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Capacity Region of a One-Bit Quantized Gaussian
Multiple Access Channel
Borzoo Rassouli, Morteza Varasteh and Deniz Gündüz

Abstract—The capacity region of a two-transmitter Gaussian
multiple access channel (MAC) under average input power
constraints is studied, when the receiver employs a zero-threshold
one-bit analog-to-digital converter (ADC). It is proved that the
input distributions that achieve the boundary points of the
capacity region are discrete. Based on the position of a boundary
point, upper bounds on the number of the mass points of the
corresponding distributions are derived. Finally, a conjecture on
the sufficiency of K mass points in a point-to-point real AWGN
with a K-bin ADC front end (symmetric or asymmetric) is
settled.1

I. INTRODUCTION

The energy consumption of an analog-to-digital converter
(ADC) (measured in Joules/sample) grows exponentially with
its resolution (in bits/sample) [1], [2]. When the available
power is limited, for example, for mobile devices with limited
battery capacity, or for wireless receivers that operate on
limited energy harvested from ambient sources [3], the receiver
circuitry may be constrained to operate with low-resolution
ADCs. The presence of a low-resolution ADC, in particular a
one-bit ADC at the receiver, alters the channel characteristics
significantly. Such a constraint not only limits the fundamental
bounds on the achievable rate, but it also changes the nature
of the communication and modulation schemes approaching
these bounds. For example, in a real additive white Gaussian
noise (AWGN) channel under an average power constraint on
the input, it is shown in [4] that, if the receiver is equipped
with a K-bin (i.e., log2K-bit) ADC front end, the capacity-
achieving input distribution is discrete with at most K + 1
mass points. We further tighten this to K mass points in this
paper. This is in contrast with the optimality of the Gaussian
input distribution when the receiver has infinite resolution.

Especially with the adoption of massive multiple-input
multiple-output (MIMO) receivers and the millimeter wave
technology enabling communication over large bandwidths,
communication systems with limited-resolution receiver front
ends are becoming of practical importance. Accordingly, there
have been a growing research interest in understanding both
the fundamental information-theoretic limits and the design
of practical communication protocols for systems with finite-
resolution ADC front ends [5]-[7]. In [5], the authors show
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that for a Rayleigh fading channel with a one-bit ADC front
end and perfect channel state information at the receiver
(CSIR), quadrature phase shift keying (QPSK) modulation
is capacity-achieving. For the point-to-point multiple-input
multiple-output (MIMO) channel with a one-bit ADC front
end at each receive antenna and perfect CSIR, [7] shows that
QPSK is optimal at very low SNRs, while with perfect channel
state information at the transmitter (CSIT), upper and lower
bounds on the capacity are provided in [6].

To the best of our knowledge, the existing literature on com-
munications with low-resolution ADCs focus exclusively on
point-to-point systems. Our goal in this paper is to understand
the impact of low-resolution ADCs on the capacity region of
a multiple access channel (MAC). In particular, we consider
a two-transmitter Gaussian MAC with a one-bit quantizer at
the receiver. The inputs to the channel are subject to average
power constraints. We show that any point on the boundary of
the capacity region is achieved by discrete input distributions.
Based on the slope of the tangent line to the capacity region
at a boundary point, upper bounds on the cardinality of the
support of these distributions are derived. Finally, in the proof
of Theorem 1, a simple optimization trick is used that also
settles a conjecture in the real AWGN channel with a K-bin
ADC front end (symmetric or asymmetric).

Notations. Random variables are denoted by capital let-
ters, while their realizations with lower case letters. FX(x)
denotes the cumulative distribution function (CDF) of random
variable X . The conditional probability mass function (pmf)
pY |X1,X2

(y|x1, x2) will be written as p(y|x1, x2). For integers
m ≤ n, we denote the set {m,m+ 1, . . . , n} by [m : n].

Remark 1. Some of the proofs, omitted here, can be found
in the longer version of the paper available online [8].

