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1.0 ABSTRACT:   

Biomarkers can be used to establish more homogeneous groups using the genetic makeup of 

the tumour to inform the selection of treatment for each individual patient.  However, proper 

preclinical work and stringent validation are needed before taking forward biomarkers into 

confirmatory studies.  Despite the challenges, incorporation of biomarkers into clinical trials 

could better target appropriate patients, and potentially be lifesaving.  The authors conducted 

a systematic review to describe marker-based and adaptive design methodology for their 

integration in clinical trials, and to further describe the associated practical challenges. 

Studies published between 1990 to November 2015 were searched on PubMed.  Titles, 

abstracts and full text articles were reviewed to identify relevant studies. Of the 4438 studies 

examined, 57 studies were included. The authors conclude that the proposed approaches may 

readily help researchers to design biomarker trials, but novel approaches are still needed. 

 

2.0 INTRODUCTION: 

Considerable challenges exist in the incorporation of biomarkers into clinical trials. 

This explains why they are mostly included as exploratory endpoints into current oncology 

clinical trials (1).  Individual patient heterogeneity, both between primary and sites of 

metastasis as well as within metastatic lesions, is a major concern for successful treatment of 

advanced tumours (2).  As patient biopsies often target a single piece of tissue at one time 

point only, and not at multiple ones longitudinally, tumour heterogeneity and alterations over 

time are not properly addressed, although they likely contribute to the evolution of drug 

resistance (2).  Furthermore, biomarkers can represent molecular aberrations that can be 

driver or passenger events (2).  Other issues include the percentage of cells and the method of 

obtaining a tumour sample, and in what sequence multi-combinatorial agents as well as their 
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dose levels should be used to target multiple aberrations (2). Despite this, biomarkers can be 

used to establish more homogeneous groups using the genetic makeup of the tumour to 

inform the selection of treatment for individual patients (3).   

Biomarkers are classified into a few categories in the literature: prognostic, predictive, 

surrogate, screening or diagnostic, pharmacodynamic efficacy and resistance, and integral 

and integrated biomarkers (4-6).  For the purposes of this article, we mainly focus on 

prognostic and predictive markers; with a brief overview of the others. A surrogate marker is 

a biomarker accepted by regulatory agencies as a substitute for a clinical endpoint and, when 

used as an early indicator of treatment efficacy,  is potentially attractive in terms of cost-

effectiveness (4); e.g. HIV load.  Screening or diagnostic markers are used in the monitoring 

of disease including PSA levels in prostate cancer. Pharmacodynamic efficacy and resistance 

biomarkers are used to measure response and resistance to treatment, respectively (5). 

Finally,  integral biomarkers determine patient incorporation and/or directs clinical trial 

procedures, while integrated biomarkers are not used to determine patient treatment (6).  

Prognostic markers provide an early indication of the clinical course of a patient independent 

of any specific intervention and may be considered in the clinical management of a patient; 

e.g. BRCA1/2 mutation-which can also be predictive of PARP inhibitors.  These are 

prevalent in the literature, and guidelines for their evaluation are available with the gold 

standard being the REMARK criteria (7, 8).  Predictive biomarkers are measured prior to an 

intervention and identify patients who are susceptible to a particular drug effect; however 

they are not necessarily prognostic of post-treatment clinical course (3),  e.g. HER2 or  

KRAS (9).  Predictive markers can only be properly validated in a prospectively designed 

randomized controlled trial testing for a marker-by-treatment interaction (10); but a very 

large sample size is often required (11).  A biomarker can be both prognostic and predictive 
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such as Estrogen Receptor status and its prognostic association with relapse and its 

predictiveness of treatment benefit from tamoxifen (12). 

It is critical that proper preclinical work and stringent validation be done before taking 

forward only the most promising biomarkers into confirmatory studies.  The aim of this 

article is to provide an overview on the methods to incorporate biomarkers into clinical trials 

and to further describe the challenges.   

 

3.0 MATERIALS AND METHODS: 

 Study selection followed the process described in the diagram in Figure 1.  The design 

name, whether they are marker-based, adaptive, used in design in or testing during a trial, 

their description, advantages and disadvantages and trials using those designs were retrieved.   

 

4.0 RESULTS: 

Figure 1: 
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Fifty-seven articles were included in the review, and methods of incorporating biomarkers 

were identified (Table 1). Broadly, the methods fall into marker-based or adaptive, and being 

used as design or testing methods; and other novel designs. 

