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Abstract.

Even simple fluids on simple substrates can exhibit very rich surface phase

behaviour. To illustrate this, we consider fluid adsorption on a planar wall chemically

patterned with a deep stripe of a different material. In this system, two phase

transitions compete: unbending and pre-wetting. Using microscopic density-functional

theory, we show that, for thin stripes, the lines of these two phase transitions may

merge, leading to a new two-dimensional–like wetting transition occurring along the

walls. The influence of intermolecular forces and interfacial fluctuations on this phase

transition and at complete pre-wetting are considered in detail.
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1. Introduction

Interest in wetting and adsorption on patterned surfaces has been rapidly growing over

the last few decades, across different theoretical, experimental and applied fields of

study [1–7]. Wetting and interfacial phenomena are dominated by the rich interplay

between intermolecular forces and the fluctuation effects associated with thermal noise

and interfacial capillary waves [8–12]. These lead to a very rich picture of possible surface

phase behaviour occurring over different length-scales, that call for cross-disciplinary

fundamental investigations. Surface effects are also highly relevant to nucleation [13–16],

droplet formation and growth [17,18], vapour–liquid–solid growth of nanowires [19,20],

and burgeoning laboratory-on-a-chip technologies.

In the present work, we consider fluid adsorption on a planar wall chemically

decorated with a stripe of a stronger adsorbing material. We suppose that both materials

(the wall’s and the stripe’s) undergo first-order wetting transitions when they form

homogeneous planar substrates with wetting temperatures T
(w)
w and T

(s)
w < T

(w)
w for

the outer wall (w) and the stripe (s), respectively. Earlier studies based mainly on

phenomenological interfacial models have shown that the stripe may induce a first-order

unbending transition, where the local adsorption near the stripe jumps between two

microscopic values [21–24]. Heuristically, this transition is associated with the flattening

of the local height of the liquid–gas interface pinned to the wall, which also occurs on

homogeneous but non-planar substrates [25], and is closely related to the change from

Wenzel to Cassie–Baxter states on rough surfaces. What was not appreciated in these

earlier studies was how the pre-wetting transition is modified on patterned surfaces. For

example, in the studies of Bauer et al. [21, 23], the pre-wetting properties of the outer

wall were not considered. More specifically, the binding potential for the outer wall was

only considered to have a single minimum in order to model complete wetting as simply

as possibly. In addition, the potential of the stripe phase was chosen to be weaker, so

that the wetting temperature is higher than that of the outer wall. In the present study

we consider a different scenario where both the outer wall and stripe phase exhibits

first-order wetting transitions with the wetting temperature of the stripe being lower.

As we shall see this considerably enriches the phase diagram because of the interplay

between unbending and complete pre-wetting. The possibility of complete pre-wetting

was first pointed out by Saam [5] that a step on a substrate may nucleate a layer of the

thicker pre-wetting film. As the pre-wetting transition is approached, this layer grows

laterally along the wall, analogous to two-dimensional (2D) complete wetting. Such

complete pre-wetting has subsequently been observed in microscopic classical density

functional theory (DFT) studies of fluid adsorption in capped capillaries, wedges and

chemically patterned walls [26].

Classical DFT has long been used as a theoretical tool for studying the phase

transitions of inhomogeneous fluids from a microscopic perspective. A systematic

construction of the classical equilibrium DFT formalism, along with a review of the

earlier literature can be found in the articles by Evans [27, 28]. A comprehensive and



Wetting Transitions on Nanopatterned Surfaces 3

modern review of classical DFT, along with a valuable extension of the equilibrium

formalism to non-equilibrium systems is given by Lutsko [29]. Also noteworthy are

the reviews by Wu [30] and Lander et al. [31], which focus on the applications of

the theory to numerous problems in colloidal, polymer and solid matter physics. As

far as computational developments for classical DFT are concerned, these go back

to early works on obtaining the density of fluids in confinement in both 2D and

three-dimensional geometries (e.g. [35, 36]). But in the present decade, the explosive

growth of available computational power and especially the development of sophisticated

numerical methodologies [32–34], have provided the necessary tools to perform detailed

numerical parametric studies employing classical DFT in problems of wetting. Earlier

studies of adsorption mainly focused on planar walls and infinite capillary slits and

pores. In this study, we adopt a classical DFT model to study global phase diagrams

for fluid adsorption on a surface with a chemical stripe and, in particular, investigate the

interplay between the unbending transition and the (complete) pre-wetting transition.

