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Abstract 
Naturally fractured reservoirs are an important source of hydrocarbons. 

Computational models capable of generating fracture geometries according to 

geomechanical principles offer a means to create a numerical representation of a more 

realistic rock mass structure. In this work, the combined finite-discrete element 

method is applied to investigate fracture patterns in layered rocks. First, a three-layer 

model undergoing layer normal compression is simulated with the aim of examining 

the controls on fracture spacing in layered rocks. Second, a seven-layer model with 

low competence contrast is modelled under direct tension parallel to the layering and 

bending conditions with the focus on investigating through-going fracture formation 

across layer interfaces. The numerical results give an insight into the understanding of 

various mechanisms that contribute to fracture pattern development in layered rocks. 
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1 Introduction 

Naturally fractured reservoirs around the world are an important source of 

hydrocarbons. The difficulty in characterising such reservoirs is mainly attributed to 

the lack of sufficient sub-surface data to create realistic fracture network models 

(Nelson, 2001). The first fracture network models simulated by Priest and Hudson 

(1976) provided a basis for the development of Discrete Fracture Networks (DFNs), 

which are now widely used to estimate permeability in reservoir engineering (e.g. 

Min et al., 2004). Although DFNs have brought many benefits to reservoir engineers, 

they lack certain mechanically realistic fracture relations, such as cross-cutting, 

branching, and truncation; these relations, however, have a significant impact on the 

bulk flow and geomechanical properties of a reservoir. Understanding mechanisms 

and processes of fracture pattern formation can help to predict fracture characteristics 

in different stress regimes. One study area of great importance is the research of 

fracture development in relation to layered rocks to understand the role of fractures in 

vertical fluid migration across and within sedimentary rock layers (Bai et al., 2000b; 

Becker and Gross, 1996; Doolin and Mauldon, 2001; Helgeson and Aydin, 1991). 

A considerable amount of literature exists on the geological setting and stress 

regimes in sedimentary rock that generate brittle and ductile structures as a 

consequence. A good discussion of the mechanical principles and concepts used to 

analyse geological structures including those mentioned below can be found in the 

book by Price and Cosgrove (1990). Sedimentary sequences in reservoir basins at 

different stages in their geological evolution to the present day may have been 

exposed to phases of deformation involving both layer extension and layer 

compression. Research on layered rock (Wu and Pollard, 1995) concluded that 

opening-mode tensile fractures are a common occurrence, and these are often 

confined and terminated by layer boundaries. However, sometimes through-going 

fractures are observed which penetrate many layer boundaries (Finn et al., 2003; 

Gross and Eyal, 2007). The mechanisms allowing this significant pathway for fluids 

to develop are not well understood and are the subject of great interest to structural 

geologists and reservoir engineers concerned with the integrity of cap rock. 

In this work the focus is on the formation of tensile fractures in layered rocks. 

Such multi-layer systems appear to have been subjected to direct layer parallel tensile 

stresses. Although intuition might suggest all three principal stresses in the ground 
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will be compressive (σ1 < 0, σ2 < 0, and σ3 < 0; it should be noted that the engineering 

mechanics sign convention is used in this paper, which means tensile stress is positive 

and compressive stress is negative), there is a range of circumstances in which this is 

not so and tensile stresses initiate geological structures. One example is a half-graben 

basin overlying a major listric, i.e. upward steepening fault (Fossen, 2010; Schlische, 

1991).  In such basins a roll-over anticline forms in the downward warping upper 

sequence, where direct tensile stresses build up in the multilayer sequence, as it is 

forced to stretch and fill the missing space. Another is the stretching of a sequence 

overlying an ascending diaper, e.g. a salt dome structure (Schultz-Ela et al., 1993). 

Also, a very common occurrence even to considerable depths in a reservoir is where, 

e.g. due to rapid sediment burial, the elevated fluid pressures may exceed the value of 

the applied maximum principal stress σ1. Therefore, the maximum effective principal 

stress, i.e. accounting for pore fluid pressure and governing tensile failure, is in many 

respects equivalent to a direct tension. 

Whereas buckle folds are associated with layer parallel compression, forced folds 

develop by boundary deflections at high angles to the bedding and are more readily 

acknowledged as facilitating stretching. There are, however, interesting analogies 

between forced folds and unstratified buckle folds. Two end member models for the 

deformation within layers folded by buckling are Tangential Longitudinal Strain 

(TLS) and Flexural Flow (FF) (Ramsay, 1967). Tangential Longitudinal Strain (TLS) 

is deformation response where the material behaves isotropically; the outer-arc 

stretches, and the inner-arc compresses, and the neutral surface, which will move 

during fold amplification, separates the material being extended parallel to the 

compression direction from that which is being shortened. Flexural Flow (FF) is a 

deformation field that would be associated with a transversely anisotropic behaviour 

allowing easy shear parallel to the layering. When interface slip is activated as a 

dominant deformation mechanism in fold amplification, the term flexural slip is used. 

These various settings that are known to initiate tensile fractures perpendicular to 

layer boundaries, namely direct layer parallel extension and forced folding, have 

informed the choice of boundary conditions that have been applied to the layered 

models in this research. A few numerical modelling studies have also been attracted 

by this problem. Bai and Pollard (2000a) simulated an elastic three-layer model, 

where vertical fractures were inserted in the central layer as pre-existing fractures. 

Tang et al. (2008) modelled the entire fracture evolution until saturation using a 
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strain-dependent finite element based degradation model. The work of Bai and 

Pollard (2000a) and Tang et al. (2008) used two-dimensional models with the 

boundary condition in which only tensile stress directed parallel to the associated 

layers was applied. Discussion of the fracture evolution caused by layer normal 

compressive stress in layered rock, e.g. induced by overburden or burial, was outside 

the scope of their papers. Both of their studies assumed that the two materials across 

the layer boundaries were initially welded together, i.e. no slip or opening was 

permitted along the boundary. Interestingly, Tang et al. (2008) were able to show that 

delamination was almost certainly occurring in their simulations. Here delamination 

means the two sides of an interface between two adjacent layers have relative 

displacement. Slip between beds and on curved sections of otherwise planar faults 

contributes to pull-apart structures and thus slip between opposite sides of an interface 

cannot be considered negligible. A better solution to numerical modelling of layered 

rocks is to introduce discrete surfaces as layer interfaces and use contact mechanics to 

simulate the interaction of neighbouring layers at interfaces. 

