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Abstract

Compressed sensing takes advantage that most of the natural signals can be sparsely rep-
resented via linear transformations, therefore it is possible to have accurate reconstruction
from sub-Nyquist samplings. The properties of the measurement matrix directly affect the
relation between the sampling rate and the distortion of the reconstructions. People have
been trying to either design measurement matrices from the signal statistics, or train the
matrices from large amount of similar signals. Hence the relevant techniques they keep
developing become very hot research topics.

This thesis focuses on discussing the impact of the measurement matrices on represent-
ing and sensing sparse signals. The full text is divided into four parts (presented in Chapter
2 to 5, respectively). In Chapter 2 we focus on the dictionary update stage in dictionary
learning. Given observations of the sparse signals via an over-complete measurement ma-
trix, , dictionary learning is to find this measurement matrix, i.e., dictionary, to accurately
reconstruct the sparse signals. Usually a dictionary learning problem includes two stages
that are implemented iteratively, sparse coding and dictionary update. Sparse coding is to
fix the dictionary and update the sparse pattern of the estimated sparse signals. Dictionary
update is to fix the sparse pattern and update the dictionary. We show that the failure
of the update procedure to find a global optimum is not because of their converging to
local minima or saddle points but to singular points. Afterwards, against this singularity
issue, we revise the original objective function and propose a continuous counterpart. This
modification is applied in the SimCO dictionary update framework and can be proved that
in the limit case, the new objective function is the best possible lower semi-continuous
approximation of the original. In Chapter 3 we present a joint source separation and dic-

tionary learning algorithm to separate the noise corrupted mixed sources. The idea behind



is that for our different targeted sources, such as images and audios, have different sparse
representations. We choose the deterministic scenarios, where the number of mixtures is
not less than that of sources. The technique presented in Chapter 2 to alleviate singularity
is used in the algorithm and we use examples to show its benefit. In Chapter 4, we notice
that rely on the prior known statistics of the sparse signals, it is possible to allocate the
sensing power accordingly to achieve the best possible performance. Given the non-uniform
signal sparsity and the total power budget, we study how to optimally allocate the power
across the columns of a Gaussian random measurement matrix so as to meet the recon-
struction requirements. We revise the so called approximate message passing algorithm
and quantify the MSE performance in the asymptotic regime. The obtained closed form
of the optimal power allocation shows that in the presence of measurement noise, uniform
power allocation is not optimal for non-uniformly sparse signals. In Chapter 5 we study
distributed compressed sensing problem. We consider the scenarios where unequal number
of measurements can be assigned for each signal block, and look for the optimal measuring
rate allocation for recovering the sparse signals with common support. For simplification
we assume the signals have Bernoulli-Gaussian distribution and again use AMP for analy-
sis and obtain the exact phase transition curve in an asymptotic region. Interestingly, via
the state evolution technique it can be shown that the rate region is concave, suggesting
the corner points at the curve are optimal operating points and equal rate allocations is
strictly sub-optimal. Besides the rate allocation, we also numerically quantify how the
expected reconstruction error is affected by lack of enough measurements, the presence of

Gaussian noise and the inter correlation across the signal blocks.
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Chapter 1

Introduction of Compressed Sensing

Compressed sensing, also called as compressive sensing or compressive sampling, is an ex-
tensively developed technique not only limited in signal processing and information theory
area in the recent ten years. It is well known that Nyquist sampling rate provides a lower
bound of the sampling rate in order to completely recover a signal. This is true in the
conventional sense, however in practice a lot of applications including imaging and video
processing, sensing networks, bioengineering systems and analog to digital conversions
usually process signals with the sparse property. By “sparse” we mean a multidimensional
signal can be presented under a basis where most of the coordinate coefficients are zero.
For example, consider a smooth image which contains millions of pixels and they are all
non-zero. By transforming it to the wavelet domain, we may obtain that only thousands
of the wavelet coefficients are significantly far from zero while the rest are very close to
zero. This small fraction of “strictly” non-zero coefficients will be enough for catching most
of the information from the original image. Therefore compressing, i.e., throwing out the
close-to-zero coefficients, became a necessary procedure in order to remove these informa-
tion redundancy. Compressed sensing algorithms merge sampling and compressing into
one step. It vastly shortens the sensing time and will significantly cut down the resource
budget in various infrastructure constructions.

Fundamental linear algebra tells that it is not possible to find a unique solution if there
are more unknowns than equations. Thanks to the sparse property in large amount of
practical signals, compressed sensing is able to provide exact recovery of high-dimensional

signals by using a much smaller number of samplings, where each sample is a linear com-

12



CHAPTER 1. INTRODUCTION OF COMPRESSED SENSING 13

bination of the signals. The underlying rules is that the sparsity of the signals can indeed
decrease the necessary number of equations to find a unique sparsest solution. However
besides the brute-force searching, which has been proved not to be able to find the solu-
tion in a polynomial time, finding efficient algorithms for the sparse signal reconstruction
became hot topics. Cornerstone algorithms cross the past ten years include Basis Pursuit
(BP) algorithm (which is commonly known as the ¢;-minimisation), Orthogonal Matching
Pursuit (OMP) algorithm, Sparse Bayesian Learning (SBL) algorithm and Approximate
Message Passing (AMP) algorithm, etc.

Different type of compressed sensing reconstruction algorithm show different sensitivity
to the way of sampling. For most of the algorithms, a better sparse representation can
decrease the number of sampling in a large extent. Therefore either based on the statistics
of the signals that is know in advance to design good sampling strategy, i.e., sensing matrix
design, or adaptively train a good sensing matrix according to the obtained measurements,
i.e., dictionary learning, are the accompanying emerging research topics to finding “good”

sparse representations.

1.1 Sparse Recovery Algorithms

We say a signal & € R™ is S sparse if there are S many or fewer non-zero components in
x. In mathematical form,

kuo <5,

where S < n and |[|-||, is the £p-pseudo norm which counts the number of non-zero elements
in . Measure the sparse signal  from m many linear combination of its elements, where
m < n. Let A € R™*" he the measurement matrix and y = Ax be the measurements. In
compressed sensing we assume the sparsity S of the signal x is known a prior. We aim to

solve the fp-minimisation problem
min |||/, subjectto Az =y. (1.1)
X

One necessary sufficient condition of (1.1) existing unique solution is that the measurement

matrix A has rank larger than 25. A simple proof could be as follows. Assume x;
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and a9 are both solutions of (1.1). @] — x5 is at most 25 sparse and in contradiction
A (x1 —x2) = 0. However since fp-minimisation problem is well defined, there is no
efficient way to solve it and is computationally known as an NP-complete problem.

One popular tool in compressed sensing is the Restricted Isometry Property (RIP).
In linear algebra it characterises matrices which are nearly orthonormal, at least when
operating on sparse vectors. It is used to describe whether a measurement matrix is

suitable for compressed sensing problems.

Definition 1.1. (Restricted Isometry Property [18]) A matrix A satisfies the restricted

isometry property with constant dg if for arbitrary given signal & with sparsity .S,
2 2 2
(1—ds) =]l < [[Az[; < (1 + ds) [l=]3,

where 0 < dg < 1.

In the RIP definition, the measurement matrix A performs a way to transform the signal
x from the signal space to a smaller measurement space. By writing the RIP condition

into form

A 2
H x!Z < (1 _’_55)’
][5

(1 —55) <

we see that when dg is close to zero there is no dramatic f2-norm change of the signal
x due to the transformation and any possible transformation, i.e., consider any square
sub-matrix of A, is nearly isometric. RIP condition provides sufficient conditions for
successfully reconstruction of compressed sensing problems. Yet the disadvantage is that
generally to check weather a matrix satisfies RIP condition is an NP-compelete problem

and RIP is not a necessary condition and the usually the constant dg’s are loose.

1.1.1 /;-minimisation

One standard way to handle the compressed sensing problem is via £y-minimisation. Un-
fortunately fp-minimisation is an NP-complete problem and in general can not be solved
in polynomial time. A convex relaxation reconstruction, first proposed by Chen. et. al.
[22], namely Basis Pursuit (BP), is then considered as an efficient replacement. In BP

the non-convex £y-pseudo norm is replaced by the convex f1-norm and hence the problem
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formulation

min ||z||, subjectto Az =y. (1.2)
X

Analysed by Donoho [32| and Candes. et. al [18], this relaxation often reconstruct the
signal @ successfully and the solution is same as the one given by (1.1). Basis Pursuit
problem can be written in a linear form which can be solved efficiently via a few linear
solvers.

Further introduce additive noise to the measurement. The system model changes to
y = Ax + w, where w € R represents for the additive measurement noise. In order
to find the sparse solution of the signal via the relaxed reconstruction meanwhile try to

remove the noise, one consider
min ||z, subjectto |[Az —y|2 < e. (1.3)
X

This problem is known as as the basis pursuit denosing (BPDN). It was shown that if
the RIP condition of the measurement matrix A performs well (e.g., g + dag + I35 < 1
[18]) then the problem is solved with the robust performance. When there is no known
information about the noise, we may simply use the Lagrangian unconstrained form to get

an alternative problem formulation to for finding the sparse solution of «,
1 2
min 5 [|Az — yll; + Allz]; . (1.4)

This problem is known as the least absolute shrinkage and selection operator (LASSO)
problem. Parameter )\ is used to tune the weight between the /5 least square term and the
¢1 term, controlling sparsity level of the solution. It is noteworthy that the solution of (1.4)
is sensitive to the parameter A, hence finding optimal A is also a non-trivial task. Simul-
taneously optimising the parameter A and finding the solution of (1.4) can be completed
using the least angle regression stage wise (LARS) algorithm [38]. Approximate Message
Passing can be considered an equivalent solver of the Lasso problem and will provide the

optimised parameter A when the algorithm finally converges.
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1.1.2 Orthogonal matching pursuit (OMP)

The ¢1-minimisation algorithm can provide uniform guarantees over all sparse signals. It
also works robustly for approximately sparse signals and with the presence of Gaussian
noise. However the complexity of the optimisation procedure increases with n3, where n is
dimension of the signal, therefore may still cost relatively high. Another set of compressed
sensing algorithms are called greedy algorithms. These iterative signal support update
algorithm provides a lower computational complexity than BP, although they do not have
provable uniform guarantees or stability. Usually given the same sampling rate, they are
able to give recoverable result for sparser signals than BP.

Orthogonal matching pursuit (OMP) algorithm is one of the benchmark greedy algo-
rithms. It iteratively improves the estimate of the signal by choosing the column of a
matrix that has the most correlation with the residual. Consider model y = Ax, where
each column of A is normalised and the sparsity S of signal @ is known. OMP starts the

0 = 0 and set the residual as r° = y. The support set of

estimate of the signal from x
the initial estimate is therefore ZO = @. At each iteration ¢, one chooses a column of A
according to

7= argmax |<T't, A:,i>‘ s
2

and add it to the support set Z! = Z!=1U{i}. Then one finds the estimate and the residual
at iteration ¢ via

:Bt = AiIt Yy,

rt =y — Az’
The iterations keep going until S many columns of A are selected into the support set.

Proposition 1.2. (Theorem 3.1 in [28]) Suppose measurement matriz A satisfies the RIP

condition of order S + 1 with the isometry constant dg11 < Then VY € R"™ with

_1
35"

sparsity s < S, OMP will recover x exactly from system y = Ax in S many iterations.

Proposition 1.2 provides a loose sufficient bound for the measurement matrix for exact

recovery. It is weaker than the sufficient condition for ¢;-minimisation.
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1.1.3 Subspace pursuit (SP)

Subspace pursuit [24], as another famous greedy algorithm, has the similar idea as the
OMP and have the same order of the computational complexity. The main difference
is that instead of moving one column to the support set at each iteration, SP update
the support set by simultaneously adding and removing columns. More precisely, in the
initialisation, SP uses the S many columns of A that provides the largest residual, and
name the support set as Z. Then at each iteration ¢, SP evaluates the residual, ATrt~1,
then finds the indices corresponding to the S largest amplitudes and then stores them into a
set J. Then the support set of the signal estimate is updated by taking the union Z=1U J
and leave S many indices corresponding to the S largest amplitudes. The iterations keep
going until converge or a stop criteria is met. Another algorithm came up later than SP,
called CoSaMP [76] have a similar idea of adding and removing indices from the support
set. The major difference are the scaling up and down on the support set volume during

each iteration update.

Proposition 1.3. (Theorem 9 in [24]) Let € € R™ be such that |x||, < T, and let its
corresponding measurement be y = Ax + w, where w denotes the noise vector. Suppose
the sampling matriz A satisfies RIP of order 35 with the isometry constant d3g < 0.083.

Then the reconstruction error of the SP algorithm satisfies:

& — &[], < O]y,

1+d35+034

where C' =

1.1.4 Approximate Message Passing (AMP)

Approximate message passing (AMP) proposed in [6], constructing and solving artificial
denoising problems at each iteration, is a compressive sensing algorithm which has nice

properties which statistically improve the convergence rate. Generally two key steps at
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each iteration, signal denosing and resudial update, are included in AMP,

't =q (2! + ATrt; '),
1
rt = y— Azt + Rn'rt_l,

where 1 represents the denoiser and o' = dn/d (mt + ATrt). In iteration a term called

1'is added on the residual. It enables us to predict accurate

Onsager term, i.e., =n'r'~
theoretical performance in the asymptotic regime, which some traditional criteria such as
RIP cannot provide. In the latter part of our thesis, the techniques related to AMP will

be thoroughly discussed and extended to compressed sensing structured sparse signals.

1.2 Applications

The theory of compressed sensing is booming and meanwhile penetrating into more and
more applications. Advanced developed applications include compressive imaging, image
impainting, biology, MRI imaging, radar signal processing, communications, error cor-
recting and seismology, to name a few. In the following we briefly introduce several well

researched applications.

1.2.1 Compressed Sensing in Image Processing

The most prevailing application of compressed sensing is for image processing. Images
from various sources are usually sparse over some basis therefore can be compressed using
compressed sensing techniques. Take digital cameras as an example, when a megapixel
picture is taken, each pixel of the picture is captured by one sensor. Therefore each digital
camera needs millions of sensors. And most of the time due to the storage limitation the
pictures are compressed before being stored. During this procedure there is an obvious
waste to throw a large percentage of captured pixels.Compressed sensing techniques devel-
oped novel strategies by sensing linear combination of the megapixels in order to complete
the pixel capture and compression at the same time. In this way much fewer sensors are
needed and there would be a much more efficient pixel collection. Based on this idea a

variety of measurement methods and the corresponding decoding methods have been de-
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veloped to meet different purposes. Not just staying in theory, actual hardware devices
have been developed. Rice university successfully built the first prototype of “single-pixel”
camera in 2006 [108]. This camera consists of a digital micro-mirror device, two lenses,
a single photon detector and an analog-to-digital converter. The principle of the device
is to use the lens and the digital micro-mirrors to generate inner products with random
vectors. Then the photon detector looks after computing the measurement of the light
that collected by the lens. Finally optical computer computes the linear measurements of
the image and another digital computer will be in charge of reconstructing the image from
the computation results. This “single-pixel” camera showed very impressive results. And if
considering its potential extension to milti-pixels cases, the image quality will most likely
outperform the traditional digital cameras.

Another compressive imaging area of people’s particular interest is in magnetic reso-
nance imaging (MRI). MRI images can be sparsely represented in Fourier domain thus
compressed sensing can be used for reducing the scanning time. This is an attractive rea-
son to apply compressed sensing to MRI imaging since as taking an MRI image of a tissue,
organ or joint is taken, a person should stay still in the machine for a long time. This is
a difficult task or even not possible for children and people who are in pain. By using the
compressed sensing technique, the number of the samples can usually maintain in a low
fraction compared to traditional MRI while keep the image quality therefore significantly
decreased the scanning time. In addition, new result [2| shows that by carefully designing
the measurement matrix, the number of samples taken to successfully recovering the MRI
images can be further reduced. For more information about MRI compressed imaging

please referred to [2] and the reference therein.

1.2.2 Sparse Signal Representation

Sparse representation received a lot discussion in signal processing. Image impainting is
an typical example. Some of the early artworks, for example, the printing restored at the
Renaissance, were damaged with scratches due to being improperly preserved. Cracks in
photographs and dust spots in films are common phenomena. Also we may add or remove
elements from pictures (e.g., removal of stamps on postcards or red-eyes on photos). These

issues can be fixed by image impainting algorithms. Again because of the sparsity of image
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in certain basis, the corrupted area on images can be manually selected out and filled-in
using the compressed sensing technique. Elad, et. al. proposed algorithms in [69] and
showed an example to successfully remove the red texts of a given photo. For more relative
detailed please refer in [39, 69].

Blind source separation (BSS) is the second example. It has been investigated during
the past two decades in a wide range of application fields such as speech and image sepa-
ration. One motivation for BSS in early studies is to filter the voices when there are a few
people talking at the same time. A few microphones are fixed in different positions, each
can only record a different linear combination of the voices. The first few studies focus on
the instantaneous and (over-)determined BSS problem. The problem is addressed under
the framework of independent component analysis (ICA) [58], assuming that the sources
are statistically independent. This has led to some well-known approaches, such as Infomax
[9], maximum likelihood estimation [43], the maximum a posterior (MAP) [10], and Fas-
tICA [58]. Convoluted and/or underdetermined BSS problems have also been extensively
studied especially in the speech processing applications, where the sensor measurements
are usually modeled as convoluted (often underdetermined) mixtures of the original sources
due to the presence of room reverberations (and often more sources than sensors).

While blind source separation decompose signals in high dimensions, for the underde-
termined mixtures, prior knowledge is required to succeed in the separation. One of the
most common prior knowledge would be the sparsity of the signals. The first step in that
direction is taken by Thomas Blumensath and Mike Davies [11]. They pointed out several
similarities between compressed sensing and source separation. By assuming the mixing
system is known, they extended some of the results in compressed sensing to more gen-
eral overcomplete sparse representations and studied the sensitivity of errors in the mixing
system. Later in work [16, 14, 15, 1] the mixing system is assumed to be unknown and al-
gorithms are design to both separate the source and reconstruct each of the corresponding

signals.

1.2.3 Radar Signal Processing

Traditional radar systems use matched filter and high rate analog to digital converter for

pulse signal processing. In order to successfully demodulate the signals, very high pulse
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transmitting frequency are often restricted to avoid overlaps. This results in the accuracy
limitation. In addition the conventional approaches of radar processing is complicated
and costly. Compressive radar imaging lattices the time-frequency plane where each grid
becomes an element in a signal vector. When there are a small number of targets in the
scanning area, the receiving time-frequency signal vector can be treated sparse. Therefore
compressed sensing algorithms can be used for sensing and reconstructing the target lo-
cations [55|. Besides time-frequency, space-frequency and time-space compressive sensing

algorithms are also the hot research topics in radar imaging.

1.2.4 Bio-informatics

Compressed sensing can also be applied to biology to develop effective and low cost ge-
netic sensing algorithms. For example, accurate identification on large number of genetic
sequences usually require DNA microarrays for detection and classification [27]. In tra-
ditional DNA microarray designs, each genetic sensor can only match up one DNA base
sequence with one particular organism in the target set. However there are always more
than one organism that share very similar DNA base sequences. When this hybridization
occurs, detection errors will happen due to the wrong classifications. At the same time
the accuracy of classification and the unique identification design constraint the number of
organisms being detected as well, because in this design the length of the DNA sequence
and the number of targets are in direct proportion to the implementation time. For the
bio-sensing experiments that large number of organisms needs to be identified, the time
consumption could be very high. For another example, metagenomic research compares
thousands of environmental and health-related samples by extracting and sequencing the
rRNA amplifications and measuring their similarity under certain metrics. One of the
important steps is to classify the operational taxonomic units within the sample. Methods
to achieve this task requires hundreds of thousands of reads of the taxonomic assignments,
which is a computationally costly work [64].

In the laboratory experiments, consider using DNA microarray to find biological agents
in air or liquid samples that occupied by hostile adversaries. Among a large number of
agents only very small amount will be used and present a significant concentration of the

hostile adversaries at a given time and location. And furthermore, there may be only a
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little fraction of the harmful agents are of our particular interest. This makes our targets
very sparse compared to the whole samples. Mathematically, one can represent the DNA
concentration of each organism as an element in a detected vector. As is mentioned, this
vector is approximately sparse, which contains only a few significant entries. Compressive
DNA microarrays are therefore naturally employed to detect the locations of the targets

and can even determine their concentrations as well.

1.3 Measurement Design for Compressed Sensing

Standard compressed sensing theories have been thoroughly studied in the past few years.
In these theories, sparse signals, incoherence and uniform random subsampling are usually
three fundamental concepts. In many applications, e.g. Magnetic Resonance Imaging, the
sampling scheme is fixed therefore the measurement matrix is coherent; distributed sensor
networks, the signals is structured sparse or approximate sparse. In these scenarios one
or more than one of the three conditions are not satisfied, therefore leaves a performance
gap to the theoretical results. For those cases with physical constraint so that standard
compressed sensing technique does not reach ideal performance. Therefore we need bespoke
sampling strategies.

