
Assisted Painting of 3D Structures Using
Shared Control with a Hand-held Robot

Joshua Elsdon1 and Yiannis Demiris1

Abstract— We present a shared control method of painting
3D geometries, using a handheld robot which has a single
autonomously controlled degree of freedom. The user scans
the robot near to the desired painting location, the single
movement axis moves the spray head to achieve the required
paint distribution. A simultaneous simulation of the spraying
procedure is performed, giving an open loop approximation
of the current state of the painting. An online prediction of
the best path for the spray nozzle actuation is calculated in
a receding horizon fashion. This is calculated by producing a
map of the paint required in the 2D space defined by nozzle
position on the gantry and the time into the future. A directed
graph then extracts its edge weights from this paint density map
and Dijkstra’s algorithm is then used to find the candidate for
the most effective path. Due to the heavy parallelisation of this
approach and the majority of the calculations taking place on a
GPU we can run the prediction loop in 32.6ms for a prediction
horizon of 1 second, this approach is computationally efficient,
outperforming a greedy algorithm. The path chosen by the
proposed method on average chooses a path in the top 15%
of all paths as calculated by exhaustive testing. This approach
enables development of real time path planning for assisted
spray painting onto complicated 3D geometries. This method
could be applied to applications such as assistive painting for
people with disabilities, or accurate placement of liquid when
large scale positioning of the head is too expensive.

I. INTRODUCTION

Painting a 3D model with an airbrush is a skilled discipline,
fine control of nozzle speed, position and timing of the air
valve are required. We outline an algorithm for path planning
and automated airbrush hardware that alleviates some of this
skill requirement by allowing the user to share control of the
airbrush nozzle with a robotic system. This could prove to be
useful in assistive painting, where the user has reduced control
of their extremities, or reduced mental acuity [1]. Further, it
could also be useful in other circumstances where a liquid
must be applied accurately, but positioning the head on a
large scale is not feasible due to cost or space requirements,
such as applying medicine to skin [2].

Our system plans movement of a spray nozzle along a one
dimensional linear slide to maximise the amount of paint that
can be correctly placed onto the 3D geometry. The system
takes the location and velocity of the robot as input and
controls the nozzle location on the gantry and whether the
nozzle valve. The robot is handheld and is manoeuvred by
the user. A typical system setup is shown in Figure 1. A short
video accompanies this work2.

1Joshua Elsdon, je10@ic.ac.uk, and Yiannis Demiris,
y.demiris@ic.ac.uk, are with the Department of Electrical
and Electronic Engineering, Imperial College London,

2https://www.youtube.com/watch?v=GdNqDP40tsI

Fig. 1: The experimental setup. On the right is the robot, it
has a single axis of movement which can move the airbrush
head up and down. On the left is the object to be painted,
it is located on top of an array of visual markers, which are
observed by a camera mounted on the robot, see Figure 6
for a more detailed view of the hardware.

II. BACKGROUND

Two research areas provide fruitful background reading for
this problem: automated industrial painting, such as painting
car bodies [3][4][5][6][7] and assistive painting tools in the
artistic domain [8][9]. Car manufacturers, in order to keep
costs low, use robots to paint car panels. These robots will
usually follow a hard coded path, determined by a mixture of
automated software tools and expert adjustments. The robots
the car industry use are large and expensive, and the fixed path
planning makes them most effective when reproducing the
same work over and over again. Artistic pursuits however are
likely to require a different outcome on each iteration, further,
humans being in the creative loop is often a positive [1], unlike
industrial painting processes [10][11]. Industrial painting
usually is simulated in an offline manner [3][4], though
for artistic pursuits real time visualisation and interaction
is important [8].

Hegels et al. [3] presented a method for modifying existing
robotic arm trajectories for painting car panels. The method
maximised the evenness of the paint, whilst keeping the
accelerations acceptable for the large robotic arms. Their
approach is entirely offline, and at run time the coating is
performed open loop, with no checking of the final coat
evenness. They specify a method of capturing the real coating
distribution by spraying for a short time onto a plate, which is
then sampled across its area. They use the sampled distribution
in evaluating the cost function of the current iteration of

Preprint version; final version available at http://ieeexplore.ieee.org/
IEEE International Conference on Robotics and Automation (2017)
Published by: IEEE



the trajectory, but in order to use optimisation methods
that utilise gradients, they fitted this sampled distribution
to a distribution that could be described analytically. This
simplified distribution is used to calculate the next direction to
search in the perimeter space. Their choice to use a simplified
model for path planning followed by an expensive method
for tracking the cost is one that we have emulated to some
extent in this work.

