly further downstream (Pantano, 2004). Finally,

the magnitude of the spatial-filtering effect, s, is sensitive to the corresponding mag-

nitudes of the dissipation peak-values resolved by the grid. This is demonstrated in

Fig. 4.13. The downstream position with the largest average χ∆,peak corresponds to

the downstream position with the largest gradient |s|, and the downstream position

with the smallest average χ∆,peak corresponds to the downstream position with the

smallest gradient |s|. This correlation holds throughout the flow. This implies that

the decay of χ-peaks through filtering is correlated with the magnitudes of these

peaks.

The local effects of spatial-filtering can be quantified by the parameter s or, equiv-

alently, by the filter-widths required for resolving a fixed fraction (defined as βf

in (4.18) below) of ln (χ0, peak). The observations made above imply that these ef-

fects are linked to the magnitudes of χ peak-values, which in turn are dependent

on the turbulent Reynolds number Reδ (Sreenivasan, 2004) owing to the intermit-
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tent nature of the χ field. The correlation between χ peak-values and the turbulent

Reynolds number is also corroborated by Hawkes et al. (2006) in their turbulent jet

flame DNS. Hawkes et al. (2006) reveal increasing levels of extinction and longer reig-

nition times, caused by large dissipation fluctuations, with increases in the Reynolds

number. These links are examined in detail next.

Choice of βf

Following Barlow & Karpetis (2005b), a length scale to quantify the effects of spatial-

filtering on χ can be defined. This length scale is the filter-width required to recover

a sufficiently large fraction βf of the (hypothetical) ’fully-resolved’ scalar dissipation

value, where βf = χf,peak/χ0, peak. The definition of the length scale Lβf
then follows

from (4.16) as

Lβf
≡ ln (βf )

s
. (4.17)

An appropriate value of βf must be selected in (4.17) in order for Lβf
to be well

defined. The statistics of the fractional value of χ0,peak that is actually resolved by

the computational grid, i.e. the fraction β∆ = χ∆,peak/χ0,peak for wf = ∆, can be

used as guidance. Using (4.16), β∆ can be written as

β∆ = exp (s · ∆). (4.18)

Fig. 4.14 shows the statistics of β∆ for the whole DNS database. It is evident that the

increasingly spiky behaviour of χ due to intermittency that is approximated here by

the magnitude of the actually resolved peak-χ values or ln (χ∆,peak), correlates with

the decreasing ability of the grid to locally resolve χ0, peak (i.e. decreasing β∆). It
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Figure 4.14: Variation of the fraction, β∆ of the ’fully-resolved’ value χ0, peak re-
covered by the local grid-discretisation (for ψ > 0.99) against the (logarithm of)
magnitude of the peak-value resolved χ∆, peak.

follows from (4.18) that for a fixed grid-discretisation ∆, the parameter β∆ depends

directly on the rate of spatial-filtering decay, s. Therefore, the correlation of β∆ with

χ∆, peak in Fig. 4.14 corroborates the preliminary observation made in Sec. 4.3.2 that

larger χ peak-values tend to decay faster with filtering. In addition, Fig. 4.14 shows

that most of the strongest spiky behaviour (or largest lnχ∆, peak values) occurs in

the vicinity of β∆ ' 0.75. Thus, in the context of the present DNS, there is no need

to relax the definition of βf below 0.75 for it to be deemed sufficient to capture the

strongest dissipative events.

The very few spatio-temporal locations (around 2% of the total), characterised by

β∆ < (βf = 0.75) in the PDF on Fig. 4.14, correspond to the extrapolated region

shown in Fig. 4.12. Therefore, the dissipation length scale values, computed in terms

of the filter-width at these locations, remain less than the local grid-size. However,

these numerical artefacts are insignificant in number and have negligible effect on

the analysis.
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Reδ scaling

Based on the spatial-filtering analysis of the scalar dissipation field it is seen that

the defined length scale Lβf
is a representative measure of a wide variety of local

dissipative events at βf = 0.75. Examination of the scaling of the local instantaneous

dissipation length scale, L0.75, with Reynolds number requires a parameterisation at

each spatio-temporal location. For the present analysis, the instantaneous Reδ

is again used, based on the fluctuating velocity component, u′, instead of its root-

mean-square value. This is consistent with the remarks made earlier in Sec. 4.2.2.

As commented in Sec. 2.2.1, many previous studies on the resolution requirements

for χ like Buch & Dahm (1996, 1998); Pitts et al. (1999); Su & Clemens (2003), infer

that the minimum length scale deemed adequate to characterise scalar dissipation is

proportional to (if not of the same order as) the Batchelor scale. However, it follows

from the discussion in the preceding sections that the length scales, L0.75, represen-

tative of the instantaneous scalar dissipation peaks captured by the spatial-filtering

technique, are equivalent to the local, minimum dissipation length scales of Sreeni-

vasan (2004) or ηZmin, that need to be resolved for capturing the intermittency of

scalar dissipation. The Reynolds number scaling for these minimum length scales

can be established by plotting ln (L0.75/
(
δ0.5Sc

−3/4
)
) as function of ln (Reδ). Due to

the large number of data points involved, the ln (Reδ) range is divided into 100 bins

and the averaged value of L0.75/
(
δ0.5Sc

−3/4
)

is plotted against that of ln (Reδ) for

each bin. The result is shown in Fig. 4.15 and the data reveal a slope of −1 in the

double logarithmic plot. We therefore suggest a Reδ
−1 scaling for the length scale

L0.75, viz.

L0.75 = Λδ0.5Sc
− 3

4Reδ
−1. (4.19)
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This is consistent with scaling estimates for ηZmin by Sreenivasan & Meneveau

(1988); Sreenivasan (2004) that are based on the theory of multifractals. A sim-

ilar Reδ
−1 scaling estimate for the intermittent dissipation length-scales has also

been derived by Yakhot (2003) using the theory of turbulence structure functions.

The physical mechanism that leads to the small-scale intermittency and the cor-

responding deviation from Reδ
−3/4 scaling may be attributed to the self-stretching

component of the strain-rate tensor as introduced in She et al. (1990).

It is important to note here that the proposed type ofReδ
−1-scaling is determined by

the fixed statistics of the rate of spatial-filtering decay, s, and hence, it is insensitive

to any change in the βf value. On the other hand, the value of the scaling coefficient

Λ is estimated to be around 3.0 and depends on the chosen value of βf = 0.75 in

our case.

We can conclude that the spatial filtering technique is capable of capturing most of

the local, small-scale intermittent behaviour of χ and the present DNS database sup-

ports the estimates in Sreenivasan & Meneveau (1988), Yakhot (2003) and Sreeni-
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vasan (2004). The analysis indicates that the resolution requirements for scalar

dissipation measurements are much more stringent than what the Batchelor scaling

would suggest. It also implies that the number of DNS grid points necessary for

spatial resolution of the finest (intermittent) structures scales with N 3 ∝ Re3 as op-

posed to the conventionally suggested N 3 ∝ Re9/4 scaling based on the Kolmogorov

scale. The implications for the large-eddy or direct numerical simulations of turbu-

lence due to the stringent scaling constraints imposed by dissipation intermittency

have been discussed in detail by Yakhot & Sreenivasan (2005).

4.4 Comparison of the analyses

Differences in the length scale estimates that originate from the three methods pre-

sented above can be best summarised in a comparison of their probability distri-

butions. Fig. 4.16 shows these PDFs of the normalised average and instantaneous

dissipation length scales. The one-dimensional cross-stream spectral estimate of

the mean dissipation length scale, ηZs , has been obtained using (4.8) at all down-

stream locations along the jet centreline, while the instantaneous and local dis-

sipation length scales, L0.75, are computed by spatial filtering of the peak values

of the instantaneous cross-stream χ-profiles. Fig. 4.16 also includes the instanta-

neous normalised three-dimensional dissipation layer thickness, λ3d, distribution.

All values have been normalised with respect to the minimum grid-discretisation,

∆y = 0.0118H. Since the PDFs are computed using data from the entire computa-

tional domain rather than at any specific (x, y) location, they would not be affected

by any lack of enough independent samples to compute statistical moments (as seen

in Sec. 4.1.1).

Fig. 4.16 shows a very wide distribution of the dissipation length scales represented

by L0.75 compared to ηZs and λ3d. It also demonstrates that the bulk of the finest
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Figure 4.16: PDF of the normalised instantaneous and mean dissipation length scales
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mixing scales present in the flow (owing to the small-scale intermittency of χ) can-

not be characterised by the Batchelor scale. The PDF of the instantaneous local

dissipation scale, L0.75, peaks at a noticeably lower value than that of the spec-

tral dissipation scale estimate, ηZs , indicating the necessity for much more stringent

resolution requirements than the commonly used scaling with the Batchelor scale.

Furthermore, the relatively limited range of dissipation length scales given by ηZs

and λ3d seems to agree with the limited range of dissipation-layer thicknesses found

for direct experimental measurements (Buch & Dahm, 1998).

The next chapter introduces the theory and numerical implementation details on

the mapping closure method for modelling the transport of scalar statistics in tur-

bulent non-premixed flames. Closures for all MMC sub-models are presented and

the extinction/re-ignition predictions using MMC are compared with the CMC pre-

dictions and DNS data.



Chapter 5

Mapping closure approach

This chapter starts with a detailed review of the existing literature on the mapping

closure formalism to model the conditional scalar transport equations. Later sections

describe the governing MMC equations and discuss the closure of each unclosed term

occurring therein. This study revises the standard MMC closure for downstream

velocity, based on linearity in the reference space, to linearity in the composition

space. This modelling amendment ensures that the PDF of downstream convective

velocity is free to evolve from a non-Gaussian shape to Gaussian, rather than be-

ing constrained to follow Gaussian dynamics. The change is deemed necessary due

to proximity of the flow to the nozzle, where Gaussianity does not apply. MMC

drift coefficients consistent with the revised velocity modelling are derived from first

principles. Other modelling improvements include the incorporation of temperature

dependence of diffusivity. In addition to the MMC equations, the singly- and doubly-

conditioned CMC equations (cf. Sec. 2.3.7) are also solved, with unclosed terms in

CMC equations computed from the DNS. Details on the initialisation, numerical

scheme and realisability constraints are also reported. Finally, MMC predictions of

joint mixture fraction-sensible enthalpy PDF, doubly-conditioned dissipation vari-

ables and conditional species concentrations are compared with the DNS results and

157



158 Chapter 5. Mapping closure approach

CMC1/CMC2 as well.

5.1 Multiple mapping conditioning

Given the aforesaid background, multiple mapping conditioning has emerged (Kli-

menko & Pope, 2003; Klimenko, 2005) as a new modelling approach that combines

the advantages of PDF and CMC methods. It effectively solves for the evolution of

the joint PDF in the major manifold, which is used in conjunction with the condi-

tional moment method to determine the dependent species concentrations. This is

achieved by generalising the concept of mapping closures (Chen et al., 1989; Pope,

1991), wherein all the reactive/conserved scalars are considered to be functions of a

finite number, nr ≥ 1, of mutually-independent stochastic reference variables with a

known joint PDF. Therefore, the problem is posed in terms of the advective-diffusive

transport of the mapping functions rather than the evolution of the joint scalar PDF

itself. The advantage of this approach lies in the fact that the expressions for the

conditional velocity and dissipation terms (as deterministic functions of stochastic

reference variables) follow from the choice of nr and the joint distribution of the

reference variables. Klimenko & Pope (2003) show that choosing a joint-Gaussian

reference field leads to relatively straight-forward closures for the conditional veloc-

ity and dissipation terms. The value of nr gives the ’dimensionality’ of the system of

MMC equations, which is computationally desirable (compared to PDF methods)

only if nr < ns, where ns is the total number of scalars to compute in the reactive-

diffusive system. Various previous applications (Cleary & Kronenburg, 2007b,a) of

the MMC framework with multi-step chemistry suggest that a selection of nr = 2

proves sufficient to mimick the scalar fluctuations required to capture extinction and

reignition.

In its general framework the suggested MMC model does not distinguish between the
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major and minor scalars (Klimenko & Pope, 2003) and any choice of major/minor

scalars depends on how the underlying framework is interpreted (i.e. in CMC-

or PDF-based terms). Thus, the CMC-compliant interpretation of MMC implies

categorizing turbulent fluctuations (and species) into the aforesaid major and minor

groupings. Herein the fluctuations in the major species are not restricted and are

modelled using the mapping closure approach described above. Simultaneously,

independent fluctuations are not permitted in the minor scalars and any minor

fluctuations must be conditional on those in the major scalars. On the other hand,

this ’major-minor’ dichotomy is lost in the PDF-compliant interpretation of mapping

closure (Klimenko, 2005) as it allows for minor fluctuations independent of those in

the major scalars. It follows, therefore, that the PDF-compliant interpretation of

MMC requires nr = ns, whereas for CMC-compliance nr must at least be equal to

the number of major scalars.

There have been a few recent examples (Wandel & Klimenko, 2005; Cleary & Kro-

nenburg, 2007b,a) of the application of the MMC formalism to predict extinction

and re-ignition of flames in homogeneous decaying turbulence. Wandel & Klimenko

(2005) used stochastic MMC with single-step chemistry and one reference variable

for mapping the mixture fraction. Conventional PDF mixing models with fixed

dissipation time-scale ratios for all scalars were used to model the fluctuations of

the minor scalars. While the results compared well with DNS data, the choice of

dissipation time-scale ratios is not universal. A deterministic MMC model with a

four-step chemical mechanism and reference variables for mapping mixture fraction

and scalar dissipation (Klimenko, 2005) was used by Cleary & Kronenburg (2007b).

The study employed three dissipation-like reference variables to represent the spec-

trum of time-scales associated with the turbulent dissipation process. These MMC

computations showed marginal improvement in predicting extinction over double

conditioning approaches with only one scalar dissipation variable and mixture frac-
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tion. However, the marginal improvements do not justify a significant increase in

the computational complexity due to an increase in the dimensionality of the model

to nr = 4. In addition, lack of good agreement with the DNS data was due to the

absence of a proper model of the correlation between the chemical source term (or

temperature) and scalar dissipation during re-ignition. On the other hand, it has

been shown that an MMC approach with reference variables for mixture fraction

and sensible enthalpy can give excellent predictions for all species and captures the

degree and onset of extinction/re-ignition nicely (Cleary & Kronenburg, 2007a).

However, this approach, again, fails to take into account the feedback from scalar

dissipation fluctuations to temperature changes. Thus, in absence of a model for

this feedback, a presumption of the shape of the conditional PDF, P (hs|Z), and

solution of the transport equation for 〈hs
′′2|Z〉, is required to externally impose the

fluctuations on the conditional mean of sensible enthalpy. The inherent advantage

of this MMC approach over the corresponding CMC calculation is the closure of

the doubly conditioned dissipation terms, albeit modelling the joint Z − hs PDF

remains uncertain.

It should be noted that using reference variables for sensible enthalpy and scalar

dissipation simultaneously (in addition to mixture fraction) will still preclude any

feedback mechanism between their respective fluctuations. As Kronenburg & Cleary

(2008) recognised, generation of fluctuations around the means conditioned on Z is

only possible if the MMC model is revised to attribute, what the authors call, a

dual character to the reference variable for hs. The dual nature implies that the

reference variable mimics the statistics of the dissipation term, χ, in addition to

that of hs. The MMC modelling of extinction/re-ignition in the aforesaid study is

fully closed with respect to the chemical source and dissipation terms and gives good

predictions of the extinction and re-ignition phenomena. However, the assumption

of homogeneous turbulence implies that any modelling of the convective velocity
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term was obviated in this study due to negligible spatial gradients of conditional

means and the velocity term is set to zero.

For spatially evolving, inhomogeneous turbulent flows the assumption of negligibly

small spatial gradients is no longer valid and providing closure for the convective ve-

locity becomes necessary. According to the standard MMC formulation (Klimenko

& Pope, 2003), the closure model of convective velocity is a linear combination of

all the (normally distributed) reference variables and the modelling coefficients are

known functions of the cross-correlation terms between the velocity and the respec-

tive major scalars. This means that the convective velocity model presumes Gaus-

sian statistics for the velocity field. The imposed Gaussian shape oversimplifies the

evolution of the flow in many instances and can cause an aphysical mismatch with

the scalar statistics. In the next section, a new model is proposed for the convective

velocity based on a more direct dependence on the scalar statistics and ensures con-

sistency by re-deriving the drift coefficient in the governing MMC equations from

first principles. The revised sub-model takes the form of a simple ordinary differen-

tial equation that is solved before the actual MMC computational routine. Details

of the numerical implementation of this velocity modelling procedure within the

MMC framework and the discussion of results thereof are laid out in the subsequent

sections.

5.2 MMC formulation

The dimensionality of the model in the current MMC formulation is nr = 2, where

the mixture fraction, Z and sensible enthalpy, hs are the first and second major

scalars respectively. With reference to (2.1)-(2.3) the complete scalar set φ can be

seen as a combination of the subset of major scalars, φmaj and that of the minor

scalars, φmin. The subscript notation consistent with that introduced in Sec. 2.0.1
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is also followed for the set of sample space variables, η, of the scalars. In the condi-

tional moment interpretation of MMC, fluctuations of the minor scalars away from

their means conditioned on the major scalars are disallowed. This implies that the

conditional means, 〈φmin|φmaj = ηmaj〉, are equivalent to determinable functions,

φmin(φmaj). Therefore the joint PDF of all scalars, Pφ, can be computed by mul-

tiplying the marginal joint PDF of all major scalars, Pφmaj
, with delta-functions at

the conditional means of the minor scalars.

