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Abstract— A double banana is defined as the bar-and-joint
assembly of two bipyramids joined by their apexes. Clearly, the
bar lengths of this kind of assembly are not independent as we
cannot assign arbitrary values to them. This dependency can be > D
algebraically expressed as a closure condition fully expressed in
terms of bar lengths. This paper is devoted to its derivation and
to show how its use simplifies the position analysis of many well-
known serial and parallel robots thus providing a unifying treat- F; P
ment to apparently disparate problems. This approach permits "
deriving the univariate polynomials, needed for the closed-form
solution of these position analysis problems, without relying on

trigonometric substitutions or difficult variable eliminations. "
m

o NOTATION Fig. 1. A double banana is a bar-and-joint assembly definedwmy t
P; A point in E? bipyramids joined by their apexe®(and P,,). This assembly is not rigid
-, . . h i i he axis defi
D, Position vector of pointP; with respect to a because the two bipyramids can rotate about the axis definggtlgommon

apexes.
global reference frame
A; ;. Area of the triangle defined b¥;, P;, and P

Vi,j.k Oriented volume of the tetrahedron defined by

P, P;, Py, and P, independent loop equations that are solved using the same

N techniques to solve arbitrary sets of non-linear equatidhs

pi,; Vector pointing fromP; to P;, p; ; = P P; The aim of this paper is to show that alternative formulation

to those based on loop equations are possible, and that their

) use can provide significant advantages including the usnece

Si,j Squaréad distance betweefy and Pj, sij = ity in many non-trivial cases, of variable eliminatiors t
[Pl derive the final univariate polynomials.

This paper is organized as follows. Sectioh Il presents
some basic facts on Cayley-Menger determinants that are
The bar-and-joint assembly resulting from linking twoused in Sectiofi 1}l to derive the closure condition of the
bipyramids by their apical vertices is commonly known asiouble banana. SectignllV applies this closure condition to

a double banana (see Fig[lL). Since the two bipyramids aresolve the position analysis of well-known non-trivial ra®o

free to rotate about the line joining the common apexes, thgich as the inverse kinematics of the 3R serial robot or the

double banana has become the classic example of a bar-afigtward kinematics of the octahedral manipulator. Sed¥bn

joint assembly that satisfies Maxwell’s rule for the rigydit presents a numerical example for the forward kinematics

of frames and yet is clearly flexible [1]. of decoupled Stewart platform. Finally, we conclude in
The solution of the inverse kinematics of serial-chairsection V.

robots and the direct kinematics of in-parallel platforms

d;;  Distance betwee®; and P;, d; ; = ||pi ;|

I. INTRODUCTION

are usually considered within the area of position analysis Il. CAYLEY-MENGER DETERMINANTS
kinematics (or kinematic geometry) [2]. These problems, The Cayley-Menger bi-determinant of the point sequences
when solved in closed-form, require finding univariate polypil, ...,P, ,andP;,, ..., P;, is defined as:

nomials whose roots determine the sought solutions (com-

monly known asassembly modes). These easy-to-formulate 01 ... 1

but, in general, difficult-to-solve problems have receitieel N s o
attention of many roboticians but the techniques developed D (i, ... i, 1, ..., jn) = 2 <> T
solve them mainly rely on the computation of kinematically 2 I
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The evaluation ofD(i,...,i,) gives (n—1)!* times

the squared hypervolume of the simplex spanned by thﬁ(ij L m) =

points P;,, ..., P;, in E"~1 [4, pp. 737-738]. Then, we " o N -
can introduce the following two definitions: D(i,j, k1) D(i, 5, k,m) — D°(i, j, k, 4,5, k,m) _ o
e Ay = +1y/D(i,j,k) to denote the area of the DG, 5, k) @
triangle defined byP;, P;, and Py.
_ 41 — :
o Vijri = 5y D(i,j, k1) to denote the oriented  rpon asquming thak;, P;, and P, are not alignedi(e,

volume of the tetrahedron defined @, P;, P, and D(i, j, k) # 0)
P,. It is defined as positive ifp; ;, pi .k, Pii| > 0, and . '
negative otherwise. D(i, j, k,1;i, 4, k,m) = £1/D(i, j, k,1) D(i, j, k,m). (3)

Observe that, when working if£", all Cayley-Menger
determinants involving more tham + 2 points necessarily
vanish. For more properties of Cayley-Menger determinant§t.m
the interested reader is referred to [5], [6], [7].