II. SYSTEM MODEL AND PRELIMINARIES

We consider a two-transmitter memoryless Gaussian MAC
(as shown in Figure 1) with a one-bit quantizer Γ at the
receiver front end. Transmitter j, j = 1, 2, encodes its message
Wj into a codeword Xn

j , and transmits it over the shared
channel. The signal received by the decoder is given by

Yi = Γ(X1,i +X2,i + Zi), i ∈ [1 : n],

where {Zi}ni=1 is an independent and identically distributed
(i.i.d.) Gaussian noise process, also independent of the channel
inputs Xn

1 and Xn
2 with Zi ∼ N (0, 1), i ∈ [1 : n]. Γ represents

the one-bit ADC operation given by

Γ(x) =

{
1 x ≥ 0
0 x < 0

.

This channel can be modelled by the triplet
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Fig. 1: A two-transmitter Gaussian MAC with a one-bit ADC
at the receiver.

(X1 ×X2, p(y|x1, x2),Y), where X1,X2 (= R) and Y
(= {0, 1}), respectively, are the alphabets of the inputs
and the output. The conditional pmf of the channel output
Y conditioned on the channel inputs X1 and X2 (i.e.
p(y|x1, x2)) is characterized by

p(0|x1, x2) = 1− p(1|x1, x2) = Q(x1 + x2), (1)

where Q(x) , 1√
2π

∫ +∞
x

e−
t2

2 dt.
Upon receiving the sequence Y n, the decoder finds the

estimates (Ŵ1, Ŵ2) of the messages.
A (2nR1 , 2nR2 , n) code for this channel consists of (as in

[9])
• two message sets [1 : 2nR1 ] and [1 : 2nR2 ],
• two encoders, where encoder j = 1, 2 assigns a codeword
xnj (wj) to each message wj ∈ [1 : 2nRj ], and

• a decoder that assigns estimates (ŵ1, ŵ2) ∈ [1 : 2nR1 ]×
[1 : 2nR2 ] or an error message to each received sequence
yn.

We assume that the message pair (W1,W2) is uniformly
distributed over [1 : 2nR1 ]×[1 : 2nR2 ]. The average probability
of error is defined as

P (n)
e = Pr

{
(Ŵ1, Ŵ2) 6= (W1,W2)

}
.

Average power constraints are imposed on the channel inputs
as

1

n

n∑
i=1

x2j,i(wj) ≤ Pj , ∀mj ∈ [1 : 2nRj ], j ∈ [1 : 2],

where xj,i(wj) denotes the ith element of the codeword
xnj (wj).

A rate pair (R1, R2) is said to be achievable for this channel
if there exists a sequence of (2nR1 , 2nR2 , n) codes (satisfying
the average power constraints) such that limn→∞ P

(n)
e = 0.

The capacity region C (P1, P2) of this channel is the closure
of the set of achievable rate pairs (R1, R2).

III. MAIN RESULTS

Proposition 1. The capacity region C (P1, P2) of a two-
transmitter memoryless MAC with average power constraints
P1 and P2 is the set of non-negative rate pairs (R1, R2) that
satisfy

R1 ≤ I(X1;Y |X2, U),

R2 ≤ I(X2;Y |X1, U),

R1 +R2 ≤ I(X1, X2;Y |U), (2)

for some FU (u)FX1|U (x1|u)FX2|U (x2|u), such that E[X2
j ] ≤

Pj , j = 1, 2. Also, it is sufficient to consider |U| ≤ 5.

Proof. The capacity region of the discrete memoryless (DM)
MAC with input cost constraints has been addressed in Exer-
cise 4.8 of [9]. If the input alphabets are not discrete, the
capacity region is still the same because: 1) the converse
remains the same if the inputs are from a continuous alphabet;
2) the region is achievable by coded time sharing and the
discretization procedure (see Remark 3.8 in [9]). Therefore,
it is sufficient to show the cardinality bound |U| ≤ 5. This
can be proved by using Carathéodory’s Theorem [10] and
taking into account the connectedness of the set of all product
distributions on R2 [8].

Lemma 1. For the boundary points of C (P1, P2) that are
not sum-rate optimal, it is sufficient to have |U| ≤ 4.

Proof. The proof follows similarly to the proof of Proposition
1, and is provided in [8].

When there is no input cost constraint, the capacity region
of a MAC can be characterized either through the convex hull
operation as in [9, Theorem 4.2], or with the introduction
of an auxiliary random variable as in [9, Theorem 4.3].
The following remark states that when there is an input
cost constraint, the capacity region has only the computable
characterization with the auxiliary random variable.