The marginal joint PDF, Pφmaj
, is effectively solved for in the MMC approach. As

described in the coming sections, the approach of solving for the scalar PDF (rather

than presuming it a priori) also pays dividends in the velocity closure model. How-

ever, the solution of the joint PDF also requires the provision of the turbulent

dissipation terms conditional on the major scalars. MMC uses the mapping clo-

sure (Chen et al., 1989; Pope, 1991) approach to solve the joint PDF transport

equation while facilitating the closure of the conditional dissipation terms simulta-

neously. Mapping closure involves mapping the physical (major) scalar field with the

unknown joint PDF, to a stochastic reference field that has a known/prescribed dis-

tribution. As discussed earlier in Sec. 5.1, the dimensionality of the reference space

is nr and is given by θ = {θ1, θ2, ..., θnr}, with the corresponding sample space,

ξ = {ξ1, ξ2, ..., ξnr}. Since nr = 2 in the current MMC formulation, henceforth ξ1, ξ2

represent the stochastic reference-field counterparts of Z, hs.

Finally, the requirement is to determine a set of mapping functions, X = {X1, X2, ..., Xns},

such that the cumulative distributions of X(θ) and θ are the same. For illustration

only, this can be expressed for a simplified case of uni-dimensional reference space

(nr = 1) as,

CφI
= Cθ, (5.1)
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where CφI
=
∫
PφI

· dXI(ξ1) and Cθ =
∫
Pθ1

· dξ1 are the cumulative distribution

functions (or CDFs) of the I th scalar and the reference variable, respectively. Here

the mapping functions have the same PDFs as the stochastically advected real

scalars, i.e. PX = Pφ and act as the latter’s computational surrogates. This

means that the differences between the actual spatio-temporal distributions of X

and φ are irrelevant so long as the statistical moments of the scalars are computed

correctly. In other words, the mapping functions, X, can be interpreted as the con-

ditional averages of the physical scalars on an artificial stochastic reference field, i.e.

X(ξ) ≡ 〈φ|θ = ξ〉, with the prescribed joint PDF, Pθ(ξ). Assuming that the cumu-

lative distributions are non-pathological (continuous and monotonically increasing

in [0, 1]), (5.1) gives a unique one-to-one mapping between the physical scalar and

the stochastic reference variable. The same equation can be applied to compute the

individual mapping for each scalar dimension separately and can be extended for

multiple dimensions in ξ-space. This one-to-one correspondence implies that the

problem of solving the scalar PDF transport equation can be effectively posed in

terms of the evolution equation for the mapping functions themselves.

For complete compliance with the joint scalar PDF transport equation, the equation

for the evolution of the joint reference variable PDF, Pθ, is given by Klimenko &

Pope (2003) as

∂ρ̄Pθ

∂t
+ ∇ · (Uρ̄Pθ) +

∂Akρ̄Pθ

∂ξk
+
∂2Bklρ̄Pθ

∂ξk∂ξl
= 0. (5.2)

Here ρ̄ models the ensemble averaged density. The advection-diffusion equation that

governs the evolution of X(ξ) along spatio-temporal coordinates is referred to as the

MMC equation (Klimenko & Pope, 2003) and it needs to be solved consistently with

(5.2). The reader is referred to Sec. A.1 for the derivation of the generalised MMC

equation. After primary closure assumptions, the MMC equation takes the following
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form for the I th scalar,

∂XI

∂t
+ U · ∇XI + Ak

∂XI

∂ξk
−Bkl

∂2XI

∂ξk∂ξl
= WI/ρξ. (5.3)

Here, ρξ(ξ) = 〈ρ|ξ〉 and WI = 〈ωI|ξ〉 are the mixture density and the chemical

source term for the I th species conditioned on the reference space. U = 〈u|ξ〉 is

the convective velocity vector conditional on the reference space and Ak, Bkl are the

drift and diffusion coefficients in the MMC equation. The above equation governs

the evolution of the mapping functions from initial and boundary conditions.

Thus, validity of (5.2) and (5.3) ensures that the joint PDF of the mapping functions

(or surrogate scalars) satisfies the conventional scalar PDF transport equation. It

should be noted that the present MMC approach requires the same (5.3) to be

applied to all scalar mapping functions with no major-minor distinctions. This is

in stark contrast to previous applications of mapping closure (Chen et al., 1989;

Pope, 1991; Girimaji, 1992; Mortensen & Andersson, 2005), where the technique

was used to model the conditional scalar dissipation terms alone. Equation (5.3) has

been applied to homogeneous turbulence previously (Cleary & Kronenburg, 2007a,b;

Kronenburg & Cleary, 2008), but can be applied to inhomogeneous turbulent flows

as well as is done in the present study. Also since (5.2) permits a broad range of

solutions for Pθ, there need not be any fixed a priori assumptions about the shape

of the PDF in the reference space.

Expressions used to compute the unconditional non-linear source terms, ωI , for the

chemical species depend on the flame-chemistry model employed in the present study

and are described in Sec. 3.3. The full set of scalars, φ, modelled by the aforemen-

tioned MMC equation also includes the major scalars, viz. Z and hs, in addition

to the chemical species (or minor scalars). With reference to equations (2.17) and
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(2.44), the expressions for the conditional source terms of the major scalars are

given by, WZ = 0 and Whs = −
∑

ιWιHf
ι , where Σι denotes the summation over

the chemical species. Closure for this term in the MMC equation is provided us-

ing the first-order terms only, i.e. WI = WI(X(ξ)), since the fluctuations in the

surrogate scalars, X, are negligible with respect to the nr-manifold. Closures for

the unclosed velocity term and the drift and diffusion coefficients need to be consis-

tent with the reference PDF transport equation. These closures can be determined

for any reference space PDF prescription, with the only constraint that Pθ satisfies

(5.2). Here it is important to note that the stochastic reference variables represent

the random fluctuations of the scalars in the MMC model. Therefore, one is free to

choose any convenient description of this randomness in terms of the shape of PDF

Pθ and substitute that in (5.2) to obtain closures for the unclosed coefficients.

5.2.1 Modelling thermal effects on diffusivity

In real flames the diffusivities of the chemical species are not constant-valued but

have a distinct temperature dependence. The thermodynamics model employed in

the present study (cf. Sec. 3.2) accounts for this physical effect and the temperature-

dependence of I th scalar diffusivity, DI , is given by (3.2). For the MMC implemen-

tation, incorporating this effect implies that DI can no longer have a constant value

in the reference space. Therefore, in order to employ existing closures for the MMC

drift and diffusion coefficients that do not take the temperature-dependence of diffu-

sivities into account, it is necessary to express Bkl in the form of conventional MMC

diffusion coefficients without temperature-dependence. Thus,

Bkl =
DI

D̄
·B0

kl, (5.4)
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where B0
kl is the conventional MMC diffusion coefficient with mean mixture fraction

diffusivity, D̄, and the 0-superscript denotes the lack of variation in the reference

space. Henceforth, unless otherwise specified, the discussion on the modelling of the

diffusion coefficients refers to the temperature-invariant B0
kl values. It is understood

that once B0
kl is successfully modelled, one can revert back to the temperature

dependence via (5.4). The reader is reminded that although DI is not exactly the

same for all species, the MMC differential diffusion term ∇·[ρ(DI−Dk)∇θk]∂XI/∂ξk

occurring in the generalised MMC equation (6.7) is not modelled here (cf. Sec. A.1).

5.2.2 Ak closure

The MMC methodology allows for the PDF Pθ to be selected as standard multi-

variate Gaussian (Klimenko & Pope, 2003), so that each one of the ξ1, ξ2, .., ξnr

variables are stochastically independent and normally distributed with zero mean

and unity variance. For this reference PDF, it can be shown (cf. Sec. A.3) that (5.2)

remains satisfied, provided the MMC drift coefficient is given by

Ak = −∂Bkl

∂ξl
+Bklξl + ak, (5.5)

where ak satisfies the following PDE,

1

ρ̄
∇ · (Uρ̄) +

∂ak

∂ξk
− ξkak = 0. (5.6)

(5.5) implies that the provision of the MMC diffusion coefficients, Bkl, is necessary

to close the drift coefficients. Furthermore, the exact form for ak is also not strictly

known in the MMC framework and depends, via (5.6), on a closure model for the

convective velocity term, U. Hence, unless a suitable model for the convective



5.2. MMC formulation 167

velocity term is derived, closing the ak (and therefore Ak) term is not possible. It

should be stressed here that while models for the diffusion coefficients, Bkl, and

convective velocity term, U, need to follow certain consistency constraints1, they

do not rigorously follow from the mathematical framework for MMC. The MMC

literature by Klimenko & Pope (2003) also provides conventional models for the

Bkl and U terms for full closure of the MMC equation. However, these closures

impose certain oversimplified and restrictive assumptions on the physics of turbulent

non-premixed combustion. The coming sections explore these shortcomings and

propose changes to the sub-models for Bkl and U and therefrom derive the model

for ak. These sub-models are then incorporated into (5.3) to get a fully-closed MMC

framework for the present case of a spatially-evolving (inhomogeneous) turbulent jet

flame.

5.2.3 Bkl closure

In order to provide closure for the MMC diffusion coefficients, it should be recalled

(cf. Sec. 5.1) that MMC is a generalisation of the CMC concept that can (in prin-

ciple) use any type of reference variables for conditioning. For well-chosen reference

manifolds, where variance around the means conditioned on the reference variables

is negligible, the (unclosed) scalar dissipation variable seen in the CMC equation

(2.62) can be related to the MMC diffusion coefficient as,

Nij = Bkl
∂Xi

∂ξk

∂Xj

∂ξl
. (5.7)

The reader is referred to Sec. A.2 for the full derivation of the above. It is easy

to see that the above equation follows commutativity of the subscript indices, i.e.

1cf. (5.6) and (5.7)
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Bkl = Blk. Recall that Bkl can be expressed in the temperature-invariant form, B0
kl,

using (5.4). An analogous form for the dissipation variable is Nij = (DI/D̄) · N0
ij,

where N0
ij = D̄∇φi · ∇φj. Hence, the temperature-invariant form for (5.7) is given

by

N0
ij = B0

kl

∂Xi

∂ξk

∂Xj

∂ξl
(5.8)

The above identity is used as the basis for deriving the closure of the MMC diffusion

coefficients. To get rid of the unclosed terms, Favre-averaging (5.8) throughout

yields,

Ñ0
ij =

〈
B0

kl

∂Xi

∂ξk

∂Xj

∂ξl

〉
. (5.9)

It is customary in mapping closure (Klimenko & Pope, 2003) to assume that B0
kl is

independent of ξ, i.e. B0
kl = B0

kl. This modelling implies that the B0
kl coefficients

remain unchanged under averaging and can be taken out of the 〈〉 operator in (5.9).

Ñ0
ij = B0

kl

〈
∂Xi

∂ξk

∂Xj

∂ξl

〉
. (5.10)

The above reformulation of removing the diffusivity contribution is necessary in

order to close the diffusion coefficients according to the models discussed in MMC

literature. Matching of the diffusion coefficient B0
kl with the averaged dissipation

variable Ñ0
ij ensures the correct level of (unconditional) scalar fluctuations of scalars

i and j. The derivatives in ξ-space within the 〈〉 operator are easily determined

once the mapping functions, X(ξ), are solved for using (5.3). Using the mean

dissipation values from a RANS solver or a pre-computed DNS, the corresponding
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MMC diffusion coefficients can be determined by solving (5.10) in matrix form for

all scalars.

Recall that the above formulation for the diffusion coefficients holds only if they are

presumed to be stochastically invariable. Evaluating this assumption requires an

insight into the physical significance of the MMC diffusion coefficients and that can

be clarified by using the above model in the limit of purely homogeneous turbulent

scalar mixing. A further simplication of putting nr = 1, with ξ1corresponding to Z,

is introduced to aid the clarity of presentation. For this reduced case, N 0
ij = N0

11,

B0
kl = B0

11 and Ñ0
11 = B0

11

〈
(∂Z/∂ξ1)

2〉 using (5.10). Since, the turbulence is purely

homogeneous and ξ1 is a Gaussian of zero mean and unit variance,
〈
(∂Z/∂ξ1)

2〉 =

Z̃ ′′2. Hence (5.10) takes the following form for homogeneous turbulence,

Ñ0
11 = B0

11Z̃
′′2 (5.11)

Using the model for average scalar dissipation rate in homogeneous turbulent mix-

ing (Spalding, 1971; Pope, 1985) from (2.36),

Ñ0
11 ∼ Z̃ ′′2/τ, (5.12)

where τ is the characteristic time-scale associated with integral scale turbulent ed-

dies. Comparing (5.11) and (5.12) implies B0
11 ' 1/τ , i.e. the MMC diffusion

coefficient is a measure of the eddy turnover frequency in a homogeneous turbulent

mixing process. Therefore, the assumption of a non-fluctuating B0
11 in ξ-space re-

ally means that we are fixing the eddy turnover time-scale of the mixing process.

For the special case of homogeneous turbulent mixing, this fixed value is roughly

similar to the characteristic integral time-scale of turbulence. As explained earlier
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in Sec. 2.2.1, instantaneous scalar dissipation fluctuations are highly intermittent,

with a wide quasi-lognormal distribution, that cannot be sufficiently characterised

by any single spatial- or time-scale. Modelling these scalar dissipation fluctuations

is crucial in predicting the extinction and re-ignition phenomena accurately. The

diffusion coefficients (especially B0
11) represent the mechanism of modelling the ef-

fects of the scalar dissipation fluctuations on the evolution of the scalar quantities

in MMC. Assuming B0
11 to have a fixed value in ξ-space is therefore not sufficient to

emulate the whole distribution of time-scales characteristic of the dissipation pro-

cess. Klimenko (2003a, 2005) suggested the use of a ’dissipation-like’ variable to

model the fluctuations of the principal diffusion coefficient in ξ-space as

B0
11 = B0

11ϕ(ξ2). (5.13)

According to the above model, B0
11 no longer simulates a fixed representative value

of the turbulent mixing frequency but its complete (lognormal) distribution. Here

ξ2 represents the variable in reference space that causes the fluctuations in the

dissipation rate in the MMC model. The function

ϕ(ξ2) = exp(cαξ2 − cα
2/2) (5.14)

describes the fluctuations of B0
11 around its mean B0

11. Since ξ2 is normally dis-

tributed, function ϕ(ξ2) is constructed so that the PDF of B0
11 is lognormal with

mean B0
11, irrespective of the value of the exponential coefficient, cα. It is easy

to deduce from (5.14) that the first two moments of ϕ are given by, 〈ϕ〉 = 1 and

〈ϕ′2〉 = exp(cαcα) − 1. Klimenko (2003a) has shown that the instantaneous scalar

dissipation, N0
11, of the mixture fraction, Z, is related to the conditional scalar

dissipation, 〈N0
11|Z = η1〉 by N0

11 ' 〈N0
11|η1〉ϕ. Using the moments of ϕ and the
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aforementioned approximation for N 0
11, the value of the exponential coefficient is

determined as

cα
2 = ln

(
〈N0′′2

11 |η1〉
〈N0

11|η1〉2
+ 1

)
, (5.15)

where 〈N0′′2

11 |η1〉 is the conditional variance of N 0
11.

As explained in Chapter 2, using mixture fraction and sensible enthalpy as the choice

for the major, conditioning scalars in CMC ensures that the conditional fluctuations

in the minor scalars are negligible. The same is not true of mixture fraction and

scalar dissipation as the conditioning scalars. Keeping the conditional fluctuations

at a minimum is necessary for the validity of the first-order closure of the chemical

source term, WI , in (5.3). Given this background, Kronenburg & Cleary (2008)

present the dilemma of using the second reference variable, ξ2, to represent the

fluctuating behaviour of sensible enthalpy and scalar dissipation simultaneously. It

should be re-iterated here that the reference variables represent the major scalars

only notionally. Their real physical purpose in the MMC framework is to act as inde-

pendent sources of randomness or stochastic behaviour. Thus, each system-defining

major scalar is typically associated with a distinct reference variable. However, this

need not be the case always. The authors (Kronenburg & Cleary, 2008) correctly

recognise that while sensible enthalpy and scalar dissipation are used independently

as major conditioning scalars in CMC literature, their stochastic behaviours bear

a strong (negative) correlation. Therefore, generating fluctuations for both hs and

N0
11 using the same reference variable is completely valid in MMC, as long as the

mapping functions/models for hs and N0
11 are consistently derived/presumed. Since

B0
11 (and therefore N 0

11) is modelled using (5.13), any reference variable ξ2 can adopt

the character of a dissipation-like variable. The notional association of ξ2 with a

physical quantity (viz. hs) is unimportant here.
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Finally, the model in (5.13) can be used to revise the closure for the diffusion coef-

ficients, B0
kl, as (Kronenburg & Cleary, 2008):

B0
11 = B0

11 · exp(cαξ2 − cα
2/2) (5.16)

B0
12 = B0

12 = B0
21 (5.17)

B0
22 = B0

22 (5.18)

Here the overbar denotes the averaged values within the 〈〉 operator that are in-

dependent of the ξ-space variables. These unknown B0
kl values are computed by

substituting the above model in (5.9) and solving the resulting 3 × 3 matrix equa-

tion. Unlike the standard B0
kl model in (5.10), the ϕ(ξ2) exponential term occurring

in the expression for B0
11 cannot be extracted outside the averaging operator. Hence

the exponential dependency affects the averages of the gradients with respect to

the ξ1 coordinate. As mentioned above, fluctuations around mean temperature con-

ditioned on the mixture fraction bear a strong negative correlation to the scalar

dissipation fluctuations during the extinction/re-ignition process. This means that

strong dissipation events lead to low temperatures due to the large strain imposed

on the burning flamelet. The strength of the correlation between the scalar dissipa-

tion and temperature fluctuations reduces as the scalar dissipation values approach

the extinction limit. Large fluctuations in scalar dissipation from the mean encoun-

tered by the burning flamelet at the extinction limit is indicated by the progressively

large values attained by the
〈
N0′′2

11 |η1

〉
/〈N0

11|η1〉2 ratio in the expression for cα in

(5.15), which in turn is reflected in the value of cα → 0. The cα parameter is only

indicative of the proximity to the extinction limit in terms of dissipation values and

thus drives the dissipation fluctuations accordingly. However, it contains absolutely

no feedback about the temperature level, without which predicting re-ignition is

impossible. Hence the authors (Kronenburg & Cleary, 2008) introduce a simple

correlation function, fcorr, that describes the degree of extinction/re-ignition based
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on the mean sensible enthalpy (or temperature) at stoichiometric conditions, into

the expression for cα. The revised cα parameter is modelled as,

cα = Cffcorr


ln




〈
N0′′2

11 |η1

〉

〈N0
11|η1〉2

+ 1






1/2

, (5.19)

where fcorr = −〈ĥs|η1 = Zs〉 computed from the MMC at the previous compu-

tational step and Cf is a heuristic scaling constant for the model. The negative

sign of fcorr ensures that the correlation between dissipation and sensible enthalpy

fluctuations is modelled correctly. Even small increments in the value of the scal-

ing constant cause an appreciably stronger exponential behaviour of ϕ(ξ2) leading to

more lognormality of the dissipation fluctuations. Kronenburg & Cleary (2008) chose

Cf = 1 in their MMC calculations for homogeneous decaying turbulence. However,

for the present study it was found that using a constant value of Cf = 1 does not

scale-up the correlation function well enough and value of 1.3 was chosen for the

present implementation. Here, 〈ĥs|η1 = Zst〉 is conditional mean (at stoichiometric)

of the sensible enthalpy normalised by the maximum at adiabatic flame temperature

defined in (3.5).