Many geometric problems can be elegantly formulated us- o dD(i, j k. 1;i, j, k,m)
ing Cayley-Menger determinants —see, for instance, [5] andP(i.4, k. 54, 5, k,m) =
the examples therein. Next, we show how the computation
of the double banana closure condition is one of them.

Since the left hand side of the above equation is linear in
it can be expressed as

Si,m

aSl,m
+ D(@ajv ka l; i7j7 k7 m)‘sl,m,ZO

... . .
= —gD(’h],k)Sl’m + D(%j,k7l;7,,],k,m)|slym:0 .

I1l. THE DOUBLE BANANA CLOSURE CONDITION (4)
Therefore, substitutind4) in}(3), we conclude that
P,
; 2 . -
: Sl,m = m(D(Z7jakal;l7]ak7m)|sl,m:0

+ /DG k) DG, ).

which can be rewritten as:

1
Stm = 57— (Yijkdm +36 Vi Vijem), (5)
Where\Iji,j,k,l,m = D(Za j7 ka l; ia j7 ka m)|

SL,WLZO.

Finally, by considering separately the two constituent
P, bipyramids of the double banana in Fig. 1, we have that
Fig. 2. The squared distance between the apexes of a bipyramikis

cases; .,,, can be expressed in terms of the bipyramid squared edge &ngth
using Cayley-Menger determinants. 1

Stm = 55— (Wijktm + 36 Vijki Vijkm)
2A12,j,k: J J J
1
A bipyramid is a set of two tetrahedra sharing one face s;m = Y E (Ynopim +36Viopi Viopm) -
(Fig.[2). The bar-and-joint framework defined by the edges m,0,p
of a bipyramid is rigid because the joints cannot be movediherefore, by equating the right hand side of the above two
continuously while preserving the bar lengths. equations, we conclude that:

The joint centers of this framework defines a simplex in
E*. Then, since it is actually embeddedlH, its volume is

null. Therefore, according to the notation of Hig. 2, we have Aip,p(qji,j,k,l,m +36Vi k1 Vijkm)
that A2 Vot 36 Vit Vi) =0 (6)
D(i, j,k,l,m) = 0. (1) This equation is the closure condition of a double banana.

The expansion of the above equation yields a quadrat“: IS satisfied if, and only if, it can be assembled with the

expression ins; ,,,, the square distance between the apexeasss'gneOI bar lengths.

of the bipyramid. By solving it, we obtain the two feasible Next, it is shown how, by using this closure condition,

values fors . univariate polynomials for the position analysis of imort
By applying Jacobi’s theorem to a partition of the deterserial and parallel robots can be straightforwardly oladin

minant D(i, 5, k, 1, m) (see [8] for details), it can be proved without relying on trigonometric substitutions or diffitul

that: variable eliminations



IV. APPLICATIONS TOROBOT POSITION ANALYSIS This equation is a scalar radical equation in a single vigiab
A. Inverse kinematics of 3R serial robots s35. The different real roots of this equation —values of
, . . s— correspond to the different solutions of the inverse
Fig.[3(top) shows a general 3R serial robot, a manipulatgr:> ) X
9. [3(top) g P (?imematlcs problem. The above equation can be reduced to

with three rotational joint variables. This robot has been olvnomial by simplv clearing the radicals associated: wit
used for positioning tasks in the Cartesian space or as t y y py cleanng
1,2,3,5 and %7773,5. This erIdS

regional serial kinematic chain in wrist-partitioned 6 ots,
the most common serial robots [9], [10]. (A6.7.3%7 2345 — 2487347 23%12345%6 7345

