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Abstract—In this paper, a novel ground station localization
algorithm is proposed for space optical communications using ar-
ray processing and a set of celestial objects of known locations in
the global coordinate system. First, the ground station estimates
the directions of this set of celestial objects relative to its local
coordinate system using the sunlight reflected by these celestial
objects. Then, the ranges of the celestial objects and the location
and orientation of the ground station are estimated by solving
systems of nonlinear and linear equations. The performance of
the proposed approach is assessed through computer simulation
studies. It is shown to estimate the location and orientation of
the ground station successfully with excellent accuracy.

Index Terms—Array processing, space optical communications,
ground station, localization, orientation estimation.

NOTATION

a,A Scalar
a,A Column vector
A Matrix
(·)T Transpose
(·)H Hermitian
(·)# Moore–Penrose pseudoinverse
‖·‖ Euclidean norm
⊗ Kronecker product
diag(A) Diagonal matrix formed from A
exp(A) Element-wise exponential of A
vec(A) Column-wise vectorization of A
E{·} Expectation operator
1N Column vector of N ones
0N Column vector of N zeros
IN N ×N identity matrix
R Set of real numbers
C Set of complex numbers

I. INTRODUCTION

Recently, there has been an increasing interest in exploring
outer space. As a consequence, high-speed data transmission
is required between Earth and space for a large amount of
data exchange. This demand necessitates a broad channel
bandwidth, which cannot be sufficiently provided within the
traditional radio frequency (RF) band. Therefore, the optical
band has been exploited in space communications because of
its unlimited and unregulated spectrum [1]–[4]. Besides its
large bandwidth, the optical band also offers other benefits,
such as the reduction in the mass and cost of spacecraft.

Along with these advantages, one of the major challenges
posed in space optical communications is the establishment
of a stable data link between the ground station on Earth and
spacecraft in space. Since the beamwidth of optical sources
(e.g., laser sources) is restricted by the diffraction from their
aperture and is extremely small in general, a subtle uncertainty
in the beam direction can lead to significant power loss and
performance deterioration. Thus, an accurate beam direction
(e.g., with the error smaller than 1 µrad) is a prerequisite for
successful data transmission using optical signals [4]. In order
to achieve such high precision in beam direction, the locations
of the ground station and spacecraft need to be accurately
estimated prior to the establishment of a data link [4].

Particularly, in order to localize the ground station, global
navigation satellite systems (GNSSs) such as the Global Posi-
tioning System can be utilized [5]. However, GNSSs operate
in the regulated RF band, which requires the installation of
additional hardware for the optical ground stations. Moreover,
the location error of GNSSs can be up to tens of meters [6],
which results in large pointing errors in space optical commu-
nications. Alternatively, in the optical band, two techniques are
commonly used to obtain the location information. The first
method employs a telescope array to form multiple images of
celestial objects of known locations. Based on the pixels of
the images, the locations of the ground station or spacecraft
can be coarsely inferred [4]. Tracking algorithms need to be
further applied to improve the location accuracy [7]. The other
approach exploits an uplink optical beacon from the ground
station: the beacon scans within an uncertainty area and the
spacecraft locate the ground station by detecting the beacon
using receivers of narrow field-of-view [5], [7]. However, this
is only applicable to short-range communications due to the
strength limit of the beacon [4]. In addition, neither method
estimates the orientation of the ground station or spacecraft,
which is crucial to directional space optical communications.
Thus, accurate location and orientation estimation techniques
that overcome the above shortcomings are much sought after.

In this paper, array processing is employed in space optical
communications for the first time to cope with the problems
in current localization techniques and improve the estimation
accuracy. In subspace-based array processing techniques, the
signal from a single source is mapped to a one-dimensional
subspace embedded in a high-dimensional complex observa-
tion space. Such subspaces of all the sources amount to the



signal subspace, which is completely determined by the array
manifold vectors of the sources. Hence, with the estimate
of the signal subspace, the array manifold vectors and their
parameters (e.g., the directions of the sources) can be esti-
mated using superresolution techniques like multiple signal
classification (MUSIC) and root-MUSIC [8]–[11]. Particularly,
in this paper, a novel localization approach is proposed to
estimate the location and orientation of the ground station in
conjunction with subspace-based array processing techniques.
By exploiting the sunlight reflected by a set of celestial objects
of known locations, the location and orientation of the ground
station can be estimated by solving systems of nonlinear and
linear equations. Through computer simulation studies, the
proposed approach is shown to effectively estimate the ground
station location and orientation with outstanding accuracy and
well satisfy the pointing error requirement specified in space
optical communications [4].