Remark 2. Let (X1, X2) ∼ FX1(x1)FX2(x2) such that
E[X2

j ] ≤ Pj , j = 1, 2. Let R(P1, P2) denote the set of non-
negative rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2),

R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y ).

Let R1(P1, P2) be the convex closure of
⋃
FX1

FX2
R(P1, P2),

where the union is over all product distributions that satisfy
the average power constraints.

Let R2(P1, P2) be the set of non-negative rate pairs
(R1, R2) such that

R1 ≤ I(X1;Y |X2, U),

R2 ≤ I(X2;Y |X1, U),

R1 +R2 ≤ I(X1, X2;Y |U)

for some FU (u)FX1|U (x1|u)FX2|U (x2|u) that satisfies
E[X2

j |u] ≤ Pj , j = 1, 2, ∀u.
It can be verified that R1(P1, P2) = R2(P1, P2). By

comparing R2(P1, P2) to the capacity region C (P1, P2), we
can conclude that R2(P1, P2) ⊆ C (P1, P2). This follows from
the fact that in the region R2(P1, P2), the average power
constraint E[X2

j |u] ≤ Pj holds for every realization of the
auxiliary random variable U , which is a stronger condition
than E[X2

j ] ≤ Pj used in the capacity region. In [8], we show
through an example that R1(P1, P2) and R2(P1, P2) can be
strictly smaller than C (P1, P2). Therefore, in the presence of
input cost constraints, there are cases in which the capacity
region can be characterized only with the help of an auxiliary
random variable.
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The main result of this paper is provided in the following
theorem. It bounds the cardinality of the support set of the
capacity achieving input distributions.

Theorem 1. Let P be an arbitrary point on the boundary of
the capacity region C (P1, P2) of the memoryless MAC with
a one-bit ADC front end (as shown in Figure 1) achieved
by FPU (u)FPX1|U (x1|u)FPX2|U (x2|u). Let lP be the slope of
the line tangent to the capacity region at this point. For any
u ∈ U , the conditional input distributions FPX1|U (x1|u) and
FPX2|U (x2|u) have at most n1 and n2 points of increase2,
respectively, where

(n1, n2) =

 (2, 3) lp < −1
(2, 2) lp = −1
(3, 2) lp > −1

. (3)

Proof. The proof is provided in Section IV.

Proposition 1, Lemma 1 and Theorem 1 above establish
upper bounds on the number of mass points of the distributions
that achieve a boundary point. The significance of this result is
that once it is known that the optimal inputs are discrete with at
most certain number of mass points, the capacity region along
with the optimal distributions can be obtained via computer
programs.

IV. PROOF OF THEOREM 1

Any point on the boundary of the capacity region, denoted
by (Rb1, R

b
2), can be written as

(Rb1, R
b
2) = arg max

(R1,R2)∈C (P1,P2)
R1 + λR2,

for some λ > 0.
Any rate pair (R1, R2) ∈ C (P1, P2) is within the pentagon

defined by (2) for some distribution FUFX1|UFX2|U that
satisfies the power constraints. Therefore, due to the structure
of the pentagon, the problem of finding the boundary points
is equivalent to the following maximization problem.

max
(R1,R2)∈C (P1,P2)

R1 + λR2

=

{
max I(X1;Y |X2, U) + λI(X2;Y |U) 0 < λ ≤ 1
max I(X2;Y |X1, U) + λI(X1;Y |U) λ > 1

,

(4)

where on the right hand side (RHS) of (4), the maximizations
are over all FUFX1|UFX2|U that satisfy the power constraints.

For any product of distributions FX1
FX2

and the channel
in (1), let Iλ be defined as

Iλ(FX1FX2) ,

{
I(X1;Y |X2) + λI(X2;Y ) 0 < λ ≤ 1
I(X2;Y |X1) + λI(X1;Y ) λ > 1

.

(5)
With this definition, (4) can be written as

max

5∑
i=1

pU (ui)Iλ(FX1|U (x1|ui)FX2|U (x2|ui)),

2A point Z is said to be a point of increase of a distribution if for any
open set Ω containing Z, we have Pr{Ω} > 0.

where the maximization is over product distributions of the
form pU (u)FX1|U (x1|u)FX2|U (x2|u), |U| ≤ 5, such that

5∑
i=1

pU (ui)E[X2
j |ui] ≤ Pj , j = 1, 2.

