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1. Introduction

Adsorbate engineering is a promising route towards 
modifying the electronic structure of graphene and 
other 2D materials for emerging functional device 
technologies [1–4]. For example, adsorbed atoms 
and molecules can change the carrier mobility [5, 6], 
effective dielectric constant [7], chemical potential [8] 
and local magnetic moment [9] of graphene.

Charge transfer from adsorbates to the graphene 
substrate results in doping and the creation of Coulomb 
impurities. From a theoretical perspective, the descrip-
tion of such impurities and their interaction with the 
graphene substrate constitutes a challenging multiscale 
problem: while the charge Z transferred between the 
adsorbate and substrate is principally determined by 
the local chemistry (i.e. the coupling between adsorbate 
and substrate orbitals), the screening response of gra-
phene is long-ranged with an extent of several nanome-
tres [10]. Experimentally, the structural properties and 
screening response of adsorbed species on graphene 
as well as other point defects can be investigated with 
scanning probe techniques, such as scanning tunneling 

microscopy and spectroscopy or atomic force micros-
copy [8, 10–14].

Previous theoretical studies of adsorbates on gra-
phene have focussed either on the description of the 
short-range charge transfer or the long-range graphene 
response. First-principles density-functional theory 
(DFT) has been used to determine the charge transfer 
for different adatom species; however, the supercells in 
these calculations were much too small to capture the 
long-range screening response of graphene [15–18]. 
Conversely, theoretical calculations based on tight-
binding (TB) or continuum Dirac models [10, 19–21], 
while able to access large length scales, require external 
parameters (most importantly, the impurity charge Z) 
and so do not possess the unbiased predictive power 
of first-principles methods. Furthermore, such models 
typically employ uncontrolled approximations for the 
description of electron-electron interactions, which are 
either completely neglected [10, 12, 19, 22] or treated 
within linear-response [23, 24] or Thomas–Fermi 
(TF) theory [25–27]. Thus, there is a need for a param-
eter-free theory capable of bridging the length scales  
relevant to graphene-adsorbate interactions.
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Abstract
Adsorbed atoms and molecules play an important role in controlling and tuning the functional 
properties of two-dimensional (2D) materials. Understanding and predicting this process from 
theory is challenging because of the need to capture the complex interplay between the local 
chemistry and the long-range screening response. To address this problem, we present a first-
principles multiscale approach that combines linear-scaling density-functional theory, continuum 
screening theory and large-scale tight-binding simulations into a seamless parameter-free theory of 
adsorbates on 2D materials. We apply this method to investigate the electronic structure of doped 
graphene with a single calcium (Ca) adatom and find that the Ca atom acts as a Coulomb impurity 
which modifies the graphene local density of states (LDOS) within a distance of several nanometres 
in its vicinity. We also observe an important doping dependence of the graphene LDOS near the Ca 
atom, which gives insights into electronic screening in graphene. Our multiscale framework opens 
up the possibility of investigating complex mesoscale adsorbate configurations on 2D materials 
relevant to real devices.
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In this study, we combine first-principles DFT, con-
tinuum screening theory and model TB Hamiltonians 
within a novel parameter-free multiscale approach in 
order to overcome the limitations of each method in 
isolation. We demonstrate the power of our approach by 
applying it to the case of an isolated Ca atom adsorbed 
on doped graphene. This is a case of particular inter-
est due to ongoing work on the detailed experimental 
characterization of the doping-dependent screening 
response [28], and the observation of supercritical 
states for small clusters of Ca adatom dimers [12].

Ca donates electrons to the graphene resulting in 
an impurity charge of Z  =  1.6 e (with e denoting the 
proton charge). We compute the graphene local density 
of states (LDOS) in the vicinity of the charged Ca atom 
and observe that it decays to the bulk graphene value on 
a length scale of several nanometres. The decay length 
depends on the chemical potential which influences gra-
phene’s screening response to the impurity potential.

The remainder of this article is structured as fol-
lows: in section 2 we describe our general multiscale 
approach that bridges large-scale first-principles elec-
tronic structure calculations, continuum models and 
TB simulations at the mesoscale, and details of how we 
apply this approach to the specific case of a Ca adsorb-

ate on a graphene substrate; in section 3 we present 
and discuss our results; and we make some concluding 
remarks in section 4.

