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Abstract
The presence of contextuality in quantum theory wasfirst highlighted by Bell, Kochen and Specker,
who discovered that for quantum systems of three ormore dimensions,measurements could not be
viewed as deterministically revealing pre-existing properties of the system.More precisely, nomodel
can assign deterministic outcomes to the projectors of a quantummeasurement in away that depends
only on the projector and not the context (the full set of projectors) inwhich it appeared, despite the
fact that the Born rule probabilities associatedwith projectors are independent of the context. Amore
general, operational definition of contextuality introduced by Spekkens, whichwewill term
‘probabilistic contextuality’, drops the assumption of determinism and allows for operations other
thanmeasurements to be considered contextual. Even two-dimensional quantummechanics can be
shown to be contextual under this generalised notion. Probabilistic noncontextuality represents the
postulate that elements of an operational theory that cannot be distinguished from each other based
on the statistics of arbitrarilymany repeated experiments (they give rise to the same operational
probabilities) are ontologically identical. In this paper, we introduce a framework that enables us to
distinguish between different noncontextuality assumptions in terms of the relationships between the
ontological representations of objects in the theory given a certain relation between their operational
representations. This framework can be used tomotivate and define a ‘possibilistic’ analogue,
encapsulating the idea that elements of an operational theory that cannot be unambiguously
distinguished operationally can also not be unambiguously distinguished ontologically.We then
prove that possibilistic noncontextuality is equivalent to an alternative notion of noncontextuality
proposed byHardy. Finally, we demonstrate that theseweaker noncontextuality assumptions are
sufficient to prove alternative versions of known ‘no-go’ theorems that constrainψ-epistemicmodels
for quantummechanics.

1. Introduction

Oneway inwhich quantummechanics differs strongly from classicalmechanics is the existence of incompatible
observables; if wewant to think thatmeasurements reveal properties of a system, thenwemust reconcile this
with the fact that there exist pairs of properties that cannot be simultaneouslymeasured. By considering the
same observables appearing in different contexts, that is,measured alongside different sets of other observables,
Bell [1], as well as Kochen and Specker [2] showed thatmeasurements could not be thought of as simply
revealing underlying properties of the system in away thatwas independent of the context inwhich the
observable wasmeasured. This property of quantummechanics is now referred to as contextuality.

Discussions of contextuality often focus on scenarios inwhich an element of a operational theory such as
quantummechanicsmanifests itself in two different contexts, such as two different decompositions of a density
matrix; or an observable beingmeasured in two different ways, alongside different sets of co-measurable
observables. Thesemanifestations are treated identically by the operational theory, always leading to the same
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probabilities. In fact, this is why the same notation is used for the objects in the first place, as a context-
independent symbol is all that is needed to calculate probabilities. However there is no formal argument to be
made that these elements which are operationally context-independent should also be ontologically context-
independent: thismust be taken axiomatically.Motivation for such an axiom cannot be logically deduced or
extrapolated from experimental data, but rathermust be based on aesthetic principles (e.g., Leibniz’s principle
[3]).We call such axioms ‘noncontextuality assumptions’. This idea, that operationally indistinguishable objects
should also be considered ontologically identical is a formof noncontextuality, henceforth referred to as
‘probabilistic contextuality’.We see that it somewhat encapsulates the hypothesis, reminiscent ofOccam’s razor,
that these objects give rise to identical properties because they are ontologically identical.Wewill introduce a
frameworkwhich allows us to compare and contrast different noncontextuality axioms by viewing them as
assumptions about ontological propertiesmotivated by operational data.

This framework can be used tomotivate and define a ‘possibilistic’ analogue to probabilistic
noncontextuality. Possibilistic noncontextuality reflects the assumption that two elements of a physical theory
share the same operational possibilities also share the same ontological possibilities. The notion of grouping
states by the sets of events that they assign nonzero probability is not entirely novel: this viewpoint emerges
naturally in the setting of classical and quantumprobability theory from considerations of what itmeans for
different parties to hold different but compatible beliefs about a system such as those of of Brun, Finkelstein and
Mermin [4] orCaves, Fuchs and Schack [5]. This notion of possibilistic noncontextuality is strictly weaker than
that of probabilistic contextuality.Wewill demonstrate that analogues of some results originally proved using
the stronger notion of probabilistic noncontextuality in fact holdwith this weaker assumption: for example, it
was shown by Spekkens [6] that the assumption of noncontextuality for preparations is incompatible with the
operational predictions of quantummechanics, and it was shown byMorris [7] and byChen andMontina [8]
that any ontologicalmodel obeying noncontextuality formeasurementsmust beψ-ontic.We demonstrate that
similar results can be proven using only theweaker, possibilistic, notion of noncontextuality.

2.Notions of noncontextuality

Noncontextuality is a property of an ontologicalmodel (also known as a hidden variablemodel). In order to
formulate a generalised notion of contextuality, we begin by briefly reviewing the framework of ontological
models, which allow for realistic descriptions of experimental procedures within an operational theory [6, 9].

