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Abstract— In recent papers [1,2], the notions of Input-to-
State Stability (ISS) and Integral ISS (iISS) have been gener-
alized for systems evolving on manifolds and having multiple
invariant sets, i.e. multistable systems. The well-known property
of conservation of ISS under cascade interconnection has also
been proven true for multistable systems in different scenarios
[3]. Unfortunately, multistability hampers a straightforward
extension of analogous conservation properties for integral ISS
systems. By means of counterexamples, this work highlights
the necessity of the additional assumptions which yield the
conservation of the iISS and Strong iISS properties in cascades
of multistable systems. In particular, a characterization of the
invariant set of the cascade is provided in terms of its finest
possible decomposition.

I. INTRODUCTION

The study of stability and robustness of cascades of
nonlinear systems have long been studied and have led to
several constructive design methods such as backstepping
and forwarding ([1] and [2]). In the analysis of cascades, the
ISS approach has proven to be a well-suitable tool mainly
due to its input-to-state formulation based on injection and
dissipation gains. It is in fact well known that the ISS
property is preserved under cascade interconnection [3].

At the same time, the study of nonlinear systems which
exhibit a variety of non-trivial dynamical behaviors - multiple
equilibria, periodicity, almost-periodicity - has great impor-
tance to several scientific disciplines ranging from mechanics
and electronics to biology and neuroscience. In particular,
the research in systems biology motivates the analysis of the
stability and robustness properties of cascades of multistable
systems. Such properties can be characterized in a novel ISS
framework [4] where the ISS notion has been generalized for
systems evolving on manifolds and having a decomposable
invariant set. Interestingly enough, such generalized ISS
is still preserved under cascade interconnections and this
conservation property also provides a fine structure on the
invariant set resulting from the interconnection [5].

Despite its usefulness, the notion of ISS might sometimes
be too strong a requirement for nonlinear systems, and the
same holds in the multistable context. This fact motivates
the consideration of weaker notions of stability, iISS [6]
and Strong iISS [7], whose related generalizations in the
multistable context have been characterized in [8].

The cascade interconnection preserves the iISS property
under suitable conditions on the matching between the dissi-
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pation gain of the driving system and the injection gain of the
driven system, as in [9] and [10]. Conversely, Strong iISS
of cascades can be verified with no additional conditions
other than Strong iISS being satisfied by each subsystem.
This paper investigates the preservation of the iISS and
Strong iISS properties in the context of multistable systems.
In particular, we focus on the necessity of the additional
requirements that multistability demands in order to infer the
preservation of the two properties. Moreover, we provide a
fine description of the structure of the invariant set resulting
from the interconnection.

Notation: The symbol d[x1, x2] denotes the Riemannian
distance between two points x1 and x2 of a Riemannian
manifold M . For a set S ⊂ M define |·|S as |x|S =
infa∈S d[x, a]. For a compact set A ⊂M , ð(A) and int {A}
respectively denote the boundary and the interior of A. We
denote the differential [11, Definition 4.2.5] of a smooth
function V : M → R by the covector field dV : M → T ?M ,
and then we denote the Lie derivative [11, Definition 4.2.6]
of V along a vector field X : M → TM at a point x ∈M by
LXV (x) := dV (X)(s) = dV (x) ·X(x), namely the action
of dV on X at x. Notations |·| and | · |g respectively indicate
the standard Euclidean norm and the norm induced by the
Riemannian metric g on TxM , i.e. |v|g :=

√
gx(v, v) for any

v ∈ TxM . For a measurable function d : R+ → Rm define
its infinity norm over the time interval [t1, t2] as

∥∥d[t1,t2]

∥∥ =
ess supt1≤t≤t2 |d(t)|, and denote ‖d‖ :=

∥∥d[0,+∞)

∥∥. Define
the infinity norm of d(·) with respect to a compact set S
as follows:

∥∥d[t1,t2]

∥∥
S

= ess supt1≤t≤t2 |d(t)|S , and define
‖d‖S :=

∥∥d[0,+∞)

∥∥
S

. We define the saturation function
as sat(x) := sign {x}min {1, |x|}. Given two continuous
functions f, g : R → R, expression f(s) = O(g(s)) as
s→ 0+ will indicate that lim sups→0+ |f(s)/g(s)| < +∞.