The organization of the remainder of the paper is as follows.
In Section II, the model for the sunlight signal reflected by a
set of celestial objects and received by the array of the ground
station is presented. In Section III, the proposed localization
method is detailed in a four-phase procedure: the directions
and ranges of the celestial objects as well as the location and
orientation of the ground station are estimated using MUSIC
and systems of nonlinear and linear equations. In Section IV,
the performance of the proposed algorithm is evaluated via
computer simulation studies with respect to the estimation
error. Finally, in Section V, the paper is concluded.

II. SIGNAL MODEL

Consider a ground station on Earth that employs an array
system of N sensors of a known array geometry. The ground
station receives the sunlight reflected by M celestial objects
randomly distributed in space of known locations with respect
to a global coordinate system. The locations of the ground
station and celestial objects are shown in Fig. 1, where the
sensors of the ground station are represented by the blue
spheres whereas the celestial objects are represented by the
red cubes. With reference to Fig. 1, the locations can be
specified in two distinct Cartesian coordinate systems: one
is the aforementioned global coordinate system (X,Y, Z)
while the other is the local coordinate system (x, y, z) with
respect to the ground station. Hereafter, for convenience, the
terms “global system” and “local system” are used to refer
to the global coordinates and local coordinates respectively
unless otherwise noted.

In the local system, the known array geometry (namely, the
Cartesian coordinates of the sensors) is given as

[r1, r2, . . . , rN ] =
[
rx, ry, rz

]T ∈ R3×N (1)

where rk ∈ R3×1 is the vector with its elements being
the Cartesian coordinates of the k-th sensor. Without loss
of generality, it is assumed that the array centroid is the
origin of the local system; i.e., it is the array reference point.
Further, the unknown location of the i-th celestial object is
denoted as r̄i ∈ R3×1. It is parameterized by its unknown
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Fig. 1. Geometries of the ground station and celestial objects. The ground
station array is represented by the blue spheres and the celestial objects are
represented by the red cubes. Their locations can be specified in the local
(x, y, z) and global (X,Y, Z) coordinate systems.

azimuth angle θi (measured counterclockwise with respect to
the positive x-axis), elevation angle φi (measured with respect
to the xy-plane), and range ρi (measured between the array
reference point and the celestial object itself) as

r̄i , r̄(θi, φi, ρi) = ρiui (2)

where

ui , u(θi, φi)

= [cos θi cosφi, sin θi cosφi, sinφi]
T ∈ R3×1 (3)

is a unit vector pointing from the array reference point towards
the celestial object. It is worth noting that ρi = ‖r̄i‖.

On the other hand, in the global system, the unknown
location of the array system (i.e., the array reference point)
is denoted as R ∈ R3×1. In addition, the known location of
the i-th celestial object in the global system is denoted as
R̄i ∈ R3×1.

Furthermore, the unknown mapping from the local system
to its global counterpart is governed by a transformation matrix
given as

T = [Q, R] ∈ R3×4 (4)

where Q ∈ R3×3 is the orthogonal rotation matrix and R, the
location of the ground station in the global system, also serves
as the translation vector. Using this transformation matrix T,
a vector v ∈ R3×1 in the local system can be mapped to its
global counterpart V ∈ R3×1 as

V = T
[
v
1

]
= Qv +R. (5)

In particular, the rotation matrix Q can be written in terms of
the product of three rotation matrices as

Q = QzQyQx (6)



where

Qx =

1, 0, 0
0, cosα, sinα
0, − sinα, cosα

 ∈ R3×3; (7a)

Qy =

cosβ, 0, − sinβ
0, 1, 0

sinβ, 0, cosβ

 ∈ R3×3; (7b)

Qz =

 cos γ, sin γ, 0
− sin γ, cos γ, 0

0, 0, 1

 ∈ R3×3 (7c)

are the respective rotation matrices about the x-, y-, and z-
axis with α, β, and γ being the corresponding unknown Euler
angles. By convention, −π ≤ α ≤ π, −π/2 ≤ β ≤ π/2, and
−π ≤ γ ≤ π.

