Argumentation for Machine Learning: A Survey

Oana COCARASCU a,1, Francesca TONI a

a Department of Computing, Imperial College London, UK

Abstract. Existing approaches using argumentation to aid or improve machine learning differ in the type of machine learning technique they consider, in their use of argumentation and in their choice of argumentation framework and semantics. This paper presents a survey of this relatively young field highlighting, in particular, its achievements to date, the applications it has been used for as well as the benefits brought about by the use of argumentation, with an eye towards its future.

Keywords. Argumentation, Machine Learning

1. Introduction

Machine Learning (ML) [27] amounts to automatically learning from data and improving with experience. Nowadays, its use is becoming more and more important as much of the work on visual processing, language and speech recognition relies on it.

Argumentation (e.g. as overviewed in [37]) has proven successful in several domains, including multi-agent systems [6] and decision support in medicine [16] and engineering [2]. ML and argumentation are brought together in a number of settings, e.g. to support argument mining (e.g. see [26]) as well as to aid ML, in one sense or another. Also the integration of argumentation and applications of ML have been proven to be fruitful (e.g. as in [22]). In this paper we focus on the use of argumentation to aid ML and provide an overview of this relatively young field, with an eye to guide its future developments.

Existing approaches using argumentation for ML differ in the type of ML they consider and the specific method they use. Concretely:

- the Argumentation-Based Machine Learning (ABML) approach of [32] extends the CN2 rule induction algorithm [12] for supervised learning;
- the Argument-Based Inductive Logic Programming (ABILP) approach of [4] extends Inductive Logic Programming (ILP) for supervised learning;
- the hybrid approach of [21] uses as its starting point the Fuzzy Adaptive Resonance Theory (ART) model [7] for unsupervised learning;
- the fully argumentative concept learning method of [1] focuses on the version space learning framework [27] for supervised learning;

1Corresponding Author: Oana Cocarascu, Department of Computing, Imperial College London, United Kingdom; E-mail: oana.cocarascu11@imperial.ac.uk.
• the multi-agent inductive concept learning of [34] and its computational realisation [35] have concept learning [27] for supervised learning as their starting point;
• the Argumentation Accelerated Reinforcement Learning (AARL) of [17,18,19] extends SARSA [39] for reinforcement learning;
• the Classification enhanced with Argumentation (CleAr) method of [8,9] works with any supervised learning technique, and has been experimented with, in particular, Naive Bayes classifiers [25], Support Vector Machines (SVMs) [13] and Random Forests [5].

Moreover, existing approaches differ in their use of argumentation and in their choice of argumentation framework/method. Finally, different approaches achieve different (desirable) outcomes, ranging from improving performances to rendering the ML process more transparent by improving its explanatory power.

The paper is organized as follows. In Section 2 we give an abstract re-interpretation of ML, in general and for supervised/unsupervised/reinforcement learning, to serve as a basis for a comparison amongst existing ML approaches using argumentation. In Section 3 we overview the different approaches using argumentation for ML, showing in particular how they use argumentation, and which kind thereof, to contribute to particular instantiations of the abstract model of Section 2. In Section 4 we provide a comparative analysis of the different approaches. In Section 5 we conclude, identifying in particular some challenges/open problems for an even more impactful use of argumentation in ML.

2. Machine Learning in the Abstract

In this section we give an abstract re-interpretation of ML, in general and for supervised/unsupervised/reinforcement learning, to serve as a basis for the comparison amongst different existing ML approaches using argumentation. Being tailored to providing an overview of existing approaches to ML using argumentation, this abstract interpretation has no pretence of being general or fully covering (e.g. it completely ignores the use of probabilistic information in ML).

In the abstract, a ML method can be characterised in terms of the following notions, that will be instantiated differently for the different ML methodologies (supervised/unsupervised/reinforcement learning) and for the different methods for the methodologies (e.g. CN2 for supervised learning, ART for unsupervised learning, and SARSA for reinforcement learning):

• H is the hypotheses space, namely the set of all possible “reasoners” that a ML method may return;
• \mathcal{S} is the training input, given to the ML method to trigger the learning process leading to generating a “reasoner” in H;
• X is the set of all possible descriptions of inputs for the ML method (the training input) and for the “reasoner” learnt by the ML method (the unseen input, e.g. used for testing);
• \mathcal{L} is the set of all possible outputs that “reasoners” computed by a ML method may return, given the inputs.

