
1

Application-oriented Design Space Exploration for SLAM Algorithms

Sajad Saeedi†, Luigi Nardi†, Edward Johns†, Bruno Bodin⋆, Paul H. J. Kelly†, and Andrew J. Davison†

Abstract—In visual SLAM, there are many software and
hardware parameters, such as algorithmic thresholds and GPU
frequency, that need to be tuned; however, this tuning should also
take into account the structure and motion of the camera. In this
paper, we determine the complexity of the structure and motion
with a few parameters calculated using information theory.
Depending on this complexity and the desired performance
metrics, suitable parameters are explored and determined.

Additionally, based on the proposed structure and motion
parameters, several applications are presented, including a novel
active SLAM approach which guides the camera in such a way
that the SLAM algorithm achieves the desired performance met-
rics. Real-world and simulated experimental results demonstrate
the effectiveness of the proposed design space and its applications.

I. INTRODUCTION

Recently within the Simultaneous Localization and Map-

ping (SLAM) and robot vision community, it has been a

controversial issue whether SLAM is solved or not. To answer

this question, we need to consider three main factors as defined

by Cadena et al. in [1]: robot, environment, and performance.

In other words, the answer depends on the robot (its motion,

resources, batteries, sensors, ...), the environment (indoor, out-

door, dynamic, ...), and the required performance (the desired

accuracy, success rate, latency, ...). For instance, 2D grid-based

SLAM in indoor environments with a required reconstruction

error of below 0.01 m could be considered solved. Similarly,

visual SLAM is also considered almost solved, but in some

applications, when the robot has very fast dynamics or the en-

vironment is highly dynamic, the performance of the mapping

and localization degrades. Therefore, research on SLAM is

entering a new era where robust performance and application-

oriented SLAM is the focus.

There are several different discrete paradigms for SLAM

algorithms, including sparse [2], semi-dense [3], dense [4],

and semantic [5]. At the next level, there are possible major

choices between components of these algorithms (e.g. type

of feature, type of surface representation, etc), and finally,

parameter choices within a particular algorithm. The choice

of the algorithm is dependent on the application, the available

resources, and the required performance metrics. There have

been measures and benchmarks for SLAM systems for several

years now, and these have been widely used to compare and

tune the performance of different algorithms and systems. The

majority of these have concentrated on accuracy; mainly of

trajectory, because that is straightforward to independently

measure, but sometimes of mapping accuracy too.

However, the performance of a SLAM algorithm on an

accuracy benchmark actually tells us little about how useful it

would be for a particular application. SLAMBench [6] showed

how the usefulness of benchmarks could be broadened in an

important dimension by considering efficiency of performance
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Fig. 1: A SLAM-based application is composed of four design spaces: SLAM algorithm,

compiler, hardware, and motion and structre (MS), where the latter is a new concept

introduced in this paper. Each space has a set of parameters (blue arrows) chosen from

a Pareto front, depending on the required performance metrics. The MS parameteres

are calculated using information theory. These parameters together with images are used

to control the motion of the camera, such that the desired performance metrics are

maintained.

on different computing platforms. A SLAM algorithm which

is useful for a high accuracy industrial mapping application is

almost certainly not the right choice for a low power embedded

platform like a drone. This has started to open up research

on Design Space Exploration (DSE) [7], where a high level

search is made through the possible operating parameters of a

SLAM system, in order to find the combinations which work

best in terms of an appropriate compromise between accuracy

and efficiency. In general, the results of DSE are represented

by a Pareto front of possible operating points, where each

point on the front represents an optimum set of parameters

given the desired performance metrics. But still, the scene and

motion are fixed in SLAMBench; all variations of algorithms

are tested on a certain synthetic scene dataset with a certain

camera motion.

In reality, different applications need to work in different

environments; and have varying specifications with regard

to motion. If a drone must use visual SLAM to navigate

through a forest, it will be flying fast past complex, nearby

trees; while a robot vacuum cleaner navigates rather slowly

on a ground plane, but must deal with a scene which is

often distant and textureless. How can we perform design

space exploration for SLAM systems as a whole, taking into

account this range of applications with different constraints

and requirements? It would seem that the specific qualities

of the motion and structure involved in an application would

need many parameters to specify — the typical linear and

rotational velocities and accelerations of motion; the structure

complexity of the scene; the average scene depth; the level of

texture, and so on.

