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Abstract–Asteroids and comets 10–100 m in size that collide with Earth disrupt dramatically
in the atmosphere with an explosive transfer of energy, caused by extreme air drag. Such
airbursts produce a strong blastwave that radiates from the meteoroid’s trajectory and can
cause damage on the surface. An established technique for predicting airburst blastwave
damage is to treat the airburst as a static source of energy and to extrapolate empirical
results of nuclear explosion tests using an energy-based scaling approach. Here we compare
this approach to two more complex models using the iSALE shock physics code. We
consider a moving-source airburst model where the meteoroid’s energy is partitioned as two-
thirds internal energy and one-third kinetic energy at the burst altitude, and a model in
which energy is deposited into the atmosphere along the meteoroid’s trajectory based on the
pancake model of meteoroid disruption. To justify use of the pancake model, we show that
it provides a good fit to the inferred energy release of the 2013 Chelyabinsk fireball.
Predicted overpressures from all three models are broadly consistent at radial distances from
ground zero that exceed three times the burst height. At smaller radial distances, the
moving-source model predicts overpressures two times greater than the static-source model,
whereas the cylindrical line-source model based on the pancake model predicts
overpressures two times lower than the static-source model. Given other uncertainties
associated with airblast damage predictions, the static-source approach provides an
adequate approximation of the azimuthally averaged airblast for probabilistic hazard
assessment.

INTRODUCTION

The breakup of a large asteroid or comet (meteoroid)
due to aerodynamic stresses releases the majority of the
meteoroid’s kinetic energy into the atmosphere
(Artemieva and Shuvalov 2016). As the meteoroid breaks
up, the surface area exposed to the air increases and the
body’s retardation and fragmentation increases
exponentially—resulting in an explosive release of energy
(Passey and Melosh 1980; Chyba et al. 1993; Collins
et al. 2005). The largest airbursts release energies in the
megaton (Mt) to tens-of-megatons range (one ton of
TNT is equivalent to 4.184 gigajoules, 4.184 9 109) and,
if the majority of the energy release occurs sufficiently
low in the atmosphere, the strength of the resultant
atmospheric blast wave can cause damage on the ground.
Examples of such airbursts include the 3–15 Mt, 1908

Tunguska event, which caused extensive tree damage
over a 2200 km2 area (e.g., Ben-Menahem 1975; Chyba
et al. 1993; Boslough and Crawford 2008; Artemieva and
Shuvalov 2016) and more recently the ~0.5 Mt, 2013
Chelyabinsk fireball, which occurred over a densely
populated region of Russia, injuring more than 1600
people and breaking windows in the surrounding towns
(Popova et al. 2013). Although often less damaging than
crater-forming impacts, airbursts are far more common—
with a Tunguska-scale event expected to have an average
recurrence interval in the range 100–2000 yr (Brown
et al. 2013).

As atmospheric nuclear explosions have been
observed to produce blast waves similar to those
observed or inferred for impact airbursts (Glasstone and
Dolan 1977), an established technique for fast calculation
of airburst blastwave damage is to treat the airburst as a
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static source of energy, equivalent to a nuclear explosion
(e.g., Toon et al. 1997; Collins et al. 2005). For instance,
the protocol adopted by Collins et al. (2005) comprises
three parts (1) a model of atmospheric disruption to
determine the approximate burst altitude and energy (the
pancake model), (2) a scaling procedure for relating the
airburst scenario (burst altitude and energy) to a
representative static 1 kt nuclear explosion scenario (yield
scaling), and (3) a database of nuclear test data
documenting blast pressure as a function of range for
static 1 kt atmospheric explosions at a range of altitudes
(Glasstone and Dolan 1977). A simple approach such as
this is required for probabilistic impact hazard
assessment, in which hundreds of thousands of scenarios
must be considered (e.g., Reinhardt et al. 2016).

Although the static-source approximation is a good
representation of nuclear blast waves, it has limitations
when applied to meteor phenomenon (Collins et al.
2005; Boslough and Crawford 2008; Shuvalov et al.
2013). The most obvious limitation of the
approximation in this context is that the source is static,
whereas at peak energy release, a meteor is still moving
at hypersonic velocities—considerably faster than the
speed at which the blast wave propagates—suggesting
that the static explosion analogy may underestimate
blast damage on the ground (Boslough and Crawford
2008). In addition, recent data from Chelyabinsk
(Popova et al. 2013) suggest elliptical-shaped blast
damage contours with semimajor axes perpendicular to
the trajectory, which contrasts with the circular peak
pressure contours predicted by the static-source model.

In this paper, we re-examine the static-source
approximation as a procedure for estimating airburst
blast damage using numerical modeling. First, we use a
fast, semianalytical approximation of the pancake
model of a meteoroid’s atmospheric disruption—
modified to account for meteoroid ablation—to
constrain the range and likelihood of airburst altitude/
energy combinations and the residual kinetic energy of
the meteoroid at burst. We show that the 2013, ~500 kt
Chelyabinsk airburst can be well described using the
pancake model and occurred at an altitude several
kilometers higher than the worst-case scenario expected
for this energy range. Second, we use the iSALE2D
shock physics code to simulate blastwave formation,
attenuation, and interaction with the surface under
three simple energy deposition approximations: a
spherical static source of internal energy equivalent to
the impact energy, a spherical moving source with a
one-third kinetic-to-internal energy partitioning, and a
cylindrical line source with the energy per unit path
length determined by the pancake model. We compare
the results of our simulations to observations and
detailed hydrodynamic simulation of meteoroid

disruption in the atmosphere (Shuvalov et al. 2013) to
establish the strengths and weaknesses of each modeling
approach. Our focus is to refine protocols for fast
estimation of airburst blastwave damage on the ground
that can be used in probabilistic hazard assessment.

PANCAKE MODEL OF METEOROID

DISRUPTION IN THE ATMOSPHERE

The motion of a meteoroid through the atmosphere
and mass loss owing to ablation can be described by a
set of four ordinary differential equations (e.g., Passey
and Melosh 1980) up to the point that the meteoroid
fragments. Fragmentation is commonly assumed to
occur when the ram pressure in front of the meteoroid
(the local air density times the meteoroid velocity
squared), exceeds the meteoroid’s strength. Beyond the
fragmentation point, an additional equation is required
to describe the increase in cross-sectional area of the
disrupted rock mass as it deforms in response to
aerodynamic stresses, decelerates, and penetrates denser
air (e.g., Chyba et al. 1993; Hills and Goda 1993;
Avramenko et al. 2014).

In the “pancake model” (Chyba et al. 1993; Collins
et al. 2005), the spreading rate is defined by a force
balance on the walls of the disrupted meteoroid, which
is approximated as an incompressible, strengthless
cylinder, deformed by an average differential stress
proportional to the ram pressure. The name of the
model refers to the tendency of the meteoroid to deform
into a thin pancake-like cylinder with a large cross-
sectional area. In an unconstrained pancake model, the
meteoroid is allowed to expand without bound, while in
a constrained model, the cylinder radius is limited to a
multiple of the initial diameter of the meteor—the so-
called pancake factor. In the similar “fragment cloud”
model of Hills and Goda (1993) spreading rate is
defined by equating the kinetic energy of the expanding
fragments to the work done by the air to increase the
area of the cloud of fragments. In this case, meteoroid
spreading ceases when the ram pressure in front of the
meteoroid drops below the strength of the meteoroid.
Another, more recent meteoroid disruption model
(Avramenko et al. 2014) derives an alternative
spreading rate using dimensional analysis and a chain-
reaction analogy for the cascading disruption of
meteoroid fragments. Like the fragment cloud model,
spreading is arrested when the ram pressure drops
below the fragments’ strength; however, in this case, the
strength of the fragments is assumed to increase with
time as fragment size decreases.