In contrast to the industrial painting methods, Prevost et al.
[8] use a shared control approach, where the robot is assisting
the human towards the joint goal of painting a mural. In their
design the robot’s position is found via external cameras
that locate QR codes mounted on the top and bottom of a
standard spray paint can. When the robot is judged to be in
a good position to add paint to the canvas, a radio controlled
servo is actuated to press the valve of the spray paint. The
user just has to meander the robot across the canvas, and the
paint will be applied such that the state of the painting moves
towards that of the target design. The system provides the
user with a graphical representation of areas of the painting
that need more paint, and a total possible added value using
the current colour of paint. Prevost et al. [8] did a similar
sampling followed by simplification of the paint distribution
as Hagels et al [3]. The work we present here has a number
of similarities, though we extend the robot to have some
movement control in the form of a single axis moving the
head, and the algorithm presented efficiently finds an actuation
plan for this axis to maximise painting efficiency.

Arikan et al. [4] present a thorough overview of the
calculations necessary to track the thickness of paint given
the path, geometry to be painted and distribution pattern of
the spray nozzle. They implemented a method to produce a
path that produced an even coating over the surface of a car
body panel, this was conducted offline and the robot simply
follows the instructions. Their planning algorithm is unlikely
to translate well to a situation where the velocity of the head
is not known until run time as it relies on the path having a
set offset from the adjacent pass. This is a common theme
for car body painting, as this is the best method for getting
an even coat, which is usually the target in car body painting,
this is confirmed by Chen et al. [6] in their review of path
planning for spray painting.

Konieczny et al. [9] give an account of their work regarding
simulating airbrushes for graphics creation on a computer,
this is completed with the design of an electronic airbrush for
the user to interact with. Their system tracks the electronic
airbrush using a magnetic tracker, and has a dual action
trigger (allows control of paint flow and air flow). They also
present a mature algorithm for simulating the paint droplets,
including the methods used to blend colours for a realistic
looking finish. They implemented all of the computationally
expensive operations on a GPU. Our work uses a similar
techniques for GPU acceleration of the paint simulation.

Shared control is an area of research that concerns a wide
range of applications other than assistive painting [12][13],
Carlson et al. [14] presented work outlining their experiments
regarding having a robotic motorised wheelchair share control

Fig. 2: The path that the nozzle takes is based on a grid of
positions with line segments connecting them. The path is
chosen such that it maximises the amount of paint that can
be dispensed into the target areas. The white sections of this
image are in need of paint. The cyan line is the chosen path,
yellow represents all possible paths.

Fig. 3: Green sections are part of the candidate path selection.
The blue process is the path simulation described in Section V.
The dashed arrows on the right indicate outputs to the
hardware described in Section VI-B.

with a user. They used a secondary task, playing a simple
game on a monitor, to impair the users to simulate reduced
attention or reduced mental acuity. Using a shared control
frame work they were able to reduce the number of collisions
from 78% of participants to effectively none with the system
active, one collision occurred due to a mechanical failure.
This experiment shows effectively that shared control can
enable users to do activities which would otherwise be too
difficult or unsafe to complete.

III. METHOD

This section will outline the method of generating an
actuation plan for the robot. The outputs from the algorithm
are nozzle velocities and times to turn the airbrush on and off.
A simplified view of the problem is presented in Figure 2, a
flow chart of the method is presented in Figure 3.

There are two main stages to the software, candidate path
selection and path simulation. The function of the candidate
path selection is to suggest a path for the future movement
that is likely to provide rich opportunities for the nozzle
to dispense paint. The path simulation is then used to both
calculate when the nozzle should dispense paint within this
path and to update the internal representation of the state of
the painting.

The candidate path selection starts by sampling the whole
movement space for required paint quantity, generating a 2D
representation of required paint density with axis being the

Preprint version; final version available at http://ieeexplore.ieee.org/
IEEE International Conference on Robotics and Automation (2017)
Published by: IEEE



position of the spray nozzle on the gantry and time from
the beginning of the current movement, this is described in
detail in Section IV-A. Using this density map we can then
estimate the maximum benefit that any movement can make.
We assume the nozzle can only dispense at one rate, hence for
areas that need sparse covering with paint the nozzle should
have a high speed in order not to over paint the region. For
areas that require a high density of paint the nozzle will
be allowed to move more slowly. A tree structured directed
acyclic graph is formed where the edge cost is found from
the required paint density, this is described in Section IV-C
and Section IV-B. Dijkstra’s algorithm [15] is then run to find
the route that the nozzle should take to maximise its ability
to dispense paint according to the target paint distribution.