In summary, only the array geometry in the local system
and the locations of the celestial objects in the global system
are known. The rest are unknown, including the ground station
location in the global system R and the orientation Q (or the
Euler angles α, β, and γ), which are to be estimated.

Now, consider the signal model in the local system. The
array receives the sunlight reflected by M celestial objects.
Note that the solar radiation spans most of the electromagnetic
spectrum [12]. Take the strongest visible band as an example;
its bandwidth is larger than 300 THz, which implies a coher-
ence length shorter than 1 µm. Thus, it is safe to assume that
the sunlight signals traveled along the paths associated with all
the celestial objects are incoherent due to the difference in the
path distances. In addition, each optical signal can be regarded
as a baseband envelope modulated onto an optical carrier; i.e.,
the component at the center frequency of the optical signal.
Therefore, at the ground station, the received baseband signal
after downconversion1, as illustrated in Fig. 2, can be modeled
in a vector format as

x(t) =

M∑
i=1

Simi(t) + n(t) ∈ CN×1 (8)

where, for the i-th celestial object, Si ∈ CN×1 is the plane
wave array manifold vector given as

Si , S(θi, φi) = exp

(
−j2πFc

c

[
rx, ry, rz

]
ui

)
(9)

with Fc being the center frequency of the optical signal and
c representing the speed of light. Furthermore, mi(t) is the
envelope of the i-th celestial object and n(t) ∈ CN×1 denotes
the complex additive white Gaussian noise of zero mean and
unknown power σ2

n. Equation (8) can also be written in a more
compact matrix format as

x(t) = Sm(t) + n(t) (10)

1Lowpass filters can be employed after downconversion to ensure that the
envelopes do not vary significantly when traversing across all the elements of
the array in addition to remaining incoherent.
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Fig. 2. Baseband representation of the ground station localization system.
The signal of the i-th celestial object is shown and those of the other celestial
objects have a similar structure to the i-th one.

where

S = [S1, S2, . . . , SM ] ∈ CN×M ; (11)

m(t) = [m1(t) ,m2(t) , . . . ,mM (t)]
T ∈ CM×1. (12)

III. PROPOSED LOCALIZATION ALGORITHM FOR THE
GROUND STATION

The objective in this paper is to estimate the location
of the array reference point of the ground station in the
global system as well as the orientation of the local system
with respect to the global system. The proposed localization
procedure is carried out in the following four phases: First, the
azimuth and elevation angles (i.e., the directions of arrival)
of all the celestial objects are estimated in the local system
using a subspace algorithm like MUSIC. Next, using the
estimated directions, the ranges of the celestial objects in the
local system are estimated by solving a system of nonlinear
equations. Subsequently, in the final two phases, with these
range estimates available, the ground station location in the
global system as well as its orientation can be estimated by
solving a set of linear equations.

A. Phase One: Direction Estimation of Celestial Objects

Initially, the directions of the celestial objects are estimated
based on the second order statistics of the received signal in
the local system. In particular, the covariance matrix of the
received signal given by Equ. (8) or (10) is

Rxx = E
{
x(t)xH(t)

}
= SRmmSH + Rnn ∈ CN×N (13)

where Rmm = E
{
m(t)mH(t)

}
is the covariance matrix of the

envelopes and Rnn = E
{
n(t)nH(t)

}
= σ2

nIN is that of the
noise. Using MUSIC, the azimuth and elevation angles of the
celestial objects can be estimated by evaluating the following
cost function

ξ(θ, φ) =
SH(θ, φ)S(θ, φ)

SH(θ, φ)EnEHn S(θ, φ)
(14)

where En denotes the eigenspace of Rxx corresponding to its
least significant eigenvalues.



