
A Nanosecond-level Hybrid Table Design for Financial Market Data Generators

Haohuan Fu∗, Conghui He∗, Wayne Luk†, Weijia Li∗, and Guangen Yang∗
∗Tsinghua University, Email: {haohuan,ygw}@tsinghua.edu.cn, {hch13,liwj14,}@mails.tsinghua.edu.cn

†Imperial College London, Email: w.luk@imperial.ac.uk

Abstract—This paper proposes a hybrid sorted table design
for minimizing electronic trading latency, with three main
contributions. First, a hierarchical sorted table with two
levels, a fast cache table in reconfigurable hardware storing
megabytes of data items and a master table in software storing
gigabytes of data items. Second, a full set of operations,
including insertion, deletion, selection and sorting, for the
hybrid table with latency in a few cycles. Third, an on-
demand synchronization scheme between the cache table and
the master table. An implementation has been developed that
targets an FPGA-based network card in the environment of the
China Financial Futures Exchange (CFFEX) which sustains 1-
10Gb/s bandwidth with latency of 400 to 700 nanoseconds,
providing an 80- to 125-fold latency reduction compared to a
fully optimized CPU-based solution, and a 2.2-fold reduction
over an existing FPGA-based solution.

Keywords-FPGA; finance; algorithm; low latency; HPC

I. INTRODUCTION

In recent years the automation of financial trading has
driven the demand for trading applications and systems
with challenging latency requirements [1]. Although the
software solutions provide the flexibility to express algo-
rithms in high-level programming models and to recom-
pile quickly, they are becoming increasingly uncompeti-
tive especially in financial applications due to the long
and unpredictable response time mainly from the operating
system network stacks and system interrupts. Nowadays,
Field Programmable Gate Arrays (FPGAs) have shown to
be a promising technology for high frequency trading and
algorithmic trading applications [2] [3] [4], which achieve a
low and constant latency for processing packets in hardware
directly.

However, existing FPGA-based low-latency solutions to
financial packet processing mainly focus on parsing, de-
compressing, filtering and forwarding the market data feeds
without the need of maintaining a large volume of structured
data. It is generally challenging for FPGAs in both design
philosophy and memory resource to organize a large volume
of packets with complicated routines, such as insertion,
deletion, selection, sorting, etc. For instance, the market
data generator (MDG) in CFFEX for generating market
data feeds from gigabytes of order books is still based
on a pure software solution, which becomes one of the
bottlenecks of the low-latency trading engine. Mapping the
MDG to reconfigurable hardware can potentially reduce

latency, while also raise great challenges for maintaining
gigabytes of order books with sophisticated routines.

FPGAs have been used in speeding up demanding routines
such as sorting and database operations [5] [6] [7]. However,
the data in these applications streamed to FPGAs are all
from the host memory. As a result, frequent data transfers
between the CPU and the FPGA greatly reduce the latency
gain obtained from network processing, which goes to the
opposite side of low latency.

This paper proposes a CPU-FPGA hybrid sorted table
design for financial market data generators, which is able
to maintain a large volume of GBs of data in nanoseconds.
It is integrated into the MDG with the capability of meeting
the current and future requirements regarding latency and
data volumes. Our key contributions are as follows.

• A CPU-FPGA hybrid sorted table design, which con-
sists of a cache table on the FPGA that stores MBs of
most frequently used data items, and a master table at
the CPU host that stores GBs of data items.

• A complete set of routines for the hybrid sorted table,
including insertion, deletion, selection, etc., providing
an extremely low latency at the scale of a few cycles.

• An on-demand synchronization scheme between the
cache table and the master table.

The rest of the paper is organized as follows. Section
II discusses the FPGA solutions to financial applications
and the challenges of low-latency database-style operations.
Section III presents a CPU-FPGA hybrid sorted table. Sec-
tion IV proposes a complete set of database-style low-
latency routines along with the hybrid sorted table. Sec-
tion V discusses an on-demand synchronization strategy
to exchange data between the FPGA and the CPU host.
Section VI proposes a performance model and shows our
experimental results for the resource usage, the latency, and
the comparison with the CPU-based system in difference test
cases. Finally, Section VII gives a conclusion of this study.

II. BACKGROUND

A. Financial Market Data Generator
As a hub organization that enables financial transactions,

one of the key functions of the financial exchanges is to
provide the traders with the financial market data feeds that
include changes in prices and market conditions.