The hypothesis of this paper is that we can use a small set

of parameters as a very useful proxy for a full description

of the setting and motion of a SLAM application. We call

these Motion and Structure (MS) parameters, and define

them based on information theory. Specifying and searching

through MS parameters in design space exploration allows us

to focus within the wide range of possible operating points

represented by an accuracy/efficiency Pareto front. Using the

MS parameters, we are able to identify how challenging the
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environment is with a given camera motion, and thus choose

a set of more suitable hardware and software parameters from

the Pareto front. One of the applications of the proposed MS

parameters, as shown in this paper, is the active SLAM with

robotic platforms (Fig. 1). Unlike other information theoretic

methods, such those which try to maximize mutual information

or information gain [8] for rapid exploration, in our method

we propose to limit the information divergence, to ensure that

the SLAM system is robust with respect to the structure of the

observed scene.

A. Contributions

The contributions of this work are as follows:

• Introducing a comprehensive design space, including mo-

tion and structure space, for real-time applications,

• Parameterising the motion and structure space with infor-

mation theory, and

• Proposing several applications based on the MS parame-

ters, including an active SLAM algorithm.

The rest of the paper is organised as follows: Section II

presents background and literature review. In Section III the

proposed motion and structure space is introduced. In Sec-

tion IV the design space exploration is explained. In Section V,

several applications of the proposed motion and structure space

are presented. In Section VI, experiments are presented, and

in Section VII, conclusions and future works are presented.

II. BACKGROUND AND LITERATURE REVIEW

In this section, three topics are presented: performance

metrics, design space exploration, and information theory.

A. Performance Metrics

SLAM algorithms are compared based on various perfor-

mance metrics such as accuracy, robustness, processing cost,

and etc [9], [10], [11], [12]. Strum et al. improve trajectory

metrics, absolute trajectory error (ATE) and relative pose error

(RPE), by evaluating the root mean squared error over all time

indices of the translational components [11].

Other important metrics are related to the quality of the

map, such as reconstruction completeness (RCM), defined as

the reconstructed percentage of the ground truth points [13],

and reconstruction error (RER), defined as the error between

the reconstructed and the ground truth map. As an example, in

ElasticFusion [4], where the map is shown by surfels, RER is

determined by running iterative closest point (ICP) algorithm

on the point cloud models of the world and the map. The error

of the point cloud matching is used as RER.

Execution time (EXT), memory usage (MEM), and energy

consumption (ENE) per frame are other important metrics

which are usually taken into account in real-world applications

and on mobile devices.

B. Design Space Exploration

The design parameters of a SLAM algorithm are categorised

as either software parameters, including algorithmic and com-

piler parameters, or hardware parameters.

Algorithmic parameters are algorithm dependent. For in-

stance, in KinectFusion [14], the ICP convergence threshold,

volume resolution, and pyramid level iterations are such algo-

rithmic parameters. Compiler parameters operate at the com-

piler level and affect the way that the hardware executes the

algorithm. Vectorisation and compiler flags for the precision

of mathematical operations are examples of such parameters.

Hardware parameters include the number of active CPU cores

and the GPU processor frequency. By proper selection and

tuning of these parameters, the objective is to achieve the de-

sired performance metrics; however, the augmented hardware

and software variables form a large vector that is not easy to

tune manually. Additionally, there are multiple choices for the

desired parameters which are shown by a Pareto front. Figure

7 demonstrates the Pareto front highlighted in green, where

each point on the Pareto front is an optimal answer. For every

non-Pareto point, there is a point on the front which is better

in at least one metric. A user can choose the desired point

from the front depending on the trade-off between metrics.

In the recent paper of SLAMBench [6], the idea of adopting

the KinectFusion algorithm to run on four different platforms

with default algorithmic parameters was proposed. SLAM-

Bench uses ICL-NUIM dataset [15] to do experiment.

Bodin et al. proposed the idea of design space exploration

(DSE) which tries to optimise the hardware and software pa-

rameters to achieve some of the desired performance metrics,

including ATE, ENE, and EXT [7]. The methodology of their

work is based on quantifying these indices by playing the

KinectFusion algorithm using the ICL-NUIM dataset on two

different platforms and exploring the design space parameters.