The objective of this paper is to investigate fracture spacing and through-going 

fracture formation in layered rocks by two-dimensional numerical simulations using 

the combined finite-discrete element method. The main novelty of using this 

numerical method is that layer interfaces can be explicitly represented by discrete 

surfaces with frictional properties and governed by contact mechanics laws, which is 

essential for accurate understanding of this problem but has been missing in previous 

research. The numerical study in this paper includes two parts. The first part focuses 

on examining the controls on fracture spacing to layer thickness ratio in a three-layer 

shale-limestone-shale sequence undergoing layer normal compression. The second 

part models through-going fracture formation in a seven-layer limestone sequence 

subject to direct tension and bending conditions with the focus on the fracturing 

behaviour across layer interfaces. As a non-traditional numerical method is used for 

this research, a brief introduction and two verification examples of the method are 

given before presenting the numerical results of layered-rocks. 

2 Numerical method 

Numerical methods provide important tools for the research of fracturing behaviour in 

quasi-brittle materials, e.g. rock, concrete, ceramics, etc. Many models have been 
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developed in the field of computational fracture mechanics, such as linear and non-

linear elastic fracture mechanics based methods (Bittencourt et al., 1996; Ingraffea 

and Manu, 1980; Swenson and Ingraffea, 1988), the extended finite element method 

(XFEM) (Belytschko and Black, 1999; Karihaloo and Xiao, 2003; Melenk and 

Babuška, 1996; Sukumar and Prévost, 2003), the cohesive-zone model (Bocca et al., 

1991; de Borst, 2003) and meshless methods, such as the element free Galerkin 

method (EFGM) (Bordas et al., 2008; Fleming et al., 1997). Moreover, discontinuum-

based numerical methods that are originally used for granular materials, such as the 

smoothed particle hydrodynamics (SPH) method (Das and Cleary, 2010; Gray et al., 

2001; Ma et al., 2011) and the discrete element method (DEM) (Cundall and Strack, 

1979; Morris et al., 2004; Shi and Goodman, 1985) have also become increasingly 

popular in fracture modelling. In actual numerical simulations of engineering 

applications, the choice of modelling approach should be based on the likely failure 

mechanism of the material, i.e. whether it is a failure of material, discontinuity or a 

combination of both (Coggan et al., 2014). 

The numerical method used in this paper is the combined finite-discrete element 

method (FEMDEM) (Munjiza, 2004). The reason to choose this method is that it is 

capable of modelling mechanical behaviour both in the continuum domain (e.g. 

deformation and stress distribution) and across discontinuities (e.g. interaction 

between discrete layer interfaces). In this method, the whole domain is discretised by 

both discrete element meshes and finite element meshes. For example, in a layered 

system, each layer is a discrete element, and inside each layer there is a finite element 

mesh associated with it; in a two-dimensional domain, 3-node triangular elements are 

used for the finite element mesh. The transition from continuum to discontinuum, 

which gives an explicit geometric realisation of fracture patterns, is modelled through 

fracturing and fragmentation processes and controlled by a failure criterion. An 

explicit time integration scheme is used to calculate the deformed configuration. In 

the numerical results presented in this paper, the loading is slow enough so that 

dynamic effects can be neglected. The details of the FEMDEM method and its 

fracture model can be found elsewhere (Guo, 2014; Munjiza, 2004; Xiang et al., 

2009) and here only some key aspects are briefly introduced. 
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2.1 Pre-failure 

Before fractures initiating from stress concentrations or propagating from pre-existing 

crack tips, the domain is in a state of continuum deformation under external loading. 

The algorithms of stress calculation are implemented in a standard finite element 

formulation. The constitutive model used for 3-node triangular elements is a neo-

Hookean viscoelastic material model (Bonet and Wood, 1997), so the Cauchy stress 

tensor T can be calculated as 

 
 

(1) 

where µ and λ are Lamé constants, B is the Left Cauchy-Green strain tensor, J is 

the determinant of the deformation gradient matrix F, η is the viscous parameter, and 

D is the rate of deformation, which is calculated from the velocity gradient L and is 

symmetric (Munjiza, 2004). 

 
 

(2) 

2.2 Failure criterion 

The failure criterion is applied to the interface elements, which are inserted between 

triangular elements. When the failure criterion is satisfied the local interface element 

will break, so the adjacent triangular elements will be physically separated and the 

interaction of the separated element edges (normal compression and sliding friction, 

see section 2.3) can model the realistic scenarios of contact between discrete fracture 

walls. 

When fractures initiate or propagate, the assumption here is that there exists a 

plastic zone corresponding to a micro-fractured zone with some remaining ligaments 

for stress transfer in front of the actual fracture tip (Hillerborg et al., 1976, Figure 1). 

The stresses in the plastic zone are calculated by a constitutive relation called the 

combined single and smeared crack model (Munjiza et al., 1999), which is based on 

the accurate representation of the stress-stain relation in direct tension, and includes a 

strain softening part to characterise the deterioration of material strength (Figure 2). 

Therefore, the normal stress σ in interface elements can be calculated following the 

stress-displacement relation in Figure 2, 
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if δn < 0 

(3) 
if 0 ≤ δn ≤ δnp 

if δnp < δn ≤ δnc 
where ft is the tensile strength, δn is the relative displacement in the normal 

direction in the interface element, δnp is the maximum elastic displacement, δnc is the 

critical displacement at failure, z is a heuristic softening parameter obtained by curve 

fitting using experiment data (Munjiza et al., 1999; Xian et al., 1991). In a similar 

way, the shear stress τ can be calculated by substituting normal displacement δn with 

shear displacement δs, and other parameters in the normal direction (with subscript n) 

with the corresponding parameters in the shear direction (with subscript s). 

