
ORIGINAL PAPER

A methodological framework for assessing agreement
between cost-effectiveness outcomes estimated using alternative
sources of data on treatment costs and effects for trial-based
economic evaluations

Felix Achana1 • Stavros Petrou1 • Kamran Khan1 • Amadou Gaye2 •

Neena Modi3 • On behalf of Medicines for Neonates Investigators

Received: 4 March 2016 / Accepted: 10 January 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract A new methodological framework for assessing

agreement between cost-effectiveness endpoints generated

using alternative sources of data on treatment costs and

effects for trial-based economic evaluations is proposed.

The framework can be used to validate cost-effectiveness

endpoints generated from routine data sources when com-

parable data is available directly from trial case report

forms or from another source. We illustrate application of

the framework using data from a recent trial-based eco-

nomic evaluation of the probiotic Bifidobacterium breve

strain BBG administered to babies less than 31 weeks of

gestation. Cost-effectiveness endpoints are compared using

two sources of information; trial case report forms and data

extracted from the National Neonatal Research Database

(NNRD), a clinical database created through collaborative

efforts of UK neonatal services. Focusing on mean incre-

mental net benefits at £30,000 per episode of sepsis aver-

ted, the study revealed no evidence of discrepancy between

the data sources (two-sided p values[0.4), low probability

estimates of miscoverage (ranging from 0.039 to 0.060)

and concordance correlation coefficients greater than 0.86.

We conclude that the NNRD could potentially serve as a

reliable source of data for future trial-based economic

evaluations of neonatal interventions. We also discuss the

potential implications of increasing opportunity to utilize

routinely available data for the conduct of trial-based

economic evaluations.

Keywords Agreement � Cost-effectiveness analysis �
Economic evaluation � Routine data � Electronic health

records
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Introduction

In trial-based economic evaluations, data on treatment

costs and consequences (effects) are required for trial

participants with the aim of estimating the relative cost-

effectiveness of two or more interventions. It is common

practice within this context for multiple sources of infor-

mation to be obtained by analysts and used to inform the

evaluation. For example, data on healthcare resource use

and costs can normally be obtained from a variety of

sources including trial case report forms, medical records,

patient questionnaires, and diaries [26]. With the advent of

the ‘big data’ revolution, large volumes of individual-level

information are being collected prospectively from patients

and stored in administrative datasets and electronic health

record systems. These routinely collected datasets consti-

tute a rich source of information for health research—they

are increasingly being relied upon as sources of informa-

tion for trial-based economic evaluations and health tech-

nology assessments. For example, data drawn from the

Hospital Episode Statistics (HES) in the UK have been

obtained for use in the CAP trial to evaluate the clinical
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and cost-effectiveness of prostate-specific antigen testing

in men aged 50–69 years old [36, 37]. Furthermore, in a

recently published editorial in the British Medical Journal

on reforms of the UK Cancer Drug Fund, Grieve et al. [13]

suggested ‘‘using timely randomized controlled trials

within routinely collected data sources, to establish which

drugs are relatively effective’’ and cost-effective.

It is likely that use of routine data in trial-based eco-

nomic evaluations will increase in the coming years in the

UK context and beyond. This is largely driven by increased

access to datasets and advances in computerized record

linkage that enable datasets to be linked with each other

[29] and increasingly to trial participants at the individual

patient-level. Linkage to trial participants is crucial in this

context as the within-trial randomization can be relied upon

to generate unbiased estimates of treatment impacts based

on information contained in the routine data sources. That

being said, what is not known is whether routine data

sources can provide reliable information across the broad

array of data required for trial-based economic evaluations

[36]. This is because the datasets have generally been

compiled for non-research purposes, such as the need to

evaluate health service performance or monitor care

delivery, and hence may not adequately satisfy the rigors

required of clinical trial research. Consequently, there are

often concerns about data quality, including missing

information, incomplete coding, and miss-classification of

variables—issues that have potential to render the data

unsuitable for most clinical research.

For the reasons stated above, analysts working on trial-

based economic evaluations have long recognized the need

for validated data obtained from disparate sources for

application within their evaluations [4]. In this context,

analysts have examined the disparate sources of informa-

tion for evidence of difference [36] or agreement

[4, 15, 21, 23, 31] in individual parameter estimates. These

studies have primarily focused on comparisons between

multiple sources of information on individual-level

healthcare resource use or costs.

In this paper, we outline a new methodological frame-

work for assessing agreement between the final cost-ef-

fectiveness endpoints generated using alternative sources

of data on treatment costs and effects for trial-based eco-

nomic evaluations. The proposed framework builds on the

earlier work of Bland and Altman [1, 3] and Lin [18] on

methods for assessing the reproducibility of clinical assays,

measurements, and tests. The framework can be used to

validate estimates of cost-effectiveness endpoints gener-

ated using routine data sources when comparable data on

costs and effects for trial participants are available from a

de novo data source, such as trial case report forms.

Of the two most commonly reported endpoints in eco-

nomic evaluations, namely the incremental cost-

effectiveness ratio (ICER) and the incremental net-benefit

statistic, we base our assessment of agreement on the latter.

This is because of well-known issues surrounding the ICER

[12, 33] that makes it unsuitable as a statistic on which to

base assessment of agreement. For example, the sampling

distribution of the ICER is unknown, and it can be prob-

lematic to estimate associated measures of uncertainty.