2.1.Ontologicalmodels and operational theories
Anoperational theory assigns probabilities   ( ∣ )kPr , , to outcomes k occurringwhen procedures for a
preparation  , a transformation  , andfinally ameasurement are implemented. Any particular  ,or 
will be denoted an element of the operational theory.Quantummechanics can be regarded as an operational
theory by identifying preparation procedures with densitymatrices ρ, transformationswith unitary operatorsU
acting on densitymatrices via conjugation, andK-outcomemeasurements with positive-operator-valued
measures (POVM) = ¼{ }E E, K1 . The probability for an outcome k given a preparation described by ρ and a
transformation byU is then given by the Born rule,

r r=( ∣ ) [ ] ( )†k U E U UPr , , tr . 1k

Anontologicalmodel for such an operational theory consists of a setΛ, equippedwith aσ-algebraΣ, of
possible ontic (or ‘real’) states alongside ontological representations of preparations, transformations and
measurements, dependent on each other only via states l Î L. A preparation procedure  is represented
within the ontologicalmodel by the preparation of a system in an ontic stateλ sampled according to some
measure m onΛ. A transformation  in the operational theory is represented in the ontologicalmodel by a
map that, for a system in the ontic stateλ, samples a new l¢ Î L according to the conditional probability
measure  l lG ¢( ∣ ) onΛ. Finally, aK-outcomemeasurement in the operational theory is represented in the
ontologicalmodel by a response function ξ such that, for a system in the ontic stateλ, themeasurement
outcome Î ¼{ } ≕k K1, , K is sampled from the conditional probability distribution x l{ ( ∣ )}k on K .

The ontologicalmodel reproduces the predictions of the operational theory if

     ò l l m l l l x l= ¢ G ¢ ¢( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )k kPr , , d d 2

for all   k, , , .While all constructions in this paper hold for general operational theories, wewill only
explicitly consider ontologicalmodels of quantummechanics. For brevity, wewill omit transformations and
focus solely on preparations andmeasurements, though all definitions can be directly extended to account for
transformations.

2
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The Beltrametti–Bugajskimodel [10] is perhaps the simplest example of an ontologicalmodel of pure-state
quantummechanics. In it, pure quantum states are treated as being physical states, sowe have L = ;
m l d lñ = ñy yñ ñ(∣ ) (∣ )∣ ∣ ; and x l l lñ = ñá( ∣∣ ) ( ∣ ∣)E tr EM .

We note that for the rest of this paperwewill be assuming that our ontologicalmodels have a convex
structure and therefore preparations (or other operational procedures) can be statisticallymixedwith each
other.Without this assumptionmany of these noncontextuality relations become trivial. An example of amodel
without such an assumption is quantummechanics restricted to pure states, unitary transformations, and
projectivemeasurements.

2.2.Operational and ontological relations
In this section, we define a generalised noncontextuality assumption to be an assumption that a particular relation
at the level of the operational theory implies a (usually similar) relation at the level of the ontological theory. It is
a scheme formaking conclusions about ontology based on a theory’s operational predictions. A
noncontextuality assumption allows reasoning about ontological properties based on observable (operational)
phenomena.

More formally, an operational relation∼will be a symmetric, reflexive relation over elements in the
operational theory (i.e., preparations, transformations and/ormeasurements); an ontological relation≈ is a
symmetric, reflexive relation over elements of the ontologicalmodel. For clarity,∼ and≈will always be used to
denote operational and ontological relations respectively.

Definition 1 (Noncontextuality assumption).Anoncontextuality assumption is a statement that when two
objects in the operational theory are related by a specified operational relation∼, their ontological
representationsmust be related by an ontological relation≈. For example, applied to preparations these are
statements of the form

   m m~  » ( ). 31 2 1 2

Notably, we do not require that an operational or ontological relation be transitive by definition, and therefore
do not restrict ourselves to only consider equivalence relations for this purpose. In practice, however,many
interesting noncontextuality assumptions are defined using equivalence relations and elements related by such
will be referred to as equivalent.

In general, the operational relation is a condition that specifies which elements of the operational theory are
related to each other. The noncontextuality assumption and ontological relation then state how the ontic
representation of two equivalent elements of the operational theory are related to each other. Given a
noncontextuality assumptionX, we say that an operational theory exhibitsX contextuality if in any ontological
model that correctly reproduces the operational theory there exists some pair of operational elements related by

~X whose ontological representations are not related by»X .
While noncontextuality assumptions can apply to preparations, transformations andmeasurements, in this

sectionwewill use preparations as an example.

2.3. Probabilistic noncontextuality
As discussed, in quantummechanics there aremany elements such as densitymatrices, observables, and POVM
elements, whose operational behaviour is context-independent. The notion of contextuality due to Spekkens [6]
captures this tension bymaking the assumption that objects that are operationally identical are also ontologically
identical.Wewill present this formof noncontextuality assumption using our notation here.

Definition 2 (ProbOp).Twopreparation procedures 1 and 2 in an operationalmodel are probabilistically

equivalent (denoted  ~Prob
1 2) if for all outcomes k of allmeasurement procedures,

   =( ∣ ) ( ∣ ) ( )k kPr , Pr , . 41 2

In the case of quantummechanics, all operational predictions for a preparation procedure  are completely
encoded in the associated densitymatrix r . Therefore we have

   r r~  = ( )Prob . 51 2 1 1

As a particular example, themaximallymixed state can be prepared inmanyways, such as by tracing over half of
amaximally-entangled pair, randomly applying a unitary operation or by preparing a system in a basis and
forgettingwhich element was prepared. All of thesemethods are probabilistically equivalent for a single qubit.

Having specified an operational relation, the next step is to specify an ontological relation.

3
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Definition 3 (ProbOn).Twopreparation distributions m 1
, m 2

in an ontologicalmodel are probabilistically

equivalent, denoted  m m»Prob
1 2

, if and only if  m l m l=( ) ( )
1 2

l" .

Definition 4 (Probabilistic noncontextuality). For any two preparations  ,1 2 related byProbOp, their
ontological representations  m m,

1 2
are related byProbOn. That is, the probabilistic noncontextuality

assumption states that

   m m~  » ( )Prob Prob
. 61 2 1 2

In the quantum case, this translates to assuming

 
m m= r ( ). 7

So, in a probabilistically noncontextualmodel, if there are two preparation procedures that cannot be statistically
distinguished by anymeasurements then those preparations lead to identical physical situations. In a
probabilistically contextualmodel, then there are different physical situations that nonetheless lead to identical
operational predictions for anymeasurement: the inability to distinguish them is caused by lack of sufficiently
fine-grainedmeasurement.