Jr14111,2,3‘1’2,7,3,4,5JF1296Ag,7,3V12,2,3,4V12,2,3,5
2
— 1296 AY 5 3V 7 3.4V6735) — (124673V12345

Vigza—T72 A%,z,sA§,7,3V1,2,3,4‘I/6,7,3,4,5)2V12,2,3,5 =0.
8)

The expansion of the above equation leads to a fourth-
degree polynomial inss 5, the univariate polynomial for
the inverse kinematics of the 3R serial robot. Observe how
this polynomial is obtained without relying on variable
eliminations or trigopnometric substitutions. For each fudé t
real roots of equation[{8), vectons; 4 and ps 7 can be
P, determined by a sequence of trilaterations as follows (see

[7] for a vector formulation of trilateration):
e P13 Ccan be obtained fromp, > andp; 5, then
e P14 from p; 2 andp, 3, then
e pa7 from pys andpy s, and finally
0 o pug from py3 andpy ;.
This procedure leads to up to four locations féy and at
P least one of them must satisfy the distance imposed between
Ps and FPs.

Py

Fig. 3. A 3R robot (top), and its kinematically equivalent -aad-joint

assembly (bottom). B. The forward kinematics of a 4-3 Sewart platform

Consider the Stewart platform with topology %4 (see

The inverse kinematics problem of this serial robot congig 7). It is known that this parallel robot can adopt up to
sists in finding the values of its joint angles to attain a giveg assembly configurations [14].

location for its end-effector relative to the base. It hasrbe

shown that this problem reduces to compute the solutions |
of a fourth-order polynomial. This quartic was obtained for
the first time by Pieper and Roth in [11] using homoge-
neous transformations. In [12], Smith and Lipkin analyzed
geometrically this solution using conic sections. Next we
present an alternative to the approach based on homogeneous
transformations that exploits the closure condition of the
double banana derived in the previous section.

In a serial manipulator, a link connecting two skew rev-
olute axes can be modelled by taking two points on each
of these axes and connecting them all with edges to formFa. 4. 4-3 Stewart platform whose kinematically equivaleat-and-joint
tetrahedron [13]. Then, a 3R serial robot can be modelled 4&€mPply is the same as that of a 3R robot.
the bar-and-joint framework involving 7 joints and 15 bars
shown in Fig.[B(bottom). Observe how such bar-and-joint Observe how the bar-and-joint framework associated with
framework corresponds to the double banana in[Big. 1 aftétis parallel robot is exactly the same as that associated
removing the bars linking®, and P,,, and P, and P,,,, and  with the 3R serial robot analyzed in the previous subsection
then mergingP, and P,. Therefore, according to the notation Therefore, equatior {8) also corresponds to the univariate
of Fig.[3 and equatior[16), the closure condition of the 3Rolynomial for the forward kinematics of this 4-3 Stewart
serial robot is given by platform.

For each of the real roots of equatidd (8), the feasible

A2 (0 36V Vi ) locations of thg three points defining Fhe mqving platform

678 1,2,3:4,5 1,2,3,4 ¥1,23,5 can be determined by a sequence of trilaterations as fallows
—Al23(Ye7345 +36Ver3aVerss) =0 (7) « P35 can be obtained fronps » andps 1, then

<




e p37 from ps s andpy s, and finally as labelled in Fid.]1, bars joining; and P, and P, and P,,

e P3¢ from ps 7 andps s. have been removed and then joid®s and P,, and P; and
This procedure leads to up to eight locations fr P,, have been merged. Therefore, according to the notation
of Fig.[B(top) and equatiori](6), the closure condition of the
octahedral platform is

Af 2312345 +36Vi234Vi2a5)
—Al55(W62,3.45 +36Ve234Ve235) =0 (9)

This equation is a scalar radical equation in a single
variable: ss 5. It is satisfied if, and only if, the considered
octahedral manipulator can be assembled. Actually, its dif
ferent real roots correspond to the different solutionshef t
forward kinematics problem.