The market data generator in exchanges is not only
responsible for the parsing and filtering of the packets at

Trading
data sync

Trading
Engine

Trading
query

Market data
generator

Trading
init

Disaster recovery

Trading
front

Market
data front

Femas

Traders

Order book
No. Price Volume
m

m+1
m+2
m+3

Orderbook DB

Insertion

Deletion

Selection

etc.

Insertion

Deletion

Selection

etc.

Order book
No. Price Volume
m

m+1
m+2
m+3

Orderbook DB

Insertion

Deletion

Selection

etc.

Front information bus (FIB)

Market data
generator

Figure 1. The architecture and the market data generator in CFFEX.

a high message rate, but also for the maintenance of GBs of
data items in a structured format, which is usually called the
order book. An order book is a list of buy and sell orders for
a particular financial instrument, organized by price level.
The order book lists the number of shares being bid or
offered at each price point, or market depth. A market data
generator needs to update and maintain order books in real
time, which needs to support a complete set of operations
such as insertion, deletion, selection, sorting, etc.

Over time the number of messages produced have drasti-
cally increased. This increase has a number of causes, such
as

• Increased range of products. The number and scope
of traded instruments have continually increased. In
CFFEX for example, the number of instruments is
expected to be growing from dozens to hundreds or
even thousands in the next few years.

• High-resolution monitoring. In current configurations
of exchanges, the changes in prices are often reported
at the resolution of half a cent (0.005 CNY), which
results in much more frequent updates due to small
price movements.

• Algorithmic trading. Algorithms generate and cancel
trades at a much higher rate than human traders, leading
to an increased message rate to the exchange.

The pure software solutions of a market data generator
are generally unable to scale with the growing message
rate and meet the requirement of low latency. The con-
ventional FPGA designs that store the order books on the
host memory while employing the FPGAs to accelerate the
database operation are also unable to sustain during a large
burst of trading activities, mainly because the data transfer
between the FPGA and the CPU via PCIe will greatly

increase the latency. It is also impractical to store GBs of the
order book data on the chip while supporting fast database
operations. Our proposed approach is to use an FPGA-based
streaming solution that employs a CPU-FPGA hybrid sorted
table design to maintain order books while maximizing the
incoming message rate and minimizing the latency.

B. Related Work

Field Programmable Gate Arrays (FPGAs) become in-
creasingly popular as the high-throughput and low-latency
solutions in financial industries. Pottathuparambil et al.
described an FPGA-based ITCH feed handler [8] to handle
a peak data rate of 420 Mbps with a deterministic latency
of 2.7µs. Subramoni et al. presented a prototype of an on-
line OPRA data feed decoder [9], achieving a latency of
less than 4µs. Lockwood et al. presented an FPGA IP li-
brary with networking, I/O, memory interfaces and financial
protocol parsers [2]. Another popular topic of interest is
algorithmic trading techniques like the acceleration of Monte
Carlo simulations [3] [4] using FPGAs. These applications
demonstrate FPGAs as an ideal hardware for low-latency
financial packet processing, however, they mainly focus on
parsing, decompressing, filtering and forwarding the market
data feeds without the need of maintaining a large volume
of sorted data items.

Activefeed MPU used an XtremeData FPGA accelerator
which was placed in a processor socket of the host system
and communicated using HyperTransport to accelerate mar-
ket data forwarding. The latency was 100 us [10]. Morris et
al. presented an FPGA accelerated approach for market data
feed processing, using an FPGA connected directly to the
network to parse, decompress, and filter the feed, and then
to push the messages to CPUs, achieving an latency of 26µs
[11]. These CPU-FPGA hybrid designs frequently transfer
data between the CPU host and the FPGA, which largely
reduces the latency gain of the network packet processing
part.

Most reconfigurable designs for rebuilding order books
are commercial and their implementation details are usually
not presented. The Algo-Logic System provides a full order
book with a maximum processing latency of less than 230
nanoseconds on a single FPGA Platform [12]. Miles et
al. utilized a ternary tree to rebuild the market data from
the Nasdaq stock exchange with a latency between 180-
205ns [13]. Both of them rebuild the order books with the
market data feeds from the exchanges while our design
is targeting building order books in the exchanges, which
involves more complex operations such as publishing market
data feeds. The NovaSparks announces FPGA-based order
book capability for global cash equities with the latency
between 800-1500ns [14], which is much higher than our
design.