When many signals of the same type are available, a feasible idea is to adaptively
learn the measurement matrix to best fit them. This research is called dictionary learn-
ing. Learned dictionary contains the characteristic information of the training signals,
hence it shows strong robustness to sample and reconstruct other signals of the same type.
Dictionary learning process is usually time consuming and requires large amount of compu-
tational cost. The success of dictionary learning algorithm highly depends on the number
of the signals, and very low successful rate is usually unavoidable when the signal quantity
is gravely insufficient. Increasing the successful rate in low demand of signals is one of the
major targets of the dictionary learning research.

Taking another track, the problems can be unfolded from Bayesian formulation. That
is, the measurement matrices can be designed in advance with the prior information of the
signals. At the same time where Bayesian framework counts more information into solving

the compressed sensing problem, it provides possibility to quantify the perspective sampling
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and points out ways to adjust measurement matrices. For structured sparse signals, e.g.,
non-uniform sparse signals, one can allocate the sampling resource according to sparse level
of change along the signals. In scenarios where distributed compressed sensing technique
is applied, joint inter-signal distribution can help suggesting the adjustment of sampling
rates on different signals.

Papers have given designed sampling algorithms and derivation of the performance
for structured sparse signals. Most popular structured signals that were studied are non-
uniformly sparse signals, including block sparse signals and hierarchical block sparse sig-
nals. Instead of considering a high dimensional signal as a whole, a block sparse signal is
separated into a few sub-signals, where each sub-signal is treated as sparse with a given
uniform sparsity. Similarly, hierarchical block sparse signal treats each of its sub-signal
as a block sparse signal. Another key concerned signal is called group sparse signal. A
high dimensional signal is cut into many small pieces with even lengths, where each piece
is treated as one singleton, and the sparsity acts on the singletons rather than the signal
elements. According to the given sparsity information, multilevel sampling strategies can
be used for the sampling. If a large number of signals are available, one may use dictio-
nary learning algorithms to adaptively design the measurement scheme so as to achieve
better reconstruction performance than random measurements under the same sampling
rates [41, 3, 25]. In [2], Adcock, et. al. presented three new concepts: asymptotic sparsity,
asymptotic incoherence and multilevel random subsampling to replace the three traditional
compressed sensing concepts. Based on the new theory, a more universalised framework
is given, hence analysis of the measurement design problems right outside the standard

compressed sensing theory margins become available.

1.4 Outline and Contributions

In the following we summarise the content and contributions for each chapter.
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Chapter 2: Singularity issue in dictionary update and smoothed SimCO

algorithm

Typical dictionary learning algorithms iteratively perform two stages: sparse coding and
dictionary update. In this chapter we focus on the latter stage. We formulate dictionary
update as an optimisation problem on a manifold, and particularly study one possible
reason for the optimization procedures not always converging to a global optimum. An in-
teresting result shown in our analysis is that the failure is not because of their converging to
local minima or saddle points but to singular points, where the objective function is discon-
tinuous. We further give an instructive example, studying on three mainstream dictionary
update procedures, to support the above statement. Afterwords, against the singularity
issue, we revise the original objective function and propose a continuous counterpart. This
modification is applied in the SimCO dictionary update framework and hence we name
it Smoothed SimCO. It can be proved that in the limit case, the new objective function
is the best possible lower semi-continuous approximation of the original. In terms of line
search implementations, we derived a correspondent Newton CG method. Simulations
demonstrate the proposed method significantly outperforms the benchmark algorithms.

The chapter is based on work from the following publications:

e X. Zhao, G.Zhou and W. Dai, “Smoothed SimCO for Dictionary Learning: Handling
the Singularity Issue”, in Proc. IEEE International Conference on Acoustics, Speech

and Signal Processing, 2013.

e X. Zhao, G. Zhou, W. Wang and W. Dai, “Weighted SimCO: A Novel Algorithm for

Dictionary Update”, in Proc. Sensor Signal Processing for Defense, 2012.

Chapter 3: Blind source separation based on dictionary learning

This chapter surveys recent works in applying sparse signal processing techniques, in par-
ticular dictionary learning algorithms to solve the blind source separation problem. For
the proof of concepts, the focus is the scenario where the number of mixtures is not less
than that of sources. Based on the assumption that the sources are sparsely represented by
some dictionaries, we present a joint source separation and dictionary learning algorithm

(SparseBSS) to separate the noise corrupted mixed sources with very little extra informa-
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tion. We also discuss the singularity issue in the dictionary learning process which is one
major reason for algorithm failure. Finally two approaches are presented to address the
singularity issue.

The chapter is based on work from the following publications:

e X. Zhao, T. Xu, G.Zhou, W. Dai and W. Wang, “Joint Image Separation and Dictio-
nary Learning”, in Proc. 18th International Conference on Digital Signal Processing,

2013.

e X. Zhao, G. Zhou, W. Wang and W. Dai, “Blind Source Separation Based on Dictio-
nary Learning: A Singularity Aware Approach” in Advances in Modern Blind Source

Separation Techniques: Theory and Applications, Springer, 2014.

Chapter 4: Power allocation in compressed sensing of non-uniformly

sparse signals

In this chapter we study the problem of power allocation in compressed sensing when
different components in the unknown sparse signal have different probability to be non-zero.
Given the prior information of the non-uniform sparsity and the total power budget, we are
interested in how to optimally allocate the power across the columns of a Gaussian random
measurenient matrix so as to obtain various reconstruction goals, e.g, minimise the total
mean squared reconstruction error. Based on the state evolution technique originated from
the work by Donoho, Maleki, and Montanari, we revise the so called approximate message
passing (AMP) algorithm for the reconstruction and quantify the MSE performance in
the asymptotic regime. Then the closed form of the optimal power allocation is obtained.
The results show that in the presence of measurement noise, uniform power allocation,
which results in the commonly used Gaussian random matrix with i.i.d. entries, is not
optimal for non-uniformly sparse signals. Empirical results are presented to demonstrate
the performance gain.

The chapter is based on work from the following publications:

e X. Zhao and W. Dai, “Power Allocation in Compressed Sensing of Non-uniformly
Sparse Signals”, in Proc. IEEE International Symposium of Information Theory |,

2014.
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e X. Zhao and W. Dai, “Compressed sensing non-uniformly sparse signals: An asymp-
totically optimal power allocation”, in UCL-Duke Workshop on Sensing and Analysis
of High-Dimensional Data, 2014.

Chapter 5: Joint approximate message passing for distributed compressed

sensing

In this chapter, we study a novel joint sparse signal reconstruction approach for block
sparse signals under the scenarios where unequal numbers of measurements are obtained
for different signal blocks. This research can also be viewed as an extension of distributed
compressed sensing (DCS) and carries more possibility in practically integrating techniques
of saving measuring cost and improving reconstruction results. We consider Bernoulli-
Gaussian signals and develop a group sparse signal reconstruction algorithm. The algo-
rithm is based on approximate message passing (AMP), thus termed as joint-AMP. We use
the state evolution technique to give analysis under asymptotic situation and show that,
by fixing a total sensing resource, measurements equally assigned to each signal block is
not an optimal strategy. Based on the phase transition analysis, we also give the estimated
reconstruction error when lack of enough measurements as well as in the presence of Gaus-
sian noise. In addition we introduce covariance among non-zeros part of the signal blocks
to study the measurement amount change that affected by the dependence between signal
blocks.

The chapter is based on work from the following publications:

e X. Zhao and W. Dai, “On Joint Recovery of Sparse Signals with Common Supports”,

in Proc. IEEE International Symposium of Information Theory , 2015.
e X.Zhao and W. Dai, “Joint Reconstruction for Distributed Compressed Sensing with

Common Support Signals”, in iCore Inaugural Workshop, 2015.

Chapter 6: Conclusions and Future work

Finally, we conclude the thesis by summarizing the main idea and elaborate on possible

future work.
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Contributions Outside the Scope of this Thesis

The author of this thesis has also contributed to some other compressed sensing related
works which are not included in this thesis. These contributions can be found in the

following publications.

e G. Zhou, X. Zhao and W. Dai, “Low Rank Matrix Completion: A Smoothed LO-

search”, Allerton Conference, 2012.

e X. Zhao, T. Lu and W. Dai, “Compressive Sensing Reconstruction Techniques with

Magnitude Prior Information”, in Proc. Sensor Signal Processing for Defense, 2011.

1.5 Notation and Abbreviations

We list notations and abbreviations that are frequently used throughout the thesis.

1.5.1 Notation

x column vector

A matrix

AT matrix transpose

Af Moore-Oenrose pseudioinverse of matrix A
I identity matrix

X.; it" column of matrix X

D; in Chapter 2: Dgy,p(x. )

A; in Chapter 5: a sub-matrix in diagonal matrix A, where A = diag (A1, Ag, ..., Ag)
t tth iteration of update on vector = in an algorithm

1,J the signal support set

f (D) scalar function of matrix D

px () probability of x

P(A) probability of event A

N (,u, 02) Gaussian distribution with mean p and variance o2

U (a,b) uniform distribution in intervial [a, ]

Amin (D) minimum singular value of matrix D
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xrT subvector of & with the element indices chosen from set 7
Ar submatrix of A with the element columns chosen from set 7
IEZIR the fo-norm

x|l the ¢1-norm

llz|lo the fyp-pseudo norm

| Al 7 the Frobenius norm of matrix A

tr (A, B) trace of matrix A and B
supp (x) the support set of x

| the end of proof

0 zero vector

V£ (+) derivative of function f(-)

Vo f (+) derivative of function f (-) along direction n

° dot product of two matrices

® Kronecker product of two matrices

[a, b] closed real value interval between a and b
(a,b) open real value interval between a and b
[m] integer set {1,2,3,...,m}

sup f (+) supremum of function f ()

inf f (- infimum of function f (-)

1.5.2 Abbreviations

AMP approximate message passing
AWGN additive white Gaussian noise
BMMCA blind multichannel morphological component analysis
BP basis pursuit
BSS blind source separation
CG conjugate gradient
CS compressed sensing
DCS distributed compressed sensing
ICA independent component analysis

IST iterative soft thresholding
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JSM joint sparsity model

LASSO least absolute shrinkage and selection operator
MCA morphological component analysis

MMCA multichannel morphological component analysis
MMSE minimum mean squared error

MMV multiple measurement vectors

MOD method of optimal directions
MSE mean squared error

OMP orthogonal matching pursuit
PT phase transition

RIP restricted isometry property

SE state evolution

SCA sparse component analysis

SimCO simultaneous codeword optimization
SP subspace pursuit

SVD singular value decomposition

29



Chapter 2

Singularity Issue in Dictionary

Update and the Smoothed S1mCO

Algorithm

2.1 Introduction

Sparse signal representation is a technique to approximate signals by only a small amount
of chosen columns from an over-complete dictionary. It has been received wide interest in
many research fields including signal processing, information theory, machine learning, etc.
To increase the reconstruction performance, large number of great works touching upon
source separation, signal denoising, coding, classification and inpainting have been done in
the past two decades.

All these achievements mainly focus on solving two problems. The first problem is called
sparse coding. For a given dictionary, where each of its column represents a codeword, one
wants to find a set of good sparse coefficients which linearly combine dictionary codewords
to approach the given training signals. ¢; minimization or greedy algorithms such as
basis pursuit (BP) [22], matching pursuit (MP) [71], orthogonal matching pursuit (OMP)
[101, 81], regression shrinkage and selection (LASSO) [100], focal under determined system
solver (FOCUSS) [46], subspace pursuit (SP) [24]| and approximate message passing (AMP)

[30] are to solve this sparse coding problem with different constraints. All these algorithms

30
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shall work based on good constructed dictionaries. However problems like blind source
separation and device calibration usually do not provide knowledge about the dictionary,
thus for this type of problems the algorithms mentioned above become invalid. This obliged
us to study the second problem: How do we determine the dictionary when it is partly or
entirely not given?

In early approaches the dictionaries are generated from typical mathematical trans-
forms, e.g., discrete Fourier transform (DCT), wavelets [89], curvelets [19], etc. Such
predefined transforms are not targeted to particular training samples, thus do not always
provide enough accurate reconstructions. The objective of dictionary learning is to find an
over-complete dictionary to accurately reconstruct the training signals. Mainstream dic-
tionary learning algorithms include two stages: sparse coding stage and dictionary update
stage. The two stages are respectively responsible for updating the sparse coefficient and
the dictionary but for some algorithms the division of work between the two stages is not
that clear. In sparse coding stage the dictionary is fixed and the sparse coefficients are up-
dated by ¢; minimization and greedy approaches such as BP, OMP, SP, etc. In dictionary
update stage, the dictionary is trained referring to the sparse coefficient obtained form the
previous stage. The two-stage procedure are iterated until the convergence condition is
met.

One of the earliest dictionary update scheme appeared in the method of optimal di-
rections (MOD) [41] proposed by Engan et al. The main idea is as follows: iteratively
implement sparse coding and dictionary update stage. In sparse coding stage, one fixes
the dictionary and uses OMP or FOCUSS to update the sparse coefficients. Then in dic-
tionary update stage, one fixes the obtained sparse coefficients and updates the dictionary.
MOD was further modified to iterative least squares algorithm (ILS-DLA) [42] and recur-
sive least squares algorithm (RLS-DLA) [91]. K-SVD algorithm [3], developed by Aharon
et al., is another dictionary learning approach which can be viewed as a generalization of
the K-means algorithm. In each iteration, the sparse coding stage does the same work
as in MOD algorithm. Then in dictionary update stage, one fixes the sparsity pattern,
and updates the dictionary and the nonzero coefficients simultaneously. In particular, the
codewords in the dictionary are sequentially selected: the selected codeword and the corre-

sponding row of the sparse coefficients are updated simultaneously by using singular value
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decomposition (SVD). More recently, Dai et al. [25] considered the dictionary learning
problem from a new perspective. They formulated dictionary learning as an optimization
problem on manifolds and developed simultaneous codeword optimization (SimCO) algo-
rithm. In each iteration SimCO allows multiple codewords of the dictionary to be updated
with corresponding rows of the sparse coefficients jointly. This new algorithm can be viewed
as a generalization of both MOD and K-SVD. Some other dictionary learning algorithms
are also developed in the past decade targeting on various circumstances [78, 67, 66, 68|.
For example, based on stochastic approximations, Mairal, et al. [68] proposed an online
algorithm to address the problem with large data sets. This algorithm assumes that all the
signals has the same statistical distribution. Each time one of the signals is introduced to
refine the dictionary which obtained in the previous iteration. The whole update procedure
is repeated until a stopping criterion is met (usually the dictionary converges).

Theoretical or in-depth analysis about the dictionary learning problem was meantime
in progress as well. Gribonval et al. [48], Geng et al. [44]| and Jenatton et al. [60] studied
the stability and robustness of the objective function under different probabilistic modeling
assumptions, respectively. In addition, one observation in [25] is that the dictionary update
procedure may fail to converge to a minimizer. This is a common phenomenon happens
in MOD, K-SVD and SimCO. Dai, et al. further observed that ill-conditioned dictionary
is probably the reason leading to the failure. To address this issue, Regularized SimCO
is proposed in [25]. The main idea is to add an ls norm of the sparse coefficients as a
penalty term to the original objective function in dictionary update stage. This regularized
technique is also applicable to other dictionary update procedures such as MOD. It is
verified that the technique effectively mitigates the occurrence of ill-conditioned dictionary.
The same approach was also considered in [114], however the discussion on the singularity
issue was not detailed.

In this chapter, we will make further discussion on the dictionary update stage. We
focus on the scenario that ill-conditioned dictionary occurs, and point out that singularity,
rather than stationary points, is the major reason leading to the failure of dictionary
learning algorithms. To avoid the singularity issues, we propose smoothing techniques on
SimCO, termed Smoothed Sim(CO. Some theoretical derivations and proofs will be shown

in this chapter to support the rationality and validity of this new algorithm. The major
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contributions of this chapter are:

e An explicit example is provided to show that the benchmark algorithms fail to find a
global minimum. Instead, theoretical derivations are made to show they all converge

to ill-conditioned dictionaries.

e A continuous objective function is proposed to replace the original one. The new

objective function results in significant improvement according to the numerical tests.

e We prove that the proposed objective function, in the limit, is the best possible
lower semi-continuous approximation of the original one. The lower semi-continuity
guarantees that the solution set is closed, which is required for a convergence of any
optimization procedure. By contrast, the regularized objective function proposed in

[25] does not have this property.

e A Newton CG method is designed to minimize the proposed objective function.
It turns out that the corresponding computations are highly non-trivial. In this
chapter, a second order implementing (the Newton CG method) for the Smoothed
SimCO are derived. Numerical tests verify that our implementation achieves a good

balance between convergence rate and computational complexity.

The remainder of this chapter is organized into six sections. In Section 2.2 we formulate
the dictionary learning problem in the SimCO framework. In Section 2.3 we elaborate the
singularity issue in dictionary learning. Moreover an explicit example is designed to show
that mainstream algorithms including MOD, K-SVD and (Regularized) SimCO may fail.
We propose the Smoothed SimCO algorithm in Section 2.4. In Section 2.5 a Newton CG
implementation of the proposed algorithm is derived. Numerical examples and comparisons

are given in section 2.6.

2.2 Dictionary Learning and the Framework of SimCO

In the dictionary learning problem, the goal is to find a dictionary D € R™*¢ and a sparse
coefficient matrix X € R¥™ to best represent the training samples Y € R™*". Each

column of D represents for a codeword of the dictionary and each column of Y represents
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a training sample. In practical applications the dictionary D is generally over-complete
(m < d). This results in non-unique solutions of X unless certain constraints are posed.
One widely used constraint is that X is sparse, i.e., most entries in X are zero. Following

this constraint, the dictionary learning problem can be casted as

inf |Y —DX|%+ (X 2.1
Inf | 7+ 11X (2.1)
where || - ||% denotes the Frobenius norm and || - ||o denotes the £y pseudo-norm, which

counts the number of non-zero elements.

Dictionary learning algorithms normally include two stages: sparse coding and dictio-
nary update. In the sparse coding stage, one fixes the dictionary D and finds the sparse
coefficients X. That is,

inf Y~ DX} + Xl (2:2)

As the ¢y pseudo-norm is non-convex, this optimization problem is difficult to solve [18]. In
practice, one can either replace the term || X ||, with || X[|; (/inorm) and turn (2.2) into a
convex optimization problem, or employ greedy algorithms including THT [12], OMP [81],
SP [24], etc.

The goal of the dictionary update stage is to update the dictionary. Mathematically,
this can be formulated using the SimCO framework [25] as follows. Let supp (X) denote
the sparsity pattern which is the index set of nonzero elements in X, i.e., supp (X) =
{(i,7) : X;; #0}. Define X as the set of coefficient matrices having sparse support
supp (X):

X = {X eRPM: X, =0,V (i,j) ¢ supp (X)} . (2.3)

Assume that columns of the dictionary are of unit f5-norm and hence the space of the

dictionaries is given by
D= {D eR™: D, =1,Vic [d]} , (2.4)

where [d] = {1,2,...,d}. Then the dictionary update stage is to solve the optimization
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problem

jof f(D)= inf inf ¥ - DXk (2.5)

/(D)
Different approaches to solve (2.5) include the MOD [41]|, K-SVD 3], and SimCO [25]
algorithms. Tt is also noteworthy that the constraint (2.4) is important (see [25] for detailed
discussions).
For the later analysis, it is convenient to write the objective function f (D) as a sum
of atomic functions. Let X.; and Y.; be the it" column of X and Y respectively. Let
supp (X ;) be the index set of non-zero elements in X. ;, i.e., supp (X.;) = {k: Xy, # 0}.

B

Define D; = D as the sub-matrix of D containing the columns indexed by

supp(X. ;)
supp (X. ;). Then it holds that

_— 1 PR— o 2
FD)=3  inf ¥ DX,

BN

i
2
= Z inf HY,Z — DiXsupp(X; z‘)ﬂ' . (26)
— X , w02
i supp(X:’i),z
fi(D) or fi(D;)
Since each atomic function involves a simple least squares problem, the optimal X,pp(x, ;)i

has a closed-form formula given by

X:upp(X;,,j),i = DzTYJ?

where the superscript 1 denotes the pseudo-inverse.

2.2.1 Regularized SimCO

The main idea of Regularized SimCO lies in the use of an additive penalty term to avoid

singularity. An ls norm of the sparse coefficients to the original objective function in
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dictionary update stage. Consider the objective function in (2.5),

D) - in [|[DX - Y|+ p|X|>
fu ( min | I+ X1
2
Y D
= min - X\ . (2.7)
Xex 0 il

F

As long as u # 0 T(,u > 0 in our case), the block uI guarantees the full column rank of
D = [ DT ur1 } . Therefore, with the modified objective function f, (D), there is no
singular point so that gradient descent methods will only converge to stationary points.
This regularization technique is also applicable to MOD [25]. Tt is verified that this
technique effectively mitigates the occurrence of ill-conditioned dictionary although at the
same time some stationary points might be generated. To alleviate this problem, one can
decrease gradually the regularization parameter p during the optimization process [25]. In
the end p will decrease to zero. Nevertheless, it is still not guaranteed to converge to a
global minimum. The explicit example constructed in the next subsection shows a failure

of the Regularized SimCO. As a result, another method to address the singularity issue is

introduced below.