II. PRELIMINARY DEFINITIONS

The subject of our study is the cascade interconnection
of two or more nonlinear systems which exhibit multistable
behavior. We are going to illustrate first the class of mul-
tistable systems of interest, and then we will address the
cascade composition of such systems.

Let M be a geodesically complete, connected, n-
dimensional Riemannian manifold without boundary. Let D
be a closed subset of Rm containing the origin. Consider
now the general nonlinear autonomous system:

ẇ(t) = F (w(t), d(t)), (1)

and its autonomous counterpart:

ẇ(t) = F (w(t), 0), (2)



where F (w, d) : M × D → TwM is a locally Lips-
chitz continuous mapping and d(·) is any locally essentially
bounded and measurable input signal taking values in D.
We denote with MD such class of input signals. We denote
with W (t, w; d) the uniquely defined solution of (2) at time
t fulfilling W (0, w; d) = w, under the input d(·). Typically,
all α- and ω-limit sets are assumed to be compact. We
then introduce the following notions of W-limit set and
decomposition.

Definition 1 (W-limit set): Let W ⊂ M be a compact
invariant set containing all the α- and ω-limit sets of (2),
i.e. α(w)∪ω(w) ⊂ W ∀w ∈M . The set W is then called a
W-limit set for (2).

Definition 2 (Decomposition): Let W ∈M be a W-limit
set for (2). A decomposition of W is a finite, disjoint family
of compact invariant sets W1, . . . ,WK (called atoms of the
decomposition) such that: W =

⋃K
i=1Wi.

For an invariant set Λ, its attracting and repulsing subsets
are defined as follows:

A(Λ) = {w ∈M : |W (t, w, 0)|Λ → 0 as t→ +∞} ,
R(Λ) = {w ∈M : |W (t, w, 0)|Λ → 0 as t→ −∞} .

Define a relation on two atoms Wi and Wj by Wi ≺ Wj

whenever A(Wi) ∩R(Wj) 6= ∅.
Definition 3 (r-cycle, 1-cycle, filtration): Let

W1, . . . ,WK be a decomposition of W , then:
1) An r-cycle (r ≥ 2) is an ordered r-tuple of distinct

indexes i1, . . . , ir such that Wi1 ≺ · · · ≺ Wir ≺ Wi1 .
2) A 1-cycle is an index i such that [R(Wi) ∩ A(Wi)]−
Wi 6= ∅.

3) A filtration ordering is a numbering of the Wi so that
Wi ≺ Wj ⇒ i ≤ j.

Existence of an r-cycle for (2) with r ≥ 2 is equivalent to
existence of a heteroclinic cycle, and existence of a 1-cycle
implies existence of a homoclinic orbit. Typically, system (2)
is required to satisfy the following assumption on W .

Assumption 1 (No cycle condition): The W-limit set for
(2) admits a finite decomposition, i.e. W =

⋃k
i=1Wi, for

some non-empty disjoint compact sets Wi, which shows
no cycle between the Wis and which satisfies a filtration
ordering, as detailed in Definitions 2 and 3. Under the
specified assumptions, the set W is said to satisfy the no-
cycle condition under the flow of (2).

We recall here the definitions of iISS and Strong iISS for
multistable systems as (1).

Definition 4: System (1) is said to satisfy the iISS property
for multistable systems if it satisfies:
• the zero-global attractivity (zero-GATT) property,

namely limt→+∞ |W (t, w; 0)|W = 0 for all x ∈M .
• the uniform bounded-energy bounded-state (UBEBS)

property, namely there exist K∞ functions α, γ, σ and
some positive constant cu such that α(|W (t, w; d)|W) ≤
γ(|w|W)+

∫ t
0
σ(|d(s)|)ds+cu for all t ≥ 0, all w ∈M ,

and all d(·) ∈MD.
It has been established in [8] that a necessary and sufficient

condition for iISS in multistable systems is the existence of

a smooth iISS-Lyapunov function, namely the existence of
a smooth function V : M → R≥0, a continuous positive-
definite function $, and K∞ functions α, γ such that the
following inequalities hold for all w ∈M and all d ∈ D:

α(|w|W) ≤ V (w)

Lf(w,d)V (w) ≤ −$(|w|W) + γ(|d|).