Also, because the ICER is a ratio of incremental costs and

incremental effects, two ICERs can be equal in magnitude

but qualitatively different in meaning when they fall in

different quadrants of the cost-effectiveness plane. The

incremental net benefit statistic, on the other hand, is

unambiguous with relatively straightforward interpretation

and its sampling distribution is known at the specified cost-

effectiveness threshold [33].

The remainder of the paper is structured as follows:

‘‘Methods’’ outlines the proposed methodological frame-

work. In ‘‘Example application to the PiPS trial’’, we illus-

trate an application using data from a recently conducted

trial-based economic evaluation investigating the benefits of

early administration of the probiotic Bifidobacterium breve

strain BBG (B breve BBG) to prevent development of

infection (sepsis) in babies less than 31 weeks of gestation.

We present final concluding remarks in the ‘‘Discussion’’

section, including the potential implications of increasing

recourse to routinely collected data for the conduct of trial-

based economic evaluations.

Methods

This section outlines our framework for assessing agree-

ment between the mean incremental net (monetary) bene-

fits estimated from two sets of data on treatment costs and

effects for trial participants. Three commonly used statis-

tics are adapted for this purpose: (1) the mean difference;

(2) the probability estimate of miscoverage; and (3) the

concordance correlation coefficient [18] between two

estimates of the incremental net benefit. We define the

probability estimate of miscoverage as the proportion of

samples in simulated replication of trial data in which the

confidence limits for the mean incremental net benefit from

one data source, designated as test data, contain the mean

incremental net benefit estimated from the second data

source, designated as the referent or gold standard data

source. We outline a strategy for estimating the miscov-

erage probability and show how the concordance correla-

tion coefficient can be adapted for assessing agreement

between two estimates of the mean incremental net benefit

evaluated at a specified cost-effectiveness threshold. A

package to implement the routines described in the

remainder of the paper in [28] is available from https://

github.com/agaye/ceeComp.
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Difference between two estimates of the incremental

net benefit

Consider a trial in which paired data on treatment costs and

effects, denoted as D1 and D2, are available for N trial par-

ticipants randomized to one of two interventions, denoted as

A and B. Our illustrative example in the section ‘‘Example

application to the PiPS trial’’ highlights two potential data

sources, namely trial case report forms and data obtained

from a national patient electronic system. Denote A as con-

trol intervention and let bik be an estimate of the mean

incremental net benefit of intervention B relative to A from

the ith dataset Di ði ¼ 1; 2Þ at a specified cost-effectiveness

threshold k. Then a simple measure of discrepancy between

the two estimates of cost-effectiveness (in the form of the

incremental net benefit of intervention B relative to A) gen-

erated from two data sources is xk where

xk ¼ b2k � b1k: ð1Þ

The variance of xk (after dropping the ks to simplify the

notation) is given by

r2x ¼ r2b1se þ r2b2se � 2qb1se;b2se ; ð2Þ

where rb1se , rb2se represent standard error of the incremental

net benefit from datasets 1 and 2, respectively. Incremental

net benefits generated this way are likely to be correlated, as

the two datasets contain information from the same patients,

the parameter qb1se;b2se quantifies the covariance between the

two. The parameters x, b1, b2 and associated variance and

covariance terms in Eqs. (1) and (2) are unobserved, hence

will be replaced in practice with their sample counterparts x̂,

b̂1 and b̂2, respectively.We show inAppendicesA andB that

the variance and covariance terms on the right hand side of

Eq. (2) can be written in terms of the variance of costs and

effects and the covariance between the two within the

respective arms of a trial with parallel group design (as-

suming no treatment switching or cross-over effects com-

mon in cancer trials). Under the large sample assumption, an

approximate statistical test of the null hypothesis that there is

no difference between incremental net benefits generated

from the two data sources (i.e.,x ¼ 0) can be constructed by

referring an estimate Ẑ of the Z statistic to the standard

normal distribution where Ẑ is given by

Ẑ ¼ x̂
r̂x

: ð3Þ

Note that failure to reject the null hypothesis of no

agreement above does not imply evidence of agreement or

that the two incremental net benefits are equivalent. A

statistical test of equivalence if required can be constructed

by specifying an equivalence margin d followed by two

one-sided tests of the hypothesis that |x|\± d [38].

Probability of miscoverage

This section introduces the probability estimate of mis-

coverage as a statistic for assessing agreement between

two cost-effectiveness estimates. Miscoverage probabili-

ties have previously been used in the health economics

literature [27] to compare the performance of different

methods for estimating confidence intervals for the ICER.

However, unlike Polsky et al., we base our assessment on

the incremental net benefit rather than the ICER for the

reasons stated in the introduction. For any two data

sources that are available for the economic evaluation, we

first designate one data source as referent data and the

other as test data. From the referent dataset, we calculate

b̂ref ;k, the sample estimate of the underlying population

mean incremental net benefit bref ;k at cost-effectiveness

threshold k. Next, we sample with replacement several

times to generate S bootstrap replicates of the test data.

For each replicate dataset, we calculate a bootstrap esti-

mate of the incremental net benefit and the associated

variance given by Eq. (9) of Appendix A. Finally, we

obtain the probability of miscoverage by counting the

proportion of the S bootstrap replicates in which the

(95%) confidence intervals for the incremental net benefit

statistic does not contain the corresponding estimate from

the referent dataset.

