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Abstract

We propose a new tracking framework with an attentional
mechanism that chooses a subset of the associated corre-
lation filters for increased robustness and computational
efficiency. The subset of filters is adaptively selected by a
deep attentional network according to the dynamic proper-
ties of the tracking target. Our contributions are manifold,
and are summarised as follows: (i) Introducing the Atten-
tional Correlation Filter Network which allows adaptive
tracking of dynamic targets. (ii) Utilising an attentional net-
work which shifts the attention to the best candidate modules,
as well as predicting the estimated accuracy of currently in-
active modules. (iii) Enlarging the variety of correlation
filters which cover target drift, blurriness, occlusion, scale
changes, and flexible aspect ratio. (iv) Validating the robust-
ness and efficiency of the attentional mechanism for visual
tracking through a number of experiments. Our method
achieves similar performance to non real-time trackers, and
state-of-the-art performance amongst real-time trackers.

1. Introduction

Humans rely on various cues when observing and tracking
objects, and the selection of attentional cues highly depends
on knowledge-based expectation according to the dynamics
of the current scene [13, 14, 28]. Similarly, in order to infer
the accurate location of the target object, a tracker needs
to take changes of several appearance (illumination change,
blurriness, occlusion) and dynamic (expanding, shrinking,
aspect ratio change) properties into account. Although visual
tracking research has achieved remarkable advances in the
past decades [21–23,32,38–40], and thanks to deep learning
especially in the recent years [6,8,29,35,36,41], most meth-
ods employ only a subset of these properties, or are too slow
to perform in real-time.

The deep learning based approaches can be divided into
two large groups. Firstly, online deep learning based track-
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Figure 1. Attentional Mechanism for Visual Tracking. The
tracking results of the proposed framework (red) are shown along
with the ground truth (cyan). The circles represent the attention at
that time, where one region represents one tracking module. When
the target shrinks as in the first row, the attention is on modules
with scale-down changes in the left-top region of the circles. If
the target suffers from shape deformation as in the second row,
modules with colour features are chosen because they are robust to
shape deformation.

ers [29, 33, 35, 36, 41] which require frequent fine-tuning of
the network to learn the appearance of the target. These ap-
proaches show high robustness and accuracy, but are too slow
to be applied in real-world settings. Secondly, correlation
filter based trackers [6,8,26,30] utilising deep convolutional
features have also shown state-of-the-art performance. Each
correlation filter distinguishes the target from nearby outliers
in the Fourier domain, which leads to high robustness even
with small computational time. However, in order to cover
more features and dynamics, more diverse correlation filters
need to be added, which slows the overall tracker.

As previous deep-learning based trackers focus on the
changes in the appearance properties of the target, only lim-
ited dynamic properties can be considered. Furthermore,
updating the entire network for online deep learning based
trackers is computationally demanding, although the deep
network is only sparsely activated at any time [29, 33, 35, 36,
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41]. Similarly, for correlation filter based trackers, only some
of the convolutional features are useful at a time [6,8,26,30].
Therefore, by introducing an adaptive selection of attentional
properties, additional dynamic properties can be considered
for increased accuracy and robustness while keeping the
computational time constant.

In this paper, we propose an attentional mechanism to
adaptively select the best fitting subset of all available corre-
lation filters, as shown in Fig. 1. This allows increasing the
number of overall filters while simultaneously keeping the
computational burden low. Furthermore, the robustness of
the tracker increases due to the exploitation of previous expe-
rience, which allows concentrating on the expected appear-
ance and dynamic changes and ignoring irrelevant properties
of a scene. The importance of attentional mechanisms of the
human visual system is highlighted by recent trends in neu-
roscience research [13,14,28], as well as by theoretical work
on the computational aspects of visual attention [12, 34].
Similarly, we find that our framework using the attentional
mechanism outperforms a network which utilises all module
trackers while being significantly faster.