181 2 3 4 5 6

1 2 3 4 6 5

In order

Cache table Master table

Sorting network

37

30

139

11 19 34 46

16 43

AVL tree

PCIe

Figure 2. The data structure of the CPU-FPGA hybrid sorted table.

III. A CPU-FPGA HYBRID SORTED TABLE

A. Underlying Data Structure

The existing solutions to accelerate database-style opera-
tions usually store the data in the host memory, which often
results in a long latency due to the data transfers [6]. We
propose a CPU-FPGA hybrid sorted table, which consists
of a cache table on the FPGA that stores MBs of most
frequently used data items, and a master table at the CPU
host that stores GBs of data items, as shown in Figure 2.
The two tables work together seamlessly, with the following
features.

• Both the cache table and the master table are sorted
with different sorting strategies. Any low-latency sort-
ing network algorithms such as the bitonic sorting [15]
can be applied to sort the cache table. A balanced tree
is usually employed to maintain the master table.

• A key of an item/order is either located at the cache
table or the master table. The concatenation of the two
tables forms a sorted super table that stores all data
items in ascend/descend order.

• The most frequently used data items are stored in the
cache table, leaving the rest to the master table.

• The two tables exchange information via PCIe and
direct memory access (DMA) with a low-latency in-
terface. We also design an efficient synchronization
strategy that will be discussed in Section V.

A number of sorting algorithms on FPGAs are discussed
in [15]. We employ the bitonic sort for the cache tables,
which consists of O(Cn log(Cn)

2) comparators and has a
delay of O(log(Cn)

2) cycles, where Cn is the size of the
cache table. Usually, we set the size of the cache table in
a range of 20 to 70, often resulting in a latency of a few
cycles. An AVL tree [16] is applied for the master table. It
has the advantage that the heights of the two child subtrees
of any node differ by at most one. It takes O(log(Mn)) time
in both insertion and deletion where Mn is the size of the
master table.

One of the flexibilities of separating the cache table and
the master table is that we can use different strategies to

maintain the master table according to different characteris-
tics of real applications while still achieving a low latency
with a few cycles. The CPU-FPGA hybrid hierarchical table
provides us an effective way to maintain the top of the
order book, which is the most frequently used data on the
FPGA. Therefore, we are able to rebuild the order books in
extremely low latency in a hardware accelerated way.

B. Design Methodology

The major difference between our design and previous
work comes from the features of the sorted hierarchical
table, which always keeps the hot data in the trading
activities in the cache table. As the cache table is mapped
to the FPGA, we can achieve the maximal performance and
minimal latency. In this part, we discuss our considerations
in designing the CPU-FPGA hybrid sorted table.

1) Why hot data is always in the cache table: In financial
trading, traders are mainly interested in the top of the order
book, which is the highest bid price and the lowest ask
price. They signal the prevalent market and the bid/ask price
needed to get an order fulfilled. If the bid on a particular
instrument meets or exceeds the lowest ask price, a trade is
matched and vice versa. So the top of the book is of the
highest interest, followed by the second level, and the third
level and so forth. As the two tables are sorted and the cache
table is the head, the hot data is always in the cache table.

2) Why not keep all data in the cache table: Mapping the
cache table to BRAM offers us great flexibilities and high
memory bandwidth. However, the more elements we store in
the BRAM, the more resources and latency we need to sort
the cache table. In addition, the capacity of the BRAM is not
able to hold GBs of order books of hundreds of instruments.
Lastly, the traders and the match engine in the exchanges are
only interested in the top of the order book, so putting them
all in BRAM does not pay off.

3) Why not keep the master table in DRAM: In order to
keep the cache table storing the top of the order book all
the time, we need to transfer the largest/smallest elements
of the master table to the cache table if necessary. Thus
the elements in the master table also need to be sorted or
partially sorted. Putting the master table to DRAM may
meet the demand of stronger timing, however, it is extremely
inefficient to insert, delete or sort elements on DRAM. On
the other hand, such operations and related data structures
are well developed at CPU host, so we employ the CPU
to maintain the master table. The overhead comes from the
data transfer latency through PCIe as well as the OS inherent
overhead. So we carefully design a synchronization strategy
to minimize the number of data transfers.