The path simulation stage then performs a simulation of the
path suggested by the candidate path selection. At each time
step it tests whether the nozzle should be dispensing paint,
if so it updates the representation of the paint distribution
accordingly. Only the first section of the path that is actually
going to be implemented on the hardware needs to be
addressed by this section of the software. The fact that the
candidate path includes a larger time horizon than is actually
implemented allows this algorithm to find a solution that is
closer to the globally optimum path whilst still constantly
correcting for adjustments due to unexpected movements of
the robot, and measurement drift. The path simulation is
described in detail in Section V.

IV. CANDIDATE PATH SELECTION

Simulating paths fully as demonstrated in Section V is an
expensive operation; it cannot be parallelised across time, as
future paint deposits will rely on past paint deposits. Therefore
using such a simulation to evaluate many paths, then picking
the best one is not a tenable solution if the allowed solution
space is large. We must make some assumptions to accelerate
the search for good candidate paths. Firstly we assume that
the operator is moving the robot primarily perpendicularly to
the gantry direction and the spray direction, as to sweep the
largest possible area. This helps minimise the situation where
the head could revisit the same physical location at a later
time, thus reducing the dependence of later paint deposits
on previous paint deposits. We also assume that the user is
trying to keep the robot’s velocity smooth at all times.

This software module has 4 stages to its implementation:
1) Calculating the required paint density across the space
defined by the spray nozzle’s location on the gantry and
time. 2) Producing a graph structure that can account for
mechanical feasibility. 3) Calculating the maximum benefit of
line segments in this graph. 4) Solving for the path most likely
to place the maximum amount of paint in the correct place
using Dijkstra’s algorithm [15]. These stages are highlighted
in green in Figure 3.

A. Calculating Required Paint Density

The spray painting process has a number of variables that
will affect the rate at which the paint covers a particular
area, for example, if the nozzle is at a large distance from

the object being painted the paint per second arriving at a
given area will be less than if the nozzle were close. Other
considerations include the distribution pattern of the spray
nozzle, obliqueness to the surface etc. We wish to account
for all of these effects and simplify their contribution to one
variable: at this location on the gantry and this point in time,
how much paint is needed.

We sample this quantity at regular intervals in a grid across
time and nozzle position in the manner defined in Equation 1.
At each location 1024 rays are cast into the scene and each
ray returns the difference between the current paint coverage,
c, and the target coverage, p. This is divided by the distance
squared, d2. This operation provides the required flux of
paint at unit distance for this ray. The direction of the rays
is decided by the distribution pattern of the airbrush nozzle.
This averaged value is now representative of the average paint
flux at unit distance at this location on the gantry, g, at a
given time, t. Repeating this operation in a grid across many
gantry positions and time instants produces a map of required
paint density in all positions that the nozzle will have access
to over the allotted time horizon. This can be visualised as in
Figure 2, where the white sections are requiring a large paint
density, and the black areas require little or no paint density.
This section does not make any strong assumptions about the
geometry of the object to be painted, as long as the model
is a good approximation of the real object to be painted and
is triangulated reasonably, avoiding very thin triangles and
avoiding unwanted gaps between triangles. We use this map
of required paint density as the basis for generating the edge
weights of a directed graph in Section IV-C.

d(g, t) =
1

rays

i=rays∑
i=0

ci − pi
d2

(1)

B. Building Graph Structure

There are an infinite number of paths that the nozzle
could take between the start and the time horizon, so for
the purposes of this work we will discretise the movements.
We define this discretisation by allowing the head to only be
in discrete locations along the gantry at given intervals of
time. This forms a grid on the space defined in Section IV-A.
The nozzle can then move between these locations in line
segments. At each grid location there is a predefined number
of alternative routes going forward, which we call the number
of divisions. In order to account for the fact that the nozzle
should not be allowed an infeasible change in speed the graph
structure needs to account for the incoming speed to each
grid location and only allow the nozzle to leave the grid
location at an allowable velocity. This is encoded by having
multiple nodes in the graph at each grid location, one for
each possible incoming speed. These nodes are not connected
to nodes that would be infeasible given the incoming speed
it represents. For example, if the nozzle was moving at full
speed along the gantry in one direction it may be infeasible
for it to move full speed in the other direction during the
next time period.