While these alternative models of meteoroid
disruption and deceleration in the atmosphere differ
somewhat in their prescriptions of spreading rate and
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when spreading stops, in general they give similar
results for a specific airburst scenario (e.g., Chelyabinsk;
Avramenko et al. 2014; this work), depending on the
choice of internal model parameters. The pancake
model is considered here because it requires the fewest
internal model parameters and because it forms the
basis of an existing analytical approximation on which
we build. However, in future work it would be instructive
to compare all three models for a range of airburst
scenarios to quantify the variability in their predictions.

Collins et al. (2005) derived an analytical
approximation of the pancake model that neglects both
gravitational acceleration and ablation. While the
former is insignificant for meteoroids in the 10–100 m
range, ablative loss of mass can be important. In
Appendix A, we describe a modification to the
analytical pancake model that approximates the effects
of ablation. Using this procedure, the velocity and mass
of the ablating and deforming meteoroid can be
calculated as a function of altitude; and from these
solutions, the kinetic energy lost by the meteoroid per
kilometer can be determined for comparison with
observed light-curve data. Figure 1 compares numerical
solutions of the full pancake equations (dashed lines),
both without (gray) and with (black) ablation, to the
(semi-)analytical approximations (solid lines) of Collins
et al. (2005), without ablation (gray), and presented
here, with ablation (black). Figures 1a and 1b are for a
Chelyabinsk-scale airburst scenario and a Tunguska-
scale scenario, respectively. The pancake model
parameters for both scenarios are given in Table 1. In
both cases, accounting for ablation increases both the
altitude and the magnitude of peak energy loss.
Although the increases are less significant in the high-
energy scenario, it is clear that accounting for the
effects of ablation is important. The (semi)-analytical
approximations of the pancake model underestimate the
numerical solutions by ~20% in energy deposition per
km for the Chelyabinsk-scale scenario, falling to ~10%
for the higher energy, Tunguska-scale scenario. Given
other uncertainties and the computational expediency of
the approximation, this level of accuracy is acceptable
for the purposes of quick hazard assessment.

Brown et al. (2013) concluded that the energy
deposition predicted by the pancake model for
Chelyabinsk is inconsistent with that derived from light-
curve data. However, within the observational
constraints for the Chelyabinsk impactor, we obtain a
reasonable fit to the observed deposition curves with an
unconstrained pancake model, and a good fit using a
maximum pancake factor of 5–6 (Fig. 2a). For a
constrained pancake model with maximum pancake
factors <4 the fit is poor; in these cases, the meteoroid’s
deceleration is too gentle and its kinetic energy is

transferred to the atmosphere over too great a distance,
resulting in a peak energy deposition that is much
weaker and closer to the surface than inferred from
observations. In a higher energy, Tunguska-scale
scenario, pancake model predictions of energy
deposition are less sensitive to the maximum pancake
factor (Fig. 2b) so long as it exceeds ~4.

An important criticism of the pancake model is
that, in its unconstrained form, it results in nonphysical
geometries for the deformed meteor (Artemieva and
Pierazzo 2009). For example, at the point of peak
energy deposition, the 19 m Chelyabinsk bolide in
Fig. 2a deforms to a 140 m wide dish with a thickness
of less than half a meter. However, as we show, the
unconstrained pancake model produces a reasonable fit
to the energy deposition curves for Chelyabinsk. The
implication is that the drag (effective cross-sectional
area) predictions of the pancake model are correct even
if the geometrical interpretation of the flattening
cylinder is unphysical. The pancake model should thus
be used in a similar manner to an empirical equation of
state: to predict phenomena in regimes where it has
been calibrated. In the case of high-energy airbursts,
Chelyabinsk (~0.5 Mt) and Tunguska (3–15 Mt)
provide the only calibration data and both of these
(likely) involved stony asteroids. The pancake model
should therefore be applied with caution outside of this
range. Alternative models, such as the separate
fragmentation model, provide a better description of a
meteor’s descent through the atmosphere for stronger or
more dense impactors (Artemieva and Shuvalov 2001).

MONTE CARLO MODELING OF ASTEROID

AIRBURSTS USING THE PANCAKE MODEL

Toon et al. (1997) used the pancake model to
calculate airburst altitude as a function of energy for
several impactor types (stone, carbonaceous, iron, and
short- and long-period comets) and nominal impact
parameters (angle and speed). In this section, we extend
this analysis for noniron asteroids by applying the
semianalytical approximation of the ablative pancake
model equations to determine the most likely airburst
altitude as a function of impact energy, and examine the
uncertainty in this relationship, given the natural
variability in impact angle and speed, as well as
impactor density and strength.

Methodology

A data set of artificial airburst scenarios was
created by means of a Monte Carlo simulation. For
each impact parameter (velocity, angle, density,
porosity, strength, and diameter), a quantile function
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was determined, relating the parameter to a probability
between 0 and 1. For each airburst scenario, the impact
parameters were selected randomly using these quantile
functions and used in the ablative pancake model
equations outlined in Appendix A. Figure 3 shows the
frequency distributions for impactor velocity, angle,
bulk density, and strength. The simulation output
includes energy yield (taken to be the preimpact kinetic
energy), burst height (altitude of peak kinetic energy
loss to the atmosphere), and the residual kinetic energy
at the burst altitude.

Impact Velocity

To define the velocity–frequency distribution of
impacts on Earth, we use the model of Le Feuvre and
Wieczorek (2011). Although impact speeds at the top of
Earth’s atmosphere can range from escape velocity
(11.2 km s�1) to the maximum possible velocity (relative

to Earth) for an object orbiting the Sun at 1 AU
(72 km s�1), in almost all cases the entry speed is
predicted to lie between 12 and 45 km s�1, with a mean
of 20.5 km s�1 (Le Feuvre and Wieczorek 2011).
A piecewise power law provides a reasonable fit to the
cumulative velocity–frequency distribution in the range
11–45 km s�1 (Fig. 4). The corresponding quantile for
impact velocity vi is:

vi ¼ 11þ 3:5 P
0:175

� �0:593
;P\0:175

45� 30:5 1�P
1�0:175

� �0:443
;P� 0:175

(
½kms�1� (1)

Impact Angle

The mean angle of entry for an impactor is 45o to
the target surface (Shoemaker 1962) and the relative
probability is symmetrical around this point such that
almost vertical and very shallow impacts are equally
rare. The corresponding quantile function for the
trajectory angle h is:

h ¼ p
2
� 1

2
cos�1ð2P� 1Þ (2)

Density and Strength

Meteorite strength can be conveniently but crudely
approximated as a function of density (Collins et al. 2005).
However, for the few stony meteorite fragments that have
undergone strength testing, the density measurements show

Fig. 1. Meteoroid kinetic energy loss per km as a function of altitude for a Chelyabinsk-scale airburst scenario (a) and a
Tunguska-scale scenario (b). Shown are numerical solutions of the full pancake equations (dashed lines), both without (gray) and
with (black) ablation, compared with the analytical approximation of Collins et al. (2005), which neglects ablation (solid gray),
and the semianalytical approximation described here, which includes ablation (solid black). Models use the parameters in
Table 1; stars indicate onset of pancaking at breakup altitude.

Table 1. Pancake model parameters.

