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Abstract—The impact of antenna array geometry on its ability
to mitigate interference, and hence the channel capacity, is a topic
that is seldom studied and is crucial for future systems that will
employ large arrays. In this paper, for the worst-case scenario
where interferers are located spatially close to the desired user,
the “capacity loss” is defined and expressed as a function of
the array geometry and propagation environment. Based on the
analytical results, simulation studies of the capacity loss are
presented for different array geometries and various key insights
on antenna array design are highlighted.

Notation
A, a Scalar
A, a Column vector
A Matrix
()" Transpose
()" Hermitian transpose

II1l Norm of a vector
In N x N identity matrix

On N x N matrix of zeros
E{-} Expectation operator
C Set of complex numbers
R Set of real numbers

I. INTRODUCTION

Future communication systems are expected to deliver high
capacity whilst operating in environments with high user
density and heightened interference [1]. Towards this end,
large antenna arrays are expected to play a major role in
providing high levels of spatial discrimination between co-
channels users and improved interference cancellation. The
selection of an appropriate performance measure is key to the
design of efficient antenna array receivers. In this context, it is
crucial to establish a relationship between the channel capacity
associated with an antenna array and the given array geometry
as a function of the propagation environment, to measure and
study the spatial discrimination capabilities of an array.

In the wireless communication literature, considerable re-
search has been carried out to investigate the effect of various
factors on capacity, such as the presence of interference and
multipaths. Based on non parametric channel models, a num-
ber of approaches to analytically model the capacity in various
environments, such as channels with high interference, indoor

line-of-sight (LOS) and channels with high antenna correlation
[2][3], can be obtained in the literature. In [4], using a non-
parametric channel model for an indoor environment, the effect
of multipath propagation on the channel capacity is studied.
An analysis of the channel capacity in the presence of antenna
correlation and interference is presented in [5]. In [6], utilising
the Kronecker channel model, approximate spatial correla-
tion models for specific array configurations for a clustered
multiple-input multiple-output (MIMO) channel are proposed.
However, for large antenna array systems that are expected
to play a crucial role in future communication systems, mea-
surement and modelling campaigns show that the underlying
non parametric models become quite unsuitable and erroneous
since the channel does not present rich scattering [7]. Thus,
an effort to utilise parametric models to study the impact of
interference becomes crucial. Towards this, in [8], using 2D
ray models, the channel is parametrically modelled and the
effect of antenna spacing on the channel capacity is studied,
albeit for a simple 2 x 2 MIMO system. In [9], the effect of
spatial correlation on the channel capacity is studied. However,
the influence of the array geometry has been ignored in the
aforementioned research. There has been some research that
studies the influence of array geometry on the array detection,
resolution [10] and the average error of DOA estimation
[11]. In [12], the impact of four uniform array geometries
on the ergodic capacity in a microcellular urban environment
is studied, albeit in the absence of interference. In [13] and
[14], an analysis of the achievable capacity for two different
sets of array geometries is estimated assuming the users are
located uniformly within a sphere and a circle of known radius
respectively. However, this scenario is representative of the
average capacity rather than the worst case capacity that is
obtained when the users are spatially very close to each other
as expected in future dense urban environments. Thus, in this
paper, using the novel concept of “capacity loss”, a study of
the impact of the array geometry on the channel capacity, with
the worst case scenario of spatially close users, is studied, to
address this gap in the literature.

This paper is organised as follows. In Section II, the concept
of capacity loss, that occurs as a result of closely spaced
interfering users, is introduced. Subsequently, in Section III,
the basic differential geometry parameters to study the array



manifold are presented. This is followed by Section IV where
a closed form expression of the capacity loss is obtained. In
Section V, various common array geometries are compared
using the capacity loss of a performance metric and various
insights provided by this metric are highlighted. Finally, the
paper is concluded in Section VI.