4.1. Overview of marker-based methods: 

One of the most commonly used marker-based designs is the enrichment or targeted 

design (Figure 2a), which is appropriate when there is compelling preliminary evidence to 

suggest that treatment benefit or lack of toxicity is restricted to patients with a certain 

biomarker profile (13).   An ideal biomarker for this design would need a well-established 

cut-off point and have an assay with a rapid turnaround time (4).  A successful enrichment 

design is very efficient, increases the power of a study as compared to the unselected/all 

comers design, and may require only a small sample size if the treatment effect is large in the 
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biomarker positive subgroup, even if the biomarker positivity prevalence is low in the 

population of interest (14).  Conversely, if the assay is imperfect, the treatment may actually 

have an effect in the negative subgroup or whole population which will remain unknown as 

only the positive subgroup is recruited (15, 16).  Furthermore, this design may require a large 

population to be screened to identify the biomarker positive subgroup; moreover, it cannot 

determine whether the biomarker is predictive or not.  A slight modification to the 

enrichment design is the hybrid or mixture design (Figure 2b) allowing the treatment effect of 

the intervention therapy in the biomarker positive subgroup to be compared with the 

treatment effect of the control arm in both the biomarker positive and negative population 

(16);  this design would still require a well-established biomarker. 

The vast majority of currently conducted trials collecting biological specimens for 

marker measurements use the Unselected or All Comers design (Figure 2c) as all patients 

meeting the eligibility criteria are entered into the trial independent of previous testing or the 

resulting status of the biomarker of interest.  Furthermore, one does not need to be certain 

about the benefit of the marker in either the overall population or the biomarker defined 

subgroups as it provides the treatment effect in the overall population as a whole (13).  Less 

established biomarkers needing further validation of their performance or having a slower 

assay turnaround times could be used in this design (4).  However, the cost of measuring the 

biomarker in the whole population will be large if a high proportion of patients are not able to 

contribute biomarker measurements, hence the prevalence of the biomarker should be high 

(16).   

The Marker-Based Strategy Design recruits eligible subjects regardless of their 

biomarker status, just like all-comer design and then randomly assigns the patients to either to 

have therapy determined by their marker status, in the biomarker directed arm, or to receive 

therapy independent of marker status  (14) (Figure 2d). This is a cost-effective design in 
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comparison to the enrichment or biomarker stratified design in that the biomarker is only 

assessed in the biomarker directed arm and it is ethical in that there are no issues, including 

compliance, associated with withholding the biomarker status from the control-arm patients 

(14).  As such this design can be used when multiple treatments are under investigation or 

when a treatment decision will be based on multiple markers (11);  much like the enrichment 

design, biomarkers should also be well established.  A major disadvantage with this design is 

the loss of power through the overlap in patients receiving the same treatment regimen in the 

biomarker directed and the control arm, as the biomarker is not assessed in the control arm 

(14). As randomisation has taken place before biomarker testing, the sub-populations may be 

imbalanced (11). As the intervention may be better than the control treatment for all patients 

regardless of biomarker status, a positive trial does not prove the utility of the biomarker (14).   

A modification to this design allows some clarification in whether any positive results are due 

to a true effect of marker status or to an improved regimen regardless of marker status (Figure 

2e) (14).    

The Interaction or Biomarker stratified design (Figure 2f) allows for the prognostic 

value of marker to be evaluated by comparing the outcomes of patients treated with the same 

regimen between the two marker groups (14).  Stratifying on the biomarker upfront assures 

that only patients with adequate test results will enter the trial (11). This design is inefficient 

as the trial needs to be powered to detect either a difference in the effect of the treatment in 

biomarker-positive and-negative patients through an interaction, which requires a very large 

number of patients, or the effect in all patients, which is likely to be small due to a potentially 

small or even negative effect in biomarker-negative patients (14).  This design also allows a 

test of interaction to be performed to determine whether a differential treatment effect exists 

in the two marker groups, assuming that the sample size is adequate for this test to be 

appropriately powered (11); it may not provide power for testing the treatment effect 
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separately in the two marker subgroups based on sample size (11).  However, if the primary 

question requires separate testing in the marker subgroups, the study would need to be 

powered on this basis.  Furthermore, this design cannot be used when multiple biomarkers or 

treatments are being evaluated due to cost as it is intended to evaluate one treatment or 

biomarker (11).  If the biomarker or treatment is ineffective, this design can further be quite 

wasteful (11).  An ideal biomarker for this design would not need to be as well-established in 

that equipoise would need to be present to justify randomly assigning these patients to 

therapy based on their biomarker status (14).  