5.2.4 U closure

In their derivation of the standard MMC formulation, Klimenko & Pope (2003) note

that in traditional conditional moment closure studies (Kuznetsov & Sabelnikov,

1989; Klimenko & Bilger, 1999) it is customary to close the velocity term as a linear

function of the conditioning scalars. Since the MMC involves conditioning based on

reference scalars, the analogous MMC closure posits a linear dependence on all ξk

to model the U = 〈u|ξ〉 velocity term as
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U = U(0) + U
(1)
k ξk (5.20)

with

U(0) = ũ (5.21)

and

U
(1)
k 〈θk

∗Xi
∗〉 = ũ′′φi

′′ (5.22)

where ũ′′φi
′′ represents the Favre-averaged correlation of the convective velocity and

ith scalar fluctuations and the ∗-symbol denotes stochastic variables. It is impor-

tant to remember here that the reference PDF Pθ is presumed to be joint-Gaussian.

Hence any U-model linear in ξ-space implicitly presumes that the convective velocity

field is Gaussian distributed like the reference variables. While the cross-correlation

term provides the mechanism to account for the feedback between the velocity and

scalar statistics in the model, the Gaussianity of the convective velocity is an addi-

tional (and sometimes unnecessary) constraint. It can grossly oversimplify the phys-

ical evolution of the flow, especially when the turbulent velocity field has not devel-

oped enough and shows strong local inhomogeneities, e.g. close to the nozzle in tur-

bulent reacting jet flows. The presence of inhomogeneities in the initial scalar (and

downstream velocity) distribution is characteristic of turbulent non-premixed jet

flames. The reader is reminded that such flows typically involve forcing of the pure

fuel and oxidiser streams into the combustion chamber, with each stream correspond-

ing to a constant scalar concentration (normalised to Z) and constant downstream

velocity value at the point of efflux. The initial scalar/velocity distributions can thus
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be modelled as double-δ PDFs, with peaks at the scalar-concentration/velocity val-

ues corresponding to the pure-fuel and pure-oxidiser limits. For the general case of

multi-stream mixing with additional streams at intermediate values of Z, the initial

scalar/velocity PDFs are modelled with as many δ-peaks. This implies that packets

of fuel/oxidiser with different scalar-concentrations convect at different velocities

depending on their stream of origin and as these fuel/oxidiser packets mix, their

velocities and scalar-concentrations assume intermediate values together. In other

words, the statistics of downstream convective velocity in the early mixing process

are strongly correlated with the scalar distribution (represented by PZ). Therefore,

the velocity PDF evolves, just as the scalar PDF, from a double- or multi-δ initial

condition and imposing an unnatural Gaussian distribution on it will not yield the

correct mixing dynamics. Fig. 5.1 corroborates the physical correspondence between

the velocity and scalar statistics close to the nozzle. The PDF of the downstream

convective velocity values from the DNS at nozzle-exit shows a distinct tri-modal

character, with peaks corresponding to the jet, pilot and oxidiser streams. On the

other hand, by using the unconditional mean and variance values from the DNS,

the Gaussian model predicts negative values of the convective velocity tantamount

to an aphysical back-flow upstream. Truncating the Gaussian PDF at ux = 0 will,

in turn, cause unnaturally high values of velocity after correcting for the variance.

The unnecessary imposition of Gaussianity on the convective velocity can be avoided

by recognising that its fluctuations correlate strongly with those of Z and that the

Z-distribution is fully solved for in the MMC formulation. Instead of presuming the

Gaussian shape of the velocity PDF a priori, it is better to model the velocity field

by its average conditional on Z,

U = 〈u|Z〉, (5.23)
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Figure 5.1: Comparison of the marginal velocity PDFs from the DNS, the Gaussian
model in (5.20) and the revised model for the present study in (5.31) is shown at
the jet-exit conditions, i.e. x = 0. The unconditional mean and variance of the
Gaussian distribution correspond to actual DNS values at x = 0.

whereas the conditional variance, 〈u′′2|Z〉, is neglected. Using the standard condi-

tional moment closure (Klimenko & Bilger, 1999) of velocity, the conditional velocity

is then expressed as a linear function of the major mixture fraction variable instead

of the underlying reference variables. Thus,

U ' ũ(x, t) + (Z − Z̃(x, t))
ũ′′Z ′′(x, t)

Z̃ ′′2(x, t)
, (5.24)

where the scalar statistics are represented by the fluctuating mixture fraction field as

mentioned before. The coefficients in the linear model are functions of the ensemble



5.2. MMC formulation 177

Favre-averages and correlations of Z and u that vary along spatio-temporal coordi-

nates. Fig. 5.2 shows the joint PDF of the mixture fraction and the downstream con-

vective velocity from the DNS, superimposed by convective velocity values modelled

on the mixture fraction statistics in one and two physical dimensions. The figure

shows that the two-dimensional implementation of the model in (5.24) can (par-

tially) account for the conditional variance neglected in using the one-dimensional

ensemble means. Nonetheless, (5.24) is clearly superior to the Gaussian model in

predicting the 〈u|Z〉 conditional mean. Further results and discussion on the com-

parison between these models can be found in Sec. 5.4.3.

It is important to note that the mixture fraction represents the first major scalar in

the MMC framework, i.e. Z ≡ φ1, and the linear model in (5.24) can also be the-

oretically extended to incorporate the statistical dependence of convective velocity

on secondary (e.g. hs or more) major scalars. One can also extend the above model

by adding non-linear terms involving higher moments and correlations of Z and u.

However, the standard closure approximation based on the single-conditioning of

convective velocity on Z is most often considered sufficient in standard CMC/MMC

literature (Kuznetsov & Sabelnikov, 1989; Klimenko & Bilger, 1999; Kim et al.,

2000; Devaud & Bray, 2003; Mortensen, 2005). This is mainly because the corre-

lations between velocity and secondary major, conditioning scalars like hs or χ are

very weak compared to the magnitude of the turbulent scalar flux, ũ′′Z ′′, in most

turbulent non-premixed flames.

The stochastic mapping function for the mixture fraction, X1(ξ), is used as a sur-

rogate for the actual turbulent field, Z, in the U-model given by (5.24),

U(ξ) ' ũ + (X1(ξ) − Z̃)
ũ′′Z ′′

Z̃ ′′2
, (5.25)
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Figure 5.2: Comparison of the various velocity models in the composition space with
the actual joint PDF of the mixture fraction and downstream velocity at x = 0.
The dashed-dotted lines (with circles) indicate the velocity predictions from (5.24)
based on local ensemble means/correlations at 40 locations along the cross-stream
direction, i.e. mean/correlation values varying along y at x = 0. The solid line
indicates the velocity prediction from (5.24) using ensemble averaging over the cross-
stream direction, i.e. for constant mean/correlation values at x = 0. The dashed-line
shows the result of the Gaussian model and its aphysical under-/over-predictions at
Z = 0, 1 are not in view for presentation clarity.

The computational routine for (5.3) uses this velocity model as an input at each

spatio-temporal step, by assigning X1(ξ) from the MMC solution at the previous

step. This modelling ensures that the convective velocity PDF evolves in accordance

with the scalar statistics computed using the MMC equation and is not limited to

any prescribed (Gaussian) shape. Any aphysical mismatch between the scalar and

velocity statistics is, thus, strictly avoided. Furthermore, as the Z − u joint PDF

evolves into a bi-variate Gaussian with the downstream development (homogenisa-
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tion) of turbulence, the above-mentioned linear approximation becomes increasingly

equivalent to the conventional MMC U-model in (5.20).

A minor limitation of this model arises from the fact that unlike mixture fraction,

the velocity field is a vector quantity, not a scalar. Statistics of only the dominant

convective velocity component that forces the scalar mixing process are reflected in

those of the scalar. As explained earlier, the principal convective mechanism for non-

premixed reacting flows is provided by the downstream forcing of fuel and oxidiser

jets. Therefore, the velocity component most strongly correlated with the evolution

of the fuel-oxidiser mixing process is also aligned in the downstream direction. On

the other hand, velocity components orthogonal to the downstream direction do not

reflect the statistics of (or inhomogeneities in) the initial scalar mixing process and

can be realistically expected to follow Gaussian dynamics. Thus for MMC involving

more than one spatial dimensions (5.25) and (5.20) can be simultaneously used to

model the downstream velocity and its orthogonal components, respectively.

5.2.5 ak closure

As explained in Sec. 5.2.2, a joint-Gaussian Pθ (with zero mean and unit variance)

is presumed as the solution for the governing reference PDF equation. This solution

is mathematically consistent with the form for the Ak term given by (5.5). The full

expression for Ak includes the unclosed ak term that is governed by the PDE in (5.6)

and dependent on the convective velocity model for closure. Hence any revision in

the modelling for U must be followed by a consistent modelling to close ak. In the

conventional MMC approach, Klimenko & Pope (2003) do not pose (5.6) for the ak

term explicitly. The authors implicitly substitute the model expressed in (5.20) for

the convective velocity term in (5.6) and use the mean flow continuity condition to

obtain the standard closure for the ak term as,
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ak = ∇ · (ρ̄U(1)
k )/ρ̄. (5.26)

More recent studies (Cleary & Kronenburg, 2007b; Kronenburg & Cleary, 2008) em-

ploying fully-closed MMC of homogeneous decaying turbulence simply do not have

to deal with the closure of the convective velocity term as the turbulence in that case

is not spatially evolving. They set U
(1)
k ≡ 0, which in turn nullifies ak as well. How-

ever, for the present case of a spatially evolving, inhomogeneous turbulent flame, the

ak term is not negligible. It cannot be predicted by the model in (5.26) either, as the

model is based on a presumed Gaussian velocity field. As described in the previous

section on U closure, the Gaussian (downstream) convective velocity assumption

will lead to an aphysical mismatch with the scalar statistics for evolving jet flows.

Hence a model for the ak term consistent with the revised convective velocity model

in (5.25) has been derived here. Recall that the mathematical formulation for MMC

provides only one PDE for determining the ak variable. Since the reference-space

for the present study is two-dimensional, closures for both a1(ξ), a2(ξ) need to be

computed simultaneously. It should be noted here that the goal is to find the so-

lution for (5.6) consistent with the model for U. The actual form of the model

presumed/derived for ak is unimportant as long as it satisfies (5.6). Therefore, the

following closure is proposed for ak:

a1 = a(ξ1, ξ2) (5.27)

a2 = 0 (5.28)

Using the above in (5.6), the following one-equation submodel is obtained to close

the ak term in the expression for the drift coefficient in the governing MMC equation:
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1

ρ̄
∇ · (Uρ̄) +

∂a

∂ξ1
− ξ1a = 0. (5.29)

5.3 Numerical experiment

5.3.1 Model simplification

Equation (5.3) is the general MMC equation that describes the evolution of the

mapping functions from their presumed initial distributions in all types of non-

premixed turbulent flames. As described in Sec. 3.1 the non-premixed flame studied

in this case is in a planar, spatially-evolving and inhomogeneous turbulent flow

field. According to (4.2) the averaging operation for this flame involves averaging

over the temporal and spanwise (z-coordinate) realisations. Therefore, in its present

implementation (5.3) does not have any temporal or z-wise gradients and only the

downstream (x-) and cross-stream (y-) variation of conditional statistics can possibly

be predicted. However, a further simplification has been imposed on the problem

domain, viz. of disregarding the variation of conditional statistics in the cross-stream

direction as well. Besides the obvious reduction in computational demand, the two

main reasons for enforcing this simplification are as follows:

• As explained in Sec. 3.4, large upstream regions of the Pantano (2004) flame

geometry are quasi-laminar and the centre-line turbulent region of the jet is

constrained to a width of only two- to three-nozzle diameters in the cross-

stream direction. Computation of the turbulent scalar mixing in these regions

is wasted unless the MMC cells that fall within the quasi-laminar region are

merged with those where the turbulence intensities are higher. This reduces

the number of MMC cells in the far downstream section as well, since a fixed
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Cartesian grid with momentum/scalar fluxes and gradients orthogonal to the

cell-boundaries is used to solve (5.3). Fixing the grid boundaries to the sep-

aration surfaces of the jet would solve this problem, but will require a trans-

formation of the MMC equations resulting in unforeseen modelling problems

for the convective and dissipation terms.

• The second reason for the simplification is a purely statistical consideration.

A large (ideally infinite) number of independent realisations of a turbulent

variable within the MMC cell is required to compute the averages reliably.

The problem is made worse when computing conditional averages due to a re-

duction in the sample set on conditioning. Since unconditional Favre averages

of various turbulent quantities are used as an input for the MMC combustion

model, a larger number of MMC cells implies a reduction in the input data

quality.

Due to both of the above reasons one MMC cell encompasses all the statistics along

the cross-stream direction (in addition to the required spanwise and temporal coor-

dinates). Therefore, the principal direction of spatial-evolution of the jet, i.e. the

downstream, is chosen as the only indepedent coordinate in (5.3) over which the

variations of the mapping functions are computed. For this one-dimensional MMC

closure2, equations (5.3), (5.25) and (5.29) take the following forms:

Ux
∂XI

∂x
+ Ak

∂XI

∂ξk
− Bkl

∂2XI

∂ξk∂ξl
= WI/ρξ ∀ k, l ∈ {1, 2}, (5.30)

Ux(ξ) ' ũx +
ũx

′′Z ′′

Z̃ ′′2

(
X1(ξ) − Z̃

)
, (5.31)

2All references to ’one-dimensional MMC’ indicate the downstream physical coordinate, but
not the reference manifold.
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ξ1a−
∂a

∂ξ1
=

1

ρ̄

∂ (Uxρ̄)

∂x
. (5.32)

Terms ũx, Z̃ and ũx
′′Z ′′/Z̃ ′′2 are completely specified in terms of the ensemble aver-

ages from the DNS (or any RANS flow solver). Here, ux is the (principal) streamwise

component of the convective velocity vector, u, and Ux(ξ) = 〈ux|ξ〉 is its average

conditioned on the reference space. The above equations along with (5.4), (5.5),

(5.16)-(5.18) and (5.19) provide the complete theoretical MMC closure. The numer-

ical implementation of these equations is illustrated in Fig. 5.3 and the details are

discussed next in this section.

Figure 5.3: Schematic representation of the computational routines used to imple-
ment the MMC closure modelling in the present study. Shaded boxes indicate the
presumed initial conditions at x = 0 and the final MMC solution at each downstream
station. Arrow directions symbolise the information flow.
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5.3.2 Initial conditions

Chemical species initialisation

The above mentioned closed system of partial differential equations represents an

initial-value problem. Therefore, the initial values of the mapping functions cor-

responding to all the scalars need to be provided. Analogous to the initialisation

used in the Pantano (2004) DNS, a one-dimensional laminar flamelet calculation

was carried out to obtain the values of all species as functions of mixture fraction at

equilibrium conditions, i.e. φe
ι (Z). The flamelet solution for chemical species was

obtained from the simplified steady flamelet equation of Peters (1984), i.e. using

(2.54) without the transient term and replacing partial- with full-derivatives with

respect to Z:

−ρ(T
e)

Leι

Ns
d2φe

ι

dZ2
= ωι (φ

e
ι , T

e(Z)) , (5.33)

where T e(Z) is the Burke-Schumann profile for temperature dependent on the mix-

ture fraction and ρ(T e) is computed from these temperature values using the gaseous

equation of state. Ns is the stoichiometric value of the scalar dissipation at equilib-

rium chemistry and using Peters (2000) its value is given by Ns = 4Z2
sDf / (Reδ2),

where the factor 1/Re occurs due to the use of non-dimensionalised quantities. The

stoichiometric value of the mixture fraction diffusivity, Df , is evaluated using (3.2) at

the nondimensionalised adiabatic flame temperature, i.e. at T e(Zs) = Tf . δ = δo/H

is a non-dimensionalised measure of the diffusion thickness of the flame, where the

value of δo = 0.05H is set by Pantano (2004).

Equation (5.33) represents a boundary-value problem by fixing the species concen-

tration boundary values in the air and fuel streams at Z = 0 and Z = 1, respectively.
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Figure 5.4: Near-equilibrium solution for the mass fractions of the chemical species
as explicit functions of the mixture fraction determined using (5.33). The mass
fractions of H2 and H-radical have been scaled by factors of 50.0 and 500.0 for
clarity of presentation.

A semi-implicit iterative method with central-differencing is followed to solve (5.33)

on a Z-space grid uniformly discretised by 64 points. An initial guess of the species

mass-fractions, as piece-wise linear Burke-Schumann type functions of Z, is used

to start the computational procedure. The non-linear chemical source term on the

right-hand side is computed explicitly from the solution at the previous iteration

and left-hand side updates the solution implicitly using a simple tri-diagonal matrix

inversion scheme with the pre-specified boundary conditions. The average of the

updated and previous solutions is then fed back to the solver for the subsequent
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iterative process, until the percentage change accumulated during a single iteration

in the stoichiometric value of the sensible enthalpy is less than 0.1%. The resulting

quasi-equilibrium solution is smooth enough to initialise the species mass fractions

as φι = φe
ι (Z) for the MMC computation. A similar initialisation is also used

in the Pantano (2004) DNS and ensures physical consistency between it and the

moment closure modelling calculations.