Note that, by virtue of [11, Proposition 4.2.10], we have

d

dt
V
(
W (t, w; d̃)

)
= Lf(w,d̃(t)) V

(
W (t, w; d̃)

)
,

for all t ≥ 0, all w ∈M , and all d̃ ∈MD.
Another necessary and sufficient condition for iISS in mul-

tistable systems is given by the Bounded-Energy Strongly-
Convergent-State (BESCS) property [8], namely the exis-
tence of a K∞ function σ for which the following implication
holds for any w ∈M and any d(·) ∈MD:∫ +∞

0

σ(|d(s)|) ds < +∞ ⇒ lim
t→+∞

|W (t, w, d)|W = 0.

(3)
Definition 5 (Strong iISS for multistable systems):

System (1) is said to be Strongly iISS for multistable
systems if it satisfies the iISS property for multistable
systems and, furthermore, it satisfies the asymptotic gain
(AG) property with respect to small inputs, namely there is
a function η ∈ K and a positive constant R such that:

‖d‖ ≤ R ⇒ lim sup
t→+∞

|W (t, w; d)|W ≤ κ(‖d‖) , (4)

for all w ∈M and all d(·) ∈MD.

III. CASCADE OF INTEGRAL ISS SYSTEMS - DRIVING
SYSTEM IS MULTISTABLE

We are now going to address the cascade interconnection
of such multistable systems. Let Mx and Mz be two geodesi-
cally complete, connected, Riemannian manifolds without
boundary which have dimension nx and nz respectively. Let
D be a closed subset of Rm containing the origin. Consider
the cascade system:

ẋ(t) = g(x(t), d(t)) (5a)
ż(t) = f(z(t), x(t), d(t)), (5b)

where g(x, d) : Mx ×D → Tx(Mx) and f(z, x, d) : Mz ×
Mx × D → Tz(Mz) are two locally Lipschitz continuous
mappings, and d(·) ∈ MD. We respectively denote with
X(t, x; d) and Z(t, z;X, d) the uniquely defined solutions
of (5a) and (5b) at time t fulfilling X(0, x; d) = x and
Z(t, z;X, d), under the inputs X(·) and d(·). Finally, we
denote by y = (x, z) ∈ Mx × Mz the joint state and
by Y (t, y; d) the uniquely defined solution of (5) at time
t fulfilling Y (0, y; d) = y under the input d(·).

We also consider the unperturbed cascade system:

ẋ(t) = g(x(t), 0) (6a)
ż(t) = f(z(t), x(t), 0). (6b)

In this Section, we derive sufficient conditions for the iISS
stability of the cascade system (5), when both the driving



system (6a) and the driven system (6b) satisfy the iISS
property for multistable systems. In particular, we assume
that the invariant set of the driving system (6) comprises
fixed points only, as follows.

Assumption 2: (Multistability without cycles of driving
system) Assume that all α- and ω-limit sets of (6a) are
compact, then let Wx denote a W-limit set of the driving
system (6a). Assume thatWx satisfies the no-cycle condition
under the flow of the driving system (6a) and that each atom
of the decomposition of Wx is a singleton, namely

Wx,i = {xi} with xi ∈Mx for all i = 1, . . . ,K.
Remark 1: Restricts the analysis to the case of driving

systems whose invariant set consists of fixed points only
yields a natural generalization of the Theorems in [9], [10],
[12] to the multistability context. Conversely, as shown in
[5], the case of periodic orbits and almost-periodic attractors
requires a number of additional assumptions on the stability
properties of the driven system (e.g. incremental ISS), and
it will be tackled in a subsequent publication.

We define for all i = 1, . . . ,K the limit system:

ż(t) = Fi(z(t)) := f(z(t), xi, 0) , i = 1, . . . ,K , (7)

obtained by applying the constant input x(t) ≡ xi for all
t ≥ 0.

Assumption 3: (No-cycle condition of each limit system)
For all i ∈ {1, . . . ,K}, assume that all α- and ω-limit sets
of (7) are compact, then letW(i)

z denote aW-limit set of (7)
for i = 1, . . . ,K. Each set W(i)

z is assumed to satisfy the
no-cycle condition under the flow of the limit system (7).