 

Figure 1: Schematic illustration of the transition from continuum to discontinuum. 
The yellow area shows the contacting couples at both sides of the discrete fracture. 

  

Figure 2: The constitutive relation for interface elements. 
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The failure criterion used here is the Mohr-Coulomb criterion with a tension cut-

off, which defines the strength parameter f in Figure 2. It assumes the tensile strength 

ft is a constant and defines the shear strength fs as 

  (4) 

where c is the cohesion,  ϕ is the internal friction angle, and σn is the normal stress 

acting perpendicular to the shear direction. It should be noted that because the normal 

stress σn cannot exceed the tensile strength ft, the tension cut-off that happens when σn 

≥ ft is automatically guaranteed in Equation 4. Based on the material strengths defined 

by the Mohr-Coulomb criterion, the interface elements will fail when the relative 

displacement reaches its critical value δc (Figure 1), which is defined by the Griffith 

theory (1921). It assumes that a certain amount of energy is absorbed by the formation 

of a unit area of the fracture surface in a brittle medium, which is called the fracture 

energy Gf and it is a material property. Therefore, the formation of fractures will 

cause the system energy to decrease. In terms of fracture coalescence (e.g. several 

fractures grow in the domain), the one whose stress at its tip satisfies the failure 

criterion first will grow first. Because the failure criterion is locally defined at 

material points, so all scenarios of fracture formation, including initiation, growth and 

coalescence, etc., are all treated as material failure at the discretised element level. 

Although this concept is a simplification of the complicated problem, and is different 

from the variational model based on energy minimisation (Francfort and Marigo, 

1998), it has a similar effect of minimising the elastic potential energy in the domain. 

It should be noted that because interface elements are only inserted between triangular 

elements, fractures could only propagate along element boundaries. However, 

although the fracture pattern is locally mesh-dependent, from a global point of view 

its influence is insignificant if the element size is small enough, i.e. only a fraction of 

the length of the process zone in front of the fracture tip (Guo et al., 2016; Munjiza 

and John, 2002). 

2.3 Post-failure 

After interface elements fail, discrete fractures will form between triangular elements. 

Numerically, the formation of fractures means the transition of algorithms to calculate 

the constraints between triangular elements. Before fracture formation, the adjacent 

triangular elements are constrained by interface elements. When the local stress in the 

interface element reaches the material strength, and eventually drops to zero after the 
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softening stage, a fracture will form. After fracture formation, the constitutive relation 

defined in Figure 2 becomes inoperative on the failed interface element. Instead, 

discrete fragment motion and interaction across discrete fracture walls during 

progressive deformation are tracked by contact laws implemented in the discrete 

element formulation, which are also used to simulate the frictional behaviour. The 

triangular mesh is fixed and does not change during the simulation, e.g. no addition or 

deletion of elements or nodes. The contact algorithms used in the FEMDEM method 

include two parts: contact detection and contact interaction. The contact detection is 

performed by an NBS (no binary search) contact detection algorithm (Munjiza and 

Andrews, 1998). The algorithm for contact interaction (Munjiza and Andrews, 2000) 

is based on the penalty function method and incorporating contact kinematics 

preserving energy balance. In this algorithm, penetration between discrete elements 

will generate a pair of contact forces, which are equal and opposite acting on the two 

triangular elements of a contacting couple (yellow area in Figure 1). The two 

triangular elements of a contacting couple are named contactor and target, 

respectively. The contact force fcontact generated due to penetration is then calculated 

as 

 
 

(5) 

where dAij is an infinitesimal overlap between contactor element βci and target 

element βtj, m and n are the total number of triangular elements into which the 

contactor and target discrete elements are discretised, φci and φtj are potential 

functions for the contactor element βci and the target element βtj, respectively. 

Sliding friction is also considered as a type of contact and a Coulomb friction law 

is implemented into the numerical code. Sliding in the tangential direction at the 

contact interface will occur when the tangential contact force ftan is greater than µN, 

where µ is the friction coefficient, and N is the normal pressure at the contact 

interface. It should be noted that the microscopic roughness of fracture surfaces is not 

considered here. 

3 Verification of the numerical method 

In this section, numerical experiments are conducted to verify the numerical models 

used for the simulations of layered-rocks. Two aspects in the FEMDEM method that 
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are most relevant to the mechanical behaviour in layered-rocks are verified here: one 

is the Mohr-Coulomb failure criterion, which controls the formation of fractures; the 

other one is the Coulomb friction law, which governs the frictional interaction 

between discrete layer interfaces as well as fracture walls. Thorough convergence 

studies of the numerical model used in this paper can be found in the papers from 

Munjiza et al. (1995, 1999) and Munjiza and John (2002), and more verification and 

validation cases can be found elsewhere (Farsi et al., 2015; Wang, 2010). 

3.1 Mohr-Coulomb failure criterion 

The Mohr-Coulomb criterion with a tension cut-off has been implemented to define 

shear strength as a function of mean stress (Equation 4). A numerical test is set up to 

verify the fracture patterns formed under biaxial compressive loading conditions 

(Figure 3). The upper loading platen moves vertically downwards at a constant 

velocity 0.1 m/s and the lower platen is fixed. A confining pressure of 5 MPa is 

applied to the left and right sides of the specimen, which has the material properties as 

follows: density ρ = 2700 kg⋅m-3, Young’s modulus E = 60 GPa, Poisson’s ratio υ = 

0.35, tensile strength ft = 5 MPa, cohesion c = 12 MPa.  

Four internal friction angles ϕ = 20°, 30°, 40°, 50° are tested in the modelling. 