We will show that, for sufficiently narrow stripes, the line of unbending transitions may

merge with the pre-wetting line. When this occurs, one may induce another 2D wetting

transition along the surface, which is first-order in character in the present mean-field

study. Fluctuation effects at this transition, and also at complete pre-wetting, are

discussed in detail.

2. Classical density functional theory

Within the frame of classical DFT, the equilibrium one-body density distribution ρ (r)

may be obtained by minimising the grand free-energy functional [27–31]:

Ω [ρ (r)] = F [ρ(r)]−
∫

dr ρ (r) (µ− V (r) ), (1)

where F [ρ (r)] is the intrinsic Helmholtz free energy functional, µ is the chemical

potential and V (r) is the external potential arising from the cumulative substrate–fluid

interactions.

We consider a Van der Waals-like classical DFT model which separates F [ρ (r)] into

contributions modelling the repulsive hard-core and the attractive part of the fluid–fluid

intermolecular potential. To this end, we write:

F [ρ (r)] =

∫
dr [ fid (ρ (r)) + ρ (r)ψ (ρ (r)) ]

+
1

2

∫
dr

∫
dr′ ρ (r) ρ (r′)ϕattr (|r− r′|) , (2)

where fid (ρ) = kBTρ (ln (λ3ρ)− 1) is the ideal free energy density, and λ is the thermal

wavelength. The first (integral) term in (2) is the standard local approximation to the

repulsive contribution to the free energy; ψ (ρ) is the free energy density of a bulk hard

sphere fluid, for which we use the Carnahan–Starling equation of state:

ψ (ρ) = kBT
η (4− 3η)

(1− η)2
, η = πσ3ρ/6, (3)
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where σ is the hard sphere diameter. The second term in (2) is the standard mean-field

treatment of the attractive part of the intermolecular potential ϕattr (r). In our study,

we consider systems with long-ranged dispersion interactions modelled by

ϕattr (r) =

{
0, r ≤ σ

ϕLJ
σ,ε(r), r > σ,

(4)

where ϕLJ
σ0,ε0

is the Lennard-Jones (LJ) potential:

ϕLJ
σ0,ε0

(r) = 4ε0

[(σ0
r

)12
−
(σ0
r

)6]
. (5)

In what follows, we choose the system of units, where the hard-core diameter σ and

the well depth ε of the fluid–fluid LJ interactions are set as units of length and energy,

respectively.

The cumulative external potential V (r) ≡ VL (r) of a wall decorated by a

macroscopically deep stripe of width L is obtained by integrating the pairwise substrate–

fluid potentials over the volumes occupied by both materials. These potentials are also

given by (5), but with the material-specific parameters: εw, σw and εs, σs for the wall and

stripe materials, respectively. To avoid a non-physical divergence of VL (r), at contact

with the fluid, and to reduce the fluid–substrate repulsions [which are not adequately

captured by (2)], as a purely mathematical device, we suppose that the substrate surface

in contact with the fluid is coated by a thin layer of an inert solid phase of width H0.

For Cartesian coordinates, with the origin at the center of the stripe, y the distance

normal to the wall, and the x-axis aligned with the wall perpendicularly to the stripe,

the potential of the stripe VL (x, y) can be obtained from the standard “3–9” potential

of a homogeneous LJ wall (L = 0). The latter is given by [34]:

V0 (y) = 4πρwεwσ
3
s

[
−1

6

(
σw

H0 + y

)3

+
1

45

(
σw

H0 + y

)9
]
, (6)

where ρw is the average density of the substrate material. The potential VL (x, y) of a

striped wall can then be expressed as

VL (x, y) = V0 (y)− ρw
∫
νL

dr′ ϕLJ
σw,εw (|r− r′|) + ρs

∫
νL

dr′ ϕLJ
σs,εs (|r− r′|) , (7)

where the integration is carried out over the volume νL of the stripe, excluding the

coating: νL = {(x, y, z) : −L/2 ≤ x ≤ L/2,−∞ < y ≤ −H0,−∞ < z <∞}. With this

choice of potential, the equilibrium profile ρ(r) = ρL(x, y), where again y is the distance

normal to the wall.