II. CAPACITY LOSS

Consider an N-element antenna array lying on the z-y plane
and operating in the presence of M users. Without any loss of
generality, it is assumed that the first user is the desired user
and the remaining M —1 are co-channel interferers with all M
users located also on the z-y plane. The signal z(t) € CNV*!
received by the antenna array is given as follows

z(t) =a(f +Z t)+n(t), (1)
where a (6;) € CV*! is the array manifold vector of the i-th
user and is given as a function of the array geometry as

a(0;) = exp (—jm (r, cos 0; + r, sin 6;)) - 2

In Eq. 2 the matrix [r T ] € RIV*2

o Ty represents the x and y
Cartesian coordinates of the antenna array (in units of half-
wavelength) and 6; denotes the azimuth angle of the i-th
source (measured anticlockwise with respect to the positive
x-axis). Furthermore, in Eq. 1, m;(¢) is the received baseband
message signal of the i-th user, while n(¢) is the additive
isotropic white Gaussian noise vector of zero mean and co-
variance o2 y. Assuming that the M signals are uncorrelated,
the covariance matrix R,, € CN*¥ of the signal z(t) given

by Eq. 1 is

Reo = E{z(t)z(t)"} = ZPa

where P; represents the received power of the i-th user. In
this case, the channel capacity C is formally defined as the
maximum of the mutual information Z between the transmitted
desired signal m; () and the signal received at the output of
the antenna array z (¢), assuming perfect knowledge of the
desired array manifold vector a(6;). That is,

(t) [a(61)} - Q)

It can be shown that the channel capacity given by Eq. 4 can
be written as follows

C:Blogg(

(0:) +oiln, (3)

C=maxZ{m; (t);z

det (Ryz)
det (Rzz — P1§(91)§H (91))
where B is the channel bandwidth. By defining the matrix A
as follows

> bits/sec, (5)

A2 [afy),...,a(0y)] eCcN*M-1) (6)

Eq. 5 can be rewritten as

det N +o02, Pratl(6,)AP
VPIPAT a(6,), PATAP + 021,
C = Blog,
o2 det (IP’AHAIP’ + ag]IM_l)
(N
where PP is the matrix of signal power given by
\% P25 07 o 0
0, +P5, - 0
P= : : N : GC(]V[_l)X(M_l). (8)
07 07 Vv P]\/[

The difference between the capacity in the presence of co-
channel interference, given by Eq. 7, and the capacity in the
absence of interference is defined as the “capacity loss”. This
capacity loss denoted by Clogs is the negative contribution of
the M — 1 interferers in diminishing the capacity and is given
as follows

A A
Closs = —log, <1 - m) bits/sec/Hz, 9)
where
VPIPAT A (61) (10)
D = PAPAP+ 020, _,. (11)

It can be noted that the absence of interferences P = Qp;s_1,
which implies that the capacity loss is equal to 0 bits/sec/Hz.
More importantly, this term is negligible when the interferers
are spatially far away from the desired user. However, if the
interfering sources are spatially close to the desired user, (as
this is expected with high probability in future high density
communications) the capacity loss is expected to be signifi-
cant. Hence, a study of the variation in C. in terms of the
array geometry can present key insights that would be crucial
for the design of future systems. This forms the motivation of
this paper. Please note that, as per our knowledge, the measure
of “capacity loss” is introduced and studied as a function of
the array geometry for the first time in this paper.

III. PARAMETERS OF THE ARRAY MANIFOLD

In Section II, the capacity loss due to the presence of co-
channel interferers that are spatially close to the desired user
was introduced. However, in order to analyse the capacity
loss in terms of the array geometry, it is essential to employ
accurate measures to describe the shape and characteristics of
the array manifold. The array manifold is defined as the locus
of all the array manifold vectors a(#),V0 and is a curve A
which is embedded in an NV-dimensional complex observation
space [11] and defined as

A2{a(6),v6 €]0°360°}. (12)



Since the array manifold is a function of a single parameter
namely the azimuth angle 6, given by Eq. 2, all the users lie
on the manifold curve A, which in this case is also known as
the f-curve [11].