Theorem 1: Let Assumption 2 and 3 hold. If:
• the driving system (6a) is iISS in the multistable sense

with respect to the set Wx and input d(·), namely there
exists a constant cx ≥ 0, a proper positive-definite
function Vx : Mx → R+, a positive definite function
$x, and K∞ functions αx, ᾱx, γx which satisfy the
following inequalities:

αx(|x|Wx) ≤ Vx(x) ≤ ᾱx (|x|Wx) + cx (8)
Lg(x,d) Vx(x) ≤ −$x(|x|Wx) + γx(|d|); (9)

• for all i = 1, . . . ,K, the driven system (6b) is iISS in
the multistable sense with respect to the set W(i)

z and
input d(·), d [X(·), xi], namely there exist a constant
cz,i ≥ 0 a proper positive-definite function Vz,i : Mz →
R≥, a positive definite function $z,i, and K∞ functions
αz,i, ᾱz,i, γz,i, γd,i which satisfy the following inequal-
ities:

αz,i(|z|W(i)
z

) ≤ Vz,i(z) ≤ ᾱz,i(|z|W(i)
z

) + cz,i (10)

Lf(z,d)Vz,i(z) ≤ −$z,i(|z|W(i)
z

)+

γz,i (d[x, xi]) + γd,i(|d|); (11)

• for all i = 1, . . . ,K, it holds that γz,i(s) = O ($x(s))
as s→ 0+;

then the set

WΘ :=

K⋃
i=1

(
{xi} ×W(i)

z

)
(12)

qualifies as a W-limit set for the cascade (5) which satisfies
the no-cycle condition under the flow of (6). Moreover, the
cascade (5) is iISS in the multistable sense with respect to
the set WΘ and input d(·).

Proof: The driving system is iISS, and thus satisfies
the BESCS property (3) for some K∞ function σx. Let
γd(s) := maxi=1,...,K {γd,i(s)} for all s ≥ 0. Moreover,
by local Lipschitz continuity of f , we may consider the
following function:

ρ̃(r, s) := max
|z|+|x|≤r,|d|≤s

|f(z, x, d)− f(z, x, 0)|g (13)

Note that ρ̃(r, s) is continuous, nondecreasing with respect
to each argument and vanishes for s = 0. By virtue of [6,
Corollary IV.5], there exist two K∞ functions ρz and ρd such
that:

|f(x, d)|g ≤ |f(z, x, d)− f(z, x, 0)|g + |f(z, x, 0)|g
≤ ρz(|z|+ |x|+ 1)ρd(|d|) + |f(z, x, 0)|g. (14)

Let σ be the K∞ function defined as σ(s) :=
max {γx(s), σx(s), γd(s), ρd(s)}. We are now going to prove
the BESCS property of cascade (5) by using function σ. To
this aim, pick any (x, z) ∈ Mx ×Mz and any d(·) ∈ MD

such that: ∫ +∞

0

σ(|d(s)|) ds < +∞. (15)

For ease of notation, denote X(t) := X(t, x; d). By virtue of
(15), integration of (9) over the time interval [0,+∞) yields:∫ +∞

0

$x(|X(s)|Wx) ds ≤ Vx(x) +

∫ +∞

0

γx(|d(s)|) ds < +∞.
(16)

Since γz,i(s) = O ($x(s)) as s → 0+, there exist two
constants s̄, k > 0 such that γz,̄i(s) ≤ k$x(s) for all s ∈
[0, s̄]. The BESCS implies limt→+∞ |X(t)|Wx = 0, and thus
there exists ī ∈ {1, . . . ,K} such that X(t) → xī as t →
+∞. Since the equilibria xis are isolated, there exists a time
t0 such that d [X(t), xī] = |X(t)|Wx

for all t ≥ t0. Since
X(t) → xī, there exists T > t0 such that d [X(s), xī] ≤ s̄
for all t ≥ T . It then follows that:∫ +∞

0

γz,̄i (d [X(s), xī]) ds ≤
∫ T

0

γz,̄i (d [X(s), xī]) ds

+

∫ +∞

T

k$x(|X(s)|Wx) ds < +∞, (17)

where last inequality holds true due to continuity of
X(t, x; d) and (16). By virtue of (15) and (17), integration
of (11) yields the following inequality:

αz,̄i

(
|Z(t, z;X, d)|W(ī)

z

)
+

∫ t

0

$z,̄i(|Z(s, z;X, d)|W(ī)
z

) ds

≤ Vz,̄i(Z(t, z;X, d)) +

∫ t

0

$z,̄i(|Z(s, z;X, d)|W(ī)
z

) ds

≤ Vz,̄i(z) +

∫ +∞

0

γz,̄i (d [X(s), xī]) ds

+

∫ +∞

0

γd,̄i(|d(s)|) ds ≤ cz < +∞, (18)



for some cz > 0 and for all t ≥ 0. Since cz does not depend
upon t, inequality (18) implies∫ +∞

0

$z,̄i(|Z(s, z;X, d)|W(ī)
z

) ds < +∞, (19)

and boundedness of trajectories for all times, namely:

|Z(t, z;X, d)|W(ī)
z
≤ α−1

z,̄i
(cz) for all t ≥ 0. (20)

From this point onwards, the proof follows along the lines
of [8, Lemma 8].

Claim 1: lim inft→+∞ |Z(t, z;X, d)|W(ī)
z

= 0.
Proof: Assume by contradiction that

lim inft→+∞ |Z(t, z;X, d)|W(ī)
z

= ε > 0. Therefore, there
exists a time Tε > 0 such that |Z(t, z;X, d)|W(ī)

z
≥ ε/2 for

all t ≥ Tε. Since boundedness of trajectories (20) also holds
for all t ≥ 0, it makes sense to define

Ω := min
{
$z,̄i(s) with

ε

2
≤ s ≤ α−1

z,̄i
(cz)

}
and then observe that:∫ +∞

Tε

$z,̄i(|Z(s, z;X, d)|W(ī)
z

) ds ≥
∫ +∞

Tε

Ω = +∞.

The latter inequality contradicts (19).
We are now going to prove that
lim supt→+∞ |Z(t, z;X, d)|W(ī)

z
= 0. Assume by

contradiction that there exists ε̄ > 0 and a diverging
sequence of times {t̄n,ε̄}n∈N such that:

|Z(t̄n,ε̄, z;X, d)|W(ī)
z
> ε̄. (21)

By virtue of Claim 1, we can select ε := ε̄/2 so as to obtain
the sequence

{
tn,ε̄/2

}
n∈N

such that:

|Z(tn,ε̄/2, z;X, d)|W(ī)
z
≤ ε̄/2. (22)

We can therefore select a subsequence of
{

tn,ε̄/2
}
n∈N

, say
{tm}m∈N, such that, for all m ∈ N, at least one element
of {t̄n,ε̄}n∈N belongs to the interval [tm, tm+1]. In other
words, we select the tms in such a way to obtain at least
one “spike” of |Z(t, z;X, d)|W(ī)

z
in the interval [tm, tm+1].

We then make the following definitions for all m ∈ N.
Let tm,B denote the first occurrence of t̄n,ε̄ in the interval
[tm, tm+1], namely the time at which the first “spike” occurs
in the interval [tm, tm+1]. Let tm,A ∈ [tm, tm,B ] denote the
last time that the state Z(t, z;X, d) leaves the set P :={
w ∈Mz | |w|W(ī)

z
≤ ε̄/2

}
, and thus we have

|Z(t, z;X, d)|W(ī)
z
≥ ε̄/2. (23)

for all t ∈ [tm,A, tm,B ].
Claim 2: limm→+∞ (tm,B − tm,A) = 0.

Proof: It follows along the lines of [8, Claim 1].
Define zm,A = Z(tm,A, z;X, d) and zm,B =
Z(tm,B , z;X, d). By definition, we have, for all m ∈ N:

|zm,A|W(ī)
z

= ε̄/2 and |zm,B |W(ī)
z
≥ ε̄. (24)

The distance of a solution of a differential equation from an
initial condition is bounded from above, and for the couple
(zm,A, zm,B) it reads as:

d [zm,B , zm,A] ≤
∫ tmB

tmA

|f (Z(s, z;X, d), X(s, x; d), d(s))|g ds

(25)
Boundedness of trajectories for all times implies that Z(·)

and X(·) belong to a compact set X ⊂ M for all t ≥ 0.
Then, by virtue of (14), inequality (25) is rewritten as

d [zm,B , zm,A] ≤ F̄0(tm,B−tm,A)+ ρ̄z

∫ tm,B

tm,A

ρd(|d(s)|) ds.

