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Abstract—The real roots of the univariate polynomial closure conditon
of a planar parallel robot determine the solutions of its foward
kinematics. This paper shows how the univariate polynomial of all fully-
parallel planar robots can be derived directly from that of the widely
known 3-RPR robot by simply formulating these polynomials in terms of
distances and oriented areas. This is a relevant result beaae it avoids the
case-by-case treatment that requires different sets of vable eliminations
to obtain the univariate polynomial of each fully-parallel planar robot.

Index Terms—Planar robots, forward kinematics, position analysis,
planar Gough-Stewart platforms.

A fully-parallel planar robot consists of moving platformcon-
nected to dixed baseby three serial kinematic chains, lgs Each
chain consists of three independent 1-degree-of-freednmerl pair
joints, one of which is driven by aactuator. Since the displacement
of the moving platform is confined to a plane, only revolutg 8Rd
prismatic (P) pairs are considered. Then, the topology oh e&rial
kinematic chain can be described by three letters. Theres@ren
possible combinations: RRR, RPR, RRP, PRR, RPP, PRP, and P
The chain PPP is not considered because three P pairs nefpiltese
translations in the plane which cannot be independent. Theated
joint is identified by underlining it. Then, since any of thierde
joints can be actuated, there are twenty one possible leghwhn
be grouped in four leg architectures —known as the RR, PR,iRIP
PP legs (see Tab[é I)— attending to the sequence of passius.jo
The number of passive prismatic joints in a loop cannot beertizain
three, otherwise the robot would gain one degree of freedims
fact limits the number of possible PP legs to one. Then, dimee are
(138 =
and3- (%))
any two legs of the other three types, the total number ofukfit
planar fully-parallel robots is 1653. When the three adisatare
locked, the robot becomes a rigid structure provided thes iitot in
a singularity. This permits to classify these 1653 robats iD classes
attending to the topology of the resulting structure (segéeld). Up
to this point, we have followed the usual approach used iotiod
to present all possible fully-parallel planar robots buserve that the
resulting structures are nothing more than the 5-link Agsuematic
chains, also known as the planar Assur Il grougs [1].

The forward kinematics of parallel robots consists in figdthe
possible poses of the mobile platform, for specified valukshe
actuated joint coordinates, with respect to the fixed baseisTit
reduces to the position analysis of one of the ten possibletsres
in Table[Tl. Numerical solutions to this problem are enoughrhany
applications but yield little insight into the problem. Th#ernative
are the exact methods which rely on the computation of a tiaiea
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TABLE |
PLANAR FULLY -PARALLEL ROBOT LEG TYPES

Type RR  Type RP  Type PR  Type PP
RRR RPR RPR
RRR RPP PRR
RRR RPP PRR EEFF,’
RPR PRP PRP PPR
PRR RRP PPR -
RRP RRP PR

polynomial thus providing what it is usually called dosed-form
solutionto the problem.

In 1987, Li and Matthew solved the position analysis problgim
the ten 5-link Assur kinematic chains in closed form for thestfi
time [2]. Their approach consisted in realizing that evergsur Il
group consisted of two kinematically independent loopscitian be
classified into only six types: RRRR, RPRR, RPPR, RPRP, RRRP,
RPPP. Then, they reduced the problem to obtain the loop iegsat
for these six loops in general form and compute the resuitaatsin-
gle variable for the ten feasible combinations. Althouglstanding
in many ways for its time (the authors even envisaged theilgtiss
of applying their results to planar and spherical robots} work has
been overlooked by the robotics community. In 1996, Medekked
the same problem from a different point of view which reslilie
gFgase-by-case analys[s [3]. Other solutions for some IGAissur
kinematic chains have been presented, at least,|in[[4],[&h].[7].
The development of a remarkable unified formulation for threvard
kinematics of all fully-parallel planar robots started i895 with
Husty’s first use of the Grilnwald-Blaschke kinematic mapgpto

asolve the forward kinematics of the 3-RRobot [8]. This formulation

was thereafter extended by Hayes, Chen, Zsombor-Murralytasty
himself who presented their results in a series of pubbeatithat
culminated with a recent monogragh [9]. [10], [11], [12]13[.1[14],
[15], [16], [17]. The approach followed by these authorsasdd on

1140 feasible combinations of legs of type RR, PR, and RIg,xamining the motion of each leg separately WhiCh can be?mmted
— 513 feasible combinations of one leg of type PP wittPy only three types of surfaces: an hyperbolic paraboloo {¢gs

of type PR and RP), a hyperboloid of one sheet (for legs of type
RR), or a plane (for legs of type PP). Then, the forward kinizsa
problem boils down to find the points of intersection of thédsee
such surfaces. The result is indeed a uniform proceduredieing
the forward kinematics of all fully-parallel planar robolsit an
elimination process is still required to obtain a univaigblynomial
for 11 different cases.

