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I. CHOICE OF SUPERCELL SIZE

We carried out lattice thermal conductivity calculations using 4 × 4 × 4 (128 atom)

supercells because they reproduced the expected physical behavior of the second-order phase

transition in Pb1−xGexTe alloys. We found that the continuity of harmonic interatomic force

constants (IFCs) at the phase transition leads to physically sensible phonon dispersions in

the rhombohedral phase. In 2× 2× 2 cubic (64 atom) supercells discontinuities were found

in the long-range IFCs (4th and 8th nearest neighbor) for the rocksalt and rhombohedral

structures very near the phase transition, x = 0.49 and x = 0.51 respectively. This resulted

in imaginary frequencies for the lowest transverse acoustic mode near Γ in rhombohedral

structures close to the phase transition. These instabilities were found to persist for larger

supercells such as 3 × 3 × 3 cubic (216 atoms), 5 × 5 × 5 (256 atoms) and 4 × 4 × 4

cubic (512 atoms). On the other hand, using density functional perturbation theory, we

found that the frequencies of transverse acoustic modes for rhombohedral structures near

the phase transition exhibit oscillations about the physically correct linear dependence on

the wave vector near Γ along the Γ− X direction. While these oscillations decreased in

magnitude with denser wave vector grids, they nevertheless remained for rhombohedral

Brillouin zone grid sizes up to 12× 12× 12. While this suggests that larger supercells would

be required to overcome these issues, such calculations would presently be computationally

very demanding. Thus, we chose 4× 4× 4 (128 atom) supercells as they possess continuity

in the IFCs at the second-order phase transition (see Fig. 7 of the paper), and exhibit the

physically correct linear dependence of the acoustic mode frequencies on the wave vectors

near Γ. However, further investigation is necessary to better understand the effect of these

long range interactions in Pb1−xGexTe alloys.

II. VERIFICATION OF OUR COMPUTATIONAL APPROACH

To verify the validity of our approach, we compare our calculated phonon band structure,

thermal expansion coefficients and lattice thermal conductivity κ on 4 × 4 × 4 (128 atom)

supercells for PbTe and GeTe with experimental data. We also included the validation of

our computed third-order IFCs through Grüneisen parameter calculations.

The phonon dispersion of PbTe for 128 atom supercells is in good agreement with the
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FIG. 1. (a) Phonon dispersions of PbTe: calculated using 128 atoms supercell at 0 K (solid black

line), calculated using 216 atoms supercell at 0 K (dotted red line), and measured by Cochran et

al. [1] at 300 K (blue circles). (b) Phonon dispersions of GeTe: calculated using 128 atoms supercell

at 0 K (solid black line), and the frequencies of zone centre Raman active modes measured by Fons

et al. [2] at 300 K (blue circles) and Steigmeier et al. [3] at 300 K (red squares). (c) Phonon density

of states for GeTe: calculated using 128 atoms supercell at 0 K (solid black line), measured by

Wdowik et al. [4] and Pereira et al. [5]. The integral of the density of states over frequency is

normalized to unity.

inelastic neutron scattering measurements of Cochran et al. [1] (see Fig. 1 (a)), except for

transverse modes along Γ-X and Γ-K directions. Our computed dispersion for 216 atom cubic

supercells does not exhibit such deviations from the experiment. However, as discussed in

detail in Section I, we can describe correctly the second order phase transition behavior

across the whole range of alloy compositions only using 128 atom supercells. Our calculated
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FIG. 2. Mode Grüneisen parameters as a function of frequency obtained using finite difference

(black pluses) and perturbative approaches (red crosses) for (a) GeTe, (b) PbTe, (c) Pb0.49Ge0.51Te,

and (d) Pb0.51Ge0.49Te.

phonon dispersion of GeTe for 128 atom supercells is shown in Fig. 1 (b). To the best of

our knowledge, there are no reports of the measured phonon dispersions of GeTe in the

literature. Our computed frequencies of zone center Raman active modes compare well

with the measurements of Refs. [2, 3] at 300 K. We also calculated the phonon density

of states of GeTe (Fig. 1 (c)), which is in good agreement with the experimental results

of Refs. [4, 5]. Our phonon dispersion of GeTe also agrees well with a previous density

functional perturbation theory calculation [6].