Standard superiority and futility interim monitoring can be used for  most marker-based 

strategy and enrichment designs which simply focus on comparing the overall efficacy 

between the randomized arms (17); however these may be more difficult to use for 

biomarker-stratified designs due to the multiple hypotheses under study.  To help clarify 

which design to use for further phase III testing of an intervention, Freidlin et al proposed a 

randomised phase II trial design whose results could help investigators decide whether or not 

to stop testing of that particular intervention, or to use a biomarker enrichment, biomarker 

stratified or standard phase III design (18) for the future phase III trial. 
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Several statistical testing strategies can be used in the aforementioned designs if the required 

sample size to perform a subgroup-specific approach is not feasible. One such strategy is 

sequential testing which assumes that the new treatment is unlikely to be effective in the 

biomarker-negative patients unless it is effective in the biomarker positive patients (16, 19).  

This may make it difficult to determine whether the treatment is beneficial in the biomarker 

negative subgroup, as a large treatment effect in the biomarker positive patients could be 

driving an effect found in the whole population even if there is no treatment effect in the 

negative subgroup (19).  The Marker sequential test design helps avoid the conclusion that 

the treatment benefits all patients when the overall effect is driven by the biomarker-positive 

patients and recommends treatment to either the whole population or to no patients regardless 

of biomarker status depending on testing results (19, 20). The goal of this testing is to stop 

subgroups for which the hypothesis has been answered, and allow reallocation of resources to 
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the open subgroups (20, 21). In general, crossing the efficacy boundary in the biomarker-

positive subgroup results in stopping that subgroup, and crossing the inefficacy boundary 

results in the stopping of the entire study; however for the biomarker-negative subgroup, 

crossing either boundary results in the stopping of that subgroup only (20, 21).   

Other marker-based methods are described in Table 1.   

4.2. Overview of adaptive methods: 

 Adaptive designs are increasingly being used to incorporate biomarkers into clinical 

trials as they allow investigators to analyse the data mid-trial, associate those results with 

known biomarkers, and then modify the ongoing trial following the results, targeting those 

people most likely to benefit from their biomarker status (22, 23).  Advantages and 

disadvantages of adaptive designs have been covered extensively in the literature (16, 24, 25). 

Ideal biomarkers for adaptive designs usually have a well-established cut-off point and have 

an assay with a rapid turnaround time (4) but there is some uncertainty about the benefit in 

overall population versus marker defined subgroups.  

Bayesian adaptive randomization designs have been used to randomly assign patients 

to treatments based on the biomarker status.  While equal randomisation can improve the 

efficiency of a trial by maximizing the statistical power, adaptive randomization offers a 

higher probability of assigning more patients to a more efficacious treatment, especially when 

the treatment difference is large or the relevant disease is rare (24).  Several types of adaptive 

randomisation techniques have been proposed, including using short-term response 

information to facilitate adaptive randomization for survival clinical trials (26), covariate-

adaptive randomization (24),  response-adaptive randomization (24, 27) and outcome-based 

adaptive randomization (21, 28); however there may be potential bias if there are any time 

trends in the prognostic mix of the patients accruing to the trial (28).   Patient accrual can be 
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modified using designs such as the adaptive accrual design (16), the biomarker-adaptive 

parallel Simon two-stage design (29) and the phase III design for the setting of a single binary 

biomarker stratification design (15) (Table 1).  

 Adaptive versions of the aforementioned marker-based designs also have been 

proposed such as the Bayesian adaptive marker-stratified design (27), the adaptive 

enrichment design (30, 31) and an adaptive version of testing approaches using utility 

functions (32).  Furthermore, a Bayesian prediction model has been proposed to help predict 

whether a biomarker is truly associated to a clinical outcome using a meta-analytic approach 

(33).  Finally, a Bayesian adaptive design has been suggested for simultaneously testing 

several predictive biomarkers and new experimental treatments in multi-arm phase II trials 

(34) (Table 1).  