A different unifying approach stems from regarding a tratishal
motion as an infinitely small rotation about a point at infmitt
is well-known that a translation in the directidm.,u,) may be
represented as a rotation about the ideal point given in gemsous
coordinates by —uy, us,0). This is probably the most simple unify-
ing approach to deal with revolute and prismatic joints $temeously
but, using the standard formulations such as those basettepén-
dent loop equations, it is difficult to be accommodated. aiger is
essentially devoted to show how a coordinate-free forrandbased
on distances and oriented areas provides a framework withioh
this idea can be easily applied. This will allow us to coneltldat the
univariate polynomial of the 3-R®robot contains all the necessary
and sufficient information for solving the forward kineneatiof all

fully-parallel planar robots.

This paper is organized as follows. Sectigh Il briefly re\dethe
basics of deriving the univariate polynomial closure ctindi of the

3-RPR robot in terms of distances and oriented areas. SeEfibn Il
shows how to transform any other fully-parallel robot wittismatic
joints into a 3-RIR robot with some revolute joint centers located
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TABLE Il

THE 10 FULLY-PARALLEL PLANAR ROBOT FAMILIES

Robot family Associated Led tvpes

(# of different structure 9 yp
robot topologies)

| (56) l [ RR-RR-RR

RP-RR-RR

Il (252) /( [ PR-RR-RR

H (216) )( \ RP-PR-RR

RP-RP-RR

IV (252) ( ; PR-PR-RR

T RP-RP-PR

v (252) ( ( PR-PR-RP

VI (63) S [ ] PP-RR-RR

PP-RR-RP

VIl (216) )S [ ) PP-RR-PR

RP-RP-RP

VI (112) /( = ) PR.PR.PR

IX (108) )S \ ) PP-PR-RP

PP-RP-RP

X (126) ——l PP-PR-PR

—
Moreover,p,; = P;P; ands; ; = d; ; = ||pi.;|*.

Po !

o

Ps
Fig. 1. The general 3-RP planar robot platform.

Figure[1 shows a general 3-RPplanar robot platform. The center
of the three grounded passive revolute joitisdefine the base ori-
ented triangleA\ Py Ps P> and the three moving passive revolute joints
centers,®, the moving oriented triangle\ Ps P, Ps. The squared
lengths of the active prismatic joints asg 4, s2,5, and sz s. Much
has been written about this parallel robot because of itstiped
interest, mechanical simplicity, and rich mathematicalperties. A
review of the different techniques for solving the forwaiddmatics
of this robot can be found in [18] where it is shown that thishpem
can be solved by finding the roots of:

sa5 = det(I — Z13 271,63 — Zo,4,5 Z6,1,4) 51,6, 1)
where
Zis = 1 { Sij + Sik — Sjk —4 Ak
28i,j 4 A5k Si,j + Si,k — Sjk
with

1
Aijr=£7 \/(Sm‘ +sintsin)’ =2 (505250624552

being the oriented area @k P; P; P, (defined as positive iP;, P;,
and P, are ordered counter-clockwise, and negative otherwise).
Equation [(1) expresses the set of valuessgf compatible with
the fixed lengths of the active joints, the base and movinggrta
side lengths, and the signs of the oriented triangle, Ps P, and
A Ps Py Ps. The expansion of the determinant in this equation yields
a scalar radical equation as a function of the unknown squdie
tancesi,¢ which, after clearing radicals, finally yields the univagia
polynomial closure condition of the robot, a 6th-degreeypommial
equation ins1,¢ which will be denoted by'(s1,6) = 0. The real roots
of this polynomial determine the solutions of the forwardednatics.

at infinity. Section[T¥ shows through examples how to solve _The interested reader is referred to|[18] for details on theva
using the univariate polynomial of the 3-RProbot— the position derivation.

analysis of different fully-parallel planar robots. Fityalwe conclude
in Sectior Y with a summary of the main contributions and pezss

for future research.