Sensible enthalpy initialisation

As specified in (3.4) and (3.5), the normalised sensible enthalpy is explicitly known

as a function of the species mass fractions and temperature. Therefore, the afore-

mentioned equilibrium values, φe
ι (Z) and T e (Z), are used to initialise the sensible

enthalpy as a function of Z, i.e. ĥs = ĥe
s (Z) = ĥe

s (φe
ι , T

e).

The fuel and air stream termperatures and the temperature within the flame are

specific to the DNS setup. These temperatures are non-dimensionalised by To as

described in Sec. 3.2 and their values are given as T1 = 1.0, T2 = 1.2 and Tf = 6.8,

respectively. Using these three characteristic temperature values and the corre-

sponding near-equilibrium sensible enthalpy solution, ĥe
s (Z), a planar model for

temperature as a linear function of ĥs and Z is constructed as

T = σ0 + σ1 · Z + σ2 · ĥs, (5.34)

where the modelling coefficients σ0, σ1 and σ2 are given by

1

hsmax

·




1 0 he
s(T2)

1 1 he
s(T1)

1 Zs he
s(Tf)




·




σ0

σ1

σ2




=




T2

T1

Tf



. (5.35)
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Figure 5.5: Near-equilibrium solution for the non-dimensionalised sensible en-
thalpy is plotted as a function of the mixture fraction. The three corner-values
of the sensible enthalpy and mixture fraction, used to compute a planar func-
tion for temperature, are indicated. Inset: Scatter plot of the non-dimensionalised
temperature values computed using the planar model in (5.35), i.e. T (Z, ĥs) =
1.069 + 0.657ĥshsmax − 0.069Z, with the temperature values from the DNS condi-
tioned on the mixture fraction and sensible enthalpy at three streamwise locations,
x = 3H, 7.5H, 11.2H.

The near-equilibrium sensible enthalpy values at the different non-dimensionalised

temperatures in the above equation are computed using (3.4) and the values from the

temperature model are plotted against DNS values in Fig. 5.5. As Fig. 5.5 suggests,

the strong temperature-sensible enthalpy dependence is essentially thermodynamic

in nature and, thus, does not change as the flow evolves in the downstream direc-

tion. Therefore, any x-wise variation in the T (Z, ĥs) model can be safely neglected.

Furthermore, the dependence (albeit weak) on the mixture fraction ensures that
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the initial difference between the cold-flow temperatures in the fuel and air streams

is modelled correctly. The model ensures that temperatures above the burning

flamelet solution and below the cold-flow values are not possible for any mixture

fraction value.

Mixture fraction initialisation

Equation (5.30) describes the downstream spatial evolution of the mapping func-

tions corresponding to all the scalars from their initial values presumed at the jet

exit, i.e. at x = 0. For the MMC computation, the major scalars must be spec-

ified in terms of their surrogate mapping functions, X1(ξ1, ξ2) = 〈Z|ξ1, ξ2〉 and

X2(ξ1, ξ2) = 〈ĥs|ξ1, ξ2〉, such that their joint-PDF corresponds to the inlet con-

ditions of the Pantano (2004) flame DNS. As explained, a fully burning flamelet

initial condition is assumed analogous to the DNS such that all species mass frac-

tions and sensible enthalpy are known functions of the mixture fraction. In other

words, Z is the only independently fluctuating, stochastic variable at the jet exit

and its mapping function is determined to reflect the mixture fraction statistics at

x = 0. The relationship between the statistics of the mapping function for Z and

its actual statistics is given by an equality of their cumulative distributions in scalar

and reference spaces. A preferred direction mapping procedure used by Klimenko &

Pope (2003) and, more recently, by Kronenburg & Cleary (2008) is employed. This

implies an ordering of the reference variables corresponding to the major scalars

in a multi-dimensional reference manifold, i.e. when nr > 1. As the primary de-

pendence in turbulent diffusion flames is on the mixture fraction and secondary on

the sensible enthalpy, the ordering of the corresponding reference variables reflects

this. Therefore, the mapping function surrogate for the mixture fraction is initially

presumed to be a function of ξ1 alone, i.e. X1(ξ1, ξ2) = X1 (ξ1) |x=0 and is solved for

using the differential form of the cumulative distribution equality (5.1),
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Pφ1
(X1(ξ1)) ·

dX1 (ξ1)

dξ1
= Pθ1

(ξ1) (5.36)

,

with the boundary conditions given as,

X1|ξ1→−∞ = 0 and X1|ξ1→+∞ = 1. (5.37)

The PDF Pφ1
(X1) is specified using the mixture fraction statistics from the DNS at

the jet exit as Pφ1
(X1) = Pφ1

(Z) |x=0 and Pθ1
= exp (−ξ2

1/2) /
√

2π is the Gaussian

with zero mean and unit variance. Mathematically, (5.36) is strictly valid only for

X1 (ξ1) being a monotonically increasing function of ξ1 for a non-pathological Pφ1
.

The slope of the X1 mapping function in the reference space is extremely sensitive to

the values of Pφ1
and minor numerical errors in computing the former can seriously

affect the quality of the presumed initial PDF. In order to ensure the smoothness

and accuracy of the Pφ1
input, a larger number (1000) of points is used to discretise

the reference variable ξ1. To compute Pφ1
, the mixture fraction statistics for all

locations upstream of x = 0.5H are utilised as opposed to the statistics at x = 0

alone and are binned into 1000 points in the [0, 1] interval.

An implicit iterative scheme with central differencing is again used to solve (5.36)

in the reference space. The stochastic reference variable, ξ1, is discretised uniformly

within the −4 6 ξ1 6 4 range as done in previous MMC studies (Cleary & Kronen-

burg, 2007b; Kronenburg & Cleary, 2008). As the reference variables are Gaussian

distributed with zero mean and a unit variance their probability density is minuscule

at over 4 standard deviations from the mean. Thus the [−4, 4] bounding interval

is large enough to capture nearly all of the stochastic behaviour modelled by these
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Figure 5.6: To the left: Semi-logarithmic plot of the marginal PDF for the mixture
fraction, Pφ1

, at x = 0. The dashed-circles indicate the actual DNS data and the
solid line is a reconstruction from the X1(ξ1) solution of (5.36). To the right: The
X1(ξ1) mapping function solution of (5.36), with the marginal PDF, Pφ1

, specified
from the DNS data (solid line). Gaussian PDF of zero mean and unit variance used
in (5.36) (dashed line).

variables. The solution of (5.36) follows a predictive-corrective scheme similar to the

one used for (5.33). The value of X1 (ξ1) = 0.5 (1 + erf(ξ1)) is used as the initial

guess to start the computational procedure. The X1 (ξ1) mapping is used to update

Pφ1
at every ξ1 value after each iteration. Implicit tri-diagonal inversion using the

updated Pφ1
and averaging the new and previous values of X1 leads to an asymp-

totic convergence in X1 (ξ1) towards the final solution. Due to the sensitivity of the

dX1/dξ1 gradient to the Pφ1
(X1) values and the large number of data points used

to discretise the reference space, as high as 50, 000 iterations are required to resolve

the mixture fraction mapping function accurately. A large number of grid-points to

discretise the reference space is not feasible for a full MMC computation. Hence,

the final X1(ξ1) solution of (5.36) is mapped onto a smaller grid of 64 × 64 points

in the (ξ1, ξ2)-space with ∂X1/∂ξ2 = 0 as shown in Fig. 5.7. The [−4, 4] bounding
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interval is again used for the MMC grid with clustering near (ξ1, ξ2) = (0, 0) given

by,

ξ1k
= lc · erf−1

[
2k − (nξ + 1)

nξ − 1
· erf

(
4

lc

)]
, (5.38)

where the grid index, k, takes integral values from 1 to nξ = 64 and lc is the clustering

parameter. Progressively larger values of lc reduce the clustering effect near ξ1 = 0

and a value of 2.75 is chosen for the present purposes. The same clustering scheme

is used to compute the grid points in the ξ2-direction as well.
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Figure 5.7: Initial the mapping functions for the mixture fraction (X1) and the nor-
malised sensible enthalpy (X2) at x = 0. Mappings functions for sensible enthalpy
and all minor scalars are initialised as equilibrium functions of X1. Peak values of
X2 and all product species correspond to X1(ξ1) = Zs and ∂XI/∂ξ2 = 0 for all
I ∈ {1, .., ns}.

It follows from the above that the joint-PDF of the major scalars, Pφ1,φ2
, which

is a necessary provision for the solution of the MMC equations, is equivalent to

δ-PDFs along the ĥe
s (X1) function at the jet-exit conditions. The corresponding

mapping functions for the sensible enthalpy and the chemical species are provided

as X2(ξ1, ξ2) = ĥe
s (X1(ξ1, ξ2)) and Xι(ξ1, ξ2) = Y e

ι (X1(ξ1, ξ2)) and are invariant in
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ξ2-space due to the aforementioned ξ1-specific dependence. In conditional moment

terms, it implies that the fluctuations in the minor scalars about their means condi-

tioned on the mixture fraction are zero. Furthermore, the marginal sensible enthalpy

PDF, Pφ2|φ1
, shows single spikes along the ĥe

s (Z = η1) function and is, overall, tri-

modal with prominent peaks at the unmixed fuel, unmixed oxidiser and the burning

pilot streams corresponding to ĥs(T1), ĥsT2 and ĥsTf respectively.

5.3.3 Numerical scheme

CMC solution

It is important to note here that the singly- and doubly-conditioned CMC equations

for species transport, given by (2.59) and (2.62) respectively, are also solved in the

present study using the same overall numerical procedure employed for the MMC

solution. The eq and ey terms in the CMC equations are closed by setting them to

zero for reasons described earlier in Sec. 2.3.7 and first-order closure is used for the

chemical source term. The unclosed dissipation variables and conditional velocity

terms are taken directly from the DNS. The singly-conditioned (or CMC1) equations

are solved for all chemical species (except nitrogen) and the normalised sensible

enthalpy, whereas the doubly-conditioned (or CMC2) equations are used to compute

the species concentrations only. The same near-equilibrium profiles for the chemical

species and the sensible enthalpy used to initialise the MMC solution are employed

as the initial conditions for solving CMC1. For the CMC2 implementation, planar

profiles like the temperature model in (5.34) are constructed from the fuel-stream,

oxidiser-stream and stoichiometric values of the species mass fractions. These planar

profiles are then used to initialise the doubly-conditioned species mass fractions in

the Z-ĥs before the CMC2 solution. Results from the CMC1 and CMC2 calculations

are presented and compared with those from the MMC implementation in Sec. 5.4.5.
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MMC solver

For the initial conditions specified in Sec. 5.3.2, the fully closed set of MMC equa-

tions represented by (5.30) is solved for the mapping functions corresponding to the

mass fractions of the fuel, oxidiser, products and intermediates simulated in the Pan-

tano (2004) flame. Only nitrogen, which represents a chemically neutral species in

the methane-air chemistry model employed presently, is not solved for using (5.3).

Instead the conservation identity (3.8) is made use of to compute the mass-fraction

of nitrogen from the MMC computed values of all other chemical species. A 3-step

semi-implicit finite difference solver is used to solve (5.30), with an explicit step to

compute the effects of convection/drift and diffusion and an implicit step to account

for the chemical production term. A final averaging step is used to smoothen the

mapping function profiles. All derivatives in the reference space are second-order

accurate, the downstream-marching integration is first order accurate, and all en-

semble (unconditional) mean statistics are taken from the DNS. Using this scheme,

the MMC equation is discretised into the following three computational steps to eval-

uate the mapping function values at the (n+ 1)th grid point along the downstream

coordinate from the data at the previous grid location:

Xn′

I −Xn
I = 2∆x (Dn

F − Dn
R) /Un

x (step 1)

Xn+2
I −Xn′

I = 2∆xW n+2
I /

(
ρn′

ξ U
n′

x

)
(step 2)

Xn+1
I = 0.5(Xn+2

I +Xn
I ) (step 3)

(5.39)

where all terms with superscripts n, n+ 1 and n+ 2 are evaluated at the respective

grid locations along the downstream coordinate. Xn′

I is the intermediate value of

the I th scalar mapping function computed after taking only the convective/drift
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and diffusive effects into account and n′ denotes the intermediate solution step. The

MMC equation for the mapping function, X1, of the mixture fraction does not have

any source term. Therefore, its intermediate value, Xn′

1 = Xn+2
1 , and the density

and convective velocity terms are updated between the first and second steps as

Un′

x = Ux(X
n+2
1 ) and ρn′

ξ = ρ(T (Xn+2
1 , Xn

2 )). Terms Dn
1 and Dn

2 represent the drift

and diffusive components discretised using central-differencing in the reference space

and take the following form at any point with indices p, q in the reference grid,

Dn
1 = An

1p,q

(
Xn

Ip+1,q
−Xn

Ip−1,q

)
/2∆ξp +

An
2p,q

(
Xn

Ip,q+1
−Xn

Ip,q−1

)
/2∆ξq

Dn
2 = Bn

11p,q

(
Xn

Ip+1,q
− 2Xn

Ip,q
+Xn

Ip−1,q

)
/∆ξ2

p +

2Bn
12p,q

(
Xn

Ip+1/2,q+1/2
−Xn

Ip+1/2,q−1/2
−Xn

Ip−1/2,q+1/2
+Xn

Ip−1/2,q−1/2

)
/∆ξp∆ξq +

Bn
22p,q

(
Xn

Ip,q+1
− 2Xn

Ip,q
+Xn

Ip,q−1

)
/∆ξ2

q .

(5.40)

∆ξp and ∆ξq are the grid sizes at the pth and qth index position and do not depend

on the reference-space direction along which the derivative is computed. Neumann

boundary conditions are applied at the grid boundaries along ξ1, ξ2 = 4,−4. The

first derivatives in the reference space are computed using the first-order accurate

forward- or backward-differencing depending on the index position and the second

derivatives are set to zero.

∂XI

∂ξk

∣∣∣∣
ξk=+4

'
XInξ

−XInξ−1

∆ξnξ

,
∂XI

∂ξk

∣∣∣∣
ξk=−4

' XI1 −XI0

∆ξ0
,

∂2XI

∂ξk∂ξl

∣∣∣∣
ξk,ξl=+4,−4

' 0

(5.41)
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The chemical production term in step 2 of (5.39) is expressed up to first-order

accuracy as

W n+2
I = WI

(
Xn+2

)
' WI (Xn) +

ns∑

J=1

(
∂WI

∂XJ

)n

·
(
Xn+2

J −Xn′

J

)
. (5.42)

The above expression is substituted back within step 2 and the resulting difference

equation is solved for implicitly to yield the mapping function values at the (n +

2)th grid position. The ∂WI/∂XJ term indicates the rate of change of chemical

production of a species due to changes in its concentration and is analytically derived

from the Arrhenius rate expressions for the reaction sub-steps in the chemistry model

described in Sec. 3.3. Finally, the solution is stabalised at the (n + 1)th point by

averaging the current and previous mapping function values. The last step is crucial

in arresting the growth of any aphysical numerical fluctuations in the solution that

may be introduced, in particular, by the numerical integration of the chemical source

term in the previous step.

The x-wise discretisation employed in the DNS (cf. Sec. 3.1) was not found ade-

quate for the stability of the downstream marching of the MMC solution. Therefore,

every DNS grid cell in the downstream direction is further subdivided to ensure the

numerical stability of the MMC solution procedure. All grid locations at x 6 H

are fractioned into 50 sub-steps to ensure that the species and sensible enthalpy

fluctuations evolve correctly from the imposed equilibrium initial conditions. For

x > H downstream locations the sub-stepping is adaptively increased from a mini-

mum of 30 fractional steps per DNS grid cell. The factor of increase is heuristically

selected as 10 times the percentage of solution over-shoots or under-shoots in all

scalars throughout the reference space. The over-/under-shoots are defined as the

points on the reference space grid where the numerical solution takes values outside

of the physical [0, 1] interval. These local aphysical values rarely go above 1% of the
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total points in the reference space computed per scalar, resulting in no more than 40

sub-steps at any x-wise location > H. In the case of an under-shoot a preset value

of 10−12 is assigned to the mapping function at that location and the over-shoot

is corrected by the maximum value of the scalar mapping function at the previous

step. In either case the chemical species mass-fractions are adjusted for continuity

by normalising with the new non-unity total value. Intermediate sub-step values of

the ensemble averaged quantities from the DNS that are used in the closure mod-

elling of the MMC equations are calculated by linear interpolation between the two

neighbouring DNS grid values along the x-coordinate.