 Finding an appropriate cut-off point as well as the process of biomarker validation is 

very difficult.  Two adaptive designs have been proposed to help in this process.  The first is 

the biomarker-adaptive threshold design (35) (Figure 3a) where the optimal cut-off point 

identifying the subgroup of patients with the greatest treatment effect is determined in phase 

2 through a permutation analysis with confidence intervals further derived for the optimal 

threshold using bootstrap re-sampling (35).  The second is the adaptive signature design (36) 

(Figure 3b) where if the phase 1 analysis is not significant, phase 2 begins using the 

remaining α ; either half of the study population is used to develop a signature and the other 

half to validate it through comparison of outcomes for the sensitive patients in the 

intervention and control arm being compared (36), or practically the entire study population 

is used in both the signature development and the validation steps in a cross-validation 

extension of this design (37).  This approach was developed as the original method has 

limited power as only half of the patients are used in each of the development and validation 

portions of the design (36).  In the cross-validation method, the trial population is first split 
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into a validation and a development subpopulation (37).  For each development 

subpopulation, a predictive signature is developed which is then applied to find a subgroup of 

patients that are sensitive in the validation subpopulation (37).  The process is then repeated 

for all the validation subpopulations so that each patient in the trial population appears in 

exactly one of the validation subpopulations and that by the end of the procedure, each 

patient is classified as being sensitive or not (37). A test statistic is used to assess the presence 

of a treatment effect in the sensitive patient subgroup with a permutation method to obtain a 

corresponding P value (37). A permuted data set is constructed and the entire process is 

repeated for the permuted data set with the corresponding test statistic calculated each time 

(37).

 

 

Table 1:
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Name Description Key Advantages Key Disadvantages 

Trial example, if 

available (N/A=not 

available) 

Reference 

Number 

Marker-based design methods 

Enrichment/Targeted Figure 2a 

Efficient, Increases Power, 

Smaller sample size can be 

used when large treatment 

effect exists in biomarker 

positive subgroup 

Unknown effect whole 

population or marker negative 

subgroup, large population 

needs to be screened to 

identify biomarker positive 

subgroup, strong link 

biomarker and treatment 

needed 

CALGB-10603, 

Lung MATRIX (13-15, 38) 

Hybrid/Mixture Figure 2b 

Specimens and follow up 

information collected all 

patients for future testing  

Large population needs to be 

screened, strong link 

biomarker and treatment 

needed 

TAILORx, 

MINDACT (16, 39) 

Unselected/All comers Figure 2c 

Recruitment not dependent on 

previous testing or biomarker 

status 

Cost may be high if high 

proportion of patients not able 

to contribute biomarker 

measurements, dilution 

treatment effect if only small 

subgroup benefits from 

treatment, use of testing 

methods may be difficult if 

ability to provide adequate 

biological specimen is not an 

eligibility criterion to 

participate in the trial 

EGFR as a Marker 

for Erlotinib in 

Lung Cancer (4, 16) 

Marker Strategy Design 

without randomisation in 

non-marker directed arm Figure 2d 

Recruitment not dependent on 

biomarker status, Cost-

effective as biomarker is only 

assessed in the biomarker 

directed arm, Ethical, Use 

with multiple markers and 

multiple treatments 

Loss of power due to overlap 

in patients, dilution between 

arm difference with overlap in 

patients 

Tumor 

Chemosensitivity 

Assay Ovarian 

Cancer Study (14, 16) 
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Modified Marker Strategy 

Design with 

randomisation in non-

marker directed arm Figure 2e 

Recruitment not dependent on 

biomarker status, Cost –

effective as biomarker is only 

assessed in the biomarker 

directed arm, Ethical, Use 

with multiple markers and 

multiple treatments 

More costly than marker 

strategy design without 

randomisation, Potential 

dilution of the between-arm 

treatment difference  SHIVA (4, 14) 

Interaction/Biomarker 

stratified  Figure 2f 

Allows prognostic value 

marker to be evaluated, gold 

standard for whether treatment 

is dependent on biomarker 

status 

Costly, Cannot be used for 

multiple markers and 

treatments, Can be inefficient 

as needs to be powered to 

detect either a difference in 

effect of treatment in 

biomarker-positive and-

negative patients or effect in 

all patients, Need large sample 

size for testing treatment 

effect separately in two 

marker subgroups MARVEL (14) 

Randomised phase II trial 

design whose outcome 

could help investigators 

decide  on a future phase 

III study design 

In step 1, the null hypothesis is tested 

in the biomarker positive subgroup. 

Based on the results of step 1, step 2 

will either test the null hypothesis in all 

randomly assigned patients or will test 

it in the biomarker negative subgroup. 