2. Related Research
Deep learning based trackers: Recent works based

on online deep learning trackers have shown high perfor-
mance [29, 33, 35, 36]. Wang et al. [35] proposed a frame-
work which fuses shallow convolutional layers with deep
convolutional layers to simultaneously consider detailed and
contextual information of the target. Nam and Han [29] intro-
duced a multi-domain convolutional neural network which
determines the target location from a large set of candidate
patches. Tao et al. [33] utilised a Siamese network to es-
timate the similarities between the previous target and the
candidate patches. Wang et al. [36] proposed a sequential
training method of convolutional neural networks for visual
tracking, which utilises an ensemble strategy to avoid over-
fitting the network. However, because these trackers learn
the appearance of the target, the networks require frequent
fine-tuning which is slow and prohibits real-time tracking.

Correlation filter based trackers: Correlation filter
based approaches have recently become increasingly pop-
ular due to the rapid speed of correlation filter calcula-
tions [2,3,5,7,16,18,27]. Henriques et al. [16] improved the
performance of correlation filter based trackers by extend-
ing them to multi-channel inputs and kernel based training.
Danelljan et al. [5] developed a correlation filter covering
scale changes of the target, and Ma et al. [27] and Hong et
al. [18] used the correlation filter as a short-term tracker
with an additional long-term memory system. Choi et al. [3]
proposed an integrated tracker with various correlation filters
weighted by a spatially attentional weight map. Danelljan et
al. [7] developed a regularised correlation filter which can ex-
tend the training region for the correlation filter by applying

spatially regularised weights to suppress the background.
Deep learning + correlation filter trackers: Correla-

tion filter based trackers show state-of-the-art performance
when rich features such as deep convolution features are
utilised [6, 8, 26, 30]. Danelljan et al. [6] extended the reg-
ularised correlation filter to use deep convolution features.
Danelljan et al. [8] also proposed a novel correlation filter to
find the target position in the continuous domain, while in-
corporating features of various resolutions. Their framework
showed state-of-the-art performance with deep convolution
features. Ma et al. [30] estimated the position of the target
by fusing the response maps obtained from the convolution
features of various resolutions in a coarse-to-fine scheme.
Qi et al. [26] tracked the target by utilising an adaptive
hedge algorithm applied to the response maps from deep
convolution features. However, even though each correla-
tion filter works fast, deep convolutional features have too
many dimensions to be handled in real-time. Furthermore,
to recognise scale changes of the target, correlation filter
based algorithms need to train scale-wise filters, or apply
the same filter repeatedly. As this increases the computation
time significantly with deep convolutional features, several
approaches do not consider scale changes, including the
methods proposed by Ma et al. [30] and Qi et al. [26].

Adaptive module selection frameworks: In the ac-
tion recognition area, Spatio-Temporal Attention REloca-
tion (STARE) [25] provides an information-theoretic ap-
proach for attending the activity with the highest uncertainty
amongst multiple activities. However, STARE determined
the attention following a predefined strategy. In the robotics
area, Hierarchical, Attentive, Multiple Models for Execution
and Recognition (HAMMER) [9–11] is selecting modules
based on their prediction error. A method to predict the
performance of thousands of different robotic behaviours
based on a pre-computed performance map was presented
in [4]. In our framework, we focus on enhancing the ability
to adapt to dynamic changes.

3. Methodology
The overall scheme of the proposed Attentional Corre-

lation Filter Network (ACFN) is depicted in Fig. 2. ACFN
consists of two networks: the correlation filter network and
the attention network. The correlation filter network has a
lot of tracking modules, which estimate the validation scores
as their precisions. In the attention network, the prediction
sub-network predicts the validation scores of all modules for
the current frame, and the selection sub-network selects the
active modules based on the predicted scores. The active
module with the highest estimated validation score, the best
module, is used to determine the position and scale of the
target. Finally, the estimated validation scores of the active
modules are used along with the predicted validation scores
of the inactive modules to generate the final validation scores
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Figure 2. Proposed Algorithm Scheme. The proposed framework consists of the correlation filter network and the attention network.
According to the results from the attention network obtained by the previous validation scores, an adaptive subset of tracking modules in the
correlation filter network is operated. The target is determined based on the tracking module with the best validation score among the subset,
and the tracking modules are updated accordingly.

used for the next frames. Every tracking module is updated
according to the tracking result of the best module. As the
attention network learns the general expectation of dynamic
targets rather than scene or target specific properties, it can
be pre-trained and does not need updating while tracking.