Parameter Chelyabinsk (0.55 Mt) Tunguska (9.4 Mt)

Diameter [m] 19.5 50
Density [kg m�3] 3300 3000
Velocity [km s�1] 19 20

Angle [deg] 20 45
Strength [MPa] 2 1

Ablation parameter KH = 1.4 9 10�8 kg J�1; Drag coefficient

CD = 2; Atmosphere scale height H = 8 km; Air density at surface

qs = 1.22 kg m�3.

4 G. S. Collins et al.



moderate variation around a mean value (3490 kg m�3),
while tensile strengths vary over a two orders of magnitude
from 1 to 100 MPa (Petrovic 2001).

In the absence of an obvious distribution among
densities obtained from bolide-derived meteorite samples
produced, we adopt a Gaussian probability frequency

Fig. 2. Meteoroid kinetic energy loss per km as a function of altitude for a Chelyabinsk-scale airburst scenario (a) and a
Tunguska-scale scenario (b). Shown are predictions of the pancake model with different constraints on the maximum pancake
factor (fp). Inferred energy deposition for the Chelyabinsk bolide based on light-curve data (Brown et al. 2013; Popova et al.
2013) are shown in (a) for comparison; the shaded region lies within the bounds of these two estimates. Models use the
parameters in Table 1; stars indicate onset of pancaking at breakup altitude.

Fig. 3. Frequency distributions for the Monte Carlo simulation: (a) impactor speed; (b) impact trajectory angle to the target
surface; (c) bulk impactor density; (d) impactor strength.
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distribution centered about qavg = 3257 kg m�3 with a
standard deviation qstd = 510 kg m�3 (Medvedev et al.
1985; Boroviĉka et al. 2003; Britt and Consolmagno
2003; Llorca et al. 2005; Hildebrand et al. 2006;
Jenniskens et al. 2009; Kohout et al. 2011; Popova et al.
2011). The corresponding quantile function for the solid
density of the impactor qsi is:

qsi ¼ qavg þ qstd
ffiffiffi
2

p
erf�1 2P� 1ð Þ ½kgm�3� (3)

This density represents the recovered meteorite
sample density and accounts for variations in grain
density and microporosity. As asteroids also exhibit a
range of macroporosity from 0 to 50% (Britt et al.
2002), we calculate a bulk asteroid density by dividing
qsi by a randomly selected distension a ¼ 1þ P2

� �
,

which varies between 1 and 2, with a mean of 1.25
corresponding to a macroporosity of 20%.

The variation in asteroid strength has two parts.
First, there is an underlying variation in the intrinsic
tensile strength of meteorite fragments, which spans a
range of 1–100 MPa (Petrovic 2001). In addition, there
is an even larger variation in strength resulting from the
natural, scale-dependent fracture distributions within
asteroids (Popova et al. 2011). This variation is in part
systematic: as rock mass increases so does the maximum
flaw size, which is inversely correlated with tensile
strength (Petrovic 2001). One way to account for this
dependence of strength on size is to relate strength Y of
an asteroid of mass m to the strength Y0 of a meteorite
sample of mass m0 using a Weibull distribution (Weibull
1951):

Y ¼ Y0
m0

m

� �l
½MPa� (4)

where the exponent l determines the rate of strength
reduction with mass. A wide range of Weibull
exponents have been used to describe meteor strength in
the past (see Popova et al. [2011] for a brief review).
The most commonly used value is 0.25, based on the
assumption that asteroids are relatively homogeneous
materials (Tsvetkov and Skripnik 1991; Svetsov et al.
1995), though values between 0.1 and 0.75 encompass
recent fireball data (Popova et al. 2011). As the
variation in asteroid strength resulting from the choice
of Weibull exponent is far greater than the range of
measured meteorite tensile strengths, we adopt a
nominal 1 kg mass tensile strength of Y0 = 10 MPa
(m0 = 1 kg) and randomly select the Weibull exponent
using the quantile function: l = P2, which gives a modal
exponent of 0.25. For a 20 m diameter asteroid, this
results in a modal strength of 0.2 MPa and a strength
variation from ~1 Pa to 10 MPa.

Diameter

The impactor size-frequency distribution is a steep,
negative power law function of impactor diameter L;
several million 10 m objects will enter Earth’s
atmosphere in the average time taken for one 160 m
object to arrive (Brown et al. 2013). As our interest is
the likelihood and variability of outcomes as a function
of meteoroid size, rather than the precise probability of
a given scenario, and because replicating steep
distributions in a Monte Carlo simulation is
computationally expensive, we instead use a simple
distribution with dN/dL / 1/L. For equal log-diameter
bin widths, this implies the same number of objects in
each diameter bin. The quantile function of this
distribution is given by:

logL ¼ logLmin þ PðlogLmax � logLminÞ (5)

where Lmin and Lmax are taken to be 5 and 160 m,
respectively.

RESULTS

Monte Carlo modeling produced an artificial data
set of ~50,000 airburst scenarios for stony asteroids in
the size range 5–160 m (Fig. 5). The size of the data set
was sufficient to achieve convergence in various
quantiles of burst altitude as a function of energy (see
below). In ~2% of scenarios the burst height was below
the surface; these scenarios, which in reality would
result in the asteroid impacting the ground at high

Fig. 4. Cumulative velocity–frequency distribution for Earth
(Le Feuvre and Wieczorek 2011) and piecewise power law fit
used to derive velocity quantile function for use in Monte
Carlo simulation.
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speed, are not shown in Fig. 5 but were used in the
quantile regression. However, it is acknowledged that
the transition from airburst to crater-forming scenarios
is not discontinuous and there is an important
intermediate regime where both airburst and cratering
phenomena, and their interactions, are important
(Shuvalov et al. 2013).

Separating the entire artificial data set into five bins
of approximately equal number, with diameter bin
widths (in m) of 5–10, 10–20, 20–40, 40–80, and 80–160,
highlights the distribution in burst energy and altitude
for scenarios with meteoroid diameters that differ by
less than a factor of two. The two-to-three orders of
magnitude variation in energy for each bin results
primarily from variations in velocity, as well as mass
(density and diameter); the spread in burst altitude is
largely a consequence of the natural variation in
density, strength, and impact angle, with weaker, low-
density meteoroids on shallow trajectories favoring
high-altitude disruption and vice versa. The point-
density shading in Figs. 5a–e illustrates the relative
likelihood of similar-diameter airburst scenarios.

The complete artificial airburst data set is shown in
Fig. 5f. Note that the uniform distribution of scenarios in
log-energy is a consequence of the artificial impactor size-
frequency distribution used (Equation 5) to efficiently
explore the effect of other variables. In reality, small
energy scenarios are much more numerous than high-
energy scenarios. The minimum burst altitude and modal
burst altitude are well fit by second-order polynomials in
log10 EMt where EMt is the pre-entry meteoroid energy in
Mt. Hence, quantile regression using the Scipy
statsmodels package (http://statsmodels.sourceforge.net)
with a second-order polynomial fit was performed on
data over the range �1:5\log10EMt\2. The resulting
equations for the 1st, 50th, and 99th percentiles of burst
altitude zb (in km) are:

zb;1% ¼ 13� 6:04 log10EMt � 0:88 log10EMtð Þ2 (6a)

zb;50% ¼ 25:7� 7:83 log10EMt � 0:31 log10EMtð Þ2 (6b)

zb;99% ¼ 47:9� 8:43 log10EMt � 0:03 log10EMtð Þ2 (6c)

Fig. 5. Scatter plots of airburst scenarios in geometric diameter bins with a color scale representing point density (dark:
minimum, light: maximum). Energy yield is taken as the kinetic energy of the impactor prior to atmospheric entry; the burst
altitude is the altitude of peak kinetic energy loss to the atmosphere. Bottom-right: The complete artificial data set is plotted to
display the spread of possible scenarios. The blue solid curve shows the median scenarios; the dotted lines show the 1st and 99th
percentiles of the airburst scenarios. Also shown for comparison is the pancake model predictions of Toon et al. (1997) for stony
(solid black line) and carbonaceous (dotted black line) asteroids.