B. Phase Two: Range Estimation of Celestial Objects

After estimating the azimuth and elevation angles θi and φi
of all the celestial objects, their directional unit vectors ui can
be derived. Define the matrix containing the estimates of the
directional unit vectors of all the celestial objects as

U = [û1, û2, . . . , ûM ] ∈ R3×M . (15)

In addition, a vector comprising the unknown ranges of all the
celestial objects can be defined as

ρ = [ρ1, ρ2, . . . , ρM ]
T ∈ RM×1. (16)

Recall that the location of the i-th celestial object in the local
system is given as r̄i = ρiui. This location vector r̄i is variant
with respect to the change of the coordinate system; i.e., its
global counterpart R̄i, which is given as

R̄i = Qr̄i +R, (17)

is not equal to r̄i in general. However, the difference between
any two location vectors r̄i and r̄j is invariant with respect to
the coordinate transformation. Thus, taking all the J =

(
M
2

)
pairs of celestial objects into account, this invariance can be
represented (see Appendix) as(

IJ ⊗ ρ
)T Aρρ = bρ (18)

where

Aρ =


F12UTUF12

F13UTUF13

...
F(M−1)MUTUF(M−1)M

 ∈ RJM×M ; (19a)

bρ =


∥∥R̄1 − R̄2

∥∥2∥∥R̄1 − R̄3

∥∥2
...∥∥R̄M−1 − R̄M

∥∥2

 ∈ RJ×1 (19b)

with Fij ∈ RM×M for i < j being the selection matrix of the
i-th and j-th celestial objects, defined as

Fij = diag
([

0Ti−1, 1, 0
T
j−i−1,−1, 0TM−j

]T)
, i < j. (20)

By solving Equ. (18), which is a set of J quadratic equations
of M unknowns where M > 2 (i.e., J ≥ M ), the ranges ρ
can be easily estimated2.

C. Phase Three: Location Estimation of Ground Station

Having estimated the directions and ranges of the celestial
objects in the local system, the location of the ground station in
the global system should be estimated next. Based on Equ. (17)
and [13], the location R can be estimated by solving the
following set of linear equations

ARR = bR ⇒ R̂ = A#
RbR (21)

2Note that the MATLAB fsolve function can be utilized to solve this
system of quadratic equations.

where

AR =


2
(
R̄1 − R̄2

)T
2
(
R̄1 − R̄3

)T
...

2
(
R̄1 − R̄M

)T

 ∈ R(M−1)×3; (22a)

bR =



(∥∥R̄1

∥∥2 − ∥∥R̄2

∥∥2)− (ρ̂21 − ρ̂22)(∥∥R̄1

∥∥2 − ∥∥R̄3

∥∥2)− (ρ̂21 − ρ̂23)
...(∥∥R̄1

∥∥2 − ∥∥R̄M∥∥2)− (ρ̂21 − ρ̂2M)

 ∈ R
(M−1)×1

(22b)

with M > 3 (i.e., M − 1 ≥ 3).

D. Phase Four: Orientation Estimation of Ground Station

The final step is to estimate the ground station orientation.
Equation (17) can be rewritten as

(r̄i ⊗ I3)
T

vec(Q) = R̄i − R̂ (23)

where vec(Q) is the only unknown to be estimated. Likewise,
vec(Q) is also determined by solving the following system of
linear equations

AQ vec(Q) = bQ ⇒ vec
(
Q̂
)

= A#
QbQ (24)

where

AQ =



r̄T1
r̄T2
...
r̄TM

⊗ I3

 ∈ R3M×9; (25a)

bQ =


R̄1

R̄2
...

R̄M

− 1M ⊗R ∈ R3M×1. (25b)

with M > 2 (i.e., 3M ≥ 9).
Further, the Euler angles α, β, and γ can be derived from

Q̂ as

α̂ = − arctan

(
FT3 Q̂F 2

FT3 Q̂F 3

)
; (26a)

β̂ = arcsin
(
FT3 Q̂F 1

)
; (26b)

γ̂ = − arctan

(
FT2 Q̂F 1

FT1 Q̂F 1

)
(26c)

where F d =
[
0Td−1, 1, 0

T
3−d
]T ∈ R3×1 is the selection vector

with d = 1, 2, 3. Thus, it is clear that at least four celestial
objects are needed to successfully estimate the location and
orientation of the ground station.