4) Why sorted table but not hash table or generic cache:
We sort the orders mainly for two reasons. One is to provide
an efficient way to access the top of the book when a trade
matches or several levels of prices at the top needs to be
published. The other reason is that a sorting algorithm has

Algorithm 1 Insert an order into the cache table
1: procedure INSERT(k, v, C) . key, value, cache table
2: f ← 0
3: for c ∈ C do . iterate cache table
4: if ck 6= k then
5: cv ← cv + 0
6: else . key is in the table
7: cv ← cv + v . increase value (volume)
8: f ← f + 1

9: if f 6= 0 then . it is a new key
10: Cn−1 ← (k, v) . insert new order
11: bitonic sort(C) . keep table sorted

an amortized complexity and latency for different operations,
which is important to the FPGA design because one FPGA
always takes the longest path as its latency. Hashing is also
a good method for elements lookup but it suffers from hash
collision. Also, it is hard for hash table to track the top of the
order book. A generic cache also suffers from the problem
of tracking the top of the order book.

IV. CYCLE-LEVEL LATENCY ROUTINES

The underlying data structure and the algorithms are
highly coupled. We first talk about the initialization process
and a basic subroutine that are shared among different
routines. The keys in the cache table are initialized to a
specific value indicating they are invalid, denoted by the
gray cell in Figure 2. They will automatically move to the
end of the table after sorting.

One element is either in the cache table or in the master
table, which provides us a way to filter an item to one of the
table by comparing the key of the new item to Ms, where
Ms is the smallest element in the master table, denoted by
the yellow cell in Figure 2. If the key is less than Ms, the
new item goes to the cache table, otherwise, it goes to the
master table.

A. Cache Table Insertion

An item in the table is a (key, value) tuple. In the financial
trading, the key and value are the price and volume of an
order. If the key of the new order is larger than Ms, the
new order will be inserted to the cache table following
Algorithm 1. The result is to either increase the value if
the corresponding key exists or add a new (key, value) tuple
to the cache table if the key does not exist.

The arguments of the Algorithm 1 are the (key, value)
tuple of the new order and the cache table. In line 3 to line
8, we iterate through the cache table C to determine if the
key exists. If so, we increase the corresponding volume value
according to the inserted new order. Otherwise, the values
are unchanged. We need to insert the new item at the end
of the cache table if the key of the new item does not exist.
The process is described in line 9 to 10. Line 11 sorts the

Algorithm 2 Delete an order from the cache table
1: procedure DELETE(k, v, C) . key, value, cache table
2: for c ∈ C do . iterate cache table
3: if ck 6= k then
4: cv ← cv − 0
5: else . key is in the table
6: cv ← cv − v . decrease value (volume)
7: if cv ≤ 0 then . no volume at the price
8: ck ← null . set key to invalid
9: if size(C) ≤ Nc

4 then . not enough element
10: CN/2..N ←M1..N/2 . populate table

11: bitonic sort(C) . keep table sorted

cache table so that the newly inserted item that is at the end
of the table will automatically move to the right position.
If the cache table becomes full after consecutive insertions,
the second half of the table will be transferred to the master
table at once so that the cache table has enough space for
further insertions.

B. Cache Table Deletion

The deletion is the opposite of the insertion. While the
insertion increases the corresponding value of a key, the
deletion decreases it. The deletion algorithm is summarized
in Algorithm 2.

From line 2 to line 8, we search the key by scanning the
cache table and subtract the value from the total if the key
belongs to the cache table. If the remaining amounts become
zero after the subtraction, indicating that the item becomes
invalid, the corresponding key should be removed from the
cache table. We accomplish this by setting the key to the
uninitialized value so that the key will go to the end of the
table after sorting (line 7 and line 8).

If there are lots of continuous delete requests, the number
of the valid items in the cache table may become smaller
and smaller. Thus we need to refill a bulk of items from
the master table (line 9 to 10), which is triggered when the
number of valid items in the cache table falls below a user-
defined threshold. We usually set the threshold to 25% of
the total size of the cache table. No matter if we set a key to
invalid or refill the cache table, the cache table will become
sorted again (line 11).

C. Selection

The selection routine is to find an item from the table for
given criteria. There are two major scenarios for a market
data generator.