\footnote{Note that the training input excludes any testing input, to be deployed after learning has taken place to test the computed “reasoners”.}
2.1. Supervised learning

In this setting a “reasoner” in \(H \) is a classifier, \(\mathcal{L} \) is a set of alternative classifications, \(X \) is a set of combinations of features that inputs may exhibit, and each element of the training input includes the correct classification for a given combination of features, whereas the unseen inputs only consist of features:

- \(X \) is the feature space; for example, a feature may be an attribute/value pair;
- \(\mathcal{L} \) is the set of possible classifications; for example, if the aim of the supervised learning method is to learn a concept, then \(\mathcal{L} = \{0, 1\} \);
- \(\mathcal{S} \) is the set of training instances; a training instance is of the form \((x, l) \) for \(x \in X \) and \(l \in \mathcal{L} \); for example, if the aim of the supervised learning method is to learn a concept, then \((\{f_1, f_2\}, 1) \) indicates that the combination of features \(f_1, f_2 \) is an example of the concept, and \((\{f_1, f_3\}, 0) \) indicates that the combination of features \(f_1, f_3 \) is not;
- a generic member \(h_s \) of \(H \) can be abstractly seen as a mapping \(h_s : X \mapsto \mathcal{L} \); at an abstract level, the goal of a supervised ML method is to determine a classifier \(h_s \) such that (i) \(h_s(x) = l \) for all (or for as many as possible) \((x, l) \in \mathcal{S} \) and (ii) \(h_s \) generalises well by classifying instances not in \(\mathcal{S} \) correctly (during testing).

2.2. Unsupervised learning

In this setting, a “reasoner” in \(H \) is also a classifier, but the training instances in \(\mathcal{S} \) are given in terms of their feature combinations only, as a correct classification for them is not available; the most popular unsupervised ML methods then compute clusters an input may belong to and determine the classifier/classification of the input using the clusters: here a cluster is a collection of instances which are “similar”, while being “dissimilar” to instances in other clusters [27]. Thus:

- \(X \) is the feature space, as in supervised learning, and \(\mathcal{S} \subseteq X \); for example, inputs may be images of different fruits, and features may include pixels in these images;
- \(\mathcal{L} \) is obtained from the “learnt” clusters; for example, one cluster may group together apples and another oranges;
- a generic member \(h_u \) of \(H \) can be seen as a mapping \(h_u : X \mapsto \mathcal{L} \); abstractly, the goal of (cluster-based) unsupervised learning is to find a “good” way to assign inputs to clusters, as a basis for classification.

2.3. Reinforcement learning

In this setting, a “reasoner” is a policy, that, given inputs in the form of observations of states, returns outputs in the form of actions. Actions, during learning, are not known to be right or wrong, and thus classifications are not available. Instead, rewards are given for states reached by performing actions (these rewards are positive if the states are “desirable” and negative otherwise; negative rewards can be interpreted as punishments). Thus:

- \(\mathcal{L} \) is the set of actions that can be performed by the learner; for example, if the learner is a robot, actions may include moves in several directions;
• X is the set of all possible states; for example, a state may represent the physical environment a robot is situated in;

• S is the reward function, namely a mapping $S : X \rightarrow \mathbb{R}$; for example, a goal state, that the robot should aim at achieving, could be given a high reward;

• H is the policy space, and a generic member h_r of H is a mapping $h_r : X \rightarrow \mathcal{L}$; at an abstract level, the goal of a reinforcement learning method is to determine, with as little training as possible, a policy h_r which is optimal, namely it gets the highest possible cumulative reward.

3. Approaches to Argumentation for Machine Learning

Here we show how existing approaches use argumentation, and which form thereof, for ML, in the context of suitable instantiations of the abstract model in Section 2.