2.3 The Singularity Issue in Benchmark Algorithms

According to our simulations (see Section 2.6 for more details), it has been observed that the
failures of benchmark dictionary update algorithms are mainly due to singular points in the
objective function rather than stationary points. In this section, an explicit example will
be constructed to rigorously show how singularity affects the convergence of the dictionary
update.

To start, we first formally define the singular dictionaries.

Assumption. Fix a sparsity support of X . Assume that ||supp (X.;)||, <m, 1 <i<n,

lo

i.e., all the sub-dictionary D;’s are tall matrices.

Definition 2.1. Given the above Assumption, a dictionary D € R™*? contains singular
sub-dictionaries under supp (X) if there exists an ¢ € [n] such that the corresponding

sub-dictionary Dg,pp(x. ;) is column rank deficient, or equivalently, the minimum singular

L)
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HY3

value of Dy, (x. ), denoted as Amin (Dsupp(X:,i)>v is zero.
This definition is motivated by the following facts.
Proposition 2.2. Given the above Assumption,
1. f(D) is continuous for all D’s that are not singular.

2. Suppose that D is singular, i.e., 3i such that rank (D;) < ||supp (X.;)||,- If among

all these is, there exists one i such that Y. ; ¢ span (D;), then f (D) is discontinuous.

The proof is given in Appendix A.1.

Now comes the explicit example. This example is designed in such a way that MOD,
K-SVD, SimCO and regularized SimCO will converge to a singular point rather than the
global minimum. Though this “hand-made” example may look artificial, the corresponding
analysis is applicable to the general case.

In this example, the training sample matrix Y is obtained from Y = D*X* (there
is no noise) where D* € D and the sparsity patter  of X* is given. To simplify the
notations, denote §2 by a binary matrix €2 where () means that the corresponding entry in

X* is zero and one implies otherwise. In particular,

1 0 07 0
100 1

01 07 0
Y = Q=101 0 1

00 —01 1
0011

00 —01 1

Due to the particular structure of this problem, the optimal D* and X* can be obtained

by using the first three columns of Y and €:

10 07
100 7
01 07
D* = , X*=|lo10 7 |- (2.8)
00 —01
001 —10
00 —0.1

To analyze the behavior of benchmark algorithms [41, 3, 25|, we formulate the dictio-

nary update problem in terms of the optimization problem stated in (2.5). To simplify the
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analysis, we enforce further structures in the dictionary D. Denote the " codeword of

dictionary D by d;. Motivated from the D* given in (2.8), we assume that

D(e) = | dy, do, dg(g)], (2.9)

T
where d; = [1, 0, 0, O]T, dy = [0, 1,0, O]T, and d3 (¢) = % [\/l — €2, V1 — €2, ¢, e]
where € € [—1, 1]. In this way, the dictionary is parametrized by only one parameter € and

the optimization problem is therefore

inf f(D) = inf —inf inf |Y — DX|?>%. 2.10
gépf() in f(€) in xé?((m” % (2.10)

It is clear that the global optimum €* = —0.1y/2 and that the dictionary D () is column
rank deficient when e = 0.

With the above simplification, the analysis of benchmark algorithms is reduced to
analyzing the convergence of a single parameter €. To that end, we denote the initial value
of € by €. For iterative algorithms, let ¢, denote the value of € at the end of the k"
iteration. In the rest, we shall show that e, converges to zero, the singular dictionary,
rather than the global optimum €* = —0.1y/2. The proof sketch is provided below while

the details are postponed to Appendix A.2.

2.3.1 Maximum Optimal Directions (MOD)

MOD algorithm employs an optimization procedure that the dictionary and the sparse
coefficients are alternately updated: fix D and update X; then fix X and update D.
Applying MOD to our example, we derive that when the initial ¢y is not appropriately
chosen (in this case, ¢y € (0, 1]), the algorithm will fail. The analysis given in Appendix
A.2 includes the update of € via manually handling several least square problems. The

result shows that after the iteration k, € is given by
e = ep—1 (1 — 0.07ep—1 — 0.48¢2_1 + o(ex_1)) - (2.11)

where € € (0, €y). Note thatey is strictly smaller than e;_q. This implies with k& — oo, €

converges to 0 rather than —0.1y/2, i.e., the dictionary D does not converge to D*.
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2.3.2 K-SVD

We initialize the dictionary with an ey € (0, 1]. Let «! denote the i row of X. K-
SVD sequentially update (di, CEZT)S, i € [3], by using SVD. In our setting, (dl, mlT) and
(dg, azg) are optimized and fixed. It suffices to optimize (dg, wg) only. To do that, one
first cancels the effects from other codewords by computing Y™ =Y — idlm;‘r and then
updates (dg, a:g) by using the strongest singular vectors of Y (obtainéglfrom SVD). As
has been detailed in Appendix A.2, the € before and after the k*" iteration can be related

via (2.11) again.

2.3.3 Primitive and Regularized SimCO

SimCO framework uses the line search methods for updates. For primitive SimCO, the
dictionary D (0) is not of full column rank which implies a singular point at f (0). Regular-
ized SimCO, proposed in [25], adds a penalty term f (D) with the motivation to make the
alternated objective function to be continuous. Such modification alleviates the singularity
issue, yet introduces some stationary points.

In the following we consider || X.4[|% as the regularized term added to the original
objective function in order to facilitate the analysis. Such regularized formulation removes
the discontinuity of the objective function and we are able to calculate its derivatives. For
a given D (e), let X (¢€) have the same setup as in the MOD case. The regularized objective
function is written as

it fu(©= infinf Y ~D (X (9]}

+pl Xea () 17 (2.12)
This is a least squares problem and it can be derived with

2.02 when =0, e=0

3_ 2 9 (0.7VI—e — 0.16)2 otherwise.

1—e
pHl= T

fu(e) =

When p = 0, the problem degenerates to primitive SimCQ. From Appendix A.2 we

know that whenever € € (0, 1v/2], fo(e) < 1 < f5(0) = 2.02, and its derivative f} (¢) >
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0.28. Therefore we infer that the primitive SimCO update process will finally stagnate
at € = 0 if the initial ¢g € (0, 1v/2]. We also show in Appendix A.2 that whenever
e € (0, 1v/2] and p € (O, min (\/le, V2 - 1)), there always exist a € € (0, €)
with f, (€) > fu (¢). Hence, line search methods do not make D () pass through D (0)
as the iteration number k£ — oo to reach the global minimum. Furthermore, as 4 — 0 the

dictionary D converges to the singular point as well.

2.4 Smoothing Technique

A smoothing technique is developed to address the singularity issue in this section. This is
fundamentally different from the regularization technique proposed in [25] in two aspects.
Firstly, as is shown in the explicit example from the last section, the additive penalty
term in the regularization technique alleviates the singularity issue but introduces new
stationary point, while in the smoothing technique productive terms are added which
may not create new stationary point. Secondly, another nature being superior to the
regularization technique is, we prove that in the limit case the proposed objective function,
as the best lower semi-continuous approximation of the original one, guarantees that the

solution set is closed.

2.4.1 Smoothed SimCO

Aiming at the singularity issue, we propose a new idea trying to remove the discontinuity

in the objective function f (D). Write f (D) into a summation of atomic functions.

f(D) =Y - DX

= ZHYJ - DiXsupp(X;ﬂ-),ng

= Zfi(Di)v (2.13)

where each f;(D;) is termed as an atomic function. Let Z be the index set corresponding
to the D;’s of full column rank. Define an indicator function X7 s.t. Xz (i) =1ifi €7
and X7 (i) = 0if ¢ € Z¢ Use Xz (i) as a multiplicative modulation function and apply it

to each f; (D;). Then one obtain
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0 )\Inin < 5§Z)
. )\ . D — )\min_égi) ° )\min_(sgi) : >\min_6§i) ’ 6(1) A < 6(1)
gi (Amin (Di)) = { 6 50 _5(0) —15 50 _s( +10 50 _5(0 17 < Amin S0y -
2 1 2 1 2 1
1 )\min > 5§Z)

(2.14)

Figure 2.1: A illustrative shape of smoothed function g (-).

Zfz => fi(Dy) (2.15)

€L
This new function f is actually the best possible lower semi-continuous approximation of
f and there is no new stationary point created.

Note that X7 (i) is a step function of D;. Therefore finding the derivative of f(D) is an
ill-posed problem. The SimCO framework could not apply to f(D). In addition, when D
is not singular but ill-conditioned, f(D) = f(D) will still be caught into slow convergence.
To address the above two issues, we propose a continuous function g; (D;) and hence we

reformulate the dictionary update stage to

inf f(D)= inf inf ZHY,L-fDiXQ(:mH%.gi(Di)

DeD DeD XeXx(Q)
= Jinf Zﬂ gi (Dy) (2.16)
_/_/
fi(Dy)

where the shape of g; is given in Figure 2.1.
Let §; = (59, 5§i)> where 0 < 5( g 55) are two thresholds. The continuous function

gi (D;) is constructed as: 1) g; (D;) = 0 when Apin (D;) < 59, 2) g; (D;) = 1 when
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Amin (D;) > 55“; 3) gi (D;) is monotonically increasing; 4) g; (D;) is second order differ-
entiable. Function Ay, (D;) indicates whether D; is ill-conditioned. Here we provide a
continuously second order differentiable polynomial g; (D;) = ¢; (Amin (D;)) in (2.14) as
the smooth curve between (59, (5§i)).

Note that the proposed polynomial is one of the proper choices since g; (D;) is contin-
uous and second order differentiable in Ay, € R. Usually §;’s are different for different 4
and the specific choices of them will be explained in Section 2.4.2. A formal description of

f(D) is given in Theorem 2.3.

Theorem 2.3. Consider the smoothed objective function f and the original objective

function f defined in (2.16) and (2.13) respectively.
1. When (550 > (59 > 0, Vi, f(D) is continuous.

2. Consider the limit case where 55”, 5;” — 0 with 55” > 59 > 0, Vi. The followings

hold.

(a) f(D) and f(D) differ only at the singular points.

(b) f(D) is the best possible lower semi-continuous approximation of f(D).

3. Forany a € R, define the lower level set of a function h(D): Dy, (a) = {D : h(D) < a}.

It is provable that when 59 = 5§i) — 0, Dj (a) is the closure of Dy (a).

The proof of Theorem A.3.1 is given in Appendix A.3. It is clear from the fact that
gi (D;) = 1 for all non-singular D;. Theorem A.3.3 specifies the property of the smoothed
technique (Theorem A.3.2(b)) from the perspective of set theory. The theorem actually
shows that the global optimum of f(D) is also the global optimum of f(D).

Functions g; (D;)s smooth the discontinuity in f(D). We call g; (D;) as a smoothing
function. Hence this technique is termed as Smoothed SimCO.

The effect of adding g; (D;)’s, intuitively speaking, is to open “tunnels” on f(D) for

the optimization process to pass through. The smaller (5§i)’s are, the better the function

f(D) approximates the function f(D). Consequently the narrower the tunnels, and the
slower the convergence rate. The function of threshold 5@’5 are to eradicate the large

computational cost when D is very ill-conditioned.
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5=(0,0) 5=(0.1/200,0.1) 5=(0.5/200,0.5) 5=(1/200,1)

] @ " )
8E/ ﬁ = 7 %

-0.5 -0.5 0 0.5 -0.5 0 0.5

d; d1

Figure 2.2: Four pairs of ds selected from left to right are § = (0,0), § = (0.1/200,0.1),
0 = (0.5/200,0.5) and & = (1/200,1). The global minimum of the original objective
function locates at d; = ds = —0.1. A singular point is found at d; = do = 0 and line search
methods are not able to make the dictionary updating pass through. With the increasing
of §, the area around the singular point is gradually replaced by a channel. Larger § opens
wider 'tunnel’ around the singular point but may affecting larger surrounding area. The
area not closed to the singularity does not change.

In practice, we always choose a 5§i) > 5§i) > 0. The effect of positive 5@ and 59,
roughly speaking, is to remove the barriers created by singular points, and replace them
with “tunnels”, whose widths are controlled by 69 and 65”, to allow the optimization
process to pass through. The smaller the 5§i)’s are, the better f approximates f, but the
narrower the tunnels are, and the slower the convergence rate will be. As a result, the

thresholds 5§i)’s should be properly chosen. Usually 5@’8 are set to be not too large. We

propose the relation 650 = 5§i)/200 for all i € [n] and use it in our empirical tests. In the

following subsection we will discusses a particular way to choose 5§i)’s.

2.4.2 A Brief Discussion on the Choice of the Upper Thresholds

We first give an example to intuitively show the effect of parameter §;s to the convergence
rate. Consider the explicit example proposed in Section 2.5. With slight difference, here

the 3"¢ column of the dictionary is initialized

1—d3—d3 1—-d3—d3
d3:|:\/ 52\/ §2d1 dg ,

where d? + d3 < 1, d1,ds € RT. Refer to book [77], we remark that a narrower “tunnel”

in the objective function may cost more numerical steps to pass through and each step
has large fluctuation in both size and direction. In other words, narrower “tunnels” lead to
slower convergence rate. We sample four pairs of § and plot the contours of f (D) against

(di,ds) in Figure 2.2.
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The above example implies the importance of choosing parameters §;’s. Too small
d;’s may cause slow convergence rate and too large §;’s may cause finding wrong global
optimum ( f(D) # f(D) at the global minimum. The contour is changed in a larger
extent and the global minimum is moved to somewhere else). Next we will use random
matrix theory to give a formal discussion about the selection of §;’s.

We first argue that for different ¢, d; should be different. Consider the case where
m = 100, [|supp (X.1)||, = 2 < m and [[supp (X.2)||, = m. Suppose that the dictionary
D is randomly generated from the uniform distribution on D.! It is clear that with
high probability Apin (D7) centers around 1 but Ap;, (D2) is close to zero. Intuitively, the
thresholds d;s should be chosen such that the modulation functions take effect (i.e., g; < 1)
with small but positive probability.

Generally speaking, it is difficult to quantify the probability of Apin (D;)s. Nevertheless,
when m and |supp (X.;)||, approaches infinity with a constant ratio, the distribution
of Amin Will converge a distribution only dependent on the ratio [[supp (X.;)[|,/m. In

particular,

Proposition 2.4. For any given m and s; = ||supp (X.;)||, such that s; < m, define Dy, s,
as the set containing all the matrices with unit norm columns. Randomly generate D; from
the uniform distribution on Dy, s,. Then asm, s; — oo simultaneously with s;/m — ¢; < 1,

the minimum singular values Ayin (D;) converges to T; 21— V/Ci 1 probability.

Proposition 2.5. For any randomly generate D; from the uniform distribution on Dy, s, .

For each fized t > 0, the following deviation bound holds
P <)\Inin (Dz> <Ti+o0 (1) —t) < e—mt2/2.

The term o (1) is a small and tending to zero as m — oo. The detailed proofs of
the equivalent propositions (Proposition 4 € 5) can be found in [90] and [65] respectively.
Though the results are asymptotic, they provide a good approximation for finite m and s;.

On the other hand, from Proposition 5 we have the following remark.

Remark 2.6. When m and s; are finite. For a random generalized true dictionary Dj,

'The uniform distribution is well defined as D is a compact manifold.
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P (\nin (D;) < 7;) increases with the decrease of m and s;. Thus the true dictionary

Dy;ye may more likely have its minimum singular value smaller than 1 — /c;.

In practice, m and s; are finite. To make the smoothed objective function f(D) be as
far as equivalent to f(D) around the global optimum, in our implementation we make a
relaxation on the threshold settings. We define constant o € (0, 1) independent of i and

set 65” = aT;.

2.5 Implementation of Smoothed SimCO

In this section, we present a Newton CG implementation to minimize the objective function
f(D) As a second order line search method, Newton CG presents efficient performance
in finding the optimum compared with other first order methods, such as gradient descent
or conjugate gradient method. On the other hand, in actual applications it is generally
possible to find a good warm starting point to initialize dictionary learning process, there-
fore significantly alleviate the drawback where the Newton CG being overwhelmed when
the initial point is far from the optimum.

In order to facilitate the discussion, some useful notations are given as follows. We give
function h (D) € R, D € R™*? and n € R™*?. Denote the gradient of h (D) by Vh (D).
Denote the directional derivative of function h (D) along direction n [56] by Vyh (D).
Furthermore we have V,h (D) = trace (Vh (D) ,n) [82].

Most optimization methods are based on line search strategies. The dictionaries at
the beginning and the end of an iteration, denoted by D®) and D®*+1) respectively, can
be related via D* D = D®) 4 oK) y(#)  where ¥ is an appropriately chosen step size
and n*) is the line search direction. Usual determinations of the step size ¥ include
Armijo condition and Golden selection [77]. The search direction 5¥) has many choices
[77, 37] as well. In fact, the choice of n®) plays the key role in the convergence rate of the
whole algorithm. Generally speaking, a Newton direction is preferred (compared with the
gradient descent direction) [77]. In a standard Newton method, the computation of the
Newton direction requires the Hessian of the objective function. Note that in the problem
at hand, the dictionary D has size m x d and hence the corresponding Hessian is of size

md x md. To compute the Hessian explicitly, it requires large computational resources as
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well as extra-ordinary storage resources. Such cost is enough to offset the advantage in
convergence rate.

By contrast, Newton CG provides a means to compute the Newton direction without
explicitly computing the Hessian. More specifically, the Newton CG method starts with the
gradient descent direction n(®) and iteratively refines it towards the Newton direction. In
each line search step, instead of computing the Hessian VQf(D) € R™4xmd explicitly, one
only needs to compute Vy, (Vf (D)) € R™*4 The required computational and storage
resources are therefore much less than working with the Hessian.

We consider efficient computations related to the Hessian matrix of an atomic function
fi (D;) gi (D) of f (D) and provide a detailed derivation of V,, (V (f; (D;) gi (D;))) under

the assumption that D; is a full column rank tall matrix.
We denote f; (D;) and g; (D;) by f; and g; respectively for simplification. Write
Vi (V (figi)) as the summation

Va (V(fi-gi)
=V (Vi) gi + [iVn (Vgi) + V [iVngi + Va fiVygi

=V (Vfi)gi + fiVn (Vgi) + V fitrace (Vgi, ) + trace (V fi,n) Vg (2.17)

Essentially in equation (2.17) there are four terms to be computationally derived individ-
ually: Vfi, Vi, (Vfi), Vgi and Vy, (Vg;). We will sequentially derive the four terms in the
following and respectively formulate them in equation (2.18), (2.19), (2.21) and (2.22).

First we consider term V f; and V,, (V f;). They are relatively easy to be derived. The
optimal

Having that g—;; lzx= 0, Vf; can be written as

Vfi

_Of L Of 0% _ . poansT
=D, + dwt 0D, 2(y; — Dix;)x;" +0. (2.18)

To compute Vy, (Vf;), we have

Va (Vi) =2V, (Dix} —yi) ;" +2(Dix} — y;) V"

=2nzx;’ + 2D,V iz’ +2(Dix} —y;) Vaz, T, (2.19)

i
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where V,x; is obtained by,
Vi = ~(DI D)~ ((DI'n+n"Di) D} - ") y. (2.20)

Now we derive the formulae of Vg; and V, (Vg;). Since g; is a function of A\, =
Amin (D), where D; € R™*" we suppose that all other non-zero singular values are strongly
larger than A\, i.e. A\t > Ao > ... > A1 > A\, s0 as to guarantee that the 1st and 2nd
derivative of Ap, is well defined (Otherwise see Remark (2.7), (2.8)). In formula (2.17),
when A, <41 or A\, > 62, both Vg; and V,, (Vg;) are zero. When §; < A, < 0o,

_ dg

P = -V, 2.21
Vo=V (2.21)
d?g; dg

Vo (Vgi) = e trace(VA,, m) - VA, + I Vi (VA). (2.22)
Note that g; is a polynomial of A, in this interval, which means the computations of gfi

and (ﬁ\g{ are straight forward. Therefore the key step to compute (2.21) and (2.22) is to

determine VA, and V,, (V). In [79] one provides a smart way to obtain the calculation
formula of VA, and V,, (VA,), nevertheless it only applies to the cases when D; is a square
matrix. In the following we base on the idea and extend the derivation to more general
non-squared matrices. Note that the extension is the crux of determining the formulae of
Vgi and V,, (Vg;). Yet in order to maintain the continuity of the contents, we arrange to

list the main result below and leave the derivations to Appendix A .4.