We verified the accuracy of our computed third-order anharmonic interatomic force con-

stants (IFCs) by calculating the mode Grüneisen parameters of Pb1−xGexTe alloys using

two different approaches. Mode Grüneisen parameters are defined as

γq,s = −d(logωq,s)/d(log V ), (1)
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where (q,s) denotes the wave vector q and branch index s of a phonon mode with frequency

ωq,s, and V is the primitive cell volume. To calculate γq,s, we used a finite difference approach

that requires computing phonon frequencies at different crystal volumes using Eq. (1). We

also used a first-order perturbative approach to express Grüneisen parameters in terms of

third-order anharmonic IFCs [7]:

γq,s = − 1

6ω2
q,s

∑
l′,l′′

∑
b,b′,b′′

∑
α,β,γ

Ψαβγ(0b, l
′b′, l′′b′′)

e∗α(b|qs)eβ(b′|qs)
√
mbmb′

exp(iql′)rγ(l
′′b′′). (2)

l is the position vector of a unit cell, b represents an atom in the unit cell l with mass mb,

and α, β and γ are Cartesian coordinates. Ψαβγ(0b, l
′b′, l′′b′′) are the third order IFCs, and

eα(b|qs) represents the component of the eigenmode (q, s) that corresponds to the atom b

along the α direction. rγ(lb) is the component in the γ direction of the position vector of

the atom lb. Eq. (2) is derived under the assumptions that the crystal is cubic, and the

atomic positions within the crystal remain fixed upon volume changes. This condition is

not fully satisfied for rhombohedral lattices. Consequently, to compare the mode Grüneisen

parameters obtained with Eq. (2) with those of the finite difference approach for nearly cubic

Pb1−xGexTe alloys, we varied only their lattice constants in the finite difference calculations.

Fig. 2 shows the Grüneisen parameters in the whole Brillouin zone obtained using the two

described approaches for GeTe, PbTe, and the alloy compositions near the phase transition,

Pb0.49Ge0.51Te and Pb0.51Ge0.49Te. The results obtained from the two approaches agree very

well with each other for all these materials, which confirms the accuracy of our computed

third-order IFCs.

We also computed the linear thermal expansion coefficient of PbTe as [8]

α =
1

3NV B

∑
q,s

cq,sγq,s, (3)

where cq,s is the heat capacity, B is the bulk modulus and N is the total number of sam-

pled q-points. Our calculated bulk modulus of PbTe is 47.94 GPa. Fig. 3 shows the linear

thermal expansion coefficient of PbTe versus temperature obtained with the Grünesien pa-

rameters computed using the perturbative approach, and illustrates good agreement with

the measurements on single crystalline PbTe samples [9, 10].

We also derived the generalized expressions for the thermal expansion coefficients of

the rhombohedral lattice in a similar manner as done in Ref. [11], and calculated these

coefficients for GeTe. The relative positions of Ge and Te atoms within the rhombohedral
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FIG. 3. Linear thermal expansion coefficient of PbTe as a function of temperature: calculated

using a 128 atom supercell (solid black line), measured by Dalven [9] (blue circles), and measured

by Houston et al. [10] (red squares).

primitive cell are (0, 0, 0) and (0.5 + r, 0.5 + r, 0.5 + r) with r = 0.0237 in our calculations,

and the angle between the lattice vectors is ϕ = 60◦−θ with θ = 1.2093◦. The change of the

zero temperature total energy with respect to the small deviations of the lattice constant a,

the angle ϕ and the Te displacement along the [111] direction r is given as

∆E =
1

2
Caa(∆a)2+

1

2
Cϕϕ(∆ϕ)2+

1

2
Crr(∆r)2+Caϕ(∆a)(∆ϕ)+Car(∆a)(∆r)+Cϕr(∆ϕ)(∆r).

(4)

We calculate the symmetric matrix [C] using density functional theory, and find its inverse

matrix [S] = [C]−1. The thermal expansion coefficients for a, ϕ and r can be expressed as:

αa =
1

Na

∑
q,s

cq,s

(
Saa

a
γa
q,s +

Saϕ

ϕ
γϕ
q,s +

Sar

r
γr
q,s

)
, (5)

αϕ =
1

Nϕ

∑
q,s

cq,s

(
Saϕ

a
γa
q,s +

Sϕϕ

ϕ
γϕ
q,s +

Sϕr

r
γr
q,s

)
, (6)

αr =
1

Nr

∑
q,s

cq,s

(
Sar

a
γa
q,s +

Sϕr

ϕ
γϕ
q,s +

Srr

r
γr
q,s

)
, (7)

respectively, where we generalized Grüneisen parameters as γa
q,s = −∂(logωq,s)/∂(log a),