Il. THE UNIVARIATE POLYNOMIAL CLOSURE CONDITION OF THE
3-RPR ROBOT IN TERMS OF DISTANCES AND ORIENTED AREAS

Ill. REPLACING REVOLUTE BY PRISMATIC JOINTS

In this section, we will consider the case in which the themlute
joints connected to the moving platform are replaced wiikrpatic
joints. We will proceed progressively by replacing first ptieen two,

In what follows, P; will denote a point,P; P; the segment defined and finally the three revolute joints. At the end, it will bew® clear

by P; and P;, and A P; P; P, the triangle defined by, P;, and Px.

that all other cases can be easily deduced from this analysis



P} P . . .
. = respect to that of\ P, P; Ps. This has to be taken into account in the

\ @ univariate polynomial by changing the sign 4§ . 5 if needed.
s as After the introduced changes, the univariate polynomialsate
P P condition can be rewritten as a polynomialdp, that is,

n
_ ) i
S1,4= (61 +dy 4 sin a1)2 - 271(81’6)51 =0. (5)
S4,5 = (61 + d4/’5 sin Ot3)2 i=0
S4,6 = (61 + d4’,6 sin 0(2)2

F(Sl,a)

Py Now, factoring outéy in the above closure condition, we get
5? ’Yn(sl,(i) + 7n71(81,6) + 77L—2(281,6) +. . -0 (6)
01 0%
Then, the closure condition can be expressed as:

Yn—1(s1,6) = Yn—2(S1,6)
+ 2
01 03
Since ¢; is finally made to tend to infinity, we conclude that the
univariate polynomial closure condition for the resultiradpot, after
the introduction of a prismatic joint, is,(s1,6) = 0.

P3

Yn(s1,6) + +--=0. ()

Pge Pge Pge

y B. Replacing two revolute joints
dyr 5 sinag dy 41 sinoy P d :

Py P, P

01

dyr g sinaz

Ps

P

Fig. 2. One revolute joint in the moving platform is subgttli by a prismatic
joint.

A. Replacing one revolute joint

Let us suppose that the revolute joint centeredPatin Fig.[d is
replaced with a prismatic joint, as shown in Hi§). 2(top),rstlwat P,
is split into P4 and P;’. This new joint is placed at fixed orientationsFig. 3. Two revolute joints connected to the moving platfare substituted
with respect to the links connected to them. Once an orientas Py prismatic joints.
assigned to the prismatic joint axis with respect to its eelfja links,

a set of orientation angles can be defined (in this casevz andas) . , Lo o .
and, as a consequence, an oriented distance can be defimatbbet replaced with a prismatic joint as indicated in Aig. 3. Failg the

P, Ps and Ps and the prismatic joint axis. This defines a set opame reasoning Lifed above, t_h's_'s eq“"’?'e“t to replagingith a
new points on this axis: those that realize the minimum dista point at infinity, 5, and substituting the distances betwe@nand

bge

Now, let us suppose that the revolute joint centere®ats also

to Py, Ps and Ps which are denoted by in Fig. [A(bottom). Note Py, and Ps, by

that the prismatic joint imposes the alignment of these tsobut,

for the moment, let us suppose that they all are located asahee ds,2 = 2 + dsi 2 sin as, (8)
distance, say;, from P/°. This would imply that they would lie on ds.6 = 82 + dss ¢ sin ou, 9)

a circle but, ifé; — oo, they would again lie on a line as imposed by _ _ o
the prismatic join. Actually, the presented geometric gfarmation With 2 — oo, respectively. To obtain the substitution fah,s,
simply consists in replacings by P5° and substituting the distancesobserve that the angle formed by the two prismatic jointssis- as.

betweenP, and P;, Ps, and Ps, by Then,
ZP5°OP6P4°° =7 — a5+ as.
ds1 =01+ dy 4 sinaa, 2 . .
. Therefore, using the law of cosines, we conclude that:
das =01 + dy 5sinaz, (3)
dae =01+ dy gsinaz, (4)

) dig) :d;g + dig — 2d5,6d4,6 COS(?T — a5 + 043)
respectively.