(26)
with F0 := maxx,z∈X {|f(z, x, 0)|g} and ρ̄z :=
maxx,z∈X {ρz(|z|+ |x|+ 1)} By virtue of Claim 2 and
finiteness of the integral of ρd from (15), it follows that

lim
m→+∞

d [zm,B , zm,A] = 0, (27)

which implies

lim
m→+∞

|zm,A|W(ī)
z

= lim
m→+∞

|zm,B |W(ī)
z
,

thus representing a contradiction with (24). A proof of the
no-cycle condition for WΘ follows along the same lines as
in [5, Theorem 3.1].

Definition 6: Given a K function α, a K function γ(·) is
said to be a class-Hα function if it satisfies∫ 1

0

(γ ◦ α)(s)

s
ds < +∞.

If α is the identity, then γ(·) is said to be a class-HI function.
Theorem 2: Let Assumption 2 and 3 hold. If:
• the driving system (6a) satisfies the zero-GATT property

with respect to the set Wx and, moreover, for all i =
{1, . . . ,K} there exists a closed neighborhood Ui of
Wx,i such that:

|X(t, x; 0)|{xi} ≤ α
(
e−ktβ(|x|{xi})

)
, (28)

for all t ≥ 0 and all x ∈ Ui∩A(Wi), and with functions
α, β ∈ K∞, and a positive constant k;

• for all i ∈ {1, . . . ,K}, the driven system (6b) satisfies
the integral ISS property wrt to input d [X(·), xi] and the
invariant setW(i)

z , namely there exists a proper positive-
definite function Vz,xi

: Mz → R+, a positive definite
function $z,xi , functions αz,xi,1

, γz,xi ∈ K∞ which
satisfy the following inequalities:

αz,xi,1
(|z|W(i)

z
) ≤ Vz,xi(z) (29)

Lf(z,d)Vz,xi(z) ≤ −$z,xi(|z|W(i)
z

)

+ γz,xi (d[x, xi]) ; (30)

• for all i = 1, . . . ,K, it holds that γz,xi is a class-Hα
function with α as in (28);

then the set WΘ qualifies as a W-limit set for the cascade
(5), and satisfies the zero-GATT property and the no-cycle
condition under the flow of (6).

Corollary 1: Let the hypothesis of Theorem 2 hold with
α being the identity function and γz,xi being a locally



Lipschitz function in a neighborhood of zero. Then the set
WΘ qualifies as a W-limit set for the cascade (5), and
satisfies the zero-GATT property and the no-cycle condition
under the flow of (6).

IV. CASCADE OF STRONG IISS SYSTEMS - DRIVING
SYSTEM IS MULTISTABLE

In this Section, a sufficient condition for the preservation
of the Strong iISS stability property of the cascade system
(5) is obtained. For ease of presentation, we let f(z, x, d) =
f(z, x). We recall that compactness of Wx implies the
existence of a function ν3 ∈ K∞ and of a constant c3 > 0
such that:

|x| ≤ ν3(|x|Wx) + c3. (31)

We are now ready to state the main result of this Section.
Theorem 3: Let Assumptions 2 and 3 hold. If:
• the driving system (5a) is Strongly iISS wrt input d and

with input threshold Rx;
• the driven system (5b) is Strongly iISS wrt input |X(·)|

and with input threshold Rz;
• it holds that Rz = c3 + c̃ for some c̃ > 0.

then the setWΘ qualifies as aW-limit set for (6) and satisfies
the no-cycle condition under the flow of (6). Moreover, the
cascade (5) is Strongly iISS wrt the setWΘ and input d, and
with input threshold R := min

{
κ−1
x

(
ν−1

3 (c̃)
)
, Rx

}
, where

κx ∈ K∞ denotes the AG gain of the driving system for
small inputs.