V(D) = ggﬂ =U,VL. (2.23)

In terms of determining term V, (VA;), computations under traditional Cartesian coor-
dinates are tedious and time consuming. To mitigate the defects, we compute V,, (VA,),
under our generated basis B = {BU = U:Ving, i€[l,m],je [1,71]}. Consider the sin-
gular value decomposition of n = USVT. In Appendix A.4 we show that V, (V) can

be represented as a summation of only (m +n — 2) terms on basis B (instead of mn terms
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on traditional Cartesian coordinates):

Vn (V/\r) - (VnUur) V:I; + U:,r (anig) :

where
r—1 m
A Sk + MRS, ) S .
T rkr ERPrk ki kr pkr
(VoU.p) Vi =D =50 BY + Y S B
k=1 T k k=r+1 "
and

r—1
U., (VT,VT;) _ ZW . Bk
k=1 r

48

(2.24)

Remark 2.7. When V), = 0, the objective function is not differentiable at D;. However,

we know that g; = 0 and ddTgT =0, one may set Vf; = 0.

Remark 2.8. If the minimum singular value of D; is a repetitive singular value, i.e., there

exists more than one equally minimum singular value, then VA, is not well defined. How-

ever this happens with probability zero when the dictionary is randomly generated from

the uniform distribution on Dy, , = {Di e RMmxr . DiTDZ- = IT}. Furthermore, even this

happens during the optimization, directly applying VA, = U;J.V:g: does not introduce any

practical issue in our simulations.

We present an outline of the Newton CG method (Algorithm 2.1) for the Smoothed

SimCO. The line search method in conjunction with the Newton CG method is presented

in Algorithm 2.2.

2.6 Empirical Tests

Definition 2.9. [25| Define the condition number of a dictionary D as:

)\max (Dz)
k(D) = max ————=,
( ) i€[n] Amin (DZ)

where Amax (D;) and Apin (D;) represent the maximum and the minimum singular value

of the sub-dictionary D; respectively.
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Algorithm 2.1 The Newton CG algorithm for Smoothed SimCO dictionary update: find
the search direction.

Input: D; Output: 7.

Define: P (n.;) = (I — D;,iDﬂ)n;,i, do defined in (2.6) and do = 20007.

Fork=0,1, 2, ...

Define tolerance €, = min <0.5, HVﬂD HVJZH’ where f is defined in (2.16).

Set zZp = 0, Ty = Vf, do = —To = —Vf
Forj=0,1,2, ..
Set H; = Va, (V).

vi, let (H;)., =P ((H;).,).

iter (d7H;) <0
Ifj=0
returnn = —Vf.
else
returnn = z;.
Set a; = tr (rJTrj) Jtr <d]THj>
Set, Tjt1 =Tj + Ozj'Hj.
If |7l < ex
returnn = z;1.
Set Bj41 = tr (roHer) /tr (rorj)
Set dj+1 =—7j+1+ ,8j+1dj.
end
Vi, let m.; =P (n.;).

In this section, we numerically test the performance of the Smoothed SimCO. We firstly
illustrate a particular example which is considered as a difficult case for dictionary update
and use it to show some index along updating process. Then in the next subsection we
test the performance of Smoothed SimCO by giving various number of training samples.
We also show the successful rate of the proposed algorithm under a large number of trails.
In addition, we do all the same tests for MOD, K-SVD and Regularized SimCO for the

propose of performance comparisons.

2.6.1 A Difficult Case: Show the Superiority of Smoothed SimCO

In this subsection, we choose a particular example to show the power of the proposed
Smoothing technique. The main argument is that in this example mainstream algorithms
including MOD, K-SVD and Primitive/Regularized SimCO converge to a singular dictio-
nary. Smoothed SimCO, meanwhile, breaks the obstacle and successfully converge to a

global optimum. In this example, the training samples Y € R!6%66 are generated via
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Algorithm 2.2 Line search method on deciding the step size for Smoothed SimCO dic-
tionary update
Input: fo = f(D), Vfo=Vf(D)n, D’ =D.
Output: D = DF.
Initialize t =1, ¢ = le — 6.
Fork =1, 2, 3, ...
Do compact SVD Vi, 7., = U;Z; Vi1 .

Compute Vi, D’fZ = (Dk’z’IVz, U,) < ZZ Eg’; ) ViT. (Referring to Theorem 2.3 in
37])

If fo < fr1+c-t-VFEm  (Armijocondition in [77])
return D*.
Set tF = 0.8tk L.

end
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Figure 2.3: Starting with the same point, the convergence behavior of MOD, K-SVD, Prim-
itive SimCO, Regularized SimCO and Smoothed SimCO are different. In this particular
example, only Smoothed SimCQO avoids converging to a singular point.

Y = DgueXirue, where D € R16%32 gnd X € R32%66. Each column of X contains 4
non-zero entries. We assume the true sparsity pattern  of X is known a priori, and
implement dictionary update algorithms. This assumption eliminate the probability that
singularity issue is caused in the sparse coding stage. We start all the algorithms with
the same particular choice of the dictionary Dy € D. For Regularized SimCO, we set the
regularized parameter p = 0.01 [25].

Three indexes are considered in this test: f (D), |Vf(D)||/|Y]% and & (D). The
results are demonstrated in Figure 2.3. The condition number for the true dictionary
K (Dirue) = 3.17. It is worth noting that for fair comparison in this test we consider
terms f (D) rather than f (D) for Smoothed SimCO. This is reasonable since after all the
smoothing function ¢ is a technique handling the singularity issue and is equivalent to the
objective function f (D) when it is closed to the global optimum.

From the results shown in Figure 2.3, we comment as follows:
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e From the objective function f (D) we see that except Smoothed SimCO, the rest of
the algorithms do not converge to zero (i.e., the global optimum), but stagnate at

some other points instead.

e From the gradient term ||V f (D)|| /||Y||%, we further analyze that Smoothed SimCO
quickly decrease to below 1074, Plus the phenomenon shown in the f (D) figure, we
conclude that the Smoothed SimCO does find the global optimum for this example.
Regularized SimCO, however stagnates at some stationary point on f, (D). If we
consider the gradient term ||V f,, (D)| / |Y'||%, we may see it is approaching to zero.
And on objective function f (D), it exhibits a slow decreasing in the gradient against

the number of iterations.

e The condition number x (D) best describes the singularity issue. For MOD, K-SVD
and Primitive SimCO, with the increase of iteration number, their £ (D)s rapidly in-
crease to another magnitude order, which clearly reflects that they have been caught
into the singularity issue. Regularized SimCO, however, almost stands still at a
stationary point on f, (D), thus its (D) remains around some value. Smoothed
SimCO since changed the objective function f (D) by reweighing all its summands.
Numerically the change of its x (D) against the number of iteration is volatile as
expected. After 40 iterations Smoothed SimCQ finds the global optimum, thus af-

terwords its x (D) remains at a value which is equal to & (Dirue)-

2.6.2 Synthetic Data Analysis

The settings in this subsection are as follows. The training samples are generated according
t0 Y = DirueXirue + W where W € R™*"™ are Gaussian noise (W = 0 for the noiseless
case), where m = 16, d = 32. The true dictionary Dyyye is randomly generated from
the uniform distribution on D. Regarding the sparse coefficients, we assume that each
column of X,y contains exactly s = 4 many non-zero elements of which the locations are
randomly generated from the corresponding uniform distribution. The nonzero elements
of Xirue are randomly generated from the standard Gaussian distribution. To separate the
effect of sparse coding, we also assume that the sparse coding stage is perfect, i.e., the true

sparsity pattern Qe is given a priori.
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Figure 2.4: Performance comparison of dictionary update stage. Noiseless case (left) and
noisy case with SNR=20dB (right). Note that there exist a lower bound of in the re-
construction error (right) which is proportional to the noise level. See also in [25]. The
advantage of Smoothed SimCO is significant when the number of training samples is not
large. The advantage gradually disappear when the train samples increase since the bench-
mark algorithms have lower probability converge to ill-conditioned dictionaries.

Both noiseless and noisy case are considered in the tests. Let D and X be the learned
dictionary and the corresponding sparse coefficients, respectively. The normalized learning

PP
error is defined as ||Y — DXH /n. The criteria for success learning are designed for both
F

cases using the normalized learning error: in the noiseless case, a success is claimed when
HY - ﬁXHi /n < €. ||Y||% where the constant e, is ideally zero but set to 10~ in practice;
for the noisy case, the criterion for a successful learning is given by HY — ﬁXHi /n <
n Y 1% where e := [|W % /n/ | Dyvue Xiruel[3-

Four algorithms: MOD, K-SVD, Regularized SimCO, and Smoothed SimCO, are com-
pared in the tests. For each of the algorithms, 200 realizations are implemented. The
maximum iteration number of each realization is set to 1000. For Regularized SimCO, the
regularization constant is initially set as 4 = 0.1 and then reduced to 1/10 after every 100
iterations. In Smoothed SimCO, the thresholds d;s are set to (0.001,0.2) for the first 500
iterations and then to (0,0) for the rest 500 iterations. (Note that §; = §; for Vi,j € [n]
due to the simulation settings.)

The simulation results are presented in Figure 2.4, where the two sub-figures compare
the normalized distortion in noiseless and 20dB noise case. The advantage of the proposed
smoothed SimCQO is clear for both cases and is particularly evident in the noiseless case.

In terms of successful rate, Smoothed SimCO reaches 100% successful rate when the

number of training samples n > 66 while MOD and K-SVD could not achieve 100%
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Figure 2.5: The successful rate of MOD, K-SVD, Regularized SimCO and Smoothed
SimCO against the number of training samples. Each point shows the average value over
200 realizations. Among the four algorithms, Smoothed SimCO has the highest successful
rate and the robustness covers more cases.

successful rate even when n > 84. It is also interesting to observe from Figure 2.5 that the
dip in the successful rate when n is in the middle-range (n = 40 ~ 60). This is expected.
On one hand, the successful rate should increase when the number of training samples
becomes larger. On the other hand, when the number of training samples is extremely
low, for example, n < d, the learning problem becomes trivial. Hence, the most difficult
case is when n is in the middle-range. Having a deep study on the failure cases, they all
converge to the dictionaries with large condition number, i.e. singular dictionaries. Take
the realizations in Figure 2.5 with n = 60 training samples as examples, all the failures
have k (D) > 65 for MOD | x (D) > 37 for K-SVD and « (D) > 30 for Regularized SimCO.
On the contrary & (D) < 8 for all the successful cases (since all the true dictionaries used
in the tests are of k (Dyrue) < 8). These results support the main reason of the dictionary

update failures that put forward in this chapter.



Chapter 3

Blind Source Separation Based on

Dictionary Learning

3.1 Introduction

Blind source separation (BSS) has been investigated during the last two decades, many
algorithms have been developed and applied in a wide range of applications including
biomedical engineering, medical imaging, speech processing, astronomical imaging and
communication systems. Typically a linear mixture model is assumed where the mixtures
Z € RN are described as Z = AS+V. Each row of § € R¥*" is a source and A € R™**
models the linear combinations of the sources. The matrix V € R™*Y represents additive
noise or interference introduced during mixture acquisition and transmission.

Usually in the BSS problem the only known information is the mixtures Z and the
number of sources. One needs to determine both the mixing matrix A and the sources S,

i.e., mathematically, one needs to solve
min || Z — AS|)%.
A,S

It is clear that such a problem has an infinite number of solutions, i.e., the problem is
ill-posed. In order to find the true sources and the mixing matrix (subject to scale and
permutation ambiguities), it is often required to add extra constraints to the problem

formulation. For example, a well-known method called independent component analysis

54
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(ICA) [58] assumes that the original sources are statistically independent. This has led to
some widely used approaches, such as Infomax [9], maximum likelihood estimation [43],
the maximum a posterior (MAP) [10], and FastICA [58].

Sparsity prior is another property that can be used for BSS. Most natural signals are
sparse under some dictionaries. The mixtures, viewed as a superposition of sources, are in
general less sparse compared to the original sources. Based on this fact, the sparse prior
has been used in solving the BSS problem from various perspectives since 2001, e.g., sparse
ICA (SPICA) [16] and sparse component analysis (SCA) [47]. In this approach, there is
typically no requirement that the original sources have to be independent. As a result,
these algorithms are capable of dealing with highly correlated sources, for example, in
separating two superposed identical speeches, with one being a few samples delayed version
of the other. Jourjine, et al., proposed a SCA based algorithm in [62| aiming at solving the
anechoic problem. SCA algorithms look for a sparse representation under predefined bases
such as discrete cosine transform (DCT), wavelet, curvelet, etc. Morphological component
analysis (MCA) [93] and its extended algorithms for multichannel cases, Multichannel
MCA (MMCA) [14] and Generalized MCA (GMCA) [15], are also based on the assumption
that the original sources are sparse in different bases instead of explicitly constructed
dictionaries. However these algorithms do not exhibit an outstanding performance since in
most cases the predefined dictionaries are too general to offer sufficient details of sources
when used in sparse representation.

A method to address this problem is to learn data-specific dictionaries. In [40], the
authors advised to train a dictionary from the mixtures/corrupted-images and then decom-
pose it into a few dictionaries according to the prior knowledge about the main components
in different sources. This algorithm is used for separating images with different main fre-
quency components (e.g., Cartoon and Texture images) and obtained satisfactory results
in image denoising. Starck, et al. proposed in [83] to learn dictionary from a set of ex-
emplar images for each source. Xu, et al., [112] proposed an algorithm which allows the
dictionaries to be learned from the sources or the mixtures. In most BSS problems, how-
ever, dictionaries learned from the mixtures or from similar exemplar images rarely well
represent the original sources.

To get more accurate separation results, the dictionaries should be adapted to the
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unknown sources. The motivation is clear from the assumption that the sources are sparsely
represented by some dictionaries. The initial idea of learning dictionaries while separating
the sources was suggested by Abolghasemi, et al. [1]. They proposed a two-stage iterative
process. In this process each source is equipped with a dictionary, which is learned in
each iteration, right after the previous mixture learning stage. Considering the size of
dictionaries being much larger than the mixing matrix, the main computational cost is on
the dictionary learning stage. This two-stage procedure was further developed in Zhao,
et al. [118]. The method was termed as SparseBSS, which employs a joint optimization
framework based on the idea of SimCO dictionary update algorithm [25]. By studying the
optimization problem encountered in dictionary learning, the phenomenon of singularity in
dictionary update was for the first time discovered. Furthermore, from the viewpoint of the
dictionary redundancy, SparseBSS uses only one dictionary to represent all the sources, and
is therefore computationally much more efficient than using multiple dictionaries as in [1].
This joint dictionary learning and source separation framework is the focus of this chapter.
This framework can be extended potentially to a convolutive or underdetermined model,
e.g., apply clustering method to solve the the ill-posed inverse problem in underdetermined
model [13] ; however, discussion on such an extension is beyond the scope of this chapter.
In this chapter, we focus on over-determined/even-determined model.

The remainder of this chapter is organized as follows. Section 3.2 describes the frame-
work of the BSS problem based on dictionary learning. The recently proposed algorithm
SparseBSS is introduced and compared in detail with the related benchmark algorithm

BMMCA.

3.2 Framework of Dictionary Learning based Blind Source

Separation Problem

We consider the following linear and instantaneous mixing model. Suppose that there are s
source signals of the same length, denoted by s1, sa, --- , 8, respectively, where s; € RN
is a row vector to denote the i source. Assume that these sources are linearly mixed into

r observation signals, denoted by 21, 22, -+, 2z, respectively where z; € RY™N In the
. T T
matrix format, denote S = [s{,sg,--~ ,SST} e RN and Z = [zf,zg,--- ,zﬂ

S



CHAPTER 3. BSS BASED ON DICTIONARY LEARNING a7

R™ N Then the mixing model is given by

Z=AS+V, (3.1)

where A € R™**® is the mixing matrix and V' € R™¥ is denoted as zero mean additive
Gaussian noise. We also assume that r» > s, i.e., the under-determined case will not be

discussed here.

3.2.1 Separation with Dictionaries Known in Advance

For some BSS algorithms, such as MMCA [14], orthogonal dictionaries D;’s are required
to be known a priori. Each source s; is assumed to be sparsely represented by a different
D;. Hence we have s; = D;x; with x;’s being sparse. Given the observation Z and the
dictionaries D;’s, MMCA [14] aims to estimate the mixing matrix and sources, based on

the following form:

n
: 2 ¥
min HZ—ASHFJFZ/\Z» siD}|| (3.2)
=1
Here X\; > 0 is the weighting parameter determined by the noise deviation o, ||| rep-
resents the Frobenius norm, [-||; is the ¢; norm and DZT denotes the pseudo-inverse of

D;. Predefined dictionaries generated from typical mathematical transforms, e.g., DCT,
wavelets and curvelets, do not target to particular sources, and thus do not always provide
sufficiently accurate reconstruction and separation results. Elad, et al. [40] designed a
method to first train a redundant dictionary by K-SVD algorithm in advance, and then
decompose it into a few dictionaries, one for each source. This method works well when
the original sources have components that are largely different from each other under some
unknown mathematical transformations (e.g. Cartoon and Texture images under the DCT
transformation). Otherwise the dictionaries found may not be appropriate in the sense that

they may fit better to the mixtures rather than the sources.
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3.2.2 Separation with Unknown Dictionaries
SparseBSS Algorithm Framework

According to the authors knowledge, BMMCA and SparseBSS are the two most recently
BSS algorithms which implement the idea of performing source separation and dictionary
learning simultaneously. We focus on Sparse BSS in this chapter. In SparseBSS, one
assumes that all the sources can be sparsely represented under the same dictionary. In order
to obtain enough training samples for dictionary learning, multiple overlapped segments
(patches) of the sources are taken. To extract small overlapped patches from the source
image s;, a binary matrix P, € R™¥ is defined as a patching operator' [118]. The
product P, - s7 € R™*! is needed to obtain and vectorize the kth patch of size \/n x /n
taken from image S;. Denote P = [Py,..., Px] € R™EN where K is the number of
patches taken from each image. Then the extraction of multiple sources S is defined as
P(S)=([Pr,... Pg])- ([s1.8%,....s]| @ Ix) = P- (ST @ Ix) € R ¢, where symbol ®
denotes the Kronecker product and Ik indicates the identity matrix. The computational
cost associated with converting from images to patches is low. Each column of P (S)
represents one vectorized patch. We sparsely represent P (S) by using only one dictionary
D € R™ 9 and a sparse coefficient matrix X € R¥5s which suggests P (S) ~ DX. This
is different from BMMCA, where multiple dictionaries are used for multiple sources.

With these notations, the BSS problem is formulated as the following joint optimization
problem

i A2 - AS| HPT (DX) —SH; (3.3)

The parameter ) is introduced to balance the measurement error and the sparse approxi-
mation error, and X is assumed to be sparse.

To find the solution of the above problem, we propose a joint optimization algorithm
to iteratively update the following two pairs of variables {D, X} and {A, S} over two
stages until a (local) minimizer is found. Note that in each stage there is only one pair of

variables to be updated simultaneously by keeping the other pair fixed.

Note that in this chapter Pj is defined as a patching operator for image sources. The patching operator
for audio sources can be similarly defined as well.
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e Dictionary learning stage

[ ] Min/llre 1earnlng S“age

{gligMIZ—ASH%Jr IDX —P ()] (3.5)

Without being explicit in (3.3), a sparse coding process is involved where greedy algorithms
such as orthogonal matching pursuit (OMP) [81] and subspace pursuit (SP) [24] are used
to solve

min X[, st. [DX ~P(8)} <

where || X||, counts the number of nonzero elements in X, the dictionary D is assumed
fixed, and € > 0 is an upper bound on the sparse approximation error.

During the optimization, further constraints are made on the matrices A and D. Con-
sider the dictionary learning stage. Since the performance is invariant to scaling and
permutations of the dictionary codewords (columns of D), we follow the convention in the

literature, e.g., [25], and enforce the dictionary to be updated on the set

D= {D eR™ . |D.;

=1 1<i<df, (3.6)

where D.; stands for the ith column of D. A detailed description of the advantage by
adding this constraint can be found in [25]. Sparse coding, once performed, provides the
information about which elements of X are zeros and which are non-zeros. Define the
sparsity pattern by Q = {(z,7) : X;; # 0}, which is the index set of the nonzero elements
of X. Define X as the set of all matrices conforming to the sparsity pattern €2. This is
the feasible set of the matrix X. The optimization problem for the dictionary learning

stage can be written as

minf, (D)= win  min DX —P(S)[} +u| X},

DeD DeD XeX
2
P(S) D
= gli% )?11)1’(1 - X . (3.7)
€ Shave}
0 vl

F
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The term p HX||§7 introduces a penalty to alleviate the singularity issue.
In the mixture learning stage, similar to the dictionary learning stage, we constrain the

mixing matrix A in the set
A={AeR™: |A,ll,=1,1<i<s}. (3.8)

This constraint is necessary. Otherwise if the mixing matrix A is scaled by a constant ¢ and
the source S is inversely scaled by ¢!, then for any {A, S} we can always find a solution
{cA, ¢ 'S|c > 1} which further decreases the objective function (3.3) from A || Z — AS||%+
IDX —P(S)|%to A||Z — AS| %+ ¢ 2| DX — P (S)|%. Now if we view the sources S €
R5*™ as a “sparse” matrix with the sparsity pattern ' = {(i,j): 1 <i<s, 1 <j< N}
Then the optimization problem for the mixture learning stage is exactly the same as that

for the dictionary learning stage:

2
min fy (A) =min _min \||Z — AS|% + HPT (DX) - SHF

AcA AcA ScRsxn
2
VAZ VAA
=min min - S, (3.9)
AcA SeXy PT (DX) I
F

where the fact that R**"™ = X has been used. As a result, the SimCO mechanism
can be directly applied. Here, we do not require the prior knowledge about the scaling
matrix in front of the true mixing matrix [15], as otherwise required in MMCA and GMCA
algorithms.