Preprint version; final version available at http://ieeexplore.ieee.org/
IEEE International Conference on Robotics and Automation (2017)
Published by: IEEE



Fig. 4: A visualisation of the graph structure. The stacked
nodes encode the speed incoming to the node, blue is 0, red
is +1, green is −1. The purple lines indicate the edges of
the graph, notice they will not allow a transition between +1
and −1 speed or the reverse. In a realistically proportioned
graph there is a parameter speed change which defines the
allowable change in speed at each node. The shadowed lines
at the bottom of the image indicate the edges of the basic
tree structure. The purple edges will inherit their edge costs
from this base graph, notice there is often more than one
edge representing the same physical movement.

Many of the paths from one node to the next will represent
the same physical movement. Hence we calculate the cost
for all possible edges between nodes, not accounting for
feasibility, the edges on the graph then inherit the costs from
this simplified graph. This encoding of feasibility and the
inheritance of edge costs is described fully in Figure 4.

C. Calculating Benefit of a Sub-movement

We now need to define an operation that will return a score
for a line segment taken from one edge in the graph described
in Section IV-B. Given the robot’s velocity perpendicular to
the gantry, v, and the gradient of the line segment, d

dt (g), we
can calculate the nozzle velocity, n.

n =

√
d

dt
(g)2 + v2 (2)

Combining this with the flow rate of the nozzle, flow, and
the distribution pattern of the nozzle (simplified to a cross
section area at unit distance, A) we can calculate the paint
flux at unit distance, f , for this line segment.

f =
flow
A · n

(3)

Comparing this paint flux with a number of samples
along this line segment we can evaluate whether this is an
appropriate flux value for this location. If the flux is less
than that required then the score, wi of this sample on the
line can be positive. If it is more than is required the score
is zero, this is because if the nozzle were to perform this
movement it would overdose this region with paint. The total
score of the line segment, W , is the summation of all the
samples along its length. Typically we use 32 samples along
each line segment.

wi =

{
d(g, t) if f < d(g, t)

0 if f > d(g, t)
(4)

W =
1

samples

samples∑
i=0

wi (5)

The positive score given to a sample effects how the system
will behave, the optimum score to assign is the calculated
flux for this line segment. This will maximise the amount
of time that the nozzle can be switched on over the whole
path. Alternatively, using the paint required at this position
as a score prioritises the robot to visit areas that are more in
need of paint. We found that using the target paint quantity
as the score achieves better results. The paths chosen have
more margin for error compared to picking paths where the
calculated flux for the path is very close to the approximated
required flux. When there is a small margin for error, the
discrepancy between the required paint density approximation
and the full simulation described in Section V can lead to
the nozzle being left off to avoid an overdose condition. In
this case there will be a large discrepancy between the score
expected and the actual calculated score for a line segment,
meaning that the path found using this method will be far
from optimal.

We use this method in Section IV-B to give a weight to each
element of the graph representing all possible movements.

D. Solving for Best Path

We now have a graph as defined in Section IV-B that
has edge weights as calculated by the function described in
Section IV-C. Using Dijkstra’s algorithm we find the path
from the start node to the time horizon that maximises score.
This should give the route that maximises the opportunity
for the nozzle to apply paint to the correct locations. The
path selected should be such that it chooses swift diagonal
movements through areas that require a sparse covering in
paint, for areas that require high densities it will chose a path
that maximises the amount of time that the nozzle is within
the region, as to maximise the amount of paint distributed
over that time period. Solving by Dijkstra’s algorithm was
implemented using the Boost Graph Library, and this is the
only computationally significant part of the algorithm that
takes place on the CPU.

V. SIMULATION OF THE SELECTED PATH

All of the above calculations rely on the assumption
that paint dispensed earlier in the movement will not affect
paint dispensed later. For maintaining an accurate internal
representation of the state of the paint coverage this is not
acceptable. Therefore we must run a simulation that can take
account of previous paint coverage affecting the value of
applying paint to the same area in the future. We only need
to run this section of the algorithm on the first section of the
path, therefore this high computational cost is acceptable.