3.1. Argumentation for Supervised Learning

ABML [32]. Here arguments are associated with elements of S and are of the form:

C because $Reasons$ or C despite $Reasons$

where $C \in \mathcal{L}$ and $Reasons \subseteq X$. The first type of argument provides reasons (in terms of combinations of features) for why a certain training instance is classified as is, whereas the second type of argument indicates combinations of features that do not play a role in classifying the training instance the argument is associated with.

For example, let S represent credit applications and \mathcal{L} represent whether the credit was approved or not. Then, a training instance $(x, l) \in S$ with

$x = \{\text{PaysRegularly} = \text{no}, \text{Rich} = \text{yes}, \text{HairColor} = \text{blond}\}$

$l = \text{CreditApproved}$

may be associated with arguments

CreditApproved because Rich = yes (1)

CreditApproved despite PaysRegularly = no (2)

In ABML, arguments of these two forms are used to modify the CN2 rule induction algorithm for supervised ML so as to learn “better” hypotheses, while also reducing the size of H and providing explanations for classifications. Here, hypotheses are rules of the form IF F_1 AND ... AND F_n THEN C, for $n > 0$, $F_i \in X, C \in \mathcal{L}$.

For example, from the credit approval example above, CN2 alone may obtain the rule IF HairColor = blond THEN CreditApproved, whereas using argument (1), ABML may obtain the “better” rule IF HairColor = blond AND Rich = yes THEN CreditApproved.

ABML does not make use of any particular argumentation framework in the literature, but uses ad hoc arguments of the forms given earlier, suitable for the specific ML setting considered. Moreover, ABML does not make use of any argumentation semantics or methodology for assessing the acceptability/strength of arguments (these are taken at face value instead).

ABILP [4]. Here arguments are as in ABML but they are integrated within ILP.
Concept Learning as Argumentation (CLA) [1]. This method reinterprets concept learning in argumentation terms. Here arguments are obtained from \mathcal{S} and H and are of the form $\langle h, x, l \rangle$ for $h \in H \cup \emptyset, x \in X$ and $l \in \mathcal{L}$ such that

- if $h = \emptyset$ then $(x, l) \in \mathcal{S}$, and
- if $h \neq \emptyset$ then $h(x) = l$.

Specifically each training instance in \mathcal{S} and each hypothesis in H gives an argument. Moreover, an argument a attacks an argument b by rebutting if the two arguments give different classifications for the same features, or by undercutting if a is drawn from an example and b is drawn from a hypothesis which disagrees with the example.

This method then uses standard semantics of extensions [14] applied to abstract argumentation frameworks with arguments obtained from \mathcal{S} and H as above, and a relation of defeat between arguments such that a defeats b iff a attacks b by rebutting or undercutting and b is not preferred to a, where given a preference relation over H, standardly used in concept learning:

- arguments obtained from \mathcal{S} are stronger than arguments obtained from H;
- arguments obtained from most preferred hypotheses are stronger than arguments obtained from less preferred hypotheses.

For example, consider $X = \{x_1, x_2\}$, $\mathcal{S} = \{(x_1, c_1), (x_1, c_2)\}$, $\mathcal{L} = \{c_1, c_2, c_3, c_4\}$ and $H = \{h_1, h_2\}$ with $h_1(x_1) = c_1$, $h_1(x_2) = c_1$, $h_2(x_1) = c_2$, and $h_2(x_2) = c_1$. The corresponding abstract argumentation framework has arguments $a_1 = \emptyset, x_1, c_1$, $a_2 = \emptyset, x_1, c_2$, $a_3 = h_1, x_1, c_1$, $a_4 = h_1, x_2, c_1$, $a_5 = h_2, x_1, c_2$ and $a_6 = h_2, x_2, c_1$. Also, assuming that the two hypotheses are equally preferred, the defeat relation is such that a_1 defeats a_2, a_1 defeats a_5, a_1 defeats a_6, a_2 defeats a_1, a_2 defeats a_3 and a_2 defeats a_4. The resulting abstract argumentation framework has an empty grounded extension and two preferred/stable extensions $e_1 = \{a_1, a_3, a_4\}$ and $e_2 = \{a_2, a_5, a_6\}$, both classifying x_2 as c_1.