Proof: Step 0: zero-GATT of WΘ

Let d(t) ≡ 0 for all t ≥ 0. Let y denote the joint initial
conditions (x, z). Since the driving system satisfies the zero-
GATT property, there exists T0(x) > 0 such that:∥∥∥X(·, x; 0) [T0(x),+∞)

∥∥∥
Wx

< ν−1
3 (c̃). (32)

Combining (32) and (31) yields: |X(t, x; 0)| ≤ c̃+ c3 < Rz
for all t ≥ T0 which, together with the AG property for small
inputs of the driven system, yields:

lim sup
t→+∞

|Z (t, z;X(·))|Wz
≤ κz(Rz), (33)

and, in particular, there exists constants
ε > 0 and Tε(x, z) ≥ T0(x) such that
Y (t, y; 0) ∈ Y for all t ≥ Tε(x, z), with Y :={

(x, z) ∈Mx ×Mz | |x|Wx ≤ ν−1
3 (c̃) , |z|Wz ≤ κz(Rz) + ε

}
,

which proves ultimate boundedness of trajectories. Due
to |X(t, x; 0)|Wx

→ 0 as t → +∞, there exists an
index i ∈ {1, . . . ,K} such that d [X(t, x; 0), xi] → 0
as t → +∞. We can then denote with Φi the semiflow
of ż(t) = f (z(t), X(t, x; 0)) and Θi the semiflow of
ż(t) = f (z(t), xi), and then notice that Φi is asymptotically
autonomous with limit flow Θi [13]. Assumption 3 ensures
that W(i)

z is nonempty, compact, and connected, and
moreover is invariant and chain recurrent for Θi. Ultimate
boundedness of trajectories ultimately ensures compact
closure of all trajectories in Y . We can then invoke [13,
Theorem 1.8] to estabilish global attractiveness of W(i)

z

under the semiflow Φi. By iterating the same reasoning over

all is, we conclude that the set WΘ as in (12) is globally
attractive for the autonomous cascade (6). A proof of the
no-cycle condition for WΘ follows along the same lines as
in [5, Theorem 3.1].

Step 1: ISS wrt small inputs
Let d(·) be an input signal such that ‖d‖ ≤ R. Since the

driving system satisfies the AG property wrt small inputs,
there exists T1(x, d) > 0 such that∥∥∥X(·, x; d) [T1(x,d),+∞)

∥∥∥
Wx

< ν−1
3 (c̃). (34)

By adopting a similar reasoning as in Step 0, it is possible
to prove ultimate boundedness of trajectories, namely the
existence of constants ε > 0 and Tε(x, z, d) > T1(x, d) >
0 such that Y (t, y; d) ∈ Y for all t ≥ Tε(x, z, d) > 0.
Moreover, as shown in the proof of [4, Claim 4], the zero-
GATT property of WΘ ensures the existence of a smooth
Lyapunov function U : Mx × Mz → R≥0 and functions
α, α̃, δ ∈ K∞ such that along the trajectories of (5) it holds:

α(|y|WΘ) ≤ U(y)

U̇(y, d) ≤ −α̃ (|y|WΘ
) + δ (1 + |y|WΘ

) δ (|d|) . (35)

Given ultimate boundedness of trajectories and compactness
ofWΘ, it holds that δ (1 + |y(t)|WΘ) ≤ δ̄, for some constant
δ̄ and for all t ≥ Tε(x, z, d). Estimate (35) can thus be
rewritten as

U̇(y, d) ≤ −α̃ (|y|WΘ
) + δ̄ δ (|d|) . (36)

Estimate (36) shows that U qualifies as an ISS Lyapunov
function for system (5), for all t ≥ Tε(x, z, d) and ‖d‖ ≤ R,
and thus implies the AG property:

lim sup
t→+∞

|Y (t, y; d(·)|WΘ ≤ η (‖d‖) , (37)

with η ∈ K∞.
Step 2: iISS
Given iISS of the driving system, BESCS is satisfied for

some K∞ function σ̃. Pick any x ∈ Mx. Pick any input
d(·) ∈ MD such that

∫ +∞
0

σ̃(|d(s)|) < +∞. Then there
exists an index i ∈ {1, . . . ,K} such that d [X(t, x; 0), xi]→
0 as t→ +∞. In Step 0 we have proved, under the very same
condition, that the setW(i)

z satisfies the zero-GATT property
for the semiflow Φi. By iterating the same reasoning over
all is, we conclude that the left-hand side of (3) implies
convergence of trajectories to WΘ for all initial conditions
y = (x, z) ∈Mx ×Mz , namely that∫ +∞

0

σ̃ (|d(s)|) ds < +∞ ⇒ lim sup
t→+∞

|Y (t, y; d)|WΘ
= 0.

(38)
Inequality (38) proves the BESCS property for system (5).
By a straightforward application of [8, Theorem 1], we con-
clude the UBEBS property for system (5), thus estabilishing
iISS.