Similarly to the case of the 3R serial robot, equatigh (9)
can be reduced to a polynomial by clearing the radicals
associated with/; 53 4, Vi 235, V62,34, and Vg 2 3 5. This
procedure yields an eighth-degree univariate polynonmal i
s2 3. Observe again how this polynomial is obtained without
relying on variable eliminations or trigonometric suhstit
tions. For each of the real roots of this polynomial, the
feasible locations of the three points defining the moving
platform can be determined by a sequence of trilaterations
as follows:

e P23 from ps 5 andps g, then
Ps e P24 from ps 3 andp, ¢, and finally
o p2,1 from ps 3 andpo 4.

Fig. 5. The octahedral Stewart platform (top) and its kineécady

equivalent bar-and-joint assembly (bottom). This procedure leads to up to eight locations fyrand at
least one of them must satisfy the distance imposed between
P, and Ps.

C. Forward kinematics of the octahedral Stewart platform The study of the octahedral manipulator degeneracies [19]

Figure[B(top) shows an octahedral Stewart platform. DutS not treated here but their analysis could probably benefit
ing the late 80's and early 90's several researchers su#om the simplicity of the closure conditiofil(9).
cessfully addressed the forward kinematics problem of th
platform in closed form, giving procedures that reduce th
problem to finding the roots of an eighth-degree univariate Consider the Stewart platform with topologyb<~ ap-
polynomial. In [15], Nanuaet al. derived such polynomial Pearing in Fig.[B(top). This robot is a specialization of
through resultant elimination and tangent-half-anglestiub the general decoupled Stewart platform whose topology is
tution techniques. A similar result, based on three sphkric/ « "\ This robot is also known as the spherical Stewart
four-bar |inkagesi was obtained by Griffis and Duffy inplatform [20, P. 114], a robot with pOSition and orientation
[16]. An alternative method was also developed by Innodriven by independent active prismatic joints and one of the
centi and Parenti-Castelli in [17]. Michelucci and Foufoulypical topologies used to obtain parallel wrists [21]. &#sh
using Cayley-Menger determinants, obtained an algebrd€en proved that the parallel robots with these topologies ¢
system of two equation in two unknowns from which,adopt up to 16 assembly configurations [14]. A closed-form
using Sylvester elimination, a resultant of degree 16 in ongolution for the forward kinematics of the considered robot
unknown was derived [6]. More recently, Akcali and Mutluwas obtained for the first time by Innocenti and Parenti-
revisited the problem —also using resultant elimination an§astelli by using resultant elimination and tangent-half-
tangent-half-angle substitution techniques— with the afm angle substitution techniques [22]. Later on, other umatar
reducing the computational cost of evaluating the resgiltinPolynomials were presented at least by Wohlhart [23] and
univariate polynomial [18]. Husain and Waldron [24].

Alternatively to the above approaches, using the closure The kinematically equivalent bar-and-joint framework to
condition for the double banana, a simple procedure fdhe Stewart platform in Fid.l6(top) appears in fig. 6(boftom
solving the forward kinematics problem of the octahedral he following three double bananas can be identified in this
manipulator is obtained. Indeed, the kinematically equiviramework:
alent bar-and-joint framework to this platform appears in 1) The one resulting from removing joir®;: a double
Fig.[H(bottom). It corresponds to a double banana in which, banana in which, as labelled in Figl 1, bars linking

eB' Forward kinematics of the decoupled Stewart platform



factorizes in two 16th-degree polynomials, shyss 5) and
A(s25). Alternatively, by applying the Sylvester resultant to
I'y(-) =0 andT'5(-) = 0 a similar result is obtained, in this
case the polynomial irsy 5 factorizes as®(s25) B(s2,5).
Therefore, ®(s2 5), the greatest common divisor of both
resulting univariate polynomials, corresponds to the aniiv
ate polynomial for the forward kinematics of the decoupled
Stewart platform.

For each real root of (s, 5), the locations of the points
in the moving platform can be determined by computing the
following sequence of trilaterations:

e P53 from ps 6 andps 7, then

e P52 from ps 3 andps 7, then

e P51 from ps 2 andps 3, and finally

e p1,4 from p;, andp; 3.