3.1. Correlation Filter Network

The correlation filter network incorporates a large variety
of tracking modules, each covering a specific appearance or
dynamic change, including changes due to blurring, struc-
tural deformation, scale change, and occlusion. The atten-
tional feature-based correlation filter (AtCF) [3] is utilised
as tracking module, which is composed of the attentional
weight map (AWM) and the Kernelized Correlation Filter
(KCF) [16]. As only a subset of all tracking modules is
active at a time, we can increase the total number of modules
which allows us to consider novel property types: variable
aspect ratios and the delayed update for drifting targets.

3.1.1 Tracking module types

The tracking modules are based on a combination of four
different types of target properties and dynamics: two fea-
ture types, two kernel types, thirteen relative scale changes,
and five steps of the delayed update. Thus, the correlation
filter network contains 260 (2×2×13×5) different tracking
modules in total.

Feature types: We utilise two feature types: a colour
feature and a histogram of oriented gradients (HOG) feature.
We discretise the tracking box into a grid with cell size Ng×
Ng. For colour images, we build a 6-dimensional colour

feature vector by averaging the R, G, B and L, a, b values in
the RGB and Lab space respectively. For grey images, we
average the intensity and Laplacian values along the x and
y-direction as a 3-dimensional colour feature vector. The
HOG feature of a cell is extracted with Nh dimensions.

Kernel types: As the correlation filters of the tracking
modules, KCF [16] is used. It allows varying the kernel type,
and we utilise a Gaussian kernel and a polynomial kernel.

Relative scale changes: In order to handle shape defor-
mations as well as changes in the viewing directions, we
use flexible aspect ratios. The target scale is changed from
the previous target size in four steps (±1 cell and ±2 cells)
along the x-axis, along the y-axis, and along both axes si-
multaneously, which leads to 13 possible variations of scale
including the static case.

Delayed update: To handle target drift, partial occlu-
sions, and tiny scale changes (too small to be detected in a
frame-to-frame basis), we introduce tracking modules with
delayed updates. For these modules, the module update is
delayed such that the tracking module has access to up to
four previous frames, i.e. before the drift / occlusion / scale
change occurred.

3.1.2 Tracking module

Feature map extraction: The region of interest (ROI) of
each tracking module is centred at the previous target’s loca-
tion. To cover nearby areas, the size of the ROI is β times
the previous target’s size. For tracking modules with scale
changes, we normalise the ROI’s image size into the initial
ROI’s size to conserve the correlation filter’s size (see Fig. 2).
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From the resized ROI, the feature map with size W ×H is
obtained by the specific feature type of the tracking module.

Attentional weight map estimation: The attentional
weight map (AWM) W ∈ RW×H is the weighted sum of
the target confidence regression map Ws and the centre bias
map Ww as obtained in [3]. However, to estimate Wt at
time t we weight Wt

s and Ww differently:

Wt(p) = λsWw(p)W
t
s(p) + (1− λs)Ww(p), (1)

where p = (p, q) with p ∈ {1, ...,W} and q ∈ {1, ...,H}.
Contrary to [3], Wt

s is weighted by Ww in the first term
to give more weight to features in the centre, which results
in higher performance if Wt

s is noisy. As [3] estimated the
weight factor λs dynamically from the previous frames, the
tracker shows low robustness for the abrupt changes of the
target appearance. Thus, we fix λs to provide a stable weight
to the target confidence regression map.