Auxillary a(ξ1, ξ2) computation substep

It may be recalled that full closure of the convective velocity requires the solution of

a submodel (5.32) derived for a(ξ1, ξ2). However, (5.32) can not be solved until the

streamwise velocity gradient is specified. The dependence of the streamwise veloc-

ity on the mixture fraction through (5.31) implies that the equation for a(ξ1, ξ2) is

coupled with the MMC equation for the mixture fraction mapping function. There-

fore, a(ξ1, ξ2) cannot be known a priori without changing the form of (5.32). For

this purpose, a computationally tractable form of (5.32) is derived by substituting

the respective expressions for the Ux(ξ) model and the streamwise gradient ∂X1/∂x

from (5.31) and (5.30) in (5.32) and collecting all the terms containing a(ξ1, ξ2) on

the left-hand side. In mathematical terms,

(
ξ1 +

U1

Ux

∂X1

∂ξ1

)
a− ∂a

∂ξ1
=

1

ρ̄

[
∂ρ̄U0

∂x
+X1

∂ρ̄U1

∂x

]
+ U1

(
∂X1

∂x

)

−a

, (5.43)

where (∂X1/∂x)−a is the streamwise gradient of the mixture fraction mapping func-

tion from (5.30) without the contribution of the a(ξ1, ξ2) term that appears on the
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left-hand side of the above equation. The U0 and U1 notation is merely a conve-

nient short-hand for the ũx − Z̃ũx
′′Z ′′/Z̃ ′′2 and ũx

′′Z ′′/Z̃ ′′2 terms, respectively. The

right-hand side of (5.43) is computed from the X1(ξ1, ξ2) solution at the previous

streamwise step, whereas the gradients of the ensemble-averaged U0 and U1 terms

are specified from the DNS. The above represents a linear inhomogeneous partial

differential equation where the right-hand side is a known function of the reference

space variables and pre-computed ensemble averaged quantities. It is henceforth

denoted by f(ξ1, ξ2) for convenience. An analytical solution of the above is not pos-

sible and therefore a numerical procedure has been implemented to compute a(ξ1, ξ2)

before solving the main MMC equation (5.30) at each streamwise step. For the nth

streamwise grid position, the derivative in the reference space is approximated by

second-order accurate central differencing to give,

(
1

2∆ξp

)
an

p−1,q +

[
ξ1p +

(
U1

Ux

∂X1

∂ξ1

)n−1

p,q

]
an

p,q +

( −1

2∆ξp

)
an

p+1,q = fn−1
p,q . (5.44)

This difference equation is solved using a fully implicit tri-diagonal matrix inversion

method at each q index from 1 to nξ. Much like the ∂X1/∂ξ1 term in (5.36), the

gradient of a(ξ1, ξ2) in the reference space is found to be very sensitive to the values

of f(ξ1, ξ2) and a finer grid is necessary to resolve it. Therefore, the matrix inversion

is carried out over a one-dimensional ξ1-grid uniformly discretised with 1000 points

(i.e. index p takes values from 1 to 1000). Forward and backward differencing is used

at the grid boundaries, p = 1 and p = 1000, respectively. The values of the known

functions γ(ξ1, ξ2) and f(ξ1, ξ2) are linearly interpolated to the one-dimensional so-

lution grid and the solution is averaged back on to the original reference space

discretisation. It is important to stress here that unlike the cumulative distribution

equation represented by (5.36), (5.43) is linear and does not require repeated matrix
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inversions for convergence. At each streamwise step, the tri-diagonal matrix inver-

sion is done only once per q index to compute the a(ξ1) dependence. Consistency

of the a(ξ1, ξ2) term modelled using (5.32) with the actual downstream convective

velocities from the DNS is evidenced in Fig. 5.8. Due to the linear time complexity

of the tri-diagonal matrix algorithm (Golub & Van-Loan, 1996), the computational

expense on the solution of (5.44) is insignificant compared to that on the actual

MMC solver. Finally, the full a(ξ1, ξ2) solution is used according to (5.28) to close

the model for the drift coefficient, Ak, prior to the MMC solution procedure at every

streamwise step.

Conditional moments and PDFs

The standard mapping closure is based on an equality of the cumulative probability

distributions of the mapping function surrogates/models of the (major) scalars and

their reference variables (Chen et al., 1989; Pope, 1991; Klimenko & Pope, 2003)

expressed in (5.1). Using this definition, the probability distributions of the modelled

scalars and their reference variables are related as

Pφ = Pθ ·
∣∣∣∣
∂Xk

∂ξl

∣∣∣∣
−1

(5.45)

where

∣∣∣∣
∂Xk

∂ξl

∣∣∣∣
−1

=

∣∣∣∣∣∣∣

1
∂X1/∂ξ1

1
∂X1/∂ξ2

1
∂X2/∂ξ1

1
∂X2/∂ξ2

∣∣∣∣∣∣∣
(5.46)

is the Jacobian determinant of inverse derivatives of the major scalar mapping func-

tions with respect to the reference space coordinates. The conditional moments of
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Figure 5.8: Comparison of the mixture fraction based conditional averages of the
left-hand and right-hand sides of (5.32), using the a(ξ1, ξ2) solution from the MMC
and downstream velocity (and unconditional mean density) values taken from the
DNS. Straight, dashed and dashed-dotted lines indicate the MMC computed 〈ξ1a−
∂a/∂ξ1|η1〉 term for x = 3H, 7.5H and 11.2H downstream locations, respectively.
Circle, asterisk and diamond symbols indicate the corresponding DNS computed
values of the 〈ρ̄−1 · ∂ (uxρ̄)/∂x|η1〉 term.

the scalars follow from the PDF computed in (5.45). While the above is the ex-

act mathematical formulation to compute the modelled scalar PDF, its numerical

implementation may not be always feasible on a coarse reference-space grid such

as that employed for the MMC calculations. Further difficulties in implementation

include:

• the presence of large regions of zero gradient in both ξ1- and ξ2-directions (e.g.

in the mapping functions of minor product species) and
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• transformation of the ∂Xk/∂ξl derivatives expressed as a function of (ξ1, ξ2)

to ∂ξl/∂Xk expressed in terms of (X1, X2) ≡ (η1, η2).

Due to these constraints, a consistent but numerically much more feasible technique

is employed in the present study to compute the PDFs and conditional moments of

surrogate scalars. It takes recourse to the basic mathematical definition of the joint

probability distribution function of any number of stochastic variables, which can

be expressed as,

P (η1, .., ηk) ≡ P (η1 6 X∗
1 6 η1 + dη1, .., ηk 6 X∗

k 6 ηk + dηk) (5.47)

Here η1, .., ηk are the familiar sample space variables, whileX∗
1 , .., X

∗
k do not represent

the scalar mapping functions on a fixed grid, but the stochastic values attained by

the modelled scalars using the respective mapping functions. The stochastic values

of the modelled scalars (for the present case of two reference variables) can be

represented in mathematical terms as,

X∗
1 = X1(θ

∗
1, θ

∗
2), X∗

2 = X2(θ
∗
1, θ

∗
2). (5.48)

An equivalent expression for the conditional moments derived from the stochastic

reference variables is given by,

〈φI |η1, .., ηk〉 = 〈XI(θ
∗
1, θ

∗
2)|X∗

1 = η1, .., X
∗
k = ηk〉 (5.49)

The variables θ∗1 and θ∗2 in the above are uncorrelated stochastic reference variables

with a joint Gaussian distribution of zero mean and unity variance. Since the joint
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PDF of θ∗1 and θ∗2 is presumed, a pair of pre-computed random variables with the

same joint-distribution can be used to simulate them. Given the pre-computed

stochastic reference variables, equations (5.47)-(5.49) directly determine the mod-

elled scalar moments and PDFs from first principles, circumventing the numerical

problems posed by (5.45). In other words, the stochastic values attained by X ∗
1 and

X∗
2 are treated as if they were the actual instantaneous fluctuations of Z and ĥs

(respectively) from the DNS database while computing the moments and PDFs.

A standard pseudo-random number generating algorithm was used to calculate two

uniformly distributed random variables with values within the [0, 1] interval. These

were transformed into Gaussian distributions with the aforesaid mean and variance

values using the Central Limit Theorem, such that both variables remained decor-

related, i.e. 〈θ∗1θ∗2〉 = 0. The values of each pre-computed Gaussian variable were

computed in a sufficiently large number (100, 000) to make sure that enough data

are available to reproduce the PDFs and moments faithfully, without putting any

significant computational burden on processing the data. All the 100, 000 pairs of

(θ∗1, θ
∗
2) values were stored in a binary format and were either loaded during the

MMC solution to compute the conditional means (e.g. while calculating cα from

(5.19)) or while post-processing the MMC solution data. Linear interpolation be-

tween consecutive reference grid points was carried out to compute the mapping

functions at sub-grid (θ∗1, θ
∗
2) values. Due to the exponential nature of decay of the

Gaussian PDF away from the mean, not more than a few dozen stochastic values

occurred beyond the [−4, 4] interal. Therefore, enough points were available within

the grid-range to model the scalar fluctuations and resolve the PDFs and moments

accurately.
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5.4 Closure modelling results

5.4.1 Modelling assumptions and realisability constraints

Firstly, the numerical constraints in MMC closure modelling warrant some discus-

sion. It may be noted that the solution of the system of equations, represented by

(5.9), does not ensure positive diffusion coefficients B0
11 and B0

22. The value of the

diffusion coefficient for the sensible enthalpy in particular assumes negative values

during the upstream development of the MMC solution. However, numerical sta-

bility for equation (5.3) generally requires all diffusion coefficients to be larger than

or equal to zero, i.e. B11 > 0 and B22 > 0. The coefficient for the cross-correlation,

B12, may take negative values without compromising stability. More specifically,

implicit or semi-implicit implementations of equation (5.3) are unconditionally sta-

ble if |B12| 6
√
B11 ·B22 (int Hout & Welfert, 2007). The values of B0

22 and B0
12 are

therefore set to zero if the solution of (5.9) yields negative values. If necessary, the

B12 coefficient is adjusted after the thermal-correction of B0
kl using (5.4), in order

to meet the requirements for unconditional stability,

B12 = sgn[B12]
√
B11 ·B22 ∀ |B12|√

B11 ·B22

> 1 (5.50)

Fig. 5.9 shows the MMC diffusion coefficients, B0
ij, as function of downstream dis-

tance. It can be seen that the value for B0
22 (and therefore B0

12) must be constrained

for x 6 6H. As a consequence, (5.9) will not be satisfied and the correct value of

dissipation cannot be imposed on the MMC simulations during this time. Hence,

the predicted variance for normalized sensible enthalpy will not match the DNS data

as can be seen in Fig. 5.10.

The evolution of the mixture fraction variance is well predicted initially, but the sen-
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Figure 5.9: Downstream variation of the mean, temperature-invariant diffusion co-
efficients, B0

kl computed using (5.9). B0
22 and B0

12 are constrained to zero till x 6 6H
to maintain numerical stability.

sible enthalpy fluctuations are conspicuously lower at the upstream locations. This

is consistent with the perception that negative diffusion coefficients would increase

deviations from the mean value and omission of these negative values yields smaller

variances than a perfect match with the DNS would require. The good predictions of

mixture fraction variance in the upstream locations lead to good predictions of the

shape of its marginal PDF, while underpredicted sensible enthalpy variances cause

more deviations from DNS data (cf. Fig. 5.11). The statistics of the convective

velocity follow that of the mixture fraction due to the former’s dependence on Z
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Figure 5.10: Downstream variation of the unconditional, ensemble-averaged vari-
ances of mixture fraction, sensible enthalpy and convective velocity computed from
the MMC. The corresponding DNS values are supplied for comparison. Symbols
used are specified in the legend.

through the model in (5.31). Gaussian velocity PDFs computed from the Klimenko

& Pope (2003) model in (5.20) have been shown in Fig. 5.11 along with those from

the revised model and the DNS results to stress the inaccuracy of the Gaussianity

assumption for near-nozzle convection. The relatively narrow distribution of the

modelled sensible enthalpy PDFs at the upstream locations (e.g. at x = 3H) can

be partially explained by the underprediction of the variance and the mismatch of

the diffusion coefficient. However, the divergence between the averaged statistics

at later times is not under the influence of enforcing the numerical stability. The

relatively larger variances of Z and ĥs evidenced in the DNS at the far downstream
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locations is a consequence of the fresh amounts of air at T2 = 1.2 entrained by the jet

flow. While the MMC computation starts with exactly the same relative amounts

of unmixed fuel and oxidiser/air as the DNS, much of the oxidiser is consumed in

course of the spatial evolution of the flow. This is consistent with the stoichiome-

try of the modelled methane-air flame, where large amounts of air are required to

burn a fraction of the methane present. This can be seen in Fig. 5.11 as a steady

decay of the peak at Z = 0 in the predicted marginal PDF of the mixture fraction

(and the corresponding decay in ĥs PDF) along the downstream coordinate. The

decay of the peak on the lean-side is also reflected in the statistics for the convective

velocity. An attempt was made to model this phenomenon by externally enforcing

a pre-determined mass-fraction of air on the mapping function for Z. However,

this interfered with the natural evolution of the mixture fraction PDF and led to

an aphysical suppression of the re-ignition process at the far downstream locations.

The lack of a suitable model for air-entrainment represents the main shortcoming of

the one-dimensional MMC closure in this study. Extending the MMC computations

to two physical dimensions (cross-stream and downstream) seems the only way to

improve upon these predictions.

Full MMC closure requires the provision of unconditional means of dissipation vari-

ables, Ñ0
11, Ñ

0
12 and Ñ0

22 at all downstream locations and the conditional scalar

dissipation fluctuation term 〈N 0
11
′′2|η1〉/〈N0

11|η1〉2 at x = 0. The unconditional mean

dissipation variables used in the MMC closure are scaled by the ratios of the cor-

responding unconditional variances computed from the MMC and those from the

DNS. In mathematical terms,

Ñ0
ij = Ñ0

ijDNS
·

√√√√ [φ̃
′′2
i φ̃

′′2
j ]MMC

[φ̃
′′2
i φ̃

′′2
j ]DNS

, (5.51)
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Figure 5.11: Marginal PDFs of the mixture fraction (left column), normalised sen-
sible enthalpy (middle column) and the downstream convective velocity (right col-
umn) from the DNS and MMC computations are plotted at three stations along the
streamwise coordinate. Circles denote the DNS values and solid lines are the MMC
results. In addition, velocity PDFs from the Gaussian model in (5.20) have been
plotted as the dashed-lines for comparison. The top row corresponds to x = 3H,
middle to x = 7.5H and the bottom to x = 11.2H.

where the DNS-subscript denotes the variance inputs from the DNS and the MMC-

subscript denotes unconditional variances computed from the MMC solution at the

previous computational step. Similar to the previous MMC study by Kronenburg &

Cleary (2008), it was found that using the scaled value for the unconditional cross-

dissipation term in (5.9) tends to result in B0
22 < 0 adding to the aforementioned

numerical realisability problems. Unlike established models for the passive and reac-
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tive scalar dissipation (Swaminathan & Bray, 2005), models for the cross-dissipation

are not available in the combustion literature. To circumvent the problem, Kronen-

burg & Cleary (2008) suggest putting Ñ0
12 = 0 based on the observation that the

magnitude of the cross-dissipation term is much less than that of the principal dissi-

pation variable, Ñ0
11 due to the former’s change in sign around stoichiometric. The

authors neglected all the cross-correlation terms and computed their B0
11 and B0

22

diffusion coefficients from a reduced 2 × 2 matrix in (5.9). However, this approach

was found too limiting for the present purposes. Instead, the MMC computation in

this study relaxes the constraint on the unconditional cross-dissipation to use half

of the scaled Ñ0
12 value and does not neglect the cross-correlation terms in the 3× 3

matrix in (5.9). Errors due to these simplifications and numerical constraints do

not have a strong effect on the predicted dissipation values, as evidenced by the

good agreement between the predicted conditional dissipation profiles and the DNS

values in Fig. 5.25. Specifically, reduction of the unconditional mean does not seem

to affect the predictions for the cross-dissipation term especially at extinction. It

should be noted that setting B0
22 = B0

12 = 0 to ensure numerical stability in the

upstream locations does not imply that the doubly-conditioned dissipation rates,

〈Nij|η1, η2〉 assume zero values. Furthermore, once the temperature-invariant B0
kl

coefficients are computed, the thermal effects are incorporated using (5.4).

Finally, the fluctuations of scalar dissipation are modelled in terms of the closure for

the principal diffusion coefficient B0
11 in (5.19). The initial estimate of cα at x = 0 as

a function of the mixture fraction is presumed at a constant value of −1.0, whereas

the actual DNS values of cα range from −0.5 to −1.6. Subsequent cα values are

computed directly from the MMC solution as it evolves along the downstream coor-

dinate. As expected from previous studies (Kronenburg & Cleary, 2008), Fig. 5.12

shows that the mixture fraction dependence of cα is small. However, unlike the pre-

vious study, large changes in the cα values are not evidenced here and they remain
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Figure 5.12: Variation of the cα parameter as a function of the mixture fraction at
three different stations along the downstream coordinate. Solid line indicates cα at
x = 3H, dashed line at x = 7.5H and dashed-dotted line at x = 11.2H.

between −0.5 and −0.1 for most of the mixture fraction range throughout the evolu-

tion of the MMC solution. It should also be noted that the cα values in the present

MMC formulation have also been scaled by the Cf = 1.3 factor. Higher magnitude

of cα by itself (using (5.15)) is indicative of the increased intermittency of the dis-

sipative process and consequent increases in the rate of extinction. However, the

differences in the cα values from the revised model (5.19) are small, since the corre-

lation function fcorr decreases with increasing degree of extinction and this reduces

the effective coefficient in the exponential function, ϕ, quickly. It is important to

stress here that the current MMC implementation only requires the unconditional
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dissipation variables, Ñ0
ij, and the turbulent scalar flux correlation, ũ′′xZ

′′ as inputs

for the modelling of the effects of turbulence in the spatially evolving jet on the

reaction process. With the specification of these quantities, the modelling of the

evolution in the Z − hs space is fully closed.

5.4.2 Predictions for major scalars

MMC models the evolution of all scalars in reference space and (5.3) ensures that the

evolution of the probability distribution of the major scalars in real space will satisfy

the joint PDF transport equation, (5.2). In this subsection only the modelling of the

major scalars is analysed. For a better illustration of the method, Fig. 5.7 shows the

mapping functions of mixture fraction, X1(ξ1, ξ2) and normalised sensible enthalpy,

X2(ξ1, ξ2), at the start of the MMC simulation. Furthermore, colour contour plots

of X1(ξ1, ξ2) and X2(ξ1, ξ2) at three different downstream locations are shown in

Fig. 5.13.