We can look to electromagnetism in order tofind a classical example of an application of this principle.
Naïvely, onemight expect an operational preparation of an electromagnetic system to correspond to a specific
magnetic vector potential as an ontic state. However, different vector potentials correspond to the same
experimental predictions if they differ by a curl-free vector field. The application of the probabilistic
noncontextuality assumption, then, would be to say that all such preparations are really ontologically identical;
they result in the same distribution over ontic states. The vector potential is often said to be unphysical because
of the property that different potentials lead to identical experimental predictions; this line of argument would
lead one to conclude that not only are such distributions over ontic states identical, but that they are a delta
function. That is, we quotient the state space to form a newontic state L = L ~˜ , where ~ ¢A A if and only if
 - ¢ =( )A A 0. This will ensure that any such pair of ontic states have the same representative in L̃. The
assumptions leading to such an ontological refinement are thus strictly stronger than those leading only to
probabilistic noncontextuality.

We see that both the operational relationProbOp and the ontological relationProbOn are probabilistic in
that they depend on the full set of (exact) probabilities associatedwith the object. These probabilistic relations

are very restrictive and as a result, ~Prob is a very selective relation, leading to a restriction on ontologicalmodels
that ismore easily satisfied than that of a less selective relation.However, those elements that are related have a
very strong ontological condition applied byProbOn.

Contextuality is often considered to be a generalisation of nonlocality; by Fine’s theorem [11], the
factorisability condition that characterises local distributions in a Bell scenario is interchangeable with the
assumption of outcome-determinism for ontologicalmodels.With this assumption, nonlocalitymanifests itself
as noncontextuality with respect to contexts chosen jointly by a spacelike separated Alice and Bob. Some notions
of contextuality, such as that of Kochen and Specker[2]; Klyachko, Can, Cetiner, Bincioglu and Shumovsky [12];
Abramsky andBrandenburger [13]; andAcín, Fritz, Leverrier and Belén Sainz [14] assume these deterministic
models for their notions of contextuality. Probabilistic noncontextuality is a stepmore general, not necessarily
assuming determinism, but recovering these notions of noncontextuality whenwe restrict our gaze to outcome-
deterministic ontologicalmodels. It can be considered a generalised formof the type of nonlocality identified by
Bell; a scenario demonstrates probabilistic contextuality if its precise operational probabilities cannot be fully
explained by a noncontextual (rather than nonlocal)model. As such, under certain assumptions, probabilistic
noncontextuality can be detected by inequalities that are robust to noise, as an analogue of Bell
inequalities [12, 15].

2.4. Possibilistic noncontextuality
Another natural choice for both the operational and ontological relations is a possibilistic one, inwhichwe
consider only the possibilities of operational and ontological events, rather than their probabilities. Such
possibilistic considerations also appear naturally in the setting of consistency conditions for agents beliefs about
the state of a system,which have been previously studied in the literature. In thework of Brun, Finkelstein and
Mermin (BFM) [4], a consistent set of state assignments is a set of densitymatrices which have some overlap in
their operational possibilities. The different parties can assign different densitymatrices to a system, but as long
as there exist some states in themutual support of all of them, then there is an event that can occur that all of
them agree is possible,meaning that their initial state assignments are consistent. In that of Caves, Fuchs and
Schack (CFS) [5], the strongest compatibility criterion that can be applied is to askwhether or not the density
matrices assigned to the state by each of the parties are in the same equivalence class, defined in this possibilistic

4
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sense. If they are, then all of them agree onwhich events are possible and impossible, even if they disagree on the
precise probabilities to assign to each event. Both of these conditions are naturally possibilistic rather than
probabilistic.

Such considerationsmotivate us to define possibilistic operational and ontological relations.

Definition 5 (PossOp).Twopreparation procedures 1 and 2 in an operational theory are possibilistically

equivalent, denoted  ~Poss
1 2, if for all outcomes k of allmeasurement procedures,

   =  =( ∣ ) ( ∣ ) ( )k kPr , 0 Pr , 0. 81 2

In the quantum case, two preparation procedures 1 and 2 are possibilistically equivalent if and only if the
densitymatrices they give rise to have the same kernel (or equivalently, the same support). The kernel, which is
spanned by the states withwhich ρ has no overlap, completely defines the possibilistic structure of
measurements.

   r r~  = ( )Poss ker ker , 91 2 1 2

where = ={ }M v Mvker : 0 is the kernel ofM.

Definition 6 (Support).The support of ameasureμ is the largest set m( )S such that every open set which has
non-empty intersectionwith m( )S has nonzeromeasure.

More succinctly, but a little less accurately, the support m l m l= >( ) { ( ) }S : 0 .

Definition 7 (PossOn).Twopreparation distributions m 1
, m 2

in an ontologicalmodel are possibilistically

equivalent, denoted  m m»Poss
1 2

, if   m m=( ) ( )
1 2

.

Definition 8 (Possibilistic noncontextuality). For any two preparations  ,1 2 related byPossOp, their
ontological representations  m m,

1 2
are related byPossOn. That is,

   m m~  » ( )Prob Poss
. 102 2 1 2

In the quantum case, this translates to assuming

   r r m m=  » ( )Poss
ker ker . 11

1 2 1 2

A fully possibilistic noncontextuality assumption, then, would be that if two preparation procedures are
possibilistically equivalent operationally, then their ontological representations are also possibilistically
equivalent.

A possibilistically noncontextualmodel for quantummechanics would provide a natural explanation for
why there exist different preparation procedures that cannot be unambiguously discriminated [16]; such
preparations lead to ensembles of ontic states that themselves cannot be unambiguously distinguished.
Therefore, the lack of the ability to performunambiguous discrimination in a theory could be interpreted as
property of the distributions over ontic states themselves, rather than emerging froma lack of sufficientlyfine-
grainedmeasurements.

