
Audience Retention Rate Aware
Coded Video Caching

Qianqian Yang, Mohammad Mohammadi Amiri, and Deniz Gündüz
Electrical and Electronic Engineering Department, Imperial College London, London SW7 2AZ, U.K.

Email: {q.yang14, m.mohammadi-amiri15, d.gunduz}@imperial.ac.uk

Abstract—Users often do not watch an online video content in
its entirety, and abort the video before it is completed. This is
captured by the notion of audience retention rate, which indicates
the portion of a video users watch on average. A decentralized
coded caching scheme, called partial coded caching (PCC), is
proposed here to take into account both the popularity, and
the audience retention rate of the video files in a database.
The achievable average delivery rate of PCC is characterised
over all possible demand combinations. Two different cache
allocation schemes, called the optimal cache allocation (OCA)
and the popularity based cache allocation (PCA), are proposed
to allocate cache capacities among the different chunks of
video files. Numerical results validate that the proposed coded
caching scheme, either with the OCA or the PCA, outperforms
conventional uncoded caching, as well as the state-of-the-art
coded caching schemes that consider only file popularities.

I. INTRODUCTION

The ever-increasing demand for video services has been the
main driver for the recent explosive growth of wireless data
traffic. A key feature of video services is that a small portion
of highly popular contents dominate the traffic [1]. This led to
the idea of prefetching popular contents over off-peak traffic
periods, or at better channel conditions, and storing them at
the network edge [2], or even directly at user devices [3],
[4], referred to as proactive caching. Proactive caching can
alleviate both the growing bandwidth requirement and the
incremental delay due to the continuously increasing data
traffic; and it becomes more viable thanks to the decreasing
cost of memory (see [2], [3], [5], [6], and references therein).

Proactive caching shifts part of the data traffic from the peak
traffic periods to off-peak periods. During the off-peak traffic
periods, users’ caches are filled as a function of the whole
library of popular files, referred to as the placement phase.
Users’ demands are revealed during the peak traffic periods,
and they are satisfied simultaneously over the delivery phase.
Traditional uncoded caching schemes adopt orthogonal unicast
transmissions, and the caching gain is simply given by the
capacity of each user’s local cache. On the other hand, coded
caching, a novel caching paradigm introduced in [5], further
exploits the cache resources through joint optimization of the
two phases in order to create and exploit coded multicasting
opportunities, even among distinct user requests.

The global caching gain, and the achievability of a delivery
rate that is within a constant multiplicative factor of the
information theoretic lower bound in [5], has ignited intense
research activities on coded caching [4], [7]–[14]. While some

studies aim to improve the gap between the upper and lower
bounds [4], [8], [9], others adapt coded caching to different
settings, such as decentralized coded caching [7], files with
nonuniform popularities [11], [12], coded caching of files with
lossy reconstruction [14].

The literature on coded caching shares a common assump-
tion, that is, users request entire files, whereas in practice
users rarely request and watch an entire video content. A
recent report [1] suggests that, users on average watch 60%
of the requested files from a trace of 7000 Youtube videos,
and the number of views varies over different videos as well
as different parts of each video. This phenomena is captured
by the notion of audience retention rate, introduced by the
mainstream online video platforms, such as Youtube and
Netflix, to model the popularities of different parts of videos.

This nonuniform viewing behaviour calls for partial
caching, where only a portion of each video file is cached.
Partial caching is shown to improve the performance of
uncoded caching in [15]. Here we investigate coded caching
of video files taking into account the audience retention rate
for each video. We consider that each video file consists of
equal-length chunks, and the audience retention rate of each
chunk is the fraction of users watching this chunk among
total views of the corresponding video. Taking the audience
retention rate into account, we propose a coded caching
scheme with decentralized cache placement, referred to as
partial coded caching, and derive a closed-form expression for
the achievable average delivery rate over all possible demand
combinations. Two different cache allocation schemes are
proposed to allocate users’ caches to cache different chunks,
namely optimal cache allocation (OCA) and popularity based
cache allocation (PCA). Note that the coded caching problem
with different file popularities, studied in [11], is a special case
of the problem considered in this paper obtained by setting
the audience retention rates of all the chunks to 1. Numerical
results indicate that the proposed audience retention rate aware
partial coded caching scheme achieves a better delivery rate
than both uncoded caching, and the scheme proposed in [11].