• Select an item with the smallest or largest key, which is
a typical scenario in the financial trading for executing
a trade where the smallest/largest key has the highest
priority to be matched.

max

0.5max

5 6-10

10 Issue CPU
 to FPG

A

FPGA to CPU

Transfer
complete

High msg rate & continuous deletion
Not stall

Stall

Figure 3. Data movements according to the size of the cache table.

• Select top portion of the order book, which happens
twice in every second when broadcasting market data
feeds.

In both scenarios, the sorted cache table guarantees that
the items we need always stay at the head of the table.
These operations can usually be accomplished with nearly
zero latency. It is also one of the major reasons why we
always keep the table sorted.

V. ON-DEMAND SYNCHRONIZATION

In our synchronization scheme, a data transfer is only
triggered under certain user-defined conditions. Our goal is
to minimize the number of transfers and maximally overlap
the computation and communication.

A. FPGA to CPU

Transferring data from the FPGA to the CPU host will not
stall the FPGA. Such data transfer is issued in two scenarios.
One is when the cache table is full after the insertion, and
the other is when the new item is filtered to the master table.
In both scenarios, there is no reason for the FPGA to stall
and wait for the completion of the data transfer. In case of
a heavy burst of data transfer from the FPGA to the host
memory, we design a large enough FIFO on the DRAM
that buffers the data transferring to the CPU host so that the
FPGA will not stall.

B. CPU to FPGA

A data transfer from the CPU host to the FPGA is
triggered when the number of valid items in the cache table
falls below a user-defined threshold, which happens in the
deletion routine. Our strategy to overlap the communication
and the computation is to transfer data in advance. For
example, if we need to keep a minimal number of five
elements in the cache table, we will issue a transfer of a
bulk of data from CPU host when the number of elements
falls below ten shown in Figure 3. Therefore, the logic will
not stall immediately after requesting the data transfer. Fig-
ure 4 presents three communication & computation overlap
scenarios.

1) When the message rate is low, the data transfer is fin-
ished before the end of the current packet processing

Issue sync CPU to FPGA sync

...delete deletedelete stall

...delete Insert, delete, update, etc.

delete

Timeline

1

2

3

Async

Async

Sync

Async

Figure 4. On-demand synchronization scheme in three different overlap-
ping scenarios. The FPGA and the CPU are asynchronized in the first two
scenarios. The FPGA only stalls for a short while with a series of deletions.

or before the arriving of the next packet. The FPGA
has enough time for communication.

2) Although the FPGA needs to process packets in a high
message rate, the packets involve different operations
instead of just deletions during the period of data
transfer. The cache table has enough elements before
the transfer is completed.

3) The FPGA needs to face a burst of packets involving
only delete operations in a high message rate.

In the first two scenarios, the computation and data transfer
are perfectly overlapped. However, in the last scenario, the
computation and communication will first overlap when the
cache table still has enough items, and the FPGA may stall
for a short while before the data transfer is finished, which
is denoted by the red bar in Figure 4.

In most trading activities, a data transfer is completed
without the FPGA stalling because there are a lot of other
actions such as insertions and selections. A strict synchro-
nization usually occurs when there are a series of deletions,
which rarely happens. In order to reduce the possibility of
stalling, we can set a higher threshold to fetch data from the
CPU host. For example, we can issue data transfers once the
number of the valid items falls below 50% of the total size
of the cache table.

In summary, the FPGA does not stall when the data moves
from the cache table to the master table. For data movements
from the CPU to the FPGA, we can adjust the threshold that
triggers the data transfer to minimize the possibility of the
FPGA stalling. In our three test cases, the possibility is less
than 0.01%.

VI. EXPERIMENTS

We map our design to the Maxeler MAX4 ISCA data
flow engine. It is an FPGA-based network card that has
two NICs supporting high-speed connections. We program it

using a high-level synthesis programming model, the MaxJ
language. Our hardware design runs at 160MHz. As the
frequency of the NIC module is 156MHz, running our design
at 160MHz is fast enough even for processing packets at a
full bandwidth (10Gb/s).

The FPGA card is then integrated into the market data
generator (MDG) as shown in Figure 1. The MDG runs
in the test environment of the China Financial Futures
Exchange (CFFEX). The CFFEX also provides us three
data sets, each containing all packets (100+ million packets
and 200+ order books) of one trading day, to measure the
performance of our design.