. . . . : =(02 + ds g sinau)® + (81 + du g sinaz)?
Itis worth noting that, after the described geometric tfamsation, (82 + dg: g sin a‘f) 1t dus s o)
it might happen that the orientation 8fP{° Ps Ps have changed with + 2(62 + ds 6 sin ) (61 + dus 6 sin a2) cos(as — az).



with §; — oo andds — oo.

C. Replacing three revolute joints

Fig. 4.
substituted by prismatic joints.

The three revolute joints connected to the movindfqlm are

Finally, let us assume that the revolute joint centere&sats also
replaced with a prismatic joint with the orientation angiegicated
in Fig.[4. Using the same reasoning as above, this is equivade
take Ps to infinity and substitute the distance betwe@nand P; by

(10)
In this case, to obtain the substitutions for the distanetsdenls

d376 =03 + d3,6” sin ass.

IV. EXAMPLE

Let us consider the planar 3-RPparallel robot in Fig[1l. As an
example, let us set; 2 = 16, s1,3 = 65, s2.3 = 73, S5,6 = 25,
s4,6 = 25, sa.5 = 36, and squared input joints 4+ = 1, s2,5 = 121,
andss,¢ = 169. Let us also assume that the orientationoP; P> Ps
and APs P, Ps are positive. Substituting these valuedlifsis), the
following univariate polynomial is obtained

9.6 — 293.1486 s7 ¢ + 54084.9111 s1 ¢ — 3.558710° 57 6
+ 1.0004 10% 57 5 — 1.2240 10° 51,6 + 5.3843 10°.

S1,6 —

This polynomial has a double real root 32.0000. The corre-
sponding solution of the forward kinematics, for the casevhich
P = (0,007, P, = (4,0)7, and P; = (1,8)7, appears in the
first row of Fig.[3. This example was studied in_[18] to compare
the different formulations for solving the forward kinernicaof the
3-RPR parallel robot presented in [19], [20], arid [8], with thaiskd
on distances and oriented areas.

When the revolute joint centered Bi is replaced with a prismatic
joint, a RAP-RAR-RFR planar robot is obtained. This kind of robot
belongs to the type Il robot family in Tablellll. If the orierion of
the passive prismatic joint with respect to its adjacerkdjraccording
to the notation used in Tab[e]lll, is given by

3 5 4 5
al = Zﬂ', Qg = Zﬂ'—l—arctan 3 andas = Zﬂ',
then
d14:61+i,d45:61—3\/§7andd46:51—i.
E) \/5 ) il \/5

Substituting these distances i(s1,6), while keeping all other
distances unaltered, and computing the leading coefficdnthe
resulting polynomial ind;, we get the univariate polynomial

556 — 672.0638 57 6 + 1.498310° s ¢ — 1.4372107 57 6
+6.172910% 5% 4 — 1.2023 10" 51,6 + 8.7934 10"°.

S1,6

and P;, and P4, observe that the angles formed by the new prismatic The real roots of this polynomial arg2.0000, 112.2332,

joint axis with those defined by the other two are— a4 andas —as
(see Fig[H). Then,

LPPLPS° =1 — ar + o,
LPPPYP =1 — o + as.
Consequently, using the law of cosines,

d2.6 =(02 + dss g sin aa)? + 03

+ 2(02 + ds/ ¢ sin aa)d3 cos(ar — ), (12)
d§’4 :(51 + d4/,6/ sin 042)2 + 5'32,
+ 2(01 + du ¢ sin a2 )d3 cos(az2 — ), (12)
and
dis=dig+dig+2dsediscos(as + as). (13)

The required substitutions for all other cases can be dkrive

following the same procedure. Tablellll compiles them allisth
concluding that the univariate polynomials of all fullyrpHel planar
robots can be deduced from the univariate polynomial of HrPR
robot when expressed in terms of distances and oriented.afba
degree of the resulting univariate polynomial for each fanthat
is, the maximum number of solutions of the forward kinenwtic

141.1726, and342.8691. The corresponding solutions of the forward
kinematics appear in the second row of Hijy. 5.