Depending on different internal friction angles, the computational time (serial 

computation) of each test varies between 10 h and 17 h. According to the Mohr-

Coulomb theory, the conjugate slip planes should have angles of 45° ± ϕ/2 with the 

direction of the minimum compressive stress (horizontal direction). It can be seen 

from Figure 4 that the fracture patterns obtained from numerical modelling fit well 

with the theoretical predictions (red dashed lines). It should be noted that there are no 

pre-existing flaws or weaknesses in the specimen before the loading starts, so the 

initiation of the first fracture is to a large extent affected by numerical perturbation, 

but after that the overall fracture patterns are formed by mechanical principles. It is 

also worth noting that although the geometry and loading conditions are symmetric, 

because the mesh is irregular (Figure 3) and fractures can only develop along element 

boundaries, the fracture patterns are asymmetric. 
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Figure 3: Test setup for the Mohr-Coulomb failure criterion. 

    
a. ϕ = 20° b. ϕ = 30° c. ϕ = 40° d. ϕ = 50° 

Figure 4: Numerical results of fracture patterns for different internal friction angles. 
The red dashed lines show the theoretical conjugate slip planes. 

3.2 Coulomb friction law 

A Coulomb friction law has been implemented in the numerical code to model sliding 

friction between layers and discrete fracture surfaces. A benchmark test is simulated 

with different friction coefficients. The setup of the benchmark test is a square block 

with an initial horizontal velocity vxi sliding on a fixed horizontal base (Figure 5a). 

Due to the friction between the square and the base, the square will stop at a certain 

distance, which is called the stop distance L and can be calculated analytically by 
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(6) 

where g is the acceleration of gravity, g = 9.8 m/s2. Three different friction 

coefficients µ = 0.1, 0.5 and 1.0, and six different initial horizontal velocities vxi = 0, 

1, 2, 3, 4, and 5 m/s are tested in the numerical simulations. The numerical results for 

initial horizontal velocity vxi = 5 m/s are shown in Figure 5, and all of the numerical 

results are plotted with theoretical solutions in Figure 6. It can be seen that the 

numerical results are in good agreement with theoretical solutions calculated by 

Equation 6 for all the friction coefficients and initial horizontal velocities being tested. 

 
a. Test setup. 

 
b. Initial state. 

 
c. Transient state. 

 
d. Final state. 

Figure 5: Benchmark test setup for the Coulomb friction law and numerical results for 
initial horizontal velocity vxi = 5 m/s. 
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Figure 6: Comparison between numerical results and theoretical solutions. 

4 Investigation of tensile fracture spacing under layer 

normal compression 

One key aspect of numerical modelling studies on layered rock is fracture spacing to 

layer thickness ratio of layer-bound fracture sets. Opening-mode tensile fractures are 

common in sedimentary rock, and their spacing is often proportional to the thickness 

of the fractured layer (Ladeira and Price, 1981; Tang et al., 2008; Wu and Pollard, 

1995). Clearly, it would be advantageous for flow prediction if fracture spacing could 

be inferred from bed thicknesses deduced from drilling (Olson, 2004). The growth of 

fractures in layered sequences has been described in terms of ‘Sequential Infilling’, 

where the term ‘Fracture Saturation’ is given to the strata when no more fractures can 

infill even with increasing strain (Bai et al., 2000a). 

In this section, a classical three-layer sandwich model (shale-limestone-shale) is 

taken as the problem domain to study the controls on the fracture spacing in the 

central competent layer (limestone). The focus is on the modelling of tensile fractures 

in a competent layer (limestone) surrounded by indirect stretching of the incompetent 

matrix (shale), in which condition tensile fracturing in the competent layer 

(limestone) occurs by stress transfer from extension of incompetent neighbouring 

layers (shale). 
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4.1 Model setup 

The model investigated here has identical dimensions to a case investigated by Tang 

et al. (2008), where the central layer of 0.03 m thickness is sandwiched between two 

layers of 0.045 m thickness (Figure 7). All three layers have the same length of 0.6 m. 

Tang et al. (2008) applied direct tension boundary conditions in the x-direction and 

set the central layer stiffer but with lower strength than the matrix layers so that 

tensile fractures initiate first in the central layer. This is because the tensile strains are 

forced to increase evenly in the inner and outer layers, but with tensile stresses 

building up to critical values first in the central layer due to greater stiffness. In their 

model, they introduced heterogeneity of mechanical properties by a Weibull 

distribution. In this paper the material is assumed to be homogeneous and the material 

stiffness and strength properties are selected as reasonable for a limestone-shale 

multilayer (e.g. Engelder and Peacock, 2001). Details of the material properties can 

be found in Table 1. 

Table 1: Material properties used in the three-layer sandwich model. 

Rock types Shale Limestone 

Density ρ (kg⋅m-3) 2400 2700 

Young’s modulus E (GPa) 10 50 

Poisson’s ratio υ 0.15 0.25 

Tensile strength ft (MPa) 2 10 

Shear strength fs (MPa) 7 35 

Fracture energy Gf (J⋅m-2) 30 50 

 

 

Figure 7: Three-layer model and its boundary conditions. 
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A layer-normal compressive stress regime is considered. The maximum for the 

average vertical strain is set at εyy = 1%. A time-step of 5.0 × 10−8 s ensures stable 

results with 3-node triangular elements of ~2 mm in the central limestone layer and 

~5 mm in the surrounding shale layers. The simulation performed is equivalent to a 

large composite specimen subjected to a rock mechanics test in a plane strain rig (zero 

strain in z-direction) with constant velocity vy for the upper and lower boundaries and 

constant confining pressure Px for the left and right end boundaries. During the 

simulation, inelastic as well as elastic stretching in the shale is generated which 

contributes to tensile stresses being imparted to the central limestone layer. Four 

values of confining pressures (Px = 0, 1, 5 and 10 MPa) are modelled to illustrate 

fracture development in the three-layer model. 

The properties of the layer interfaces are significant. On the one hand, welded 

interfaces, i.e. no slipping or opening is permitted, would result in the multi-layered 

system behaving as intact rock with some alternating competent and incompetent 

material properties; however, slipping between beds is an important process given the 

geological evidence of bedding plane interface shear and pull-apart structures (Price 

and Cosgrove, 1990). On the other hand, frictionless contacts would preclude shear 

stress transfer between layers. An alternative is to treat layer interfaces as pre-existing 

closed cracks with no cohesion, and permit slip to occur according to a frictional 

contact law. Here a Coulomb friction law (Section 3.2) is adopted and a friction 

coefficient µ = 0.5 is used for sliding between fracture walls within either rock type as 

well as for the horizontal interfaces between them. 

