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Abstract— A double banana is defined as the bar-and-joint
assembly of two bipyramids joined by their apexes. Clearly, the
bar lengths of this kind of assembly are not independent as we
cannot assign arbitrary values to them. This dependency can be
algebraically expressed as a closure condition fully expressed in
terms of bar lengths. This paper is devoted to its derivation and
to show how its use simplifies the position analysis of many well-
known serial and parallel robots thus providing a unifying treat-
ment to apparently disparate problems. This approach permits
deriving the univariate polynomials, needed for the closed-form
solution of these position analysis problems, without relying on
trigonometric substitutions or difficult variable eliminations.

NOTATION

Pi A point in E
3

pi Position vector of pointPi with respect to a
global reference frame

Ai,j,k Area of the triangle defined byPi, Pj , andPk

Vi,j,k,l Oriented volume of the tetrahedron defined by
Pi, Pj , Pk, andPl

pi,j Vector pointing fromPi to Pj , pi,j =
−−→
PiPj

di,j Distance betweenPi andPj , di,j = ‖pi,j‖

si,j Squared distance betweenPi and Pj , si,j =
‖pi,j‖

2

I. I NTRODUCTION

The bar-and-joint assembly resulting from linking two
bipyramids by their apical vertices is commonly known as
a double banana (see Fig. 1). Since the two bipyramids are
free to rotate about the line joining the common apexes, the
double banana has become the classic example of a bar-and-
joint assembly that satisfies Maxwell’s rule for the rigidity
of frames and yet is clearly flexible [1].

The solution of the inverse kinematics of serial-chain
robots and the direct kinematics of in-parallel platforms
are usually considered within the area of position analysis
kinematics (or kinematic geometry) [2]. These problems,
when solved in closed-form, require finding univariate poly-
nomials whose roots determine the sought solutions (com-
monly known asassembly modes). These easy-to-formulate
but, in general, difficult-to-solve problems have receivedthe
attention of many roboticians but the techniques developedto
solve them mainly rely on the computation of kinematically
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Fig. 1. A double banana is a bar-and-joint assembly defined by two
bipyramids joined by their apexes (Pl andPm). This assembly is not rigid
because the two bipyramids can rotate about the axis defined bythe common
apexes.

independent loop equations that are solved using the same
techniques to solve arbitrary sets of non-linear equations[3].
The aim of this paper is to show that alternative formulations
to those based on loop equations are possible, and that their
use can provide significant advantages including the unneces-
sity, in many non-trivial cases, of variable eliminations to
derive the final univariate polynomials.

This paper is organized as follows. Section II presents
some basic facts on Cayley-Menger determinants that are
used in Section III to derive the closure condition of the
double banana. Section IV applies this closure condition to
solve the position analysis of well-known non-trivial robots
such as the inverse kinematics of the 3R serial robot or the
forward kinematics of the octahedral manipulator. SectionV
presents a numerical example for the forward kinematics
of decoupled Stewart platform. Finally, we conclude in
Section VI.

II. CAYLEY-MENGER DETERMINANTS

TheCayley-Menger bi-determinant of the point sequences
Pi1 , . . . , Pin , andPj1 , . . ., Pjn is defined as:

D(i1, . . . , in; j1, . . . , jn) = 2
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When the two point sequences are the same, it
is convenient to abbreviateD(i1, . . . , in; i1, . . . , in) by
D(i1, . . . , in), which is simply called theCayley-Menger
determinant of the involved point sequence.



The evaluation ofD(i1, . . . , in) gives (n− 1)!
2 times

the squared hypervolume of the simplex spanned by the
points Pi1 , . . ., Pin in E

n−1 [4, pp. 737-738]. Then, we
can introduce the following two definitions:

• Ai,j,k = + 1

2

√

D(i, j, k) to denote the area of the
triangle defined byPi, Pj , andPk.

• Vi,j,k,l = ± 1

6

√

D(i, j, k, l) to denote the oriented
volume of the tetrahedron defined byPi, Pj , Pk, and
Pl. It is defined as positive if|pi,j ,pi,k,pi,l| > 0, and
negative otherwise.

Observe that, when working inEn, all Cayley-Menger
determinants involving more thann + 2 points necessarily
vanish. For more properties of Cayley-Menger determinants,
the interested reader is referred to [5], [6], [7].