Notations: We denote the set of t-bit binary sequences by
[2t], and the set of all binary sequences by [2∗]. For sets A
and B, we define A\B , {x : x ∈ A, x /∈ B}, and |A| denotes
the cardinality of A. Notation ⊕̄ represents the bitwise XOR
operation, where the arguments are zero-padded to have equal
length. For event E, 1{E} = 1 if E is true; and 1{E} = 0,
otherwise.

II. SYSTEM MODEL

We consider a server holding a library of N video files,
denoted by F = {W1,W2, ...,WN}. We assume, for simplic-
ity, that all the files have the same size of F bits. Each file
consists of B chunks of equal size, i.e., F/B bits, which is
determined by various factors in practical applications, such
as frame size, display settings of user devices, etc. [16]. We
denote by Wij the jth chunk of Wi. There are K users in the
system, connected to the server through an error-free shared
link. Each user is equipped with a cache of size MF bits.

The system operates in two phases: the placement phase and
the delivery phase. In the placement phase, which takes place
during an off-peak traffic period, each user pre-fetches data
from the server to fill its cache. The cache content of user k at
the end of this phase is denoted by Zk, for k = 1, . . . ,K. The
delivery phase takes place during a peak traffic period, once
the users reveal their demands. The user demand realization
is denoted by D = (d1, d2, ..., dK), the components of which
are independent and identically distributed (i.i.d.) according to
p , (p1, ..., pN), the popularity distribution of F .

Unlike the previous literature on coded caching, we do not
deliver the requested contents as a whole, as users often quit
watching a video file before completion. Therefore, in our
model, users are initially delivered only the first chunks of
their desired files. Their demands of subsequent chunks are
only revealed after receiving the previous ones, unless they
abort watching the video. We denote by dj , (dj1, d

j
2, ..., d

j
K)

the demand vector of the jth chunks, for j = 1, ..., B, such that
djk = 1 indicates user k requests the jth chunk of its desired
file, otherwise, djk = 0, for k = 1, ...,K. After receiving the
demand vector of the jth chunks, i.e., dj , the server sends
a single message Xj

D,dj over the shared link depending on
users’ requests as well as the contents of their caches.

We employ the notion of audience retention rate, defined
as the fraction of users that request chunk Wij among all
the users that have requested Wi, denoted by pij , for i =
1, ..., N , j = 1, ..., B [15]. Alternatively, we can regard pij as
the probability that a user that has requested video Wi will
watch chunk j, i.e.,

pij , Pr
{
djk = 1

∣∣∣dk = i
}
, ∀k. (1)

We assume that pij is non-increasing in j, i.e., 1 = pi1 ≥
pi2 ≥ · · · ≥ piB , which characterises a realistic viewing model
that users start watching videos from the beginning and then
stop watching after a random portion. We let P = {pij , i =
1, ..., N, j = 1, ..., B} denote the retention rate matrix for all
the chunks in the library, which is identical for all the users.
We refer to pipij as the popularity of chunk Wij in the sense
that it denotes the probability that chunk Wij will be requested
by a user when it makes a request.

A caching scheme consists of K caching functions fk,

fk : [2F]× · · · × [2F]︸ ︷︷ ︸
N files

×p×P→ [2MF], (2)

for k = 1, ...,K, where Zk = fk({Wi}Ni=1,p,P), and B
delivery functions,

gj : [2F]× · · · × [2F]︸ ︷︷ ︸
N files

×D× dj → [2∗], (3)

for j = 1, ..., B, and Xj
D,dj = gj({Wij}Ni=1,D,d

j), and B×
K decoding functions,

hjk : D× dj × [2MF]× [2∗]→ [2F/B], (4)

for j = 1, ..., B, k = 1, ...,K, where Ŵdkj =
hjk(D,dj , Z(k), Xj

D,dj), is the reconstruction of jth chunk of
Wdk at user k. Note that the length of Xj

D,dj (normalized
by F/B), denoted by Rj(D,d

j), depends on the demand
configuration specified by D and dj . We emphasize that both
the popularity distribution, p, and the retention rate matrix, P,
are known a priori by the system. We define the average rate
of a caching scheme, consisting of the caching, delivery, and
reconstruction functions described above, as follows:

R̄
∆
= E

 B∑
j=1

Rj(D,d
j)

 , (5)

where the expectation is over all possible demand combina-
tions, represented by D and {dj}Bj=1, distributed according to
p and P, respectively.