γϕ
q,s = −∂(logωq,s)/∂(log ϕ) and γr

q,s = −∂(logωq,s)/∂(log r). Finally, for comparison with

experiment, we transformed the obtained expressions into the coordinate system of the non-

primitive pseudo-cubic lattice vectors where the lattice constant is given as A = a(3 −

2 cosϕ)1/2, the angle between lattice vectors is cosΦ = (2 cosϕ − 1)/(3 − 2 cosϕ), and the
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TABLE I. Thermal expansion coefficients α of GeTe at 300 K for lattice constant A, the angle

between the lattice vectors Φ, and the Te atom position along the [111] direction R in the non-

primitive pseudo-cubic lattice. The thermal expansion coefficients from Refs. [12–16] were extracted

by linearly fitting the measured lattice parameters between ∼ 300 K and ∼ 400− 550 K.

Our results Ref. [12] Refs. [13, 14] Ref. [15] Ref. [16]

sample single crystal single crystal powder powder powder

αA (10−6 1/K) 12.3 13.4 12.9 18.7 17.4

αΦ (10−6 1/K) 7.7 23.3 27.6 23.0 32.3

αR (10−6 1/K) 15.5 16.9 49.5 − −

Te position along the [111] direction is R = 0.25 − r/2. The comparison of our computed

thermal expansion coefficients for A, Φ and R of GeTe at 300 K with the experimental

values [12–16] is given in Table I. We extracted the experimental coefficients by linearly

fitting the reported lattice parameters between ∼ 300 K and ∼ 400− 550 K. Our computed

thermal expansion coefficients are in reasonable agreement with experiments. We ascribe

the discrepancies to our zero temperature representation of structural parameters and IFCs

and the quasiharmonic approximation, as well as the uncertainties in fitting the sparse

experimental data.

Our calculated κ of PbTe is ∼20% larger than the κ of undoped (∼ 1017cm−3) single-

and poly-crystalline PbTe measured with the absolute steady-state technique [17] for 100-

300 K, see Fig. 4 (a). For higher temperatures of 300-700 K, we see very good agreement

between our calculated κ compared to undoped poly-crystalline PbTe measured using the

plane temperature waves technique [18]. However, the agreement for higher temperatures is

somewhat accidental, as higher order anharmonic terms not present in our model become

more significant, increasing κ and causing divergence from the usual T−1 dependence [19].

GeTe has a large electronic contribution to the total thermal conductivity. Nath et

al. [20] and Levin et al. [15] estimated the lattice contribution by subtracting the electrical

contribution from the measured total thermal conductivity using the Wiedemann-Franz law.

Within a temperature range of 100-300 K, our computed κ is in very good agreement with

that of a 9000 Å GeTe film with a hole concentration of ∼ 1020cm−3 measured using a
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FIG. 4. (a) Lattice thermal conductivity of PbTe as a function of temperature: calculated using

a 128 atom supercell (solid black line), measured by Devyatkova et al. [17] (blue circles), and

measured by El-Sharkawy et al. [18] (red squares), (b) Lattice thermal conductivity of GeTe as

a function of temperature: calculated using a 128 atom supercell (solid black line), measured by

Nath et al. [20] (blue circles), and measured by Levin et al. [15] (red squares).

transient technique [20], see Fig. 4 (b). However, for 300-500 K the κ of the same GeTe

film measured using a steady-state technique [20] is by up to a factor of ∼ 2 lower than

our calculated κ. Our results are also up to ∼ 2 times higher than the κ of GeTe with a

hole concentration of ∼ 8× 1020cm−3 measured with the flash thermal diffusivity method

[15] for 300-700 K. However, our model does not capture the phase transition in GeTe

from the rhombohedral to rocksalt phases at ∼670 K [15, 21] due to the zero temperature

representation of structural parameters and IFCs. Thus, we would expect some disagreement

between our calculations and the experimental data at higher temperatures.