Many geometric problems can be elegantly formulated us-
ing Cayley-Menger determinants —see, for instance, [5] and
the examples therein. Next, we show how the computation
of the double banana closure condition is one of them.

III. T HE DOUBLE BANANA CLOSURE CONDITION
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Fig. 2. The squared distance between the apexes of a bipyramid, in this
casesl,m, can be expressed in terms of the bipyramid squared edge lengths
using Cayley-Menger determinants.

A bipyramid is a set of two tetrahedra sharing one face
(Fig. 2). The bar-and-joint framework defined by the edges
of a bipyramid is rigid because the joints cannot be moved
continuously while preserving the bar lengths.

The joint centers of this framework defines a simplex in
E
4. Then, since it is actually embedded inE3, its volume is

null. Therefore, according to the notation of Fig. 2, we have
that

D(i, j, k, l,m) = 0. (1)

The expansion of the above equation yields a quadratic
expression insl,m, the square distance between the apexes
of the bipyramid. By solving it, we obtain the two feasible
values forsl,m.

By applying Jacobi’s theorem to a partition of the deter-
minantD(i, j, k, l,m) (see [8] for details), it can be proved
that:

D(i,j, k, l,m) =

D(i, j, k, l)D(i, j, k,m)−D2(i, j, k, l; i, j, k,m)

D(i, j, k)
= 0.

(2)

Then, assuming thatPi, Pj , andPk are not aligned (i.e.,
D(i, j, k) 6= 0),

D(i, j, k, l; i, j, k,m) = ±
√

D(i, j, k, l)D(i, j, k,m). (3)

Since the left hand side of the above equation is linear in
sl,m, it can be expressed as

D(i,j, k, l; i, j, k,m) =
∂ D(i, j, k, l; i, j, k,m)

∂ sl,m
sl,m

+ D(i, j, k, l; i, j, k,m)|sl,m=0

= −
1

2
D(i, j, k)sl,m + D(i, j, k, l; i, j, k,m)|sl,m=0

.

(4)

Therefore, substituting (4) in (3), we conclude that

sl,m =
2

D(i, j, k)

(

D(i, j, k, l; i, j, k,m)|sl,m=0

±
√

D(i, j, k, l)D(i, j, k,m)
)

,

which can be rewritten as:

sl,m =
1

2A2

i,j,k

(Ψi,j,k,l,m + 36Vi,j,k,l Vi,j,k,m) , (5)

whereΨi,j,k,l,m = D(i, j, k, l; i, j, k,m)|sl,m=0
.

Finally, by considering separately the two constituent
bipyramids of the double banana in Fig. 1, we have that

sl,m =
1

2A2

i,j,k

(Ψi,j,k,l,m + 36Vi,j,k,l Vi,j,k,m) ,

sl,m =
1

2A2
n,o,p

(Ψn,o,p,l,m + 36Vn,o,p,l Vn,o,p,m) .

Therefore, by equating the right hand side of the above two
equations, we conclude that:

A2

n,o,p(Ψi,j,k,l,m + 36Vi,j,k,l Vi,j,k,m)

−A2

i,j,k(Ψn,o,p,l,m + 36Vn,o,p,l Vn,o,p,m) = 0 (6)

This equation is the closure condition of a double banana.
It is satisfied if, and only if, it can be assembled with the
assigned bar lengths.

Next, it is shown how, by using this closure condition,
univariate polynomials for the position analysis of important
serial and parallel robots can be straightforwardly obtained
without relying on trigonometric substitutions or difficult
variable eliminations



IV. A PPLICATIONS TOROBOT POSITION ANALYSIS

A. Inverse kinematics of 3R serial robots

Fig. 3(top) shows a general 3R serial robot, a manipulator
with three rotational joint variables. This robot has been
used for positioning tasks in the Cartesian space or as the
regional serial kinematic chain in wrist-partitioned 6R robots,
the most common serial robots [9], [10].
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Fig. 3. A 3R robot (top), and its kinematically equivalent bar-and-joint
assembly (bottom).

The inverse kinematics problem of this serial robot con-
sists in finding the values of its joint angles to attain a given
location for its end-effector relative to the base. It has been
shown that this problem reduces to compute the solutions
of a fourth-order polynomial. This quartic was obtained for
the first time by Pieper and Roth in [11] using homoge-
neous transformations. In [12], Smith and Lipkin analyzed
geometrically this solution using conic sections. Next we
present an alternative to the approach based on homogeneous
transformations that exploits the closure condition of the
double banana derived in the previous section.