2. Methods

2.1. Outline of multiscale approach
Figure 1 shows the multiscale approach we developed 
to model the properties of adsorbates on doped 
graphene. The method consists of three key steps. 
First, we perform first-principles DFT calculations of 
the pristine graphene and the graphene with adsorbed 
species. From the former, we derive the pristine 
graphene lattice parameter a and the Fermi velocity vF, 
which we use in the continuum and TB Hamiltonians 
of the second and third steps. The periodic supercell 
for the graphene with adsorbate must be sufficiently 
large to converge chemical interactions between the 
adsorbate and the substrate [29]. To sample different 
values of the carrier density and, thereby, chemical 
potential µ, we perform a series of calculations with 
different numbers of electrons in the supercell.

Secondly, we parametrize a continuum screening 
model of the graphene with the adsorbed species. In 
this approach, the adsorbate is treated as a point impu-
rity charge Z located above the graphene sheet, which is 
described by the Dirac Hamiltonian (i.e. without atom-
istic detail). To determine the charge transfer between 
the adsorbate and graphene, we compute the self-
consistent (or screened) potential of the continuum 
model in the same supercell that was used for the DFT 
calculations and, for each value of µ, we fit the value 
of Z to achieve optimal agreement with the DFT self-
consistent potential. Different continuum screening 
models may be used in this procedure, corresponding to 
different treatments of electron-electron interactions. 
In this work we employ non-linear Thomas–Fermi the-
ory [25] (NLTF), but also include interband transitions 
through an effective dielectric function. The screened 
potential at a position rr in the graphene plane resulting 
from an impurity at ( )= zRR 0, 0, imp  is given by

∫µ = + − −′ ′ ′V Zv n n vrr rr rr rr rr rr; d ,zscr
cont 2

0 0imp( ) ( ) [ ( ) ] ( )
 (1)

where ( ) /( )µ µ µ π=n v0 F
2  and ( ) ( ( ))µ= −n n Vrr rr0 scr  

denote the electron density of graphene without 
and with the adsorbate, respectively, and v rrz( ) is the 
Coulomb interaction screened by graphene interband 
transitions, i.e. ( ) ( ) / ( )π= × −−εv q q q qz2 expz inter

1  with  
( )−ε qinter

1  being the interband contribution to the 
graphene dielectric function in the random-phase 
approximation [30–32]. In the above equation, 
the first term captures the bare impurity potential 
and the second term is the induced potential 
arising from electronic screening. We denote this 
model, which reduces to the well-known random-
phase approximation in the linear-response limit  
[30–32], as NLTF  +  inter. We further included 

Figure 1. Schematic diagram of the multiscale method used 
to simulate the long-range screening of a charged adsorbate 
on graphene. The intrinsic properties of graphene (the 
lattice constant a and Fermi velocity vF) are extracted from 
first-principles DFT simulations of the pristine crystal. The 
screened potential µV rr;scr( ) due to the adsorbate is calculated 
using a continuum screening model; the model depends on 
the charge transfer Z, which is obtained by fitting the model 
potential to the first-principles self-consistent potential 
extracted from DFT simulations of the graphene with 
adsorbate system.
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additional screening due to graphene σ bands [33] and 
exchange-correlation effects [20], but found that they 
have a small effect and can be neglected.

Thirdly, we perform a TB calculation in a super-
cell that is sufficiently large to capture the decay of the 
screened impurity potential. We find that the supercells 
needed to converge the screened potential are several 
orders of magnitude larger than the supercells needed to 
converge chemical interactions. The screened potential 
calculated from the continuum model, with the value of 
Z that has been fitted to DFT, is used as an on-site term in 
the TB Hamiltonian. The TB calculation then yields the 
local density of states (LDOS), which can be compared 
to scanning tunneling experiments [10, 28].

2.2. Application to calcium adatoms on graphene
In this section, we describe the application of the 
multiscale approach to isolated Ca adatoms on doped 
graphene.

2.2.1. Structure
All calculations use hexagonal supercells containing 
×n n graphene unit cells (2n2 C atoms) and a single Ca 

adatom. We use a graphene lattice constant a of 2.47 ̊A, 
obtained from plane-wave DFT calculations of a single 
unit cell with an energy cutoff of 1000 eV, a ×28 28 
k-point grid (centred at the Γ-point), norm-conserving 
pseudopotentials, 20 ̊A separation between periodic 
images of the graphene sheets and the PBE exchange-
correlation energy functional [34]. These calculations 
were carried out using the CASTEP [35] code. For the Ca 
adatom we use the geometry found by a previous DFT 
study of the system [15], with the adatom 2 ̊A above 
the hollow site at the centre of a hexagon. The same 
study also reported negligibly small relaxations of the 
graphene atoms near the Ca adatom and we thus keep 
these atoms fixed in our calculations.