The grounded extension of the abstract argumentation framework corresponding to a given concept learning setting corresponds to the output of the version space method for concept learning when the latter is applicable, namely when the given \mathcal{S} is not inconsistent. Moreover, if \mathcal{S} is inconsistent (as in our earlier illustration), argumentation can still return an output, e.g. c_1 or c_2 for x_1.

Argumentation for Multi-Agent Inductive Concept Learning (MAICL) [34,35]. In this approach, $\mathcal{L} = \{0, 1\}$ and \mathcal{S} is assumed to be consistent as well as distributed amongst agents, so that each agent is only aware of some subset of \mathcal{S}. Arguments are hypotheses induced by individual agents from training instances they are aware of. These hypotheses/arguments are rules. For uniformity of presentation, we assume here that these rules/hypotheses/arguments are in the same form as the rules learnt by CN2, presented earlier.

Then an argument IF F_1 AND \ldots AND F_n THEN C attacks an argument IF F'_1 AND \ldots AND F'_m THEN C' iff $C \neq C'$ and $\{F_1, \ldots, F_n\} \supseteq \{F'_1, \ldots, F'_m\}$.

For example, let $\mathcal{S} = \{e_1, e_2, e_3\}$ represent a mammal dataset where

$e_1 = \{(\text{hair}, \text{milk}, \text{backbone}), 1\}$
$e_2 = \{(\text{toothed}, \text{backbone}, \text{two-legged}), 1\}$

Note that this set is inconsistent, as it classifies differently the same features.
\[e_3 = (\{\text{toothed}, \text{backbone}\}, 0) \]

and 1 stands for mammal, 0 stands for non-mammal. Consider two agents, \(ag_1\) and \(ag_2\), aware of \(\{e_1, e_2\}\) and \(\{e_3\}\), respectively, and let

\[
\text{IF backbone THEN 1} \\
\text{IF backbone AND toothed AND twolegged THEN 1}
\]

be the rules learnt by \(ag_1\) and

\[
\text{IF backbone AND toothed THEN 0}
\]

be the rule learnt by \(ag_2\). Then, \(ag_1\)’s second rule/argument attacks \(ag_2\)’s rule/argument.

In this approach, agents communicate arguments and attacks to construct dialectical trees as defined in [11, 38] and determine which arguments are defeated/undefeated. For example, in the earlier illustration, \(ag_2\)’s rule/argument is defeated. Here, argumentation helps building hypotheses in a distributed manner when examples are not held centrally. Also, this method is supported by a computational realisation [35].

CleAr [8,9]. In this approach, arguments and relations amongst them are drawn from a given set of templates (an Argument base) for a given testing instance that has already been classified by means of a “reasoner” (classifier) learnt by any standard supervised learning methods. The relations amongst arguments are of attack or support and thus the resulting argumentation frameworks, associated with training instances, are bipolar [10]. In addition, a base score is associated with arguments, as in QuAD frameworks [2, 36]. Arguments are either elements of \(L\) or express domain knowledge of the learning task at hand and, in this latter case, are of the form

\[\text{Premise } \Rightarrow \text{Conclusion} \]

where Premise may represent any information, including, but not limited to, combinations of elements of \(X\), and Conclusion is either an element of \(L\) or it represents a statement agreeing or disagreeing with the Premise of some other argument.

For example, consider the task of determining sentiment polarity in tweets. Then \(L = \{\text{positive}, \text{negative}\}\) and \(X\) are (syntactic or semantic) features extracted from tweets. Suppose that some existing classifier \(h\) assigns positive polarity to the tweet:

‘more depressed than you could ever imagine that I wont be going to Vegas.
I hate having to be financially responsible’

The resulting argumentation framework, for this testing instance, may include arguments positive and negative (the elements of \(L\)) as well as arguments

‘hate’ occurs in the tweet \(\Rightarrow\) negative \\
a negation (‘wont’) occurs in the tweet \(\Rightarrow\) negative

and, in addition, that the arguments attack positive and/or support negative.

In this approach, base scores for the arguments are derived from the output or the performances of \(h\) (the given classifier) or are drawn from the given Argument Base.