It is clear from Eq. 12 that the array manifold is convention-
ally parameterized in terms of the azimuth angle 6. However,
parameterization in terms of the arc length s, which is the most
basic feature of a curve and a natural parameter representing
the actual physical length of a segment of the manifold curve,
is more suitable. The arc length s (#) along the manifold curve
A is formally defined [11] as

0
5(0) & /
0

Figure 1 illustrates the manifold curve embedded in C™V. It also
shows the manifold vector of the desired user a (6;) ending
at the point s; = s () on the curve. The cluster of (M — 1)
cochannel interferences is between the points so = s (65)
and sp; £ s (0ar) on the manifold curve (shown in Fig. 1),
with these two points corresponding to the manifold vectors
a(f)anda(0y) (01 < 02 < ... < Bp). This implies that the
desired signal is outside the cluster of (M — 1) interferences
and the closest interference is the one with direction of arrival
f>. Furthermore, in order to facilitate the analysis of the
relationship between the capacity loss and the array geometry,
from here onwards, we represent the manifold vector of the
i-th user a, in terms of the arc length rather than the azimuth
as follows

da (6)
df

(13)

2

a; = a(s;).

(14)

Thus, using this, we may define the principal curvature at any
point s [11] on the array manifold 4 (s) as

d*a(s)
"{1 (S) = d82 ‘
1 .2 J oL
= 2 (0) + =Py Z(Q)H ; (15)
(6] m i
where
r(0) = r,cosf+r, sind, (16)
or (9) .
7)) = 50— La sin6 +r, cos ¢ (17)

and }P’ilg) represents the complement projection operator onto

the subspace spanned by 7 (6). That is,
. . . -1,
Pigy = In —7(0) (¢ (0)7(0)) 7 ().  (18)

In particular, using Eq. 15 we may find the principal
curvature k1 (S.) at the centre of the cluster of the interfering

originé”

Fig. 1. Representation of the array manifold vectors of the desired user
aj and interferers ag, . ..,aps on the array manifold curve A. The arclength
between the closest interferer and the desired user is assumed to be As while
the cluster size of interference is Asc. The point O denotes the centre of
curvature of the arc on which the interferer cluster lies with radius equal to
K1 (Sc).

users, i.e. at point s. given by

(52 £ 5m), (19)
2

The parameter s. is shown in Fig. 1 together with
As. = sy — $2 which is the arc length of the cluster
and corresponds to an angular separation Af. = 6, — 6.
Assuming a circular approximation' of the manifold curve in
the region of the cluster, the radius of this segment is the
inverse of the principal curvature x; ' (s.) as also shown in
Fig. 1. In this case, we may express the inner product between
two array manifold vectors a (s;) and a(s;) in the cluster as

(.7 — Z)ASC >
(M —2) 2k (50220)

s 2 5(0) =

al (s;)a(s;) = N —2k7? (s¢) sin® <

with 2 <4, 5 < M.

The above definitions and concepts will be utilised in the
next section to analyse the relationship between the capacity
loss and the array geometry.

IV. CAPACITY LOSS AND THE ARRAY MANIFOLD

In this section, the capacity loss defined in Section 1II is
expressed as functions of arc lengths and first curvature of the
array manifold defined in Section III. The desired user and the
M —1 remaining interferers are denoted by their corresponding
array manifold vectors a, and a,,...,a;, respectively. The

'For larger As., corresponding to larger Af., the circular approximation
may not be valid and the second curvature k2 (sc) of the array manifold
curve may need to be calculated and used.



impinging angle of the desired user is ¢; while the M — 1
interferers have angles of 0s,..., 0, respectively. Recalling
Fig. 1 that describes the array environment, we assume that
the angular separation between the desired user and the cluster
of interferences is small enough to result in a capacity loss.
For the sake of simplicity, we assume that the desired user
and all interferers are received with unity power. That is,

P =P = ... = Py = 1. Recalling Eq. 9, the matrix
D e CM=DX(M=1) may be expressed as follows
afla,, aflas, adlay,
H H
a3 as, a3 ag, ag apy
D= ) . +02lp_1.  (21)
H H H
dpdo,  dprag, Apradnr

Consequently, I can be expressed in terms of the array
manifold parameters introduced in Section III as follows

As
D~ —2672 (s.)sin? [ M < 22
7 ot 20, (se) (M 2)) 22
+ N1y 1y +0ilya, (23)
where M is the following Toeplitz matrix
0, L, ... M-2
1, 0, e M -1,
M| . (24)
M-2, M-1, ... 0

Remember that, s. denotes the centre of the interferer cluster
(see Fig. 1) and k1 (s¢) is given by Eq. 15. In a similar fashion,
b in Eq. 9 may be written as

al’a,

H
al’a
=123 e cM-1)x1.