Although the present classical DFT model (2) describes the intermolecular

attractions in a non-local mean-field fashion, which allows us to consider stripes as

narrow as several hard-core diameters, the intermolecular repulsions are treated by

a purely local approximation, which neglects the excluded volume correlations. As

a result, the density profiles we compute do not exhibit the characteristic near-

wall oscillations and layering, which can be captured with more refined non-local
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approximations, such as weighted density or fundamental measure theories [35–37].

However, we do not expect the molecular packing effects to be important for the

qualitative aspects of wetting by liquid above the fluid bulk triple point, because

layering transitions typically do not interfere with pre-wetting. Similarly, the mean-

field nature of the model energy functional (2) implies that our results do not capture

effects associated with capillary wave fluctuations. However, we expect these to be

unimportant for all practical purposes in the transitions considered here, as discussed

later. With these shortcomings, the model functional (1) – (4) provides a suitable

microscopic starting point to study the interplay between unbending and pre-wetting

on a striped substrate. Further discussion of the physical approximations underlying

(1) – (4) and possible approaches to their numerical solution can be found elsewhere,

e.g., in references [26,32,34,38,39].

3. Wetting phenomenology

Recall that we have chosen the hard-core diameter σ and the well depth ε of the

fluid–fluid LJ interactions as the units of length and energy, respectively. The units

of temperature are then given by ε/kB, and the bulk critical temperature is Tc ≈ 1.006.

We further suppose that ρw = ρs = 1 in (7), and fix the parameters of the LJ fluid–

substrate potentials as εw = 0.6, εs = 1, σw = σs = 2, with the shifting parameter

H0 = 5 in (6) and (7).

3.1. Pre-wetting and complete pre-wetting

3.1.1. Pre-wetting

We first obtain the wetting phase diagram for flat substrates made purely of the same

material as the wall (w), or that of the stripe (s) [5]. To this end, we have computed

the adsorption Γ0, which can be obtained from the density profiles ρ (r) ≡ ρ (y) [32,34]:

Γ0 =

∞∫
0

dy [ ρ (y)− ρb ] , (8)

where ρb is the bulk fluid density; for very thick films, Γ0 is proportional to the thickness

of the adsorbed wetting layer. A first-order wetting transition refers to the discontinuous

divergence of Γ0 at the wetting temperature Tw and bulk saturation chemical potential

µsat (T ). Associated with this transition, there is a line of thin–thick transitions, where

the jump in Γ0 is finite, occurring off bulk coexistence, referred to as pre-wetting. Figure

1(a) shows a plot of the coexisting adsorptions as we move along the pre-wetting lines

of both materials. The maximum of each curve corresponds to the pre-wetting critical

point at which thin–thick coexistence ends [1, 5, 40]. The divergence of the thicker film

adsorption near Tw is controlled by the long-range tails of the intermolecular forces. In

the case of the LJ forces, we have for the thick coexisting film: Γ0 ∝ (T − Tw)−1/2 for

T → Tw [39, 40].
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Figure 1. Pre-wetting transitions for planar substrates made of one type of material

only: that of the wall (w) (blue lines) and that of the stripe (s) (black lines). Figure (a)

shows the binodals, that is, the coexisting adsorptions along the respective pre-wetting

lines. Horizontal asymptotes of the diverging thick film adsorption are drawn at the

respective wetting temperatures T
(i)
w . Figure (b) is the phase diagram in the T −∆µ

plane. The respective wetting temperatures are T
(w)
w ≈ 0.81 and T

(s)
w ≈ 0.60.

The computed pre-wetting lines in the T–µ plane are shown in figure 1(b), where

∆µ = µ− µsat is the deviation from the saturation chemical potential. Note that these

pre-wetting lines lay in the gas region of the bulk phase diagram (∆µ < 0), and approach

bulk coexistence tangentially at the respective T
(i)
w , i = w, s. As expected, the deeper

well of the fluid–stripe LJ interaction leads to T
(s)
w < T

(w)
w , and a more pronounced pre-

wetting line µ
(s)
pw (T ), which extends deeper into the gas region. Near the respective

wetting temperatures T
(i)
w , the pre-wetting lines are described by their asymptotic

behaviour, which follows from analysis of the Clausius–Clapeyron equation [5, 34, 41]:

µsat − µ(i)
pw (T ) ∝

(
T − T (i)

w

)3/2
.