In a serial manipulator, a link connecting two skew rev-
olute axes can be modelled by taking two points on each
of these axes and connecting them all with edges to form a
tetrahedron [13]. Then, a 3R serial robot can be modelled as
the bar-and-joint framework involving 7 joints and 15 bars
shown in Fig. 3(bottom). Observe how such bar-and-joint
framework corresponds to the double banana in Fig. 1 after
removing the bars linkingPp andPm, andPk andPm, and
then mergingPk andPp. Therefore, according to the notation
of Fig. 3 and equation (6), the closure condition of the 3R
serial robot is given by

A2

6,7,3(Ψ1,2,3,4,5 + 36V1,2,3,4 V1,2,3,5)

−A2

1,2,3(Ψ6,7,3,4,5 + 36V6,7,3,4 V6,7,3,5) = 0. (7)

This equation is a scalar radical equation in a single variable:
s3,5. The different real roots of this equation —values of
s3,5— correspond to the different solutions of the inverse
kinematics problem. The above equation can be reduced to
a polynomial by simply clearing the radicals associated with
V1,2,3,5 andV6,7,3,5. This yields
(

A4

6,7,3Ψ
2

1,2,3,4,5 − 2A2

6,7,3A
2

1,2,3Ψ1,2,3,4,5Ψ6,7,3,4,5

+A4

1,2,3Ψ
2

6,7,3,4,5 + 1296A4

6,7,3V
2

1,2,3,4V
2

1,2,3,5

− 1296A4

1,2,3V
2

6,7,3,4V
2

6,7,3,5

)2
−
(

72A4

6,7,3Ψ1,2,3,4,5

V1,2,3,4 − 72A2

1,2,3A
2

6,7,3V1,2,3,4Ψ6,7,3,4,5

)2
V 2

1,2,3,5 = 0.
(8)

The expansion of the above equation leads to a fourth-
degree polynomial ins3,5, the univariate polynomial for
the inverse kinematics of the 3R serial robot. Observe how
this polynomial is obtained without relying on variable
eliminations or trigonometric substitutions. For each of the
real roots of equation (8), vectorsp3,4 and p6,7 can be
determined by a sequence of trilaterations as follows (see
[7] for a vector formulation of trilateration):

• p1,3 can be obtained fromp1,2 andp1,5, then
• p1,4 from p1,2 andp1,3, then
• p4,7 from p4,3 andp4,5, and finally
• p4,6 from p4,3 andp4,7.

This procedure leads to up to four locations forP6 and at
least one of them must satisfy the distance imposed between
P5 andP6.

B. The forward kinematics of a 4-3 Stewart platform

Consider the Stewart platform with topology

• • • •

• • • (see
Fig. 4). It is known that this parallel robot can adopt up to
8 assembly configurations [14].

P1

P2

P3 P4

P5

P6 P7

Fig. 4. 4-3 Stewart platform whose kinematically equivalentbar-and-joint
assembly is the same as that of a 3R robot.

Observe how the bar-and-joint framework associated with
this parallel robot is exactly the same as that associated
with the 3R serial robot analyzed in the previous subsection.
Therefore, equation (8) also corresponds to the univariate
polynomial for the forward kinematics of this 4-3 Stewart
platform.

For each of the real roots of equation (8), the feasible
locations of the three points defining the moving platform
can be determined by a sequence of trilaterations as follows:

• p3,5 can be obtained fromp3,2 andp3,1, then



• p3,7 from p3,5 andp4,5, and finally
• p3,6 from p3,7 andp3,5.
This procedure leads to up to eight locations forP6.
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Fig. 5. The octahedral Stewart platform (top) and its kinematically
equivalent bar-and-joint assembly (bottom).

C. Forward kinematics of the octahedral Stewart platform

Figure 5(top) shows an octahedral Stewart platform. Dur-
ing the late 80’s and early 90’s several researchers suc-
cessfully addressed the forward kinematics problem of this
platform in closed form, giving procedures that reduce the
problem to finding the roots of an eighth-degree univariate
polynomial. In [15], Nanuaet al. derived such polynomial
through resultant elimination and tangent-half-angle substi-
tution techniques. A similar result, based on three spherical
four-bar linkages, was obtained by Griffis and Duffy in
[16]. An alternative method was also developed by Inno-
centi and Parenti-Castelli in [17]. Michelucci and Foufou,
using Cayley-Menger determinants, obtained an algebraic
system of two equation in two unknowns from which,
using Sylvester elimination, a resultant of degree 16 in one
unknown was derived [6]. More recently, Akçali and Mutlu
revisited the problem —also using resultant elimination and
tangent-half-angle substitution techniques— with the aimof
reducing the computational cost of evaluating the resulting
univariate polynomial [18].