Concordance correlation

Lin [18] introduced the concordance correlation coeffi-

cient, qc and used it to quantify agreement or repro-

ducibility of a clinical assay, test, or measuring instrument

compared to the current measure or a gold standard. In

doing so, Lin [18–20] defined perfect agreement between

two measurements as a 45� line passing through the origin

of the Cartesian (X, Y) plane so that deviations from this

line indicate evidence of disagreement. The concordance

correlation coefficient quantifies this deviation in terms of

the precision and accuracy of the new measure compared to

the gold standard. As a correlation coefficient, qc satisfies
the inequality �1� qc � 1 where qc ¼ 1 indicates perfect

agreement, qc ¼ 0 no agreement and qc ¼ �1 perfect

inverse agreement.

To adapt Lin’s method for our purpose, let

Dj1 ¼ Cj1;Ej1; tj
� �

;Dj2 ¼ Cj2;Ej2; tj
� �� �

denote again our

paired outcome information (comprising of treatment costs

Cjt and effects Ejt) for the jth patient (j ¼ 1; 2; . . .;N) in

treatment group tj ¼ A or B from a bivariate population

with mean incremental net monetary benefit ðb1; b2Þ and

variance ðr2b1 ; r
2
b2
Þ at specified cost-effectiveness threshold.

Following Lin [18], the degree of concordance between
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incremental net-benefits generated from the two data

sources can be quantified by the expected value of the

squared difference on the incremental net benefit scale:

E½ðD2 � D1Þ2� ¼ ðb2 � b1Þ2 þ r2b1 þ r2b2 � 2qb1b2 : ð4Þ

where rb1 and rb2 represent standard deviation of incre-

mental net benefit generated from the twodatasets andqb1b2 are
the covariance between the two. Lin [18] showed that Eq. (4)

can be written in terms of the Pearson correlation coefficient q
which he suggested provided ameasure of precision (i.e., ‘‘how

far each observation deviates from the best fitted line’’) and a

bias correction factorCb that measures accuracy (i.e., ‘‘how far

the best fitted line deviates from the 45� line’’):

qc ¼ qCb where Cb ¼
2rb1rb2

ðb2 � b1Þ2 þ r2b1 þ r2b2
:

when used to assess agreement between pairs of mea-

surements, an estimate q̂c of qc is obtained by replacing the

parameters in Eq. (4) with their sample estimates. Hence,

in our adaptation of Lin’s method, we define q̂c in terms of

the incremental net benefit generated from two data

sources:

q̂c ¼
2q̂b1;b2

ðb̂2 � b̂1Þ2 þ r̂2b1 þ r̂2b2
; ð5Þ

where b̂2 and b̂1 represent sample estimates of the incre-

mental net benefit from the respective datasets, r̂b1 and r̂b2
represent estimates of the corresponding standard deviation

and q̂b1;b2 estimate of the covariance between the two. Again

as shown inAppendicesA andB, the parameters on the right-

hand side of Eq. (5) can be written in terms of the arm-

specific estimates of the mean costs and effects given by

Eq. (6) and associated variance and covariance terms given

by Eqs. (9) and (16), respectively. Finally, to estimate a

confidence interval and carry out hypotheses tests, Lin [18]

suggested the Fisher Z transformation as a useful approxi-

mation to the standard normal distribution with mean

Zqc ¼
1

2
ln

1þ qc
1� qc

� �
;

and variance r2Zqc : An estimate Zq̂c and r2Zq̂c of Zqc and r2Zqc
can be obtained using bootstrapping before re-transforming

back to the original scale.

Statistical tests of the hypothesis that qc is greater than
an arbitrarily defined threshold value, qc0, can be con-

structed using the transformed parameters and one-sided

p values generated for a specified level of significance.

Concordance correlation coefficient thresholds often cited

in the literature as indicating acceptable levels of agree-

ment include qc0 [ 0:4 [4] and qc0 [ 0:65 [11] with

coefficients greater than 0.8 generally taken as good

evidence of agreement [11, 22]. Rather than define an

arbitrary threshold value, an alternative strategy suggested

by Lin [19] is to estimate qc0 through the expression qc0 ¼
Cb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � x

p
where x represents a pre-specified percentage

loss in precision that is acceptable for the particular mea-

sure or clinical scenario under investigation and q is again

the Pearson correlation coefficient. For example, x ¼ 0:05

for a 5% acceptable loss in precision. In our adaptation of

this approach, if we designate one dataset as the referent

data and another as the test dataset, then x represents the

percentage loss in precision in mean incremental net

monetary benefit generated from the test data that can be

considered acceptable compared with the corresponding

estimate obtained using the referent dataset. Statistical tests

of the hypothesis that qc [ qc0 can then be constructed and

one-sided p-values estimated.

Example application to the PiPS trial

Example data

TheProbiotic inPretermbabiesStudy (PiPS) is amulti-center,

double-blind, placebo-controlled randomized trial of probi-

otic administration in infants born between 23?0 and 30?6

weeks gestational age. The trial recruited 1300 infants within

48 h of birth from24hospitalswithin 60miles ofLondon over

a 37-month period from July 2010 onwards. Infants were

randomized to receive either the probiotic Bifidobacterium

breve BBG-001 or a matching placebo. Details of the trial

design and baseline characteristics of trial participants are

published elsewhere [7]. The main trial analyses and findings

have also been published [6]. The main trial economic eval-

uation has not yet been published, so a summary of the

methods used to conduct the evaluation is presented in Ap-

pendix C. For the purpose of illustrating the methodology

described in this paper, we restrict ourselves to 1258 of the

1300 infants who had complete data on treatment costs and

clinical outcomes of interest. Of these, 638 infants were in the

placebo group and 620 in the probiotic group. Three clinical

outcomes were considered in the trial: (1) any episode of

neonatal necrotizing enterocolitis (NEC) Bell stage 2 or 3 [2];

(2) any positive blood culture of an organism not recognized

as a skin commensal on a sample drawn more than 72 h after

birth and before 46 weeks postmenstrual age or discharge if

sooner (hereafter referred to as sepsis for brevity); and (3)

death before discharge from hospital. We restrict ourselves to

the sepsis outcome for the purpose of illustrating the

methodological framework described in this paper.