This procedure leads to up to eight locations far Those
satisfying the distance imposed by the leg connecitpgnd

, Ps correspond to valid configurations.
Py < s V. NUMERICAL EXAMPLE

Let us consider the decoupled Stewart platform in
Fig.[6(top). As an example, let us set, = 85, s13 = 91,
S1,4 = 197, 5273 = 38, S2,4 = 74, 5374 = 34, 85,6 = 49,
P ss,7 = 41, and s¢,7 = 34, and squared input joints; 5 =

Fig. 6. The decoupled Stewart platform (top) and its eqenabar-and- 120, s2,7 = 108, s35 = 69’ 83,6 = 621. §3,7 = 58, anq
joint assembly (bottom). sa,6 = 108. Then, proceeding as explained in the previous

2)

3)

section, we obtain the univariate polynomial

s — 1665.2437 s37% + 1.272210° s} 52 5 — 5.895210% s3%

P; and P,,,, and P, and P,,, have been removed and 1 1.848710'! s} 52 % —4.1525 10'3 3% 4 6.9146 10"° s3%

then joints P, and P,, and P; and P,, have been 17 19 21 7
’ . o —8.738410 8.5338 10 — 6.553310

merged. The closure condmon of this double banana is 535+ 52 5

23 25 27
a scalar radical equation in two variables; ands, ;. +4.071510% 55 5 — 2.184810°° 55 5 + 1.1165 10%" 55 5
After clearing radicals, an eighth-degree polynomial — 5.425610% s3 ; + 2.092310°° s3 5 — 5.0066 10°" 535
equation, say'y(sz2,5,54,7) = 0, is obtained. 1 5.2479 1032,

The one resulting from removing join®s: a double
banana in which, as labelled in F[g. 1, bars linkiRg ~ This polynomial has 8 real roots, namelyl.8812,
and P, andp and]DZ' have been removed and then45 8373, 90.1583, 99.5174, 129.3323, 153.0000, 162.4025,
joints Py andP and P; and P,, have been merged. and 178.4359. The corresponding solutions of the for-
The apphcatlon of the closure condition of this doublevard kinematics, for the case in whighs = (2,0,0)7,
banana is a scalar radical equation in two variable®s = (9,0,0)", andp; = (6,5,0)", and assuming that
so.5 ands, 7. After clearing radicals, an eighth-degreelP1,3,P1,2, P14 > 0, appear in FigLl7. The solutions for
polynom|al equation, say's(s25,547) = 0, is ob- Which [p13,p12,p14] < 0 are mirror symmetric with
tained. ' respect to the base to those represented in[FFig. 7.

The one resulting from removing the bar joinidg VI. CONCLUSION

and P;: a double banana in which, as labelled in Fig. 1,
bars linking P; and P,,, and P, and P,, have been
removed and then joint&, and P, have been merged.
The closure condition of this double banana is a scalar
radical equation in two variables; 5 and sy 7. After
clearing radicals, a fourth-degree polynomial equatio
sayI's(sq5,54,7) = 0, is obtained.

Most position analysis techniques in robotics rely on
the computation of a set of independent loop equations.
The analysis of kinematically equivalent bar-and-joisainfre-
Works opens a new scenario in which the elementary building
blocks are the closure conditions of double bananas. Since
"he number of these closure conditions are typically lower
than the number of scalar equations derived from sets of

By eliminating eithers, 5 or s, 7 in the three derived independent loop equations, an important simplification is
polynomial equations, a final univariate polynomial can bgained. This has been exemplified through several examples.
obtained. For instance, by applying the Sylvester resuttan The presented ideas have been delivered in a rather informal
I'i(-) = 0 andI'3(-) = 0 to eliminates, 7, a 32th-degree way. They certainly remain to be formalized in an algorith-
polynomial equation insy 5 is obtained. This polynomial mic setting.
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Fig. 7. The forward kinematics solutions of the analyzed dpted Stewart platform.
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