This simulation is achieved by modelling the paint droplets
as rays and casting them into the geometry, these rays are

Preprint version; final version available at http://ieeexplore.ieee.org/
IEEE International Conference on Robotics and Automation (2017)
Published by: IEEE



used to lookup the corresponding pixel in the texture map,
which holds the current state of paint coverage on the object,
a similar texture holds the target paint coverage. At each
time step r rays are cast, each represents the appropriate
amount of paint based on the time step, flow rate and rays
per time step. It is often the case that multiple rays within
each casting operation will point to the same pixel in the
paint state texture map, therefore it is important to use atomic
operations to ensure they are totalled correctly on the GPU.
After the casting operation we have a list of pixels in the
texture map that have received paint, the quantity of which is
defined as q. q is compared to the amount of paint required
at this location to reach the target. If the amount of paint
cast to this location (q) is less than or equal to the target
amount required, p, the total amount of paint is recorded as
the score, s. If there is an overdose condition the excess is
punished by a punishment factor, P .

si(t) =

{
qi if qi ≤ pi

pi − (qi − pi)P if qi > pi
(6)

S =

r−1∑
i=0

si (7)

At each time step along the path we calculate an aggregate
of the score of all the rays cast, S, if this total is greater
than zero we can consider the paint distribution at this time
instant a success. In this case all of the paint quantities will
be added to their respective pixel in the texture map. If the
score is negative, spraying at this location is detrimental to
the painting of the object, and the paint quantities are not
written back to the texture. The series of whether each time
step was beneficial to the painting task is kept, this is used
to produce timings for the valve that controls the paint flow
on the robot.

VI. VALIDATION AND COMPARISON

To demonstrate the efficacy of the proposed method we
will present two sets of experiments. The results that were
gathered from simulation are presented in Section VI-A, those
gathered from hardware tests are presented in Section VI-B.

A. Experiments in Simulation

We can use exhaustive evaluation of all possible paths in a
particular scenario to give a robust bench mark for the quality
of a selected path. The path that is generated can be given a
rank out of possible paths, with 1 being the best rank. In order
to compare the proposed method with a baseline method a
greedy path planner was developed. The greedy algorithm
picks the most valuable linear movement over the next time
period until it reaches the time horizon. The evaluation of
the line segments will be done using the simulation outlined
in Section V.

Firstly, both the proposed method and the greedy method
are presented with the same 32 scenarios. Each method then
generates a path for the airbrush nozzle to take, these are then
given a rank against all possible paths. Both methods select

10 20 30

0

1,000

2,000

50%

10%

5%

Test Scenario

R
an

k
of

pa
th

Ordered plot of path rank

Proposed Method
Greedy Method

Fig. 5: For each of the 32 trials, the path produced by each
algorithm was given a rank for quantity of ink placed out of
all possible paths (calculated exhaustively). These ranks were
then ordered from best to worst for clarity. We can see that
the proposed method picks a good solution for the majority
of trials, most in the top 5% (the average being 15%), though
the greedy method does not seem to outperform a random
pick as it returns paths with an average rank of 53%.

paths from the line segments in a tree structure as shown in
Figure 2 such that both algorithms obey the same feasibility
constraints. The results can be seen in Figure 5. Our method
averages a rank of 328 out of 2186 (15%), though the majority
of the paths are in the top 5% of all paths. The outliers seem
to be in scenarios where there is very little paint to be placed
within the time horizon. The path chosen then maximises its
time in areas of sparse paint requirement, though due to the
approximate nature of the paint density estimate produced in
Section IV-A this marginally fails to pass the test of whether
the valve should be on presented in Section V.

The greedy method on average produced a path of 1302
out of 2186, which is worse than chance. This is because
the greedy method has no capability to bias the path towards
fruitful areas that occur outside of the next time period.

Computational efficiency is important because we wish
to use them on a real time spraying robot. The path must
be planned whilst the first segment of the previous plan is
being acted upon by the robot. Therefore if the run time of
the algorithm is shorter we can increase the frequency of
commands sent to the robot or we can increase the number
of path options considered.

We compared the execution time of the proposed method
against the greedy implementation. The times for the proposed
method include the path generation and one segment of
simulation as described in Section V. For the greedy algorithm
the simulation is implicit in the path generation, therefore
for this method only the path generation time is included.
As shown in Table I the proposed method has a significantly
shorter run time. In this set of scenarios the path generation
was over a horizon of 7 decision intervals each representing
0.1s and there were 3 divisions after each time period. The

Preprint version; final version available at http://ieeexplore.ieee.org/
IEEE International Conference on Robotics and Automation (2017)
Published by: IEEE



TABLE I: Comparison between the proposed method and a
simple greedy algorithm. Data taken over 32 test scenarios.
The tests all were using a horizon of 7, with a choice of 3
directions at each intersection.