4.2 Numerical results 

The values of average vertical strain εyy, expressed as percentages identify different 

stages in each simulation of fracture development as shown in Figure 8 – Figure 11. 

The first model with no confinement (Px = 0 MPa, Figure 8) has a very rapid period of 

formation of multiple tensile fractures and delamination, however damage to the end 

of the shale layers inhibit tensile fractures from forming near to the ends. The lack of 

confinement enables the failed model to stretch out smoothly with zero resistance. It 

should be noted that because the triangular mesh is asymmetric, the fracture patterns 

are not symmetric as expected from an ideal homogenous domain. Moreover, there is 

no pre-existing impurities or flaws in the model before fracture initiation, so the 
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formation of the first fracture is greatly due to numerical perturbation, but it does not 

affect the sequence of fracture formation afterwards. 

The results of confining pressure Px = 1 MPa are shown with more details in 

Figure 9. It can be seen that fragments wedging out as end-effects are only slightly 

suppressed, which is realistic for flexural flow settings of folded multilayers. Figure 9 

shows the yielding in the shale is physically expressed as conjugate shear fractures at 

appropriate bulk σyy values given by the material properties (see bulk stress-strain 

curves in Figure 12). The first tensile fracture is initiated by a stress concentration 

caused by shear displacements in the shale perturbing the lower boundary of the 

limestone layer at about εyy = 0.127%, but no fractures have developed in the middle 

region of the model. Fracture infill is not by idealised model sequential infill as the 

second and third fractures grow simultaneously. Fracture 4 grows in the centre of the 

longest intact segment. Fracture 5 initiates (like fracture 1) then 6 grows between 3 

and 4, 7 between 4 and 5, 8 between 2 and 5, 9 between 4 and 6, which is in 

approximate order of longest segment. The peak average vertical stress of ~17.5 MPa 

at εyy ~0.120% drops rapidly afterwards (Figure 12), and by εyy = 0.177%, the 10th 

and last fracture in the longest unbroken segment of limestone has developed. This 

phase of very rapid sequential fracture development is accompanied by the main rapid 

drop in bulk vertical stress (Figure 12). From this point, strain in the limestone is 

increased by opening of fractures and interface slipping while in the shale, there is 

steady shear displacement on conjugate shear surfaces and a very slight increase in 

fracture density. During the long post-fracture saturation phase of fracture opening, 

the longer limestone segments suffer bending stresses; these are not sufficient to 

initiate further tensile fractures, but could explain the stress fluctuations between 0 

and 5 MPa (Figure 12). 

The third model is highly confined (Px = 5 MPa, Figure 10). The initial pressure 

pulse sets up a transient stress wave as seen in the pre-peak loading curve and various 

vibration modes with stress amplitudes below those for yielding (Figure 12). Onset of 

tensile fracturing in the limestone layer near the left end is at a higher peak average 

stress (~20 MPa) and εyy = 0.145%; thereafter orderly sequential infilling develops as 

each longest segment fractures first. After fracture 11 and 14, longer periods of 

straining in the shale precede the next fracture.  Resistance to continued layer normal 

shortening falls to a post peak value of ~11 MPa by εyy = 0.350% with stress 

fluctuations of higher amplitude possibly associated with more significant stick-slip 
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frictional events. Fractures continue to infill in the limestone after this point. Detailed 

observation shows that fractures in the limestone often propagate away from a 

perturbation at the shale boundary for over several mesh elements and with a 

significant shear component on the advancing crack before a local tensile stress ahead 

of the crack tip redirects the crack orientation towards the y-direction. This shear 

initiation at these higher mean stresses appears to provide a new mechanism to 

continue splitting the limestone at the higher strain levels. 

The last model (Px = 10 MPa, Figure 11) can be understood with reference to 

Figure 12 and Figure 13 as a more extremely confined case than the third case (Px = 5 

MPa), with frictional behaviour even more dominant, and the shale exhibiting a 

diffuse shear fracture refined down to element size level towards the later stages. 

Figure 11 shows that by εyy = 0.200% only three fractures have formed in the 

limestone during the main stress drop. Frictional resistance to shearing in the shale 

maintains the residual bulk stress at ~17 MPa with additional fracturing in the 

limestone appearing to reaching saturation between εyy of 0.800% and 1.000% (Figure 

13) with an average spacing to layer thickness ratio S/tf of ~0.8, where S is the 

average distance between fractures in the central limestone layer, and tf is the 

thickness of this layer, which equals 0.03 m. 

 
a. εyy = 0.198%. 

 
b. εyy = 1.000%. 

Figure 8: Numerical simulation stages of fracture patterns forming with confining 
pressure 0 MPa. Note that shear fractures develop in the shale and the limestone 
develops tensile fractures which infill in a sequence (see numerals in red colour). 

 
 
 

1 2 345 678 9 1011

1 2 345 678 9 1011
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a. εyy = 0.126%. 

 
b. εyy = 0.127%. 

 
c. εyy = 0.131%. 

 
d. εyy = 0.139%. 

 
e. εyy = 0.148%. 

 
f. εyy = 0.161%. 

 
g. εyy = 0.177%. 

 
h. εyy = 1.000%. 

Figure 9: Fracture development in the three-layer model with confining pressure 1 
MPa. The numerals in red colour identify the sequence of fracture formation. 

 

1

1 3 2

1 3 24 5

1 3 24 56 7

1 3 24 56 7 8

1 3 24 56 7 89 10
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a. εyy = 0.198%. 

 
b. εyy = 1.000%. 

Figure 10: Fracture development in the three-layer model with confining pressure 5 
MPa. 

 
a. εyy = 0.198%. 

 
b. εyy = 1.000%. 

Figure 11: Fracture development in the three-layer model with confining pressure 10 
MPa. 

 

Figure 12: Bulk stress versus vertical strain (normal to layering) is shown for different 
confining pressures acting parallel to the layers. 
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Figure 13: Accumulation of numerically modelled fractures in the central (limestone) 
layer. Note that saturation happens after a certain number of fractures. 