Now, if the revolute joint centered d% is also replaced with a
prismatic joint, a RP-RAP-RHR robot is obtained. This kind of robot
belongs to the type IV robot family in Tadlgllll. If this newipmatic
joint orientation with respect to its adjacent links, actiog to the
notation of TabldTll, is given by

4 4
a4 = 21 — arctan 3 as = T + arctan 3

and 12
ag = T+ arctan 5
then
d1,4 = 51 + E,
das =61 — 32,
ds,e = 02 — 4,
die =01 4 05 + V25102 — 10V/281 — 1435 + 58,
d:;,s = 52 — 12,
d1,6 = (52 —t.

is also included in Tablé il and denoted by FK. The practical Substituting these values ii'(s1), while keeping all other

consequences of the presented formulation are better sinddr distances unchanged, and computing the leading coefficktite
through an example. resulting polynomial ird;, and then the leading coefficient of the re-



TABLE Il
DISTANCE SUBSTITUTIONS FOR EACH ROBOT FAMILY

Family Associated —
(FK) structure Substitutions
Py P.
¢ *
Ps
|
None
(6)
Ps
b ®
P4// as P5
Q2
P .
v Ps di,4 =01+ dy g sinag
(Ié) 04:1 dy,6 = 01 + dyr g sinaz
Ps3 dy5 = 01 +dyr 5 sinag
@
Py Py
P4// 063 Ps
®
d1,4 = 61 + d1y4l sin [e %]
* .
Py ’ P dye = 01+ dyr g sinaz
6 .
o dy5 = 01 +dyr 5 sinag
® a6 d1,3 =02+ dy 3 sinay
oy .
Par d2,3 =d2 + dzygl sin as
as
Py ds.6 = 62 + d3i ¢ sinag
®
P
Ps
®
d1,4 =61+ d1y4l sin aip
(6755 .
KXo dy5 =01 +dyr 5 sinag
v P Forr d5,6 =62+ d5,6” sin aig
“) dig = dig) + dgﬁ +2ds,5ds,6 cos(az — as)
P d3,6 = 02 + d3 ¢/ sin g
di,6 =02 +1
L J
Py
d1,4 = 61 + d1y4l sin [e %]
Ps
dy,5 =61 + dyr 5 sinas
oz as ds.6 = 02 + d5 7 sinay
Py K4 ) ) )
; Py Py d4,6 = d4,5 + d5,6 +2ds5ds.6 COS(ag — 045)
(\4/) “ o d3,6 = 62 + d3,6’ sin ag
Ps die =02+t
PR
2 d1,2 = 63 + dlygu sin ary
&7 U dyy =63+ dor 3 sinas
By Py
2

d2,5 =d3 + dz/,5 sin ag




TABLE Ill (CONT'D)

DISTANCE SUBSTITUTIONS FOR EACH ROBOT FAMILY

Associated

structure Substitutions
Py
®
d%,4 = 6% + 772 — 2611 cos(ag — a1) , with n = d2 + dl”,4’ sin ag
Ps dy6 = 01 +dyr g sinaz
dy5 =01 +dyr 5 sinas
P3 d1,2 =62+ dl’,2 sin o
d1,3 = 62 + dll’g SiHOc5
d =02+t
® 1,6
Py
s d%,4 = 5% + 772 —2017 COS(a6 — al) , with n = 92 + dl”,4’ sin ag
- Py, d46 = 01 + dyr g sinag
P, o d1,2 =02 + dqs o sinay
6 Pen ’
’ di1,3 =02 +dy 3 sinas
P die =62+t
3
d5,6 = 53 + d5',6 sin ag
435 =d3 g+ d2 g —2dadsg cos(ar — as)
P d2,5 =d3 + d2,5// sin aig
@ ar d1,4 = 51 + d174/ sin a1
8
s d3,6 = 02 +d3 ¢/ sinag
as o 9 >
L b die =62+t
., Per 577 5 5 ) ' .
6 dj 5 =05 +m? —2d3m cos(ar —az) , With g1 = 61 + dyr 5 sinas
P dg,G =62 4+ m2? — 283m2 cos(ag — ag) , With g2 = 62 + dsr g~ sinay
di ¢ =df 5+ di g +2dasdse cos(az —as)
d25 =03 +dg 51 sinag
P
d%,4 = 6% + 772 — 2611 cos(ag — a1) , with n = d2 + dl”,4’ sin ag
ar dy6 = 01 +dyr g sinaz
«@
’ P/ d1,2 =62+ d1/,2 sin o
(0%
P pg dig =02+t
6 "
«@ ° d5,6 =63+ d5/ 6 Sin ag
10 )
gm di s =dj g+ dZs—2daedse cos(ar —az)
P, L . d2,5 = 53 + d275// sin ag
3/
d23 =04 +dg 3 sinan
Pe d%,a = d%,z +d3 3 —2d1,2da,3 cos(aio — as)
d3,6 = 04 +d3r g sinaiz
d%,4 = 6% + 772 — 2611 cos(ag — a1) , with n = d2 + dl”,4’ sin ag
Ps dy6 = 01 +dyr g sinaz
dy5 =01 +dyr 5 sinas
P dig=02+1
6
d2,3 =d3 + d2 3/ sinag
ar s
el d3,6 = 03 + d3n ¢ sinag
P. ) .
o 301 PR d%a =624+ m?—284m cos(ag — ag) , With g1 = 62 + dy/ o sinay
3
an 453 =05 +m? +284m2 cos(anr —ag) , With n2 = 83 + dair 3/ sinas
1o
Py d%,B = diz + d%’g —2dy1,2d2,3 cos(ar — as)