A. Performance Model

FPGAs have many difficulties for low latency measure-
ments, and the high throughput specifically, poses a number
of challenges. We propose a performance model for mea-
suring the latency and projecting the maximum throughput.
We follow Equation 1 to measure our latency.

Lobs = Ltotal − Lconst − Lpkg (1)

where Lobs is the observed latency of our design; Ltotal is
the total measured latency of MDG; Lconst is the constant
latency without our design; Lpkg is the latency of parsing
the package calculated by Equation 2.

Lpkg =Msize/(Wdata × FNIC) (2)

where Msize is the size of the message; Wdata is the byte
width of the data pth; FNIC is the running frequency of
NIC.

The time remained for updating the order book,
Lorder−book, as a function of message rate, Mrate, can be
expressed as Equation 3 and 4.

Lorder−book = Lproc/Mrate − Lconst (3)

Lproc = 1− (Mrate × Lpkg) (4)

Therefore, the maximum message rate that our design can
support theoretically can be expressed as Equation 5.

Mmax−rate = Lorder−book/Lobs ×Mrate (5)

The above equations will be used in exploring future
performance scalability in Section VI-E.

B. Latency vs. Cache Table Size

We maintain the top of the order book in the cache table
on the FPGA. Table I shows the cycles we need for different
routines as the size of the cache table varies. A larger cache
table capacity always results in a longer latency. Another
factor to the latency comes from the data transfer between
the FPGA and CPU host. Figure 5 presents the number of

cache_size=20 cache_size=40 cache_size=60 cache_size=80
0

50

100

150
Cycles and data transfers vs. cache table size

Sort cycle
Total cycle
FPGA->CPU (K)
CPU->FPGA (K)

Figure 5. The number of cycles and the number of data transfers (in
thousand) between the FPGA and the CPU host when the size of cache
table varies. The larger the cache table is, the larger the average latency
and the less number of data transfers we have.

Table I
CYCLES OF DIFFERENT ROUTINES VS. CACHE TABLE SIZE

Size Overall Insert Delete Select Publish
20 31 27 24 20 20
40 45 38 36 31 31
40 54 45 42 37 37
80 62 51 47 43 43

cycles used and the number of data transfer from FPGA to
CPU and vice versa according to different cache table sizes.

The theoretical depth of bitonic sort is O log(N2
c), so

increasing the size of the cache table also increases the
latency of our design. On the other hand, the number of
data transfers between the FPGA and CPU host reduces as
the cache table size increases. The less frequently the data
transfers, the less possibility that the FPGA waits. So there
is a balance between the average latency without stalling and
the peak latency when the FPGA needs to wait data from
the CPU host.

It is hard to derivate an optimal cache table size because
the data transfer between the FPGA and the CPU highly
depends on the sequence of the packets. Different actions
result in different data movement behaviors. In our experi-
ence, setting the cache table size to 50-70 results in a steady
latency of 400-500ns in most cases.

C. Latency vs. Message Rate

Figure 6 shows the exchange of the cache table size and
the latency with a sequence of packets in different message
rates. First, we can observe how the cache table size varies
from the blue curve. When the size hits 50, it drops to
25 immediately because 25 elements in the cache table are
moved to the CPU host (master table). Also notice that,
the latency in such situation does not change because the
FPGA is not necessary to wait for the completion of the
data transfer.

When the size of the cache table falls below 10, the data
moves from the master table to the cache table, so the cache
table is filled up with 25 items. The FPGA will not stall
immediately, instead, the FPGA keeps processing until there

order sequence
0 100 200 300 400 500 600 700

ca
ch

e
ta

bl
e

si
ze

0

10

20

30

40

50

Latency vs. cache table size in low message rate

la
te

nc
y

(n
s)

300

400

500

600

700

800
latency
cache table size

order sequence
0 100 200 300 400 500 600 700

ca
ch

e
ta

bl
e

si
ze

0

10

20

30

40

50
Latency vs. cache table size in high message rate

la
te

nc
y

(n
s)

300

400

500

600

700

800
latency
cache table size

latency spike

Figure 6. The behaviors of the cache table size and the latency in low
message rate (1Gb/s) and high message rate (10Gb/s) when replaying the
same packets. The top figure shows that our design achieves a steady and
constant latency in low message rate, and the bottom figure shows that our
design suffers a latency spike when moving data from the CPU host to the
FPGA.