Data on PiPS trial participants were available from two

primary sources, the trial case report forms and the

National Neonatal Research Database (NNRD) (The

F. Achana et al.
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Neonatal Data Analysis Unit [34]. The PiPS trial case

report forms captured a comprehensive profile of resource

use by each infant, encompassing length of stay by inten-

sity of care, surgeries, investigations, procedures, transfers

and post-mortem examinations until final hospital dis-

charge or death (whichever was earliest). Resource inputs

were primarily valued based on data collated from sec-

ondary national tariff sets [8]. All costs were expressed in

pounds sterling and reflected values for the financial year

2012–13. The trial case report forms also captured infor-

mation on the clinical outcomes of interest. The NNRD has

been created through the collaborative efforts of neonatal

services across the UK to be a national resource. The

NNRD contains a defined set of data items (the Neonatal

Dataset) that have been extracted from the Badger.net

neonatal electronic patient record of all admissions to

National Health Service (NHS) neonatal units. Badger.net

is managed by Clevermed Ltd, an authorized NHS hosting

company. The Neonatal Dataset is an approved NHS

Information Standard (ISB1575) and contributing neonatal

units are known as the UK Neonatal Collaborative.

Our comparisons of cost-effectiveness outcomes were

based on four datasets that we created using information

from the two primary data sources: (1) the trial case report

forms as the sole source of information (hence forth

referred to as PiPS dataset); (2) the NNRD as the source of

information on resource inputs only with clinical outcomes

extracted from the PiPS case report forms (herein referred

to as the NNRD1 dataset); (3) the NNRD as a source of

resource use and clinical outcomes (herein referred to as

the NNRD2 dataset); and (4) a combined dataset created by

the selection of a preferred data source (by clinical experts)

for each data input.

Results

Table 1 presents descriptive summaries of the cost-effec-

tiveness estimates for the probiotic compared to placebo,

obtained from each of the four datasets described above.

Based on the data from the trial case report forms (PiPS

dataset), the proportion of infants with sepsis and the mean

total cost were 10.8% and £62,799, respectively, in the

probiotic group, compared with 11.3% and £62,284 in the

placebo group, generating a mean absolute incremental

effect of 0.50%, mean incremental costs of £515, and an

ICER of £107,613 per episode of sepsis averted. As stated

above, the trial case report forms also served as the primary

source of clinical outcome information for the NNRD1 and

the combined datasets, thus these two datasets differed

from the PiPS dataset only in terms of healthcare utilization

data and hence treatment costs. For these (NNRD1 and the

combined) datasets, the probiotic was associated with

slightly lower total healthcare costs than placebo, gener-

ating a mean cost saving of £367 in the NNRD1 dataset and

£342 in the combined datasets. Thus, on average, the

probiotic dominated placebo in health economic terms in

these two datasets. Finally, the NNRD2 dataset indicated

that the probiotic is less effective and less costly, on

average, than placebo, generating a mean ICER of

£111,348 per episode of sepsis averted for the probiotic

compared with placebo. Overall, although the PiPS and

NNRD2 datasets generated mean ICERs that are very

similar in magnitude, they have different interpretations

because the mean ICER for the PiPS dataset occupies the

north-east quadrant of the cost-effectiveness plane, sug-

gesting that the probiotic is more costly and more effective

than placebo, whereas the mean ICER for the NND2

Table 1 Cost-effectiveness results from the PiPS trial datasets

Dataseta Placebo arm Probiotic arm Cost-effectiveness

Costs (£) Outcomeb Costs (£) Outcomeb Incremental costs (95%

confidence interval)c
Incremental effects (95%

confidence interval)d
ICER

PiPS 62,284 (1876) 0.113 (0.013) 62,799 (1817) 0.108 (0.013) 515 (-4603, 5633) 0.005 (-0.03, 0.039) 107,613

NNRD1 60,927 (1805) 0.113 (0.013) 60,560 (1571) 0.108 (0.013) -367 (-5058, 4323) 0.005 (-0.03, 0.039) -76,662

NNRD2 60,927 (1805) 0.058 (0.009) 60,560 (1571) 0.061 (0.010) -367 (-5058, 4323) -0.003 (-0.029, 0.023) 111,348

Combined 60,796 (1799) 0.113 (0.013) 60,454 (1566) 0.108 (0.013) -342 (-5016, 4332) 0.005 (-0.03, 0.039) -71,422

PiPS dataset trial case report forms as the sole source of information, NNRD1 dataset NNRD as the source of information on resource inputs only

with clinical outcomes extracted from the PiPS case report forms, NNRD2 dataset NNRD as a source of resource use and clinical outcomes,

Combined dataset combined dataset created by the selection of a preferred data source (by clinical experts) for each data input
a Datasets
b Outcome = proportion of sepsis
c Incremental costs (£) is defined as mean costs in probiotic arm minus mean costs in placebo arm
d Incremental effects is proportion of sepsis avoided, hence effectiveness differential is reversed (i.e., mean effect in placebo arm minus mean

effect in the probiotic arm) because the outcome is an adverse event

A methodological framework for assessing agreement between cost-effectiveness outcomes…

