The role of pattern recognition receptors in lung sarcoidosis

Esmaeil Mortaz, Ian M. Adcock, Atefhe Abedini, Arda Kiani, Mehdi Kazempour-Dizaji, Masoud Movassaghi, Johan Garssen

PII: S0014-2999(17)30019-5
DOI: http://dx.doi.org/10.1016/j.ejphar.2017.01.020
Reference: EJP71017

To appear in: European Journal of Pharmacology

Received date: 18 October 2015
Revised date: 15 January 2017
Accepted date: 16 January 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain
The role of pattern recognition receptors in lung sarcoidosis

Esmaeil Mortaz1,2, Ian M. Adcock3, Atefhe Abedini4, Arda Kiani4\textdegree, Mehdi Kazempour-Dizaji5, Masoud Movassaghi6, Johan Garssen7,8

1Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 2Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; 3Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK; 4Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 5Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 6Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), USA; 7Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands and 8Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands

*Corresponding author:
Arda Kiani, (MD)
Email address: Ardakiani@yahoo.com
Abstract

Sarcoidosis is a granulomatous disorder of unknown etiology. Infection, genetic factors, autoimmunity and an aberrant innate immune system have been explored as potential causes of sarcoidosis. The etiology of sarcoidosis remains unknown, and it is thought that it might be caused by an infectious agent in a genetically predisposed, susceptible host. Inflammation results from recognition of evolutionarily conserved structures of pathogens (Pathogen-associated molecular patterns, PAMPs) and/or from reaction to tissue damage associated patterns (DAMPs) through recognition by a limited number of germ line-encoded pattern recognition receptors (PRRs). Due to the similar clinical and histopathological picture of sarcoidosis and tuberculosis, *Mycobacterium tuberculosis* antigens such early secreted antigen (ESAT-6), heat shock proteins (Mtb-HSP), catalase-peroxidase (katG) enzyme and superoxide dismutase A peptide (sodA) have been often considered as factors in the etiopathogenesis of sarcoidosis. Potential non-TB-associated PAMPs include lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria, peptidoglycan, lipoteichoic acid, bacterial DNA, viral DNA/RNA, chitin, flagellin, leucine-rich repeats (LRR), mannans in the yeast cell wall, and microbial HSPs. Furthermore, exogenous non-organic antigens such as metals, silica, pigments with/without aluminum in tattoos, pesticides, and pollen have been evoked as potential causes of sarcoidosis. Exposure of the airways to diverse infectious and non-infectious agents may be important in the pathogenesis of sarcoidosis. The current review provides and update on the role of PPRs and DAMPs in the pathogenesis of sarcoidosis.

Key words: Sarcoidosis, pattern recognition receptors, TLR2, TLR4, *mycobacteria*, *propionibacterium*
1- Introduction

The definition of sarcoidosis reported by the American Thoracic Society/European Respiratory Society/World Association for sarcoidosis and by the Granulomatous Disorders Statement on sarcoidosis (Hunninghake 1999) is merely descriptive. These definitions indicate that sarcoidosis is a multisystem granulomatous disease frequently affecting barrier tissues such as the lungs, eyes, and skin (Iannuzzi 2007, Haimovic 2012) although the liver, spleen, lymph nodes, salivary glands, heart, nervous system, muscles, bones and other organs may also be involved (Costabel 2001). There is an enormous variety in the clinical presentation of sarcoidosis with most patients presenting with symptoms such as fatigue, fever, dry cough, dyspnea, chest pain, and malaise or weight loss (Buaghman 2001).

Pulmonary and mediastinal involvement is found in approximately 90% of the cases, but virtually every organ can be involved in this disease. Pulmonary involvement in sarcoidosis can be categorized using chest radiographs and is classified according to the Scadding criteria (Hunninghake 1999). Extra pulmonary organ involvement ranges from harmless skin manifestations to life-threatening myocardial sarcoidosis or neurosarcoïdosis (Perry et al 1995; Sharma 1997). Occasionally, sarcoidosis can be found in completely asymptomatic individuals. Fortunately, in the majority of patients spontaneous remission occurs within 2-3 years. However, approximately 10-20% of patients develop pulmonary fibrosis which has a very poor prognosis and high mortality (Crystal et al 1984). Unfortunately, the course of the disease is difficult to predict although one distinct clinical entity (Lofgren’s syndrome) is known to have a favorable prognosis. Lofgren’s syndrome was first recognised in 1946 and is characterized with fever, bilateral hilar lymphadenopathy, erythema nodosum and arthralgia (Lofgren 1946).