Simple airblast models of impact airbursts 7
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Equations 6a–c are also shown in Figs. 5 and 6
(blue lines); 98% of all airburst scenarios lie between
zb,1% and zb,99% (dotted blue lines). The curve for zb,1%
can be considered a nominal “worst-case” scenario,
which occurs at an altitude only 10–20 km below the
median scenario for a given burst energy (zb,50%)
depending on burst energy. Similarly, a nominal “best-
case” scenario (zb,99%) occurs at an altitude ~23 km
higher than the median scenario. Hence, the range of
likely burst altitudes reduces with increasing airburst
energy, although the range of asteroid strengths
predicted by Equation 4 increases with asteroid size.
This is because burst altitude is more sensitive to
asteroid strength for small asteroid masses that
decelerate at higher altitudes. For airbursts with energy
exceeding a few Mt, deceleration occurs closer to the
ground where aerodynamic stresses are much higher
and disruption is less sensitive to asteroid strength.

The burst altitude of stony and carbonaceous
asteroids as a function of energy predicted by Toon
et al. (1997) are similar to our worst-case (zb,1%) and
median (zb,50%) scenarios, respectively (black lines,

Fig. 5). This is because the (constant) strength and
density Toon et al. used to represent stony asteroids are
similar to the highest density and strength used in our
Monte Carlo simulations (Equations 3 and 4), whereas
the strength and density they assumed for carbonaceous
asteroids is closer to the median strength and bulk
density used here for stony asteroids with
macroporosity. We note that our analysis excludes
strong, dense iron asteroids and weak, low-density
comets. While including these cases would extend the
range of possible burst altitudes (Toon et al. 1997),
their lower likelihood of occurrence implies that the
statistical picture is likely to remain unchanged.

For Chelyabinsk-scale airbursts (EMt � 0.5), the
median burst altitude from our analysis is 27.6 km,
which is consistent with the 28–32 km range inferred
from light-curve analysis (Fig. 2) (Brown et al. 2013;
Popova et al. 2013). For Tunguska-scale airbursts
(EMt = 3–15), the median burst altitude is 21–15 km,
somewhat higher than the inferred burst altitude of 5–
15 km based on tree-fall geometry (Ben-Menahem 1975;
Chyba et al. 1993; Svettsov 2007), suggesting that this

Fig. 6. Scatter plots of airburst scenarios for five impactor diameters (7, 14, 28, 56, and 113 m) showing the sensitivity of
airburst altitude and energy to variation in individual impactor parameters: (a) impactor speed; (b) impactor density; (c)
trajectory angle; and (d) impactor strength. The color scale represents point density (dark: minimum, light: maximum). Energy
yield is taken as the kinetic energy of the impactor prior to atmospheric entry; the burst altitude is the altitude of peak kinetic
energy loss to the atmosphere. The blue solid curve shows the median scenarios; the dotted lines show the 1st and 99th
percentiles of the airburst scenarios.
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event was close to a worst-case scenario for its
magnitude.

To illustrate the sensitivity of airburst altitude and
energy to variation in the individual impactor
parameters, we also performed four suites of Monte
Carlo simulations that considered five specific impactor
diameters, at the geometric center of each diameter bin
(7, 14, 28, 56, and 113 m), and allowed only one
impactor parameter to vary (Fig. 6). Impact angle has
the greatest effect on burst altitude, whereas impact
speed has the greatest effect on burst energy. Impact
angle and strength only affect the burst altitude.
Shallow-trajectory impacts define the “best-case”
scenario, while strong impactors define the “worst-case”
scenario. The effect of impact velocity, density, and
angle is the same at all diameters. In contrast, the effect
of strength is much more pronounced for small
impactors; large airbursts are relatively insensitive to
strength. The effects of impact speed on burst altitude
and energy work in opposition: faster impactors burst
higher in the atmosphere, but release more energy. The
effects of density, on the other hand, work
constructively: denser impactors burst lower and release
more energy.

A NUMERICAL ASSESSMENT OF SIMPLE

AIRBLAST MODELS USING ISALE

In addition to estimates of burst energy and burst
altitude, fast estimation of airburst hazard requires a
prescription for blastwave damage on the ground. In
this section, we compare the widely employed static-
source approximation for airburst blastwave damage to
two alternative models that, while still simplified,
attempt to account for the dynamic and directional
nature of energy deposition in real meteoroid airbursts.

Approach

To simulate blastwaves formed by airbursts, we use
the iSALE2D shock physics code (W€unnemann et al.
2006), a multimaterial, multirheology extension of the
SALE hydrocode (Amsden et al. 1980). iSALE has been
used extensively for the simulation of asteroid impacts on
dense surfaces (Collins and W€unnemann 2005;
W€unnemann et al. 2006; Davison and Collins 2007;
Collins et al. 2008), but not the rather simpler application
of shock propagation in a gas. We represent the
(isothermal) atmosphere using a perfect gas equation of
state in which pressure p is related to density q and
specific internal energy E by p = ΓqE, with Γ = 0.4 and a
reference density and pressure of 1 kg m�3 and 105 Pa at
the base of the atmosphere. Three different
approximations are used to represent energy deposition.

The first approach we consider is the static-source
approximation, in which the meteoroid’s kinetic energy is
converted to internal energy and deposited uniformly
(and instantaneously) within a spherical region of the
computational mesh, with a radius equal to an assumed
“fireball” radius. The air density in the fireball is assumed
to be the same as the ambient air. Based on exploratory
simulations and observations from nuclear weapon tests
(Glasstone and Dolan 1977, p. 70), we adopt a nominal
fireball radius of 30–60 m for a 1 kt yield energy, which
can be scaled to larger airburst energies by the cube-root
of the energy in kt (see Discussion section). The second
approach is a moving-source approximation. It is
implemented in a manner similar to the static-source
approach except that (1) the internal energy within the
fireball is defined as the initial meteoroid kinetic energy
minus the residual kinetic energy at the burst altitude and
(2) the fireball is given an initial downward velocity,
defined by the residual specific kinetic energy at the burst
altitude. The assumption of vertically downward motion
of the fireball is enforced by the cylindrical geometry of
the two-dimensional model. The third and final
approach, referred to here as the cylindrical line-source
approximation, is to deposit the meteoroid’s energy along
the vertical trajectory as a function of time based on the
pancake model of disruption and deceleration. In this
case, in each iSALE timestep, the kinetic energy
transferred from the meteoroid to the atmosphere over
the timestep duration is added as internal energy to a disk
of cells, one cell high, at the altitude of the meteoroid and
within a radius taken to be one-tenth the cylindrical
equivalent blast radius, Rb ¼ dE

dz =pa
� �1=2

, where pa is the
ambient atmospheric pressure (ReVelle 1976).

In each simulation, stationary probes were placed in
every cell across the model surface to record peak air
pressure as a function of distance from ground zero.
Based on exploratory simulations, a spatial resolution of
10 cells across the source (fireball) radius was adopted as
a compromise between accuracy and computational
expense for the static- and moving-source simulations; an
equivalent spatial resolution was used for the cylindrical
line-source simulations. To verify the ability of the static-
source approximation, as implemented in iSALE, to
model atmospheric blastwaves, we compared results of
static-source simulations with nuclear weapons test data
for 1 kt explosions (Glasstone and Dolan 1977) and
found good agreement.