Target position adjustment: The response map Rt ∈
RW×H at time t is obtained by applying the associated cor-
relation filter to the feature map weighted by the AWM Wt.
The position of the target is quantised due to the grid of
the feature map with cell size Ng ×Ng. This can lead to a
critical drift problem when the cell size increases due to an
increased target size. Thus, we find the target position p̂t

within the ROI by interpolating the response values near the
peak position p′t with interpolation range Np as follows:

p̂t = p′t +

Np∑
i=−Np

Np∑
j=−Np

(i, j)Rt
(
p′ + (i, j)

)
. (2)

Using the interpolated position within the ROI, the position
of the target on the image is estimated by

(xt, yt) = (xt−1, yt−1) + bNg × p̂tc. (3)

Validation:
The precision of the tracking module is estimated by the

validation score. Previous correlation filter-based trackers [5,
18] determine the scale change by comparing the peak values
of the correlation filter response maps obtained with various
scale changes. However, Fig. 3(a) shows that this measure is
not informative enough in the proposed network due to the
significantly varying intensity ranges of the response map
according to the various characteristics of the correlation
filters (feature type, kernel).

We thus select the filter with the least number of noisy
peaks as it most likely represents the target as shown in
Fig. 3(b). Based on this intuition, our novel validation score
Qt

o is estimated by the difference between the response map
Rt and the ideal response map Rt

o:

Qt
o = exp(−‖Rt −Rt

o‖22), (4)

where Rt
o=G

(
p′t, σ2

G

)
W×H is a two-dimensional Gaussian

window with size W ×H centred at p′t, and variance σ2
G.

By 𝐐𝑡

By peak

𝑄𝑜
𝑡

(a) Reliability of validation scores

𝑄𝑜
𝑡

𝑄𝑜
𝑡

(b) Validation score estimation

Figure 3. Validation Score Estimation. (a) Comparison of the
mean square distance errors on the positions of the tracking modules
with respect to the order of the tracking modules based on the peak
values of the correlation filter response map and the proposed
validation scores. Contrary to the peak values, the order obtained
by the new estimation method shows high correlation with the
distance errors. (b) New estimation method for the validation score,
which shows better reliability than using peak values.

3.1.3 Tracking module update

Out of the 260 tracking modules, we only update four ba-
sic tracking modules; one per feature type and kernel type.
Modules with scale changes can share the correlation filter
with the basic module without scale change, as the ROI of
the scaled modules is resized to be the same size as the basic
tracking module’s ROI. Modules with the delayed update
can re-use the correlation filter of the previous frame(s). In
case a module with the delayed update is best performing,
the basic tracking modules with the same delayed update
are used as the update source. The basic tracking modules
are updated by the feature map weighted by the attentional
weight map, as detailed in [3] and [16].

3.2. Attention Network

3.2.1 Prediction Sub-network

We employ a deep regression network to predict the valida-
tion scores Q̂t ∈ R260 of all modules at the current frame t
based on the previous validation scores {Qt−1,Qt−2, ...},
where Qt ∈ R260. As long short-term memory (LSTM) [17]
can model sequential data with high accuracy, we use it to
consider the dynamic changes of the validation scores.

We first normalise the validation scores obtained at the
previous frame Qt−1 from zero to one as

Q̃t−1 =
Qt−1 −min(Qt−1)

max(Qt−1)−min(Qt−1)
, (5)

where min and max provide the minimum and maximum
values among all elements of the input vector. Then the
normalised scores Q̃t−1 are sequentially fed in the LSTM,
and the four following fully connected layers estimate the
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normalised validation scores of the current frame Q̃t
∗. The

detailed network architecture is described in Fig. 2. Finally,
based on the assumption that the range of the predicted
validation scores is identical to the range of the previous
validation scores, we transform the normalised scores back
and obtain the predicted validation score Q̂t:

Q̂t = Q̃t
∗

(
max(Qt−1)−min(Qt−1)

)
+min(Qt−1). (6)

3.2.2 Selection Sub-network

Based on the predicted validation scores Q̂t, the selection
sub-network selects the tracking modules which are activated
for the current frame. The role of the selection sub-network
is twofold. On the one hand, it should select tracking mod-
ules which are likely to perform well. On the other hand, if a
tracking module is not activated for a long time, it is hard to
estimate its performance as the prediction error accumulates
over time, so modules should be activated from time to time.