Despite being of unknown etiology, environmental factors, infection, genetic factors, autoimmunity and an aberrant innate immune system have been explored as potential causes of the development of the disease (Manju 2012; Oswald-Richter 2010; Dubaniewicz 2010). The possible role of bacteria in sarcoidosis has therefore been extensively studied. Gram positive and intracellular bacteria, such as Mycobacteria and
Propioni bacteria have been suggested to play a role in the etiology of sarcoidosis (Gazouli et al 2002; Song et al 2005). There is no convincing evidence, however, of a possible role for Gram negative bacteria in sarcoidosis (Eishi et al 2002).

Due to the similar clinical and histopathological features of sarcoidosis and tuberculosis (TB), *Mycobacterium tuberculosis* antigens, e.g., early secreted antigen (ESAT-6), heat shock proteins (Mtbc-HSP), catalase-peroxidase (katG) enzyme and superoxide dismutase A peptide (sodA) have been considered as infectious factors in the etiopathogenesis of sarcoidosis (Oswald-Richter 2010; Dubaniewicz 2006; Bargagli 2011). In addition, other bacteria, e.g. *Propionibacteria*, *Streptomyces* and *Corynebacteria*, have been found in sarcoid tissue (Oswald-Richter 2010; Bargagli 2011). *Propionibacterium acnes* have been described as a potential causative agent in pulmonary sarcoid (Eishi 2013a; Eishi 2013b; Moller 2007; Abe 1984). *P. acnes* is a gram-positive bacterium that resides on the skin and was one of the first microorganisms isolated from sarcoid lesions (Moller 2007; Abe 1984). It is most common in young adults between the ages of 20 and 40 years, with a number of studies suggesting a second peak after 50 years of age (Henke et al 1986; Hillerdal et al 1984; Pietinalho et al 2000). Furthermore, many non-infectious factors, e.g. metal fumes, pigments with/without aluminum in tattoos, pollen and fire are also considered as potential causes of sarcoidosis (Post et al. 2012; Post et al. 2007).

A strong cell-mediated immune reaction, which is essential for combating viruses or intracellular bacteria, has been reported in sarcoidosis (Eishi et al 2002). High levels of TNF-α and IL-12 in the serum of sarcoid patients have been reported, possibly released from peripheral blood monocytes, a similar high levels of these mediators are found in alveolar macrophages (Prior et al., 1996). Macrophages are important defense cells in the lungs and are critical for initiating an inflammatory response to inhaled microbes and toxins. This is facilitated through recognition of pathogen-associated molecular patterns (PAMPS) through pattern-recognition receptors (PRRs) such Toll-like receptors (TLRs) and NOD-like receptors (NLRs) (Rastogiet al 2011). The high cytokine expression levels detected in patients with sarcoidosis results from stimulation of alveolar macrophages by TLR4 and NOD1 agonists. This, in turn, leads to sustained p38 mitogen activated
kinase (MAPK) phosphorylation and increased transcription of IL-12, TNFα, and IL-1 (Dong et al., 2002; Inoue et al 2006). TNF-α maintains the integrity of the granuloma and limits the influx of inflammatory cells to the granuloma to prevent escalation of the inflammatory process. However, paradoxically, anti-TNFα-induced sarcoidosis has also been reported which mainly affects the lungs, parotid and skin (Massara et al 2010). The condition resolves following withdrawal of anti-TNF-α therapy and it is thought that the cytokine imbalance experienced with prolonged TNF-α blockade favours the disease. Corticosteroid therapy has also been shown to be detrimental in recent onset disease (Reich 2003, 2012).

Dendritic cells play a central role in granuloma formation by directly recruiting immune cells via TNF-α secretion and indirectly through the activation of T cells via antigen presentation within the surrounding lymph nodes. Patients with sarcoidosis have a deficit in delayed type hypersensitivity reactions through impairment of dendritic cell functioning (Mathew et al 2008). These patients have comparable levels of circulating dendritic cells to that of healthy controls, but their dendritic cells display anergy to microbial challenge despite the presence of upregulated costimulatory and maturation markers (Mathew et al 2008). This dysfunction is mild and does not predispose these individuals to severe microbial infections as seen with those with primary immunodeficiency. The same study also demonstrated a correlation between the degree of dendritic cell dysfunction and severity of pulmonary sarcoidosis.