RESULTS

We first compare our iSALE blastwave simulation
results with the results of dynamic numerical airburst
simulations using the SOVA hydrocode (Shuvalov et al.
2013). These simulations consider the blastwaves
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produced by the atmospheric disruption of stony
asteroids of diameters 20, 30, 40, and 50 m. In the
static- and moving-source models, the fireball radius
was set by yield scaling a nominal 1 kt fireball radius of
45 m, implying a specific internal energy of
8.968 MJ kg�1. Ten computational cells resolved the
fireball radius. Using the static-source approximation,
the only free parameter is the altitude of burst (center
of sphere of hot gas). We used altitudes of 21.8, 17,
13.5, and 10.9 km, which are approximately halfway
between the worst-case (zb,1%) and median (zb,50%)
scenarios from our Monte Carlo analysis, given by
Equation 6. An additional free parameter in the
moving-source approximation is the initial partitioning
of fireball energy between internal and kinetic, which
determines the energy density in the fireball and its
initial downward velocity. Results from our Monte
Carlo analysis showed that for a wide range of airburst
parameters, the residual kinetic energy of the meteoroid
at the burst altitude was tightly constrained to 0.33–0.34
times the initial kinetic energy (see also Appendix A).
Hence, we adopted a constant kinetic energy partition
of one-third for all moving-source simulations; the
initial downward speed of the fireball is therefore given
as the square-root of two-thirds of the specific energy of
the fireball (2450 m s�1 in all scenarios considered
here). As the cylindrical line-source approximation relies
on the pancake model to determine energy deposition, it
is dependent on several properties of the meteoroid. For
the purpose of comparison with the SOVA results, we
adopted the same meteoroid parameters as Shuvalov
et al. (2013): speed (18 km s�1), density (2650 kg m�3),
and a nominal low strength (0.2 MPa) for each airburst
scenario. Impact angle was constrained to be vertical. In
all simulations, an isothermal atmosphere with
exponentially decreasing pressure and density was
assumed.

The SOVA simulations that we compare to were
performed in two steps: first, disruption, deformation,
and evaporation of the asteroid was simulated in a
reference frame following the asteroid; then, gas
dynamic and thermodynamic parameters extracted from
the first simulation were imposed as initial conditions
for a second calculation in a larger domain that
simulated the blastwave propagation and interaction
with the ground surface (Shuvalov et al. 2013). In some
ways, this approach is similar to our cylindrical line-
source approximation, but with two important
differences. First, in our approach, the pancake model
is used to describe ablation and deformation of the
asteroid, whereas Shuvalov et al. (2013) simulated
asteroid ablation and deformation explicitly using
SOVA. Second, our cylindrical line-source
approximation deposits internal energy only, whereas

Shuvalov et al. (2013) used initial conditions that
include air density and momentum, as well as internal
energy. We note that radiative heat transfer is also
included in SOVA, but not in iSALE and that SOVA
uses a more realistic atmosphere equation of state.

A comparison of blastwave development using the
three different energy deposition approximations for the
40 m airburst scenario is shown in Fig. 7. The static-
source approximation results in a spherically
propagating blastwave, emanating from the burst
altitude (13.5 km in the 40 m scenario), with a sphere of
rarefied air in its wake. The bottom row in Fig. 7 shows
a moment shortly after the blast wave has reflected off
the ground, forming a Mach stem (40 s in the 40 m
scenario). The moving-source approximation results in
similar phenomena; however, the downward momentum
of the fireball produces a marked asymmetry in
blastwave amplitude in the downward and upward
directions, which results in a stronger blastwave
amplitude at ground zero and an increased radius of the
Mach stem at the times shown. The cylindrical line-
source approximation produces a cylindrically
expanding blastwave at altitudes above the peak energy
deposition (burst) altitude. At lower altitudes, blastwave
propagation is more spherical, but as less energy is
released at low altitude, the spherical portion of the
wave is considerably weaker than that in the static- and
moving-source approximations. The amplitude of the
blastwave vertically below the fireball is somewhat
lower than that at azimuths more oblique to the fireball,
owing to destructive interference of the shockwave
emanating from different points along the meteoroids
trajectory.

Figure 8 compares peak overpressure as a function
of range for a 40 m asteroid airburst for the three
different energy deposition approximations considered
in this work and the simulation results from Shuvalov
et al. (2013). At short ranges, close to ground zero, the
moving source approximation is a good match to the
results of the sophisticated SOVA calculation; both the
static and cylindrical line-source approximations
significantly underestimate the blastwave overpressure.
However, at long ranges, the cylindrical line-source
approximation appears to better match the SOVA
simulation results. The more gradual decay of
overpressure with range in the cylindrical line-source
approximation is a consequence of the cylindrical
(compared to spherical) geometry of the expanding blast
wave. Similar results are observed for each asteroid size
scenario.

Figure 9 shows the results of SOVA simulations for
all four asteroid sizes compared to the corresponding
moving-source approximation simulation using iSALE.
In all cases, except for the 50 m asteroid scenario at
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peak overpressures exceeding 40 kPa, the iSALE results
using the moving-source approximation are in excellent
agreement with the SOVA simulation results. This
suggests that the moving-source approximation offers
an improvement for predicting blastwave damage in
low-altitude (subvertical) airbursts compared to the
static-source approximation. We note that the results of
the moving-source model are dependent on the choice
of initial fireball velocity, which in turn depends on the
assumed fireball mass and residual kinetic energy at
burst. However, the good agreement between the
moving-source model adopted here and the SOVA
simulation results suggests our rationale for determining
the fireball speed is reasonable.

In addition to the comparison with SOVA results,
we also applied the three simple airblast modeling
approaches to four hypothetical scenarios with different
burst energies: 0.5 Mt (approximately the scale of the
Chelyabinsk airburst), 5 Mt and 15 Mt (lower and
upper estimates for Tunguska), and 50 Mt. We

emphasize that the purpose of this exercise was not to
accurately reproduce historical events, which requires
more sophisticated 3D numerical modeling and has
been demonstrated previously (e.g., Popova et al. 2013;
Avramenko et al. 2014; Aftosmis et al. 2016). Rather,
our purpose was to quantify the approximate
differences in blast wave magnitude for a range of
airburst energies according to the three different
approximations, which can be regarded as a measure of
uncertainty when applying simple protocols for blast
damage estimation. The model set-up for these
simulations was the same as for the SOVA
comparisons, with the following exceptions. In the
static- and moving-source models, we used initial burst
altitudes of 21.5, 14, 10, and 11 km, respectively, for the
different energy scenarios. For the three lowest energy
scenarios, these burst altitudes are between the worst-
case (zb,1%) and median (zb,50%) scenarios from our
Monte Carlo analysis, given by Equation 6. For the
50 Mt scenario, the burst altitude was set to the median

Fig. 7. Blastwave evolution for a 40 m diameter asteroid airburst at three discrete times after peak energy deposition from
iSALE simulations using three different energy deposition approximations: stationary source, moving source, and cylindrical line
source. Colors depict overpressure.
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burst altitude, because in the worst-case scenario the
meteoroid strikes the ground. In the cylindrical line-
source model, we considered only one representative
scenario of fixed meteoroid diameter, speed (20 km s�1),
density (3000 kg m�3), and strength (0.2 MPa) for each
airburst energy scale.