123



dataset occupies the south-west quadrant where the probi-

otic is less costly but also less effective (Fig. 1). The mean

ICERs from three of the four datasets fell in a different

quadrant of the cost-effectiveness plane, but a large pro-

portion of the simulated ICERs from each dataset fell in all

four quadrants, reflecting the considerable uncertainty

surrounding the mean ICERs. Figure 1 illustrates the point

made in the introduction that the ICER may not be an

appropriate statistic for assessing agreement between esti-

mates of cost-effectiveness generated from alternative data

sources. Cost-effectiveness acceptability curves based on

three of the four datasets indicates the probiotic is the most

cost-effective strategy for sepsis prevention in pre-term

infants with probability of 0.6 but only at considerably high

cost-effectiveness thresholds (upwards of £80,000 per

sepsis avoided) whilst the probiotic is dominated by pla-

cebo in the NNRD2 dataset (Fig. 2). Overall, the results

suggest the probiotic is not cost-effective unless policy

makers are willing to spend large amounts of money to

prevent infants from developing sepsis.

Table 2 presents the agreement statistics (mean differ-

ence, probability estimates of miscoverage and

concordance correlation coefficients) between estimates of

the mean incremental net benefit from combinations of the

four alternative datasets using a cost-effectiveness thresh-

old of £30,000 per episode of sepsis avoided. At this

threshold, the probability estimate of miscoverage was very

small, ranging from 3.9% when the combined dataset acted

as referent source and the NNRD1 acted as the test data to

6.0% when the PiPS dataset acted as referent and the

NNRD2 as the test data. The corresponding p values ran-

ged from 0.387 for the comparison between the PiPS ver-

sus NNRD1 datasets to 0.634 for the comparison between

the PiPS versus NNRD2 datasets. These results thus pro-

vide no evidence to suggest that the incremental net benefit

estimated using one dataset is significantly different from

the incremental net benefit estimated from the other data-

sets at a cost-effectiveness threshold of £30,000 per epi-

sode of sepsis avoided.

Agreement between mean incremental net benefit

statistics from alternative datasets as measured by the

concordance correlation coefficient ranged from a corre-

lation coefficient of 0.882 (95% CI 0.870–0.893) for the

comparison between the PiPS and the NNRD1 datasets to a

Fig. 1 PIPS trial ICERs from the four datasets comparing probiotic

versus placebo for prevention of sepsis in newborn infants displayed

on the cost-effectiveness plane. NNRD1 dataset acted as source of

resource use information only. NNRD2 acted as source of both

resource use and clinical outcome information
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coefficient of 1 indicating perfect correlation for the

comparison between the combined and the NNRD1 data-

sets at the £30,000 per episode of sepsis avoided threshold.

These correlation coefficients are well above the com-

monly cited threshold of 0.4 commonly taken as indicating

evidence of good agreement [4]. The alternative strategy is

to define a threshold based on percentage loss in precision

that is acceptable for the clinical issue being investigated.

Estimates of qc0 based on a 5% loss in precision criterion

ranged from 0.856 for the PiPS versus NNRD2 comparison

to 0.975 for the combined versus NNRD1 comparison.

These values of qc0 were significantly lower than the lower

confidence limit for qc (p\ 0.0001) in each pairwise

comparison (Table 2), indicating stronger evidence of

agreement between datasets.

Estimates of the agreement statistics at cost-effective-

ness thresholds between £0 and £500,000 per episode of

sepsis avoided were also generated and can be read off the

plots in Fig. 3. The p values remained relatively constant

across different values of k for pairwise comparisons

between the PiPS, NNRD1, NNRD2, and the combined

datasets. Although no attempt was made to correct for

multiple testing at different thresholds, this can easily be

achieved by for example, defining a statistical significance

at the 1% level instead of the 5% level [36]. Overall, across

cost-effectiveness thresholds ranging from £0 to £500,000

per sepsis avoided and for all pairwise comparisons

between datasets, differences between mean incremental

net benefits were not statistically significant (p values

C0.4), the probability estimates of miscoverage fell within

the interval (0.025–0.075) and concordance correlation

coefficient were greater than 0.5.

Discussion

In this paper, we have shown how three commonly used

metrics (namely difference in mean, miscoverage proba-

bility, and the concordance correlation coefficient) can be

adapted and used to assess agreement between the final

economic endpoints generated from alternative sources of

data on costs and effects within the context of trial-based

Fig. 2 Cost-effectiveness acceptability curves indicating probability

at which the probiotic is cost-effective compared with placebo for a

range of cost-effectiveness or willingness-to-pay thresholds

Table 2 Statistics comparing the agreement between cost-effectiveness estimates from the PiPS trial datasets

Comparison

quadrant

Agreement statistics

Difference in means Probability of

miscoverage�
Concordance correlation

Dataset 1 Dataset

2

Mean INB

(std. err) from

dataset 1

Mean INB

(std. err) from

dataset 2

MD (SE) p value� qc (95% CI) qc0
a p value��

PiPS NNRD1 -372 (2808) 511 (2596) 882 (1021) 0.387 0.060 0.882 (0.870, 0.893) 0.856 \0.001

PiPS NNRD2 -372 (2808) 268 (2520) 640 (1129) 0.571 0.051 0.885 (0.874, 0.895) 0.858 \0.001

NNRD1 NNRD2 511 (2596) 268 (2520) -243 (454) 0.593 0.041 0.980 (0.977, 0.982) 0.954 \0.001

Combined PiPS 486 (2588) -372 (2808) -857 (1021) 0.401 0.049 0.884 (0.872, 0.895) 0.858 \0.001