Additionally, wefind that the assumption of possibilistic preparation noncontextuality causes the quantum
consistency conditions,mentioned above, for densitymatrix assignment to coincide with classical notions of
consistency of beliefs. If we have a collection of agents, each can describe their subjective beliefs about the state of
a quantum system via a densitymatrix ri. According to the BFMconsistency criterion, these assignments are
consistent if the intersection of the supports of the ri is empty; that is, that there is some subspace of theHilbert
spacewhich each party agrees is in the support of their densitymatrix. Since the assumption of possibilistic
noncontextuality for preparations uniquely defines a set of ontic states associatedwith this agreed support, this
quantum compatibility condition reduces exactly to the classical notion of ‘strong consistency’, which is that
there exists some physical state that each agent agrees could represent the true state of the system. The strongest
compatibility condition considered byCaves, Fuchs, and Schack, which they denote equal supports, is that the
supports of each of the ri are identical; in the sameway as above, the assumption of possibilistic preparation
noncontextualitymeans this condition reduces to the classical concept of concordance: that the agents agree on
which states are possible and impossible, although their actual probability assignmentsmay differ.

5
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2.5.Hardy noncontextuality
Wecannowbring other previously-studied notions of noncontextuality within this framework.One such
notion is known as ‘Hardy’ or ‘logical’noncontextuality [13, 17, 18], andwhen applied to preparations
corresponds to the assumption that two preparations leading to identical operational predictionsmust be
compatible with the same set of ontic states. Aswith probabilistic noncontextuality, Hardy noncontextuality has
been considered previously under the assumption of outcome determinism, such as in the treatment of
Abramsky andBrandenburger. Again, we study amore general notionwithout this restriction.While
probabilistic noncontextuality can be considered a generalisation of Bell nonlocality, Hardy noncontextuality
can be considered a generalisation ofHardy’s proof of nonlocality. That is, a scenario exhibits Hardy
noncontextuality if there are possibilities (rather than detailed probabilities) that cannot be explainedwithin a
noncontextual ontologicalmodel.

We can formulateHardy noncontextuality using the operational and ontological relations defined above.

Definition 9 (HardyNC).Anontologicalmodel isHardy noncontextual iff    m m~  »Prob Prob
1 2 1 2

.

The assumption ofHardy noncontextuality is strictly weaker than probabilistic noncontextuality as it uses
the same operational relation but imposes aweaker ontological relation on the identified elements.
Furthermore,Hardy noncontextuality is directly implied by possibilistic noncontextuality because

   ~  ~ ( )Prob Poss . 121 2 1 2

Intuitively, the assumption ofHardy noncontextuality appears to also be strictly weaker than of possibilistic
noncontextuality because the same ontological relation is being enforced in both cases, while possibilistic
noncontextuality has a operational relation that is easier to satisfy and so relatesmore elements of the theory. For
example, all densitymatrices of the form ñá + - ñá∣ ∣ ( )∣ ∣p p0 0 1 1 1 for Î ( )p 0, 1 are possibilistically equivalent
and yet no two such densitymatrices are probabilistically equivalent.

We nowprove, however, thatHardy noncontextuality and possibilistic noncontextuality are equivalent for
ontologicalmodels of quantummechanics. Before doing this, we note that any two preparation procedures that
result in the same densitymatrix being preparedmust have the same ontic supports under an assumption of
possibilistic, probabilistic, orHardy noncontextuality. Hence, wewill use the notation   m mºr( ) ( ) for any
 that results in a preparation of ρ.

Theorem1.An ontological model of finite-dimensional quantummechanics is possibilistically noncontextual if and
only if it is Hardy noncontextual.

Proof.Wewill present the proof for preparation procedures here and defer the proofs for transformations and
measurements to the appendix. From equation (12), possibilistic preparation noncontextuality impliesHardy
preparation noncontextuality: any elements related under the probabilistic operational relation are also related
under the possibilistic operational relation. So, we only need to prove the converse, that is, thatHardy
noncontextuality implies that densitymatrices with the same kernel can be represented by distributions with the
same support overΛ.

Let r0 and r1 be densitymatrices with the same kernel andwith smallest nonzero and largest eigenvalues
aj,min and aj,max for j=0,1 respectively.We define

s r
a
a

r=
-

-a
a

⎛
⎝⎜

⎞
⎠⎟ ( )1

1
. 130 0

0,min

1,max
10,min

1,max

We see that s0 is positive semi-definite, as the largest eigenvalue of ra
a 1

0,min

1,max
is a0,min and r0 and r1 have the same

kernel.We note that wemust have that a a0,min 1,max , since they have support on subspaces of equal
dimensions, say, d, and so both r1 and r0 have dnonzero eigenvalues that sum to 1.Hence, we have
a a=0,min 1,max only in the case that each is the completelymixed state over their support, and a a<0,min 1,max

otherwise. It is easily verified that s =( )tr 10 , so s0 is a densitymatrix.
Hence r0 can be prepared as a convexmixture of r1 and s0 as

r
a
a

s
a
a

r= - +
⎛
⎝⎜

⎞
⎠⎟ ( )1 . 140

0,min

1,max
0

0,min

1,max
1

Therefore there exists a preparation procedure that prepares r0 such that

   Èm m m m= Êr s r r( ) ( ) ( ) ( ) ( ). 15
0 0 1 1
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Wecan then repeat the argument for r1. Therefore  m m=r r( ) ( )
0 1

for any r0, r1with the same kernel,
completing the proof. ,

One immediate consequence of this is that it permits themorenaturalmotivationof possibilistic
noncontextuality to be applied to the better-known concept ofHardynoncontextuality, providing amotivation for
its assumption independent of the fact that it is aweaker noncontextuality assumption than is thanprobabilistic
noncontextuality.A comparisonof these different operational andontological assumptions canbe found infigure 1.