The results of our simple airburst blastwave models
are presented in Table 2. Documented are the peak
pressure at ground zero and the pressure at a range
equivalent to three times the burst altitude. Also
recorded were the range at which several overpressure
values were observed: 1 kPa (approximate overpressure
for window damage), 10 kPa, 20 kPa (lower and upper
limits for extensive tree damage), and 35 kPa (brick
building damage). In each of the different energy
scenarios, the peak overpressures predicted by all three
energy deposition approximations are in good
agreement at (and beyond) a range of three times the
burst altitude. However, at ground zero, the three
different approximations show a large variation in peak
overpressure. The static-source approximation is
consistently intermediate between the moving-source
approximation and the cylindrical line-source
approximation. The moving-source approximation
predicts overpressures approximately up to twice the
size of the static-source approximation. The cylindrical

line-source approximation predicts overpressures 2–4
times lower than the static-source approximation
depending on the airburst energy.

The ~500 kt Chelyabinsk airburst caused minor
building damage and broken windows over an elliptical
area of ~10,000 km2 elongated in the direction
transverse to the fireball trajectory (Popova et al. 2013).
This extent of blast damage is very consistent with 3D
numerical simulations of blastwave propogation using
an energy deposition model similar to the cylindrical
line-source approach employed here (Avramenko et al.
2014; Aftosmis et al. 2016). The simplified models
documented in Table 2 assumed a vertical (or no)
trajectory, implying symmetric, circular blast damage
contours; however, it is instructive to compare the
predicted extent of blast damage with observations and
more sophisticated models. Assuming window damage
requires an overpressure ~1 kPa (0.5–5 kPa, Glasstone
and Dolan 1977, p. 221; Popova et al. 2013), all three
energy deposition approximations predict a ~50 km
radius damage zone, which is broadly consistent with
observations (Brown et al. 2013; Popova et al. 2013). At
this high burst altitude, there is less difference between
the moving-source and static-source approximations
than for larger, lower airbursts. Although the cylindrical
line-source model predicts lower peak overpressures
close to ground zero, beyond ~60 km range peak
overpressures are greater for the cylindrical line source

Fig. 8. Peak overpressure as a function of range for a 40 m
asteroid airburst for the three different energy deposition
approximations considered in this work and the simulation
results from Shuvalov et al. (2013). The static-source
approximation assumes a burst altitude of 13.5 km. The
moving-source approximation further assumes an initial
downward speed of 2450 m s�1 for the fireball, based on the
assumption that the residual kinetic energy of the meteor at
burst is one-third the initial kinetic energy. The cylindrical line-
source approximation assumes a time-dependent energy
deposition derived from the pancake model, with meteoroid
parameters: L = 40; vi = 18 m s�1; q = 2650 g m�3; Y = 0.2 Pa.
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than the two spherical sources, owing to the shallower
attenuation of cylindrical waves with propagation
distance compared to spherical waves, consistent with
the results of 3D simulations of the Chelyabinsk airblast
(Aftosmis et al. 2016). For shallow trajectories, this will
imply strongly asymmetric blast contours. It seems clear
that high-altitude, shallow-trajectory airbursts, such as
Chelyabinsk, are best modeled by a cylindrical line-
source approach and hence require a 3D shock physics
calculation. Nevertheless, even in this case, the static-
source approximation serves as a useful first-order
approximation.

Recent estimates of the Tunguska airburst energy
yield vary from ~3–5 Mt (Boslough and Crawford 2008)
to 10–20 Mt (Artemieva and Shuvalov 2007, 2016). The
~2200 km2 areal extent of treefall suggests wind speeds
>40 m s�1 and overpressures >20 kPa extended to a
radius ~25 km from the blast epicenter according to
nominal blastwave effects (Glasstone and Dolan 1977);
however, these may represent conservative thresholds by
a factor of two, as local topographic effects and poor
tree condition may have exacerbated the tree damage
(Boslough and Crawford 2008).

Two of the airburst scenarios we considered can be
compared with the Tunguska event: 5 Mt and 15 Mt.
In the smaller energy scenario, the static-source and, in
particular, the moving-source approximations are
approximately consistent with observations, provided
that blastwave amplification by topography and poor
tree health are invoked. In this case, peak overpressures
of >10 kPa and wind speeds of >20 m s�1 extend to a
radius of 18–22 km. In the 5 Mt scenario, the
cylindrical line-source approximation does not predict
conditions required for extensive tree damage, even
allowing for a factor of two reduction in the pressure
and wind speed thresholds. In the 15 Mt scenario, the
nominal conditions for extensive tree damage (40 m s�1

winds; 20 kPa over pressure) are achieved to a radial
distance of 16–22 km for all of the source
approximations, with the (vertical) cylindrical line-
source approximation providing the most conservative
prediction of damage extent and the moving source
approximation providing the worst-case estimate.

Another useful metric for blast damage is the
overpressure required to completely destroy brick walls
(35 kPa, Glasstone and Dolan 1977, p. 182; Collins
et al. 2005). In the 5 Mt scenario, this level of peak
overpressure is barely reached at ground zero even
according to the least-conservative, moving-source
approximation; in the 15 Mt scenario, extensive
building damage is expected to a range of 10–15 km
according to the moving-source and static-source
approximations, but is not expected according to the
cylindrical line-source approximation.T
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The largest energy case we consider is a 50 Mt
airburst at 11 km nominal burst altitude. This is the same
yield energy as the Tsar nuclear bomb test and represents
an approximate estimate of the typical (modal) airburst
scenario at the threshold of forming an impact crater
(Fig. 5). In this case, extensive building damage is
expected to a range of 20–23 km, according to both the
moving-source and static-source approximations.
Clearly, an airburst of this magnitude over a heavily
populated urban area would be devastating. The peak
overpressures predicted by the cylindrical line-source
approximation are again much less than the spherical
source approximations within a range equivalent to three
times the burst altitude (33 km). For scenarios of the
same energy but lower burst altitudes this would be
exacerbated by the fact that in such cases the pancake
model predicts the meteoroid still possesses significant
kinetic energy upon reaching the ground. Any
contribution of this energy to atmospheric disturbance
would be neglected in a simple application of the
cylindrical line-source model. However, the residual
kinetic energy of the impactor would be expended
modifying the ground and ejecting debris into the
atmosphere at high speeds. A much more sophisticated
shock physics calculation is required to determine the
outcome in such cases (Shuvalov et al. 2013).

DISCUSSION

Based on CTH simulation results of low-altitude
airbursts, Boslough and Crawford (2008) concluded that
the altitude of maximum energy deposition is not a
good estimate of the equivalent height of a static-source
explosion and suggested that the residual downward
speed of the meteoroid at burst needed to be taken into
account in airburst damage assessment. Our results
support this conclusion and show that a relatively
simple method to account for the residual speed is to
give the spherical source region an initial downward
velocity under the assumption of 2:1 internal-to-kinetic
energy partitioning at burst, which is a robust
prediction of our Monte Carlo pancake model airburst
simulation.

Probabilistic hazard assessments for asteroid impacts
(Reinhardt et al. 2016) require hundreds of thousands of
impact scenarios to be computed to derive robust
statistics. In this case, the efficiency of blastwave damage
estimation is paramount and high accuracy is secondary.
The 2D shock physics calculations in this work each
took approximately 48 h on a single CPU on a standard
computer workstation. Even with the additional
efficiency of parallel processing, such calculations are
impractical if large numbers of scenarios need to be
considered, particularly if 3D calculations are required.