To conclude this subsection, we emphasize the following treatment of the optimization
problems (3.7) and (3.9). Both of them involve a joint optimization over two variables,
i.e., D and X for (3.7) and A and S for (3.9). Note that if D and A are fixed, then
the optimal X and S can be easily computed by solving the corresponding least squares
problems. Motivated by this fact, we write (3.7) and (3.9) as glei%f“ (D) and ineiﬁfA (A)
respectively, when f, (D) and fy (A) are properly defined in (3.7) and (3.9). In this way,
the optimization problems, at least from the surface, only involve one variable. This helps
the discovery of the singularity issue and the developments of handling singularity. See

Chapter 2 for details.
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Implementation Details in SpaseBSS

Most optimization methods are based on line search strategies. The dictionaries at the
beginning and the end of the k' iteration, denoted by D®) and D*+D) respectively, can
be related by D+ — pk) —i—a(k)n(k) where o®) is an appropriately chosen step size and

k) can be determined by Armijo condition or

1) is the search direction. The step size af
Golden selection presented in [77]. The search direction 1) can be determined by a variety
of gradient methods |77, 37|. The decision of n*) plays the key role which directly affects
the convergence rate of the whole algorithm. Generally speaking, a Newton direction is a
preferred choice (compared with the gradient descent direction) [77]. In many cases, direct
computation of the Newton direction is computationally prohibitive. Iterative methods can
be used to search the Newton direction. Take the Newton Conjugate Gradient (Newton
CG) method as an example. It starts with the gradient descent direction ng and iteratively
refines it towards the Newton direction. Denote the gradient of f, (D) as V f, (D). Denote
Vi (Vf. (D)) as the directional derivative of Vf, (D) along n [56]. In each line search
step of the Newton CG method, instead of computing the Hessian sz# (D) ¢ Rmdxmd
explicitly, one only needs to compute Vy, (Vf, (D)) € R™*4 The required computational
and storage resources are therefore much reduced.

When applying the Newton CG to minimiz;) fu (D) in (3.7), the key computations are
summarized below. Denote D = [ DT uI ] and let ©(:, j) be the index set of nonzero
elements in X, ;. We consider D, = D:A’Z(:J) € R™H7)X7 with m > r. Matrix D; is a full

column rank tall matrix. We denote
fi(D;) = min||y; — Dz;|3

and the optimal

T, = argnglci_nHyi - meH%
k3

Denote ]j);r as the pseudo-inverse of D;. As discussed in the last chapter, we can compute
Vfi(D;), Vg (Vfl(bz)> and Vyx* via (2.18), (2.19) and (2.20), respectively. From the
definition of D;, D; is a sub-matrix of D;, therefore V fi(D;) and Vy, (Vfi(D;)) are also
respectively sub-matrices of Vfl(]jz) and V, (sz(b,)>, ie., Vfi(D;) = (sz(f)z)>

1:m,:
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and Vy (Vfi(Dy)) = (Vn (vfi(b")»

In addition, it is also worth noting that the SpaseBSS model, using one dictionary to

1m,:

sparsely represent all the sources will get almost the same performance as using multiple
but same-sized dictionaries when the dictionary redundancy % is large enough. As a result
it is reasonable to train only one dictionary for all the sources. An obvious advantage for
using one dictionary is that the computational cost does not increase when the number of

sources increases.

3.2.3 Blind MMCA and its Comparison to SparseBSS

BMMCA |1] is another recently proposed BSS algorithm based on adaptive dictionary
learning. Without knowing dictionaries in advance, BMMCA algorithm also trains dictio-
naries from the observed mixture Z. Inspired by the hierarchical scheme used in MMCA
and the update method in K-SVD, the separation model in BMMCA is made up of a
few rank-1 approximation problems, where each problem targets on the estimation of one
particular source

. 2 2
A ME; — A sillp + |1Di X5 — R (s0)ll5 + [ Xl - (3.10)

Different from the operator P defined earlier in SparseBSS algorithm, the operator R
in BMMCA is used to take patches from only one estimated image s;. D; is the trained

dictionaries for representing source s;. E; is the residual which can be written as

E=Z-) Ajs; (3.11)
J#i

Despite being similar in problem formulation, BMMCA and SpaseBSS differ in terms

of whether the sources share a single dictionary in dictionary learning. In the SparseBSS
algorithm, only one dictionary is used to provide sparse representations for all sources.
BMMCA requires multiple dictionaries, one for each source. In the mixing matrix update,
BMMCA imitates the K-SVD algorithm by splitting the steps of update and normaliza-
tion. Such two-step based approach does not bring the expected optimality of A € A,

thereby giving inaccurate estimation, while SparseBSS keeps A € A during the optimiza-
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tion process. In BMMCA, the authors claim that the ratio between the parameter A and
the noise standard deviation o is fixed to 30, which will not guarantee good estimation

results at various noise levels.

3.3 Algorithm Testing on Practical Applications

In this section we present numerical results of the SparseBSS method compared with
some other mainstream algorithms. We first focus on speech separation where an equal
determined case will be considered. Then we show an example for blind image separation,
where we will consider an overdetermined case.

In the speech separation case, two mixtures are used which are the mixtures of two
audio sources. Two male utterances in different languages are selected as the sources. The
sources are mixed by a 2 x 2 random matrix A (with normalized columns). For the noisy
case, a 20 dB Gaussian noise was added to the mixtures. See Figure 3.1 for the sources

and mixtures.

Source 1 Noisy mixture 1
0.05 T T T T T T T T T 0.05 T T T T T T T

L L L L L L L L L
0 0.5 1 15 2 25 3 35 4 45 5

Source 2 Noisy mixture 2

-0.02

-0.03

-0.05
0

L L L L L L L L L ~0.04 L L L L L L L L L
0.5 1 15 2 25 3 3.5 4 4.5 5 0 0.5 1 1.5 2 25 3 35 4 4.5 5

Figure 3.1: Two speech sources and the corresponding noisy mixtures (20 dB Gaussian
noise).
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We compare SparseBSS with two benchmark algorithms including FastICA and QJADE
|20]. The BSSEVAL toolbox [107] is used for the performance measurement. In partic-
ular, an estimated source $ is decomposed as 8 = Starget + €intert + €noise + €artif, Where
Starget 15 the true source signal, ejyerf denotes the interferences from other sources, eyoise
represents the deformation caused by the noise, and e,if includes all other artifacts in-

troduced by the separation algorithm. Based on the decomposition, three performance

Hstarget ||2
+enoise +eartif ”2 ’

criteria can be defined: the source-to-distortion ratio SDR = 10log;, i
€interf
Hstarget”2
2
leintert |

SAR = 10log;, ”s“arg“mzmterﬁje“‘”“” . Among them, the SDR measures the overall perfor-
artif

the source-to-interference ratio SIR = 10log;, ., and the source-to-artifact ratio

mance (quality) of the algorithm, and the SIR focuses on the interference rejection. We
investigate the gains of SDRs, SARs and SIRs from the mixtures to the estimated sources.
For example, ASDR = SDR,,; — SDR;,,, where SDR,,; is calculated from its definition
and SDR;, is obtained by letting § = Z with the same equation. The results (in dB) are

summarized in Table 3.1.

OMP error < 1e-3
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Figure 3.2: Relation of the parameter A\ in SparseBSS problem to the estimation error of

the mixing matrix under different noise levels. The signal-to-noise ratio (SNR) is defined
2 2

as p = 10logy( [|AS||% /[[V 7 dB.
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| | ASDR | ASIR [ ASAR |

QJADE 60.661 | 60.661 | -1.560
FastICA 87.318 | 57.318 | -0.272
SparseBSS | 69.835 | 69.835 | 1.379

(a) The noiseless case for three BSS algorithmns.

y | ASDR | ASIR [ ASAR |

QJADE 7.453 | 58.324 | -1.245
FastICA 7.138 | 40.789 | -1.552
SparseBSS | 9.039 | 62.450 | 0.341

(b) The noisy case for three BSS algorithms.

Table 3.1: Separation performance of the SparseBSS algorithm as compared to FastICA
and QJADE. The proposed SparseBSS algorithm performs better than the benchmark
algorithms. Table 3.1a. For the same algorithm, the ASDR and ASIR are the same in
noiseless case. The ASDRs and ASIRs for all the tested algorithms are large and similar,
suggesting that all the compared algorithms perform very well. The artifact introduced
by SparseBSS is small as its ASAR is positive. Table 3.1b. In the presence of noise with
SNR = 20 dB, SparseBSS excels the other algorithms in ASDR, ASIR and ASAR. One
interesting phenomenon is that the ASDRs are much smaller than those in the noiseless
case, implying that the distortion introduced by the noise is trivial. However, SparseBSS
still has better performance.

The selection of A is an important practical issue since it is related to the noise level
and largely affects the algorithm performance. From the optimization formulation (3.3), it
is clear that with a fixed SNR, different choices of A may give different separation perfor-
mance. To show this, we use the estimation error HAtrue — AH? of the mixing matrix to
measure the separation performance, where Agpye and A are the true and estimated mixing
matrices, respectively. The simulation results are presented in Figure 3.2. Consistent with
the intuition, simulations suggest that the smaller the noise level the larger the optimal
value of A. The results in Figure 3.2 help in setting A when the noise level is known a
priori.

Next, we show an example for blind image separation, where we consider an overdeter-
mined case. The mixed images are generated from two source images using a 4 x 2 full rank
column normalized mixing matrix A with its elements generated randomly according to
a Gaussian process. The mean squared errors (MSEs) is used to compare the reconstruc-
tion performance of the candidate algorithms when no noise is added. MSE is defined as

MSE = (1/N)||x — X||%, where y is the source image and ¥ is the reconstructed image.
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The lower the MSE, the better the reconstruction performance. Table 3.2 illustrates the
results of four tested algorithms. For the noisy case, a Gaussian white noise was added to
the four mixtures with o = 10. We use the Peak Signal-to-Noise Ratio (PSNR) to measure
the reconstruction quality, which is defined as, PSNR = 2010g10(\/ﬁ), where MAX
indicates the maximum possible pixel value of the image, (e.g., M AX = 255 for a uint-8

image). Higher PSNR indicates better quality. The noisy observations are illustrated in
Figure 3.3. (b)2.

*For the BMMCA test, a better performance was demonstrated in [1]. We point out that here a different
true mixing matrix is used. And further more, in our tests the patches are taken with a 50% overlap (by
shifting 4 pixels from the current patch to the next) while in [1] the patches are taken by shifting only one
pixel from the current patch to the next.
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- et .
a) Original b) Mixtures
PSNR=27.9018 dB PSNR=22.8487 dB PSNR=27.7434 dB PSNR=30.2880dB

:

=i 3

f) SparseBSS

Figure 3.3: Two classic images, Lena and Boat were selected as the source images, which
are shown in (a). The mixtures are shown in (b). The separation results are shown in
(c)-(f). We compared SparseBSS with other benchmark algorithms: FastICA [57], GMCA
[15] and BMMCA [1]. We set the overlap percentage equal to 50% for both BMMCA
and SparseBSS. The recovered source images by the SparseBSS tend to be less blurred as
compared to the other three algorithms.
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y | FastICA | GMCA | BMMCA | SparseBSS

Lena | 8.7489 4.3780 3.2631 3.1346
Boat | 18.9269 | 6.3662 | 12.5973 6.6555

Table 3.2: Achieved MSEs of the four blind source separation algorithms in a noiseless
case.

Mixing matrix error

—F— FastICA
—8— GMCA

—©— SparseBSS

2 4 6 8 10 12 14 16 18 20
Noise level

Figure 3.4: Compare the performance of estimating the mixing matrix for all the methods
in different noise standard deviation os. In this experiment, o varies from 2 to 20. The
performance of GMCA is better than that of FastICA. The curve for BMMCA is not
available as the setting for the parameters is too sophisticated and inconsistent for different
o to obtain a good result. SparseBSS outperforms the compared algorithms.

At last, we show another example of blind image separation to demonstrate the im-
portance of the singularity aware process. In this example, we use two classic images Lena
and Tezture as the source images (3.5(a)). Four noiseless mixtures were generated from
the sources. The separation results are shown in 3.5(b) and (c). Noting that images like
Texture contain a lot of frequency components corresponding to a particular frequency.
Hence an initial dictionary with more codeword corresponding to the particular frequency
may better estimate these images. From this motivation, in 3.5(b) the initial dictionary is

generated from an over-complete DCT dictionary but contain more high frequency code-
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PSNR=30.130dB PSNR=14.244dB

§
i
B
1
i3
1

PSNR=23.585dB

—

(c) Rearranged DCT (mu=0)

Figure 3.5: The two source images Lena and Texture are shown in (a). The separation
results are shown in (b) and (c). The comparison results demonstrate the importance of
the singularity aware process.

words. Such choice can bring better separation results. At the same time, the very similar
dictionary codewords bring the risk of singularity issue.

The major difference between 3.5(b) and (c) is that: in 3.5(b) the Regularized SimCO
process (p = 0.05) is introduced, while in 3.5(c) there is no regularized term in the dic-
tionary learning stage. As one can see from the numerical results, 3.5(b) performs much
better than 3.5(c). By checking the condition number when the regularized term is not
introduced (u = 0), the value stays in a high level as expected (larger than 40 in this
example). This shows the necessity of considering the singularity issue in BSS and the

effectiveness of the proposed singularity aware approach.



Chapter 4

Power Allocation in Compressed
Sensing of Non-uniformly Sparse

Signals

4.1 Introduction

This chapter focuses on the compressed sensing model. The observation y € R™ is mea-
sured from the linear model

y=Azx+w, (4.1)

where A € R™*™ (m < n) is the measurement matrix, & € R™ is the unknown sparse
signal, and w € R™ is the white Gaussian noise with covariance o?I. We are particularly
interested in non-uniformly sparse signals where different signal components may have
different nonzero probabilities. Such signals arise in many practical scenarios. For example,
in the multiple-source localization problem, the sources (corresponding to nonzero signal
components) are often clustered in certain areas. For natural images, the nonzero wavelet
coefficients form a tree structure [4]|. In video surveillance, the signals from adjacent frames
share many nonzero components [106]. Using the non-uniformly sparsity appropriately can
help improve the compressed sensing reconstruction performance, see [92, 35| for examples.
Similar concept named variable density sampling techniques in MRI could reduce the

frequency of signal sensing.

70
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In this work we focus on the measurement matrix design problem when non-uniformly
sparse signals are involved. More specifically, given a total power budget (sum of /5 norm
squares across all measurement matrix columns), we are interested in the optimal power
allocation across the columns of a Gaussian random measurement matrix to minimize
the reconstruction error. Similar problems have been considered in the adaptive sensing
setup where non-uniformly sparse statistics are generated in the initial sensing process and
that information is used to design the measurement matrices in later stages. Examples
include [52], [88], [99], and [109], to name a few. Different from adaptive sensing, we
assume that the non-uniformly sparse statistics are given a priori, which can be viewed as
a simplification of adaptive sensing. As we shall show later, this simplification allows a
closed form formula to compute the asymptotically optimal power allocation policy under
certain assumptions.

Our technique originates from the so-called approximate message passing (AMP) al-
gorithm and the associated analysis developed by Donoho et al. [31]. AMP assumes no
power allocation, that is, the entries of the measurement matrix are generated from i.i.d.
Gaussian random variables. The key element of the theoretical analysis is the so called
state evolution. It quantifies exactly the under-sampling rates when perfect reconstruction
is possible (referred as the phase transition curve [32]), or the worst-case reconstruction
mean squared error (MSE) for a given noise variance (referred to as minimax MSE) [34].
The same technique has been applied to non-uniformly sparse signals in [92] and block
separable signals in [35], and also been extended to more general channel models [85, 86].
With power allocation, the measurement matrix in this chapter does not contain i.i.d.
Gaussian entries. It can be viewed as special cases of the generalised channel model.

The main contribution of this chapter is the asymptotically optimal power allocation
to minimize the reconstruction MSE. More specifically, we revise the standard AMP algo-
rithm to accommodate non-uniformly sparse signals and Gaussian measurement matrices
with power allocation. The reconstruction MSE of the revised AMP algorithm has been
exactly quantified in an asymptotic regime. Based on it, the asymptotically optimal power
allocation policy is derived. Note that the presented analysis is mainly for the worst case
as it results in closed-form formulas. The analysis can be generalised for more practi-

cal scenarios with minor modifications and produce satisfactory results according to our
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simulations.

4.2 Introduction of Approximate Message Passing

Convex optimization algorithms are widely used in compressed sensing and achieve fairly
good sparsity-undersampling tradeoff. Yet these algorithms can be computationally expen-
sive which is intolerable in important large-scale applications. Fast iterative thresholding
algorithms are studied as alternatives to convex optimization for large-scale problems.
Unfortunately they do not provide sparsity-undersampling tradeoffs as good as convex op-
timization. Approximate message passing algorithm (AMP) proposed in [31] is the first
algorithm that offers both the low complexity of IST and the reconstruction power of basis
pursuit. It has been proved to be effective in reconstructing sparse signals from a small
number of incoherent linear measurements.

The AMP framework involves a soft thresholding function and the associated MSE
analysis. Consider a scalar system y = x + w where z ~ p. and w ~ N (0,02). Given

vector y, AMP employs the soft thresholding function

y—0 ify>0,
F=n(y; )2 {y+0 ify<—0, (4.2)
0 otherwise,

to estimate x, where 8 > 0 is a threshold. Consider the reconstruction MSE

M (pE,UQ) = éggE{(ﬁc —x)2},

where the threshold 6 is optimally chosen for the given prior distribution p. and noise

variance o. Introduce the three-point mixture dustribution
€ €
Pe,y = 56*/1 + (1 — 6) do + §5+”, (4.3)

where ¢, is the Delta function centered at c. It can be shown that among all sparse dis-

tributions in the family of F, (4.14), the (worst) one that results in the maximum recon-
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.
L
>

Figure 4.1: Soft thresholding function with threshold 6;.

struction MSE is when p = co. Denote the worst case (least favorable) prior distribution

by pfg (pfé = Pe,so)- The associated reconstruction MSE has the nice property

M (pf&, 02) =o’M (p?, 1) =2 M¥ (€), (4.4)

where M7# () & M <pfﬁ, 1) is introduced to simplify the notations and referred to as
minimaz MSE. A closed form to compute M# (¢) for an € € (0,1) has been given in [74].
The optimal threshold is of the form 8 = ao where « is a constant only dependent on

nonzero probability e.

Remark 4.1. To analyse the more general case, the three-point mixture p., with finite p
becomes important. The associated scaling rule is given by M (pw, 02) =o’M (pw/g, 1) ,
and reconstruction MSE of 02 = 1 also has an explicit form. Despite the nice forms for the

scalar case, the state evolution for overall performance analysis turns out more complicated.

Based on the results for the scalar case, the AMP algorithm to recover sparse x from

compressed sensing measurements (4.1) has been derived [31]:

!t =1 (a:t + ATyt Bt) ) (4.5)

P =y Ad oo (46)
m

where the superscript ¢t denotes the ¢t-th iteration. Asn, m — oo simultaneously with a con-
stant ratio m/n — §, a closed-form formula to compute the minimax MSE 1E {H:f: - azHg}
has been derived in [7]. It is noteworthy that the algorithm (4.5,4.6) and the analysis are

based on the assumption that the matrix A contains i.i.d. Gaussian entries.
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Consider the signal model (4.1). Compared to IST algorithm shown in, AMP only adds

one additional term % HthO rt—1.

't = (2" + ATr'; 6, (4.7)
rl =y — Ax', (4.8)
Further denote the sparsity value by p = % and the sampling rate by ¢ = “*. Extensive

numerical work reported in [74] show that AMP achieves a p—0 (sparsity-sampling) tradeoff
matching the theoretical tradeoff which has been proved for LP-based reconstruction (e.g.
basis pursuit). Referring to Figure 1, [30], the p— ¢ parameter space are separated into two
areas by the phase boundary curve: one where the massing passing approach is successful
in accurately reconstruction and the other where it is unsuccessful. These curves is shown
to separate the p — d space identically to the ones from LP-based reconstruction. A strong
theoretical support called state evolution formalism is also available to accurately predict
the dynamical behavior of numerous observables of the AMP algorithm.

The choices of 8 and b = %n’ (ajt_l + ATpt=1, Ot_l) is closely connected with the
derivations of AMP. More generally, they also have tight connection between AMP and
LASSO.