Based on the results of steps 1) and 2), 

the investigators will either decide to 

stop testing a particular intervention, or 

to use a biomarker enrichment, 

biomarker stratified or standard phase 

III design for a future phase III trial 

Allows streamlining from 

phase II to III of drug 

development and can be 

incorporated into a phase II/III 

design strategy 

Needs established and 

validated biomarker N/A (18) 

Biomarker informed two-

stage winner  

After interim analysis, less promising 

arms of several treatment arms 

dropped, based on biomarker status, 

with only most promising arm 

continuing on to end of  study 

Assigns more patients to most 

promising treatment 

Needs established and 

validated biomarker N/A (40) 
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Tandem two-step phase II 

trial design incorporating 

a prespecified 

pharmacogenomic 

predictor of response 

All comers stage 1, if number of 

objective responses not high enough in 

all patients, pharmacogenomic 

predictor predicts patients likely to be 

responders and study continues accrual 

only in subgroup for stage 2 

Recruitment not dependent on 

biomarker status until second 

stage 

Needs established and 

validated biomarker of 

response N/A (41) 

Joint inference on a 

subpopulation of  “super-

responders” 

Joint inference on subpopulation of  

“super-responders”, defined by 

baseline-expressed biomarkers, and full 

study population using two-way 

analysis of variance model 

Study progresses only in 

patients more likely to benefit 

Needs established and 

validated biomarker(s) N/A (42) 

Run in phase III design 

using an intermediate 

measurement as a 

predictive biomarker 

All patients tested after short run in 

period; if not statistically significant 

only marker positive subset tested.  

Dependent on results, all patients or 

only marker positive patients 

randomised to trial.  

Study progresses only in 

patients more likely to benefit 

Need intermediate (post 

treatment) measurement as 

predictive biomarker N/A (5) 

Biomarker informed add-

arm design for unimodal 

response 

Interim decisions based on the 

measurements of a biomarker to 

identify inferior treatments in a multi 

arm study 

Inferior study treatments are 

identified in study population 

Requires strong surrogate 

biomarker for toxicity primary 

endpoint N/A (40) 

Bridging Continual 

Reassessment Method 

(CRM) 

Patients are divided into several 

subgroups with different maximum 

tolerated doses (MTD) to drug based 

on certain biomarkers through  a 

mixture estimator to estimate dose-

toxicity curve 

Allows more appropriate 

MTDs to be employed in 

different subgroups of patients 

Needs established and 

validated biomarker N/A (43) 

Marker-based testing methods 
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Sequential testing 

Study hypothesis first tested in whole 

population using reduced α and if 

significant treatment considered 

effective in all; if not, treatment effect 

evaluated in biomarker defined subset,  

using remaining α.  If evidence 

treatment works best in biomarker 

defined subgroup, testing first done in 

subgroup followed by whole 

population.   

Sequentially controls and 

preserves study-wise type I 

errors 

Needs established and 

validated biomarker, difficult 

determine whether treatment 

beneficial in biomarker 

negative subgroup N/A (16, 19) 

Marker sequential test  

First tests biomarker-positive patients 

at reduced α, followed by biomarker-

negative patients with the remaining α, 

if test significant.  If test not 

significant, then overall population is 

tested with remaining α. 

 Allows overall type-I error 

level to be controlled 

Needs established and 

validated biomarker N/A (19, 20) 

Parallel testing strategy 1 

Separate testing done simultaneously in  

biomarker positive and negative 

subgroups  

Help determine effect in both 

positive and negative 

subgroups 

Requires high sample size as 

necessitates allocating overall 

α between two subgroup tests 

making significance hard to 

achieve N/A (19) 

Parallel testing strategy 2 

Tests both overall and biomarker-

positive populations simultaneously 

with strength of the predictive value of 

biomarker determining whether 

required sample size driven by 

biomarker-positive or whole population 

hypotheses 

Helps determine a more 

appropriate sample size Needs predictive biomarker N/A (19) 

Adaptive design methods 

Covariate-adaptive 

randomization 

 Uses overall covariate distribution 

among treatment groups to determine 

treatment allocation for next enrolling 

patient 

Allows prognostic factors to 

be balanced among treatment 

arms 

Needs very accurate covariate 

information N/A (24) 
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Response-adaptive 

randomization  

Uses previous patient's response to 

treatment in interim data to determine 

next enrolling patient's allocation, so 

that if successful,  next patient will be 

assigned to same treatment; otherwise 

to the alternative treatment, potentially 

incorporating marker status 

Higher probability of 

assigning more patients to 

more efficacious treatment 

Necessitates response to be 

assessed in relatively short 

time period I-SPY2 (24, 27, 44) 