The numerical results show that average fracture spacing to layer thickness ratio 

S/tf at saturation is 1.8 (Px = 0 MPa) and 1.7 (Px = 1 MPa) for the lower confining 

pressure cases similar to that for the homogeneous case obtained by Tang et al. 

(2008). At higher confinement, however, the mean stress is higher, and normal 

stresses across the frictional layer interface inhibit sliding so that for Px = 5 MPa, S/tf 

= 1.0 and at Px = 10 MPa, S/tf = 0.8; these fractures are more clustered into swarms or 

zones. 

Layered rocks undergoing increasing layer-normal compression during slow 

burial in a geological basin setting may develop a steady inelastic deformation in the 

shale layers as they yield and stretch pervasively or they may deform with more 

localised shearing deformation styles. One limitation of the numerical model used in 

this paper is that failure of material can only be characterised by developing discrete 

fractures, while in this case of shale layers, material deformation may look more 

realistic if they are characterised by forming shear bands (plastic strain localisation). 

However, here the focus is to investigate the tensile fracture spacing in the central 

limestone layer, by using the three-layer setup to generate a realistic stress regime, 

and the inelastic deformation in the shale layers has been simulated by explicitly 

forming conjugate shear fractures. Although the shear fracture patterns are not exactly 

the same as field observations, from Figure 12 it can be seen that the bulk stress – 

strain relations are correct responses to the boundary conditions. 
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A possible mechanism favouring S/tf < 0.8 is suggested by those models at higher 

confining pressures. Under the higher mean stresses, shear fractures in the shale 

normally arrested by the limestone, often promote stress concentrations and shear 

fractures, which eventually propagate into the competent limestone across the 

boundaries. These shear fractures in the limestone which are initiated near the shale-

limestone boundaries amplify the stresses at the advancing fracture tips. The fractures 

transform back from shear mode into tensile mode as they straighten towards the 

direction of maximum compressive stress and propagate through the otherwise 

compressed material. The high reported incidence of S/tf < 0.8 in geological 

sedimentary sequences (Bai and Pollard, 2000a, 2000b) could also be explained by 

internal fluid pressures in the Earth’s crust; high internal fluid pressure could cause 

effective stress to change its mode from compression to tension, which will generate 

tensile fractures once it reaches the rock material’s tensile strength. 

5 Through-going fracture formation under layer parallel 

tension and bending 

This section focuses on another key aspect of numerical studies on layered rock – the 

formation of through-going fractures across layer interfaces, which plays an important 

role in vertical fluid migration across and within sedimentary rock layers. The model 

simulated in this section corresponds to a seven-layer horizontal limestone composite 

sampled from the vertical section of a large wavelength fold (Price and Cosgrove, 

1990). The scale of the sampled composite is considerably smaller than the scale of 

the major fold, so layer curvature can be neglected. 

5.1 Model setup 

The model investigated here is a seven-layer all-limestone sequence (Figure 14), in 

which the layers are numbered in an ascending order from the upper layer to the lower 

layer. The light and dark grey colours represent two types of limestone with an 

approximate 20% difference in material properties (Table 2, Atkinson, 1987; Lama 

and Vutukuri, 1978; Zoback, 2010). The material within each horizontal layer is 

assumed as isotropic and homogeneous material. The length of the model is 0.6 m and 

the thickness of the whole model is 0.2 m, which consists of layers 1, 3, 5 and 7 of 

0.02 m thickness and layers 2, 4 and 6 of 0.03 m, 0.04 m and 0.05 m thickness, 
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respectively. All of the seven layers are meshed using unstructured 3-node triangular 

elements with an average size of 2 mm. A time-step of 1.0 × 10−8 s is used in the 

numerical modelling. A Coulomb friction law is applied to govern both sliding 

between opposite sides of a fracture and sliding on an interface between layers; the 

friction coefficient µ is set to be 0.6. 

Table 2: Material properties used in the seven-layer model. 

Layer numbers 1, 3, 5 and 7 2, 4 and 6 

Density ρ (kg⋅m-3) 2500 2700 

Young’s modulus E (GPa) 50 60 

Poisson’s ratio υ 0.25 0.35 

Tensile strength ft (MPa) 4.2 5.0 

Cohesion c (MPa) 10 12 

Internal friction angle ϕ (°) 25 30 

Fracture energy Gf (J⋅m-2) 50 60 

 

5.2 Numerical results of direct tension 

In the first example shown in Figure 14, a loading condition of direct tension parallel 

to the material layers is applied to the model. The left end boundary is fixed in the x-

direction, and the lower boundary is fixed in the y-direction. A velocity-controlled 

constraint condition in the x-direction vx is applied to the right-hand boundary, and 

different pressures in the y-direction Py ranging from 0 MPa to 10 MPa are applied to 

the upper boundary. Both the velocity and pressure conditions are applied as a linear 

ramp-up from zero to the designed boundary constraint values over the first 0.002 s in 

the numerical modelling to reduce the impact effect when loading suddenly starts. 

 

Figure 14: Seven-layer model undergoing direct tension parallel to layers. 
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The values of mean horizontal strain εxx are used to identify different stages in 

fracture development as shown in Figure 15 – Figure 18. The tensile strains in the x-

direction are forced to increase evenly in all seven layers by the uniform velocity 

loading conditions at the right end boundary. Although tensile stresses developed in 

the thin, weaker layers (layer 1, 3, 5 and 7) are smaller than the thicker layers, the 

tensile strength of layer 1, 3, 5 and 7 is also smaller. For the case of zero pressure in 

the y-direction (Figure 15), the tensile fractures first initiate in the thinner layers. Then 

more tensile fractures subsequently grow in the thick layers, however none are 

connected across interfaces with fractures in neighbouring layers. When no new 

fractures are generated with increasing strain, most layers have only one fracture. This 

is because stress is no longer transferred from the right end boundary after the model 

has been totally pulled apart. Fractures can be seen to link from the top to the bottom 

and these will simply open up with further applied strain. According to the numerical 

method used in the simulations, fractures can only propagate along element edges, so 

this mesh dependency in an unstructured mesh results in asymmetry of the fracture 

patterns. 