Zia et al. apply a similar concept in [16], but at a small

scale, to only algorithmic parameters of the KinectFusion and

LSD-SLAM [3] algorithms. They have done their experiments

using ICL-NUIM and TUM-RGBD [11] datasets.

C. Information Divergence

Information theory and its concepts such as entropy and

mutual information has many applications in robotics and

perception, including path planing [17], SLAM [18], and

exploration [19]. In this paper, information divergence is used

to assess the quality of mapping and localization.

In information theory, information divergence, which is a

measure of difference between two probability distribution

functions, has been used in many different fields such as image

processing, speech processing, and machine learning [20].

As an information divergence measure, the Kullback-Leibler

divergence also called KL divergence or relative entropy, is

a natural distance measure that uses Shannon’s entropy. For

a discrete random variable with dimension d, such asX =
(X1, . . . , Xd) ∈ R

d with a probability distribution function of

p(x1, . . . , xd), the entropy is defined as:

H(X) =
∑

x1,...,xd

p(x1, . . . , xd)log
1

p(x1, . . . , xd)
. (1)

If the random variables Xi, i = 1, . . . , d are independent,

equation (1) becomes:

H(X) =
∑

i=1,...,d

H(Xi). (2)
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Fig. 2: The SLAM design space includes four main domains: 1) algorithm, 2) compiler,

3) hardware, and 4) motion and structure. The choice of the parameters for these domains

are evaluated using various performance indices such as absolute trajectory error (ATE),

reconstruction error (RER), or execution time (EXT).

If Xis are independent and identically distributed, H(X) is

H(X) = dH(Xi). (3)

Entropy dH(Xi) is the upper bound for the entropy that

can be achieved. In other words, the upper bound for H(X)
is when Xis are independent and identically distributed. Sim-

ilarly, by extending the definition in equation (1), the relative

entropy or KL divergence distance for two distributions, p(X)
and q(X), is defined as:

δ(p||q) =
∑

x1,...,xd

p(x1, . . . , xd)log
p(x1, . . . , xd)

q(x1, . . . , xd)
. (4)

When p(·) and q(·) are equal, the distance is zero.

III. MOTION AND STRUCTURE PARAMETER SPACE

This section explains the Motion and Structure (MS) design

space. If a camera mounted on a quadrotor experiences a sud-

den change in the view of the scene due to the fast dynamics of

the quadrotor, depending on the depth of the scene, the SLAM

algorithm may fail or succeed to process the following frames

because tracking is difficult when sequential images have very

different appearances. Therefore it is important to quantify the

limits of the physical motions in different environments. In

other words, it is desired to represent this complex dependency

of motion and structure with a minimum number of parameters

which are also easy to compute. For sparse SLAM, Civera et

al. achieved this goal by decomposing the state space into

metric parameters and dimensionless parameters [21]. The

dimensionless parameters are used to tune the SLAM filter

without any assumption about the scene. The structure of the

scene also offers important cues as to which parameters to use,

and we later address this.

One way to take into account the behaviour of the motion

in a structure is to refer to the sensory data. The information

gained, from one frame to another, tells us about the motion of

the camera relative to the environment. As it is shown, there

is a correlation between the change of the information from

one frame to the next, and the desired performance metrics.

Extremely high rates of change will result in failure of SLAM,

as expected. The MS design space identifies the maximum

change permitted for a SLAM algorithm to achieve the desired

performance metrics.

θ0
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α

Fig. 3: Surface of a unit sphere is divided into equal patches to bin the normal vectors

of a depth image. First N equal inclination angles are created (θi, shown in red dotted

lines). For each inclination, M equal azimuth angles are created (φj , shown in blue

dotted lines). A unit vector, identified by θi and φj , demonstrates a bin which attracts

any normal that falls inside an influence region, shown by α.

A. Divergence of Sensor Information

In the rest of the work, it is assumed that the sensor operates

in a realistic environment, i.e. the sensor is not blind, and

the structure has minimum texture to be mapped. If images

are modelled by probability distributions, by knowing the

magnitude of divergence in information from one distribution

to another, we are able to determine the motion of the sensor in

an environment. In an extreme case, a zero divergence means

there is no motion. A large divergence may indicate that either

the sensor is moving very fast, or the environment has rapidly

varying structure.