The proposed localization algorithm can be summarized as
the following steps.



1) Estimate the directions of the celestial objects by using a
subspace direction finding algorithm like MUSIC; e.g.,
Equ. (14).

2) Estimate the ranges of the celestial objects by solving
Equ. (18) and selecting the positive solution set.

3) Estimate the ground station location using Equ. (21).
4) Estimate the ground station orientation using Equs. (24)

and (26).
Note that in general, an array is utilized to localize sources

based on their signals. On the contrary, in this paper, an
array is employed to localize itself based on the signals
reflected by a set of celestial objects of known locations. The
proposed localization algorithm is not limited to space optical
communications, and can be applied to any other similar
localization problems; e.g., the localization of a spacecraft with
the aid of the signals from multiple ground stations of known
locations on Earth.

IV. COMPUTER SIMULATION STUDIES

In this section, the performance of the proposed localization
algorithm is assessed through computer simulation studies.
In the simulations, a 10 × 10 grid array of half-wavelength
intersensor spacing is utilized at the ground station [14], and
four celestial objects are randomly selected in space. The
locations of these four celestial objects and the ground station
in the local and global systems are listed in Table I. Other array
system parameters are listed in Table II. Note that parameters
highlighted in gray background are unknown and are to be
estimated. Also, the fractional parts of the values in Table I
and the Euler angles in Table II are truncated.

Figure 3 shows the computer simulation result of the
estimation of the directions of the four celestial objects from
the ground station, with the search step size of 1◦. Four
peaks above 30 dB can be clearly observed at the azimuth
and elevation angles of the celestial objects with some ap-
proximation (there are estimation errors due to the 1◦ step
size). In order to improve the accuracy of the direction
estimation, the cost function of Equ. (14) is maximized in the
interval of ±1◦ of the estimated directions using any convex
optimization algorithm3. Upon completion of the direction
estimation, the ranges of the celestial objects, the location of
the ground station in the global system, and its orientation
in the format of the Euler angles are estimated subsequently.
The estimation errors of all the four phases (including the
direction estimation) are listed in Table III. Note that the errors
of the direction estimates are small as expected since MUSIC
is a superresolution algorithm. Moreover, the errors for the
ranges and the location of the ground station are in the order
of 1× 10−2 m and for the Euler angles

(
1× 10−5

)◦, which
suggests that the ground station location and orientation are
very accurately estimated. Furthermore, based on the distance
between Earth and space (which is longer than 100 km), the
location estimation error yields a pointing error of less than

3The MATLAB fmincon function can be utilized in the interval of ±1◦

of the estimated directions.

TABLE I
LOCATIONS OF CELESTIAL OBJECTS (CO) AND GROUND STATION (GS)

Local system Global system

θ (◦) φ (◦) ρ (m) X (m) Y (m) Z (m)

CO1 16.15 71.95 558 920 437 517 −140 664 94 730

CO2 138.03 60.85 292 239 203 728 169 995 132 296

CO3 277.98 57.17 103 958 5386 37 406 215 873

CO4 305.96 18.05 748 918 31 577 −550 666 553 146

GS −72 397 78 545 160 512

TABLE II
ORIENTATION AND OTHER ARRAY SYSTEM PARAMETERS

Parameter Value Parameter Value

Euler angle α 85.19◦ Carrier frequency Fc 600THz

Euler angle β −22.12◦ Sampling frequency Fs 3GHz

Euler angle γ 97.28◦ Number of snapshots L 1× 106

SNR 30dB
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Fig. 3. Direction estimation with the azimuth and elevation angles of the four
celestial objects labeled as (θ, φ).

1 µrad =
(
5.7296× 10−5

)◦, well satisfying the requirement
of space optical communications. Note that the estimation
precision, which is expected to be high in this kind of
applications, can be further improved by increasing the number
of snapshots, number of array elements, or array aperture.