Proposition 2. For a given FX1 and any λ > 0,
Iλ(FX1FX2) is a concave, continuous and weakly differen-
tiable function of FX2

. In the statement of this Proposition,
FX1

and FX2
could be interchanged.

Proof. The proof is provided in [8, Appendix A].

Proposition 3. Let P ′1, P
′
2 be two arbitrary non-negative

finite real numbers. For the following problem

max
FX1

FX2
:

E[X2
j ]≤P

′
j , j=1,2

Iλ(FX1
FX2

), (6)

the optimal input distributions F ∗X1
and F ∗X2

, which are not
unique in general, have the following properties,

(i) The support sets of F ∗X1
and F ∗X2

are bounded subsets of
R.

(ii) F ∗X1
and F ∗X2

are discrete distributions that have at most
n1 and n2 points of increase, respectively, where

(n1, n2) =

 (3, 2) 0 < λ < 1
(2, 2) λ = 1
(2, 3) λ > 1

.

Proof. We start with the proof of the first claim. Assume
that 0 < λ ≤ 1, and FX2 is given. Consider the following
optimization problem:

I∗FX2
, sup

FX1
:

E[X2
1 ]≤P

′
1

Iλ(FX1
FX2

). (7)

From Proposition 2, Iλ is a continuous, concave function of
FX1

. Also, the set of all CDFs with bounded second moment
(here, P ′1) is convex and compact3. Therefore, the supremum
in (7) is achieved by a unique distribution F ∗X1

. Since for any
FX1(x) = s(x − x0) with |x0|2 < P ′1, where s(·) denotes
the unit step function, we have E[X2

1 ] < P ′1, the Lagrangian
theorem and the Karush-Kuhn-Tucker conditions state that
there exists a θ1 ≥ 0 such that

I∗FX2
= sup
FX1

{
Iλ(FX1FX2)− θ1

(∫
x2dFX1(x)− P ′1

)}
.

(8)

Furthermore, the supremum in (8) is achieved by F ∗X1
, and

θ1

(∫
x2dF ∗X1

(x)− P ′1
)

= 0. (9)

Lemma 2. The Lagrangian multiplier θ1 is nonzero.

Proof. Having a zero Lagrangian multiplier means that the
power constraint is inactive. In other words, if θ1 = 0, (7) and
(8) imply that

sup
FX1

:

E[X2
1 ]≤P

′
1

Iλ(FX1
FX2

) = sup
FX1

Iλ(FX1
FX2

). (10)

3The compactness follows from [11, Appendix I].
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We prove that (10) does not hold by showing that

L.H.S of(10) ≤ 1−Q
(√

P ′1 +
√
P ′2

)
< 1 = R.H.S of(10).

The details are provided in [8, Appendix B].

Let ĩλ(x1;FX1
|FX2

) and iλ(x2;FX2
|FX1

) be defined as

ĩλ(x1;FX1
|FX2

) ,
∫ +∞

−∞

(
D (p(y|x1, x2)||p(y;FX1

FX2
))

+ (1− λ)

1∑
y=0

p(y|x1, x2) log
p(y;FX1FX2)

p(y;FX1
|x2)

)
dFX2

(x2),

iλ(x2;FX2
|FX1

) ,
∫ +∞

−∞
D (p(y|x1, x2)||p(y;FX1

FX2
))dFX1

(x1)

− (1− λ)D (p(y;FX1 |x2)||p(y;FX1FX2)) ,

where p(y;FX1
FX2

) is nothing but the pmf of Y with the
emphasis that it has been induced by FX1

and FX2
. Likewise,

p(y;FX1
|x2) is the conditional pmf p(y|x2) when X1 is drawn

according to FX1 . It can be verified that

Iλ(FX1FX2) =

∫ +∞

−∞
ĩλ(x1;FX1 |FX2)dFX1(x1)

=

∫ +∞

−∞
iλ(x2;FX2 |FX1)dFX2(x2).