1) Approximate KL Divergence for Intensity Images:

We treat an image as a very high-dimensional discrete random

variable. An approximate probabilistic model can then be

generated by assuming that pixels are individually independent

random variables. The reason that this is an approximate

model is that in practice the pixels are correlated through

the geometry of the environment; however, modelling the

geometry is not a trivial task. In this work, for intensity images,

an approximate probability distribution model is generated by

making a normalised histogram of the intensities of the pixels.

This is similar to the model that Shannon created to model

English words [22]. The key is that the normalised histogram

is an estimate of the underlying probability of each pixel’s

intensity.

For two intensity images, It and It−1, the normalised

histogram of intensity values is considered as their distribution

functions. Typically for intensity images, P = 256 bins

are considered, where each bin is associated with an integer

u = 0, ..., 255. If the distributions of the images are indicated

by It and It−1, the intensity information divergence is:

δI(t) , KL(It||It−1) =
P
∑

l=0

It(u) log
It(u)

It−1(u)
, (5)

where subscript I indicates that the distribution and the

divergence distance are derived from the intensity images, and

δI is the KL divergence. I(u) is the uth bin of distribution I.

2) Approximate KL Divergence for Depth Images: To

create depth distributions, depth values could also be binned

similarly; however, this is not trivial given the unbounded

range of these depth values. Instead, for two consecutive depth

images, Dt and Dt−1, their probability distribution functions

are defined using normal vectors of the depth points. To

generate the distributions, the method used in [23] has been
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adopted. First, from the depth images, for each point, a normal

vector is calculated. Then the normal vectors are binned to

created a histogram. To bin the normal vectors, a unit sphere

is partitioned into equal patches (see Fig. 3). Patches are

identified by their central azimuth and inclination angles. To

have equally distributed patches, regularly-spaced inclination

angles are selected by dividing the inclination range (i e.

[0, π]) to N equally-distributed angles (equation (6)). For each

inclination, the azimuth angles are selected by dividing the

azimuth range (i e. [0, 2π]) to M equal angles (equation (7)).

Note that as we get closer to the poles, M decreases. The ⌊·⌋
sign denotes the integer part operation.

θi = π
i

N
, i = 1..N (6)

φj(θi) = 2π
j

M
, j = 1..M, M = ⌊2N sin θi⌋+ 1 (7)

Once the bins are created, the kth normal vector nk, k = 1..L,

contributes to bin i, j based on the angle between nk and vij ,

where vij represents bin i, j in Cartesian coordinates:

wk
ij =







0 if cos−1(nk.vij) > α
nk.vij − cosα

1− cosα
else

(8)

In equation (8), α is the angular range of influence for each

bin. Based on these weights, the spherical distribution is:

D(i, j) =
L
∑

k=1

wk
i,j , i = 1..N, j = 1..M (9)

After calculating the contribution of all normals to the bins, the

histogram is normalized to sum to one. For two distributions,

Dt and Dt−1, the depth information divergence, δD, is:

δD(t) , KL(Dt||Dt−1) =
∑

i,j

Dt(i, j) log
Dt(i, j)

Dt−1(i, j)
, (10)

B. Motion and Structure Design Space

There is a direct relationship between the KL divergence

distance of intensity and depth images, and the performance

metrics. A larger divergence means more outliers during image

alignment, which introduces more error. If we want to perform

better outlier rejection by relying on more iterations or more

accurate algorithms, like RANSAC, the hardware requirements

increase. In general, the relationship between the divergence

and the metrics is not easily proved analytically, and thus it

has been shown experimentally here.

To efficiently represent the MS design space with infor-

mation divergence, for a trajectory of T frames (1..T ), the

maximum information divergences for intensity and depth

images, MI and MD , are introduced:

MI = max
(

δI(t)
∣

∣

t=1:T

)

(11)

MD = max
(

δD(t)
∣

∣

t=1:T

)

(12)

To demonstrate the relationship between these divergence

values and performance metrics, a dataset is tested using

ElasticFusion [4]. To generate data streams with larger infor-

mation divergence, frames were skipped in regular intervals.