Therefore, the selection sub-network consists of two parts
fulfilling these roles. The first part is a top-k selection layer
which selects the k modules with the highest predicted vali-
dation score, resulting in a binary vector. The second part
consists of four fully connected layers followed by a tanh
layer to estimate the prediction error, resulting in a vector
with values ranging between -1 and 1. The results of both
parts are integrated by max-pooling, resulting in the atten-
tional scores st ∈ [0, 1]. The binary attentional vector 〈st〉
is obtained by selecting the Na tracking modules with the
highest values within st, where 〈·〉 is used to denote vec-
tors containing binary values. As Na is bigger than k and
the results of the tanh layer being smaller than one, 〈st〉
essentially includes all modules of the top-k part and Na−k
modules with the highest estimated prediction error.

At the current frame, the modules within the correlation
filter network which should be activated are chosen accord-
ing to 〈st〉, so the validation scores of the active modules
Qt

o ∈ R260 can be obtained from the correlation filter net-
work as shown in Fig. 2 (Qt

o contains zeros for the modules
which are not activated). Then, the final validation scores
Qt are formulated as

Qt = (1− 〈st〉) ∗ Q̂t + 〈st〉 ∗Qt
o, (7)

where ∗ represents the element-wise multiplication.

3.2.3 Training

Training Data: We randomly choose the training sample
i out of all frames within the training sequences. Then the
ground truth validation score QGT (i) is obtained by setting
the target position to the ground truth given in the dataset
and operating all correlation filters.

To train the LSTM layer, the attention network is se-
quentially fed by the validation scores of the previous ten
frames. After feeding the attention network, we obtain
the predicted validation scores Q̂(i) and the attentional
binary vector 〈s(i)〉. The final validation scores from
the i-th training sample is then defined following Eq.(7):
Q(i) = (1− 〈s(i)〉) ∗ Q̂(i) + 〈s(i)〉 ∗QGT (i).

Loss function: We develop a sparsity based loss func-
tion which minimises the error between the final validation
scores Q(i) and the ground truth validation scores QGT (i)
while using the least number of active modules:

E =
N∑
i=1

{
‖Q(i)−QGT (i)‖22 + λ ‖〈s(i)〉‖0

}
, (8)

where N is the number of training samples. However, as
we need to estimate the gradient of the loss function, the
discrete variable 〈s(i)〉 is substituted with the continuous
attentional scores s(i), resulting in

E =

N∑
i=1

{∥∥∥(1−s(i))∗(Q̂(i)−QGT (i)
)∥∥∥2

2
+λ‖s(i)‖0

}
. (9)

Training sequence: We train the network in two steps,
i.e. we first train the prediction sub-network and subse-
quently the selection sub-network. We found that training
the network as a whole leads to the selection of the same
modules by the selection sub-network each time, which in
turn also prohibits the prediction sub-network to learn the
accuracy of the selected tracking modules.

For training the prediction sub-network, the sparsity term
is removed by setting all values of s(i) to zeros, such that
the objective becomes to minimise the prediction error:

E =
N∑
i=1

{∥∥∥Q̂(i)−QGT (i)
∥∥∥2
2

}
. (10)

The subsequent training of the selection sub-network
should then be performed with the original loss function
as in Eq.(8). However, we found that the error is not suf-
ficiently back-propagated to the fully connected layers of
the selection sub-network because of the max-pooling and
tanh layer. If the prediction is assumed to be fixed, the
output of the top-k part can be regarded as constant. Fur-
thermore, the tanh layer only squashes the output of the last
fully connected layer h, but does not change the sparsity.
Therefore, the loss function can employ h(i) obtained by the
i-th training sample for the sparsity term:

E=
N∑
i=1

{∥∥∥(1−s(i))∗(Q̂(i)−QGT (i)
)∥∥∥2

2
+λ ln

(
1+‖h(i)‖1

)}
,

(11)
where the sparsity norm is approximated by a sparsity-aware
penalty term as described in [37].