Note that (8) is an unconstrained optimization problem over
the set of all CDFs, and a necessary condition for the opti-
mality of F ∗X1

is∫
{̃iλ(x1;F ∗X1

|FX2
)+θ1(P ′1−x21)}dFX1

(x1) ≤ I∗FX2
, ∀FX1

,

(11)
which is equivalent to

ĩλ(x1;F ∗X1
|FX2

) + θ1(P ′1 − x21) ≤ I∗FX2
, ∀x1 ∈ R, (12)

with equality if and only if x1 is a point of increase of F ∗X1
.

In what follows, we prove that in order to satisfy (12), F ∗X1

must have a bounded support by showing that the left hand
side (LHS) of (12) goes to −∞ with x1.

It can be verified that (see [8]),

lim
|x1|→+∞

ĩλ(x1;F ∗X1
|FX2) < +∞. (13)

From (13), and the fact that θ1 > 0 (see Lemma 2), the LHS
of (12) goes to −∞ when |x1| → +∞. Since any point of
increase of F ∗X1

must satisfy (12) with equality, and I∗FX2
≥

0, it is proved that F ∗X1
has a bounded support, i.e., X1 ∈

[A1, A2] for some A1, A2 ∈ R.4

Similarly, for a given FX1
, the optimization problem

I∗FX1
= sup

FX2
:

E[X2
2 ]≤P

′
2

Iλ(FX1
FX2

),

boils down to the following necessary condition

iλ(x2;F ∗X2
|FX1) + θ2(P ′2 − x22) ≤ I∗FX1

, ∀x2 ∈ R, (14)

for the optimality of F ∗X2
, which holds with equality if and

only if x2 is a point of increase of F ∗X2
. Note that there are two

4Note that A1 and A2 are determined by the choice of FX2
.

main differences between (14) and (12). First is the difference
between iλ and ĩλ. Second is the fact that we do not claim
θ2 to be nonzero, since the approach used in Lemma 2 cannot
be readily applied to θ2. Nonetheless, the boundedness of the
support of F ∗X2

can be proved by inspecting the behaviour
of the LHS of (14) when |x2| → +∞. More specifically,
if θ2 > 0, the LHS of (14) goes to −∞ with |x2| which
proves that X∗2 is bounded. For the case of θ2 = 0, we rely
on the fact that iλ approaches its limit from below, as shown
in [8, Appendix E]. This proves that X∗2 must have a bounded
support.

Remark 3. We remark here that the order of showing
the boundedness of the supports is important. First, for a
given FX2

(not necessarily bounded), it is proved that F ∗X1

is bounded. Then, for a given bounded FX1 , it is shown that
F ∗X2

is also bounded. The order is reversed when λ > 1, and
the proof follows the same steps as in the case of λ ≤ 1.
Therefore, it is omitted.

We next prove the second claim in Proposition 3. We assume
that 0 < λ < 1, and a bounded FX1

is given. We already know
that for a given bounded FX1

, F ∗X2
has a bounded support

denoted by [A1, A2]. Therefore,

I∗FX1
= sup
FX2

{
Iλ(FX1

FX2
)− θ2

(∫
x2dFX2

(x)− P ′2
)}

= sup
FX2
∈S2

{
Iλ(FX1FX2)− θ2

(∫
x2dFX2(x)− P ′2

)}
,

where S2 denotes the set of all probability distributions on
the Borel sets of [A1, A2]. Let p∗0 = pY (0;FX1

F ∗X2
) denote

the probability of the event Y = 0, induced by F ∗X2
and the

given FX1
. The set

F2 =

{
FX2

∈ S2|
∫
p(0|x2)dFX2

(x2) = p∗0

}
is the intersection of S2 with one hyperplane5. We can write

I∗FX1
= sup
FX2
∈F2

{
Iλ(FX1

FX2
)− θ2

(∫
x2dFX2

(x)− P ′2
)}

.

(15)
Note that having FX2 ∈ F2, the objective function in (15)
becomes

λH(Y )︸ ︷︷ ︸
constant

+

(1− λ)H(Y |X2)−H(Y |X1, X2)−θ2
(∫

x2dFX2
(x)− P ′2

)
︸ ︷︷ ︸

linear in FX2

.