3.1.2. Complete pre-wetting

The phenomenon of wetting takes place when one of the coexisting phases of a fluid

(gas or liquid) is preferentially adsorbed near a wall (or third phase). If, for example,

liquid is preferred, a liquid layer is formed at the wall–gas interface, whose thickness

increases as the pressure, say, is increased towards liquid–gas coexistence. When the

contact angle is zero, this intruding layer of liquid is macroscopically large, and we say

that the liquid completely wets the wall.

An analogous phenomenon may occur along a wall when one of the coexisting

phases (thin or thick) associated with pre-wetting is preferentially adsorbed at an

inhomogeneity (for example, a step or a chemical stripe). Then, as the pre-wetting

coexistence is approached, a macroscopically large layer of the, say, thick phase may

intrude between the inhomogeneity and the coexisting thin phase which is stable far
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Figure 2. Adsorption isotherms on a wall with a stripe of width L = 32 at three

different temperatures (a). At the two lower temperatures unbending transitions occur

at chemical potentials µu (T ): ∆µu (0.80) ≈ −0.0236 and ∆µu (0.87) ≈ −0.0645, as

determined by the equal area constructions (dashed lines). The isotherm at T = 0.90

lies above the unbending critical temperature. Density profiles for the coexisting phases

at T = 0.8 [(b) and (c)] and T = 0.87 [(d) and (e)].

from it. This phenomenon, referred to as complete pre-wetting, was originally speculated

by Saam for a stepped surface [5], and has been subsequently observed in microscopic

classical DFT studies for a number of other systems [26,34].

3.2. Unbending

Another phase transition that may occur on a patterned or sculpted substrate is

unbending. This phase transition corresponds to a local condensation of liquid driven by

the competition between attractive substrate–fluid forces and the effect of the liquid–gas

surface tension. This phenomenon was first described for a corrugated wall, in which the

troughs discontinuously fill with liquid below the wetting temperature, thereby flattening

the liquid–gas interface (hence, the name unbending) [25]. Similar phenomena were

studied on chemically patterned substrates, including stripes and arrays of stripes [24].

Unbending may occur even for walls that show critical wetting, where no pre-

wetting transitions exist. However, for walls that exhibit first-order wetting, unbending

may act as a nucleation site that triggers complete pre-wetting occurring along the

substrate. The interplay between these transitions is studied here.
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Figure 3. Binodal of the unbending transition on a wall decorated with a stripe of

width L = 32. The loci of transitions and spinodals are plotted as solid red and dashed

black curves, respectively.

4. Results

In order to study phase coexistence at a decorated wall, we introduce the excess

adsorption relatively to a homogeneous planar wall:

Γ =

∞∫
−∞

dx

∞∫
0

dy
[
ρL (x, y)− ρ(w) (y)

]
, (9)

where ρL (x, y) is the fluid density on the decorated wall, and ρ(w) (y) (= ρL=0(x, y))

is the equilibrium density profile in the absence of the stripe, computed at the same

values of T and µ. At a given temperature, the thermodynamic quantity conjugate to

the adsorption Γ is the excess grand potential Ωex [26, 34]:

Ωex = Ω [ρL (x, y)]− Ω
[
ρ(w) (x)

]
. (10)

which is related to Γ by:

Γ (µ) = − 1

L

(
∂Ωex

∂µ

)
T

, (11)

where L is the transverse dimension of the system along the z-axis. Following a standard

Maxwell construction, this expression may be used to determine phase coexistence

by applying an equal areas construction to the adsorption isotherm Γ (µ), which

corresponds to the equality of the excess grand potentials [42]. Therefore, by computing

isotherms on a striped wall at different values of T , we can, in principle, obtain the full

picture of the surface phase coexistence.