Definition 1. An average-rate R̄ is achievable for a system
with N files, K users, each with a cache of capacity MF
bits, and the popularity distribution p and the retention rate
matrix P, if there exists a caching scheme with average rate
R̄ such that for any demand realization D and {dj}Bj=1,

lim
F/B→∞

Pr


B⋃
j=1

⋃
k:djk=1

{
Ŵdkj 6= Wdkj

} = 0. (6)

Our goal is to characterise the minimum average achievable
rate R̄ for a given system configuration.

Remark 1. When pij = 1, ∀i, j, i.e., the users always watch
the videos until the end once they start, the caching problem
studied in this paper reduces to the one that considers only
file popularities, which has been studied in [11], [12].

III. PARTIAL CODED CACHING (PCC)

Here we first present the placement and delivery phases
of our coded caching scheme, referred to as the partial coded
caching (PCC) scheme, and then derive its achievable delivery
rate. We remark that the number of bits and the delivery rate
mentioned in the sequel are both normalized by F/B.

A. Placement Phase

During the cache placement phase, each user selects an
independent random subset of qijF/B bits from the jth chunk
of file Wi, i.e., Wij , to fill its cache, i.e., in a decentralized

manner, where 0 ≤ qij ≤ 1, such that
N∑
i=1

B∑
j=1

qij = MB,

which meets the limitation of the cache capacities. We refer to
Q = {qij} as the cache content distribution. The optimization
of Q is studied in Section III-D.

B. Delivery Phase

The delivery phase is performed once users reveal their
demands, D = (d1, d2, ..., dK). We emphasize that users’
requests for the jth chunk, dj = (dj1, d

j
2, ..., d

j
K), are not

disclosed until the users have already received the (j − 1)th
chunk. We denote by Cj the set of users requesting the jth
chunk, i.e., Cj = {k : djk = 1}. We represent by Dj the set of
files whose jth chunks are requested by at least one user. We
have

Dj ,

{
i :

K∑
k=1

1{dk = i} · djk ≥ 1

}
. (7)

Wij,S denotes the bits of chunk Wij that are cached exclu-
sively by the users in S. We present our coded delivery scheme
to send the requested jth chunks to users in Cj in Algorithm 1.
We note that, among the CODED DELIVERY and RANDOM
DELIVERY procedures of Algorithm. 1, we perform the one
that requires a smaller delivery rate, is performed.

Remark 2. We remark that the coded delivery scheme in
[17, Algorithm 1], which, compared to the proposed scheme,
requires a smaller number of bits to be delivered to satisfy
the same demand combination, can also be employed here.
However, the average delivery rate of the scheme in [17,
Algorithm 1] does not lend itself to a closed-form expres-
sion; therefore we consider the delivery scheme outlined in
Algorithm 1. Despite its suboptimality, the proposed scheme
outperforms the state-of-the-art results for coded caching with
non-uniform file popularities, as it will be shown in the sequel.

C. Achievable Rate

The following theorem provides a closed-form expression
for the achievable average delivery rate over all possible
demands using the proposed coded caching scheme. We first
provide some definitions which simplify the presentation of
our results. For any l-element subset Sl of {1, ...,K}, gij,Sl
denotes the number of bits of chunk Wij that are cached
exclusively by l − 1 users in Sl (which is identical for any
l− 1 users in Sl based on the law of large number). We have

gij,Sl = (qij)
l−1(1− qij)K−l+1. (8)

For a given l-element subset Sl of {1, ...,K}, we define
ρij,Sl as the probability of the event that among the jth chunks
requested by at least one user from Sl, Wij has the maximum
number of bits cached exclusively by l−1 users from Sl, i.e.,

ρij,Sl , Pr
{
gij,Sl ≥ gfj,Sl : i ∈ Dl ∩ Dj ,∀f ∈ Dl ∩ Dj

}
,

(9)
where Dl is the set of files requested by users in Sl.