IS
I

(25)

H
ar ayy
which may be, in turn, expressed in terms of the array manifold
parameters as follows

ba Nly oy —2:7°(3) (26)
As 1 1
) c
X sin Asly, ;+—=M — = |
< MU (M - 2) [QM—Q]) 267" (§)>
(27)
where $§ is the centre of As = s5 — 37, i.e.

5= % (28)

Equation 9, in conjunction with Eqgs. 22 and 26, establish an
important relationship between the capacity loss and the most
important parameters of the array manifold, namely the arc
length and the principal curvature which are, in turn, dictated
by the array geometry and the propagation environment. This

is a crucial design equation for antenna arrays and will be
investigated for different array geometries in the next section.

V. COMPUTER SIMULATION STUDIES

In order to study the impact of the array manifold parame-
ters on the capacity loss, given by Eq. 9, two sets of five array
geometries were studied. In the first set, all five geometries
have the same number of antennas N but different aperture.
In the second set, all five geometries have approximately the
same aperture but different number of antenna elements. A
half-wavelength inter-antenna spacing was maintained across
both sets of geometries. All the geometries belong to the class
of “2D grid arrays” [11] which are defined as the geometries
which satisfy the following conditions:

rir,=0and [,/ =|r,|- (29)

A. Array Geometries with Equal Number of Antennas

All the 2D grid arrays considered in this subsection have
24 antennas as shown in Fig. 2. Furthermore, the propagation
environment was assumed to be composed of one desired user
and three interferers. The As. was set such as the cluster of
interfering users is set to 3°. That is, Af. = 3°. In addition,
the As was set such as the angular separation A¢; , was varied
between 0° and 7°. For this environment, the resulting capacity
loss for the five geometries is also illustrated in Fig. 2 with
variable A¢; 5 and variable 6.

As mentioned in Section IV, the arc length and principal
curvature are two crucial array manifold parameters that
contribute to the capacity loss. For the case of grid arrays
[11], the length of the arc As is given by

As=m ||Zx|| A01,27 (30)

and, hence, is constant over the f-curve for a fixed value of
A#f; o while increases linearly with Af; 5. In Fig. 2, this, in
conjunction with Eq. 9, explains the decrease of Clyss With
increased A6 5.

Equations 9, 22 and 26 indicate that there exists a trade-off
between the array aperture, curvature and number of antennas,
that will enable the minimisation of capacity loss. In the
chosen geometries, with fixed N, the influence of As given
by Eq. 30 is high. This explains the ranking of geometries in
Table I where the Circular array yields the lowest capacity loss,
since it possesses the highest value of ||r,||, and the “Filled”-
grid provides the highest capacity loss, since it possesses the
lowest value of ||r,||. Table I also gives the the total length
of the manifold of each of the array geometries with N = 24
antennas. Using the rule that “the best array geometry is the
one which provides the smallest Cjoss for a given A6y 5",
the best geometry in Fig. 2 is the Circular geometry. The
same ranking results also by observing the capacity loss graphs
shown in Fig. 2.
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Fig. 2.

for varying azimuth 6, and separation Ad,, between the interfering cluster and desired user.

Five antenna arrays with constant number of antennas namely (a) “filled”-grid, (b) square, (c) circle, (d) concentric circle and (e) X-shaped. The

performance of each array geometry was evaluated in terms of the capacity loss with varying 61 and Af 2 and are presented below the illustration of the

corresponding array geometry.

TABLE 1
COMPARISON (RANKING) OF THE TWO SETS OF FIVE ARRAY GEOMETRIES BASED ON THE CAPACITY LOSS.