Then the absolute trajectory error (ATE) is calculated. Fig. 4
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Fig. 4: Absolute trajectory error versus information divergence for two streams of ICL-

NUIM dataset (lr kt1, lr kt2). As information divergence increases, the overall ATE

increases. This leads us to the idea that by limiting the information divergence actively,

i.e. through the motion feedback, the desired ATE can be achieved.

demonstrates the absolute trajectory error versus divergence

for the ICL-NIUM dataset (stream lr kt1 and lr kt2). This

figure shows that higher information divergence corresponds

to higher trajectory error.

These maximum divergence values parameterise the motion

and structure simultaneously. In other words, for a desired

ATE, the motion in a given structure should be such that the

frame to frame divergence should not exceed these parameters.

IV. DESIGN SPACE EXPLORATION

In this section, the design space exploration with the four

design spaces, shown in Fig. 2, is explained. The design space

exploration is performed with ElasticFusion [4] on an Intel

machine. For simplicity, the experiments are performed only

on algorithmic and MS parameters. To evaluate the design

parameters, ATE and EXT performance metrics are calculated.

A. Design Parameters

The ElasticFusion algorithm is parameterised by the fol-

lowing parameters. For a detailed description, please refer to

original paper by Whelan et al. [4].

• Depth cutoff: Cutoff distance for depth processing.

Range: [0− 10] m, default: 3 m.

• ICP / RGB tracking weight: This weight determines the

ratio of ICP to RGB tracking in visual odometry. Range:

[0− 1], default: 0.1.

• Confidence threshold: Surfel confidence threshold.

Range: [0− 12], default: 10.

For the motion and structure parameters, maximum inten-

sity information divergence, and maximum depth information

divergence, are used. These two parameters were introduced

in Equations (11) and (12). To determine these parameters,

a dataset sequence was played with frames being dropped

at different rates, and the maximum information divergence

was calculated across that sequence. Dropping frames actually

occurs in real-world applications, i.e. when there is limited

buffer or processing resource, the unprocessed frames are

simply discarded. While the parameters for the algorithmic,
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hardware, and compiler domains were generated in advance,

the parameters for the MS space is produced on the fly.

B. Procedure

We wish to determine the Pareto front for those parameters

which are defined above. To generate one point on the Pareto

plane, we first generate a random sample of the algorithmic

space parameters. We then specify a frame drop rate, and

by running the algorithm with these parameters on the cor-

responding image sequence, the EXT and ATE metrics are

calculated, together with the corresponding MS parameters

(maximum information divergence). This process continues,

each time adding a Pareto point, until we have the Pareto front

determined. The Pareto front is later used to specify design

space parameters based on the trade-off between different

performance metrics.

V. APPLICATIONS OF DESIGN SPACE EXPLORATION

In this section, four different scenarios are presented which

show how the proposed MS parameters and design space

exploration are used in real-world applications to meet the

objectives of a mission or limitation of the resources. These

scenarios are active frame management, run-time adaptation,

dataset difficulty level assessment, and active SLAM. Of these,

the active SLAM algorithm is explained in detail and some

experimental results are presented in the next section.

A. Active Frame Management

In real-world applications, optimising resources such as

battery is very important. One of the applications of the design

space exploration is the ability to decide when to process a

frame. If two consecutive frames are statistically very similar,

by processing them, we are able to gain more confidence in

the map and the pose of the camera; however, this is at the

cost of spending other important resources such as battery. In

this situation, it is desirable to simply drop the second frame to

save the battery. Obviously when there are unlimited resources,

it is desirable to process all frames. To manage frames actively,

for each frame its information divergence with respect to the

previous frame is calculated. If the divergence is less than

a threshold, the frame is not passed to the SLAM pipeline.

The threshold can be dynamic and could be a function of the

available resources such as battery or the processing resources.

B. Run-time Adaptation

Assume that after the design space exploration, a set of

parameters have been identified from the Pareto front; these

guarantee acceptable performance metrics according to a de-

fined maximum information divergence. If for any reason, the

information divergence is higher than the expected values,

there is risk of having poor performance. However, this can

be counteracted by choosing another set of parameters, which

may require higher allocation and consumption of the available

resources, but can deal with the higher divergence. In other

words, using the proposed method, it is possible to have

multiple sets of parameters, and in extreme situations, our

method can easily switch from one set of parameters to another

to guarantee the required performance metrics.