A number of hereditary and acquired immunodeficiency disorders present with granulomatous inflammation at a variety of body sites. Granuloma formation in patients with these disorders is due to failure to clear the infective organism results in persistence and subsequent granuloma formation to try to contain the infection. The aim of this review is to explore the role of the innate immune system in the formation of the granuloma.

2- Pathogenesis of Sarcoidosis
Sarcoidosis is a granulomatous disease of unknown etiology with a great diversity in clinical manifestations. The current understanding of its pathogenesis is that several
immunological events are involved in sequential manner that finally results in granuloma formation: (1) exposure to one or several unknown antigen(s), (2) activation of macrophages, (3) acquisition of T cell immunity against the antigen(s) following antigen processing and presentation by macrophages, (4) generation of specific T-effector cells and (5) impaired immune regulatory mechanisms involved in repressing immune responses (Baughman 2011) (Fig. 1). These events take place on the background of a spectrum of genetic polymorphisms that influence disease susceptibility or outcome (Grunewald 2010). The purpose of the granuloma formation is to isolate the antigen/microorganism from the body to facilitate its eradication and protect the body from dissemination of the antigen/microorganism. This is more important in mycobacterial infections. Many immune defects associated with sarcoidosis, especially those affecting the innate immune system; result in poor granuloma formation. Finally, sarcoidosis is characterized by an exaggerated local Th1/17 immune response, initiated by APCs, and maintained due to the presence of malfunctioning Treg cells. Overall, CD4+ T cells are over-stimulated by the persistent presence of an unknown antigen(s) and this is amplified by a significant reduction in the numbers of regulatory CD8+ cells which drives the formation of granulomata (Poulter 1988).

On the other hand there is an increased expression of proinflammatory cytokines in sarcoidosis, (Ziegenhagen 1998). Two key cytokines implicated in sarcoidosis are TNFα and granulocyte macrophage colony stimulating factor (GM-CSF). TNFα is required for granuloma formation in mice (Smith 1997) and GM-CSF is able to induce the transformation of alveolar macrophages into multinucleated giant cells (Lemaire 1996). Importantly, both granulomas and multinucleated giant cells are hallmark histopathological features of sarcoidosis.

3- Role of pattern recognition receptors in sarcoidosis
Considering the infectious trigger hypothesis of disease pathogenesis the detection of Mycobacteria, Propionibacteria and other pathogens within sarcoidosis tissue suggests that PRRs, particularly TLRs, are important in sarcoidosis as they are key players in innate immunity and the initial response to bacterial infection (Song et al 2005; Ishige et al 1999; Ishige et al 2005). PRRs comprise several receptor families which recognize
microbial structures or host-derived danger signals, and trigger an immune response. TLRs and NLRs are found both in leukocytes and structural cells throughout the airways and are becoming increasingly implicated in airway inflammation. TLRs can initiate inflammatory and anti-microbial innate immune responses, thereby dictating the ensuing adaptive immune response.

The involvement of several TLRs, as well as that of nucleotide-binding oligomerization domain–containing protein (NOD) 1 and 2 proteins, in the immunopathogenesis of other granulomatous diseases such as tuberculosis and Crohn’s disease has been explored (Bafica et al 2005; Kleinnijenhuis et al 2011; Hampe et al 2002). These studies indicate the importance of macrophages in pathogen detection. Alveolar macrophages are the first cells that are exposed to inhaled antigens; however, the TLR repertoire and functions in alveolar macrophages during the onset and course of pulmonary sarcoidosis is presently unknown.

In contrast to most TLRs such as TLR2, 4 and 6, which are expressed on the cell surface, NODs are found in the cytosol (Strober et al 2006) and TLR9 is located in the endosomal compartment (Latz et al 2004). This indicates that these receptors detect PAMPs originating from intracellular pathogens (Lund et al 2003; Hemmi et al 2000) which is important in sarcoidosis where intracellular pathogens are important. However, evidence for a potential role of TLRs is suggested by evidence that BAL cells from sarcoidosis patients exhibit increased cytokine responses to the 19-kDa lipoprotein of *Mycobacterium tuberculosis* (LpqH), a TLR2/1 ligand, and decreased responses to the TLR-2/6 agonist fibroblast stimulating ligand-1 (FSL)-1 (Gabrilovich et al 2013).