d25 =64 + do/ 5 sinoaa




5 10 15
s1.6 = 32.0000
15 154 15
s1,6 = 32.0000 s1,6 = 112.2332 s1,6 = 141.1726 51,6 = 342.8691
10 \ 10
5 54 5
Z1s5d -154 -15-
t = 3.9529 t = 4.0000 t = 11.0000 t =16.2235

t = 4.0000 t =4.1681

Fig. 5. The solutions of the forward kinematics of the anetyZully-parallel planar robots (see the Maple Worksheeth supplementary downloadable
multimedia material for the numerical computations).



sulting polynomial ind2, we get the univariate polynomial

1 35.1765t% + 410.7778 t* — 1849.7255 ¢ + 2821.7516,

where t is the oriented distance betwedn and the axis of the
prismatic joint that substitutes the revolute joint ceateat Ps.

The real roots of this polynomial ar&9529, 4.0000, 11.0000,
and 16.2235. The corresponding solutions of the forward kinematic
appear in the third row of Fig.] 5.

Finally, if the revolute joint centered d% is also replaced with a
prismatic joint, a 3-RP planar robot platform is obtained. This kind
of robot platform belongs to the type VIII robot family in TieHIIT]

If the orientation of this prismatic joint with respect t® iadjacent
links, according to the notation of TaHdIe]lll, is given by

3
a7 = 27 — arctan 5

ag = 2w — arctan § — arctan —
8 = 5 3
.3
Qg9 = T + arcsin ——,
’ V13
then
dia=6 + —
1,4 1 ek
d:;,s = 52 — 12,
d1’6 = (52 — t7
dis :5%4'532,4'\/35153—6\/551— i53—6-18,
’ V13
16
d§,6_62 +53+\/—5253 892 \/_534-16
die =07 + 05 + 205 + ,/ 6103 + —= 0203
\/_
_ 6\/551 — 80y — \/—1—3 03 + 34 + \/§d475 d5,6,
33
d2’5 = (53 — —1_3

Substituting these values iii'(s1,6), while keeping all other
distances unaltered, and iteratively computing the |lepdoefficients
of the resulting polynomial id;, and then ind2, and finally inds,
we get the univariate polynomial

> — 8.1681 ¢ + 16.6723.

The real roots of this polynomial are000 and4.1681. The corre-
sponding solutions of the forward kinematics appear in & tow
of Fig.[S.

V. CONCLUSION

Regarding a translational motion as an infinitely small tiota
about a point at infinity has been a common device to analyze so
simple kinematics problems. Applying it to the position lyses
of multiloop linkages did not seem to provide any advantagin w
respect to existing approaches. Nevertheless, it has lwsmshat,
when this idea is combined with a formulation based on destan
and oriented areas, the result is a powerful tool that akbwe to
conclude that the univariate polynomial closure conditifrthe 3-
RPR robot contains the necessary and sufficient informatiosotee
the position analysis of all fully-parallel robots. No newts of
variable eliminations are required.

Moreover, it is worth reminding that the singularities of ly-
parallel planar robot can be obtained by computing the iisoant
of its univariate polynomial. Then, according to the présdmesults,

these singularities could be obtained from those of the B-Ribot
through a limit process. In this sense, it can be said thaptbégsented
ideas have far-ranging implications as they can be appbesbtve
other problems than those tackled in this article.
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