As described in Sec. 5.3.2, Z is initialized as function of ξ1 only, and a Heaviside-like

function in ξ1-space (cf. Fig. 5.6) results from a tri-modal PDF in real space, with

the peak at the stoichiometric Zs = 0.2 being much smaller than the peaks at the

unmixed air/fuel limits. The ξ1 location of the step largely determines the average

value of the mixture fraction, Z̃. As explained earlier, the normalized sensible

enthalpy is initialized as a function of Z. The sensible enthalpy peaks at the ξ1

value corresponding to Zs = 0.2 and is independent of ξ2 initially. The exponential

dependence on ξ2 (cf. (5.13)) leads to higher values of the diffusion coefficient,

B0
11, for low ξ2. This causes more mixing evidenced in the smearing out of the

mixture fraction gradients for negative ξ2 values in Fig. 5.13 at x = 3H. Unlike

the previous study by Kronenburg & Cleary (2008), the temperature dependence of

diffusivity modelled in the present study plays a role in the evolution of the sensible



210 Chapter 5. Mapping closure approach

−2
0

2

−2
0

2

0

0.5

1

−2
0

2

−2
0

2

0

0.5

−2
0

2

−2
0

2

0.5

1

−2
0

2

−2
0

2

0

0.5

−2
0

2

−2
0

2

0.2
0.4
0.6
0.8

−2
0

2

−2
0

2

0.2

0.4

0.6

0.8

X
1
(ξ

1
,ξ

2
) 

ξ
2

X
2
(ξ

1
,ξ

2
) 

ξ
2

ξ
2

ξ
2ξ

2

ξ
2

ξ
1

ξ
1

ξ
1

ξ
1

ξ
1

ξ
1

Figure 5.13: Evolution of the mapping function, X1(ξ1, ξ2), for the mixture fraction
(left column) and, X2(ξ1, ξ2), for the normalised sensible enthalpy (right column) at
three positions along the downstream coordinate. The ξ1, ξ2 axes have been reversed
in X2(ξ1, ξ2) plots for better visibility. The top row corresponds to x = 3H, middle
to x = 7.5H and the bottom to x = 11.2H.
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enthalpy mapping function. The reduction in temperature due to large B0
11 values

is only seen at the very outset of the MMC computation close to the nozzle, i.e. for

x < 3H. The joint Z-ĥs PDF at x = 3H in Fig. 5.15, which has been computed for

[−0.25H,+0.25H] intervals around the mentioned locations, gives some indication

of this initial reduction in temperature. However, this scenario is not sustainable

further away from the nozzle, as the effect of large B0
11 is substantially mitigated

via (5.4) by the decrease in the temperature-dependent diffusivity and cα values.

Therefore, the temperature dependence of diffusivity modelled in the present study

keeps the sensible enthalpy values high even at negative ξ2, contrary to the previous

study where such temperature dependence in negelected. As seen in the plots for

x = 7.5H in Fig. 5.13 the local extinction is achieved around ξ2 = 0 near the centre

of the domain inspite of the low B0
11 values there. This is due to the dominance of

the ∂X1/∂ξ1 gradient in the region evidenced in Fig. 5.14. In this region, the net

behaviour of the dissipation term, N11, follows the gradient in ξ1 space rather than

the diffusion coefficient.
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Figure 5.14: Surface plots of the MMC diffusion coefficient, (square of) the map-
ping function gradient in the ξ1 direction and their product at x = 7.5H. The
B11 (∂X1/∂ξ1)

2 product is the leading term in the MMC model for the scalar dissi-
pation rate, N11, in (5.7).

Due to the joint Gaussian distribution of the reference variables with peaks at

(ξ1, ξ2) = (0, 0), the probability density associated with temperature values in this
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region is extremely high. Therefore, any reduction of temperature in this region

implies local extinction. On the other hand, re-ignition at x = 11.2H is caused by

an enhanced rate of mixing on the lean side of the mixture at negative ξ1 values,

leading to increased sensible enthalpy/temperature levels in that region. At the far

downstream locations, the evolution of the X2 mapping function is in the form of a

front of high sensible enthalpy values (corresponding to the Z = Zs contour on X1)

moving along the ξ2-coordinate from the negative to the positive end. This signifies

the rapid consumption of the oxidiser in the absence of any fresh air-entrainment.

To facilitate the analysis of MMC, all results are transformed into the (η1, η2)-

space using the technique introduced in Sec. 5.3.3. The resulting joint PDF, Pφ1,φ2
,

can be directly compared with DNS data. Fig. 5.15 demonstrates good qualitative

agreement between the joint Z−ĥs PDFs computed from the MMC solution and the

DNS data at different streamwise locations, in particular around the stoichiometric

mixture fraction. The key characteristic of the modelled joint PDF is the capability

to capture the location of the extrema correctly. For better quantitative comparison,

the joint PDFs are plotted along η2 for constant mixture fraction values in Fig. 5.16.

The model captures the size and locations (along the η2-coordinate) of the peaks

in the conditional enthalpy PDF at Z = 0.1 very well, especially at x = 3H and

7.5H. The bi-modal character of the conditional PDF is also well captured around

stoichiometric and the location of the maxima is well approximated. A slightly

wider distribution is noted in the DNS data and the more narrow MMC distribution

can to some extent be associated with the aforementioned numerical constraints on

the diffusion coefficients. A negative B0
22 diffusion coefficient may not restrict the

maximum normalized sensible enthalpy to around 0.75 at x = 7.5H, but allow

higher values as evidenced in the DNS. Unlike the previous study by Kronenburg

& Cleary (2008), where a similar situation was encountered, the narrowness of the

MMC distribution in the present case is less pronounced. This may be due to the
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Figure 5.15: Evolution of the joint PDF of the mixture fraction and normalised
sensible enthalpy, Pφ1,φ2

, computed from the MMC model at three locations along
the downstream coordinate is shown at the left. The corresponding DNS results
are on the right. The top row corresponds to x = 3H, middle to x = 7.5H and

the bottom to x = 11.2H. All PDF values shown correspond to
√
min(PZ,ĥs

, 20)

for clarity of presentation and are computed for data in the [x− 0.25H, x+ 0.25H]
interval.

relative lack of restriction placed on the cross-dissipation term that contributes to

the diffusion in (η1, η2)-space. Fig. 5.16 shows an absence (in the DNS) of the high

concentrations of low sensible enthalpy values predicted by MMC at the x = 11.2H

downstream location. This is consistent with the over-prediction of the conditional
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variance of sensible enthalpy at the same location in Fig. 5.17. This behaviour of

the Pantano (2004) flame is quite anomalous because while the conditional variance

at the stoichiometric mixture fraction drops from x = 7.5H (extinction) to x =

11.2H (re-iginition), it then re-grows to show good agreement with MMC predictions

a little further downstream at x = 13H.
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Figure 5.16: PDF of the normalised sensible enthalpy conditional on a fixed value of
the mixture fraction, Pφ2|φ1

. Results for η1 = 0.1, 0.2 and 0.7 are arranged column-
wise, whereas the rows correspond to x = 3H, x = 7.5H and x = 11.2H at the top,
middle and bottom respectively. Statistics to compute the conditional PDFs have
been gathered within the [η1 − 0.03, η1 + 0.03] interval.

As Kronenburg & Cleary (2008) suggest, the coupling between large values of the

diffusion coefficient, B0
11, and low ξ2 is an inescapable artefact of the present im-
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Figure 5.17: To the left: plots of the variance of the normalised sensible enthalpy
conditional on the mixture fraction, 〈ĥ′′2s |η1〉 at different spatial locations. To the
right: temperature-dependent value of the density computed from (3.6) conditional
on the mixture fraction at different spatial locations. Circles denote the DNS values
and solid lines are the MMC computed values. The rows correspond to x = 3H,
x = 7.5H and x = 11.2H at the top, middle and bottom respectively.

plementation of the MMC model, with a major influence on the evolution of the

Z − ĥs PDF. The current implementation of MMC fixes high dissipation values to

specific regions in the (ξ1, ξ2)-space. This is clearly aphysical because in real space

the intermittent behaviour of scalar dissipation is not correlated with certain regions

of low mixture fraction gradients. A mixture-fraction independent implementation
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of the dissipation intermittency model in MMC is desirable in removing these short-

comings. However, for the present deterministic MMC closure such coupling cannot

be avoided and does not seem to strongly affect the modelling results.
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Figure 5.18: Comparison of the singly-conditioned (on Z) chemical species mass
fractions and normalised sensible enthalpy from the MMC computation and those
from the DNS at x = 3H. Results from the singly- (Z) and doubly-conditioned
(Z, hs) CMC computations have been included. The solid line, dotted line, crosses
and circles correspond to the MMC, CMC2, CMC1 and DNS results, respectively.
The doubly-conditioned CMC results have been weighted by the joint-PDF from
the DNS.

MMC avoids many of the issues associated with the modelling of the conditional

variance equation, since the conditional variance is solved implicitly and can be used

as further quantitative measure for the performance of MMC. Fig. 5.17 compares

the conditional variance of sensible enthalpy, 〈ĥ′′2s |η1〉, from MMC and DNS. The
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underprediction seen at x = 3H for most of the mixture fraction range follows from

an under-prediction of the unconditional variance (cf. Fig. 5.10), but agreement at

x = 7.5H is good for all mixture fraction values. As remarked earlier, the over-

prediction of 〈ĥ′′2s |η1〉 at x = 11.2H is because of the anomalous dip in the sensible

enthalpy variance during the re-ignition phase, which rises back to the levels pre-

dicted by the MMC further downstream. A more common measure for the level of

extinction is the conditional mean of sensible enthalpy at the stoichiometric mixture

fraction or 〈ĥs|η1 = Zs〉. A plot of the variation of 〈ĥs|Zs〉 with the downstream

coordinate from the DNS and MMC computations is shown in Fig. 5.30. Further-

more, comparisons of the MMC and DNS conditional averages (with respect to Z)

of the non-normalised sensible enthalpy at three different downstream stations can

be found in Fig. 5.18-Fig. 5.20. The agreement between MMC and DNS is very

good throughout the mixture fraction range for all three spatial locations and the

same is reflected in the x-wise variation in Fig. 5.30. The general levels of extinc-

tion (at x = 7.5H) and re-ignition (at x = 11.2H) seem to be predicted well. The

only issue seems to be the presence of a small trough in the conditional mean of

the sensible enthalpy (reflected in all other product species) at stoichiometric dur-

ing the extinction at x = 7.5H. This does not seem to be a physical effect and

seems to be a DNS artefact. The level of extinction and the onset of reignition,

albeit slightly delayed, are modelled fairly satisfactorily. Results for the conditional

mean of the sensible enthalpy from the singly-conditioned CMC calculation are in-

cluded here for comparison with the MMC predictions to re-iterate the need for

doubly-conditioned approaches. The slight discrepancy in the level of extinction at

x = 7.5H is due to an underprediction of the enthalpy variance (Klimenko, 2004)

discussed earlier and shown in Fig. 5.17. This is primarily caused by enforcing non-

negative B0
22 and the corresponding attenuation of sensible enthalpy fluctuations

in the ξ2-space (Kronenburg & Cleary, 2008). Fig. 5.17 also shows a comparison

between the density conditional on the mixture fraction at three different spatial
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locations. The agreement is very good between the MMC and DNS values and the

local temperature-dependent density changes are modelled well.
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Figure 5.19: Comparison of the singly-conditioned (on Z) chemical species mass
fractions and normalised sensible enthalpy from the MMC computation and those
from the DNS at x = 7.5H. Results from the singly- (Z) and doubly-conditioned
(Z, hs) CMC computations have been included. The solid line, dotted line, crosses
and circles correspond to the MMC, CMC2, CMC1 and DNS results, respectively.
The doubly-conditioned CMC results have been weighted by the joint-PDF from
the DNS.

5.4.3 Predictions for convective velocity

It may be recalled that the present case of a spatially evolving jet flame requires the

provision of a model for the streamwise convective velocity and the consistent closure
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Figure 5.20: Comparison of the singly-conditioned (on Z) chemical species mass
fractions and normalised sensible enthalpy from the MMC computation and those
from the DNS at x = 11.2H. Results from the singly- (Z) and doubly-conditioned
(Z, hs) CMC computations have been included. The solid line, dotted line, crosses
and circles correspond to the MMC, CMC2, CMC1 and DNS results, respectively.
The doubly-conditioned CMC results have been weighted by the joint-PDF from
the DNS.

of the drift coefficient in (5.3). A model for the convective velocity was proposed

based on its conditional mean with respect to the mixture fraction (cf. (5.23)) and

it was argued that the conditional mean can be expressed as a linear function of the

mixture fraction even when the velocity-mixture fraction PDF is not joint-Gaussian.

A consistent analytical one-equation sub-model for the ak(ξ1, ξ2) component of the

MMC drift coefficient was derived in Sec. 5.2.5 and its solution was shown to be
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numerically feasible in Sec. 5.3.3. Nonetheless, the feasibility of the original convec-

tive velocity closure needs direct confirmation from the DNS data, and is evidenced

in Fig. 5.21. As the figure clearly shows, the velocity model based on (5.31) ap-

proximates the actual conditional average very well at all downstream locations,

even when the scalar turbulence is still nowhere close to being joint Gaussian. On

the other hand, the standard MMC closure based on the Gaussian distribution of

velocity fails to capture the conditional averages properly. Modelling the spread of a

non-Gaussian Ux distribution using (5.20) also causes the aphysically high and low

(even negative) velocity predictions seen in Fig. 5.21. It is important to stress here

that evolution of the scalar turbulence towards joint-Gaussianity will strengthen the

linearity approximation even further.

Fig. 5.21 also indicates that the conditional variance of convective velocity is quite

low near the nozzle exit, which is consistent with the good model prediction in

Fig. 5.1. The scatter around 〈ux|Z = η1〉 increases with the downstream develop-

ment of the flow, yet the alignment of the velocity-scalar PDF with the conditional

mean remains strong. The evolution of the variance around 〈ux|η1〉 in Fig. 5.1 can

also be modelled using (5.31) by accounting for changes in the ensemble averaged

velocity-mixture fraction means/correlations in the cross-stream direction that have

been neglected here (cf. Fig. 5.2). This is possible in a two-dimensional MMC

implementation. Nonetheless, the conditional mean approximation seems to give

satisfactory results for the present case of one-dimensional MMC closure.

5.4.4 Doubly-conditioned dissipation variables

MMC provides implicit closures for two key quantities that appear in unclosed form

in the doubly-conditioned moment closure formulation: the joint PDF of the condi-

tioning scalars and the doubly conditioned dissipation terms. The modelling of the
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Figure 5.21: Left column: joint PDFs of the mixture fraction and the downstream
convective velocity are shown at three locations along the downstream coordinate.
All PDF values shown correspond to

√
min(PUx,Z, 20) for clarity of presentation.

The actual conditional mean, 〈ux|Z = η1〉, computed from the DNS is superimposed
along with the convective velocity modelling result from (5.31). Circles and solid line
denote 〈ux|Z = η1〉 and Ux from (5.31), respectively. Right column: modelled values
of the streamwise velocity plotted against the mixture fraction mapping function at
the same three locations. Dots indicate the values from the standard Gaussian
model (5.20) by Klimenko & Pope (2003) and the solid line indicates values from
(5.31). The top row corresponds to location x = 3H, middle to x = 7.5H and the
bottom to x = 11.2H.

joint PDF has been addressed above and the dissipation terms are now compared

with DNS data. The quality of the scalar dissipation modelling can be expected
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to mirror the strengths and weaknesses in the approximation of the joint PDF due

to the intrinsic link between dissipation and PDFs. The doubly conditioned dissi-

pation terms can be otained from (5.7) and can then be mapped onto the mixture

fraction-sensible enthalpy-space.

Figure 5.22: Evolution of the doubly conditioned dissipation rate of the mixture
fraction, N11, computed using (5.7) from the MMC model, is shown at three locations
along the downstream coordinate in the left column. The corresponding DNS results
are on the right. The top row corresponds to x = 3H, middle to x = 7.5H and the
bottom to x = 11.2H.

Fig. 5.22-Fig. 5.24 compare the modelled doubly conditioned dissipation of Z, ĥs
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Figure 5.23: Evolution of the doubly conditioned cross-dissipation rate, N12, com-
puted using (5.7) from the MMC model, is shown at three locations along the
downstream coordinate in the left column. The corresponding DNS results are on
the right. The top row corresponds to x = 3H, middle to x = 7.5H and the bottom
to x = 11.2H.

and the cross-dissipation term with the DNS results at three different streamwise

locations. MMC qualitatively approximates the trends in the evolution of the doubly

conditioned dissipation rate variables. More quantitative comparisons between the

MMC predictions and the DNS can be made in terms of the singly-conditioned

means, 〈Nij|η1〉, shown in Fig. 5.25. There is excellent agreement between the

MMC predictions and the DNS for all three dissipation variables at extinction (x =
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Figure 5.24: Evolution of the doubly conditioned dissipation rate of the sensible
enthalpy, N22, computed using (5.7) from the MMC model, is shown at three loca-
tions along the downstream coordinate in the left column. The corresponding DNS
results are on the right. The top row corresponds to x = 3H, middle to x = 7.5H
and the bottom to x = 11.2H.

7.5H). In particular the evolution of the local minimum in the sensible enthalpy

dissipation around stoichiometric is well captured. This would not be possible with

conventional approaches (Swaminathan & Bilger, 1999; Kim et al., 2004) that are

normally based on flamelet assumptions which certainly do not hold in the presence

of local extinction. The dissipation of the mixture fraction also captures the trends

well and, unlike the previous study by Kronenburg & Cleary (2008), large increases

in the scalar dissipation rate at low sensible enthalpy values are predicted in the
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present study. The qualitative trends captured by the cross-dissipation term in

Fig. 5.23 and its conditional averages in Fig. 5.25 are satisfactory overall.
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Figure 5.25: Plots of the singly conditioned (with Z) dissipation variables computed
from the MMC solution with the DNS results for comparison at three downstream
locations. The first, second and third columns correspond to variables 〈N11|η1〉,
〈N12|η1〉 and 〈N22|η1〉 respectively, while the top row corresponds to x = 3H, middle
to x = 7.5H and the bottom to x = 11.2H. Solid lines indicate modelling results
and circles denote the DNS values.

5.4.5 Predictions for the minor scalars

Predictions of all reactive (minor) species are good at all spatial locations. Fig. 5.26-

Fig. 5.29 compare the doubly conditioned mass fraction profiles of CH4, H2O, CO
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and the H-radical from the DNS (right) and MMC (left) at three different spatial

locations qualitatively. For more quantitative comparisons between the MMC pre-

dictions and DNS results, the singly-conditioned (on Z) profiles of all the chemical

species at the same three spatial locations are given in Fig. 5.18-Fig. 5.20.