Alternatively to the above approaches, using the closure
condition for the double banana, a simple procedure for
solving the forward kinematics problem of the octahedral
manipulator is obtained. Indeed, the kinematically equiv-
alent bar-and-joint framework to this platform appears in
Fig. 5(bottom). It corresponds to a double banana in which,

as labelled in Fig. 1, bars joiningPj andPk, andPp andPo,
have been removed and then jointsPk andPp, andPj and
Po, have been merged. Therefore, according to the notation
of Fig. 5(top) and equation (6), the closure condition of the
octahedral platform is

A2

6,2,3(Ψ1,2,3,4,5 + 36V1,2,3,4 V1,2,3,5)

−A2

1,2,3(Ψ6,2,3,4,5 + 36V6,2,3,4 V6,2,3,5) = 0. (9)

This equation is a scalar radical equation in a single
variable: s2,3. It is satisfied if, and only if, the considered
octahedral manipulator can be assembled. Actually, its dif-
ferent real roots correspond to the different solutions of the
forward kinematics problem.

Similarly to the case of the 3R serial robot, equation (9)
can be reduced to a polynomial by clearing the radicals
associated withV1,2,3,4, V1,2,3,5, V6,2,3,4, andV6,2,3,5. This
procedure yields an eighth-degree univariate polynomial in
s2,3. Observe again how this polynomial is obtained without
relying on variable eliminations or trigonometric substitu-
tions. For each of the real roots of this polynomial, the
feasible locations of the three points defining the moving
platform can be determined by a sequence of trilaterations
as follows:

• p2,3 from p2,5 andp2,6, then
• p2,4 from p2,3 andp2,6, and finally
• p2,1 from p2,3 andp2,4.

This procedure leads to up to eight locations forP1 and at
least one of them must satisfy the distance imposed between
P1 andP5.

The study of the octahedral manipulator degeneracies [19]
is not treated here but their analysis could probably benefit
from the simplicity of the closure condition (9).

D. Forward kinematics of the decoupled Stewart platform

Consider the Stewart platform with topology

• • •

• • • • ap-
pearing in Fig. 6(top). This robot is a specialization of
the general decoupled Stewart platform whose topology is

• • • • • •

• • • • . This robot is also known as the spherical Stewart
platform [20, p. 114], a robot with position and orientation
driven by independent active prismatic joints and one of the
typical topologies used to obtain parallel wrists [21]. It has
been proved that the parallel robots with these topologies can
adopt up to 16 assembly configurations [14]. A closed-form
solution for the forward kinematics of the considered robot
was obtained for the first time by Innocenti and Parenti-
Castelli by using resultant elimination and tangent-half-
angle substitution techniques [22]. Later on, other univariate
polynomials were presented at least by Wohlhart [23] and
Husain and Waldron [24].

The kinematically equivalent bar-and-joint framework to
the Stewart platform in Fig. 6(top) appears in Fig. 6(bottom).
The following three double bananas can be identified in this
framework:

1) The one resulting from removing jointP1: a double
banana in which, as labelled in Fig. 1, bars linking
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Fig. 6. The decoupled Stewart platform (top) and its equivalent bar-and-
joint assembly (bottom).

Pj andPm, andPl andPn, have been removed and
then jointsPk and Pp, and Pj and Po, have been
merged. The closure condition of this double banana is
a scalar radical equation in two variables:s2,5 ands4,7.
After clearing radicals, an eighth-degree polynomial
equation, sayΓ1(s2,5, s4,7) = 0, is obtained.

2) The one resulting from removing jointP6: a double
banana in which, as labelled in Fig. 1, bars linkingPi

andPm, andPj andPl, have been removed and then
joints Pk andPp, andPj andPo, have been merged.
The application of the closure condition of this double
banana is a scalar radical equation in two variables:
s2,5 ands4,7. After clearing radicals, an eighth-degree
polynomial equation, sayΓ2(s2,5, s4,7) = 0, is ob-
tained.