Due to symmetry across users, ρij,Sl is identical for any
Sl ⊂ {1, ...,K}. Thus, for simplicity, we use ρij,l to denote
ρij,Sl for all subsets Sl as well as gij,l instead of gij,Sl .

Algorithm 1 Delivery scheme of the jth chunks

1: procedure CODED DELIVERY
2: PART 1: Delivering the missing bits that are not in

the cache of any user:
3: for i ∈ Dj do
4: Send Wij,∅
5: end for

6: PART 2: Delivering the missing bits that are in the
cache of only one user; the one among PART 2.1 and
PART 2.2 that requires a smaller delivery rate is executed:

7: PART 2.1:
8: for P ⊂ {1, ...,K}: |P| = 2 do
9: Send

⊕
k∈P∩CjWdkj,P\{k}

10: end for
11: PART 2.2:
12: for i ∈ Dj do
13: Send

(
K−1⋃
t=1

Wij,{t}⊕̄Wij,{t+1}

)
14: end for

15: PART 3: Delivering the missing bits that are in the
cache of more than one user:

16: for P ⊂ {1, ...,K}: |P| > 2 do
17: Send

⊕
k∈P∩CjWdkj,P\{k}

18: end for
19: end procedure

20: procedure RANDOM DELIVERY
21: for i = 1, 2, . . . , N do
22: Server sends enough random linear combinations

of the bits of file Wij to enable the users demanding it to
decode it.

23: end for
24: end procedure

Theorem 1. For the caching system described in Section II,
given a cache content distribution Q, the following average
delivery rate is achievable

R̄(Q) = min{ϕ(p,P,Q), m̄}, (10)

where

m̄ ,
B∑
j=1

N∑
i=1

(
1− (1− pipij)K

)
(1− qij), (11)

and

ϕ(p,P,Q) ,
B∑
j=1

N∑
i=1

(
1− (1− pipij)K

)
(1− qij)K

+

B∑
j=1

K∑
l=3

(
K

l

) N∑
i=1

ρij,l(qij)
l−1(1− qij)K−l+1

+ min


B∑
j=1

N∑
i=1

(
1− (1− pipij)K

)
qij(1− qij)K−1,

B∑
j=1

(
K

2

) N∑
i=1

ρij,2qij(1− qij)K−1

 .

(12)

Proof. The proof can be found in Appendix A.

The value of ρij,l can be calculated as follows. We define

Yj,l , max
f∈Dl∩Dj

gfj,l. (13)

It follows that

Pr{Yj,l ≤ gij,l} = ∑
Wf∈F :gfj,l≤gij,l

pf +
∑

Wf∈F :gfj,l>gij,l

pf (1− pfj)

l

,

(14)
that is, the probability of Yj,l ≤ gij,l is the probability that
each element f ∈ Dl is either associated with gfj,l no larger
than gij,l, or f /∈ Dj . Similarly,

Pr{Yj,l < gl(i, j)} = ∑
Wf∈F :gfj,l<gij,l

pf +
∑

Wf∈F :gfj,l≥gij,l

pf (1− pfj)

l

,

(15)
i.e., the probability that each element f ∈ Dl is either
associated with gfj,l less than gij,l, or f /∈ Dj . Then, we
derive

ρij,l =
Pr{Yj,l = gij,l}

N∑
f=1

1

{
gfj,l = gij,l

} . (16)

where Pr{Yj,l = gij,l} = Pr{Yj,l ≤ gij,l} − Pr{Yj,l < gij,l}.
Hence, the denominator in (16) is the total number of files
which have the same value of gfj,l and gij,l. Thus, ρij,l can
be easily calculated by sorting {gfj,l,Wf ∈ F}.

D. Cache Allocation

We formulate the optimization of cache content distribution
Q as follows:

min R̄(Q) (17a)

s.t.
∑
i,j

qij = MB, (17b)

where the objective is to minimize the average delivery rate
over all possible demand combinations while the cached
contents meet the limitation of the cache capacities. The
optimization problem in (17) can be solved numerically, and
the corresponding solution will be referred to as the optimal
cache allocation (OCA).