Outcome-based adaptive 

randomization 

Uses outcome data accumulated in trial 

to randomly assign patients to 

treatments based on biomarker status 

Higher probability of 

assigning more patients to 

more efficacious treatment 

Requires short-term reliable 

outcome and may result in 

bias I-SPY2, BATTLE (21, 44, 45) 

Adaptive accrual  

Accrual ensues in both marker-defined 

subgroups until interim analysis where 

if treatment effect in one group does 

not reach futility boundary, accrual 

stopped to subgroup with only other 

subgroup continuing accrual until total 

planned sample size reached 

Allows more appropriate 

patients to be targeted for 

treatment  

Need to ensure subgroups are 

well defined by good 

validated biomarker N/A (16) 

Biomarker-adaptive 

parallel Simon two-stage  

Conducts two parallel studies in 

biomarker negative and positive 

subgroups, design continues enrolling 

unselected patients in stage II if 

number of responses to drug in 

biomarker-negative group in stage I 

meets/exceeds a cut-off.  Otherwise 

only biomarker positive patients 

enrolled 

Allows more appropriate 

patients to be targeted for 

treatment  

Need prospectively defined 

cut-off N/A (29) 

Phase III design for setting 

of a single binary 

biomarker stratification  

Futility monitoring performed in  

biomarker negative patients at interim 

analysis based on joint prior 

distribution for treatment effects in 

both positive and negative subgroups, 

accrual can then be continued or halted 

in subgroup 

Allows more appropriate 

patients to be targeted for 

treatment  

Needs established and 

validated biomarker N/A (15) 
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Bayesian adaptive marker-

stratified  

Both response-adaptive randomization 

according to the patients’ biomarker 

profiles as well as an interim analysis 

with early stopping rules are used 

Higher probability of 

assigning more patients to 

more efficacious treatment 

Needs established and 

validated biomarker N/A (27) 

Adaptive enrichment  

All eligible subjects recruited in first 

stage, followed by interim analysis 

where study design may be switched to 

all-comer design or allows termination 

of the biomarker negative cohort 

depending on the interim analysis 

results, in Stage 2  

Allows sample size, end 

points, randomization ratio 

and eligibility criteria to be 

adjusted  

Study population drift, loss of 

study power, loss of integrity 

of original trial, Needs 

established and validated 

biomarker N/A (30, 31) 

Adaptive testing methods 

Adaptive version of the 

testing approaches  

Treatment effects of potential marker-

based subpopulations evaluated 

through utility functions at interim 

analysis for stage two trial testing, 

using a Bayesian approach assuming 

prior distribution on efficacy 

parameters.  Patients first recruited 

from whole population and at interim 

analysis, trial adapted to continue only 

in subpopulation.  

Allows more appropriate 

patients to be targeted for 

treatment  

Prevalence in population 

should be well known, needs 

established and validated 

biomarker N/A (32) 

Bayesian prediction model 

to help predict whether 

biomarker truly associated 

to clinical outcome 

Bayesian meta-analytic method for 

building prediction model between 

biomarker and the clinical endpoint. 

Used to predict rate ratio of clinical 

endpoint from an early biomarker. 

Proposed prediction model evaluated 

using extensive simulations 

Requires only previous trial-

level summary data in model 

building, no patient-level data 

necessary 

Sample size estimation  

involving biomarker may pose 

difficulties,  go/no go decision 

rules based on biomarker need 

to be determined N/A (33) 

Bayesian adaptive design 

for simultaneously testing 

several predictive 

biomarkers and new 

experimental treatments in 

multi-arm phase II trials 

Uses Bayesian adaptive randomisation 

procedure where patients recruited 

before first interim 

analysis are initially randomised 

equally between control and all 

experimental 

treatments linked to their tumour 

biomarkers.  At each interim analysis, 

Time and cost efficient way of 

matching and testing novel 

predictive biomarkers and new 

interventions 

Managing the randomisation 

and changing the allocation 

ratios after an interim analysis 

can be challenging, needs 

established and validated 

biomarkers N/A (34) 
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Bayesian logistic regression model 

fitted to model the probability of 

treatment success. Posterior 

probabilities from the model that each 

experimental treatment is superior to 

the control for each biomarker profile 

can be used to update the allocation 

probabilities to each arm 

Biomarker-adaptive 

threshold  Figure 3a 

Allows for parallel evaluation 

of new intervention in all 

patients at prespecified α, as 

well as 

establishment/validation of 

biomarker cut-off point, if the 

phase 1 analysis is not 

significant, using the 

remaining α Need pre-existing biomarker N/A (35) 

Adaptive signature  Figure 3b 

Allows development and 

testing of a biomarker 

signature based on high-

dimensional data.   