Very recently the role of TLR9 in the pathogenesis of pulmonary sarcoidosis has been described (Schnerch et al 2016). These authors found increased expression of TLR9 by alveolar macrophages in patients with type I and II sarcoidosis as determined by chest X-ray. In addition, the TLR9 ligands CpG-A and CpG-C preferentially increased the release of CXCL10 by BAL cells from patients with type II sarcoidosis without any effect on the release of CXCL9, CXCL10, TNF, IL-6, or IL-12p40. Thus, TLR9 stimulation might contribute to the Th1-predominant alveolitis found in sarcoidosis by the preferential induction of CXCL10 release from alveolar macrophages.
TLR2 and TLR4 are the most studied among the TLR family (Fig. 2). Numerous agonists for TLR2 have been reported, including lipoteichoic acid (Gram-positive bacteria), lipoarabinomannan (*Mycobacteria*), zymosan (fungi) as well as a number of envelop antigens from viruses (Lienet al. 1999; Drage et al. 2009; zinsky et al. 2000; Bieback et al. 2002). TLR4 is expressed on a variety of human cells, such as monocytes, mast cells, neutrophils, dendritic cells, T cells and endothelial cells.

TLR4 is well known for its role as a sensor of LPS from Gram-negative bacteria but is also a receptor for heat shock proteins (HSPs), particularly HSPs 60 and 70 in infectious and noninfectious models of sarcoidosis. HSPs are now thought to act as endogenous DAMPs produced by APCs in response to infectious and non-infectious factors (Dubaniewicz et al 2013). TLR4 is also a receptor for respiratory syncytial virus fusion protein and fungal mannann (Medzhitov et al., 1997; Bulut et al., 2002; Kurt-Jones et al. 2000; Tada et al. 2002) (Fig. 2).

However, the main LPS binding receptor is CD14 (Wright et al 1990), TLR4 acts as a co-receptor for CD14, together with MD-2, and is responsible for activating intracellular signaling pathways resulting in the production of proinflammatory cytokines and upregulation of costimulatory molecules, thereby priming an adaptive immune response (Romics et al 2005). To date, 3 genetic studies have addressed the role of TLRs in sarcoidosis and the influence of TLR4 polymorphisms on the disease course (Pabst et al. 2006; Veltkamp et al. 2006; Gazouli 2006).

Huizenga et al examined the expression of the TLRs 1–9 in cutaneous sarcoid by immunohistochemical staining (Huizenga et al 2015). They found that TLRs 5 and 6 stained most intensely in both the granulomas and epidermis of the sarcoid cases. The expression of TLRs 2, 3, 4, 5, 6, 7, and 8 was increased in the dermis and epidermis of cutaneous sarcoid compared with normal skin (Huizenga et al 2015). TLR5 recognizes Gram-positive and Gram-negative bacteria flagellin and is also proposed to play a role in the inflammatory response of cutaneous syphilis (Sieling 2003). TLR5 binds to *T. pallidum* only after APCs have phagocytized and digested the bacteria (Hari 2010; Bouis 2001). TLR6 forms a heterodimer with TLR2 and binds bacterial lipoproteins (Huizenga et al 2015). A similar inflammatory response using TLRs 2, 5 and
6 could be involved in the pathogenesis of sarcoidosis. Current theories propose that \textit{P. acnes}, the known cause of acne vulgaris, could be implicated in the pathogenesis of sarcoidosis. The inflammatory response to \textit{P. acnes} is mediated through TLR2 (Kim 2002). The enhanced TLR2 expression in cutaneous sarcoidosis indicates that a bacterial antigen from \textit{P. acnes} could be an etiologic agent of the disease. These results suggest that a bacterium could be the cause of the granulomas formed in cutaneous sarcoid. Future studies that clearly define the etiology of sarcoid will lead to better therapies and a better prognosis for affected patients (Huizenga et al 2015).