Figure 5.26: Comparison between the doubly conditioned means in η1, η2-space of
CH4 computed using the MMC closure (left) and computed from the DNS (right)
at three spatial locations. The top row corresponds to x = 3H, middle to x = 7.5H
and the bottom to x = 11.2H.

Results from singly- and doubly-conditioned CMC computations have also been

included for comparison. Solution profiles for the chemical species using doubly-

conditioned CMC have been weighted by the PDFs taken from the DNS to give the



5.4. Closure modelling results 227

Figure 5.27: Comparison between the doubly conditioned means in η1, η2-space of
H2O computed using the MMC closure (left) and computed from the DNS (right)
at three spatial locations. The top row corresponds to x = 3H, middle to x = 7.5H
and the bottom to x = 11.2H.

condional means in the mixture fraction space. Furthermore, one-dimensional plots

of the downstream evolution of all minor scalars conditioned on the stoichiometric

mixture fraction are shown in Fig. 5.30. Good agreement of the doubly conditioned

quantities with DNS data implies that mixture fraction and normalised sensible en-

thalpy describe the turbulent scalar fluctuations well and that the chemical source

term can be modelled with first order closure based on these doubly conditioned

mass fractions. This is on expected lines since earlier studies (Kronenburg & Pa-

poutsakis, 2005; Kronenburg & Kostka, 2005) on doubly conditioned moment clo-
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Figure 5.28: Comparison between the doubly conditioned means in η1, η2-space of
CO computed using the MMC closure (left) and computed from the DNS (right) at
three spatial locations. The top row corresponds to x = 3H, middle to x = 7.5H
and the bottom to x = 11.2H.

sure have amply demonstrated that the two major (or conditioning) scalars Z and

hs parameterise the composition space adequately and that fluctuations around the

doubly-conditioned means are small. For the singly-conditioned quantities, agree-

ment with the DNS is quite satisfactory, especially so for minor species like H2 and

the H-radical at both extinction and re-ignition. The insufficiency of the DNS data

to compute the joint PDF during extinction (at x = 7.5H leads to the aforemen-

tioned trough in the singly-conditioned profiles for all product species (except the

H-radical). However, this seems an artefact of the DNS and lack of its prediction

does not seem to be a shortcoming of the MMC computations. The trends in the
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Figure 5.29: Comparison between the doubly conditioned means in η1, η2-space of
H-radical computed using the MMC closure (left) and computed from the DNS
(right) at three spatial locations. The top row corresponds to x = 3H, middle to
x = 7.5H and the bottom to x = 11.2H.

downstream evolution of the stoichiometric species mass fractions seem consistent

with those shown by the sensible enthalpy and are fairly satisfactory.

The main conclusions of the studies on dissipation scaling and mapping closure are

presented in the next chapter.
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Figure 5.30: Downstream variation of the stoichiometric conditional means of all
reactive scalars and the normalised sensible enthalpy. All conditional mean values
have been computed after gathering the statistics for the species within the [Zs −
0.03, Zs+ 0.03] interval at 25 equidistant stations along the streamwise coordinate.
Line plots indicate results from MMC and circles indicate DNS data.



Chapter 6

Conclusion

The chapter presents the conclusions of the numerical implementation of dissipation

scaling methods and multiple mapping closure for the turbulent jet flame DNS

by Pantano (2004) in the next two sections. Subsequently, potential areas of future

research in both studies have been identified and explained.

6.1 Conclusions

6.1.1 Scalar dissipation scaling

The DNS database of Pantano (2004) of a turbulent reacting planar jet has been

used to estimate the resolution requirements for scalar dissipation measurements and

numerical simulations. It has been shown that the present database is sufficiently

resolved in most regions of the flow for studying a highly intermittent variable like the

scalar dissipation rate. The mean and instantaneous scalar dissipation length scales

were determined by three different methods: spectral analysis, direct investigation

of scalar dissipation structures and spatial filtering of the instantaneous mixture

231
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fraction field. Scalings and resolution criteria for experiments and simulations based

on the easily measurable outer-scale Reynolds number, Reδ, were then established.

The departure from Gaussian-statistics (in general) and the frequent occurrence of

sub-Kolmogorov/Batchelor dissipation length-scales (in particular) are unaccounted

for in the Kolmogorov’s eddy-cascade picture (She, 1991). A supplementary physical

model (She et al., 1990; She, 1991) to explain these intermittency-related effects is

introduced in Sec. 2.2.1. It is shown that the spatial-filtering technique can be used

to recover the wide distribution of instantaneous scalar dissipation length scales

that are important in accounting for the small-scale intermittency shown by χ and

these are shown to be proportional to the local-minimum dissipation length scales.

This seems to confirm the sufficiency criterion of χ-resolution based on the more

stringent Reδ
−1 scaling as indicated by the estimates in Sreenivasan & Meneveau

(1988), Yakhot (2003) and Sreenivasan (2004) when applied to reactive flows. The

study shows that the assumption of exponential decay of intermittent χ peak-values

with increasing filter-width holds. It thus allows the extrapolation to the ’fully-

resolved’ limit and an estimate of the actual resolution needs can be obtained.

It should be mentioned here that the stringent resolution criterion (primarily for

DNS studies) suggested in the present study is limited to the resolution of scalar

gradients or, equivalently, the scalar dissipation rate, which plays the key role in

turbulent scalar mixing. Other physical quantities showing the same (or larger)

degree of intermittent behaviour, such as enstrophy, have not been analysed here

and the applicability of the suggested resolution criteria to these quantities is beyond

the scope of this paper.

The Reynolds number scaling for the spectrally-recovered dissipation length scales

is of the Kolmogorov type, while the scaling coefficient, Λ0, was estimated to be of

order of unity. This implies that the one-dimensional dissipation spectra are able
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to resolve the true Batchelor scales along the centreline of the evolving-jet, with-

out any self-similarity assumptions and at low-to-moderate Reynolds number val-

ues. Notably, computation of instantaneous dissipation layer thicknesses also yields

Batchelor scaling, with similar estimates of the scaling coefficient Λ3d that are more

conservative than other experimental estimates by Buch & Dahm (1998) and Su

& Clemens (2003) for reasons explained in Sec. 4.2.3. However, it is not immedi-

ately clear why instantaneous dissipation layer thicknesses would not yield the Reδ
−1

scaling, evidenced using the spatial-filtering method. A probable explanation may

be an inherent averaging involved in the process of computing dissipation contour

thicknesses, which yields estimates of the average rather than the true instantaneous

dissipation length-scales.

6.1.2 Mapping closure

The Multiple Mapping Conditioning approach has been used to model methane-air

combustion in a spatially-evolving jet flame with local extinction and reignition due

to turbulent strain. In the current MMC implementation, two reference variables are

used representing mixture fraction and normalized sensible enthalpy and the strong

correlation between sensible enthalpy and scalar dissipation fluctuations during the

extinction process is exploited using the model for the MMC diffusion coefficients

by Kronenburg & Cleary (2008). The second reference variable is implemented as

a dissipation-like variable and a correlation coefficient is introduced to characterise

the correlation between dissipation fluctuations and sensible enthalpy. This allows

for correlating the scalar fluctuations of mixture fraction with those of the sensible

enthalpy and generating conditional fluctuations of temperature about its mean. In

addition, the level of scalar fluctuations is scaled up by a heuristic parameter and

the effects of thermal fluctuations on the diffusion coefficients are accounted for.

The differential rate of decay of scalar fluctuations of the chemical species is also
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controlled by incorporating their Lewis numbers. However, full effects of differential

diffusion are not modelled here and their modelling is an area of future research.

Furthermore, a linear model for the downstream convective velocity based on the

mixture fraction is shown to hold for spatially evolving near-nozzle jet flows, where

the scalar turbulence is strictly not joint-Gaussian. A consistent model for the MMC

drift coefficients is derived and numerically implemented.

The evolution of mixture fraction and sensible enthalpy in reference space model

their joint distribution well and results show good agreement with the DNS results.

Similar to the previous study by Kronenburg & Cleary (2008), increased localized

mixing of the mixture fraction in this case is an artefact of the deterministic im-

plementation and stochastic MMC might remove this. However, a more important

shortcoming of MMC closure in one physical dimension comes to light in the present

study. This is the problem in accounting for air/oxidiser entrainment at far down-

stream locations. The MMC computation starts with a fixed amount of air and there

is no mechanism to feed fresh air in to keep the mixture fraction PDF consistent

with the real experimental/simulated flame.

Other modelling assumptions of reducing the unconditional cross-dissipation input,

cα = −1 at x = 0, lack of differential species diffusion modelling and neglecting the

conditional variance of convective velocity do not markedly affect the quality of the

extinction/re-ignition predictions of the fully closed deterministic model presented

here. The conditional variance of sensible enthalpy and the doubly-conditioned dis-

sipation terms are implicitly modelled. The agreement of these quantities with DNS

data is relatively good considering that other models employ inaccurate assumptions

(for the conditional sensible enthalpy variance or convective velocity) or simply do

not exist (for the doubly conditioned dissipation terms). Predictions of major and

minor species are good and qualitatively comparable to similar preditions in ear-

lier studies for homogeneous decaying turbulence by Cleary & Kronenburg (2007b)
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and Kronenburg & Cleary (2008).

6.2 Future Work

The present study on the analysis and modelling of the effects of dissipation inter-

mittency represents an on-going research effort to better characterise this important

physical quantity. A comparative analysis of spectral, level-set and spatial-filtering

methods was done with a focus on isolating the regions of strongest dissipation in-

termittency for a highly resolved tubulent jet flame DNS. While these techniques are

the most widely used in literature to measure the small-scale dissipative behaviour,

the list is not exhaustive. As mentioned in Sec. 4.2, sophisticated pattern recogni-

tion algorithms (Kushnir et al., 2006a,b) have been used recently with some success

in doing similar numerical measurements of scalar dissipation and incorporation of

this technique in the comparative analysis is potential area of future research. Fur-

ther work may also include a deeper mathematical analysis of the level-set method

described in Sec. 4.2 to study the inherent averaging of dissipation scales due to this

method in more detail. An extension of the techniques described here to even more

intermittent physical quantities associated with turbulence, like enstrophy, is also

desirable.

The multiple mapping conditioning approach seems to be one of the most promising

methods to model and predict the extinction and re-ignition effects of scalar dissipa-

tion fluctuations in turbulent jet flames. However, as the present study has shown,

some shortcomings do exist in its one-dimensional (in physical space) implementa-

tion, most notable of which is the inability to account for the entrainment of fresh

oxidiser at the far downstream locations. In other words, an ’unlimited’ supply of

air (simulated in the actual DNS) cannot be modelled in the one-dimensional im-

plementation without compromising the average value of the mixture fraction. The
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only recourse is to extend the mapping closure to the cross-stream direction, where

pure-air composition (i.e. Z = 0 value) can be enforced for the MMC cells farthest

from the axis of the flame without affecting the statistics in the jet core. Another

area of interest is modelling of the full effects of differential diffusion on minor species

prediction that have been neglected in this case. Extensive research would also be

required to revise the modelling of dissipation fluctuations for the two-dimensional

MMC implementation, especially in tuning the magnitude of the important corre-

lation function fcorr in MMC cells where the stoichiometric mixture fraction value

is never achieved. Finally, the incorporation of a full RANS flow solver and suitable

models for downstream and cross-stream velocity statistics, such as those presented

in the present study, are required for a complete modelling of real, laboratory scale

jet flames.
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A.1 Derivation of MMC equations

The equation governing the balance between the advective-diffusive transport and

chemical production of the I th scalar is given by (2.6). After subtracting the scalar

mass continuity terms and substituting for the diffusion flux term, J I
j , from (2.8)

the same can be written in gradient notation as,

ρ
∂φI

∂t
+ ρu · ∇φI − ∇ · (ρDI∇φI) = ρΩI(φ), (6.1)

where ΩI(φ) = ωI(φ)/ρ is the chemical source term per unit mass and DI is the

molecular diffusivity of the I th species. For flows with unity Lewis number, i.e.

DI = D, the above system of scalar transport equations can be transformed into the

following transport equation for the joint-PDF of all scalars using well established

techniques (Pope, 1985; Klimenko & Bilger, 1999; Pope, 2000):

∂ρ̄Pφ

∂t
+ ∇ · (ρ̄uPφ) +

∂ρ̄ΩIPφ

∂ηI

+
∂2ρ̄NIJPφ

∂ηI∂ηJ

= 0, (6.2)

where NIJ = D∇φI · ∇φJ is the scalar dissipation rate variable for the (I, J)th

combination of any two scalars, as defined in (2.35). Furthermore, by identifying a
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set of major scalars (cf. Sec. 5.2) and neglecting the fluctuations in the rest about

their means conditional on the major scalars, the above PDF transport equation

can be reduced to the major scalar space as,

∂ρ̄Pφmaj

∂t
+ ∇ ·

(
ρ̄〈u|ηmaj〉Pφmaj

)
+
∂ρ̄〈Ωi|ηmaj〉Pφmaj

∂ηi
+
∂2ρ̄〈Nij|ηmaj〉Pφmaj

∂ηi∂ηj
= 0,

(6.3)

where Nij = D∇φi · ∇φj and lower-case indices i and j denote the set of major

scalars only, consistent with the notation introduced in Sec. 2.0.1. A transport

equation analogous to (6.3) for the evolution of the joint-distribution of arbitrarily

chosen reference variables, θ, corresponding to the major scalars, has been proposed

by Klimenko (2003b) and Klimenko & Pope (2003). The equation is introduced as

(5.2) in the main text and is reproduced here for convenience,

∂ρ̄Pθ

∂t
+ ∇ · (ρ̄〈u|ξ〉Pθ) +

∂ρ̄AkPθ

∂ξk
+
∂2ρ̄BklPθ

∂ξk∂ξl
= 0, (6.4)

where 〈u|ξ〉 is the conditional mean of the convective velocity vector with respect

to the reference space. Ak and Bkl are unknown functions of the reference vari-

ables and are termed as the MMC drift and diffusion coefficients (respectively) for

reasons discussed later in the section. The reference PDF evolution equation (6.4)

holds (in theory) for any arbitrary choice of stochastic reference variables and there

exists a direct mathetmatical analogy between (6.3) and (6.4), such that variables

〈u|ηmaj〉, 〈Ωi|ηmaj〉 and 〈Nij|ηmaj〉 in the former correspond to 〈u|ξ〉, Ak and Bkl in

the latter (Klimenko, 2003b). This analogy can be utilised to show that the scalar

transport equation (6.1) used to derive (6.3) has a similar counterpart in the refer-

ence space as well. The form for the ’conservation’ equation for the kth reference
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variable consistent with the above evolution equation for Pθ is given by,

ρ
∂θk

∂t
+ ρu · ∇θk − ∇ · (ρDk∇θk) = ρAk(θ), (6.5)

where Dk is the diffusivity of the corresponding kth major scalar and the drift coeffi-

cient, Ak, acts as the source term in the reference space. It may be recalled that the

CMC equations are derived by conditional averaging of (minor) chemical species

by the (major) scalars like mixture fraction and sensible enthalpy. On the other

hand, MMC implies the conditional averaging of all scalars represented by (6.1) by

using the transport equation (6.5) for the reference variables, instead of the major

scalars themselves. The procedure of deriving the doubly-conditioned CMC equa-

tions by Kronenburg (2004) is followed here. Consistent with the CMC notation,

the instantaneous scalar concentration, φI, can be split into the mean conditioned

on the reference space, XI and the fluctuation, X ′′
I as

φI = XI(ξ) +X ′′
I , (6.6)

where XI(ξ) is the familiar mapping function realised as the conditional average in

the reference space, i.e. XI(ξ) = 〈φI |θ = ξ〉. The spatio-temporal dependence in

(6.6) has been omitted for clarity. Substituting (6.6) in (6.1), applying the chain rule

of differentiation and using the conservation equation (6.5) for reference variables,

we get a form for the MMC equation consistent with the CMC as

〈ρ|ξ〉∂XI

∂t
+ 〈ρu|ξ〉 · ∇XI = 〈ωI|ξ〉 − 〈ρ|ξ〉Ak

∂XI

∂ξk
+

〈ρ|ξ〉〈DI∇θk · ∇θl|ξ〉 ∂2XI

∂ξk∂ξl
+ eq,MMC + ey,MMC

(6.7)
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with

eq,MMC =

〈
∇ · [ρDI∇XI ] + ρDI∇θk · ∇

∂XI

∂ξk
+ ∇ · [ρ(DI −Dk)∇θk]

∂XI

∂ξk

∣∣∣∣ ξ
〉
,

(6.8)

and

ey,MMC = −
〈
ρ
∂X ′′

I

∂t
+ ρu · ∇X ′′

I − ∇ · [ρDI∇X ′′
I ]

∣∣∣∣ ξ
〉

(6.9)

Equations (6.7)-(6.9) represent the generalised system of MMC equations. Term

〈DI∇θk ·∇θl|ξ〉 occurs as a coefficient of diffusion in reference space in (6.7), anal-

ogous to 〈Nij|ηmaj〉 in the CMC equation. Therefore, it follows from the aforemen-

tioned correspondence between (6.3) and (6.4) that

Bkl = 〈DI∇θk · ∇θl|ξ〉. (6.10)

Similarly, Ak is the coefficient of the term signifying convection/drift in the reference

space in the above MMC equation. For clarity of presentation, the notation for the

MMC drift and diffusion coefficients is kept consistent with the standard MMC form

by Klimenko & Pope (2003). It is understood that each instance of Ak (or Bkl) refers

to the drift (or diffusion) of the I th scalar in the reference space.

Primary closure hypothesis for the ey,MMC term in (6.7) follows the same arguments

as that for the corresponding CMC equation, namely that the set of conditioning

reference scalars is large enough for the conditional fluctuations to be negligible.