4.1. Unbending

First, we present results for the unbending transition occurring near a stripe of width

L = 32. Figure 2 shows adsorption isotherms at three different temperatures. At

the two lower temperatures, an equal areas construction determines the coexisting

adsorptions at the unbending transition. For the highest temperature T = 0.9, there
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Figure 4. Unbending lines in the T–µ plane for stripes of different widths. The pre-

wetting lines for the pure wall material (solid black line) and for the pure stripe material

(dashed grey line) are also shown. For narrow stripes, L = 8, 4 and 2, the unbending

line meets the black pre-wetting line tangentially at temperatures T ∗ ≈ 0.865, 0.902

and 0.928, respectively.

is no Van der Waals loop, signalling that this isotherm is above the unbending critical

temperature. Density profiles of the two coexisting phases at the lowest temperature

T = 0.8 (where the loop is most pronounced) are also shown. The binodal for this

system is represented in figure 3, showing the temperature dependence of the excess

adsorptions Γ of the coexisting phases along the whole unbending line. In the T–∆µ

plane, this unbending line (red curve in figure 4) joins the liquid–gas coexistence line

at a temperature T ≈ 0.75, and extends away from coexistence ending at an unbending

critical point at T ≈ 0.89. Note that the unbending line does not meet the liquid–gas

coexistence curve tangentially since the difference in the coexisting adsorptions at that

point remains finite (see figure 3).

Repeating this methodology, we have determined the locations of the unbending

lines for a variety of stripe widths from L = 64 to L = 2. The results are shown

in figure 4. For the largest width L = 64, the unbending line lies close to the pre-

wetting line of a homogeneous substrate made entirely of the material (s) (shown as the

dashed grey curve). This is consistent with earlier predictions based on simple effective

interfacial Hamiltonian models [24]. As the stripe width is reduced, so the unbending

line moves towards the pre-wetting line of the homogeneous outer wall (w) (black curve).

For L = 64, 32 and 16, the unbending lines are separate from this latter pre-wetting

line. However, for L = 8, 4 and 2, it merges with the pre-wetting line at temperatures

T ∗ ≈ 0.87, 0.9 and 0.93, respectively. Our numerics are consistent with the expectation

that, for these cases, the unbending line merges tangentially with the pre-wetting line.

Beyond the present mean-field classical DFT study, we can anticipate that

fluctuations round any first-order unbending transition, which will manifest itself as

a sharp, but nonetheless continuous, increase in the adsorption. In fact, for large L

and close to liquid–gas coexistence, the rounding of the unbending line is of negligible
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Figure 5. Representative density profiles in the approach to complete pre-wetting for

L = 4 at T = 0.92 (∆µ
(w)
pw (0.92) ≈ −0.0211) showing the growth of the lateral extent

of the thick pre-wetting layer away from the stripe. The distance to pre-wetting,

µ − µ(w)
pw (0.92), is approximately (a) −1.5 × 10−3, (b) −4.7 × 10−4, (c) −1.6 × 10−4,

(d) −9.6× 10−6.

practical importance and would not even be seen in simulations, because the difference

in adsorptions between the (pseudo) coexisting phases is so large.

4.2. Complete pre-wetting

For the stripes of width L = 64, 32 and 16, the substrate shows complete pre-wetting

along the entire pre-wetting curve. That is, if we choose an isotherm lying above T
(w)
w

(but below the pre-wetting critical temperature) and increase the chemical potential

towards that of pre-wetting µpw (T ), a layer of the thicker pre-wetting film spreads out

laterally along the wall, at each side of the stripe (see figure 5).

The divergence of the adsorption for this transition is very similar to that occurring

near a geometrical step, as in the original work of Saam [5]. At large lateral lengths of the

adsorbed films, the film growth is determined by the long-range decay of the cumulative

potential exerted on the fluid by the slab of material (s) which has the power-law:∫
νL

dr′ϕLJ
σs,εs (|r− r′|) ∼ 1

x4
, (12)

as x → ∞ and fixed y. It is then clear, making analogy with the influence of

intermolecular forces for complete wetting, that the divergence of the adsorption at

complete pre-wetting with dispersion forces must follow the power-law [26,43]:

Γ (µ) ∝ (µpw − µ)−1/4 , as µ→ µpw. (13)

These predictions are altered if the chemical stripe is not of macroscopic depth. In

that case, the cumulative potential exerted on a fluid particle far from the stripe

decays as x−5, faster than (12). The adsorption in the approach to complete pre-

wetting then diverges with a different exponent Γ (µ) ∝ (µpw − µ)−1/5, instead of (13).
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This is another example of using a substrate shape in order to tune the influence of

intermolecular forces on the adsorption, and thus to control the adsorption.