However, in practice, there will be a large number of files
in the library, and each video file can be partitioned into many
chunks. In that case, optimizing Q over all the chunks in the

Chunk index, j
2 4 6 8 10

P
o
p
u
la

ri
ty

o
f
ch

u
n
k
s,

p
ip

ij

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
W5, -5 = 0, , = 1:0
W5, -5 = 0, , = 0:5
W4, -4 = 0:1, , = 1:0
W4, -4 = 0:1, , = 0:5
W3, -3 = 0:2, , = 0:5
W3, -3 = 0:2, , = 1:0
W2, -2 = 0:3, , = 0:5
W2, -2 = 0:3, , = 1:0
W1, -1 = 0:4, , = 0:5
W1, -1 = 0:4, , = 1:0

Fig. 1. The popularity of video chunks Wij , i.e., pipij given βi = 0.5−0.1i,
i = 1, ..., 5, j = 1, ..., 10.

library would require high computational complexity. Instead,
we present a simple cache allocation scheme, referred to as
popularity based cache allocation (PCA), in which only the
most popular chunks are cached by the users; that is, we have

qij =

{
q, if pipij ≥ n̄,
0, otherwise,

(18)

where q ∈ (0, 1] and n̄ are the two parameters to be chosen

to satisfy
N∑
i=1

B∑
j=1

qij = MB. We denote the cache content

distribution given by (18) as a function of q, i.e., Q(q). The
optimization of q can be expressed as

q∗
∆
= argmin R̄(Q(q)), (19)

which could be computed through one-dimensional search.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the average delivery
rate achieved by the proposed caching scheme with both cache
allocation strategies, OCA and PCA, and compare it with the
rate achieved by the RAP-GCC scheme proposed in [11] as
well as uncoded caching. We consider a network with K = 5
users and N = 5 video files in the library. Each file consists of
B = 10 chunks of equal size. We assume that the popularity
of files follows a Zipf power law with parameter α [18], in
which case we have

pi =
iα

N∑
f=1

fα
, i = 1, ..., 5, (20)

and the audience retention rates of the video files follow a
Zipf-like distribution as well [19], given as:

pij = j−βi , i = 1, ..., 5, j = 1, ..., 10, (21)

Cache capacity, M
0.2 0.4 0.6 0.8 1

A
v
er

a
g
e

d
el

iv
er

y
ra

te
,
7 R

14

16

18

20

22

24

26

28
N = 5, K = 5, B = 10

Uncoded, ,=0.5
PCC-PCA, ,=0.5
Uncoded, ,=1.0
PCC-PCA, ,=1.0
PCC-OCA, ,=0.5
PCC-OCA, ,=1.0

Fig. 2. Comparison between PCC and uncoded caching, βi = 0.6 − 0.1i,
α = 0.5, and α = 1.

with parameter βi ≥ 0. The larger βi implies a shorter average
watching time for file Wi. We set βi = 0.5 − 0.1i, and the
corresponding popularity of chunks, i.e., pipij , i = 1, ..., 5,
j = 1, ..., 10, are presented in Fig. 1, which shows that the
retention rates of the video files with larger βi will decrease
more quickly with the index of the chunks. Moreover, a larger
α value results in a bigger difference in the file popularities.

We first compare PCC with uncoded caching, where each
user fully caches as many of the most popular chunks as
possible to fill its cache capacity. We observe from Fig. 2 that
the PCC with OCA significantly reduces the average delivery
rate compared to uncoded caching, and the improvement
increases with the cache capacity. The PCC with PCA scheme
has the same performance as uncoded caching when the cache
capacity is small, which implies that the PCA caches the
most popular chunks fully to better exploit the limited cache
capacity. We can also observe that a larger α results in a
smaller average delivery rate since the users tend to request
the most popular files, and caching these files is more efficient
in reducing the delivery rate.