Figure 16 – Figure 18 show the results of models with non-zero pressures in the y-

direction, which are introduced to model the effect of layer-normal compression 

during slow burial in a geological basin setting. At an early stage, the most significant 

difference compared with the Py = 0 MPa model is that tensile fractures initiate almost 

simultaneously both in thick and thin layers in the upper part of the model. This 

preferential position of initial fractures is caused by the fact that the pressures in the 

vertical direction are applied at the upper boundary, which results in an additional 

layer horizontal extension being sensed first at the top slightly before the reaction 

force is taken up at the bottom. For greater values of Py, fracture generation becomes 

more localised with fracture connection across layer interfaces occurring. For Py = 1 

MPa, fractures propagate across layer interfaces in two layers (layer 4 and 5, layer 6 

and 7, respectively); for Py = 5 MPa, fractures propagate across layer interfaces in 

three layers (layer 3, 4 and 5); for Py = 10 MPa, fractures propagate across layer 

interfaces in five layers (layer 3 – 7). 
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a. εxx = 0.013%. 

 
b. εxx = 0.107%. 

Figure 15: Numerical results of fracture patterns forming in the seven-layer model 
subject to direct tension parallel to the layering with vertical pressure 0 MPa. 

 
a. εxx = 0.015%. 

 
b. εxx = 0.107%. 

Figure 16: Fracture formation in the seven-layer model subject to direct tension with 
vertical pressure 1 MPa. 

 
 



 25 

 
a. εxx = 0.020%. 

 
b. εxx = 0.107%. 

Figure 17: Fracture formation in the seven-layer model subject to direct tension with 
vertical pressure 5 MPa. 

 
a. εxx = 0.026%. 

 
b. εxx = 0.107%. 

Figure 18: Fracture formation in the seven-layer model subject to direct tension with 
vertical pressure 10 MPa. 

Fracture aperture plays an important part in permeability analysis of geological 

systems and also provides a perspective to explicitly investigate the delamination of 

layer interfaces if they are viewed as pre-existing closed cracks with no cohesion. In 

this simulation, fracture apertures can be extracted in the post-processing (Lei et al., 

2014). The normal apertures of models subject to direct tension with pressure Py = 0 

MPa and 10 MPa are shown in Figure 19, which correspond to the fracture patterns in 
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Figure 15 and Figure 18. When Py = 0 MPa, all the major tensile fractures are fully 

developed and largely opened to ~0.7 mm. The second tensile fractures in layer 2 and 

layer 6 are just opened to ~0.1 mm, which is due to the cessation of stress transfer 

from the right end boundary. The wide-open fractures and fully delaminated 

interfaces together provide potential paths for relatively rapid fluid flow. A section of 

the model (Figure 19a) is extracted to investigate the relation between the timing of 

fracture initiation and layer interface delamination. The bulk horizontal stresses of 

layer 2 and 3, as well as normal aperture at the interface between layer 2 and 3 in this 

section, is plotted versus bulk horizontal strain in Figure 20. The plot suggests that it 

is the critical difference in horizontal stresses in the two layers that initiates 

delamination followed by aperture opening. The initiation of the first fracture in each 

layer is accompanied by a rapid drop in bulk horizontal stress. The increase in normal 

aperture indicates the delamination at the layer interface, which happens just after the 

initiation of fractures in both layers. This indicates interface delamination occurs after 

the fracture initiation in the neighbouring layers on both sides of the interface. It 

should be noted that the tensile strengths in Figure 20 are slightly higher than the 

input values assigned as material properties. This is because the loading is not strictly 

static so the materials are somewhat stronger, but the fracture behaviour is essentially 

similar for a range of engineering type loading rates. It is also worth noting that stress 

fluctuations at post-peak stages in Figure 20 indicate stick-slip frictional events 

between layer 2 and 3. 

The model with pressure Py = 10 MPa (Figure 19b) has no delamination at 

interfaces because of the high pressure in the y-direction, which clearly proves that 

vertical stress has a significant influence on the delamination at horizontal layer 

interfaces. Moreover, another phenomenon significantly influenced by vertical 

pressures is the formation of through-going fractures, which are important for fluid 

flow analysis in multi-layered systems. Low vertical stress enables the interface 

between fractured and non-fractured layers to delaminate, which can impede tensile 

fracture propagation across an interface (Figure 21, Casabianca and Cosgrove, 2012). 
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a. Py = 0 MPa, εxx = 0.107%. The dashed frame extracts a section for stress and 
aperture analysis in Figure 20. 

 
b. Py = 10 MPa, εxx = 0.107%. Note that a through-going fracture across the interfaces 
of layer 4-7 is shown in detail. 

Figure 19: Normal apertures (unit: m) of the seven-layer model subject to direct 
tension parallel to the layering. 

 

Figure 20: Horizontal stress and normal aperture of the section extracted from Figure 
19a. 
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Figure 21: Schematic illustration of the influence of effective vertical stress on the 
formation of through-going fractures. 

5.3 Numerical results of bending 

In the second example, two bending conditions are modelled. In both cases, the 

seven-layer model is pushed up by a point velocity in the y-direction vy at the middle 

point of the lower boundary. It can be seen from Figure 22 that the only difference 

between these two models lies in the boundary constraint conditions at the left and 

right ends. In Figure 22a, the two ends of the model are clamped, which means both 

the translation and rotation are constrained, while in Figure 22b, the constraints are 

similar to a three-point bending test with differential displacements possible at the 

layer ends. 

 
a. Two ends are clamped; in this case, the layer ends are completely fixed. 

 
b. Two ends are not clamped; in this case, the layer ends can rotate. 

Figure 22: Bending conditions of the seven-layer model. 



 29 

The contour plot of the horizontal stress component σxx of the clamped model 

(Figure 23a) shows that before the first fracture initiates, the seven-layer model has 

come to a state that there exists a neutral surface in every layer, which separates the 

tensile and compressive stress fields. However, in the middle region of every layer the 

upper part is in tension and the lower part is in compression, but at the left and right 

ends it is the opposite distribution because of the clamped boundary constraints. The 

tangential longitudinal strain model is reasonably well exhibited throughout all layers. 