3. Restrictions on ontologicalmodels due to possibilistic noncontextuality

The assumption of probabilistic preparation noncontextuality is incompatible with the operational predictions
of quantum theory [6].We now show that even the seemingly weaker notion of possibilistic noncontextuality is
already incompatible with quantum theory.

Theorem2.Any ontological model of quantummechanics is possibilistically contextual for preparations.

Proof. Let

f
f f

ñ = ñ + ñ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ ∣ ∣ ( )cos

2
0 sin

2
1 16

for some f p< <0 2.We note that allmixed states are related under the possibilistic operational relation. In
particular then, amixed statemade up of f fñá∣ ∣and p p- ñá-∣ ∣2 2 , and onemade up of f f- ñá-∣ ∣and
p pñá∣ ∣2 2 are related. Therefore, suchmatricesmust have the same support.

   È Èf f
p p

f f
p p

- ñá- = ñá - -
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟(∣ ∣) (∣ ∣) ( )

2 2 2 2
. 17

Taking the intersection of both sides with  p p( )2 2
gives

    Ç È Çp p
f f

p p p p p p
= ñá - -

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥(∣ ∣) ( )

2 2 2 2 2 2 2 2
18

 Çf f
p p

= ñá
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥(∣ ∣) ( )

2 2
19

 f fÍ ñá(∣ ∣) ( ), 20

where the second line follows since p
2

and - p
2

are completely operationally distinguishable, and hencemust

be fully ontologically distinct. This shows that the set of states consistent with p pñá∣ ∣2 2 is a subset of those
consistent with f fñá∣ ∣, and so any operational predictions compatible with a preparation of p pñá∣ ∣2 2 must

Figure 1.A square showing the different contextuality assumptions the strongest of which ofwhich is contradictory in any nontrivial
convex theory. If convexity is not demanded, there aremultiple theories that fulfil the stronger formof noncontextuality indicated as a
contradiction above, such as quantummechanics restricted to pure states and unitary operations.
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also be consistent with a preparation of f fñá∣ ∣. However, in order to be consistent with quantummechanics,

preparing p
2

andmeasuring in the basis f p fñ + ñ{∣ ∣ }, must give the outcome p f+ ñ∣ with nonzero

probability. ,

The above proof, the states used inwhich can be seen infigure 2, is similar toHardy’s proof of Bell’s theorem
based only upon possibilistic arguments [19]. In some sense, considering these possibilistic restrictions on
ontologicalmodels is forcing them to obey the same logical structure as the operational theory, in this case
quantummechanics. This is becausewe can think of workingwith possibilities as a generalised probability
model, inwhichweworkwith the Boolean (logical) semiring inwhich an event is only prescribed the symbol 0
(impossible) or 1 (possible).

Another known restriction on ontologicalmodels under the assumption of probabilisticmeasurement
noncontextuality is that suchmodels cannot beψ-epistemic, a resultfirst shown byMorris [7] and byChen and
Montina [8]. Here, wewill show an analogous result, inwhichwe use a strictly weaker assumption than
probabilisticmeasurement noncontextuality.

We define two sets associatedwith a response function for outcome k of ameasurement in an ontological
model:

 x l l x l =[ ( ∣ )] ≔ { ( ∣ ) } ( )k k: 1 , 21M

 x l l x l >[ ( ∣ )] ≔ { ( ∣ ) } ( )k k: 0 . 22M

Wewill show that any ontologicalmodel inwhich these sets depend only upon the POVMelementEk associated
with outcome k, and so can be denoted by( )Ek and ( )Ek respectively, imposes restrictions onwhich states
can have ontic overlap.Wewill call such amodel faithful, as it is a stronger formof the faithfulness condition
introduced in [20].We note that this condition is implied by probabilistic noncontextuality.

Theorem3. Let y ñ∣ 1 and y ñ∣ 2 be two states in aHilbert space of dimension d 2N , with
y yá ñ ³ --∣ ∣ ∣ ( ( ))cos 2 tan 2 1N N

1 2
2 2 1 1 2 . Then in any faithful ontological model they have disjoint supports:

 Çm m = Æy yñ ñ( ) ( ) ( )∣ ∣ . 23
1 2

Proof. Let 1 and 2 befixed preparation procedures for y ñ∣ 1 and y ñ∣ 2 and let y ñ = ñÄ∣ ∣a N
1 and y ñ = ñÄ∣ ∣b N

2

where fñ = ñ∣ ∣a and fñ = - ñ∣ ∣b from equation (16). This form for our states can bemadewithout loss of
generality, since for any pair of states j ñ∣ 1 , j ñ∣ 2 , there exists a unitary rotationmapping them into a pair of states
of our chosen form, and unitary actionsmust preserve overlaps of support. If j j y yá ñ = á ñ∣ ∣ ∣ ∣ ∣ ∣1 2

2
1 2

2, then
there exists a unitaryU such that j yñ = ñ∣ ∣U 1 1 and j yñ = ñ∣ ∣U 2 2 , and so any state that is in the support of j ñ∣ 1

and j ñ∣ 2 ismapped by such a transformation into a state that is in the support of y ñ∣ 1 and y ñ∣ 2 since this is a
legitimate preparation procedure for those states.