Optimisation: We use the Adam optimiser [20] to opti-
mise the prediction sub-network, and gradient descent [24]
for the optimisation of the selection sub-network.
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Figure 4. Attention map. (a) Each region within the attention map
represents one tracking module, each covering another scale change.
The green colour indicates the active modules to be operated at a
time, and the best module which is used to determine the tracking
result is coloured red. (b) Multiple attention maps with different
properties of feature types, kernel types, and delayed updates.

3.3. Handling full occlusions

A full occlusion is assumed if the score Qt
max =

max(Qt) of the best performing tracking module drops sud-
denly as described by Qt

max < λrQ
t−1
max with Q

t

max =

(1− γ)Qt−1
max + γQt

max and Q
0

max = Q1
max. λr is the de-

tection ratio threshold and γ is an interpolation factor. If
a full occlusion is detected at time t, we add and activate
four additional basic tracking modules for the period of Nr

frames without updating them. The ROI of these modules is
fixed to the target position at time t. If one of the re-detection
modules is selected as the best module, all tracking modules
are replaced by the modules saved at time t.

4. Experimental Result
4.1. Implementation

20%(Na = 52) among all modules were selected as ac-
tive modules. One quarter of them (k = 13) were chosen by
the top-k layer. The weight factor for the attentional weight
map estimation was set to λs = 0.9, and the interpolation
range to Np = 2. The sparsity weight for training the at-
tention network was set to λ = 0.1. The parameters for
full occlusion handling, λr and Nr, were experimentally set
to 0.7 and 30 using scenes containing full occlusions. The
other parameters were set as mentioned in [3, 16]: Ng = 4,
Nh = 31, β = 2.5, σG =

√
WH/10, and γ = 0.02. The pa-

rameters were fixed for all training and evaluation sequences.
The input image was resized such that the minimum length
of the initial bounding box equals 40 pixels. To initialise
the LSTM layer, all modules were activated for the first ten
frames.

We used MATLAB to implement the correlation filter
network, and TensorFlow [1] to implement the attention
network. The two networks communicated to each other
via a TCP-IP socket. The tracking module update and the
attention network ran in parallel for faster execution. The

Table 1. Quantitative results on the CVPR2013 dataset [38]

Algorithm Pre. score Mean FPS Scale

Pr
op

os
ed

ACFN 86.0% 15.0 O
CFN+predNet 82.3% 14.4 O

CFN 81.3% 6.9 O
CFN+simpleSel. 79.4% 15.7 O

CFN- 78.4% 15.5 O

R
ea

l-
tim

e

SCT [3] 84.5% 40.0 X
MEEM [42] 81.4% 19.5 X

KCF [16] 74.2% 223.8 X
DSST [5] 74.0% 25.4 O

Struck [15] 65.6% 10.0 O
TLD [19] 60.8% 21.7 O

N
on

R
ea

l-
tim

e

C-COT [8] 89.9% <1.0 O
MDNet-N [29] 87.7% <1.0 O
MUSTer [18] 86.5% 3.9 O
FCNT [35] 85.6% 3.0 O

D-SRDCF [6] 84.9% <1.0 O
SRDCF [7] 83.8% 5 O
STCT [36] 78.0% 2.5 O

computational speed was 15.0 FPS in the CVPR2013 dataset
[38], and the attention network only took 3ms per frame.
The prediction sub-network and selection sub-network were
each trained for 1000K iterations, which took about 10 hours.
The computational environment had an Intel i7-6900K CPU
@ 3.20GHz, 32GB RAM, and a NVIDIA GTX1070 GPU.
We release the source code for tracking and training along
with the attached experimental results.1

4.2. Dataset

To evaluate the proposed framework, we used the
CVPR2013 [38] (51 targets, 50 videos), TPAMI2015 [39]
(100 targets, 98 videos), and VOT2014 [22] datasets (25
targets, 25 videos), which contain the ground truth of the tar-
get bounding box at every frame. These datasets have been
frequently used [3,8,15,16,18,29,42] as they include a large
variety of environments to evaluate the general performance
of visual trackers.