In Fig. 3, we compare the performance of the PCC with
RAP-GCC scheme in [11], which, to the best of our knowl-
edge, is the only result in the literature on the average
delivery rate considering heterogeneous file popularities. We
set βi = 0, ∀i, so that pij = 1, ∀i, j, and the partial caching
problem studied in this paper reduces to the one in [11]. For
fair comparison, we optimize the cache content distribution
over the bits for the RAP-GCC scheme. It is notable in Fig. 3
that our scheme remarkably outperforms the RAP-GCC, and
when α is large, i.e, the popularity distribution of the files
is more skewed, and the users are more likely to request the
same set of files, the improvement gained from the PCC is
even larger. We also observe that the PCC with OCA results

Cache capacity, M
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
er

a
g
e

d
el

iv
er

y
ra

te
,
7 R

12

14

16

18

20

22

24

26

28

30

32

N = 5, K = 5, B = 10

RAP-GCC, , = 0:5
PCC-OPT, , = 0:5
RAP-GCC, , = 2:5
PCC-OPT, , = 2:5

Fig. 3. Comparison between PCC with OCA and RAP-GCC, βi = 0, α =
0.5 and α = 2.5.

in a higher average delivery rate compared to the same setting
in Fig. 2, since users always request entire files when βi = 0.

V. CONCLUSIONS

We have studied coded caching taking into account the
audience retention rates for video contents. We assume that
each video file in the library consists of a number of chunks
of equal size, and the audience retention rate is modeled as
the heterogeneous popularity of the chunks of each file. We
proposed a coded caching scheme that allocates different cache
capacities for different chunks, depending on their popularities.
We then evaluated the average delivery rate over all possible
demand combinations as well as over the number of chunks
requested by each user. We proposed two different methods
for cache allocation, namely, the numerically optimized cache
allocation scheme OCA, and the low complexity popularity-
based cache allocation scheme PCA. The numerical results
illustrated a significant improvement with the proposed scheme
over uncoded caching in terms of the achievable rate. When
the audience retention rates of all the chunks are equal, the
problem reduces to the one where users watch entire files with
different popularities, and the proposed coded caching scheme
is shown to outperform the best known average delivery rate
in the literature.

In this paper, we have assumed that the users’ requests are
synchronized, which is a common assumption in the coded
caching literature. A future research direction is the extension
of the current model and the proposed caching scheme to an
asynchronous demand scenario.

APPENDIX A
PROOF OF THEOREM 1

We first derive m̄ in (11), which is provided by the RAN-
DOM DELIVERY procedure in Algorithm 1. Since each user

requesting chunk Wij has qijF/B bits from this chunk in its
cache, according to [7, Appendix A], at most

(1− qij)F/B + o(F/B) (22)

bits are necessary to enable all the users requesting Wij to
decode it. The probability that chunk Wij is requested by at
least one user among K active users is given by:

Pr{i ∈ Dj} = 1− (1− pipij)K , (23)

By summing over i = 1, ..., N and j = 1, ..., B, we have

R̄ ≤
B∑
j=1

N∑
i=1

(
1− (1− pipij)K

)
(1− qij), (24)

which implies (11).
We then prove ϕ(p,P,Q) given by (12), which is provided

by the CODED DELIVERY procedure in Algorithm 1. We
first derive the expected number of bits sent in Part 1. Note
that, in this part the server sends the missing bits which are
not in the cache of any user. The expected number of bits of
chunk Wij that are not cached by any user is given by

F/B(1− qij)K + o(F/B). (25)

We denote by ϕ1 the expected total number of bits delivered
in PART 1 summing over j = 1, ..., B. We have:

ϕ1 =

B∑
j=1

N∑
i=1

(
1− (1− pipij)K

)
(1− qij)K . (26)

Next, we derive the expected total number of bits sent in
PART 3 summing over j = 1, ..., B, denoted by ϕ3. Inspired
by the proof in [11, Appendix A], the expected total number
of bits sent in PART 3 for jth chunks is found to be:

R̄j =

K∑
l=3

(
K

l

) N∑
i=1

gij,l

· Pr
{
gij,l ≥ gfj,l : i ∈ Dl ∩ Dj ,∀f ∈ Dl ∩ Dj

}
. (27)

The proof of (27) is skipped due to space limitation, and will
be provided in a longer version of this paper. Together with
(27) and (8), we have

ϕ3 =

B∑
j=1

K∑
l=3

(
K

l

) N∑
i=1

ρij,l(qij)
l−1(1− qij)K−l+1, (28)

where ρij,l is as derived in (16).
We then find the expected total number of bits delivered in

PART 2 summing over j = 1, ..., B, denoted by ϕ2. Following
the similar procedure as the proof of (28), the number of bits
sent by PART 2.1 is given as