Dataset No Max Mean Variance

ICL-
NUIM

lr kt0 0.0250 0.0026 0.0014
lr kt1 0.0183 0.0026 0.0012
lr kt2 0.0427 0.0032 0.0023
lr kt3 0.0352 0.0032 0.0023

TABLE I: Difficulty level metrics using information divergence.

C. Dataset Difficulty Level Assessment

When proposing a new SLAM algorithm, a de facto is to

compare the results with other algorithms by testing them

on known datasets. So far there is no measure to assess

the difficulty level of the datasets, and thus, the comparison

with datasets may not be able to reveal all strengths or

weaknesses of a new SLAM algorithm. As a standard met-

ric, the proposed information divergence, without considering

software and hardware parameters, can easily be used to

assess the difficulty of different datasets. This can be achieved

by assigning statistics of the information divergence, such

as mean and variance, to the sequence of the data in each

dataset. Additionally, the divergence metrics can be evaluated

per unit of time. Table I shows some of these statistics for

ICL-NUIM datasets (only intensity divergence for simplicity).

According to [4], in ICL-NUIM, datasets lr kt2 and lr kt3 are

more difficult than lr kt0 and lr kt1 based on the reported

performance metrics. These difficult trajectories have a higher

difficulty score.

D. Active SLAM with Information Divergence

Active SLAM, also known as active vision, view path

planning (VPP), or next best-view (NBV), is the problem of

determining the optimal camera motion (in some sense) to

perform mapping [24]. Active SLAM is closely related to the

exploration problem [25], where the objective is to map an

unknown environment completely.

There are several works that perform active SLAM with sen-

sors such as lasers for 2D/3D mapping [26], [27], but Davison

and Murray were the first who integrated motion with stereo

visual SLAM [28] where their objective was to minimize the

trajectory error. Most active SLAM algorithms are either based

on maximizing mutual information [8], [29], or maximizing

information gain [30], [31] for increased coverage, decreased

pose uncertainty, or dense mapping purposes. But our objective

is to maintain robustness and achieve the desired performance

metrics by controlling the incoming information flow. In other

words, we guide the camera such that the information diver-

gence is not more than the permitted maximum information

divergence defined in equations (11) and (12).

1) Active SLAM based on Information Divergence:

Fig. 5 shows the block diagram of the system. The SLAM

block implements the ElasticFusion algorithm [4]. The result-

ing pose and map are used in the motion planning block.MI

and MD are the MS parameters that are used for motion

planning. The most recent images, It−1 and Dt−1, together

with the predicted next images, generated from the current

map, are used to determine the next best waypoint for the

controller block. The controller guides the robot using inverse

kinematics. The details of this controller are beyond the scope

of the paper.
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Fig. 5: Active SLAM with a robotic arm: image and depth frames along with Pareto fronts

are used to determine the best next waypoint to control the amount of the information

that is sent to the SLAM pipeline.

Algorithm 1 explains the proposed motion planning in de-

tail. Inputs to the algorithm are the previous intensity and depth

images, (It−1, Dt−1), the previous pose and map estimates,

pt−1, mt−1, and the maximum allowed intensity and depth

divergence parameters, (MI ,MD). Based on these inputs,

the algorithm determines the best rotation and translation, T ,

to maintain the information divergence below the threshold.

In line 1, ∆I and ∆D , which contain divergence values for

candidate poses, are initialised. In line 2, the space around

the current pose is decomposed to reachable rotation and

translation motions. The decomposed space includes seven

translations along the axes of the current local frame: no

translation, up, down, left, right, forward, and backward. For

each translation, there are seven rotations in the local frame

including no rotation, roll right, roll left, pitch forward, pitch

backward, yaw anti-clockwise, and yaw clockwise. T contains

the set of rotations and translations for the decomposed space.

With this simple decomposition, there are 49 elements in T .