To train the attention network for evaluating on the
CVPR2013 and TPAMI2015 datasets, the VOT2014 [22] and
VOT2015 [21] datasets were used. After removing scenes
which overlap with the CVPR2013 and TPAMI2015 datasets,
44 sequences remained for training. For the evaluation on
the VOT2014 dataset, we trained the attention network by
39 sequences of the CVPR2013 dataset after eliminating
overlapping scenes. For both cases, we obtained additional
training data by slightly moving the ground truth of the tar-
get position in eight directions (10% of the target size to the
left, right, top, bottom, top-left, top-right, bottom-left, and
bottom-right), as well as by changing the size of the tracking
box (10% enlarging and shrinking). Therefore, we had 11

1https://sites.google.com/site/jwchoivision/

Preprint version; final version available at http://ieeexplore.ieee.org
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Published by: IEEE

https://sites.google.com/site/jwchoivision/
http://ieeexplore.ieee.org


ACFN [0.860]
CFN+predNet [0.823]
CFN [0.813]

CFN- [0.784]
CFN+simpleSel. [0.794]
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(a) Self-comparison on CVPR2013 dataset

ACFN [0.802]
SCT [0.768]
MEEM [0.773]

DSST [0.687]
Struck [0.640]
TLD [0.597]

KCF [0.699]

ACFN [0.575]
SCT [0.534]
MEEM [0.529]
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Struck [0.463]
TLD [0.427]
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(b) Evaluation plots on TPAMI2015 dataset

ACFN [0.666]
SCT [0.574]
MEEM [0.604]
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KCF [0.534]

ACFN [0.501]
SCT [0.392]
MEEM [0.414]

DSST [0.442]
KCF [0.381]

(c) Evaluation plots on VOT2014 dataset

Figure 5. Evaluation Results. ACFN showed the best performance within the self-comparison, and the state-of-the-art performance amongst
real-time trackers in TPAMI2015 [39] and VOT2014 [22] dataset. The numbers within the legend are the average precisions when the centre
error threshold equals 20 pixels (top row), or the area under the curve of the success plot (bottom row).

Freeman4

Skiing

Couple

Lemming Walking2

Singer1

ACFN SCT MEEM KCF DSST

Figure 6. Qualitative Results. The used sequences are Freeman4, Singer1, Couple, Lemming, Walking2, and Skiing.

times the training data available compared to the original
sequences without augmentations.

4.3. Evaluation
As performance measure, we used the average precision

curve of one-pass evaluation (OPE) as proposed in [38].
The average precision curve was estimated by averaging the
precision curves of all sequences, which was obtained using
two bases: location error threshold and overlap threshold.
The precision curve based on the location error threshold
(precision plot) shows the percentage of correctly tracked
frames on the basis of a distance between the centres of the
tracked box and ground truth. The precision curve based on
the overlap threshold (success plot) indicates the percentage
of correctly tracked frames on the basis of the overlap region
between the tracked box and ground truth. As representative
scores of trackers, the average precisions when the centre
error threshold equals 20 pixels and the area under curve of
the success plot were used.

To describe the attention on the tracking modules qualita-
tively, we built an attention map which is depicted in Fig. 4.
In the attention map, one area represents one tracking mod-

ule of a specific scale change, and within the global attention
map there are many maps with different feature types, kernel
types, and delayed updates.

4.4. Self-comparison
To analyse the effectiveness of the attention network, we

compared the full framework with four additional trackers.
The correlation filter network (CFN) operated all the associ-
ated tracking modules. CFN is similar to SCT [3], but uses
all 260 filters of ACFN instead of just 4. The limited correla-
tion filter network (CFN-) constantly operated 20% of the
modules which are most frequently selected as the best mod-
ule by ACFN in the CVPR2013 dataset. CFN with simple
selection mechanism (CFN+simpleSel.) utilised the previ-
ous validation scores as the predicted validation scores, and
the top-k modules with high validation scores were selected
as the active modules while the other active modules were
selected randomly. CFN with the prediction sub-network
(CFN+predNet) used the score prediction network to predict
the current validation scores, but selected the modules with
high prediction errors randomly. The prediction network of
CFN+predNet was extracted from the trained ACFN.
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The results of the comparison with these four trackers are
shown in Fig. 5(a) and Table 1. As CFN performs worse than
SCT, it shows that it is not sufficient to simply increase the
number of filters to obtain a high performance. Therefore,
ACFN provides a meaningful solution to the problem of
integrating correlation filters with various characteristics.
The attentional mechanisms result both in higher accuracy
and higher efficiency.