Method Mean Time(ms) Standard Deviation
Proposed Method 32.6 3.27
Greedy Method 116.84 3.20

Fig. 6: The robot used for the hardware experiment. 1:
Airbrush nozzle. 2: Festo 1ms air valve. 3: Limit switch.
4: 15PSI air input hose. 5: Igus DryLin low profile slide
rail. 6: Nema 17 stepper motor. 7: Point Grey Chameleon 3
USB 3 camera. 8: MBED LPC1768. 9: Pololu stepper motor
driver.

proposed method would scale very well into larger solution
spaces defined by: number of time periods before the time
horizon; quantisations in the gantry direction and the number
divisions after each time period. This is because the most
computationally expensive part of the method is generating
the density map, which is independent of the number of paths
at each intersection and scales linearly with gantry quanta and
horizon length. In contrast any algorithm that uses the full
evaluation for line segments iteratively, such as the greedy
algorithm, will scale very badly into bigger solution spaces.

B. Experiment with Hardware

To demonstrate the algorithm outlined above we have
conducted a preliminary test case where the robot shown in
Figure 6 should place paint in a specified area. The robot
body is manoeuvred by the user. The algorithm plans the
next move at a rate of 10Hz, whilst considering the next 1
second of potential paths available to it. The planning uses a
snapshot of the robots measured velocity and orientation for
extrapolation into the future. The robot measures its current
location and velocity using a camera mounted to the robot,
this tracks small markers that are located below the item to
be painted, seen in Figure 1.

The camera output is fed back to a desktop computer with
a mid-range GPU (NVIDIA 960) at 100Hz. The robot is also
supplied with a compressed air hose for the airbrush and has
a USB connected micro-controller to manage the movement
of the airbrush head. The software architecture is using ROS
(Robotic Operating System)[16] for communication to the

robot and between nodes on the desktop. The path calculation
is accelerated using OpenCL.

The aim for this demonstration was to paint three small
circles on the faces of the 3D printed object shown in
Figure 7b. The faces were covered in pieces of paper for
reusability. Scans of the paper are presented in Figure 7c, the
green overlays represent the ideal target locations. Figure 7d
shows the state of the simulation after the demonstration,
white sections are where paint is placed. Ideally the real
paining should match that of the simulation.

It can be see from these images that the paint was placed
predominantly in the correct location, though there are some
anomalies that should be explained. The small amount of
misalignment between the target locations and where the
paint was deposited is due to a combination of an offset in
the optical positioning and perhaps a lack of precision in the
registration of the object to the markers on the base. The
offset is around 6mm in the worst case. Additionally to the
offset there is some spurious paint placement, this is due to
the loss of vision of the markers as the camera becomes very
close to the object. To solve this issue the camera should be
placed such that it does not lose vision on the markers when
close to the target object.

VII. CONCLUSION

In this paper we outlined a method for generating a tra-
jectory for an airbrush nozzle on an under-actuated handheld
robot. This method had four stages: sampling the swept
space for required paint density; building a directed graph
in this space, sampling from the required paint density to
generate the edge weights; solving for the path that can
maximised the quantity of paint delivered using the Dijkstra
method and finally running a dense simulation of the first
segment of the path to discover when to activate the air brush.
We demonstrated that the proposed method has sufficiently
low run time to run in a real time system by performing a
preliminary study on real hardware and by measuring the run
time directly. The run time was significantly shorter than a
basic greedy algorithm that acted as a base line for algorithms
that rely on the full simulation of a line segments to generate
a path. For a typical scenario the proposed method took
32.6ms to produce a decision for the next time step, whilst
considering a time horizon of 700ms. We showed that the path
that was chosen by the proposed method was of high quality
when compared to all possible paths, on average returning
a path that fell in the top 15% of all paths. The majority
of paths were in the top 5% of all paths. This is compared
favourably to the greedy algorithm that performed no better
than chance.

This work should be of use for researchers who are
looking for methods to plan painting trajectories when system
velocities are not known until run time. Applications could
include assistive painting technologies for the impaired or for
other painting systems where large scale precise movement
of the painting head is not feasible.