Table II
THE LATENCY (NS) AND POSSIBILITY IN DIFFERENT CACHE SIZE

Cache size ≤ 5 6-10 >10
Latency (ns) 1001-1300 701-1000 501-700 400-500
Possibility 0.1% <2% 5%-8% >90%

are only 5 elements in the cache table. We can observe
that in the scenario of low message rate (top figure), the
latency is still steady because there is enough time for the
data movements. In high message rate, the latency is still
steady the first time the cache table refills (at the 245th
order), but we suffer a latency spike at the 711th order. We
consider it reasonable because there are a sequence of delete
operations in high message rate. Notice that the cache table
keeps shrinking in the second data movement while it grows
in the first data movement.

D. Latency Distribution and Speedup

In order to have a better understanding of the latency
of the design in real cases, we summarize the latency
distribution by replaying the three data sets in Figure 7
and Table II. In most situation like inserting/selecting orders
to/from the order book, the latency is between 400-450ns.
When the FPGA stalls, the latency usually ranges from
500-100ns. Only in less than 0.1% will the latency go up
to 1000+ns. It is reasonable because the latency is highly
related to the different patterns of incoming packets.

We also compare the latency of our design with the one
from NovaSparks [14] and the original CPU-based solution,
which is summarized in Table III. The last two columns
records the speedup values of our FPGA-based solution over
the CPU-based solution and the NovaSparks’ solution. Our
design can achieves 80 to 125 times and 1.1 to 2.2 times
speedup in terms of latency over the highly optimized CPU-
based solution and the NovaSparks’ FPGA solution.

Dataset #1 Dataset #2 Dataset #3

P
e

rc
e

n
ta

g
e

 (
%

)

0

10

20

30

40

50

60
Latency (ns) distribution in 3 dataset

400-420
421-450
451-500
501-700
701-1000
1000+

Figure 7. Latency distribution in three data sets. 97.3%, 98.8%, 96.5% of
latencies are between 400-700ns in three cases respectively.

Table III
LATENCY COMPARISON WITH NOVASPARKS

CPU NovaSparks FPGA SUcpu SUns

40-60us 880-1500ns 400-1300ns 80-125x 1.1-2.2x

E. Future Performance Scalability

Based on the proposed performance model, we can project
the maximum throughput our design can support, which
meets the requirements of future technologies.

Given the message rate Mrate = 40, 000msg/s, Msize =
1024B, Lobs = 450ns, and Lconst = 700ns for the test
cases in the environment of CFFEX, the maximum message
rate we can support is Mmaxrate = 2, 080, 000msg/s
according to equation 2 to 5, which is 52 times over the
current message rate in CFFEX.

F. Resource Usage

The characteristic of the hybrid sorted table enables the
hardware MDG to support a large number of order books.
Setting cache table size to 50, Figure 8 shows how the
different logic resource usages vary as the number of order
books increases. The LUTs, FFs, and DSPs stay constantly
when the number of order books increases because dif-
ferent routines are shared among different order books.
Only BRAMs grow linearly. The usage of LUTs, FFs, and
DSPs increases dramatically when the size of cache table
increases, because the sorting is the major cause of the
resource increment.

In our experiment, the logic resources on one FPGA are
able to support 200+ order books, each with a size of 80.

VII. CONCLUSIONS

FPGAs have been proved to be an established technology
for financial applications. However, organizing the pack-
ets into structural information with complicated routines
is challenging in both designing and resources. Existing
solutions usually leave the post-processing part to the CPU,

number of order books
20 60 100 140 180 220

re
s
o
u
rc

e
 u

s
a
g
e
 (

%
)

0

20

40

60

80

100
Resource usage vs. number of order books

LUTs
FFs
DSPs
BRAMs

cache table size
20 30 40 50 60 70

re
s
o
u
rc

e
 u

s
a
g
e
 (

%
)

0

20

40

60

80

100
Resource usage vs. cache table size

LUTs
FFs
DSPs
BRAMs

Figure 8. The top figure shows the relationship between the logic
resource usage and the number of instruments. The bottom figure shows
the relationship between the logic resource usage and the size of the cache
table.