4- Future Perspectives
In this review, we have discussed how the sensing of pathogens and cellular components by PRRs triggers sarcoidosis and its consequences. The cellular mechanisms by which individual PRRs induce pleiotropic outcomes are complex, and we are far from predicting the entire immune response resulting from crosstalk between the various PRRs. Furthermore, we do not know much about the dynamic regulation of immune cell activation or behaviour. Investigations into how inflammation is physiologically controlled to cause sarcoidosis are in the infancy but future research should define the dynamics of immune cell activation in real time in vivo using advanced imaging techniques. Secondly, a systems biology approach may provide greater insight into disease pathobiology. There have been several attempts to incorporate systems biology into immunology research. Aderem and colleagues identified ATF3 and C/EBP_\gamma as a suppressor and amplifier of TLR-mediated gene expression respectively (Gilchrist et al., 2006; Litvak et al., 2009). There have also been attempts to comprehensively understand the transcriptional networks activated in response to PRR stimulation in DCs. Recently, Regev and coauthors identified 125 transcription regulators involved in TLR-mediated gene expression and constructed a network model following sequential knock down of each of them in turn (Amit et al., 2009). However, multiple PRRs are activated simultaneously in the course of microbial infection. Thus, the dynamic changes in transcriptional networks activated in response to inflammatory stimuli are likely to be highly complex. In the future, the merging of imaging, systems biology, and
immunology will uncover the dynamics of PRR-mediated inflammatory responses and their role in autoimmune disease.
Acknowledgements

IMA is supported by the Wellcome Trust (093080/Z/10/Z) and by the NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London. The authors declare that they have no conflicts of interest with the contents of this article.
Figures legends:

Figure 1. Pattern recognition receptors (PRRs) involved in recognizing bacteria and viruses.

The major PRRs are Toll-like receptors (TLRs). Specific bacterial, fungal and viral components such as bacterial surface products including LPS and nucleic acids (RNA and DNA) activate distinct PRRs. Activation of these PRRs results in stimulation of the canonical or non-canonical nuclear factor-κB (NF-κB) and other downstream pathways including p38 MAPK and this culminates in the production of chemokines, cytokines, and reactive oxygen species. Signal transduction is mainly via the MyD88 adapter molecule and activation of IRAK/TRAF6. Intracellular bacteria and viruses are detected by NOD receptors that activate several other downstream pathways to activate NF-κB, IFN and IL-1.

Abbreviations: DAP; diaminopimelic acid, iE-DAP; D-glutamyl-meso-diaminopimelic acid, IRAK ; IL-1 receptor-associated kinase, IKK; IκB kinase, LPS; Lipopolysaccharide , MDP, muramyl dipeptide, , MYD88, - myeloid differentiation primary response protein 88, , NF-κB - nuclear factor-κB, NOD - nucleotide-binding oligomerization domain, RICK; Caspase-recruitment domain (CARD)-containing kinase, TAK1 - TGF-β-activated kinase, TRAM; TRIF-related adaptor molecule, TRIF - Toll-like receptor adaptor molecule, TAB2; TAK1-binding protein 2

Figure 2. A schematic model for granuloma formation in pulmonary sarcoidosis and possible role of TLRs.

(a) Macrophages and dendritic cells engulf the putative bacterial sarcoid antigen via membrane-bound and intracellular Toll-like receptors (TLRs) within the airway lumen with the subsequent secretion of pro-inflammatory cytokines. They also present antigen derived peptides and lipids via MHC class II and CD1 molecules to T cells, NKT cells, and NK cells. (b) Dendritic cells loaded with antigen migrate to the local mediastinal lymph nodes (MLN) where they present to naïve CD4+ T-cells. Within the lymph node, IL-12 secreted from dendritic cells stimulates naïve cells to differentiate into Th1 cells.
Th1 cells, in turn, secrete IL-2 to expand their population. (c) At the granuloma site, activated dendritic cells secrete copious amounts of TNFα which activates the endothelium, upregulating the number of adhesion molecules to allow extravasation of Th1 cells and monocytes. Th1 cells secrete IFNγ which stimulates monocytes to differentiate into macrophages.

Abbreviations: CCL: CC chemokine ligand; CXCL: CXC chemokine ligand; DC: Dendritic cell; IFNγ: Interferon γ; IL: Interleukin, MLN: Mediastinal lymph node; NK: Natural killer; NKT cells: natural killer T cells; TLRs: Toll-like receptors; TNF-α: Tumor necrosis factor alpha.
References

Proinflammatory cytokines: TNF-α, IL-6, IL-23, CXCL-10, 16, CCL20

Unknown antigen: TB, Propionibacterium acnes, NTM, ?!

Monocytes and Macrophages

TLR2

TLR4

TLR7 9

(a)

DC

Blood circulation

Lung epithelium

MLN

Proinflammatory cytokines: TNF-α, IL-6, IL-23, CXCL-10, 16, CCL20

IFNγ

B Lymphocytes

CD4+ T-cell

Th1

Granuloma

(c)