Given the success of the moving-source approximation
in our work, it may be fruitful to explore an analytical
approach to modify the static-source blastwave scaling
laws (Collins et al. 2005) to account for advection of the
source. In the meantime, as the moving-source (and
cylindrical line-source) approach requires a shock
physics calculation and appears to consistently predict
overpressures approximately two times larger than the
static-source approximation, a more simplistic, but
computationally expedient approach for the purposes of
probabilistic hazard assessment is to retain the static-
source methodology, but incorporate the factor of two
amplification of overpressure inside a range of three
times the burst altitude as a correction or measure of
uncertainty.

In the subvertical airburst scenarios that we
considered, the cylindrical line-source approximation
underestimates the severity of blast damage near ground
zero, even though it is based on a more faithful along-
trajectory deposition of energy than the static-source
approximation, which deposits all the airburst energy in
a small spherical volume. This is consistent with results
of 3D simulations of vertical airbursts that also
compared the static-source and line-source approaches
(Aftosmis et al. 2016). It is likely that the deficiency of
the line-source approach is because it neglects the
momentum of the air imparted by the decelerating
meteoroid. SOVA simulations that impose along-
trajectory consequences of meteoroid disruption that
include internal energy and gas velocity as initial
conditions in airblast propagation simulations produce
much stronger blastwaves near ground zero (Shuvalov
et al. 2013). Future work should consider modifications
to the cylindrical line-source approach to incorporate
fireball momentum, perhaps by inferring along-trajectory
gas dynamics from the pancake model and coupling this
information to the shock physics calculation in tandem
with internal energy deposition. However, we note that
3D simulations of the Chelyabinsk airburst using the
line-source approach have been very successful in
replicating blast damage on the ground (Popova et al.
2013; Avramenko et al. 2014; Aftosmis et al. 2016).
Hence, it is likely that the cylindrical line-source
approximation is the best approach for modeling high-
altitude, shallow-trajectory airbursts. An important
strength of the cylindrical line-source approximation that
is not apparent in our vertical-trajectory simulations is
that for oblique trajectories, it produces asymmetric
blast damage contours on the ground, consistent with
observations (Popova et al. 2013). Indeed, for very
shallow-angle trajectories, the cylindrical line-source
approximation would likely predict higher overpressures
at ground zero (directly beneath the point of peak energy
deposition) than the spherical source approximations,
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because of the less rapid attenuation of cylindrically
expanding (compared with spherically expanding) waves.

The Earth Impact Effects Program
(impact.ese.ic.ac.uk) is an online resource for quickly
estimating the consequences of asteroid impacts on Earth
(Collins et al. 2005), suitable for probabilistic hazard
assessment (Reinhardt et al. 2016). To estimate blastwave
damage, the program uses a combination of an analytical
approximation to the pancake model (Collins et al.
2005), yield scaling, and measured blastwave attenuation
in nuclear weapons tests at various altitudes (Glasstone
and Dolan 1977). Shuvalov et al. (2013) showed that the
web program’s predictions are in reasonable agreement
with sophisticated shock physics calculations of airburst
blastwaves aside from near the transition from airburst-
forming to crater-forming impacts. In addition, the
original version of the web program also underestimates
the overpressure at ground zero for Chelyabinsk-scale
airbursts by an order of magnitude. Here we describe
three improvements to the web program to address these
deficiencies and to incorporate the new insight from our
airburst simulations.

To better account for blastwave effects in events
transitional between airbursts and crater-forming
impacts, the program is modified to use the maximum
of the residual kinetic energy of the meteoroid at the
ground (i.e., impact energy) and the total kinetic energy
transferred to the atmosphere at the burst altitude as
the airburst energy for use in the static-source airblast
approximation. Previously, the calculator used the
former for all crater-forming scenarios, thereby
neglecting large atmospheric energy deposition in small
crater-forming impacts. In addition, we found that the
procedure described in Collins et al. (2005) for relating
peak overpressure p(r) (Pa) at range r (m) to burst
altitude zb (m) for 1 kt explosions (Equations 55 and
56) overestimates the attenuation of the blastwave with
distance for high-altitude bursts. A better fit to the
nuclear test data (Glasstone and Dolan 1977) over a
greater altitude range is given by the single expression:

pðrÞ ¼ 3:14� 1011ðr2 þ z2bÞ�2:6=2

þ 1:8� 107ðr2 þ z2bÞ�1:13=2
(7)

With this modification, the peak overpressure at
ground zero (r = 0) for a Chelyabinsk-scale airburst
increases from ~0.1 to ~1 kPa, in much better
agreement with observation. Finally, to incorporate the
conclusions of this work, the web program is modified
to report a factor of two range of overpressures within
a range equal to three times the burst altitude, with the
lower limit of this range estimated from the static-
source approximation.

CONCLUSIONS

Using numerical modeling, we have re-examined the
static-source approximation as a procedure for
estimating airburst blast damage. A Monte Carlo model
of stony asteroid airbursts that uses a fast,
semianalytical approximation of the pancake model of a
meteoroid’s atmospheric disruption and ablation and
accounts for natural variation in meteoroid speed,
density, trajectory angle, and strength, shows that for a
given burst energy, 98% of airburst scenarios occur
within a ~35 km range in altitude and that half of these
occur in the lowest ~12 km of this range. Hence, the
majority of airburst scenarios occur at altitudes not
much higher than the worst-case scenario. According to
our analysis, the Tunguska airburst was probably close
to a worst-case scenario for its energy. The Chelyabinsk
airburst, on the other hand, occurred at an altitude
several kilometers above the worst-case scenario for its
size range, primarily because of the shallow angle of the
meteoroid’s trajectory. The energy deposition per unit
path length of both of these stony asteroid airburst
events is well described by the ablative pancake model,
despite its simplicity and unphysical predictions of
meteoroid geometry at burst.

The iSALE 2D shock physics code was used to
simulate blastwave formation, attenuation, and
interaction with the surface under three energy
deposition approximations: a spherical static source of
internal energy equivalent to the impact energy, a
spherical moving source with a one-third kinetic-to-
internal energy partitioning, and a cylindrical line source
with the energy per unit path length determined by the
pancake model. The three simple approaches applied to
vertical impact airbursts produce consistent blastwave
amplitude estimates beyond a range equivalent to
approximately three times the burst altitude; inside this
range, they disagree by almost an order of magnitude.
The moving-source model, which provides the best
match to detailed hydrodynamic simulation of
meteoroid disruption in the atmosphere (Shuvalov et al.
2013), predicts the greatest blastwave amplitude at
ground zero, approximately two times larger than that
predicted by the static-source approximation. The
cylindrical line-source approximation predicts blast
amplitudes at ground zero several times smaller than the
static-source approximation, but owing to the cylindrical
expansion of the blastwaves, these amplitudes attenuate
less rapidly with distance than the spherically expanding
wave from the static source.

For fast estimation of airblast effects, suitable for
hazard assessment, our work suggests that the static-
source approach provides a reasonable first-order
approximation of blastwave damage, but may
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underestimate overpressures by a factor of two near
ground zero. Incorporating this correction or uncertainty
into the simple, static-approximation scaling laws is a
much more expedient approach than performing shock
physics calculations. However, for a more accurate
estimate of blast wave effects, or if more time is available
to assess the hazard, the moving-source approximation
appears to provide the best simple approach for
approximating low-altitude airbursts, particularly for
subvertical trajectories. For high-altitude or shallow-
trajectory airbursts, the cylindrical line-source
approximation is likely to be the best simple approach,
although more work is required to determine the
optimum approach for coupling the pancake model to a
shock physics code.
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APPENDIX: ANALYTICAL APPROXIMATION TO

THE ABLATIVE PANCAKE MODEL

The “Pancake model” (Chyba et al. 1993; Collins
et al. 2005) describes the deceleration and deformation
of a meteor in an atmosphere. It assumes that the
meteor can be described as a strengthless cylinder which
deforms under the differential pressure between the ram
pressure on the front face and the essentially zero
pressure of the meteor’s wake. Ignoring the effects of
gravity and lift, which are insignificant for most large
meteors, the pancake model equations are given by:

dv

dt
¼ �CDqapL

2

8m
v2 (A1a)

dm

dt
¼ � 1

8
KHqapL

2v3 (A1b)

d2L

dt2
¼ CDqa

qiL
v2 (A1c)

dz

dt
¼ �v sin h (A1d)

In A1, v, m, L, and qi are the meteoroid velocity,
mass, diameter, and density, respectively; CD is the drag
coefficient; qa(z) the atmospheric density as a function
of altitude z; KH is an ablation parameter equal to the
ablation efficiency divided by the specific heat of
ablation, h the meteoroid trajectory angle to the surface,
and t is time; all terms use MKS units.