2.2.2. First-principles calculations
We perform DFT calculations in a ×56 56 graphene 
supercell (6272 C atoms and a single Ca adatom). While 
this supercell is not large enough to capture the decay 
of the screened impurity potential, it is sufficiently 
large to describe chemical interactions resulting from 
the coupling of adsorbate and graphene states, such as 
exchange interactions giving rise to spin-split states. 
Such calculations are already very large by the standards 
of DFT, and are made possible by using the ONETEP [36, 
37] DFT code whose computational cost scales only 
linearly with the size of the system, in contrast to the 
cubic scaling of conventional methods. We use norm-
conserving pseudopotentials (including the 3s and 3p 
semi-core states for the Ca atom) and the PBE exchange-
correlation functional. The Brillouin zone is sampled 
at the Γ-point. Kohn–Sham states are expanded in a 
basis of non-orthogonal, atom-centred orbitals with a 
radius of 5.3 ̊A that are variationally optimized in situ, 
and described on a real-space grid corresponding to a 
plane-wave energy cutoff of 1000 eV. As we are dealing 

with a semi-metallic system, we do not truncate the 
density matrix and employ an ensemble-DFT [38] 
formalism with an electronic temperature of 50 K. The 
simulation employs periodic boundary conditions in all 
three directions, and we use a periodic image separation 
perpendicular to the graphene plane of 20 ̊A.

In experiments on graphene in a field-effect tran-
sistor setup the density of carriers can be modified by 
application of a gate voltage. To explore the effect of 
varying the carrier density in our simulations, we per-
form separate DFT calculations with different numbers 
of electrons in the supercell. Specifically, by adding and 
subtracting pairs of electrons we vary the total system 
charge ∆Q from  −4 e to  +8 e, corresponding to carrier 
densities n between − ×3 1012 cm−2 and ×5 1012 cm−2. 
For calculations with a non-zero total charge ∆Q we use 
a compensating homogeneous background charge.

The self-consistent (screened) local potential from 
each DFT calculation, which is comprised of the ionic, 
Hartree and exchange-correlation terms, is locally aver-
aged in a Voronoi cell around each C atom in the gra-
phene plane in order to smooth out the large variations 
that occur on the scale of an interatomic spacing. This 
smoothed DFT potential ∆V Qrr;scr

DFT( ) is then used to 
parametrize the continuum model.

2.2.3. Continuum screening calculations
The screened impurity potential from the continuum 
screening model is calculated with a custom in-house 
code with 2D periodicity [39]. The centre of the 
impurity potential is placed 2 ̊A above a hollow site at the 
centre of a hexagon of the graphene plane, as in the DFT 
geometry. For the non-linear models, a self-consistency 
cycle is used with a mixing scheme in which the screened 
potential of the next iteration is composed of 1% of the 
screened potential of the current iteration and of 99% of 
the screened potential from the previous iteration.

The continuum screening model depends on 
three parameters: Z, µ and the Fermi velocity vF. The 
substrate dielectric constant usually constitutes an 
additional parameter; here, however, we are inter-
ested in suspended graphene and so set it to unity. 
= ×v 0.8 10F

6 m s−1 is taken directly from the pristine 
graphene DFT band structure, and Z and µ are treated 
instead as fitting parameters of the model.

The accuracy of the model is evaluated against DFT 
using a fitness metric ( )µF Z , , which is defined as the 
root-mean-square difference between the model poten-
tial V scr

cont of equation (1) and the DFT potential V scr
DFT, 

integrated over the supercell area. We calculate V scr
cont for 

a range of Z and µ values using the same supercell as 
in the DFT calculation (including periodic boundary 
conditions). The values of Z and µ that minimize F  are 
those that give the optimal fit of the screening model 
to DFT (see figure S1 of the supplementary material 
(stacks.iop.org/TDM/4/025070/mmedia)).

To study the effect of different approximations for 
the electron-electron interactions, we also use three 
other continuum screening models: (i) TF theory 

2D Mater. 4 (2017) 025070



4

F Corsetti et al

within a linear-response formalism (LTF), which only 
includes intraband transitions between the Dirac bands 
of graphene; (ii) linear-response TF theory plus inter-
band transitions (LTF  +  inter); (iii) non-linear TF 
theory (NLTF) [25] without interband transitions.