When fractures start to initiate and until fractures have saturated (Figure 23b), mainly 

tensile fractures develop in the tensile stress fields and shear fractures develop in the 

compressive stress fields. Due to the mesh dependency of the fracture orientation, a 

few very short shear fractures of one or two element edge length are distributed along 

the tensile fracture paths; other than that, the length of both tensile and shear fractures 

are proportional to the layer thickness. 

The un-clamped model exhibits typical behaviour of a three-point bending beam 

for every layer. The horizontal stress contour prior to fracture initiation (Figure 24a) 

shows a different pre-failure state compared with the clamped model. Although the 

middle region of every layer has a similar stress distribution to the clamped model, 

the left and right ends are almost free of horizontal stress, a consequence of the 

constraint-free boundary conditions. These different horizontal stress distributions 

govern the difference in fracture patterns (Figure 24b). The un-clamped model has 

only one through-going tensile fracture in the middle, though separated by a few very 

short shear fractures due to mesh dependency as noted in Figure 23b. 
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a. Clamped model before fracture initiation. 

 
b. Clamped model at fracture saturation. 

Figure 23: Horizontal stress contours σxx (unit: Pa) and fracture patterns of the seven-
layer model subject to bending. For the fracture patterns, the red colour represents 
tensile fractures; the yellow colour represents shear fractures; and the blue colour 
represents layer interfaces and model boundaries. 

 
a. Un-clamped model before fracture initiation. 

 
b. Un-clamped model at fracture saturation. 

Figure 24: Horizontal stress contours and fracture patterns of the seven-layer un-
clamped model subject to bending. 

To summarise the differences, in the freely un-clamped model (Figure 24b), 

although a neutral surface associated with Tangential Longitudinal Strain (TLS) is 
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seen to develop in all layers prior to fracture, once tensile fractures initiate in the 

tensile zone (almost simultaneously in all layers), the freely rotating limb boundary 

conditions permit interlayer slip causing the inner-arc compression zones to relax, and 

the neutral surface migrates as the tensile cracks propagate with further bending. 

Compression is unable to build significantly on the inner-arcs once outer-arc fracture 

has propagated and shifted the neutral surface. Returning to the clamped model 

(Figure 23b), it is clear that the models are quite similar up until fracture initiation, 

but in this case the TLS patterns are developed and retained well after the first 

fractures start to form. This is because there is no slip allowed, and the inner-arc 

compressive stresses cannot be relieved through interlayer slip as further 

amplification occurs. 

Although quite different to conventional layer compression models associated 

with the production of buckle folds, the models studied here were subject to different 

forms of bending. Noting that the through-going fractures in the hinge region are in 

one case developed and in another are not, the boundary conditions promoting the 

through-going fractures are suggested to be more likely to exist in forced folding of 

layered rocks where interlayer slip is available. This can then act as a mechanism for 

accommodating strain, relieving compression zones, and resulting in the tensile 

cracks propagating fully across the layers. 

With respect to forced folding in geological sequences with units of very low 

competence contrasts such as in limestone sequences, the modelling results provoke 

some speculation. It is suggested that significant through-going fractures in the hinge 

are more likely where slip on interfaces between main structural units is uninhibited. 

It might be argued that this is more likely in a sequence where structural units are 

thinner with respect to the span of the folded region. In contrast, and by the same 

reasoning, it could be suggested that thicker units giving rise to stubbier looking fold 

structures that suppress rotation and interface sliding, in addition to outer-arc fracture, 

might be more inclined to express inner-arc compressive deformation features, 

whether by shear failure or, perhaps more likely, by pressure solution seam 

development. 
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6 Conclusions 

Facture spacing and through-going fracture formation in layered rocks were simulated 

using a fracture model that combines the finite element formulation and the discrete 

element formulation. First, the controls on fracture spacing to layer thickness ratio in 

a three-layer shale-limestone-shale sequence undergoing layer normal compression 

was examined with foci on frictional sliding on shear fractures within incompetent 

rock (shale) and tensile fracturing in competent rock (limestone). Fracture spacing to 

layer thickness ratios at fracture saturation from 1.8 to 0.8 were obtained for different 

confining pressures considered in the modelling. These were compatible with both 

high and low ratios observed from geological sequences. This work also suggested 

layer interface properties and behaviour cannot be considered negligible in layered 

rocks because the delamination at the interface and slipping between layers 

contributed to fracture pattern development. 

Second, the formation of through-going fractures was modelled in a seven-layer 

limestone model with low competence contrast under direct tension and bending 

conditions. The results showed that in layered rocks undergoing layer parallel tension, 

delamination at layer interfaces normally occurred after fracture initiation had taken 

place on each side of the interface. Higher effective stresses that are perpendicular to 

the layering enabled fractures to propagate across layer interfaces to form through-

going fractures. It also suggested that through-going fractures were more likely to 

exist in forced folding of layered rocks where interlayer slip is available. 

It has been demonstrated by the numerical results that the FEMDEM method is 

capable of generating fracture patterns according to geomechanical principles of rock 

failure, and also realistically modelling the frictional behaviour at interfaces in 

layered rocks. This fracture model, together with various post-processing programs, 

e.g. fracture visualisation, aperture extraction, etc., provides an ideal tool to 

investigate in detail the formation of fracture patterns as well as slipping and 

delamination in layered rocks. It should be noted that the constitutive model used for 

the interface elements is only applicable to loading conditions without unloading 

paths; in the future, a more complicated model including possibility of unloading (e.g. 

Pouya and Bemani Yazdi, 2015) will be implemented into the numerical code. It is 

also worth mentioning that a number of three-dimensional fracture models have been 

developed in recent years (Guo et al., 2015; Rabczuk et al., 2010). In the future, 
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similar numerical studies can be extended into three-dimensional modelling, which 

could give an insight into the understanding of more realistic and complicated 

scenarios.  
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