In line 4, the candidate global poses of the camera, given the

previous pose and the next potential pose transformations, are

calculated. In line 5, for each of the candidate poses, depth and

intensity images are predicted by projecting the current map,

mt−1, on the camera plane. (Îit , D̂
i
t) are predicted intensity

and depth images for the ith candidate pose p̂it. In lines 6

and 7, for each of the predicted images, the divergence with

respect to the last intensity and depth images are calculated.

∆I(i) and ∆D(i) contain the corresponding divergences for

the ith candidate pose. Given the predicted images and their

divergences, in line 9, a pair of predicted intensity and depth

images are chosen which has the optimum divergence distance

to the divergence parameters. In this line, two thresholds is

introduced, defined as a percentage of the maximum allowed

intensity and depth information divergence, denoted by ρI and

ρD. Note that these two thresholds control the exploratory

behavior of the algorithm. If these parameters are zero, the

algorithm wants to keep the camera almost stationary, and if

they are set to 1, the algorithm wants to move the camera to

the locations where the image will provide maximum allowed

information, defined byMI andMD. Also, λ in this line is a

weight parameter, used to adjust the significance of depth over

intensity in the optimisation. Since the criterion has a finite

number of elements, i.e. only 49 different candidate poses, the

optimization is performed exhaustively. Finally, in line 10, the

rotation and translation commands associated with the chosen

intensity and depth images, are selected and passed to the

controller.

The proposed motion planning is a local algorithm and

does not provide a global destination for the camera. To

Algorithm 1 Active SLAM using information divergence

parameters

Require: Last intensity and depth frames : (It−1, Dt−1),
Last pose and map: pt−1, mt−1,

Motion and structure parameters: (MI ,MD)
Ensure: Next best move : T

1: ∆I ← {}, ∆D ← {}
2: T ← decompose(pt−1)
3: for i = 0, i < |T |} do

4: p̂it ← pt−1 ⊕ T (i)
5: (Îit , D̂

i
t)← project(p̂it,mt−1)

6: ∆I(i)← divergence(Îit , It−1)
7: ∆D(i)← divergence(D̂i

t, Dt−1)
8: end for

9: i⋆ ← argmini{|∆I(i)− ρIMI)|+λ|∆D(i)− ρDMD|}
10: T ← T (i⋆)
11: return T

provide global planning, in line 9, by adding more constraints,

the optimisation for the next motion can be combined with

any globally planned trajectory. This allows us to guide the

camera with global optimality, whilst providing acceptable

information divergence.

VI. EXPERIMENTS

In this section, we evaluate how our method can optimise

parameters to achieve certain desired metrics. Then we provide

in-depth exploration of the application to active SLAM, and

present both simulated and real-world experiments with a

camera mounted on a robotic arm.

A. Design Space Exploration

This experiment demonstrates the usefulness of DSE in

providing better performance metrics using information diver-

gence. Fig. 6 shows maximum ATE vs. EXT per frame for

various divergence values in the ICL-NUIM dataset (stream

lr tr0). In the legend, the highlighted marks have been sorted

from the highest divergence (×) to the lowest (◦). In Fig. 6,

as divergence increases, ATE and EXT increase.

Next, for one of the divergence values, DSE is implemented

as explained in Section IV-B to find the suitable algorithmic

parameters. For the point marked with ♦, maximum ATE is

2 cm, and EXT is approximately 0.038 s per frame. In Fig

7, this point has been shown by a black diamond as default

parametric configuration. All other points show the results of

DSE. The Pareto front has been shown by a green curve. Using

DSE, the ATE for this divergence can be reduced down to 1 cm

and EXT can be reduced to less than 0.02 s.

B. Active SLAM in Simulation

This experiment demonstrates the concept of performing

active SLAM, in which the motion of the camera is controlled

to adjust the information flow to the SLAM pipeline. In the

simulation, a pair of intensity and depth images are rendered

from a known world model (ICL-NUIM living room) given
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Fig. 6: ATE versus EXT for different divergence values, from the highest divergence
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Fig. 7: For the points corresponding to ♦ in Fig. 6, DSE is performed and the results are

shown. From the Pareto front (shown in green), the EXT from 0.038 s can be reduced

to 0.018 s, or the ATE can be reduced form 2 cm to 1 cm.