The dialectical strength of each classification in \(L\) is then computed using a quantitative semantics (e.g. as in [15, 2, 36]) and the classification with maximal strength is assigned as the final classification for the testing instance. In our earlier illustration, assuming that positive and negative have a base score of 0.6 and 0.4 respectively and the other two arguments above are supporters of negative and have a base score of 0.4, the computed strength may be 0.75 for negative and 0.6 for positive. Hence, the use of argumentation, in this case, would change the classification to negative. In general, in this approach, argumentation contributes a (possibly revised) classification and a justification thereof.
3.2. Argumentation for Unsupervised Learning

Argumentation for ART (A-ART) [21]. In this approach, arguments, attacks and semantics are as in DeLP [20,11,38], but instantiated so as to reason with the output of a fuzzy ART network, when this assigns a training instance to different clusters. In this case, the classification choice for the given instance by the \(h_n \) being learnt is, conventionally, that of a randomly chosen cluster. By arguing, instead, this choice can be “reasoned” upon.

As an example, consider a fuzzy ART network which identifies three clusters \(c_+^1, c_+^2, c_+^3 \in \mathcal{L} \) for an instance \(e \), such that \(c_+^1 \) subsumes \(c_+^3 \). Suppose also that, from the given DeLP program, DeLP arguments can be constructed with the following informal reading:

+ because \(e \) belongs to \(c_+^1 \)
- because \(e \) belongs to \(c_+^3 \)

with the second argument attacking the first but not vice versa, as \(c_+^1 \) subsumes \(c_+^3 \). Then, the dialectical analysis of [11,38] gives classification \(-\), drawn from membership of \(e \) in \(c_+^3 \).

3.3. Argumentation for Reinforcement Learning

AARL [17,18,19]. In this approach, arguments represent recommendations of actions to individual agents in a multi-agent system and are of the form:

\[
\text{Conclusion} \ IF \ Premise
\]

where \(\text{Conclusion} \) is an action (in \(\mathcal{L} \)) to be performed by an agent and \(\text{Premise} \) describes conditions under which the argument is applicable and may, for example, amount to properties of the state (in \(X \)) of the environment where the agent is situated. Then an argument attacks another argument iff

- the arguments support the same action but for different agents, or
- the arguments support different actions by the same agent.

For example, in a given state of the environment in which a RoboCup agent is situated, the applicable arguments may be

agent \(a_1 \) should tackle the ball IF \(a_1 \) is closest to the ball keeper
agent \(a_1 \) should mark agent \(a_2 \) IF \(a_1 \) is closest to \(a_2 \)

with the two arguments attacking one another. At each iteration of learning one such abstract argumentation framework is generated, by instantiating a set of argument templates given up-front, representing domain knowledge.

AARL then uses preferences over arguments and adapts value-based argumentation [3] to choose actions (supported by arguments in some extension, e.g. the grounded extension) and shape rewards, thus modifying the reward function \(\mathcal{R} \). For example, if tackling is more preferred than marking, for our earlier illustration, then the attack from the second to the first argument is deleted, as in value-based argumentation, and tackling gets extra reward at the current iteration of learning.
In this section we provide a comparative analysis of the different approaches we have overviewed in Section 3. First, we note that existing approaches differ considerably in their choice of argumentation framework/semantics:

- ABML and ABILP use ad hoc arguments and no argumentation framework or semantics;
- CLA and AARL instantiate abstract argumentation, with arguments equipped with preferences, and deploy standard semantics of extensions;
- MAICL uses abstract argumentation, but deploys the dialectical trees of \([11,38]\) as a semantics, rather than extensions;
- A-ART uses the DeLP argumentation framework and again the dialectical trees of \([11,38]\) as a semantics;
- CleAr uses bipolar abstract argumentation extended with base scores or, equivalently, QuAD frameworks, and quantitative semantics.