The performance of the proposed approach is also evaluated
with respect to the root mean squared error (RMSE) of the es-
timation using Monte Carlo simulation studies. The simulation
parameters are the same except that the product of the signal-
to-noise ratio (SNR) and number of snapshots varies. Figure 4
shows the RMSE curves of the location (displacement) and
orientation (Euler angles α, β, and γ) estimation. The curves
decline as SNR×L increases. The reason is that with higher
SNR or more number of snapshots, the signal subspace can be
more accurately reconstructed. This leads to a better estimation
of the azimuth and elevation angles of the celestial objects. As
the location and orientation estimates of the ground station are



TABLE III
ESTIMATION ERRORS

θ (◦) φ (◦) ρ (m)

CO1 0.1336× 10−5 3.8740× 10−6 3.9252× 10−2

CO2 1.0236× 10−5 3.9971× 10−6 0.0933× 10−2

CO3 0.8049× 10−5 8.4093× 10−6 5.2462× 10−2

CO4 0.0390× 10−5 8.1366× 10−6 3.6386× 10−2

X (m) Y (m) Z (m)
GS

0.6033× 10−2 6.9299× 10−2 5.5737× 10−2

α (◦) β (◦) γ (◦)Euler
angle 1.2251× 10−5 1.9118× 10−5 0.0961× 10−5

80 85 90 95 100
10−5

10−3

10−1

101

Displacement

Euler angle α
Euler angle β

Euler angle γ

SNR× L (dB)

R
M

SE
(m

or
◦ )

Fig. 4. Location and orientation RMSE over 10 000 realizations. The location
RMSE is measured in the format of the displacement between the true and
estimated locations.

derived from the direction estimates of the celestial objects,
their RMSE becomes smaller consequently.

In short, with the exploitation of the proposed approach,
the location and orientation of the ground station on Earth
can be precisely estimated with exceptional accuracy. Further,
the pointing error brought by this algorithm well satisfies the
requirement in space optical communications.

V. CONCLUSIONS

In this paper, using subspace-based array processing tech-
niques, a novel localization algorithm is proposed for space
optical communications to estimate the location and orienta-
tion of the ground station in the global coordinate system using
the sunlight reflected by at least four celestial objects in space.
The performance of the proposed approach is assessed through
computer simulation studies. It is shown that the location and
orientation of the ground station are successfully estimated via
the proposed approach with outstanding accuracy.

APPENDIX

With reference to Equ. (17), the locations of the i-th and
j-th celestial objects in the global system are given as

R̄i = Qr̄i +R; (27a)

R̄j = Qr̄j +R (27b)

and the difference between them is

R̄i − R̄j = Q
(
r̄i − r̄j

)
. (28)

Squaring the Euclidean norms of both sides of Equ. (28) yields∥∥R̄i − R̄j∥∥2 =
(
r̄i − r̄j

)T QTQ
(
r̄i − r̄j

)
. (29)

Since Q is the orthogonal rotation matrix, it is straightforward
that QTQ = I3. Hence,∥∥R̄i − R̄j∥∥2 =

(
r̄i − r̄j

)T (
r̄i − r̄j

)
= ‖r̄i‖ − 2r̄Ti r̄j +

∥∥r̄j∥∥
= ρ2i − 2uTi ujρiρj + ρ2j . (30)

This is a bivariate quadratic equation and can be rewritten as∥∥R̄i − R̄j∥∥2 = ρTFijUTUFijρ. (31)

Stacking Equ. (31) for all the pairs of celestial objects gives
∥∥R̄1 − R̄2

∥∥2∥∥R̄1 − R̄3

∥∥2
...∥∥R̄M−1 − R̄M

∥∥2

 =


ρTF12UTUF12ρ
ρTF13UTUF13ρ

...
ρTF(M−1)MUTUF(M−1)Mρ


(32)

where the left-hand side is bρ and the right-hand side can be
rewritten as

(
IJ ⊗ ρ

)T Aρρ, which result in Equ. (18).
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