Corollary 2: Let Assumptions 2 and 3 hold. If:
• the driving system (5a) satisfies the zero-GATT property

wrt the set Wx;



• the driven system (5b) is Strongly iISS with input
threshold Rz and wrt input |X(·)|;

• Rz = c3 + c̃ for some c̃ > 0.
then the cascade system (5) satisfies the zero-GATT property
wrt to the set WΘ, which qualifies as a W-limit set for (6)
and satisfies the no-cycle condition under the flow of (6).

Corollary 3: Let Assumptions 2 and 3 hold. If:
• the driving system (5a) is iISS wrt the setWx and input
d;

• the driven system (5b) is Strongly iISS with input
threshold Rz and wrt input |X(·)|;

• Rz = c3 + c̃ for some c̃ > 0.
then the cascade system (5) is iISS wrt to input d and the
setWΘ, which qualifies as aW-limit set for (6) and satisfies
the no-cycle condition under the flow of (6).

V. CASCADE OF INTEGRAL ISS SYSTEMS - EXAMPLES

A. Example 1

Consider the following set of differential equations:

ẋ =
−x3 + x

1 + (−x3 + x)2
+ d (39a)

ż =
−z + x

1 + z2
+ d. (39b)

Subsystem (39a) satisfies the iISS property with respect
to the set Wx = {−1, 0, 1}. Indeed, let Vx(x) :=
ln
(
1 + 1

4 (x− 1)2(x+ 1)2
)
. Observe that Vx(x) ≥ α(|x|W)

with α(s) := ln (1 + s2/4) but there exists no class-K∞
function of |x|W bounding Vx(x) from above due to Vx(0) >
0. In fact, Lyapunov functions for multistable systems typi-
cally attain local minima at sinks at local maxima at sources
[4]. By taking the time derivative of Vx along the trajectories
of (39a), we obtain:

V̇x = − (−x3 + x)2

(1 + (−x3 + x)2)
(
1 + 1

4 (x− 1)2(x+ 1)2
)

+
1(

1 + 1
4 (x− 1)2(x+ 1)2

) d
≤ −$x(|x|Wx) + |d|,

with $x(r) := r2 / (4(1 + r6)). Furthermore, subsystem
(39b) is iISS. Indeed, let Vz,i(z) = ln

(
1 + 1

2 (z − xi)2
)
. By

taking the time derivative of Vz,i along the trajectories of
(39b), we obtain:

dVz

(
−z + x

1 + z2
+ d

)
=

(z − xi)(−z + xi − xi + x)

(1 + (z − xi)2/2) (1 + z2)

+
z − xi

1 + (z − xi)2/2
d

≤ − (z − xi)2

(1 + (z − xi)2/2) (1 + z2)
+ γz,i(|x− xi|) + |d|,

with γz,i(r) := r2. Since limr→0+ γz,i(r)/$x(r) = 1
for all i ∈ {1, 2, 3}, we conclude by virtue of Theorem 1
that the cascade (39) is iISS wrt to input d and WΘ =
{(1, 1), (0, 0), (−1,−1)}. Note that both subsystems are iISS
but not Strong iISS with respect to d, as it has been shown
in [7, Example 1].

B. Example 2

In this example, we show that the driven system being
iISS wrt a single input equilibrium is not sufficient for
global convergence of the cascade. In fact, convergence of
all limit equations is required. Consider the set of differential
equations:

ẋ = −x3 + x (40a)

ż = −sat(z) +
1

2
z x. (40b)

It is immediate to check that although subsystem (40b)
is integral ISS wrt the equilibrium z = 0 and the input
x, convergence is not global for the limit systems ż =
−sat {z}+ 1

2 z and ż = −sat {z}+ 1
2 z respectively obtained

by setting x(t) ≡ 1 and x(t) ≡ −1 for all t ≥ 0, and thus
we cannot conclude iISS of cascade (40).

VI. CONCLUSION

In this work, we have addressed the preservation of the
iISS and Strong iISS properties for multistable systems under
cascade interconnection. We have shown that most results
available in the literature continue to hold in the context of
multistable systems, under suitable additional requirements.
Further work could address the feedback interconnection
of multistable iISS and Strong iISS systems as well as an
extension of Theorem 2 for the case of the driving system
admitting inputs.
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