In addition, ACFN outperformed the trackers which only
contain a subset of the full framework. Interestingly, CFN-
showed worse performance than CFN, which confirmed
that a large variety of tracking modules was essential to
track the target. By comparing the performance of CFN and
CFN+simpleSel., one can see that the performance of the
tracker was reduced when the active modules were chosen
without considering the dynamic changes of the target. From
the performance of CFN+predNet and ACFN, it can be con-
firmed that the selection sub-network has an important role
for the performance of the tracker.

4.5. Experiments on the benchmark datasets

The results of the state-of-the-art methods, including
FCNT [35], STCT [36], SRDCF-Deep [6], SRDCF [7],
DSST [5], and C-COT [8] were obtained from the authors.
In addition, the results of MDNet-N [29], MUSTer [18],
MEEM [42], KCF [16], SCT [3], Struck [15], and TLD [19]
were estimated using the authors’ implementations. MDNet-
N is a version of MDNet [29], which is trained by the images
of Image-Net [31] as described in VOT2016 [23].

In Table 1, the precision scores on the CVPR2013 dataset
are presented along with the computational speed of the al-
gorithms and their ability to recognise scale changes. The
proposed algorithm ran sufficiently fast to be used in real
time. Among real-time trackers, ACFN showed the state-of-
the-art performance for both benchmark datasets. Especially,
among the real-time trackers considering scale changes,
ACFN improved the relative performance by 12% compared
to DSST [5] which was the previous state-of-the-art algo-
rithm in the CVPR2013 dataset. Fig. 5 shows the perfor-
mances of the real-time trackers, where ACFN demonstrates
state-of-the-art performance in both the TPAMI2015 and the
VOT2014 datasets. Some qualitative results of ACFN are
shown in Fig. 6.

4.6. Analysis on Attention Network

To analyse the results of the attention network, the fre-
quency map was obtained by normalising the frequency that
each module was selected as the active module or the best
module in the CVPR2013 dataset [38]. Fig. 7 shows the
frequency maps for different tracking situations. In the fre-
quency map obtained across all sequences, the module track-
ers with HOG and Gaussian kernel were most frequently
selected as the best module, while diverse modules were
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Figure 7. Frequency map for different tracking situations. The
distribution of the attention is determined by the dynamic changes
of the target.

selected as active modules in various situations. The track-
ing modules which detect increasing scale were selected
more often than others in scenes containing enlarging tar-
gets, while the modules detecting scale-down changes were
chosen most often in scenes with shrinking targets. Inter-
estingly, when we estimated the frequency map from the
tracking failure scenes of the CVPR2013 dataset (Matrix,
MotorRolling, IronMan), the distribution of the active mod-
ules was relatively identical, which meant that the attention
became scattered as the target was missed.

5. Conclusion

In this paper, a new visual tracking framework using an
attentional mechanism was proposed. The proposed frame-
work consists of two major networks: the correlation filter
network and the attention network. Due to the attentional
mechanism which reduces the computational load, the corre-
lation filter network can consider significantly more status
and dynamic changes of the target, including novel proper-
ties such as flexible aspect ratios and delayed updates. The
attention network was trained by the general expectation of
dynamic changes to adaptively select the attentional subset
of all tracking modules. The effectiveness of the attentional
mechanism for visual tracking was validated by its high ro-
bustness even with rapid computation. In the experiments
based on several tracking benchmark datasets, the proposed
framework performed comparable to deep learning-based
trackers which cannot be operated in real-time, and showed
state-of-the-art performance amongst the real-time trackers.
As a future work, we will extend the attentional mechanism
to correlation filters employing deep convolution features.
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