Since the linear part is continuous and F2 is compact, the
objective function in (15) attains its maximum at an extreme
point of F2, which, by Dubins’ theorem [10], is a convex
combination of at most two extreme points of S2. Since the
extreme points of S2 are the CDFs having only one point
of increase in [A1, A2], we conclude that, given any bounded
FX1

, F ∗X2
has at most two mass points.

5Note that S2 is convex and compact.



5

Now, assume that an arbitrary FX2
is given with at most

two mass points denoted by {x2,i}2i=1. It is already known that
the support of F ∗X1

is bounded, which is denoted by [A′1, A
′
2].

Let S1 denote the set of all probability distributions on the
Borel sets of [A′1, A

′
2]. The set

F1 =

{
FX1
∈S1

∣∣∣∣ ∫ p(0|x1, x2,j)dFX1
(x1)=p(0;F ∗X1

|x2,j),

j ∈ [1 : 2]

}
,

is the intersection of S1 with two hyperplanes. In a similar
way,

I∗FX2
= sup
FX1
∈F1

{
Iλ(FX1

FX2
)− θ1

(∫
x2dFX1

(x)− P ′1
)}

,

(16)
and having FX1

∈ F1, the objective function in (16) becomes

λH(Y ) + (1− λ)

2∑
i=1

pX2
(x2,i)H(Y |X2 = x2,i)︸ ︷︷ ︸

constant

−H(Y |X1, X2)− θ1
(∫

x2dFX1(x)− P ′1
)

︸ ︷︷ ︸
linear in FX1

. (17)

Therefore, given any FX2
with at most two points of increase,

F ∗X1
has at most three mass points.

When λ = 1, the term with summation in (17) disappears,
which means that F1 could be replaced by{

FX1 ∈ S1|
∫ +∞

−∞
p(0|x1)dFX1(x1) = p̃∗0

}
,

where p̃∗0 = pY (0;F ∗X1
FX2) is the probability of the event

Y = 0, which is induced by F ∗X1
and the given FX2

. Since the
number of intersecting hyperplanes has been reduced to one, it
is concluded that F ∗X1

has at most two points of increase.

Remark 4. Note that the order of showing the discreteness
of the support sets is also important. First, for a given bounded
FX1 (not necessarily discrete), it is proved that F ∗X2

is discrete
with at most two mass points. Then, for a given discrete FX2

with at most two mass points, it is shown that F ∗X1
is also

discrete with at most three mass points (two mass points) when
λ < 1 (when λ = 1). When λ > 1, the order is reversed and
it follows the same steps as in the case of λ < 1. Therefore,
it is omitted.

Remark 5. (Settling a conjecture) Consider a point-
to-point real AWGN channel with a K-bin (i.e., log2K-
bit) ADC front end. It is shown in [4] that the capacity-
achieving input distribution for this channel (with average
input power constraint), has at most K+ 1 mass points, while
in the numerical results, K mass points always appear to be
sufficient, which leaves the sufficiency of K mass points as
a conjecture. Therefore, it has been an open problem whether
K mass points are indeed sufficient or not. The answer is
positive. If the average power constraint, which is a linear
function of its corresponding input distribution, is treated as

an intersecting hyperplane, Dubins’ theorem states that K+ 1
mass points is sufficient. A simple trick, as used in the proof
of Theorem 1, is to take the average power constraint into the
objective function and take into account the uniqueness of the
solution. This reduces the number of intersecting hyperplanes
by one, and results in the sufficiency of K mass points. This is
also the case for asymmetric quantizers (e.g., [12]), since this
reduction of the number of hyperplanes does not rely on the
structure of the quantizer. In conclusion, the number of mass
points is not affected by any number of linear constraints (e.g.,
E[X4] ≤ K, etc) in the optimization.

V. CONCLUSION

We have studied the capacity region of a two-transmitter
Gaussian MAC under average input power constraints at the
transmitters and one-bit ADC front end at the receiver. We
have shown that an auxiliary random variable is necessary for
characterizing the capacity region. We have derived an upper
bound on the cardinality of this auxiliary variable, and proved
that the distributions that achieve the boundary points of the
capacity region are finite and discrete. Based on this result,
the evaluation of the capacity region and finding efficient
suboptimal signaling schemes are subjects of our ongoing
research. Finally, we settled the conjecture of the sufficiency
of K mass points in a point to point AWGN channel with a
K-bin quantizer at the receiver.
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