Fixed Number of Antennas (N = 24) Equal Aperture
Array geometry || |r.|| = [|r,|| | Manifold length ¢,, | Ranking || ||r,|| | Manifold length ¢,, | Ranking
“Filled”-grid 7.07 139.58 last 14 276.35 4th
Square 12.08 238.51 3rd 12.08 238.51 2nd
Circle 13.23 261.19 best 9 177.65 3rd
Concentric circles 7.64 150.80 4th 9.68 191.04 last
X-shaped 12.59 248.45 2nd 8.22 162.17 best

Note that, in this case, it is the norm ||r, || (= |z, ||) of
the array geometry that matters more than the array aperture.
Furthermore, when the value of ||r,|| increases, the impact of
the principal curvature x; is magnified and this results in an
increase in the capacity loss.

B. Array Geometries with Approximately Equal Aperture

In this subsection, 2D grid arrays of the same aperture are
investigated. Figures 3a and 3b illustrate the array geome-
tries and their corresponding capacity losses for the same
environment as described in Section V-A. Table I gives the
performance ranking of the geometries shown in Fig. 3. An
interesting result is that the “Square” array and X-shaped array
yield a result very similar to that of the “Filled”-grid array even
though the “Filled”-grid has a higher number of antennas. This
can be explained by applying the result obtained in Eq. 9 for
this set of geometries. Unlike the geometries in Fig. 2, the

geometries in Fig. 3 have different number of antennas. This
implies that there is now an interplay between three different
parameters namely ||r, ||, 1 and N that results in the ranking
given in Table I. The relationship between these parameters
dictates the performance ranking.

Figure 5 illustrates the variation in capacity loss for the
arrays shown in Fig. 3 but with varying number of users M.
As before, the interferer cluster is 3° and, the desired user is
fixed at 7 = 20°. The separation As = sy — s1 between the
desired user and the second user (closest interference) is set
such as Af; 5 = 6°.

Finally, consider the scenario where the desired user is
located at the center of a cluster of 4 interferers (i.e. M = 5)
with Af. = 3°. The DOA of the desired user 6 is variable and
this is horizontal axis in Fig. 4 which illustrates the capacity
loss for the geometries shown in Fig. 3. It can be observed that
the capacity loss is approximately the same for all geometries



o
ot
S
o
3

o000 ® 000000 ° L N J ° ° L N J ° [ ] [ ]
R . . . . * oo @ ® " .'

— o0 00 s [ ] [ ] [ ] — o o o ©

o R gl ° ° Rl . ° Ly o o o o ol .

> XK > . . > . . > o O 10 @ = o LR .
o000 - . L] L] [ ] - ° °
® e 00 ® 00 0000 L4 o0 ® L b L ] L ]

5 5 5 5 5
-5 0 5 5 0 5 5 0 5 -5 0 5 -5 0 5
z (3) z (3) z (3) z(3) z{3)

“Filled”-grid Square Circle Concentric circles X-shaped
49 Antennas 24 Antennas 18 Antennas 28 Antennas 17 Antennas

(a) Five antenna arrays with constant aperture.

7 7 7 7 7 \/ 2
) 6 6 6 3<C, <5 6 .
39C,. <5 S
EN EN EN 0 s
B4 S 4 4<C<6 S S 4 2
= = = = , &
3 o3 E 23 V % v V £
< 5=} S 5~ =
<2 <9 < 9 2
1 1 1 <
0 0 0 0 0
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
61 (deg) 61 (deg) 01 (deg) 61 (deg) 61 (deg)

(b) Capacity loss C,_ for varying azimuth 6, and separation Af,, between the interfering cluster and desired user.

loss

Fig. 3. Five antenna arrays with constant aperture namely (a) “filled”-grid, (b) square, (c) circle, (d) concentric circle and (e) X-shaped. The performance of
each array geometry was evaluated in terms of the capacity loss with varying 61 (corresponding to s1) and A6y 2 (corresponding to As) and are presented
below the illustration of the corresponding array geometry.
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