Hence, ey,MMC is easily set to zero for a sufficiently high dimensionality, nr, of the
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reference manifold. Closure for eq,MMC also follows the CMC logic of neglecting the

(first-order) gradients in the reference space, which are negligible at stoichiometric

composition compared to the reactive-diffusive terms in (6.7). It should be noted

that eq,MMC also contains the important differential diffusion term, ∇ · [ρ(DI −

Dk)∇θk]∂XI/∂ξk, which may not be negligible for species whose Lewis number

deviates significantly from unity. For the present MMC implementation, only the

H-radical (and to a minor extent, H2) have Lewis numbers appreciably lower than

unity and the differential diffusion term ideally should not be neglected for them.

However, the caveat is that their concentrations are also two-to-three orders of

magnitude less than those of the other species (cf. Fig. 5.4) and, therefore, their first-

order derivatives in the reference space will have a negligible influence on the primary

MMC equation. Hence, setting eq,MMC = 0 and ey,MMC = 0 in the generalised MMC

equation (6.7) results in the familiar form given by (5.3).

A.2 Derivation of Nij in terms of Bkl

Using the general definition from (2.35), the scalar dissipation for a pair of major

scalars denoted by indices i and j can be written in the standard repeated-index

notation as

Nij = DI
∂φi

∂xp

∂φj

∂xp
∀ p ∈ {1, 2, 3} (6.11)

where repetition of index p denotes summation over it. Assuming a sufficiently large

reference manifold such that fluctuations around the means conditioned on ξ are

negligible, the scalars in (6.11) can be approximated by their conditional averages,

i.e. φi ' 〈φi|θ〉 = Xi(θ). In mathematical terms,
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Nij = DI
∂Xi(θ)

∂xp

∂Xj(θ)

∂xp
. (6.12)

The mapping functions, Xi and Xj, are continuous and differentiable functions of

the set of reference variables, θ. Therefore, applying the chain rule of differentiation

on the mapping functions in (6.12) and denoting summation by repeated indices,

we get

∂Xi(θ)

∂xp
=
∂Xi

∂θ1

∂θ1
∂xp

+
∂Xi

∂θ2

∂θ2
∂xp

+ .. =
∂Xi

∂θk

∂θk

∂xp
(6.13)

and

∂Xj(θ)

∂xp
=
∂Xj

∂θ1

∂θ1
∂xp

+
∂Xj

∂θ2

∂θ2
∂xp

+ .. =
∂Xj

∂θl

∂θl

∂xp
. (6.14)

The expanded gradient terms from (6.13) and (6.14) can be substituted back into

(6.12) and re-arranged to obtain

Nij = DI
∂θk

∂xp

∂θl

∂xp
· ∂Xi

∂θk

∂Xj

∂θl
. (6.15)

Conditionally averaging (6.12) throughout with respect to the reference manifold,

neglecting the conditional fluctuations of scalar dissipation, i.e. Nij ' 〈Nij|θ = ξ〉

and replacing the repeated indices with the gradient notation gives,

Nij = 〈DI∇θk · ∇θl|θ = ξ〉∂Xi

∂ξk

∂Xj

∂ξl
. (6.16)

The term within the 〈〉 operator is identical to the expression for the MMC diffusion
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coefficient, Bkl, defined in (6.10). Finally, substituting Bkl for this term in (6.16)

gives the important identity relating the scalar dissipation rate variable with the

MMC diffusion coefficient,

Nij = Bkl
∂Xi

∂ξk

∂Xj

∂ξl
. (6.17)

A.3 Derivation of ak model

Consistent incorporation of the velocity model in the MMC formulation requires

consistency with the governing equation for the scalar mapping functions and the

reference PDF transport, represented by (5.3) and (5.2), respectively. This consis-

tency can be acheived by substituting the aforesaid convective velocity model in

the reference PDF equation and deriving the drift coefficient, Ak, in terms of the

diffusion coefficients, Bkl, and the velocity model, U, where the reference PDF is

already presumed to be joint-Gaussian (Klimenko & Pope, 2003).

For the present case of a joint Gaussian reference PDF with zero mean and unity

variance, its temporal derivative in (5.2) drops out, i.e. ∂ρ̄Pθ/∂t = 0. Similarly,

the reference PDF remains unchanged in physical space and can be taken out of

the spatial gradient term. Furthermore, the ensemble averaged density term, ρ̄ is

invariant in the reference space and can be taken out of the partial derivatives with

respect to reference variables. Therefore, (5.2) takes the following form:

Pθ∇ · (Uρ̄) + ρ̄
∂AkPθ

∂ξk
+ ρ̄

∂2BklPθ

∂ξk∂ξl
= 0. (6.18)

Since Pθ is the PDF of nr uncorrelated Gaussian reference variables, each with zero
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mean and unity variance, it can be mathematically expressed as,

Pθ =
1

2π
· exp

(
−1

2

nr∑

p=1

ξ2
p

)
(6.19)

and its first- and second-order derivatives with respect to arbitrary reference vari-

ables ξk and ξl are given by,

∂Pθ

∂ξk
= −ξkPθ,

∂2Pθ

∂ξk∂ξl
= (ξkξl − δkl)Pθ. (6.20)

Here, δkl is the Kronecker delta function. Using the product rule of differentiation

and the identities in (6.20), the derivatives in the second and third terms of (6.18)

can be expanded as,

∂AkPθ

∂ξk
= Pθ

∂Ak

∂ξk
− PθξkAk (6.21)

∂2BklPθ

∂ξk∂ξl
= Pθ

∂2Bkl

∂ξk∂ξl
+ Pθ (ξkξl − δkl)Bkl (6.22)

Substituting all the derivative terms in reference space in (6.18) with the expressions

given by (6.21) and (6.22) and cancelling Pθ throughout,

1

ρ̄
∇ · (Uρ̄) +

∂Ak

∂ξk
− ξkAk +

∂2Bkl

∂ξk∂ξl
+Bkl (ξkξl − δkl) = 0. (6.23)

Without any loss of generality, the above equation can be further simplified by

assuming a convenient (but unclosed) form for the drift coefficient, Ak, given by



A.3. Derivation of ak model 245

(5.5) in the main text (Klimenko & Pope, 2003). Substituting the expression for the

MMC drift coefficient from (5.5) in (6.23) and cancelling out the redundant terms

results in the generalised form of the equation for modelling the ak term. This is

given by (5.6) in the main text and is reproduced here

1

ρ̄
∇ · (Uρ̄) +

∂ak

∂ξk
− ξkak = 0. (6.24)

As (5.6) suggests, the ak term represents the contribution of the velocity modelling

to the MMC drift coefficient and its closure is discussed in Sec. 5.2.5.
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ber variations in a homogeneous flow reactor. Combust. Theory Model. 4, 495–509.

Oboukhov, A.M. 1949 Struktura temperaturnovo polia v turbulentnom potoke.

Izv. Akad. Nauk SSSR Ser. Geofiz 3, 59.

O’Brien, E.E. 1980 The probability density function (PDF) approach to reacting

turbulent flows. In Topics in Applied Physics: Turbulent Reacting Flows (ed. P.A.

Libby & F.A. Williams), pp. 185–218. Springer-Verlag.

Pantano, C. 2004 Direct simulation of non-premixed flame extinction in a

methane-air jet with reduced chemistry. J. Fluid Mech. 514, 231–270.

Pantano, C., Sarkar, S. & Williams, F.A. 2003 Mixing of a conserved scalar

in a turbulent reacting shear layer. J. Fluid Mech. 481, 291–328.

Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer:

an experimental study. J. Fluid Mech. 197, 453–477.

Peters, N. 1984 Laminar diffusion flamelet models in non-premixed turbulent

combustion. Prog. Energy Combust. Sci. 10 (3), 319–339.



BIBLIOGRAPHY 257

Peters, N. 1985 Numerical and asymptotic analysis of systematically reduced

reaction schemes for hydrocarbon flames. In Lecture Notes in Physics, pp. 90–

109. Springer.

Peters, N. 1991 Reduced kinetic mechanisms and asymptotic approximations for

Methane-Air flames: Chapter 3 . Springer.

Peters, N. 2000 Turbulent Combustion. Cambridge University Press.

Pitsch, H. 2000 Unsteady flamelet modelling of differential diffusion in turbulent

jet flames. Combust. Flame 123, 358–374.

Pitsch, H., Cha, C.M. & Fedotov, S. 2003 Flamelet modelling of non-premixed

turbulent combustion with local extinction and re-ignition. Combust. Theory and

Modelling 7, 317–332.

Pitts, W.M., Richards, C.D. & Levenson, M.S. 1999 Large- and scall-scale

structures and their interactions in an axisymmetric jet. Tech. Rep. 6393. NIST.

Poinsot, T. & Veynante, D. 2001 Theoretical and Numerical Combustion, 2nd

edn. Philadelphia: R. T. Edwards Inc.

Pope, S.B. 1976 The implications of the probability equations for turbulent com-

bustion models. Combust. Flame 27, 299–312.

Pope, S.B. 1985 PDF methods for turbulent reactive flows. Prog. Energy Combust.

Sci. 11, 119–192.

Pope, S.B. 1991 Mapping closures for turbulent mixing and reaction. Theor. Com-

put. Fluid Dyn. 2, 255–270.

Pope, S.B. 2000 Turbulent Flows, 1st edn., pp. 222–237. Cambridge University

Press.



258 BIBLIOGRAPHY

Pope, S.B. 2004 10 questions concerning the large eddy simulation of turbulent

flows. New J. Phys. 6(35), 1367–2630.

Energy Review Report, U.K. 2006 The energy challenge. Department of Trade

and Industry, HM Govt.

Rogerson, J.W., Kent, J.H. & Bilger, R.W. 2005 Conditional moment clo-

sure in a bagasse-fired boiler. Proc. Combust. Inst. 31, 2805–2811.

Roomina, M.R. & Bilger, R.W. 2001 Conditional moment closure (CMC) pre-

dictions of a turbulent methane-air jet flame. Combust. Flame 61, 87–102.

Saddoughi, S.G. & Veeravalli, S.V. 1994 Local isotropy in turbulent boundary

layers at high Reynolds numbers. J. Fluid Mech. 268, 333–372.

Schumacher, J., Sreenivasan, K.R. & Yeung, P.K. 2005 Very fine structures

in scalar mixing. J. Fluid Mech. 531, 113–122.

Seshadri, K. & Peters, N. 1988 Asymptotic structure and extinction of

Methane-Air diffusion flames. Combust. Flame 73, 23–44.

She, Z.-S. 1991 Physical model of intermittency in turbulence: near-dissipation-

range non-Gaussian statistics. Phys. Rev. Lett. 66 (5), 600–603.

She, Z.-S., Chen, S., Doolen, G., Kraichnan, R.H. & Orszag, S.A. 1993

Reynolds number dependence of isotropic Navier-Stokes turbulence. Phys. Rev.

Lett. 70 (21), 3251–3254.

She, Z.-S., Jackson, E., & Orszag, S.A. 1990 Intermittent vortex structures

in homogeneous isotropic turbulence. Nature 344, 226–228.

Sloan, D.G., Smith, P.J. & Smoot, L.D. 1986 Modeling of swirl in turbulent

flow systems. Prog. Enrg. and Combust. Science 12, 163–250.



BIBLIOGRAPHY 259

Smith, N.S.A., Bilger, R.W., Carter, C.D., Barlow, R.S. & Chen, J.-Y.

1995 A comparison of CMC and PDF modelling predictions with experimental

Nitric Oxide LIF/Raman measurements in a turbulent H2 jet flame. Combust.

Sci. Technol. 105, 357–375.

Smith, N.S.A., bilger, R.W. & Chen, J.-Y. 1993 Modelling of nonpremixed

Hydrogen jet flames using a conditional moment closure method. Proc. Combust.

Inst. 24, 263–269.

Smooke, M.D. & Giovangigli, V. 1991 Reduced kinetic mechanisms and asymp-

totic approximations for Methane-Air flames: Chapter 1 , pp. 1–28. Springer.

Spalding, D.B. 1971 Concentration fluctuations in a round turbulent free jet.

Chem. Engng. Sci. 26 (1), 95–107.

Speziale, C.G. 1995 A review of Reynolds stress models for turbulent shear flows.

Tech. Rep. 95-15. ICASE, NASA Langley, Virginia.

Sreedhara, S. & Lakshmisha, N. 2000 Direct numerical simulation of autoigni-

tion in a non-premixed turbulent medium. Proc. Combust. Inst. 28, 25–34.

Sreenivasan, K.R. 1991 Fractals and multifractals in fluid turbulence. Ann. Rev.

Fluid Mech. 23, 539–600.

Sreenivasan, K.R. 2004 Possible effects of small-scale intermittency in turbulent

reacting flows. Flow Turb. Combust. 72, 115–131.

Sreenivasan, K.R. & Antonia, R.A. 1997 The phenomenology of small-scale

turbulence. Ann. Rev. Fluid Mech. 29, 435–472.

Sreenivasan, K.R. & Meneveau, C. 1988 Singularities of the equations of fluid

motion. Phy. Rev. A 38 (12), 6287–6295.



260 BIBLIOGRAPHY

Sreenivasan, K.R. & Stolovitzky, G. 1996 Statistical dependence of inertial

range properties on large scales in high-Reynolds-number shear flow. Phys. Rev.

Lett. 77 (11), 2218–2221.

Su, L.K. 1998 Measurements of the three-dimensional scalar dissipation rate in

gas-phase planar turbulent jets. In Ann. Res. Briefs, CTR, pp. 35–46. Stanford

University.

Su, L.K. & Clemens, N.T. 2003 The structure of fine-scale scalar mixing in

gas-phase planar turbulent jets. J. Fluid Mech. 488, 1–29.

Swaminathan, N. & Bilger, R.W. 1999 Study of the conditional covariance

and variance equations for second order conditional moment closure. Phys. Fluids

11 (9), 2679–2695.

Swaminathan, N. & Bray, K.N.C. 2005 Combust. Flame 143, 549–565.

Tennekes, H. & Lumley, J.L. 1974 A first course in turbulence. MIT Press.

Thevenin, D. 2005 Three-dimensional direct simulations and structure of expand-

ing turbulent methane flames. Proc. Combust. Inst. 30, 629–637.

Tsurikov, M.S. & Clemens, N.T. 2002 The structure of dissipative scales in

axisymmetric turbulent gas-phase jets. AIAA J. 0164, 1–16.

Turns, R.S. 1996 An introduction to combustion: Concepts and Applications. New

York: McGraw Hill.

Turns, S.R. 2000 An Introduction to Combustion: Concepts and Applications, 2nd

edn. New York: McGraw Hill.

Varoquie, B., Legier, J.P., Lacas, F., Veynante, D. & Poinsot, T. 2002

Experimental analysis and large eddy simulation to determine the response of non-



BIBLIOGRAPHY 261

premixed flames submitted to acoustic forcing. Proc. Combust. Inst. 29, 1965–

1970.

Vedula, P., Yeung, P. K. & Fox, R. O. 2001 Dynamics of scalar dissipation

in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433,

29–60.

Vervisch, L. 2000 Using numerics to help the understanding of non-premixed

turbulent flames. Proc. Combust. Inst. 28, 11–24.

Veynante, D. & Vervisch, L. 2002 Turbulent combustion modeling. Prog. En-

ergy Combust. Sci. 28, 193–266.

Wall, C., Boersma, B.J. & Moin, P. 2000 An evaluation of the assumed

beta probability density function sub-grid scale model for large eddy simulation

of nonpremixed turbulent combustion with heat release. Phys. Fluids 12, 2522–

2529.

Wandel, A.P. & Klimenko, A.Y. 2005 Testing MMC mixing for Monte-Carlo

PDF simulations. Phys. Fluids 17 (12), 128105.

Wang, G.-H., Barlow, R.S. & Clemens, N.T. 2007a Quantification of res-

olution and noise effects on thermal dissipation measurements in turbulent non-

premixed jet flames. Proc. Combust. Inst. 31, 1525–1532.

Wang, G.-H., Karpetis, A.N. & Barlow, R.S. 2007b Dissipation length scales

in turbulent nonpremixed jet flames. Combust. Flame 148, 62–75.

Wang, L. & Peters, N. 2006 The length-scale distribution function of the dis-

tance between extremal points in passive scalar turbulence. J. Fluid Mech. 554,

457–475.



262 BIBLIOGRAPHY

Wang, L.-P., Chen, S. & Brasseur, J. G. 1999 Examination of hypotheses

in the Kolmogorov refined turbulence theory through high-resolution simulations.

Part 2. Passive scalar field. J. Fluid Mech. 400, 163–197.

Warhaft, Z. 1980 The use of dual heat injection to infer scalar covariance decay

in grid turbulence. J. Fluid Mech. 104, 93–109.

Warhaft, Z. & Lumley, J.L. 1978 An experimental study of the decay of tem-

perature fluctuations in grid generated turbulence. J. Fluid Mech. 88(4), 659–684.

Westbrook, C.K., Mizobuchi, Y., Poinsot, T., Smith, P.J. & Warnatz,

J. 2005 Computational modeling. Proc. Combust. Inst. 30, 125–157.

Williams, F.A. 1985 Combustion Theory , 2nd edn. Addison-Wesley Publishing

Company.

Williams, F.A. 1994 The next 25 years of combustion theory. Combust. Sci. Tech-

nol. 98 (4), 361–366.

Yakhot, V. 2003 Pressure-velocity correlations and scaling exponents in turbu-

lence. J. Fluid Mech. 495, 135–143.

Yakhot, V. & Sreenivasan, K.R. 2005 Anomalous scaling of structure functions

and dynamic constraints on turbulence simulations. J. Stat. Phys. 121 (5/6), 823–

841.

Yeung, P.K., Donzis, D.A. & Sreenivasan, K.R. 2005 High-Reynolds-number

simulation of turbulent mixing. Phys. Fluids 17, 081703.

Yeung, P.K., Xu, S., Donzis, D.A. & Sreenivasan, K.R. 2004 Simulations of

three-dimensional turbulent mixing for Schmidt numbers of the order 1000. Flow

Turb. Combust. 72, 333–347.