Proposition 4.2. Let (x*, r*) be a fived point of the iteration (4.7) and (4.8) for 8" =6,

b' = b fivred. Then =* is a minimum of the LASSO cost function for A =0 (1 —b).

Proof. From equ. (4.7), we get the fixed point condition
9z

— AT t.
py x + r

x*+0
From equ. (4.8), we get
r*(1-0) =y — Ax".

Combine the two equations, we get

NI

(1-0) ox*

= AT (y — Az¥).
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Therefore we can set A =6 (1 —b). O

It is mentioned in [74] that if a found sequence (a:t, bt) that converge and the estimates
x! converges as well, then it is guaranteed that the limit of the AMP iteration is a LASSO

optimum.

4.3 State Evolution and the Phase Transition Boundary

In this section we introduce theorem 4.3. It shows that the behavior of AMP algorithms can
be monitored via state evolution iterations. Definition 4.4 shows the necessary conditions
on signals, measurement matrices and noise where rigorous proof of the AMP performance

is possible.

Theorem 4.3. [6] Let {x(n), w(n),A(n)} be a converging sequence of instance with,

neN
the entries of A(n) i.d.e. normal with mean zero and variance 1/m, while the signal
x(n) and noise vectors w(n) satisfy the hypotheses of Definition 1. Let 11 : R — R,
Yo : R X R — R be pseudo-Lipchitz functions. Finally, let {a:t}, {’I’t} be the sequence of

estimate and residuals produced by AMP. Then almost surely

Jim. ;;1/11 (rh) =E{v1 (n2)},

lim — ZUJQ ($§+17 ml) = E{¢2 (77 (XO + TtZ) ; 91‘/) ) XO} 5
where Z ~ (0, 1) is independent of Xy ~ py.

Definition 4.4. The sequence of instances {x(n), w(n) , A(n)}, y indexed by n is said
to be a converging sequence if  (n) € R”, w(n) € R™, A (n) € R™*" with m = m (n) is

such that m/n — 0 € (0, o0), and in addition the following conditions hold

1. The empirical distribution of the entries of @ (n) converges weakly to a probabil-

ity measure pp on R with bounded second moment. Further n=' Y " | ; (n)? —
Ep, { X3}

2. The empirical distribution of the entries of w (n) converges weakly to a probabil-

ity measure py on R with bounded second moment. Further m=' 32" z; (n)* —
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E,, {W?} = o2,

3. If{ei},<i<,, € € R" denotes the canonical basis, then lim,,; o minc, [|A(n)e;ill, =

1.

The rigorous proof is shown in [8] which supports the rationality of the state evolution.
We will clarify it in the following. It will be extended to our future study. Consider the

IST algorithm and recognize the input to the denoiser.

xt+ ATpt = gt 4+ AT (y — Amt)
=z' + AT (Az" + w — Ax')

=zt + (ATA — I) (mtme - a:t) + ATw.
Denote et = (ATA — I) (mtrue — a:t) + ATw. Then
wt—H _ wtrue =1 (.’L‘t + AT,rt; et) _ wtrue. (49)

Each entry of (ATA—1TI) ~ N (0, 1/m). Then we have for e': 1) E{el} = 0; 2)
E{eﬁe?} =0,1#j;3)
t|2 1 true t||2 2
E{lell*} = [l — a'|]} + 0.

m

The denoising step using function 7 (-) for very large n will be
thrl _ wtrue =1 (wtrue + Tz; et) . mtrue' (410)

where z ~ (0, I) and the variance parameters

722 %E{Hwtrue—a}H;}—l—ch. (4.11)
TH = %E{Hn (x4 7'2; 6]) — :Btrueug} + 02 (4.12)

The above two equations give the state evolution of AMP algorithms.
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To do further study based on the state evolution, one set 02 = 0 and define the soft

thresholding MSE per coordinate as
1
mse (77 po, a) = HE { [0 (2" + 725 amy) — mtrue]Q} .
Note that F, is scale invariant,

2,
sup mse (Tt y Po, Oé)
poEFe

1
= sup —77M (¢, ) (4.13)
poe]:e n

where p7* = $0 o+ (1 =€)+ 50400

Minimizing M (e, «), the limit is

Define the minimax threshold MSE
# —
M7 (e) Olg% M (e, ).

The infimum is obtained when p = §0_o + (1 =€) dp + 504 co-

M* (&) =E{[n (@ +2 o) -’}

={e(1+a®)+(1—-¢[2(1+a*) @ (—a) —2a¢(a)]}.
Combine (4.11) and (4.13). Then for each 6 € [0, 1], let pysk (0) be the value of p solving

M# (pd) = 6.
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The explicit expression for the phase boundary curve (0, puvsg (9)) is provided in the

following.

Ge(a)={ec(1+a?)+(1—e)[2(1+a?) @ (—a) —2a¢ (a)]} =4

202) — {2ae+ (1 ¢) [40@ (~a) +2 (1 +a?) @ (—a) - 26 (a) — 209/ ()] } = 0

o2

where ¢ (o) = e” 2 and @ (a) = [ ¢ (x)dx. It is easy to derive that ¢ (o) = a¢ (a)

5
3

and @' (o) = ¢ («). Thus the solution of the above equations is

5 = 2¢(a)
aF2(B(a)—ad(—a))
_ $(a)—ad®(—a)
P= """

4.4 A Simple Example

In standard compressed sensing (CS) settings, the entries of the measurement matrix A
are generated from i.i.d. Gaussian random variables. However, this may not be optimal
in terms of reconstruction distortion when the unknown signal @ is non-uniformly sparse,
i.e., the probabilities for different entries to be nonzero may be different. Consider the
example where & = [z7,, #7,] and the entries in @7, x7, € R™/? have different nonzero
probabilities. In an extreme case, suppose that the entries in a7, share the same prior
distribution with strictly positive nonzero probability while all the entries in x7, are zeros.
Fix the total power budget, i.e., the squared £s-norm of each row of the measurement matrix
is fixed to a constant. Different from the equal power allocation in standard compressed
sensing, a more sensible way is to spend no sensing power on the zero components in xz,
but allocate all sensing power evenly to the columns corresponding to xz,. In Figure 4.2,
we generate an extreme case example by assuming that the sparse signal has two equal
length parts, and the second part contains all zeros. Then we use two different sensing
matrices for the sampling. The middle figure shows the reconstruction from the observation
where a uniformly random Gaussian sensing matrix is used. The bottom figure shows the
reconstruction where only the left half of the sensing matrix is randomly Gaussian and the
rest is zero. The results show an obvious advantage by adapting the non-uniformly sensing

matrix for the compressed sensing.
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Figure 4.2: Intuitive example for reconstructing two-block non-uniformly sparse signals.
Top figure: original signal; middle figure: reconstruction with equal allocation on Az, and
Az,; bottom figure: reconstruction with all power allocated on Az,.

4.5 Revised AMP with Given Power Allocation

Based on the above simple example which motivates our study, we give the formal setting

of the problem as follows. Let

Fo=1{p: p{0}=1-¢} (4.14)

be the family of probability distribution with a mass 1 — € at zero. Assume a block-sparsity
signal © = [x7,; T1,; ...; T7,] where p., € F, and p., = pe; if i, j € T}, k € [s]. For the
purpose of power allocation, suppose that each column of A, denoted by A;, i € [n],
contains entries generated from i.i.d. Gaussian random variables with N/ (0, Jf/m). Fix a

total power budget E?Zlaf = n. The goal is to minimize the reconstruction error subject
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to the total power budget,

n

o1 . 2 2
U%{nlgg EE{H:{:*:]}HQ}, s.t. Z;ai =n, (4.15)
, —

where & is the compressed sensing reconstruction.

When coming to power allocation, the original AMP algorithm (4.5,4.6) needs to be
tailored. It has been assumed that a column of A, say A;, contains entries generated from
Lid. NV (O, a?/m). The original AMP is not optimal any more as different columns may

have different ¢5-norm. The revised AMP, termed as AMP.P(¢), is given by

gt =q(z' +©2ATr; ©719") (4.16)
1
t t | b1
—y— A il 4.17
r'=y x + - Ha: Hor , (4.17)
where ®2 £ diag (0’%, 03, a,%). The major difference from the standard one is the terms

© 2 and ® ! in (4.16). It is noteworthy that the revised AMP is not particularly designed

for the worst case though the later analysis is.

4.5.1 Derivations

The derivation of the AMP.P(e) follows from the same idea behind the standard AMP [74].
Describe the statistical relationship between @ and y by a bipartite graph, which includes
variable nodes indexed by ¢ € [n] for variables z; and factor nodes indexed by a € [m]

corresponding to observations y,. Denote the message passed from the factor node a to

t .
a—1

t

the variable node ¢ by r and that from the variable node i to the factor node a by zj_, ,

where the superscript ¢ denotes the ' iteration. It can be verified that [74]

szai = Ya — Z Aasz‘aaa (4.18)
J€m\i
1
AR = > Awrhi ] (4.19)
4 be[m]\a

where for notational convenience, 7 (-, 6;) is simplified to 7. (-) henceforth. The crux of
the AMP is to approximate these messages so that the computational complexity can be

significantly reduced.
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In the approximation, only O (1) and O (n’1/2) terms are kept and all smaller terms
are omitted. Here, it is assumed that both n and m are large and § = m/n is a constant
strictly positive. Since Ag; ~ N(O,og/m), it is clear Ay, is of O (n_l/Q). Note that
rt =y, — Zje[n] Aajmz-%a + Agixt ,, where only the last term (of O (n’l/Z)) depends

a—1
= TZ +6rt .. where rZ is of O (1) and both Srt . isof O (n—1/2)_

. . t
on 7. One can write r i a—si

a—1

t

By similar arguments, it holds that z! ., = 2! + dz!_ , where again, 2! is of O (1) and

Szt . isof O (n’l/Q). Keeping only O (1) and O (n’1/2) terms, the equations (4.18) and

i—a

(4.19) become

b ort =y — Y Aaj (2h+ 02l ,) + Agial, (4.20)
Jj€ln]
1
mf“ + 6:755:1(1 = gnt Z Ap (7’5 + 57“5—”') - Aairfz : (4.21)
¢ be[m]

From (4.20), it is straightforward to recognize that

rh=ya— Y Agj(zh+62t ) (4.22)
j€n]

ort L. = Ayt (4.23)

By Taylor expansion of 7 (), Equation (4.21) becomes

1
Hff + &Ugaa = ?nt Z Api (Tli + 57’2#1) +

t be(m|
1
—gAuran; > Ay (rp+ o) | (4.24)
g be[m]
from which it is clear that
1
:L‘E—H = 3 Z Ay (rh+61125) | 5 (4.25)
t be[m)
1
ot = 5 Aairin | Y A (rf+075) | - (4.26)
i be[m)]

Substitute (4.23) into (4.25) and (4.26) into (4.22). Again omit the terms smaller than
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O (n*1/2). We have

s = S (oFal + (ATr?),). (1.2

A2
Z U—azjnft_l <J]2-x;_1 + (ATrt_l)j) ri=t, (4.28)

Note that for large n, Agj ~ a?/m. The last term on the right hand side of Equation

(4.28) can be approximated as

1 2, t-1 T, t—1 =1 _ Loy ey i1
Z ang_l (ijj + (A'r )j) T = | Hora . (4.29)
J€ln]
Combine Equation (4.27), (4.28), and (4.29). We obtain the AMP.P(€) iterations described

by (4.16) and (4.17).

4.6 Reconstruction MSE and A Heuristic Derivation

We analyze the MSE performance of AMP.P(e). We focus on the minimax MSE as the
analysis can be highly simplified thanks to the property (4.4). As the rigorous analysis [7|
is still too arduous, we follow the heuristic proof in |74] which is much easier to describe
and highlights the key ideas.

The main results can be summarized as follows. Consider the asymptotic region where
(m,n) — oo simultaneously with a constant ratio m/n — §. Assume the block sparsity
structure described before with |Z;| /n — ¢; for some constant ¢;. Consider the least

n
favorable prior p* (¢;), i € [n], and suppose that (1) 00 %ZM# (e;) < 1. The

i=1
minimax MSE of the revised AMP algorithm is given by
1y 2
1 ) n _;M# (e1) /o;
~E {H;f; - mHQ} RN . o2, (4.30)
1— 5 2 M# ()
i=1

where the symbol = denotes the equality in the aforementioned asymptotic region.

Remark 4.5 (Relation with the Previous Result). Consider the uniformly sparse signal @
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with €; = ¢; for all 4,5 € [n]. The minimax MSE in (4.30) becomes

M#(G) o2
1— M#(e) )5

which consists with the result given in [34].

Remark 4.6 (Phase-Transition for the Noiseless Case). For noiseless case, 02 = 0. Con-
sider the same asymptotic region as specified before with additionally X7 ,¢;/m — p. The
phase-transition curve that separates the sparsity-undersampling (p — d) plane [74] is given
by

1 n
- #() =
- ZEIM (i) = 4.

That is, the reconstruction is exact if and only if £ 3~ M# (€) < §. This result is consistent
with the one in [92]. Furthermore, note the phase transition curve is independent of o?2.
It can be concluded that power allocation will not affect the phase transition curve when

there is no noise.

4.6.1 The heuristic derivation

The heuristic derivation of (4.30) starts with the iterative algorithm that the term % H:ct Ho ri-1

in (4.17) is omitted, i.e.,

!t =, (:ct + @‘2ATrt) , (4.31)

rl =y — Az’ (4.32)

Meantime, it also poses an artificial assumption that the matrix A at different iterations
are independently generated. Note in reality the matrix A is fixed for all the iterations.
The heuristic derivation gives the correct analysis as adding term (4.29) will make the
residue noise from different iterations independent.

To proceed, the input of the thresholding function in (4.31) can be written as
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zt + 0 2ATr = 2t + @247 (y — A.’Bt)

=x+e, (4.33)

where et £ (@szTA — I) (cc — wt)—&—(-)*QATw. The explicit form of the matrix ((-)*QATA — I)

in e is
o ?ATA; -1 07247 A,

0, 2ATA,  0,2AT A, -1

It can be verified that each diagonal entry o, 2AzTAZ- — 1 is approximately normal with
zero mean and variance 2/m; each off-diagonal entry ai_QAiTAj, 1 # j, has zero mean and
variance 0;20]2-/771. By the fact that w ~ N (O, o'QI)7 the following properties hold: 1)
E{el} =0;2) E{e?ﬁez} =0, i # j; 3) for large n, define %t%i =8 {‘e’; 2}, where

n_ g2

This helps in quantifying the MSE at the (£ + 1) iteration:

n 2

. 1 g;
i = =5 | S LE{fay —m @y + )5} + o7
7 j=1

From the definition of M# (¢;) in (4.4)

2 _
E {Jaj —m (a5 + )|y } = MF () 7. (4.34)
As a result, when the steady state (7 ; = T441,;) is reached,

. L[ 1{ - ‘
7= po EZO’?M# (Ej)TjQ +0% ), i€n. (4.35)
7 ]:1

The explicit form to compute 72 can be computed by observing that for all i € [n],
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n_ .2
7lo? = Zl%M# (€5) 7:]»2 + 02 which is a constant independent of i. Hence,
]:

2
1
722 L i€ [n). (4.36)

i — 9" n
% 1-

1
m
i=1

Combine (4.36) with the state evolution (4.34). We obtain
Le{je =i} = 13 s o) 2
n 2 n 4 1) g
i=1
which gives (4.30).

4.7 Optimal Power Allocation Strategy

Based on the derived minimax MSE, the optimal power allocation can be achieved. In

particular, the power allocation can be formulated as a constrained optimization problem

n
min — 0%, sit. E ol =n.
i=1

As 02’s are the only variables, focus on the numerator of the objective function. By the

Cauchy-Schwarz inequality, one has

" 2
> :L( M (q)) , (4.37)

where the equality holds if and only if \/M# (¢;) = co? for some constant c. Recall the

total power constraint > o? = n. The constant ¢ can be characterized and the optimal

power allocation is given by

o?=—Y" U icn (4.38)
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Figure 4.3: Reconstruction error contours for a sparse signal with two even-length blocks
where the sparsity ratio 6(1)/6(2) = 100. The blue solid lines and the red dashed lines
respectively present the minimax MSEs {0.1, 0.2, 0.5, 1, 2, 5, 10} before and after the
power allocation. The phase-transition curve for noiseless case is given by the black line.
The upper right curved area is the inadmissible area under the sparsity ratio 100. Tt
is necessary to point out that for the curves with MSE<1 shown in the figure are not
monotonic increasing with p. This means that by fixing p there exist two sampling rate to
reach the same MSE. The curves without power allocation result are consistent with the
ones shown in [74]

4.8 Discussion on Reconstruction Error

4.8.1 Theoretical Reconstruction Error

For theoretical demonstration of the effects of power allocation, we assume that the un-
known sparse signal can be divided into two even-length blocks where the sparsity ratio is
given by 6(1)/6(2) = 100. Consider the least favorable prior p:ﬁl) and pﬁz). Normalize the
noise variance by setting 02 = 1. Let § = m/n and p = % > €. In Figure 4.3, the minimax
MSE contours before and after the power allocation are respectively given by blue solid
lines and red dashed lines. The phase-transition curve for noiseless case is given by the
black line. We see that for the all pairs of (p, 0) under the phase-transition curve, the ob-
tained reconstruction errors decreased after power allocation. Above the phase-transition

bound the state evolution does not converge. The reconstruction error goes to infinity.
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Figure 4.4: MSE against sparsity ratio for sparse signals with two even-length blocks. Blue
and red solid lines are the MSE before and after power allocation. Dashed lines are the
corresponding theoretical prediction.
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Figure 4.5: MSE against noise variance for sparse signals with two even-length blocks.
Number of realizations is 100. Blue and red solid lines are MSE curves before and after
power allocation. Dashed lines are the corresponding theoretical prediction.
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4.8.2 Empirical Studies

The least favorable prior involves Diracs at +co. It is not practical to numerically generate
a sparse signal from such a prior. To avoid this difficulty, the authors of [34] defined the
so called a-least favorable prior as the distribution p. , € F. such that the corresponding
MSE satisfies M, (¢) = (1 — a) M7 (¢), where 0 < a < 1. Given an a, the value of y can
be computed via the explicit form of the MSE of the three-point mixture.

We set @ = 0.02 which is the same as that in [34]. Let m = 2000 and n = 4000.
Assume a sparse signal with two even-length blocks, i.e., ny = no = n/2. The sparsity
ratio is defined as () /e(®). The signal @ is randomly generated (100 realizations) from the
sparse prior. For each realization, the AMP.P(e€) algorithm is applied for reconstruction to
obtain @. In Figure 4.4, we fix p = 0.18 but vary the sparsity ratio 6(1)/6(2). We compare
the reconstruction MSE ||& — w||§ /n. From the presented results, the average MSE after
power allocation is always smaller. The performance gain becomes larger when the sparsity
ratio increases. Theoretical predictions drawn as dashed curves are very close to the curves
obtained from simulations. In Figure 4.5, we aim to demonstrate the linear relationship
between the reconstruction MSE and the noise variance, predicted by (4.30). The settings
are the same to those for Figure 4.4 except that p = 0.1 and e(l)/e@) =5 and 100. From

the simulations, the linear relationship is confirmed.

4.9 Power Allocation for Another Objective: Contour En-

hancement

A similar analysis to that eariler we produced in this chapter can also be applied to
optimization problems with other objective functions so as to meet various objectives.
For example, due to some actual purposes one may need to reconstruct an image by far as
possible to keep its main characteristics. Imagine a scenario where textures from an old
book needs to be extracted. If we only focus on reconstructing the image by minimising the
whole reconstruction error, the reconstruction will blur texture figures from which further
extraction fails. To avoid this an alternative objective function is required to balance

the reconstruction minimisation and the texture blurring. Notices that most images have
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tree (non-uniform) structure sparsity in the wavelet domain [53] and the contours of the
images usually lies in the most sparse layer. We explain that the amplitude of the non-zero
elements in the wavelet domain can be statistically treated at the same level. Then the
more sparse layer in the tree makes less contributions if a uniformly random measurement
matrix is used in the linear observation system. As a result the sparse layer is less possible
to be correctly recovered. One reasonable approach would be considering each of the layer
in the wavelet domain as a signal block. Instead of minimising the overall reconstruction

MSE, we normalise the MSE of each signal block and minimise their summation:

s E{||® (@), - oz,
PCE: mi

2
1 2} - 2
_min 5 , s.t. Zo =n. (4.39)
Lo T E < [lez, (3 i=1

where signal model is assumed to be y = AW (x) + w. ¥ (x) is the wavelet transform of
. This optimisation problem evens up the contribution of each layer, therefore provide a
good balance between reconstruction accuracy of each layer and the overall MSE.