By considering each of themeasurements formed by independentlymeasuring ñ ñ{∣ ∣ ¯ }a a, or ñ ñ{∣ ∣ ¯ }b b, on
each of theN qubits (where ñ∣ā denotes the orthogonal state to ñ∣a , and similarly for ñ∣b ), we have

  Ç Çm m n nÍ ñáy y nñ ñ Î
 ( ) ( ) (∣ ∣) ( )∣ ∣ { } , 24a b, N

1 2

Figure 2.Diagrams showing states that can be used in the proof of theorem2.
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except perhaps on an unphysical set ofmeasure 0, as either ñÄ∣a N or ñÄ∣b N is orthogonal to all but one outcome in
eachmeasurement. To see this, consider the case inwhichwemeasurewith respect to ñ ñ{∣ ∣ ¯ }a a, on thefirst
qubit, and ñ ñ{∣ ∣ ¯ }b b, on the second.Here, ñ ñ∣ ∣a a is incompatible with ñ ñ∣ ¯ ∣a b and ñ ñ∣ ¯ ∣ ¯a b , with a similar condition
holding for ñ ñ∣ ∣b b . The only outcome that is compatible with both ñ ñ∣ ∣a a and ñ ñ∣ ∣b b is ñ ñ∣ ∣a b .We note that by
assumption, we have á ñ --∣ ∣ ∣ ( ( ))a b cos 2 tan 2 1N2 2 1 1 2 and sowe can apply the construction in [21], so there
exists a rank-1 projector-valuedmeasure (PVM) n= P În

{ { } }M a b: , N such that n nP ñá =n
 ∣ ∣ 0 for all n

[21]. For all n , n nP ñá =n
 ∣ ∣ 0 and so there exist PVMs containingPn and n nñá

 ∣ ∣, for example
n n n nñá P - ñá - Pn n

    {∣ ∣ ∣ ∣ }, , . Hence

 Çn nñá P = Æn
  (∣ ∣) ( ) ( )25

for all n , since a lambda in the intersection of n nñá
 (∣ ∣and  Pn( )would, in ameasurement containing both

such as the one given above, have to yield the n nñá
 ∣ ∣outcomewith probability 1, and thePn outcomewith

nonzero probability, a clear contradiction. Therefore

  Ç Ç Çm m n nÍ ñá Ly y nñ ñ Î
 

( ) ( ) [ (∣ ∣)] ( )∣ ∣ { } 26a b, n
1 2

 Ç Ç Èn nÍ ñá Pn n nÎ Î
 

  [ (∣ ∣)] [ ( )] ( ){ } { } 27a b a b, ,n n

ÍÆ ( ), 28

giving the desired result, where the second line follows as some outcomemust occurwhen themeasurementM
is performed. ,

Since - =¥
-( ( ))lim cos 2 tan 2 1 1N

N N2 1 1 2 , which can be seen by observing that the expression has a
Laurent series expansion at infinity of - + ( )x O x1 1 1 2 , any two states can be shown to be ontologically
disjoint if we are equippedwith a large enoughHilbert space. The result does however differ from those of
Morris [7] and of Chen andMontina [8] insofar as this dimensional constraint is present. As in the PBR theorem
[21], we need a large quantumdimension in order to be able to have ameasurement that can distinguish between
states with large overlap.We note that in particular, any faithful ontologicalmodels for an infinite dimensional
spacewill beψ-ontic, since no two such states can share any ontological support. In general, any quantum
system can be thought of as part of a larger quantum system, so results such as this demonstrate an inherent
tension between possibilisticmeasurement noncontextuality andψ-epistemic ontologicalmodels. Theorem3
can also be thought of as demonstrating that the assumption of preparation independence used by PBR can be
replaced by that of faithfulness, as applied here.

We are left to consider which noncontextuality assumptionsmandate the property of faithfulness for
ontologicalmodels. In particular, is it a consequence of any of the noncontextuality assumptionswe have
explored?We shall see that this is dependent on the requirements one sets on an operational theory.We shall
need to introduce the formulation of probabilistic noncontextuality as it is applied tomeasurements.

Definition 10 (ProbOp-M).Twomeasurement outcomes 
( )k 1

1
, belonging to ameasurement procedure1, and


( )k 2

2
, belonging to ameasurement procedure2, in an operationalmodel are probabilistically equivalent

(denoted  ~( ) ( )Probk k1 2
1 2

) if for all preparation procedures  ,

   =( ∣ ) ( ∣ ) ( )( ) ( )k kPr , Pr , . 291
1

2
2

Definition 11 (ProbOn-M).Twomeasurement effects x l( ∣ )kM 11
, x l( ∣ )kM 22

in an ontologicalmodel are

probabilistically equivalent, denoted x l x l»( ∣ ) ( ∣ )Prob
k kM M1 21 2

, if and only if x l x l=( ∣ ) ( ∣ )k kM M1 21 2
l" .

Definition 12 (Probabilistic noncontextuality formeasurements). For any two preparations  
( ) ( )k k1 2

1 2
related

byProbOp-M, their ontological representations x l x l( ∣ ) ( ∣ )k k,M M1 21 2
are related byProbOn-M. That is, the

probabilistic noncontextuality assumption states that

  x l x l~  »( ∣ ) ( ∣ ) ( )Prob Prob
k k . 30M M1 2 1 21 2

We see that the notion ofmeasurement noncontextuality captures two related ideas: that anyway of performing
ameasurement (for example, a specificNaimark dilation for a POVM) yields to ontologically identical
predictions; and that the probabilities of specific outcomes are independent of the context inwhich they appear.

Under this assumption of possibilisticmeasurement noncontextuality, first note that both the conditions
x l =( ∣ )k 1M and x l >( ∣ )k 0M can be recognised by considering only the possibilities of alternative outcomes.
By the definition of possibilistic noncontextuality, we then demand that these possibilities, and equally the
impossibilities, are independent of the specific context inwhich an observable appears. However, for a system in
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a given ontic state one cannot necessarily conclude that an outcome certain in one context will be certain in all
other contexts in which it appears. The noncontextuality assumption taken at face valuewill only tell us that it
cannot be impossible in any other context. However, we can note that in any context inwhich this outcome, E,
appears, we can coarse-grain the othermeasurement results by ‘forgetting’which of the alternative outcomes
happened. These coarse-grainings yield identical probabilistic predictions, and in a context inwhich E is certain,
the coarse-graining is impossible. Therefore, these coarse-grainings are impossible in all contexts, and E is
certain in all contexts inwhich it appears.