4.3. Transverse wetting along pre-wetting

The most striking feature of the phase diagram in figure 4 is the tangential merging of

the unbending and pre-wetting lines at T ∗ ≈ 0.93, 0.9 and 0.87 observed for narrow

stripes (L = 2, 4 and 8). In this case, complete pre-wetting is only observed for

isotherms that approach µpw (T ) for temperatures larger than the corresponding T ∗.

On increasing the chemical potential towards pre-wetting at lower temperatures (in the

range T
(w)
w < T < T ∗), the adsorption Γ remains finite, implying that only a finite

layer of the thicker pre-wetting film spreads laterally away from the stripe. In other

words, the stripe is only partially wet by the thicker pre-wetting layer for T < T ∗,

while, for T > T ∗ it is completely wet. Therefore, crossing the pre-wetting line for

T < T ∗ results in a first-order phase transition similar to pre-wetting on a homogeneous

wall, but in one lower dimensions. By contrast, this first-order transition is replaced

by continuous complete pre-wetting for T > T ∗. There is, therefore, a direct analogy

between the transition occuring at T ∗ and a first-order wetting transition, in which the

unbending and pre-wetting lines play the role of pre-wetting and liquid–gas coexistence,

respectively. This explains our numerical findings that the unbending line meets the

pre-wetting line tangentially. An elementary calculation using the Clausius–Clapeyron

equation to determine the slope of the unbending line µu(T ) relative to pre-wetting

shows that:

µpw (T )− µu (T ) ∝ (T − T ∗)4/3 . (14)

where we have used the complete pre-wetting power-law, equation (13), to determine

the difference in coexisting adsorptions near T ∗.

This picture makes it clear that the transition at T ∗ along µpw (T ) is a 2D wetting

transition, occurring along (i.e. transverse to) the substrate. The order of this transition

deserves some discussion. Within the present mean-field classical DFT study, this

wetting transition is certainly first-order in nature, so that the excess adsorption Γ

diverges discontinuously. However, capillary-wave like fluctuations in the position of the

thick–thin interface along the wall can strongly effect this result (at least, in principle).

Recall that, strictly speaking, first-order wetting transitions are not possible in 2D for

systems whose effective external potential decays faster than an inverse cube, as the

potential (12) does [2]. This means two things: that the transverse wetting temperature

T ∗ is renormalised (lowered from its mean-field value) and that the adsorption ultimately

diverges continuously, so Γ ∝ (T ∗ − T )−1, consistent with Abraham’s exact solution of

wetting in the 2D Ising model [44]. In this case, the unbending line appears as a rounded

transition. However, recent studies of wetting in 2D systems have shown that, if the

underlying mean-field transition is strongly first-order, the asymptotic critical regime is

extremely small, and that the wetting transition remains effectively first-order [45, 46].

This, we believe, is pertinent to the transverse wetting occurring on the stripe substrate.
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In fact, if the transverse wetting temperature T ∗ is close to the wetting temperature

of the substrate T
(w)
w , interfacial fluctuations are strongly suppressed because the line

tension of the thick–thin interface is prohibitively large. Only for very narrow stripes,

where T ∗ is close to the pre-wetting critical point, are fluctuation effects of any relevance.

5. Conclusions

In this paper, we have aimed to show that even simple fluids on simply structured

substrates may exhibit complex phase behaviour. In the present case of a chemical

stripe, the interplay of pre-wetting and unbending transitions means that the decorated

surface exhibits not one but two different types of wetting transitions; the usual

one, occurring at the wetting temperature of the outer surface (corresponding to the

unbinding of the liquid–gas interface away from the wall), and a second transition

occurring along the pre-wetting line (corresponding to the unbinding of the thin–thick

interface along the wall away from the stripe). The possibility of such transverse wetting

transitions, and indeed of complete pre-wetting itself, in other geometries has not been

fully appreciated previously.

The present work opens up the possibility of using chemical stripes as building

blocks to induce further examples of surface phase transitions; for instance, if the

chemical inhomogeneity is made of two linear stripes that meet at an angle (forming a

”V”), then the complete pre-wetting transition may be substantially modified, similar

to predictions for 2D wedge filling transitions. However, studying these transitions

using microscopic classical DFT is numerically challenging because the density profile

is fully three dimensional. Combining chemical stripes with steps may allow us to tailor

the adsorption properties of a surface, both for practical purposes and also to study

fundamental predictions for the properties of confined interfaces.
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