the current pose of the camera. These images are processed

by SLAM, and also by the the motion planner to decide what

the next pose of the camera should be. Once the next pose

is known, the camera is guided to the desired pose, and the

process of rendering images, SLAM, and motion planning

continues recursively. To render images from the 3D model,

Persistence Of Vision Raytracer, POVRay 1, is used. POVRay

renders much more realistic images compared to similar tools

such as Gazebo 2. In the simulation, two different motion

planning algorithms are tested: random walk and the proposed

active SLAM. In the random walk, for each frame, one

transformation is chosen from the 49 different transformations

available (combination of 7 translations and 7 rotations as

explained in Section V-D), while in the active SLAM, a trans-

formation that optimises the information divergence is chosen

(Algorithm 1). Fig. 8 shows a demonstration of 49 different

intensity image predictions and their divergence scores (depth

images are not shown for the sake of brevity). The experiment

was repeated twice (Table II). In the free motion experiment,

rotation and translation were changing as explained. In the

1http://www.povray.org/
2http://gazebosim.org/
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Fig. 8: Predicted images for active SLAM with their divergence distance with respect

to the current image. Divergence values are also depicted with color-coded patches on

top-left corner of each predicted image. The color bar (right) shows the divergence values.

Experiment Algorithm ATE RER

Free Random Walk 0.2343 0.0773
Motion Active SLAM 0.1549 0.0518

Fixed Random Walk 0.0854 0.0809
Translation Active SLAM 0.0582 0.0726

TABLE II: Performance of random walk versus active SLAM in simulation.

fixed translation experiment, the camera was translating along

a straight line, and the rotation was optimised (or randomly

selected). Table II compares the performance metrics for these

experiments. The results show that the active SLAM generated

better results in terms of performance metrics.

C. Active SLAM with Robotic Arm

This experiment demonstrates the active SLAM algorithm

with a robotic arm. Fig 1 shows the Kinova Mico Arm 3 used

for active SLAM. An ASUS RGB-D camera was mounted on

the arm, and as with the previous experiment, random walk

and active SLAM (Algorithm 1) are compared.

The experiments were done in four different environments,

labelled as window, table, wall, and carpet. In each environ-

ment, each algorithm was run 10 times. Repeated experiments

serve as a measure of the robustness of the algorithm in dealing

with uncertainties rising from minor changes in illumination,

or inaccuracies of the response of the controller or actuator to

the commands.

For the random walks, different initial seeds were used

everytime. Due to the lack of ground truth information from

the real environments, the consistency of the generated map

was evaluated manually as either a success or failure of

SLAM. If duplicates of one object were present in the map,

it was considered as failure. The generated maps are available

for inspection 4. Fig. 9 shows these results. As the figure

demonstrates, in all four cases, active SLAM performs better

than random walk. Particular performance difference is noted

in the carpet experiment, where random walk failed in all

10 tries, and active SLAM succeeded in five out of ten tries

by moving in and out and maintaining smaller information

divergence than random walk.

3http://www.kinovarobotics.com/
4https://imperialcollegelondon.box.com/s/aemavn2o0vo57obe3bhot62ww522ksnc

http://www.povray.org/
http://gazebosim.org/
http://www.kinovarobotics.com/
https://imperialcollegelondon.box.com/s/aemavn2o0vo57obe3bhot62ww522ksnc
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planning algorithms: active SLAM and random walk.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a new domain for the design space ex-

ploration of the SLAM problem, called Motion and Structure

(MS) space. The new domain is represented by parameters,

calculated using information divergence, that can be used to

meet the desired performance metrics. An active SLAM algo-

rithm was also developed based on the MS parameters, and we

showed how our method can be used to guide camera motion

optimally to ensure robust performance. We also presented a

design space exploration experiment which demonstrated that

suitable MS parameters can be incorporated with other design

space parameters, to yield a Pareto front.

In future work, we propose to use the information di-

vergence metric to evaluate several other real-world robotic

applications, including run-time adaptation. Another direction

to explore is adding global path planning constraints to the

active SLAM algorithm, to enable autonomous navigation as

well as ensuring robust performance. Additionally, we are

exploring improvements to the divergence measure, such as

introducing spatial windowing across the image for histogram

generation, and using the Earth mover’s distance to provide

tolerance to small illumination changes.
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