2.2.4. Tight-binding calculations
The large-scale TB simulations are performed in 
a ×168 168 supercell (56448 C atoms and a single 
Ca adatom); this is an order of magnitude increase 
in system size with respect to the underlying DFT 
simulations. We use a custom in-house TB code for 
graphene with 2D periodicity. The TB Hamiltonian 
includes the C pz orbitals and nearest-neighbour 
hoppings only with a hopping energy of 2.54 eV. A 
×2 2 Monkhorst–Pack mesh (centred at the Γ-point) 

is used to sample the Brillouin zone.

3. Results

3.1. Charge transfer
The charge transfer Z is an important quantity 
for characterizing the interaction between an 
adsorbate and the substrate. Standard approaches 
for calculating Z partition the continuous electron 
density obtained from DFT into an adsorbate and 
a substrate contribution. For example, Chan et al 
[15] calculated the charge transfer for different 
adatoms on graphene, but found large discrepancies 
between two different methods of partitioning the 
electron density (0.18 e and 0.78 e for Ca adatoms). 
As shown in the inset of figure 2 and figure S2 in the 
supplementary material, we obtain an even broader 
range of values for Z, from 0.2 e to 1.4 e, depending 

on the particular charge partitioning method used. 
While each method provides a different value for Z, 
all of them find the charge transfer to be independent 
of the supercell charge ∆Q, indicating that Ca states 
are neither filled nor depleted as the graphene doping 
level is varied.

In contrast to these approaches, no partition-
ing of the charge density is required in our multiscale 
method. Instead, Z is obtained by imposing that the 
screened impurity potential of the continuum screen-
ing model reproduces the self-consistent DFT potential. 
In the fitting procedure, we enforce a µ-independent 
value of Z by performing a global fit to all doping lev-
els at once with equal weighting. This is justified by the 
charge stability of the impurity discussed previously. It 
should be noted that performing individual fits for each 
doping level indeed results in a fairly constant Z for all 
charge states except ∆ =Q 2 e, in which case the value is 
enhanced by up to  ∼50%; we believe this to be because 
the graphene system is very close to being undoped and, 
hence, is the least well-described by our models as the 

Figure 2. DFT simulations of a Ca adatom in a ×56 56 supercell of graphene. The main panel shows the chemical potential µ 
relative to the Dirac point as a function of supercell charge ∆Q, and the fit to a linear-bands model of doped graphene. The error bars 
are determined by the spacing of DFT eigenstates in the energy spectrum, resulting from the finite supercell size and Brillouin zone 
sampling. The inset shows the charge transfer Z obtained from three charge-partitioning schemes: Mulliken (M), Hirshfeld (H), 
iterative Hirshfeld (IH). For the H and IH schemes we use a two-component system (the Ca atom and the graphene substrate) from 
which the pro-molecular density is constructed.

Table 1. Charge transfer Z obtained from the new multiscale 
approach, i.e. by fitting the screened impurity potential of a 
continuum screening model to the self-consistent DFT potential, 
and the corresponding value of the fitness metric F  of the model 
averaged over all DFT doping levels. We also include the value of the 
adatom charge estimated from the DFT DOS (see figure 2).

Model Z (e) F  (eV)

LTF 0.3 × −8.9 10 3

LTF  +  inter 1.3 × −8.4 10 3

NLTF 1.6 × −9.3 10 3

NLTF  +  inter 1.6 × −7.4 10 3

Linear-bands fit to DFT (figure 2) ±1.6 0.3 —

2D Mater. 4 (2017) 025070
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screening is dominated in this case by the interband 
transitions [40].

Table 1 gives the value of Z obtained from the new 
multiscale approach using different approx imations 
for the description of electron-electron interactions. 
The NLTF  +  inter method, which offers the most 
accurate description of electron-electron interac-
tions, yields Z  =  1.6 e. The same value is obtained 
from the NLTF method indicating that inclusion 
of interband trans ition does not change the value 
of  Z. In contrast, the linear-response LTF and 
LTF  +  inter approaches yield significantly smaller 

values for Z.
Table 1 also gives the value of the fitness function F  

averaged over all DFT doping levels. It is interesting to note 
that there is almost no difference in this value between the 
different approaches1; all of them reproduce the DFT 
screened potential with high accuracy (<10 meV), but 
with significantly different Z values. This observation 
was explained by Katsnelson [25] who pointed out that 
the screened potential of a charged impurity in doped 
graphene has the same functional form in linear and 
 non-linear Thomas–Fermi theory, but with a different 
prefactor corresponding to different effective values of Z.