We can also use the minimax risk to find the optimality for problem (4.39):

1 E {Hiifz - CBZHS} iiZZlM# (e1)/ (6”_2_2)

Pcg = min — = o 0-23
g2s N — €; 1 # ]
i i=1 11— S M# (&)
i=1
where the minimum achieves at
M*# (e .
o2 = (©)/s e (4.40)

3=

.
Il
—

M# (61) /Ei

To demonstrate, we choose a text extraction case. See the original image (the left image
in Figure 4.6), we transfer it via a standard wavelet matrix ¥ to obtain the non-uniform
sparse signal and calculate the sparsity of each layer. Then we multiply an i.i.d. random
Gaussian matrix G with 0 = 0.5 on the left of the wavelet matrix. Using the obtained
signal sparsity, we apply the power allocation (4.40) to the multiplied measurement matrix
GW. The revised AMP is then called for measurements from GW¥ with and without power

allocation. The reconstructed results are shown in Figure 4.6, where the middle image uses
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the measurement matrix without power allocation and the right result uses the one with
power allocation. Our test results show a highlight effect on the texts observed from the

right image, which makes it easier for the text extraction as an input.

Figure 4.6: Compare reconstruction result with and without enhancement. Left: original; Middle:

reconstruction without enhancement; Right: reconstruction with enhancement



Chapter 5

Quantifying the Asymptotic
Performance of Distributed

Compressed Sensing

5.1 Introduction

Distributed compressed sensing (DCS) [5] is a extended research of compressed sensing
to reconstruct sparse signals with correlations. Consider a compressed sensing setup with
several sensors measuring several sparse correlated signals, where each signal is measured
via a linear transform with additive noise. DCS wishes to reconstruct the sparse signals
through knowing the correlations to outperform traditional compressed sensing. Typical
models of the signal correlation include sparse common component plus innovations [5],
common sparse supports [5], non-sparse common component plus sparse innovations [5],
sparse common component [75], sparse common supports plus innovations [96] and sparse
common supports with correlations plus innovations [97].

In this chapter we consider common support signals, i.e., assume all the signals have a
same sparse support. DCS with this type of signals can be applied in applications such as
magnetoencephalography [23], DOA estimation [104], parallel magnetic resonance imag-
ing (pMRI) [105], distributed sensor networks [115] and distributed video sensing [29].

Common support signals are also widely discussed in group lasso problem [116] and mul-

91
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tiple measurement vectors (MMYV) problem [23|, where the signals are called group/block
sparse signals and the linear systems for the signal observation are different from DCS.
Most existing DCS algorithms for common support signals are the derivatives from greedy
compressed sensing algorithms such as orthogonal matching pursuit (OMP) [81] and sub-
space pursuit (SP) [26]. The typical algorithms include simultaneous orthogonal matching
pursuit (S-OMP) [103, 102], side-information based OMP (SiOMP) [117], distributed and
collaborative OMP (DC-OMP) [110], distributed SP (DiSP) and distributed predictive SP
(DPrSP) |96], etc. All these algorithms can use restricted isometry property (RIP) for
the performance analysis. In terms of implementation they also carry the same thought:
each signal updates the estimation of its support set and share to the other signals, then
via a designed voting mechanism the common support of the signals is decided either
sequentially or in parallel. This procedure is then iterated until a stop criteria is met.
Block sparse signals are usually a category to describe signals with common support.
The earliest research problem focusing on compressive sensing of block sparse signals is
called group Lasso which is proposed by Yuan and Lin [116]. Group Lasso extended the
Lasso problem and was used to help with the regression model selections. The model
was afterwards applied to generalized linear regression [87], logistic regression |73| and
80 on. Stojnic et. al. analysed the optimal number of measurements required for the
block sparse signals given that the measurement matrix is i.i.d. Gaussian[94, 95]. A
sharp lower bound was also derived in the asymptotically regime in their work. Baron
et. al. considered slightly different scenarios that the measurement matrices contain block
diagonal structure [5]. One of the cases they considered, which also belongs to our focus in
this chapter, is that each signal block is independently measured. Based on this, algorithms
such as simultaneous orthogonal matching pursuit (SOMP) [103, 102| and relaxed belief
propagation(BP) algorithm [63] can be used to jointly reconstruct the signals. An adapted
version of SOMP algorithm is proposed in [5]. The topic related to such signal model is
termed as distributed compressed sensing. Ji et. al. started from the view of machine
learning to analyse the same problem and proposed multitasking learning framework [61].
The essence is to use relevant vector machine as the driver to pursuit the training result
to be sparse. In applications when all the sparse blocks are obtained from the same

measurement matrix, the problem turns to multiple measurement vectors which is firstly
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proposed by Cotter et. al. [23]. That topic also gained extensive attention, see [21, 119].
Other compressed sensing methods of interest related to block sparse signals can be referred
to [96] and the references therein.

Other than greedy technique based algorithms, in this chapter we choose to use approx-
imate message passing (AMP) [30] framework for signal recovery and performance analysis.
This is motivated by the associated low computational complexity and the capability of
quantifying the minimum sensing rate for exact recovery, i.e., the phase transition. AMP
takes advantage of the properties in i.i.d. random measurement matrices and use reason-
able approximations to vastly simplify the computations of message passing algorithms
in graphical theories. In the mathematical expression, an ’Onsager’ term is added to the
iterative soft-thresholding (IST) iterations to eliminate the dependence brought in by the
iterative updates. The AMP technique has been previously applied to analyse group Lasso
[36, 98] and MMV problem [119]. However the analysis turns out to be significantly dif-
ferent in the heterogeneous DCS case where the numbers of measurements and the noise
levels at different sensors are different. In the heterogeneous case, the symmetry in the de-
coder and performance evaluation breaks down and so does the techniques in [36, 98, 119].
Furthermore, as known by the author, AMP based MMV algorithm requires small inno-
vative difference between each two blocks in the measurement matrix so as to reach high
reconstruction successful rate[119]. In [49] the author discussed multi-terminal compressed
sensing models and extended the associated state evolution disciplines. Sparse common
component plus innovations model is considered and the results is compared with Renyi
information dimension analysis.

This chapter firstly focuses on common sparse supports model with only knowing the
uniform sparsity characteristic across the signal elements. We employ the least favorite
distribution for block sparse signals and derive the corresponding AMP reconstruction al-
gorithm from the bipartite graph analysis. Using the state evolution technique the phase
transition bound is shown as a set of curves, each curve represents for signal with a spe-
cific number of blocks. Then we add a very common continuous-plus-discrete probability
distribution prior on the sparse signal. The corresponding decoder has been derived with
an explicit closed form. The exact phase transition can be evaluated via numerical inte-

grals and the rate regions for exact recovery have been characterised. It turns out that
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an equal allocation of the number of measurements across sensors is strictly suboptimal.
Furthermore, our approach allows to quantify the effect of the correlation among nonzero
components from different sparse signals. This is important for many practical scenarios
[59, 97| but was absent before according to the authors’ knowledge. The numerical algo-
rithm provided in this chapter is also applicable for tracking the reconstruct mean squared
error assuming Gaussian noise with known heterogeneous variance is added on each signal.

The remainder of the chapter is organized as follows. We introduce the DCS system
model in section 5.2 and give the scalar case analysis in section 5.3.1. In section 5.3.2 we
infer the approximate message passing algorithm for the common support support sparse
model. In section 5.3.3 we introduce the phase transition for the derived algorithm and
extend the result to limit as the number of blocks approaching to infinity. In section 5.4
and 5.5 we discuss the difficulty by employing the model to a heterogeneous case thus
we propose an alternative but more specific signal prior distribution, Bernoulli-Gaussian
distribution. We analyse the system model with its scalar case estimator derivation. Then
in section 5.6 and 5.7 we give the corresponding AMP algorithm and use the state evolution
to draw the phase transition. In the same sections we propose strategies to minimise the
reconstruction error by giving a total sampling resource budget. Finally in section 5.8
we give the numerical study for comparison to the theoretical results. Image processing

example is also demonstrated to show the effect of our optimisation strategies.

5.2 System Model

Consider the DCS scenario with K € Z%1 sensors. For each sensor k measurements are
given by

Yr = Apxy + wy, (5.1)

where y, € R™* is the measurement vector. Here we an ambiguous definition, where
Aj € R™*" denotes the measurement matrix (rather than a column vector), x; € R"
stands for the unknown sparse signal, and w; € R™* is the additive white Gaussian noise
with mean zero and the covariance matrix o1, k € [K].

Assume that the unknown signals a’s are from related phenomena, which suggests

that they share the same dimension and exhibit inter-signal correlations. In this chapter,
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we are particularly interested in the joint sparsity model (JSM) type 2 proposed in [5], that
is, x}’s share the common sparse support. Let x;,; be the i-th component of ), and define
supp (x) = {i € [n] : xp; # 0} be the support of ;. The JSM type 2 model assumes
that supp (¢1) = supp (z2) = --- = supp (zx). Define x.; = [x1,, 22,4, - ,xK’i}T € RK

which groups the i-th components from different k’s together. Write the overall system

model as

y=Azx+w, (5.2)
where A = diag (A, Ag, -+, Ak) is a block diagonal matrix, y = [le,sz, e ,y}}]T,
T = [:BlT,a:QT, 7$£}T7 and w = [wlT,w2T,~~ ,w%]T. Then the unknown signal x

follows the well-known block sparse structure [116] where the signal « is divided into
blocks given by x.;’s and the components in a block are either simultaneously zero or

simultaneously nonzero.

5.3 AMP for DCS Reconstruction — Homogeneous System
Model

5.3.1 Scalar Case Analysis

In order to derive the AMP algorithm for DCS reconstruction and analyse its performance,

the “scalar” case is studied in this section where mqy = mo = --- = mg =1, n =1, and
Al = Ay == Ax = 1. With this assumption, the signal model is simplified to
y=x+weRE, (5.3)

where w ~ N (0, I). Assume there is no more information on the signals known in advance.
We consider the least favorable distribution as article [33]| shows it statistically gives the
worst case minimum mean squared reconstruction error. We generalise this idea and start
with a K scalar signal model including signal z;s, i € [K]. Each z; is independently

generated and the fo-norm ||x||, has the least favorable distribution:

p([[zlly) = (1 =€) do + edo. (5.4)



CHAPTER 5. QUANTIFYING THE ASYMPTOTIC PERFORMANCE OF DCS 96

N

K=1

Figure 5.1: Soft-shresholding function shows the shrinkage of the signal amplitudes for
cases K =1 and 2.

The following soft-thresholding function (5.5) for denoising,

”*ﬁ'ﬂay if |yl > o
Na (Y) = : (5.5)

0 otherwise

In [36] this function is simply mentioned and used for the group Lasso problem. This is
a reasonable denoiser since in the case when K = 1, we use the thresholding function by
shrinking the absolute value of the observation y and keep its sign. This is exactly the
thresholding function used in [30]. Because of the isotropy of the signals in the model
settings herein, we consider keeping the sign of each element and shrink the £3-norm |[|z||,.
The analysis given in [70] shows the use of block thresholding function in complex AMP.
It is equivalent to our K = 2 scalar case. The extension to K > 2 cases can be found in
[36, 51, 17]. See Figure (5.1) for a pictorial generalisation from K = 1 to K = 2. In the
extreme context, one assumes the isotropic signal x is generated from the least favorable
distribution (5.4) and this gives an asymptotic upper bound reconstruction MSE using

(5.5). In the Appendix B.1 we will spend some space for deriving the MSE closed form.

5.3.2 Inference via Message Passing for Common Support Signal Model

We start with the bipartite graph for the distributed compressed model and extend the
theory of the previous section to the vector case. The key step is to introduce the min-
sum algorithm to solve the optimization problem shown in (5.6). Min-sum algorithm is

a popular optimization algorithm for graph-structured cost functions. More importantly
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approximation techniques are added to simplify the complexity of the whole algorithm.
The main procedure is followed by |74| with additional consideration of the message pass-
ing among multi-layers in Figure (B.3). Figure (B.3) gives the bipartite graph for DCS
problem. It consists K many layers, each representing for a factor nodes y; to variable
nodes x;.

Consider model (5.2) and set w = 0 for the moment. We aim to solve the DCS problem

written as

K n
1 2
H;cm2k§ lHyk—AkQJkHQ"'/\ E il

i=1
s.t. Vk,l € [K], Supp () = Supp (x;), (5.6)
where x.; is a block of the signal components defined as x.; = (21,3, T2, ,xKvi]T. For

block k, we have the decomposed cost function

1 m n
CA,y ($k) = 5 Z (yk,a - Ak,a$k>2 + A Z ||33,z||2 5

a=1 i=1

where Ay, , represents the at" column of matrix Ay. The min-sum algorithm updates read

T @) = M@ally + Y T (ki)
b#a

~ . 1
Jta—>i (xk,l) = Iml’lil’l 5 (yk,a - Ak,axk)z + E J;—m (Ik,j)
G —
J#i

Since ijé (2k,;) and Jtass (x1,;) are both convex, we can simplifying it by quadratic
approximation. Notice that amplitude of elements in Ay are assumed of order O (ﬁ),
which are statistically much smaller than 1. Ag a result we use a second order Taylor

expansion for Jt,_; (21;) (assume that Jtai (0) = 0):

A~

1
Jtasi (@) = = g si (ApaiTh) + 55}2@% (Apaitri)’ +O ((Ak,a,ixk,i)3> :

where O‘Z a—s; and ﬁ,tc u_s; are the introduced coefficient of the first and second order term
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Figure 5.2: The factor sketch graph for the DCS problem. The circles are the variable
nodes. The squares are the factor nodes. The pentagons are the nodes constraining all the
K signals share the same support.

J't+1

in the above expansion. Substitute jtaﬁ@- (2g,;) into J;

(xk,;) we have

Ji%a (@ni) = Al

1 2 3
2~ ; Appihpsi | Thi+ 5 ; Ak piBroyi | Thi+ O (n (Ak,ih,i) )
a a

1 2 3
-1 t—1
=1 (kaz - xk,Ha) + 0 (w;“ - %,Ha) .

kji—a

I

where Ay .; represents the it" row of matrix Aj;. The second = holds due to taking the
second order Taylor expansion for jta_n- (k) and set :c',;:a = arg ming, , Jtosi (ki)

Now the problem is transferred to solve x'}c isg and 7}56 iq- Take the derivative of

t .
']z'—m (xk,l)
1—a A )t At 2 t R
0T : - ||CU ” - § :Ak,bﬂak,b—n' + § :Ak,b,i/Bk,b—n' Lhyi = 0.
ki 112 bta bta
A iat . .
Define uy, = Lioga Ak bi% i A . The above equation turns to

V= —w—————7
2 7 k 2 7
Zb;ﬁa Ak,b,iﬁk,b—n' ’ Zb;ﬁa Ak,b,zﬂk,b—n

Lk, _
il

Thj — Uk + Vg -

Note the signal model assumes x.; having the isotropic distribution consists all zeros (or

non-zeros) at the same time. We may equivalently focus on [|a.;||, instead and only
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care about applying a thresholding function on it. In this way we expect x.;||u, i.e., it
implies that vy = v; for Vk,l € [K]. Therefore we can remove the subscript on v. Let

u = [u1, ug, ..., uk}T. We have

v
x,; |1+ =u.
[E2[P

Refer to (5.5) and solve the above equation and set x!; ,, = @.;,

(1— m)u i fuly >

0 otherwise
Also compute v} . ., =1 (up, v), where

(i —lllE)o

ol i fully >0

' (uk, v)
0 otherwise

t

We use the same way as shown in [74], use ", , , and ~L.,, to represent a};’b_)is and B,’;b_ﬂs,

yielding

1
t _ ot
QL b—i = > A2 i Yk,a — E :Akyaajxk:,i—m )
i#j Aa,i Vki—a it

8, !
kb—i — 2 i .
Zi;ﬁj Ak,a,ﬂk,Ha

Then noticing the weak dependence among both terms A?

2
k,a ]Pyk i—a and teerAk ,a lek,i—m'

t
Let Thiosa = ak z—>a//8k isqs WE can write the message passing iterations as

Tk; i—a — ZAk a,j k;z—>a7
i#j

t _ 2 t t
Thijsg =1 E Ap 0 iThp—ir 0]
b#a

where ' is treated as independent of k.

The above equations lead to our AMP algorithm for DCS. The different from the classic
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AMP in form is the element-wise thresholding function 7 ().
zit = (z), + Al r};0"), (5.7)

r}; =y, — Aka:}‘/€ + biri‘l, (5.8)

where b, = L > (:B',;_jl + (Agr,i_l)j ;Ht_1>. Furthermore, in high dimensional statis-
tics as n — o0, all the x;’s have the same distribution and so are all the A,’s which imply
that bt = bt, Vk,l € [K]. We define b’ £ bt .

Although the above inference is built upon the DCS model (5.2), the choice of pa-
rameters ' and b’ also have close connections with the problem (5.6). We formalise the
proposition below, where general sequences {Gt}t>0 and {bt}t>0 can be used as long as

there fix points (', r') can be found via the iterations (5.7) and (5.8).

Proposition 5.1. Let (x*, r*) be a fized point of the above two iterations (5.7) and (5.8)
for 08 =0, b' = b fized, k € [K]. Then x* is a minimum of cost function in the problem
(5.6) for

A=6(1-0).

Proof. From equation (5.7) we get the fixed point condition
x} + Opvy = xf + Al 7],
for v, € R" such thatwvy is a sub-gradient of the /1-norm at x7, i.e.,

sign (afz Z) if 7 #0
Vg = 7 :
c € [-1,+1] otherwise

From equation (5.8) we get (1 —0b)r} =y, — Agx;. Substituting in the above equation,

we have

0 (1—b)vx = A (yr — Agy). (5.9)
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Note the stationary condition of problem (5.6) can be written as

K n
% 0 i= A . ;
> AL (g - Agar) = 22 A2l
k=1
K
=21 (5.10)
k=1

Consider the connection with the message passing min-sum algorithm. Combine and sim-
plify (5.9) and (5.10) we get
0(1—-0) =),

which is also the fixed condition of the AMP algorithm. O

5.3.3 Phase Transition Limit as K — oo

In [94] the sampling limit of group Lasso problem is shown as the number of blocks K — oc.
Similar results for compressed sensing block sparse signals are also given in |72, 80|. We
are interested in the phase transition limit as K — oo of applying AMP algorithm to the
homogeneous DCS problem. Below we will show the derivation and compare the obtained
conclusion to the benchmark results in |72, 80]. The phase transitions we obtained in
this section turn out to be the same as the group Lasso limit and leave large gap to
the information theoretical limit. This result presents the motivation for us to study the
heterogeneous case in the next section, i.e., unevenly allocating sampling rate for the signal
blocks. We will show that it is a possible way to overcome the gap.

We formulate the goal in this section into the following proposition.

Proposition 5.2. Consider system given in (5.2). Given the formula of Mg (e,c) in
(B.2), and let § = %, where m = m1 = my = ... = myg. Further assume there is no
additive noise, i.e., w = 0. We show that as K — oo, the sampling rate § is lower bounded
by

(5.11)

in order to achieve the accurate reconstruction.

The proof of this proposition is given in Appendix B.2. From the above results, we see

that when K — oo, the phase transition curve depends on value % Therefore we can
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— k=1

Figure 5.3: Phase transitions of DCS with least favorable group sparse distributed signals.
The deconstruction algorithm is DCS-AMP.

draw the theoretical p — ¢ curve in Figure (5.3).

Techniques based on the coding theory of Reed-Solomon codes can be employed to
determine any signal & with sparsity € in (5.2) for any ¢ and any e < % in polynomial time
as the measurement matrix is chosen uniformly at random from a given distribution. It is
easy to see that p can not be greater than % if we want @ to be uniquely recoverable. The
complexity of algorithms from [80, 13] is roughly O (nSKS) If the measurement matrix
is designed based on the techniques related to the coding/decoding contents then the
complexity of recovering @ can be decreased to O (nK) (see [113] and references therein).
However, these algorithms usually do not allow the sampling rate d to get close to % In the
DCS settings (5.2) the measurement matrix A is designed to be a block diagonal matrix
and the theoretical bound shown in [80, 13| is achieved. The resulting phase transitions
admit with the ones given in [80, 13| and [94] but complexity of recovering @ is O (n*K?)

which outperforms the benchmarks.
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5.4 AMP for DCS reconstruction — Heterogeneous System
Model

This section is to further analyse the block soft thresholding function and show the tech-
nical difficulty on applying it to the least favorable distributed block sparse signals to the
heterogeneous system model. We will overcome this is issue by introducing a signal prior
and deriving the MMSE estimator to replace the thresholding function. We still consider
the system model (5.1) and follow the same description in Section (5.2). More gener-
ally we allow heterogeneous cases where different sensors may collect different number of
measurements and subject to different noise level, i.e. we assume my # my, Vk,l € [K].
Remove the equal variance constraint in (5.3) and allow the variance being different
among the noise elements. Note that here we do not have prior distribution on x, we may
define A = diag (o1, ..., 0x) and normalise the noise variance on all elements. Therefore
we are still fine to utilise (5.5) except the input is replaced by A~'y. Finally scaling back

the output by A, we actually obtain an estimate & by using the following function

T = (y; Afl,a)

n
[A~tyl[—e i (At
ey i [[AT Y[ > e

0 otherwise

lI>

(1 - !Ajy!z>+ . (5.12)

On determining the parameter «, we still consider the least favorable distribution (5.4)

and assume an isotropic probabilistic characteristic on @. The upper bound MSE

2
+ eonIE — 7 5 =
10

where a details can be found in Appendix B.3. A major difficulty we meet is that with
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the change of o;’s during AMP iterations. Since the scale invariant property does not
hold for the heterogeneous case, the optimal threshold « needs to be updated according in
each iteration. This « calculations are via numerical search which cost a lot, therefore it
impedes the later procedures of determining the state evolution in AMP.