III. STRUCTURAL PROPERTIES

The total energy of both rocksalt and rhombohedral phases versus Ge concentration, as

well as their energy difference, are illustrated in Fig. 5. The two curves coincide for x < 0.492

since the rocksalt phase is a special case of the rhombohedral phase with the relative Te

position of (0.5, 0.5, 0.5) within the primitive unit cell, and the angle between the primitive

lattice vectors of 60◦. In the rhombohedral lattice, the relative position of the second atom

is (0.5 + r, 0.5 + r, 0.5 + r), and the angle is 60◦ − θ. The rocksalt phase thus corresponds
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FIG. 5. (a) Total energy of the rocksalt and rhombohedral phases of PbxGe1−xTe as a function of

the alloy composition x. (b) Difference between the total energy of the rocksalt and rhombohedral

phases as a function of x. The rocksalt structure is a special case of the rhombohedral structure,

and they are identical for x < 0.492.

to the rhombohedral phase with r = 0 and θ = 0◦. Consequently, the relaxation of the

rhombohedral structure for x < 0.492 results in the rocksalt structure, which is consistent

with the second order phase transition. For x > 0.492, the rhombohedral phase has a lower

energy than the rocksalt phase.

Fig. 6 shows the calculated structural parameters as a function of the Pb1−xGexTe alloy

composition. The lattice constant, the angle between the primitive lattice vectors, and

the Te position along the [111] direction all vary continuously as a function of the alloy

composition, as expected for the second-order phase transition. Te displacement changes

most rapidly with the alloy composition, indicating that it is the primary order parameter

for this phase transition.

IV. TRANSVERSE OPTICAL MODES NEAR THE PHASE TRANSITION

We found a factor of ∼
√
2 difference between the transverse optical (TO) frequencies

at Γ for the rhombohedral and rocksalt Pb1−xGexTe alloys very near the phase transition:

x = 0.493 and x = 0.491, respectively. To explain this factor analytically, we examine the

total energy of the atomic motion of the TO mode in Pb1−xGexTe virtual alloys, which can

be represented by the displacement of Te atom from its equilibrium position in the rocksalt
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FIG. 6. Calculated structural parameters as a function of Pb1−xGexTe alloy composition: (a)

lattice constant, (b) rhombohedral angle, and (c) Te position along the [111] direction in the

crystal lattice coordinates.

structure along the [111] direction. We assume that the energy potential of such Te motion

is of the form:

V (z) =
1

2
kz2 + Az4,

where k and A are the harmonic and quartic spring constants, respectively. Near the phase

transition, we assume that the small harmonic spring constant k changes its sign from pos-

itive to negative, keeping the same absolute value. This physically corresponds to changing

the sign of a small restoring force which keeps atoms in one phase when positive, and causes

the transition into a different phase when negative. We assume that the anharmonic spring

constant A is positive and does not change in this process.

We find the potential extrema from:

∂V

∂z
= kz + 4Az3 = 0,
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FIG. 7. Cartoon of the total energy versus Te atomic displacement from its equilibrium position in

the rocksalt structure along the [111] direction for: (a) the rocksalt phase, and (b) the rhombohedral

phase.

which gives

z = 0 or z = ±i

√
k

4A
.

For k > 0, z = 0 is the only real minimum, which physically corresponds to the high-

symmetry rocksalt phase (see Fig. 7 (a)). For k < 0, z = 0 is a local maximum, and the

minima occur for z = ±(|k|/(4A))1/2, which correspond to the frozen-in displacement of Te

atom in the [111] direction and the distorted rhombohedral structure, shown in Fig. 7 (b).

Since the curvature of the potential varies as the square of the frequency (∂2V /∂z2 ∼ ω2),

we find its values at the potential minima for the rocksalt phase at z = 0 and for the

rhombohedral phase at z = ±(|k|/(4A))1/2:

∂2V

∂z2

∣∣∣
z=0

= k = |k|, k > 0;

∂2V

∂z2

∣∣∣
z=±

√
|k|
4A

= 2|k|, k < 0.

With ∂2V /∂z2 ∼ ω2
TO, we finally obtain:

ωTO(x = 0.493)

ωTO(x = 0.491)
∼

√
2.

Thus, the frequency of the TO mode at Γ differs by a factor ∼
√
2 between the rhombohedral
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FIG. 8. The acoustic-transverse optical (TO) contribution to the total anharmonic linewidth at

300 K versus frequency for: (a) GeTe (black pluses) and a rhombohedral alloy near the phase

transition, Pb0.49Ge0.51Te (red crosses), (b) PbTe (black pluses) and a rocksalt alloy near the

phase transition, Pb0.51Ge0.49Te (red crosses), and (c) rocksalt Pb0.51Ge0.49Te (black pluses) and

rhombohedral Pb0.49Ge0.51Te (red crosses).