which largely reduces the latency gain of the network packet
processing part. In contrast, this paper proposes a CPU-
FPGA hybrid sorted table design that supports maintaining
the storage of GB-level of order books while providing
nanosecond-level latencies. We first use a hierarchical sorted
table with two levels, a cache table on the FPGA storing the
most frequently used data (the top of the order book) and
a master table at the host memory keeping the rest. Then
we design a complete set of general-purpose routines with
a latency of a few cycles. The two tables communicate via
an on-demand synchronization scheme. Experiments show
that 98% of the packets have latencies between 400-700ns,
being an 80- to 125-fold reduction compared with the fully
optimized software solution, and 2.2-fold reduction over an
existing FPGA-based solution.

Current and future work includes optimizing the proposed
approach to minimize latency while enhancing security for
the entire system, and exploring the automation of building
block optimization.

ACKNOWLEDGMENT

This work was supported in part by the National Key
& D Program of China (Grant No. 2016YFA0602200),
the National Natural Science Foundation of China (Grant
No. 4137411, 91530323), the China Postdoctoral Science
Foundation (No. 2016M601031), the European Union Hori-
zon 2020 Research and Innovation Programme under grant
agreement number 671653, UK EPSRC (EP/I012036/1,
EP/L00058X/1, EP/L016796/1 and EP/N031768/1), Maxeler
and Intel Programmable Solutions Group.

REFERENCES

[1] S. Denholm, H. Inoue, T. Takenaka, T. Becker, and L. Wayne,
“Network-Level FPGA Acceleration of Low Latency Market
Data Feed Arbitration,” IEICE TRANSACTIONS on Informa-
tion and Systems, 2015.

[2] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English,
and K. Vissers, “A low-latency library in FPGA hardware
for high-frequency trading (HFT),” in IEEE 20th Annual
Symposium on High-Performance Interconnects, 2012.

[3] N. A. Woods and T. VanCourt, “FPGA acceleration of quasi-
Monte Carlo in finance,” in International Conference on Field
Programmable Logic and Applications, 2008.

[4] S. Wray, W. Luk, and P. Pietzuch, “Exploring algorithmic
trading in reconfigurable hardware.” in ASAP, 2010.

[5] J. Casper and K. Olukotun, “Hardware acceleration of
database operations,” in Proceedings of ACM/SIGDA interna-
tional symposium on Field-programmable gate arrays, 2014.

[6] B. West, R. D. Chamberlain, R. S. Indeck, and Q. Zhang,
“An FPGA-based search engine for unstructured database,”
in Proc. of 2nd Workshop on Application Specific Processors,
2003.

[7] D. Koch and J. Torresen, “FPGASort: a high performance
sorting architecture exploiting run-time reconfiguration on
FPGAs for large problem sorting,” in Proceedings of the
19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays, 2011.

[8] R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch, and
V. Natoli, “Low-latency FPGA based financial data feed
handler,” in International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2011.

[9] H. Subramoni, F. Petrini, V. Agarwal, and D. Pasetto,
“Streaming, low-latency communication in on-line trading
systems,” in International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW),
2010.

[10] “Activefeed mpu: Accelerate your market data,” http://www.
activfinancial.com/docs/ActivFeedMPU.pdf, 2007.

[11] G. W. Morris, D. B. Thomas, and W. Luk, “FPGA accelerated
low-latency market data feed processing,” in 17th IEEE
Symposium on High Performance Interconnects, 2009.

[12] “Full order book.” [Online]. Available: http://algo-
logic.com/orderbook

[13] “A Full-Hardware Nasdaq Itch Ticker Plant
on Solarflares AoE FPGA Board.” [On-
line]. Available: http://www.cs.columbia.edu/ sed-
wards/classes/2013/4840/reports/Itch.pdf

[14] NovaSparks, “NovaSparks Announces FPGA-based
Order Book Capability for Global Cash Equities.”
[Online]. Available: http://www.novasparks.com/news-
and-events/press-releases/novasparks-announces-fpga-based-
order-book-capability-for-global-cash-equities.html

[15] K. E. Batcher, “Sorting networks and their applications,” in
Proceedings of Spring Joint Computer Conference, 1968.

[16] M. AdelsonVelskii and E. M. Landis, “An algorithm for the
organization of information,” DTIC Document, Tech. Rep.,
1963.