ϕ2,1 =

B∑
j=1

(
K

2

) N∑
i=1

ρij,2qij(1− qij)K−1. (29)

Since the expected number of bits of each chunk Wij cached
by only one user is

F/Bqij(1− qij)K−1 + o(F/B), (30)

with Pr{i ∈ Dj} given in (23), we have the number of bits
sent by PART 2.2 given by

ϕ2,2 =

B∑
j=1

N∑
i=1

(
1− (1− pipij)K

)
qij(1− qij)K−1. (31)

We can conclude that ϕ2 = min{ϕ2,1, ϕ2,1}. With (26), (28),
(29) and (31), we complete the proof of (12).

REFERENCES

[1] M. Zeni, D. Miorandi, and F. De Pellegrini, “Youstatanalyzer: a tool for
analysing the dynamics of youtube content popularity,” in Proc. of ICST
VALUETOOLS, Torino, Italy, Dec. 2013, pp. 286–289.

[2] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Fem-
tocaching and device-to-device collaboration: A new architecture for
wireless video distribution,” IEEE Commun. Mag., vol. 51, no. 4, pp.
142–149, Apr. 2013.

[3] M. Gregori, J. Gomez-Vilardebo, J. Matamoros, and D. Gündüz, “Wire-
less content caching for small cell and D2D networks,” IEEE J. Sel.
Areas Commun., vol. 34, no. 5, pp. 1222–1234, Mar 2016.

[4] M. Mohammadi Amiri and D. Gündüz, “Fundamental limits of coded
caching: Improved delivery rate-cache capacity trade-off,” IEEE Trans.
Commun., vol. 65, no. 2, pp. 806–815, Feb. 2017.

[5] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inform. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[6] S. O. Somuyiwa, A. György, and D. Gündüz, “Improved policy rep-
resentation and policy search for proactive content caching in wireless
networks,” in Proc. IEEE Int’l Symp. on Modeling and Opt. in Mobile,
Ad Hoc, and Wireless Netw. (WiOpt), Paris, France, May 2017.

[7] M. A. Maddah-Ali and U. Niesen, “Decentralized caching attains order
optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw, vol. 23, no. 4,
pp. 1029–1040, Apr. 2014.

[8] M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Coded caching for a
large number of users,” in Proc. IEEE Inform. Theory Workshop (ITW),
Cambridge, UK, Sep. 2016.

[9] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users
than files,” arXiv: 1601.063834v2 [cs.IT], Jan. 2016.

[10] J. Gomez-Vilardebo, “Fundamental limits of caching: Improved bounds
with coded prefetching,” arXiv:1612.09071v2 [cs.IT], Jan. 2017.

[11] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate
of caching and coded multicasting with random demands,” arXiv:
1502.03124v1 [cs.IT], Feb. 2015.

[12] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Trans. Inform. Theory, vol. 63, no. 2, pp. 1146–1158,
Feb. 2017.

[13] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded
caching,” in Proc. IEEE Int’l Conf. Commun. (ICC), Sydney, Australia,
Jun. 2014, pp. 1878–1883.

[14] Q. Yang and D. Gündüz, “Coded caching and content delivery with
heterogeneous distortion requirements,” arXiv:1608.05660v1 [cs.IT],
Aug. 2016.

[15] L. Maggi, L. Gkatzikis, G. Paschos, and J. Leguay, “Adapting
caching to audience retention rate: Which video chunk to store?”
arXiv:1512.03274v1 [cs.NI], Dec. 2015.

[16] L. Wang, S. Bayhan, and J. Kangasharju, “Optimal chunking and partial
caching in information-centric networks,” Comput. Commun., vol. 61,
pp. 48–57, May 2015.

[17] M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Decentralized coded
caching with distinct cache capacities,” arXiv:1611.01579v1 [cs.IT] ,
Oct. 2016.

[18] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), NY, Mar. 1999, pp. 126–134.

[19] J. Yu, C. T. Chou, Z. Yang, X. Du, and T. Wang, “A dynamic caching
algorithm based on internal popularity distribution of streaming media,”
Multimedia Syst., vol. 12, no. 2, pp. 135–149, Jul. 2006.