Combined NNRD1 486 (2588) 511 (2596) 25 (44) 0.565 0.046 1.000 (1.000, 1.000) 0.974 \0.001

Combined NNRD2 486 (2588) 268 (2520) -217 (457) 0.634 0.039 0.980 (0.978, 0.983) 0.955 \0.001

INB incremental net benefit evaluated at willingness-to-pay threshold of £30,000 per adverse event averted, Std. err. Standard error of the

estimate, MD difference between mean INB from dataset 1 and mean INB from dataset 2, qc (95% CI) concordance correlation coefficient (95%

confidence intervals) between the incremental net benefits at threshold of £30,000 per adverse event averted
� Two-sided p value at 5% significance level
� The first dataset in each pairwise comparison is designated as referent when estimating the probability of miscoverage

p value�� One-sided test of the hypothesis that qc [qc0 where qc0 is the least acceptable concordance correlation coefficient assuming 5% (qc0
a).

A p value greater than 0.025 suggests significant evidence of disagreement at the at the 5% significance level
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economic evaluations. Agreement statistics are obtained

for a range of cost-effectiveness thresholds and plotted on

simple graphs to ease comparability. Application of the

method to data from the PiPS trial datasets revealed no

evidence of disagreement, low probability levels of mis-

coverage, and high concordance correlation between esti-

mates of incremental net monetary benefit generated using

data from trial case report forms and data from the NNRD

dataset.

Assessment of agreement in the health economics lit-

erature [4, 21, 23] have thus far focused on comparisons

between alternative sources of resource use and cost vari-

ables, primarily because healthcare utilization data can and

has often been collected from a multitude of sources such

as patient self-reports, medical records, and trial case report

forms. Data on clinical endpoints have, however, tended to

come from a single source, often the trial case report forms.

With recent advances in data management and information

sciences, routine datasets are increasingly being compiled

that have potential to provide patient-level resource uti-

lization and clinical outcomes data for trial-based eco-

nomic evaluations. As these potentially rich sources of data

become available for clinical research, methods for

assessing the level of agreement between final cost-effec-

tiveness outcomes (of interest in the trial-based economic

evaluations) generated using alternate sources of data will

be of interest to analysts working on health economic

evaluations and health technology assessments. We have

shown how such assessments can be carried out in practice

using the PiPS trial data. Our preliminary analyses show

the NNRD database could potentially serve as a reliable

source of data on treatment costs and effects for future

trial-based economic evaluations of neonatal interventions.

Application to other trial-based economic evaluations

where the NNRD has been used as a source of data would

allow the potential of this resource to be explored for trial-

based economic evaluations.

The methodology outlined in this paper is based on the

incremental monetary net benefit statistic as the final eco-

nomic endpoint of interest in the economic evaluations.

This enabled the joint endpoints of clinical outcome and

cost to be transformed to a univariate scale whilst

accounting for the correlations between patient-level costs

and effects between datasets. The transformation also

allows for assessment of agreement to be conducted when

costs and outcomes are measured on different scales (for

example where cost is a continuous variable and the clin-

ical outcome is binary as is the case in our illustrative

example). Rather than transforming costs and health out-

comes to the same scale, an alternative and potentially

Fig. 3 Two-sided p values, probability estimates of miscoverage and

concordance correlation coefficients for comparing the agreement

between cost-effectiveness estimates from the PiPS, NNRD, and

combined data sources. NNRD1 dataset acted as source of resource

use information only. NNRD2 acted as source of both resource use

and clinical outcome information
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more attractive strategy would be to assess the agreement

between observed resource use and clinical outcome vari-

ables when multiple sources of healthcare utilization and

clinical outcome data are available. This is similar to

assessment of agreement between measurements of a

multivariate response such as blood pressure measurements

with two pressure readings (diastolic and diastolic), and

repeated measurements where outcomes are measured over

time. Methods have been proposed in the literature

extending the approach by Lin [18] to assessment of

agreement of more complex data structures such as repe-

ated measurement problems and multivariate response

variables measured on the continues scale [5, 14, 16, 17].

These methods can, in principle, be adapted for assessment

of agreement between two sources of data on treatment

costs and effects. We have not however done so in our

study because whilst healthcare costs are measured on the

continuous scale, the clinical endpoint of interest in the

PiPS trial example that serves to motivate our approach is a

binary outcome (i.e., whether or not an infant avoids an

episode of sepsis). It is not immediately obvious how to

adapt these multivariate techniques for assessing agree-

ment between outcomes measured on different scales.

Further methodological work exploring the feasibility of

assessing agreement involving multivariate mixed out-

comes where the outcomes measured are of different data

types and measured on different scales would present a

useful advancement of the methodology presented here.

Our methodological framework assumes that the cost-

effectiveness threshold is not kinked despite evidence from

O’Brien et al. [25] that a kinked threshold better reflects

asymmetrical individual preferences found in empirical

studies of consumer’s willingness to pay for health chan-

ges, which would in turn justify different decision rules in

the north-east and south-west quadrants of the cost-effec-

tiveness plane [10]. Further research is required to assess

how the methodological framework presented here might

be extended in the presence of a kinked cost-effectiveness

threshold.