Limited power unless K-fold 

cross-validation procedure 

used N/A (36, 37) 
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4.3. Other emerging design methods: 

Some methods of incorporating biomarkers into clinical trials do not easily fit into the 

marker-based/adaptive methods classification. One of these is the Longitudinal Cohort Study 

With or Without Nested Clinical Trials (46), where tumour profiling of patients in an 

accredited diagnostic laboratory allows an individual centre to participate and enrol patients 

in multiple nested clinical trials.  The Histology-Based Clinical Trial Design, also called an 

umbrella or platform trial (46), allows a number of agents to be matched to specific molecular 

characteristics in one tumour type using a prespecified set of rules in a standing trial structure 

(15).  The effectiveness of treatment assignments based on molecular profiling results are 

then compared to a control arm (2).  A key advantage is that the design, conduct, and analysis 

of each sub-study are independent of the other sub-studies; however this model requires a 

large sample size and it is resource intensive (2).  This method is used by the LUNG-MAP 

(47),  BATTLE (45), Lung MATRIX (38) and FOCUS4 (48) studies, among others.  An 

alternative to the umbrella trial is the Histology-Independent, Aberration-Specific Clinical 

Trial Design, otherwise known as a bucket or basket trial (46) which is designed to discover 

the effects of a targeted agent against a specific molecular characteristic across different 

tumour types.  The key disadvantages of this model are the potential of false negative 

conclusions if the trial has insufficient representation of patients with tumour types having 

the molecular characteristic of interest, and that it evaluates only one drug-molecular 

characteristic pair at a time (2).  The NCI MATCH trial uses this method (49).   

 

5.0 DISCUSSION: 

Incorporation of a biomarker into the design of clinical trial poses numerous challenges 

including that it must statistically be based on the prevalence and distribution of the marker in 
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the patient population and the chosen clinical endpoint so that the required sample size to test 

the hypothesis can be estimated (50); as well as estimating the unavailability rate of 

biomarker measurements within those calculations (14).  Furthermore, the optimal patient 

population for the study needs to be considered, as well as whether the strength of the marker 

effect is sufficient to separate patients into meaningful outcome groups without overlap (50).   

Regulatory agencies now require that biomarker cut-off points splitting patients into high and 

low risk groups be defined and validated for use in patient populations (51).  Splitting a 

continuous measure into a dichotomous group reduces the power to detect a real association 

with outcome, but if optimized cut-off values are used, then they should be determined using 

a training data set with an independent testing data set to validate the cut-off point (51).  

Using a cut-off point as reported from another study or defined based on the distribution of 

marker level among patients without use of clinical outcome data is also unbiased (51).  

Clinically the biomarker needs to be considered in terms of the toxicity of the proposed 

therapy and should be able to be assimilated into routine clinical practice in a cost effective 

way, must possess a highly significant predictive value, and be independent of the known 

clinicopathologic predictors of prognosis (50).  Additionally, it needs to have therapeutic 

implications readily interpretable by a clinician and have been validated in independently 

confirmed phase III studies (51).  Biologically, this requires that the marker can be assessed 

reproducibly in numerous clinical samples by a well-characterized, standardised, accurate and 

quality controlled assay system (50).  For such an assay to be developed, this necessitates that 

the biology of the marker be well understood and that the marker assay results be statistically 

associated to high-quality patient data (51).   To ensure reproducibility, preclinical work 

should include a statement about the test’s quality controls, what the assay is designed to 

measure, optimal assay conditions, the specific kit or critical reagents, details of the scoring 

system, selection of a uniform threshold for binary interpretation of results, a statement 
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regarding the reproducibility or precision, sensitivity, specificity, and a reference to the 

clinical validation of the assay, such as comparing results using the same samples in different 

laboratories (50).  As assays can change due to new platform availability and as new 

promising biomarkers can be discovered during the course of an ongoing trial, a flexible 

protocol should be adopted to incorporate emerging changes along with good specimen 

storage so that biopsies can be re-tested with the new assay and results compared to the old 

assay (52).  Also as bioinformatics software and assay platform regularly change, it is 

important to specify the version used during the course of a clinical trial. 