Moreover, some approaches (i.e. ABML and AARL) use argumentation during learning, some (i.e. MAICL, CleAr and A-ART) use argumentation after learning, to process the output of standard ML techniques, and some (i.e. CLA) use argumentation instead of learning, to re-interpret the learning process. Furthermore, some approaches (i.e. MAICL and AARL) are developed to coordinate agents in multi-agent systems. Finally, different approaches are used for different applications and have different advantages over standard ML techniques, ranging from improving performances to rendering the ML process more transparent by improving its explanatory power or using argumentation to better elicit domain knowledge, of benefit to the learning process, from users. In the remainder of this section we analyse how the approaches overviewed in Section 3 have been applied and evaluated as well as their advantages.

ABML \([32]\). Compared with standard CN2, ABML has the advantage of reducing the size of the hypotheses space \(H\), in that it forces the rules to be learnt to take into account the arguments associated with the examples, and thus allowing fewer rules to be legitimate hypotheses.

ABML was tested on several domains (notably law \([31]\), medicine \([40]\) and zoology \([28]\)), and was shown to improve classification accuracy across the board. For example, by including arguments, the accuracy was improved on a zoo dataset from 94.51% to 96.75% \([28]\). Also, on a dataset related to severe bacterial infections \([40]\), ABML achieved similar accuracy to CN2 and a further ML technique, C4.5 (88%), whilst Naïve Bayes (NB) and Logistic Regression performed worse (with accuracy under 86.5%). Further, using AUC (Area Under the Curve, an alternative measure to standard accuracy), ABML outperformed all other classifiers, the improvement varying between 0.03% and 0.2%. ABML was also tested on chess, improving the initial accuracy of 72% to 95% when learning the concept of bad bishop \([29]\) of 84% to 91% when learning the concept of an attack on the castled king \([30]\).

ABML was shown to be robust, in the presence of noise in the examples as well as random arguments. Indeed, ABML performed better in the presence of noise, compared to CN2, on a welfare benefit dataset \([31]\): the class of each example was randomly replaced with a value from \(\mathcal{L}\) with probability \(p\%\) (for \(p \in \{0, 2, 5, 10, 20, 40\}\)) with dis-
tribution (0.5, 0.5), and the average accuracy of ABML was better than CN2 by 0.3% at 0% noise, by 3.3% at 20% noise and by 1.7% at 40% noise. Moreover, ABML was tested in the presence of random arguments, and shown to still outperform or perform similarly to the original CN2 [32]; here, random arguments were given for \(k \) randomly selected examples \((k \in \{2, 5, 10, 20\}) \), each example could have up to five random arguments and each argument could have up to five random reasons. Thus, ABML is robust in that it is not negatively affected by “bad” domain knowledge.

ABML has been shown to support knowledge elicitation well [23,24,41] by identifying critical examples (namely instances that the learnt hypotheses, using ABML, do not classify well) and eliciting arguments for them and retraining, using ABML again.

On a medical dataset, this knowledge elicitation-enriched ABML increased the performance from 60% to 80% for CN2 [23] and, on a larger medical dataset, from 52% to 82% [24]. Knowledge elicitation was also employed during an interactive learning session using python code [41] to distinguish between classifications in \(L = \{\text{basic, advanced}\} \) programming style achieving 87.1% accuracy when using ABML compared to 86.7% manual student classification.

ABILP [4]. This approach is in the same spirit as ABML. The advantages of this approach are potentially the same as for ABML.

CLA [1]. The advantages of this approach are theoretical, rather than of an experimental nature. Indeed, CLA can handle inconsistent sets \(\mathcal{S} \) of training instances, whereas standard concept learning cannot. Thus, the method is robust. In addition, by using argumentation, CLA supports in principle the generation of explanations for classifications.

MAICL [34,35]. At a theoretical level, MAICL allows agents to agree classifications even when they hold partial information, in the form of subsets of the set \(\mathcal{S} \) of training instances. A-MAIL [35], an implementation of a generalisation of MAICL, not restricted to \(L = \{0, 1\} \), uses four datasets [33] to test experimentally whether this method can work in practice and, in particular, whether the method can cope with a large number of agents and several forms of data distribution. The experiments showed, in particular, that the use of A-MAIL can lead to a recall increase, which is higher for five agents, each having the same portion of \(\mathcal{S} \), than with two agents. In the case of more agents (10 or 20), more examples need to be exchanged by communication, as expected, but recall increases can still be observed (e.g., with 20 agents, from 0.35% to 0.88%). In the case of unbalanced distributions of training instances between two agents when \(a_{g1} \) receives only \(p\% \) of \(\mathcal{S} \) (\(p \in \{50, 30, 10, 0\} \)), using A-MAIL results in an improvement in recall for \(a_{g1} \) at the cost of arguments exchanged as \(a_{g1} \) has more information to obtain from \(a_{g2} \). Overall, the experiments show that A-MAIL can improve performances at a relatively reasonable cost in terms of number of messages being exchanged.