Finally, how might the approach outlined above be used

in practice? Our goal in this paper is to develop a

methodology for assessing the level of agreement between

the final economic endpoints of interest in trial-based

economic evaluations. The method should not be applied

directly to economic evaluations based on observational

data or alongside other non-randomized study designs as

the results of such analyses could be biased by the lack of

randomization. This can propagate into biased estimates of

agreement. Further work is required to develop methods

that allow the level of agreement between cost-effective-

ness outcomes to be assessed whilst appropriately

accounting for potential imbalances in the distribution of

confounding factors between the treatments being com-

pared in the economic evaluation.
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Appendix A: variance of the incremental net
(monetary) benefit

To derive the variance of the difference between two

incremental net monetary benefits, we first derive the

variance of the net benefit in terms of variances and

covariances between costs and effects within trial arms. Let

CA, EA, rCA
,rEA

and qCAEA
represent population level

estimates of the mean costs, mean effects, standard devi-

ation of costs, standard deviation of effects and covariance

between costs and effects in intervention arm A (taken as

control). We have CB, EB, rCB
,rEB

and qCBEB
as the cor-

responding quantities in intervention arm B, respectively.

By definition of the incremental net benefit at a specified

cost-effectiveness threshold, k, we have

bk ¼ kDE � DC ¼ kðEB � EAÞ � ðCB � CAÞ: ð6Þ

Taken variances of both sides of Eq. (6), we have

varðbkÞ¼ k2varðDEÞþvarðDCÞ�2kcovðDE;DCÞ
¼ k2varðEB�EAÞþvarðCB�CAÞ�2k½ðEB�EAÞ;
ðCB�CAÞ�: ð7Þ

The variance terms on the right hand side of Eq. (7) are

given by varðEB � EAÞ ¼ r2EB
þ r2EA

and varðCB � CAÞ ¼
r2CB

þ r2CA
, and the covariance term by

cov[ðEB�EAÞ; ðCB�CAÞ� ¼ cov(EB;CBÞ� cov(EB;CAÞ
� cov(EA;CBÞþ cov(EA;CAÞ

¼ cov(EB;CBÞþ cov(EA;CAÞ
¼ qEACA

þqEBCB
:

ð8Þ
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The two middle terms on the right hand side of the first

line of Eq. (8) are zero because treatment arms in trials

with a parallel-group design (i.e., no treatment switching or

cross-over effects) are independent. Substituting the

expressions for the variance and covariance terms derived

in Eq. (8) into Eq. (7) gives the variance of the incremental

net benefit in terms of the arm-specific variances and

covariances between costs and effects:

varðbkÞ ¼ k2ðr2EB
þ r2EA

Þ þ ðr2CB
þ r2CA

Þ � 2kðqEACA

þ qEBCB
Þ: ð9Þ

Appendix B: Covariance between two incremental
net (monetary) benefits

The variance of the difference between two incremental net

benefits is derived by taking variances of both sides of the

expression xk ¼ b2k � b1k given by Eq. (1):

varðxkÞ ¼ varðb1kÞ þ varðb2kÞ � 2covðb1k; b2kÞ: ð10Þ

The variance terms on the right-hand side of Eq. (10)

are given by Eq. (9) for the ith dataset (i = 1, 2), so all we

need is an expression for the covariance term covðb1k; b2kÞ.
Now from the definition of the incremental net benefit (6),

we have

cov(b1k; b2kÞ ¼ cov½ðkDE1 � DC1Þ; ðkDE2 � DC2Þ�
¼ cov(kDE1; kDE2Þ � cov(kDE1;DC2Þ
� cov(kDE2;DC1Þ þ cov(DC1;DC2Þ:

ð11Þ

The first term on the right-hand side of Eq. (11) is

cov kDE1; kDE2ð Þ ¼ cov kðE1B � E1AÞ; kðE2B � E2AÞ½ �
¼ k2ðcov(E1B;E2BÞ � cov(E1B;E2AÞ
¼ k2ðcov(E1B;E2BÞ þ cov(E1A;E2AÞÞ
¼ k2ðqE1AE2A

þ qE1BE2B
Þ:

ð12Þ

The remaining terms on the right-hand side of Eq. (11)

can be derived in a similar manner:

cov(kDE1;DC2Þ ¼ cov kðE1B � E1AÞ; ðC2B � C2AÞ½ �
¼ cov(kE1B;C2BÞ � cov(kE1B;C2AÞ
� cov(kE1A;C2BÞ þ cov(kE1A;C2AÞ

¼ cov(kE1B;C2BÞ þ cov(kE1A;C2AÞ
¼ kðqE1AC2A

þ qE1BC2B
Þ:

ð13Þ
covðkDE2;DC1Þ ¼ kðqE2AC1A

þ qE2BC1B
Þ; ð14Þ

cov(DC2;DC1Þ ¼ qC2AC1A
þ qC2BC1B

: ð15Þ

Substituting the results of Eqs. (12)–(15) into Eq. (11)

gives Eq. (16) as the covariance between two incremental

net (monetary) benefits evaluated at a cost-effectiveness

threshold, k:

cov(b1k; b2kÞ ¼ k2ðqE1AE2A
þ qE1BE2B

Þ � kðqE1AC2A

þ qE1BC2B
Þ � kðqE2AC1A

þ qE2BC1B
Þ

þ ðqC2AC1A
þ qC2BC1B

Þ: ð16Þ

When carrying out the analysis in practice, all parame-

ters in Eqs. (6)–(16) are replaced with their sample coun-

terparts ĈA, ÊA, r̂CA
,r̂EA

and q̂CA;EA
in arm A and ĈB, ÊA,

r̂CB
,r̂EB

and q̂CB;EB
in arm B. The square of the standard

error of the incremental net benefits in equation (2) are

obtained by dividing the arm-specific variance and

covariance terms on the right hand side of Eqs. (6)–(16) by

NA and NB, the number of individuals in treatment arms

A and B respectively.