Pb1−xGexTe alloy very near the phase transition, x = 0.493, and its rocksalt counterpart,

x = 0.491.

V. ACOUSTIC-OPTICAL COUPLING AT THE PHASE TRANSITION

To understand how the acoustic-TO anharmonic interaction changes with the increased

proximity to the phase transition, we calculated explicitly the acoustic-TO contribu-

tion to the total anharmonic linewidth (inverse of the lifetime) in PbTe, Pb0.51Ge0.49Te,

Pb0.49Ge0.51Te and GeTe at 300 K. This contribution was computed for all phonon frequen-

cies by accounting for the triplets of interacting states that contain at least one acoustic and

12



FIG. 9. (a) Phonon lifetimes due to anharmonic three-phonon interaction (black crosses) and mass

disorder (red pluses) as a function of frequency for Pb0.49Ge0.51Te. (b) Phonon lifetimes due to

mass disorder versus frequency for the rocksalt and rhombohedral structures very near the phase

transition: Pb0.51Ge0.49Te (black pluses) and Pb0.49Ge0.51Te (red crosses), respectively.

one TO mode. For each wave vector, we labeled the two lowest phonon modes as transverse

acoustic (TA) modes, and the highest mode as longitudinal optical (LO) mode. Since the

ordering of TO and longitudinal acoustic (LA) modes changes throughout the Brillouin

zone, we distinguished between them using the following procedure. We determined which

one of those three states is mostly longitudinal by projecting their eigenvectors onto the

corresponding wave vector, and classified it as LA mode, while the other two states were

labeled as TO modes. We found that the acoustic-TO contribution to the anharmonic

linewidth dominates over the other contributions across the spectrum in all these mate-

rials [22]. In the rhombohedral phase, this contribution becomes maximal at the phase

transition, as illustrated in Fig. 8 (a) by comparing GeTe and an alloy composition very

near the phase transition, Pb0.49Ge0.51Te. This finding also holds for the rocksalt phase, as

shown in Fig. 8 (b) that compares PbTe and Pb0.51Ge0.49Te. The strength of the acoustic-

TO contribution to the anharmonic linewidth is very similar for the two structures very

close to the phase transition, see Fig. 8 (c), which is a typical feature of the second-order

phase transition.
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FIG. 10. (a) Born effective charge as a function of Pb1−xGexTe alloy composition in the rocksalt

phase (red crosses), perpendicular to the trigonal [111] axis in the rhombohedral phase (green

crosses), and parallel to the trigonal axis in the rhombohedral phase (blue crosses). (b) High-

frequency dielectric constant as a function of Pb1−xGexTe alloy composition in the rocksalt phase

(red crosses), perpendicular to the trigonal axis in the rhombohedral phase (green crosses), and

parallel to the trigonal axis in the rhombohedral phase (blue crosses).

VI. ANHARMONIC PROCESSES AND MASS DISORDER

Anharmonic three-phonon interaction is more effective at scattering low frequency

phonons, and mass disorder is more efficient at scattering higher frequencies. These ef-

fects are illustrated in Fig. 9 (a) for the rhombohedral Pb0.49Ge0.51Te very near the phase

transition. Furthermore, the lifetimes due to mass disorder of the rocksalt and rhombo-

hedral structures on the verge of the phase transition are very similar as a result of the

second-order nature of the phase transition, see Fig. 9 (b).

VII. ELECTRONIC POLARIZABILITY

The electronic polarizability of Pb1−xGexTe alloys is maximized at the phase transition,

which is indicative of very strong resonant bonding [23–25]. This is illustrated by plotting

Born effective changes (BECs) as a function of the alloy composition, Fig. 10 (a). BECs

are typically viewed as an indicator of ferroelectric instability, and have been found to be

considerably larger than nominal ionic values in ferroelectric or nearly ferroelectric materials

[26–28]. In the case of Pb1−xGexTe alloys, BECs are more than twice the nominal ionic value

14



of +2 for Pb and Ge, and -2 for Te. As proximity to the phase transition is increased, there

is a considerable increase in BECs, indicative of the increase in electronic polarizability. The

high-frequency dielectric constants are also large in Pb1−xGexTe alloys (Fig. 10 (b)), further

illustrating the large electronic polarizability. The dielectric constants increase substantially,

almost doubling in value from PbTe to GeTe, due to their inverse dependence on the average

electronic gap [29].
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