3) The one resulting from removing the bar joiningP2

andP7: a double banana in which, as labelled in Fig. 1,
bars linkingPj and Pm, and Pl and Po, have been
removed and then jointsPk andPp have been merged.
The closure condition of this double banana is a scalar
radical equation in two variables:s2,5 and s4,7. After
clearing radicals, a fourth-degree polynomial equation,
sayΓ3(s2,5, s4,7) = 0, is obtained.

By eliminating eithers2,5 or s4,7 in the three derived
polynomial equations, a final univariate polynomial can be
obtained. For instance, by applying the Sylvester resultant to
Γ1(·) = 0 and Γ3(·) = 0 to eliminates4,7, a 32th-degree
polynomial equation ins2,5 is obtained. This polynomial

factorizes in two 16th-degree polynomials, sayΦ(s2,5) and
A(s2,5). Alternatively, by applying the Sylvester resultant to
Γ2(·) = 0 andΓ3(·) = 0 a similar result is obtained, in this
case the polynomial ins2,5 factorizes asΦ(s2,5)B(s2,5).
Therefore,Φ(s2,5), the greatest common divisor of both
resulting univariate polynomials, corresponds to the univari-
ate polynomial for the forward kinematics of the decoupled
Stewart platform.

For each real root ofΦ(s2,5), the locations of the points
in the moving platform can be determined by computing the
following sequence of trilaterations:

• p5,3 from p5,6 andp5,7, then
• p5,2 from p5,3 andp5,7, then
• p5,1 from p5,2 andp5,3, and finally
• p1,4 from p1,2 andp1,3.

This procedure leads to up to eight locations forP4. Those
satisfying the distance imposed by the leg connectingP4 and
P6 correspond to valid configurations.

V. NUMERICAL EXAMPLE

Let us consider the decoupled Stewart platform in
Fig. 6(top). As an example, let us sets1,2 = 85, s1,3 = 91,
s1,4 = 197, s2,3 = 38, s2,4 = 74, s3,4 = 34, s5,6 = 49,
s5,7 = 41, and s6,7 = 34, and squared input jointss1,5 =
126, s2,7 = 108, s3,5 = 69, s3,6 = 62, s3,7 = 58, and
s4,6 = 108. Then, proceeding as explained in the previous
section, we obtain the univariate polynomial

s16
2,5 − 1665.2437 s15

2,5 + 1.2722 106 s14
2,5 − 5.8952 108 s13

2,5

+ 1.8487 1011 s12
2,5 − 4.1525 1013 s11

2,5 + 6.9146 1015 s10
2,5

− 8.7384 1017 s9
2,5 + 8.5338 1019 s8

2,5 − 6.5533 1021 s7
2,5

+ 4.0715 1023 s6
2,5 − 2.1848 1025 s5

2,5 + 1.1165 1027 s4
2,5

− 5.4256 1028 s3
2,5 + 2.0923 1030 s2

2,5 − 5.0066 1031 s2,5

+ 5.2479 1032.

This polynomial has 8 real roots, namely,41.8812,
45.8373, 90.1583, 99.5174, 129.3323, 153.0000, 162.4025,
and 178.4359. The corresponding solutions of the for-
ward kinematics, for the case in whichp5 = (2, 0, 0)T ,
p6 = (9, 0, 0)T , and p7 = (6, 5, 0)T , and assuming that
|p1,3,p1,2,p1,4| > 0, appear in Fig. 7. The solutions for
which |p1,3,p1,2,p1,4| < 0 are mirror symmetric with
respect to the base to those represented in Fig. 7.

VI. CONCLUSION

Most position analysis techniques in robotics rely on
the computation of a set of independent loop equations.
The analysis of kinematically equivalent bar-and-joint frame-
works opens a new scenario in which the elementary building
blocks are the closure conditions of double bananas. Since
the number of these closure conditions are typically lower
than the number of scalar equations derived from sets of
independent loop equations, an important simplification is
gained. This has been exemplified through several examples.
The presented ideas have been delivered in a rather informal
way. They certainly remain to be formalized in an algorith-
mic setting.



s2,5 = 41.8812 s2,5 = 45.8373 s2,5 = 90.1583 s2,5 = 99.5174

s2,5 = 129.3323 s2,5 = 153.0000 s2,5 = 162.4025 s2,5 = 178.4359

Fig. 7. The forward kinematics solutions of the analyzed decoupled Stewart platform.
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