Assuming a straight trajectory, appropriate when
neglecting gravity and lift, these equations can be
reformulated in terms of altitude to give:

dv

dz
¼ �CDqaA

2 sin h
v

m
(A2a)
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dm

dz
¼ �KHqaA

2 sin h
v2 (A2b)

L
d2L

dz2
¼ CDqa

qisin
2h

(A2c)

For simplicity, Collins et al. (2005) assumed no
mass loss by ablation (i.e., dm

dz ¼ 0) and found
approximate analytical solutions to A2a and A2c. As
ablative mass loss can be significant for small
meteoroids, here we seek an approximate (semi-)
analytical solution to A2. Before developing a general
solution to this system of equations, we observe that the
ablation parameter KH provides a convenient way of
nondimensionalizing the velocity term and define a
nondimensional specific energy of the decelerating
meteoroid for the ablative case:

v � 1

2

KH

CD
v2 (A3)

For the ablationless case, this parameter is
undefined and an alternative nondimensional specific
energy that can be used instead is the meteoroid’s
residual kinetic energy as a fraction of the initial kinetic
energy:

Ekp ¼ v

v0

� �2

(A4)

which we refer to as the kinetic energy partition. This
can also be defined in the ablative case as:

Ekp ¼ v
v0

� �
(A5)

where v0 is the initial value of the nondimensional
specific energy.

For the ablative case, combining Equations A2a
and A2b gives an equation relating v to the ratio of
meteoroid mass to initial mass m0:

ln
m

m0

� �
¼ v� v0 (A6)

Lastly, we define an aerodynamic mass ratio MR as
the ratio of the mass of air swept out by the meteor
along its path to the initial meteor mass. In differential
form, this is given by:

dMR

dz
¼ � qaA

m0 sin h
(A7)

Defining MR in this way enables all the atmospheric
and deformation model terms to be contained in a
single integral:

MR ¼ � 1

m0 sin h

Z1
z

qaAdz (A8)

Combining Equations A2a, A3, A6, and A7 gives a
single governing differential equation relating the
nondimensional specific energy of the meteoroid v to
the atmospheric mass ratio MR:

ev�v0

v
dv
dz

¼ CD
dMR

dz
(A9)

We note that for completeness Equation A9 could
be nondimensionalized fully by dividing the altitude z
by the atmospheric scale height H, but as this makes no
difference to the form of the equation it is unnecessary
here. The related ablationless equation is:

1

Ekp

dEkp

dz
¼ CD

dMR

dz
(A10)

Integrating these equations from z to infinity gives
relationships between the aerodynamic mass ratio and
the nondimensional specific energy for the ablative and
ablationless case, respectively, which are independent of
assumptions about the atmospheric structure and
deformation model, provided the deformation is
independent of the instantaneous meteoroid mass and
velocity:

Ei vð Þ ¼ Ei v0ð Þ þ CDe
v0MR (A11a)

lnEkp ¼ CDMR (A11b)

Note that Ei :ð Þ is the “exponential integral,” which
is straightforward to evaluate numerically in common
maths packages. The inverse of the exponential integral
is nontrivial to evaluate; however, for the range of
values likely to be encountered for a physical impact a
simple inversion scheme will be suffice. Hence, Equation
A11 can be evaluated to find the meteoroid speed at a
given altitude by solving the integral in the definition of
MR (Equation A8) for plausible assumptions about
atmospheric structure and meteoroid deformation. For
an isothermal atmosphere:

qa ¼ qsexpð�z=HÞ (A12)

where qs is the atmospheric density at the surface and H
the scale height of the atmosphere (~8 km for Earth). In
this case, the mass ratio for a nondeforming meteoroid
is simply:
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MR ¼ qsAH
m0 sin h

e�
z
H ¼ AH

m0 sin h
qaðzÞ (A13)

where A ¼ 1
4 pL0

2 is the cross-sectional area of the
meteoroid of constant diameter L0. In reality, even
strong meteoroids fragment under aerodynamic stresses
and subsequently deform. Hence, A13 applies only
above z* the fragmentation altitude—the altitude at
which the strength of the meteoroid is exceeded and it
starts to deform—which can be estimated using
Equation 11 in Collins et al. (2005).

Adopting the Pancake model of meteoroid
deformation (A2c) below the fragmentation altitude, the
integral in the equation for the aerodynamic mass ratio
can be rewritten as:

�
Zz�
z

qaAdz ¼
p
4
q z�ð Þ

Zz�
z

L2ðzÞeðz��zÞ=Hdz (A14)

Collins et al. (2005) found a good analytical
approximation for the integral on the righthand side of
A14:Zz�

z

L2eðz��zÞ=Hdz ¼ lL2
0

24
a½8 3þ a2

� �þ 3a
l

H
ð2þ a2Þ�

(A15)

where l is the dispersion length scale defined as

l ¼ L0 sin h
ffiffiffiffiffiffiffiffiffiffiffiffi

qi
CDqðz�Þ

q
and

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðzÞ
L0

� �2

� 1

s
¼ 2H

l

� �
eðz��zÞ=2H � 1
h i

(A16)

Thus, for a meteoroid deforming according to the
pancake model in an isothermal atmosphere the

aerodynamic mass ratio below the fragmentation
altitude is:

MR ¼ qa z�ð Þp
m0 sin h

lL2
0

96
a½8 3þ a2

� �þ 3a
l

H
ð2þ a2Þ� (A17)

which can be evaluated at any altitude below z* using
A16. At altitudes well below the fragmentation altitude
(z 	 z*), the mass ratio given by A17 is several orders
of magnitude larger than the mass ratio at
fragmentation, given by A13 evaluated at z = z* and
hence the latter can be ignored. Otherwise, the total
mass ratio is the sum of A13 evaluated at z = z* and
A17. The Aerodynamic Mass Ratio can be defined for
other models of meteor deformation or atmospheric
structures (e.g., polytropes, International Standard
Atmosphere, etc.).

The height of maximum energy deposition per km is
an important quantity when determining the effects of the
shockwave on the ground. This can be used to define the
burst height zb. For the ablationless case, this is the
altitude at which the second derivative of Ekp is zero:

d2Ekp

dz2
jz¼zb

¼ 0 (A18)

From this condition, it can be shown that for most
scenarios of interest the kinetic energy partition at the
burst height Ekp zbð Þ ¼ e�1; i.e., at the burst altitude the
residual kinetic energy of the meteoroid is
approximately one-third of the initial kinetic energy.
The equivalent condition for the ablative case is more
complicated to analyze; however, for weakly ablative
scenarios (v0~1) typical of stony objects entering at 15–
30 km s�1, the kinetic energy partition at burst is also
close to one-third.
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