An alternative method for calculating Z which also 
does not require a partitioning of the charge density 
is shown in the main panel of figure 2. For each value 
of the supercell charge ∆Q, we determine µ from the 
spectrum of Kohn–Sham energies (open squares) and 
then fit a linear-bands model of doped graphene of the 

for m  ( ) [ ] /µ π∆ = − ∆ − ∆ −Q Q Z v Q Z Asgn F  
(dashed line), where ∆ −Q Z is the total free carrier 
charge and A is the area of the supercell. This method 
yields = ±Z 1.6 0.3 e, significantly higher than previ-
ously suggested values [15], but in excellent agreement 
with our multiscale method.

3.2. Local density of states
Figure 3 shows the LDOS obtained from the large-
scale TB simulation with the screened potential from 
the NLTF  +  inter model. The main panel shows 
a representative example for the case of n-doped 
graphene (at a chemical potential µ = 0.12 eV).

As observed in previous studies employing an 
unscreened impurity potential [10, 19], the LDOS near 
the adatom exhibits a broken electron-hole symmetry. 
This behavior can be understood within a simple TF-
based picture, in which the LDOS in the presence of the 
adsorbate is given by that of unperturbed graphene, but 
shifted in energy by the value of the screened impurity 
potential (shown by the dotted line in figure 3). While 
the shifted LDOS agrees well with the full result for 
energies more than ± ∼0.5 eV from the Dirac point, 
there are significant deviations within this range. In 
particular, the position of the Dirac point remains 
pinned at its unperturbed value, which is a consequence 
of the linear dispersion of the bands from graphene’s 
chiral Dirac fermions.

The inset of figure 3 shows the decay of the LDOS 
at a fixed energy towards its unperturbed value far 
from the adatom (corresponding to experimental 

/I Vd d  linescans [10]). The decay length decreases with 
increasing µ . This is in agreement with very recent 
experimental measurements [28]. The chemical poten-
tial only enters the simulation through its effect on the 
screened potential; this demonstrates the impact of 
screening on measured properties of the system and 
highlights the importance of an accurate description 
of electron-electron interactions.

1 However, the four models result in somewhat lower overall 
values of F  than fits based on empirical forms for the screened 
potential, discussed in figure S3 in the supplementary 
material.

Figure 3. LDOS of free-standing, n-doped graphene at different distances from a single Ca adatom, calculated with the first-
principles multiscale approach described in the text. The dotted line shows the LDOS of unperturbed graphene shifted in energy by 
the average value of the on-site screened potential at a distance of 10 ̊A from the adatom. The inset shows the LDOS at 0.1 eV above 
the Dirac point as a function of the distance r from the adatom (normalized by the value for unperturbed graphene), and as the 
graphene doping is increased (the chemical potential µ is given in the key).

2D Mater. 4 (2017) 025070
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4. Conclusions

In conclusion, we have introduced an accurate and 
efficient multiscale approach for the theoretical 
description of charged impurities on doped graphene. 
Starting from linear-scaling DFT simulations of 
a Ca adatom in a ×56 56 graphene supercell, we 
parametrize a continuum screening model by fitting 
the screened potential of the model to the DFT self-
consistent potential. The continuum screening model 
is then evaluated in a much larger ×168 168 supercell 
and the resulting screened impurity potential is used 
as input for large-scale TB simulations, which yield 
observable quantities, such as the local density of states.

Although the continuum screening model is non-
analytic and requires a self-consistent calcul ation, 
its computational cost is negligible, many orders of 
magnitude less than the TB simulation. The TB simu-
lation itself is also computationally inexpensive: the 
×168 168 supercell with TB is  ∼0.1% of the cost of 

the ×56 56 supercell with DFT, allowing us to access 
much larger systems than would be possible with 
DFT alone. As shown in figure S4 in the supplemen-
tary material, the limiting factor in the accuracy of 
the large-scale simulation is the TB approx imation 
itself rather than our fitting procedure.

This multiscale approach, which bridges local 
chemistry at the adsorbate site on the nanoscale and 
long-range screening effects on the mesoscale within 
a single, physically-motived framework, opens up the 
possibility of investigating more realistic and complex 
mescoscale configurations relevant for the understand-
ing of real devices, e.g. disordered arrangements of dif-
ferent adsorbate species.

Data underlying the DFT calculations are available 
on figshare [41] and may be used under the creative 
commons Attribution licence. The code for calculat-
ing the screened potential of such systems with the 
NLTF  +  inter model is available online with a user-
friendly web-based interface [39].
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