Appendix C: methods of the PiPS trial economic
evaluation

Study population

Probiotics in Preterm Infants Study (PIPS) trial

Probiotics in Preterm Infants Study (PIPS) was a multi-

center blinded randomized placebo-controlled trial

designed to test the effectiveness of the probiotic Bifi-

dobacterium breve BBG-001 to reduce NEC, late-onset

sepsis, and death in preterm infants. Infants born between

23 weeks and 0 days and 30 weeks and 6 days of gesta-

tion with written parental consent were eligible for

recruitment.

The National Neonatal Research Database (NNRD)

The National Neonatal Research Database (NNRD) has

been created through the collaborative efforts of

neonatal services across the country to be a national

resource. The NNRD contains a defined set of data items

(the Neonatal Dataset) that have been extracted from the

Badger.net neonatal electronic health record of all

admissions to NHS neonatal units. Badger.net is man-

aged by Clevermed Ltd, an authorized NHS hosting

company. The Neonatal Dataset is an approved NHS

Information Standard (ISB1575). Contributing neonatal

units are known as the UK Neonatal Collaborative.

Variables that allowed for the creation of comparable

resource use Items (directly available or derivable) were

extracted from the NNRD
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Combined dataset

An additional dataset was created by selecting a variable

from either PIPS or NNRD that represented a resource use

item more accurately.

For the purposes of our study, only those infants were

analyzed for whom there was data available from both the

PIPS trial and the NNRD.

Type of economic evaluation, study perspective,

and time horizon

The economic evaluation took the form of a cost-effec-

tiveness analysis in which we estimated the incremental

costs (DC) and incremental effects (DE) attributable to

probiotic (B breve BBG) in preterm infants, with reference

to a placebo, and expressed each in terms of an incremental

cost-effectiveness ratio (ICER; DC/DE). Estimates of cost-

effectiveness were made for the three primary clinical out-

comes (any episode of NEC, any case of Sepsis, death

before discharge from hospital), and for one secondary

outcome, which was a composite of the three primary out-

comes. The economic evaluation was conducted from a

health system perspective and consequently only direct costs

to the NHS were included [24]. The time horizon of the

study was birth to discharge or death, whichever was earlier.

Measurement of resource use and costs

Relevant resource items were integrated into the trial data

collection instruments described previously. The neonatal

and maternal data collection forms captured a compre-

hensive profile of resource use by each infant, encom-

passing length of stay by intensity of care, surgeries,

investigations, procedures, transfers, and post-mortem

examinations until final hospital discharge or death

(whichever was earliest). Variables that allowed for com-

parison of selected resource use items in the PIPS data

directly or through derivation were extracted from the

NNRD. Resource inputs were valued based on data col-

lated from secondary national tariff sets [8, 9]. All costs

were expressed in pounds sterling and reflected values for

the financial year 2012–13.

The total length of stay (total inpatient hospital days)

was computed as the total number of hospital days until

first discharge to home or death. Postnatal costs for the

mothers were based on the method of delivery available in

the data source and costs assigned using data from the NHS

Reference Costs trusts schedule 2012/13 [9]. Information

was available on time spent in the neonatal unit by level of

care (normal, transitional, special, high dependency or

intensive), by varying level of detail from both data sour-

ces. The cost of neonatal care was calculated for each

infant by multiplying the length of stay in normal care

(where available), transitional care (where available),

special care, high dependency care, or intensive care by the

per diem cost of the respective level of care using data

from the NHS Reference Costs trusts schedule 2012/13 [9].

The costs of surgeries and procedures were calculated by

assignment of surgical procedures to relevant Healthcare

Resource Group (HRG) codes and application of unit costs

from national tariffs [9]. Transfers were recorded whenever

an infant was transported between specialist hospitals for

neonatal critical care, and were valued using costs from the

NHS Reference Costs trusts schedule 2010/11 [9]. Post-

mortem costs were based on data from secondary sources

[30]. Non-routine investigations excluded from these per

diem costs were valued using a combination of primary and

secondary costs. Where these costs were not available from

national tariffs, clinicians were asked to identify the staff

and material inputs required for these investigations. Staff

time was valued using the Unit Costs of Health and Social

Care tariffs [8].

Cost-effectiveness analytical methods

Neonatal characteristics and resource use items were

summarized by trial arm (placebo or B. breve BBG). Dif-

ferences between groups were analyzed using t tests for

continuous variables and v2 test for categorical variables.

Mean (standard error (SE) costs by cost category and mean

(SE) total costs were estimated by trial arm and compar-

isons were carried out using Student’s t tests.

Cost effectiveness was expressed as incremental cost per

(1) adverse perinatal outcome avoided. Nonparametric

bootstrapping, involving 1000 bias-corrected replications

of each of the incremental cost effectiveness ratios, was

used to calculate uncertainty around all cost-effectiveness

estimates [35]. This was represented on four quadrant cost-

effectiveness planes. Decision uncertainty was addressed

by estimating net benefit statistics and constructing cost-

effectiveness acceptability curves across cost-effectiveness

threshold values of between £0 and £70,000 for the health

outcomes of interest. A series of sub-group analyses

repeated all analyses by selected sub-groups for the pri-

mary and secondary cost-effectiveness outcomes. All

analyses were estimated using Stata version 12 [32] and R

version 2.01 [28].
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