CleAr [8,9]. CleAr has been applied to two problems within the computational linguistic setting: cross-domain sentiment polarity classification [8,9], with \(L = \{\text{Positive, Negative}\} \), and relation-based argument mining to determine relations between pieces of text [9], with \(L = \{\text{Attack, Support, Neither}\} \). In these two settings, CleAr has been instantiated with three types of supervised ML methods (i.e. NB, Support Vector Machines (SVM) and Random Forests (RF)) with suitably defined Argument Bases. Deploying CleAr with these Argument Bases gives an increase in accuracy of up to 14% for Sentiment Polarity Classification, from 50% to 64%, and performance im-
provements varying between 0.006% and 0.022% on various datasets for relation-based argument mining, with respect to using the standard ML methods alone.

A-ART [21]. The advantages of this approach, as presented in [21], are theoretical, rather than of an experimental nature. Here, argumentation is used to resolve inconsistency amongst classifications of clusters to which an instance is assigned as well as to explain the final classification dialectically.

AARL [17,18,19]. AARL has been deployed in RoboCup, and in particular for KeepAway and TakeAway games, as well as other standard RL benchmarks. Experimentally, AARL, combined with a distance-oriented reward system, performs better overall when compared with SARSA or hand-coded strategies in terms of stability, average convergence time and average optimal performance. Moreover, this method is robust to errors in arguments.

<table>
<thead>
<tr>
<th>Method</th>
<th>ML method</th>
<th>AF</th>
<th>Semantics</th>
<th>D/A ML</th>
<th>Multi agent</th>
<th>Advantages</th>
<th>Apps.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABML</td>
<td>CN2</td>
<td>✗</td>
<td>✗</td>
<td>D</td>
<td></td>
<td>experimental (accuracy, robustness); elicitation</td>
<td>law; medicine; zoology; chess; coding</td>
</tr>
<tr>
<td>ABILP</td>
<td>ILP</td>
<td>✗</td>
<td>✗</td>
<td>D</td>
<td></td>
<td>theoretical (inconsistency tolerance); explanation</td>
<td></td>
</tr>
<tr>
<td>CLA</td>
<td>concept learning with prefs.</td>
<td>extensions</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAICL</td>
<td>concept learning</td>
<td>AA dialectical trees</td>
<td>A ✓</td>
<td></td>
<td>experimental (recall); partial info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CleAr</td>
<td>Random Forests; NB; SVM</td>
<td>Bipolar AA/QuAD quantitative</td>
<td>A</td>
<td></td>
<td>experimental (accuracy)</td>
<td>Sentiment Analysis; Argument Mining</td>
<td></td>
</tr>
<tr>
<td>A-ART</td>
<td>Fuzzy ART</td>
<td>DeLP dialectical trees</td>
<td>A</td>
<td></td>
<td>explanation; inconsistency resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AARL</td>
<td>SARSAA-ART-based AA extensions</td>
<td>D ✓</td>
<td></td>
<td>experimental (stability; convergence time; optimal performance)</td>
<td>RoboCup; Wumpus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Overview of approaches using argumentation to aid ML (D=During, A=After, Apps. = Applications).
5. Conclusion

We have surveyed existing approaches using argumentation to aid ML, focusing on the type of ML method they augment, the form of arguments and argumentation frameworks and semantics they deploy, as well as their advantages, ranging from improving performances to rendering the ML process more transparent by improving its explanatory power. Table 1 summarises our analysis.

The existing approaches show promise for further future developments and substantial potential impact in ML, to improve performances and allow the incorporation of domain knowledge by users as well as user-friendly explanations and transparency of the output of ML.

References