Theweakness of this argument lies inwhether or notwe can really consider the coarse-grainings to yield
identical probabilistic predictions with each other. If our scenario is restricted to preparing a quantum state and
thenmeasuring it, then this assumption is justified; this is the position taken for example by Spekkens [6].
However, if we consider that a secondmeasurement procedure could be implemented afterwards, necessitating
the existence of a state update rule, then the assumption does not hold andwemust use a different notion of
noncontextuality. One such candidatewould be a trichotomistic notion of noncontextuality, inwhich our
ontological relation, as applied to two relatedmeasurements, is that each outcomemust be considered
impossible, possible-but-not-certain, or certain, independent of the context inwhich it appears.We can assign
these classes the symbols 0, 1 2 and 1.5 In any case, this trichotomistic notion of contextuality is also strictly
weaker than probabilistic noncontextuality and so aweaker notion is used for this proof regardless of one’s
position of the equivalence of these coarse-grainings overmeasurement outcomes.

4. Tests of possibilistic noncontextuality cannot be robust to experimental error

Recently, probabilistic noncontextuality inequalities have been demonstrated and subsequently shown to be
experimentally violated [15, 22]. In order to avoid finite precision loopholes, the probabilistic noncontextuality
inequalities are derived assuming probabilistic noncontextuality for both preparations andmeasurements.
However, as we nowprove, no such inequalities can be demonstrated for possibilistic noncontextuality.

Theorem4.Any operational prediction of quantummechanics can be approximated arbitrarily well by an
ontological model obeying universal possibilistic noncontextuality; that is, the conjunction of possibilistic
noncontextuality for preparations and formeasurements.

Proof. Let  r r= - +( ) I d1 d for any fixed  > 0 and any state ρ. For any two densitymatrices ρ andσ,

 r s~ ( )Poss . 31

Thereforewe can approximate all quantummechanical predictions by operators that are all possibilistically
equivalent. The Beltrametti–Bugajskimodel then gives a possibilistic noncontextualmodel for all states as
follows. Let L = and  


m l d l y mñ = - - +y ñ (∣ ) ( ) ( )∣ 1 H where mH is the uniformHaarmeasure.We

can then extend themodel to generalmixed states by taking convex combinations of  y yñá∣ ∣, so that  r =( )
for all states r . The same argument also applies to transformations andmeasurements. ,

Now, any proposed noncontextuality inequality for probabilistic noncontextuality will necessarily be a
function only of observed test statistics compared to some constant value, sowe can see that for any inequality,
there exist universally possibilistically noncontextualmodels that differ from the quantum statistics by an
arbitrarily small value. Further, any such inequality of some usewould have to be saturated by quantum
mechanics. Thus,finite experimental uncertaintymakes impossible the existence of any conclusive proof that
reality is not universally possibilistically noncontextual. However, were reality probabilistically noncontextual,
therewould be some amount bywhich the operational predictionswould have to be altered and this would be
experimentally verifiable. Hence, while any particular possibilistically noncontextual theory can be
experimentally refuted, it is not possible to, for example using an analogue of a Bell inequality, to refute the entire
set of possibilistically noncontextual theories. It is worth noting that while there are claims [23] to have an
experimental verification ofHardy’s theorem, these experiments actually verify a probabilistic version ofHardy’s
paradox, enabling the existence of inequalities that are not ò-closely approximated by quantum-mechanical
predictions.

5
This concept of noncontextuality is impossible to replicate within theAbramsky-Brandenburger sheaf-theoretic framework because these

values do not form a semiring; coarse-graining two elements that are possible-but-not-certain can be either possible-but-not-certain or
certain. Any framework for contextuality based onmatching probabilistic predictions in semirings cannot express this sort of notion.
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5. Further generalisation

In the previous sections we have developed a framework for expressing arbitrary examples of noncontextuality
relations, and explored the relationships between different forms. In this section, wewill demonstrate the power
of this framework to consider novel forms of contextuality assumptions, and explore which ontological and
operational relations are sensible under certain subjective criteria. Up to this point, all of our operational and
ontological relations have been equivalence relations, although our definition of such relations does not require
transitivity. In fact, there are naturalmotivations for notions of noncontextuality that do not have this property.

We could choose an operational relation identifying elements which have an operational distinguishability
of nomore than ò: a nontransitive assumption. Likewise, we can have an ontological relation that says that
related preparation distributions should have a classical distinguishability bounded above by ( )f for some f;
enforcing a ‘similar elements of the theory are represented similarly in the ontologicalmodel’ idea. An idea of
this kind has been explored byWinter [24].

Definition 13 (~). For two preparation procedures 1 and 2, we have
     ~  ( )D ,1 2 1 2 , where

 ( )D ,1 2 is the operational distinguishability of the two preparations. Assuming quantum theory, this is given
by   r r= -( ) ∣ ∣D ,1 2 1 2 1, where r1 and r2 are the density operators associatedwith preparations 1 and 2

respectively, and ∣·∣1 is the trace norm.

Definition 14 (»f ) .Twopreparation distributions m m,1 2 are related
m m»1 2 if and only

if   ò m m l-
L

∣ ∣ ( )fd
1 2

.