Future improvements to this work include increasing
the precision of the positioning system for the robot and

Preprint version; final version available at http://ieeexplore.ieee.org/
IEEE International Conference on Robotics and Automation (2017)
Published by: IEEE



(a) The object to be
painted.

(b) The Object after painting.
(c) A scan of the sides of the
model that were painted

(d) The equivalent view from Fig-
ure 7c taken from the simulation.

Fig. 7: The object is a 60mm wide cube at an angle. The target is three 34mm circles on each of the top faces, as shown in
Figure 7c, the green overlay indicates the target areas. Qualitatively it can be seen that the paint is broadly in the correct
place, the displacement of each circle is within 6mm of the correct location, this drift is most likely due to registration of the
3D Object and positioning accuracy, anomalies far outside the circles seems to be temporary glitches in the position tracking.

producing an online method of adjusting the registration of
the object to be painted. Further we will remove the high
acceleration at the corners by adding rounded corners to
the path. This would both increase the maximum speed and
change of speed at each intersection.

REFERENCES

[1] G. Kronreif et al. “PlayROB - Robot-Assisted Playing
for Children with Severe Physical Handicaps”. In: 9th
International Conference on Rehabilitation Robotics.
2005, pp. 193–196.

[2] Yuichi Tsumaki et al. “Development of a skincare
robot”. In: 2008 IEEE International Conference on
Robotics and Automation. 2008, pp. 2963–2968.

[3] Daniel Hegels, Thomas Wiederkehr, and Heinrich
Müller. “Simulation based iterative post-optimization
of paths of robot guided thermal spraying”. In: Robotics
and Computer-Integrated Manufacturing 35 (2015),
pp. 1–15.

[4] M. A. Sahir Arikan and Tuna Balkan. “Process model-
ing, simulation, and paint thickness measurement for
robotic spray painting”. In: Journal of Robotic Systems
17.9 (2000), pp. 479–494.

[5] Q. Ye. “Using dynamic mesh models to simulate
electrostatic spray-painting”. In: High performance
computing in science and engineering ’05. 2006,
pp. 173 –183.

[6] Heping Chen, Thomas Fuhlbrigge, and Xiongzi Li. “A
review of CAD based robot path planning for spray
painting”. en. In: Industrial Robot: An International
Journal 36.1 (2009), pp. 45–50.

[7] Jonathan Konieczny et al. “Automotive Spray Paint
Simulation”. In: Lecture Notes in Computer Science.
2008. Chap. Part 1, pp. 998–1007.

[8] Romain Prévost et al. “Large-Scale Spray Painting of
Photographs by Interactive Optimization”. In: Comput-
ers & Graphics 55 (2016), pp. 108–117.

[9] Jonathan Konieczny and Gary Meyer. “Airbrush sim-
ulation for artwork and computer modeling”. In:
Proceedings of the 7th International Symposium on
Non-Photorealistic Animation and Rendering - NPAR
’09. 2009, pp. 61–69.

[10] H.McIlvaine Parsons. “Human factors in industrial
robot safety”. In: Journal of Occupational Accidents
8.1-2 (1986), pp. 25–47.

[11] G.M. Bone. “Multisensor System for Safer Human-
Robot Interaction”. In: Proceedings of the 2005 IEEE
International Conference on Robotics and Automation.
2005, pp. 1767–1772.

[12] Ayse Kucukyilmaz and Yiannis Demiris. “One-shot
assistance estimation from expert demonstrations for
a shared control wheelchair system”. In: 2015 24th
IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN). 2015, pp. 438–
443.

[13] Alexander Broad et al. “Trust Adaptation Leads to
Lower Control Effort in Shared Control of Crane
Automation”. In: IEEE Robotics and Automation
Letters 2.1 (2017), pp. 239–246.

[14] T. Carlson and Y. Demiris. “Collaborative Control
for a Robotic Wheelchair: Evaluation of Performance,
Attention, and Workload”. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics)
42.3 (2012), pp. 876–888.

[15] E. W. Dijkstra. “A note on two problems in connexion
with graphs”. In: Numerische Mathematik 1.1 (1959),
pp. 269–271.

[16] Morgan Quigley et al. “ROS: an open-source Robot
Operating System”. In: Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA) Workshop on Open
Source Robotics. 2009.

Preprint version; final version available at http://ieeexplore.ieee.org/
IEEE International Conference on Robotics and Automation (2017)
Published by: IEEE