As tissue biopsies are invasive and tumours have heterogeneity, there is a potentially 

small amount of available tumour specimen and given that not all tumours can be biopsied 

due to poor accessibility, tissue type is another challenge.  The distribution of the marker in 

normal and abnormal tissues (50) needs to be determined in a sufficient numbers of samples.   

Serial biopsies of a patient’s tumour provide a dynamic view of the individual patient’s 

disease course and response to treatment (53); however these are difficult to obtain.  Size of 

the tumour is a potential issue when tissue has been collected retrospectively as larger 

tumours are more likely to end up in frozen tumour banks; allowing generalizability to only 

those. The limited and differential availability of tumour tissue itself may be a function of the 

disease, hospital diagnostic practices, pathology laboratory preservation, storage protocols, 

study population, and has implications for study generalizability and power (54).  

Appropriate, non-invasive and readily accessible tissues, such as liquid biopsy samples 

including circulating blood cells, circulating tumour cells (CTC) or buccal swabs, could serve 

as potential surrogates for tumour tissue (55).  These need to be inexpensive to measure, 

making CTCs problematic due to the small numbers that can be detected with existing 

methods (53).  However CTCs provide an integrated picture of all clones present in the 

patient (53).  Imaging is another attractive alternative as it is noninvasive and therefore better 
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suited to serial measurements (6).  However imaging can be quite costly as it needs to be 

performed on one subject at a time  and requires sophisticated equipment and imaging probes 

(6).  Conversely, imaging offers the ability to assess target expression across all sites of 

disease, to assess sites challenging to biopsy and assay, such as bone, and can act as an early 

response marker as biochemical and molecular changes will likely precede changes in tumour 

size, potentially reducing trial costs by reducing trial duration (6). Adding biomarker to trials 

is very costly in general especially in the case of a low prevalence marker in the population of 

interest (50).   

Ethical concerns are another challenge as knowledge of the biomarker status may affect 

compliance to the randomized treatment and the biomarker status may still correlate with 

clinical features of the patient that might influence treatment preference, even if the 

biomarker status is withheld (14).  Reliable conclusions about a biomarker are more likely to 

arise from large, collaborative (including both research organisations and pharmaceutical 

companies), phase III studies as opposed to many undersized studies using a variety of 

statistical methodology and clinical inclusion criteria (51).  The European Organisation for 

Research and Treatment of Cancer and the National Clinical Trials Network are paving the 

way through the creation collaborative groups to conduct large-scale studies (46, 49).  

Only a few biomarkers have been validated sufficiently to be in clinical use including 

KRAS (56), estrogen and progesterone receptors, c-erbB-2/HER-2/NEU (57), CA-125, 

prostate specific antigen, and human chorionic gonadotropin (55).  Robust preclinical studies 

should first be performed focusing on reliably identifying the drug target as well as 

developing a validated assay for the biomarker (1). The biomarker should then be added to 

phase I trials to better characterise both its assay and its performance, followed by its 

incorporation in phase II trials for hypothesis testing and finally, its inclusion in a phase III 

trial for proper clinical validation (1).  It is critical that proper preclinical work and stringent 
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validation be done before taking forward only the most promising biomarkers into 

confirmatory studies.  Limitations of this review include the exclusion of Non-English papers 

and of those papers with no abstract available.   

 

6.0 CONCLUSIONS: 

Although the incorporation of biomarkers into clinical trials poses numerous 

challenges, lifesaving treatments can be better targeted to appropriate patients so their 

inclusion is of paramount importance.  The future of biomarkers in clinical trials is bright as 

novel designs can help greatly to simplify their incorporation.  The marker-based designs 

described above are already in common usage; however designs such as the biomarker-

adaptive threshold design and the adaptive signature design can help to greatly mitigate many 

of the aforementioned challenges and should be in greater use.  Further approaches are 

needed to answer methodological issues that have not been addressed within the methods 

presented here. 
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8.0 FIGURE LEGENDS: 

Figure 1. Diagram 

Figure 2. Common biomarker-based designs: a. Enrichment design b. Hybrid/Mixture design 

c. Unselected/All comers design d. Marker-based strategy with standard control e. Marker-

based strategy with randomized control f. Interaction/Biomarker stratified design. 

Abbreviations: B=Biomarker, R=Randomize, P=Placebo/control/standard of care arm, 

I=Intervention/experimental arm. 

Figure 3. Common Adaptive designs: a. Adaptive threshold design b. Adaptive signature 

design.  Abbreviations: B=Biomarker, R=Randomize, P=Placebo/control/standard of care 

arm, I=Intervention/experimental arm, C=Compare. 

 