Up until now, a notion of noncontextuality has consisted of an operational relation, an ontological relation,
and a simple noncontextuality assumption saying that the former implies the latter.Herewe see thatwe have sets
of operational and ontological relations, and our noncontextuality assumption can be thought of as a kind of
axiom schema: for any preparation procedures  ~1 2, we have


 m m»f1 2

.

6. Concluding remarks

Wehave introduced a general framework for the postulation and interpretation of noncontextuality
assumptions; we have seen that this view of a noncontextuality assumption as a statement that allows inference
of ontological properties fromoperational ones is both powerful in its descriptive capacity and its ability to
highlight novel assumptions.

Using this framework, we have exploredweaker notions of contextuality than that of Spekkens[6], andwe
have seen that one such noncontextuality assumption of this kind, possibilistic contextuality, encapsulates the
kind of contextuality present inHardy’s proof of Bell’s theorem, and that probabilistic contextuality
encapsulates the kind present in that of Bell. An interesting open question, then, is to askwhat the corresponding
contextuality assumptions are that encapsulate Kochen-Specker contextuality, the analogue of the kind present
in theGHZproof of Bell’s theorem [25].

For any scientific realist, the ultimate aimof scientific inquiry is to be able tomake statements about the true
state of theworld, as far as is possible. To be able tomake any statements about the ontological nature of the
world, we need some sort of noncontextuality assumption in order to allowour operational knowledge to
transfer into this domain. Knowing, then, which noncontextuality assumptions are tenable within a given
operational scenario, and the relative strengths of these assumptions, is essential inmaking any claim, however
tentative, about the real nature of things.
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Appendix

Just as we defined the support of a preparation procedure above, wewill denote the support of ameasurement
effectwith response function x l( ) as
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 x l x lÎ L >( ) ≔ { ∣ ( ) } ( )0 . A.1

Wecan also define a notion of the support of a transformation procedure as

 l l l lG Î L Ä L G >( ) ≔ {{ } ∣ ( ∣ ) } ( ), 0 . A.21 2 2 1

Theorem5.Possibilistic measurement noncontextuality is equivalent toHardymeasurement noncontextuality.

Proof.Again, it is clear that possibilisticmeasurement noncontextuality impliesHardymeasurement
noncontextuality, sowe only need to prove the converse.

Quantummechanically, POVMelements are positive semidefinitematrices, and the assumptionof possibilistic
measurement noncontextuality is the identificationof the ontic supports of any two suchpreparationprocedures
whose associated densitymatrices share the samekernel over 2. The proof here echoes theproof above strongly: if
we have twomatricesE1 andE2, that share a kernel, and correspond to twomeasurement effects,we canwrite

= +E aE bE1 2 3, forE3 somematrixwith a support strictly containedwithin that of the otherEi. In a similar fashion
to thepreparations case,we can construct a POVMelementwith the samematrix asE1 as a convex sumofE2 andE3,
demonstrating that  È=( ) ( ) ( )E E E1 2 3 .We alsohave, by symmetry  È=( ) ( ) ( )E E E2 1 3 , and
therefore   = =( ) ( ) ( )( )E E E1 2 supp i

. This completes theproof. ,

The above proofs admit a slight generalisation, in that they can show that the possibilistic and probabilistic
operational relations lead to identical restrictions for any operational relation based on a function f (x)with

=( ) ( )f x f 0 iff x=0, and +( ) ( )f x y f x , as defined in section 5.
Wenote that in this proof, we are explicitly using the same assumption that we called out in the proof of

theorem3, namely thatwe are considering a coarse-graining of twomeasurement outcomes via classical post-
processing to be possibilistically identical to an ontological coarse graining of the relevant POVMelements. In
that section, dropping this implicit assumptionweakened our axioms and requiredwemove to an additional
noncontextuality assumption.However, for this result, dropping this assumptionmakes the proof trivial
becausewe are proving amuchweaker statement. It can be easily checked that this proof, therefore, holds in
both the case inwhich this assumption ismade or not.

Theorem6.Possibilistic transformation noncontextuality is equivalent toHardy transformation noncontextuality.

Proof.Once again, it is clear that possibilistic transformation noncontextuality impliesHardy transformation
noncontextuality, sowe only need to prove the converse.

Consider two transformation procedures G1 and G2 with the property that x m" , ,

ò òl l m l l l x l l l m l l l x l¢ G ¢ ¢ >  ¢ G ¢ ¢ >
L L

( ) ( ∣ ) ( ) ( ) ( ∣ ) ( ) ( )d d 0 d d 0. A.31 2

In general, these are associatedwith some representations of completely positive, trace preservingmapsT1 and
T2. Consider their action on the state y yñá∣ ∣: theymap it to s y y= ñá∣ ∣ †T T1 1 1 , and s y y= ñá∣ ∣ †T T2 2 2 respectively.
These twomatricesmust share a kernel, or elsewewould be in contradictionwith our assumed property. An
example of twomapsmeeting these criteriamight be two dephasing channels with different dephasing strengths.

Note that themost general kind ofmeasurement we can perform to enact tomography on such a
transformation procedure is to prepare some entangled state, send part of the entangled state through the
transformation procedure, and then follow this up by a jointmeasurement. By the possibilistic notion of
noncontextuality, outcomes of such experimentsmust yield either a zero probability for both transformations,
or a nonzero probability for both transformations. Consider now theChoi-Jamiolkowski isomorphism as
applied to our twoCPTPmapsTi, leading to two channel-states t( )i .We can see that in general, we require for an
entangled initial state sAB and an entangledmeasurement EAC, that

s t s t> >( ) ⟺ ( ) ( )( ) ( )E Etr 0 tr 0. A.4AB BC AC AB BC AC
1 2

Taking a trace overC for appropriately chosen EAC, viz a Bell state F ñáF+ +∣ ∣ reduces this to the already-proved
case of preparation noncontextuality. ,
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