The aforementioned problem can be avoided if we switch from the Lasso type denoiser

to a more convenient one. Specifically we assume the Bernoulli-Gaussian model:

px.; (.5;6,0,Xx) = (1 —€) 0z =0 +efc (x.i;0,3x), (5.13)
where
_1 1 _
fo i) = =l o (<3 @ - 0 = @) (5.14)

where 04— denotes the Dirac delta at * = 0, and fg (2;0,Xx) is the Gaussian density
function with zero mean and covariance matrix X x. Here, the parameters in Xx are
introduced heterogeneously. However in this chapter we only analyse models with hetero-
geneous noises. Since we note that the performance analysis will highly depend on the
signal-to-noise ratio, the signal energy can be normalised by letting 3y = I, and remain
the signal-to-noise ratio unchanged by adjusting the noise variance U%’S. It can be verified
that the models before and after adjustment have one-to-one linear correspondence. We
also note that the statistical modeling allows more sophisticated structure than in the JSM
type 2 modeling. Besides the common sparse support, one may assume that the nonzero
components from x.; are correlated, i.e., X x is not diagonal. In the rest of this chapter,
we will firstly focus on (5.13) and present results related to the case ¥ x = I. Then we

further spend some sparse to discuss the case when Xx # I.

5.5 Scalar Case Analysis for Heterogeneous Model

For compositional convenience, we define

(5.15)

which is an invertible function of the SNR at the k-th sensor.
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The MMSE estimator and the associated MSE are derived as follows. The MMSE

estimator of xj, denoted by T = gi (y; 02), is given by the conditional expectation

b = gr (y:0°) = E[X)[Y = y] = / o Dy (aly) de
1

= Ryyk, (5.16)
1— 1 R 2
1‘*‘z£ITziﬁiﬁ§eXP(‘7;%93)
where the notation f denotes multivariate integral with respect to x1, x2, ..., x; on their

supports R, The associated MSE is then given by

My =E [(Xk - Xk>2 Y = y]

:€<1—Rk'Ik,K); (5.17)
where R = [R1, Ro, - - - ,RK]T:
;0,1
@K:/ I%IL@(Z )&x?ﬁm, (5.18)
L4+ = HZMGXP<_17RZ7)

and the subscript K of M}, i and I}, i is introduced to emphasise that the corresponding
value depends on all the K components in the R vector.

It is hence clear that the MSE performance at the k-th sensor is affected by the SNRs
at other sensors. We will see in Lemma 5.5 that it specifies the impacts: for a given sensor
k, the higher the SNRs at other sensors are, the smaller MSE (the better performance) the
sensor k gets. This is intuitively correct and introduced by the block sparse structure.

In addition, we include here some details that are required for the low complexity

implementation proposed in the next section. Define

/ 2 6 2 é
[} (y U) 9yk9k (y U) o [ Xk ] ( )
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It can be verified that

, o 9k (y:0°) | g (y;0°)
j07) = +
9k (y o ) Uk U’%

]. — € 1 Rl 2
. - . 5.20
€ H VI—R; eXp < 20l2yl> ( )

Furthermore, we also consider the more general case given by (5.14) where X x is not
necessarily diagonal. In the Appendix we provide the computed result of the MMSE
estimate E [X|Y = y], the associate MSE and the partial derivative of the MSE based on
the general model (5.13).

Compared with the Group Lasso denoiser, it is possible to use MMSE denoiser to im-
prove the performance to the reconstruction algorithm. For example, the message passing
decoder in [84] which uses conditional mean of the signal as the prior information and
achieves the optimal phase-transition threshold in the presence of additive Gaussian noise.
Using MMSE denoiser, an accessible computation form of the mean squared error can be de-
rived based on a given signal prior distribution. Given the signal distribution, the denoiser
(5.16) can be designed which evidently brings better MSE than soft-thresholding functions.
In the extreme case, we may assume the block sparse signal with each element having
Bernoulli-Gaussian distribution px (x; 6,0, 02 — oo) pursuing to a Bernoulli-Uniform dis-
tribution. The MMSE denoiser based upon that can be considered as an alternative to

soft-thresholding functions in the scenario that the sparse signal distribution is unknown.

5.5.1 Special Cases for Computation Simplification

As My, i in (5.17) involves K-variate integrals, the performance evaluation becomes chal-
lenging when K gets large. Here we discuss two special cases where the computations can

be simplified.

One special case is that all the noise variances Uz’s are identical except one. Without
loss of generality we assume o7 # 03 = 05 = ... = 0%.. For a fixed value z and consider any

given xo, ..., xx having \/Zﬁig x% = 2 € R™, we can use variable substitution to calculate
(5.18) and consequently the K — 1 multiple integral of xs, ..., xx is replaced by a simple

integral of a Chi distribution of variable z:
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IlK:/ fo @0 1) S (51K - 1) daidz (5.21)
’ L o fo (0.1 £y (25158 K 1)

dzidz, (5.22)

o fa (x1;0,1) fy (231, K = 1) Kzil
2,K — 1— Rz
s e T fe (@i01) £ (s 7% K 1)

where [ # 1, I' () is the Gamma function and better
21_§zk*16_22722
Ix (Z;O‘Q,k‘) = W.
This variable substitution will make it possible to analyse the theoretical bounds of block
structured sparse signals with K > 2 in this particular form, by merely using double
integrals.
The other special case is the homogeneous case, i.e., assume all the noise variance U,QC’
are equal. This is a more general case and was used to analyse the state evolution for
the Group Lasso problem [98]. By using the similar variable substitution, one assumes

\/Zle 23 = z. We are able to replace the K multiple integral (5.18) by one integral of

Chi distribution:

v (21, K) 22
// - le rfx( - R[ K) dz, (5.23)

Remark 5.3. The expected MSE for each signal block converge with increasing K:

hm MkK( ) =¢ (5.24)

The detailed derivations of the above two special cases are given in Appendix B.4.

5.6 The AMP Based Reconstruction Algorithms

5.6.1 Joint Reconstruction

One of the key ideas of AMP is that at each iteration one computes a noisy observation of
the true signal which is modeled as the true signal corrupted by a simple AWGN channel.

In particular, at the ¢-th iteration, let ' = x+ 2! where 2! € R" is the equivalent Gaussian
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noise. Consider a block of the signal components x.; = [x14,Z2;, - ,xKﬂ-]T. Then

)

If the components of the noise z are independent and the statistics are known (which are
true according to the state evolution analysis), then the model (5.25) coincides with the
correspondent scalar case model. The MMSE estimator (5.16) can be applied and the MSE
of the estimate can be computed via (5.17). The way to compute &' was derived in [84]
and is detailed in Algorithm 5.1.

To complete the algorithm design, one needs to characterise the statistics of the equiva-
lent noise 2. This can be achieved by the state evolution analysis in the next section under
certain conditions. Specifically, the equivalent noise vectors z}’s, Vk € [K], are independent
and approximated Gaussian distributed with distribution N (0, T};I), Vk € [K], where the
variance 7/ can be computed in multiple ways. Let 7071 = [Tf_l, . ,T;(_l]T € RK
contain the equivalent noise variances from the (¢ — 1)-th iteration. Compute R!™! =
[Rﬁ_l,Ré_l,--~ ,RZI]T € [0, 1}K by substituting T]i_l into (5.15). The MSE at the

t — 1)-th reconstruction is given by M*~1 = | MY Mi=t oo ML | where M7} can
g y 1L,k Mo Kk KK kK

be computed via (5.17). Then
Th= ML/ (%) + o2, Vk e [K].

However, the computation of M, ]é_Kl involves multiple integrations which may be computa-
tional challenging. Lower-complexity alternatives are needed.

One way to simplify the computation of 7} is as follows. Recall the definitions of
gk (5) € Rand g}, (;-) € Rin (5.16) and (5.19) respectively. For a given & € RE™ and

7 € RX with slight abuse of notations, define

gk (iv T) = [gk (i-,l; T) » 9k (i-,% T) y 9k (i-,n; T)]T € Rn>
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Algorithm 5.1 The Joint Reconstruction Based on AMP (Type I strategy)

Input: y, A, €, ag, and o2 = [a%, e ,a%(].
Initialisation:
20 =0,r0=y, 2% =24+ ATy0, ) = 60’3/ (%) + 02, Vk € [K].
Iteration: Let t = 1,2,---, until the stop criteria are met.
aj, = g (&5 771), VE € [K]. (5.26)
1
uj, = — (g, (8" 1 77Y)), Vk € [K]. (5.27)
my,
=l + op, Vk € [K]. (5.28)
v =y, — Agzh +wprl b, ko€ [K]. (5.29)
@t =af + ATl VEk € [K]. (5.30)

and similarly define g; (;7) € R”. Then using ([84], Lemma 2), we have

n ~t— 2 T
h=E {Hmﬁkl — @[ lox <w.,k;7>} + i
t—1
~ Tk <g;€ (it71§ Tt71)> + U’%’
mg

where (g, (&; 7)) sums up all the elements in g, (&;7) € R™. In this way, the computation
of 7}, does not involve multiple integrations but elementary algebra.

With above notations, the joint reconstruction algorithm is given in Algorithm 5.1.

5.6.2 An Alternative Update Strategy

Joint AMP algorithm uses the benefit of common support information to improve the
reconstruction performance. However in each iteration (5.26) to (5.30) will be executed for
K many times and the computational cost linearly increases with the signal and observation
dimensions. Consider a setting with no noise present and the observation dimension is large
enough, it is possible to find a way to decrease the computational cost while still keep an
accurate reconstruction. We propose the second type of Joint AMP algorithm (Type II
strategy, presented in Algorithm 5.2) to balance the performance and the computations.
The basic idea is that instead of simultaneously update all the signal blocks, in each loop
we focus on updating one signal k till its equivalent noise 75 stop decreasing, followed
by updating the rest of the signals for one time. Then we repeat the loop until all the

signals converge. Lemma 5.5, which will be given in section 5.7, guarantees that after
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Algorithm 5.2 The Joint Reconstruction Based on AMP (Type II strategy)

Input: y, A, €, ag, o? = [a%, e ,a%(] and Joint update tolerance ¢.
Initialisation:
20=0,7"=y, 20 =2+ ATr0 70 = 60’3/ (M) + 07, Vk € [K];
Find m; = max (my, ..., mg).

Tteration: Lett=1,2,---.
. 1
Set 7 — K], 1f7';+ —T; < g
{j}, otherwise.
xh = gk (ﬂfct_l;Tt_l) , Vke J.

u}; = = <g§C (i:t_l;Tt_l)>, Vke J.

m
i =ul + o}, Vke J.
=y, — Agzh +wprh 1 Ve J.
@t =axf + Alrl VEe J.

updating the signals [ # k, 7, decreases as well. This strategy actually provides a different
optimization path for ax;’s which saves their number of updates on average. For noise free
cases, this adjustment on the number of iterations of the signal x;’s via the sampling rates
d1’s, it is possible to make it cost much less time than type I strategy to achieve accurate
reconstruction. The Joint AMP algorithm with type II strategy is presented in Algorithm

5.2 and the dedication of the detailed analysis is provided in the next section.

5.7 Phase Transition via State Evolution

On the convergence study of AMP, each iteration can be simplified to an update of a
scalar denosing problem. The input of the denoiser can be written as the true signal plus
an equivalent additive noise. When the measurement matrix has i.i.d. Gaussian entries
and the matrix size is large enough, the equivalent additive noise is also shown as i.i.d.
Gaussian and is independent of the true signal |8]. Such appealing feature, termed as state
evolution, allows us to track the phase transition (PT) as well as the MSE of the AMP
algorithms. Generally speaking, PT is the curve which quantitatively divide the sparsity-
sampling area into recovery achievable and unachievable region. Further since the MSE is
a function of the sparsity rate € and the sampling rate §, one may check the convergence

point to see whether a given ¢ is sufficient large for the noise free accurate reconstruction
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of a given e. In our DCS problem, we use the same concept, except that we take multiple
signals sharing identical support as the additional information. More concretely, we convey
this information into the denoiser for the updates. Following similar procedure we can still
use the state evolution technique to track the equivalent noise on each signal block.

In this section we follow the approach in [30] by completing all the analysis in the
asymptotic regime, i.e., given my and n defined in (5.1), we assume my,n — oo with
my/n — O where J; is a constant Vk € [K], and the measurement matrices A;’s are
generated from the standard Gaussian random matrix ensemble. We list the main results
with illuminating explanations of the relation to the reconstruction algorithm, while leave
their rigorous proof to the appendices.

State evolution is built upon the equivalent signal model specified in (5.25), which can

be re-written in the following form
zh =z + 2L, (5.31)

where z}tC are the equivalent white Gaussian noise N (O,T,f:I ) and, with a slight abuse of

notations, 7/ can be defined as
¢ Ly 2
Tk:EHmk—mkHQ. (5.32)

Furthermore, due to the independence among Ag’s, it can be proved that z}; and zf are
independent for 1 < k # [ < K. Recall the model for the scalar case. It can be shown that

the value 7}, can be obtained via scalar case analysis:

1
= £E{(gk (z+271 771 - xk)2} + o}
M
==

+ of (5.33)

almost surely, where the convergence holds as g () is Lipchitz continuous [8, Theorem 1],
21 e RE and 281~ NV (0, diag ( . ,’7’;;_1, e )) Note that Mé}% is a function of 7t~
Equation (5.33) gives the state evolution of the equivalent noise variance. The complete

procedure for state evolution is presented in Algorithm 5.3. It is worth pointing out that



CHAPTER 5. QUANTIFYING THE ASYMPTOTIC PERFORMANCE OF DCS 112

Algorithm 5.3 The State Evolution of Joint AMP.

Input: § = [01,...,0k], €, Ug, and o2 = [U%, e ,J%(].
Initialisation:

T = €0, [0 + o, Vk € [K].
Tteration: Let t =1,2,---, until the stop criteria are met.

o TN =M} /0 + 0}, VE € [K].

e Compute M/} via (5.17), Vk € [K].

the result is equivalent to joint AMP for our DCS model, provided that the signals on
the same location of each group are generated via a same distribution and the number of
measurement of each group is equal.

In the asymptotic analysis, the exact recovery of xj is defined as the case where
limt%ooT}é = 0 or equivalently limtﬁooM};K = 0. Note that Mi}% is a function of 71,
whose values can be computed from 7¢=2 and depend on the values of §;’s, | # k. Therefore

we can define the following.

J" such

Definition 5.4. The phase transition is described by the vector 6* = [--- 0}, --
that exact reconstruction is guaranteed if > * (holds element-wisely), and exact recon-

struction is impossible if there exists k that d, < ¢} and 6; = 6}, VI # k.

Lemma 5.5. For given 1 < k # | < K, assume that Ry, Ry € (0,1) (R := ﬁ) or

equivalently 0 < 1, 71 < 0o. It holds that

8Mk7K
OR;

M.k
o

0
<0, or equivalently > 0. (5.34)

As a direct consequence,
M]@K (Tl < OO) < Mk,K (Tl = C>O)7

which shows the benefit of joint reconstruction.

Using this lemma, of which the proof is given in Appendix A, we confirm the existence
of § to guarantee exact recovery as follows. Consider a trivial sufficient condition for the
exact recovery of xy:

T =My /0 <7, vt e N, (5.35)
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where the superscript ¢ represents for the ¢! iteration. Lemma 5.5 and (5.35) tell that closer
estimation to the true signal a; (i.e., smaller wa — zcng, [ # k) requires smaller minimum
sampling rate d; for accurate reconstruction on xy. The following proposition states that
My, i /7y is uniformly upper bounded for 7, € RT. It can be seen from (5.33) that the
sampling rate Jx’s jointly decide the success and the convergence rate of the reconstruction.
We will unfold the analysis around (5.35), then show that the phase transitions of joint

AMP can be numerically determined on the base of the following discovered propositions.

Proposition 5.6. For a given k € [K]|, fiz all 7, | # k. Then the function My, i /Ry is

continuous and admits a mazimum. The same is true for My, i /7.

This proposition is easy to be verified by checking the limits limpg, oM} /Ry = 0,
limp, oo Mk i /Ri, = € > 0 and limp, —soc0Mj, i /OR), = +00. This proposition, combined
with 5.35, enlightens the following one to determine lower bounds of d;’s that guarantee

the exact recovery.

Proposition 5.7. Let 01,0...,0 > €. Consider the expected mean squared error My, i as

a function of o and 1. Ezact recovery of x is gquaranteed if for any given T € (0, —|—oo)K,

there always ezists one My, i, k € [K], such that
M,
LSS (5.36)

Tk

M,

It’s worth mentioning that for any given 7, there are K quantities TiK’ k=1,2..,K.

Proposition (5.7) only needs one of the K inequalities hold and it doesn’t have to be with
the same k for different 7’s. This brings benefit at AMP updates since in each iteration the
equivalent noise vector 7! changes therefore for at each iteration we only need the union

o M, L . .M
condition Ule ( ;kK < Tk), which is more flexible than any of the condition ;kK < Tk.

An intuitive explanation behind Proposition 5.7 is that, after each iteration, we can always
find one 73 in 7 is reduced. Follow Lemma 5.5, which shows that smaller 7, will decrease
M i, k # [, therefore the whole 7 reduces. This cooperation mode between the signals is
the key to relax the requirement for accurate reconstruction, i.e., the lower bounds for the
sampling rates will decrease compared to individual decoding strategy. In practice, given

sampling rates 0x’s, we can theoretically determine that whether the joint reconstruction
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is successful via checking the convergence of the following process, see Algorithm 5.3.

The type II update strategy given in Algorithm (5.2) considers not simultaneously
update all the signals in model (5.2) but keep update one signal and only update the rest
when necessary. We treat the estimations of x;;’s as the supportive information, which
according to Lemma 5.5 can move up/down the transition bound for reconstruction signal
xj. Notice the sharp transition feature of the AMP successful reconstruction rate, we can
check the change of 7, between two iterations to decide whether the x;.;’s needs to be
updated in the next iteration. If 7 is large but the change compared to the last iteration
is very small, it means that the phase transition supported by the current estimates x;.j
is not good enough, therefore an update of these estimates is needed. This strategy, listed
in Algorithm (5.2), has the same phase transition performance as Algorithm (5.1) but
achieves faster reconstruction speed. A simulating comparison is given in the next section
to see the actual improvements.

In the extreme case we may have 7, — 0 or equivalently R; — 1. Then I x — 0,
i.e., My i — €. It shows that if an accurate reconstruction on signal x; is obtained then
joint algorithm will drive the reconstructions of xy, k # [, to be accurate with requiring
sampling rates 0 > €. This is intuitively correct since all the x;’s share the same support,
an accurate reconstruction on x; brings the true support. Then the reconstruction on the
rest a;’s are just ordinary least squares problems.

The following corollary is motivated by the Proposition 4 which guarantee the accurate

. ’ M, .
reconstruction of . From Lemma 5.5, for 7; > 7, and 7 = arg max ( —£ )|, j # k
? Vi 7 k T 7']/ ?
Tk

the following inequality holds

M, M, M,
BRI < TR < max < ’”() ;- (5.37)
Tk: J Tk Tk Tk

Combine (5.37), Lemma 5.5 and Proposition 5.6, we can choose one k € [K]|, maximise

MT% and minimize the rest Mf_;K ’s, | # k to find the overall minimal sampling rate. The

problem to optimise this total sampling rate § = 21521 is listed in Corollary 5.8.

Corollary 5.8. Minimizing the overall sampling rate § which guarantees accurate recovery
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for joint AMP can be setitled via

K
M M,
§ = min (max( 1’K) + E k’K> (5.38)
T2 w5 Tk T1 T1 T
k=2
M,
st =2 > ¢ vk e [K].
Tk
Note that by choosing any variable 7;, both max (Mj_ﬁTK> and M%ICK are monotone
Tk

increasing with 7;, and there exist a maximum on MTJ—K Therefore 5.38 is not a tricky
J

optimization problem. Corollary (5.8) is not obvious and we usually need to use coordinate

descent methods to find the solution. However for some special cases, e.g., given in (5.21)

and (5.22), we have determined equation for this problem: e.g., simply consider function

filmy) = max (M;—IK) and fo(1j) = 5:2 A/[T'“]C‘K, where f represents the sampling rate for
the first signal, and fo represents the rest of the signals, ¢ # 1. Then dni, admits where
the equation (K — 1) - df1/071; + 0f2/01; = 0 holds.

In Figure 5.4, we compare the P'Ts of several decoding strategies, including individual
decoding, sequential decoding, the joint decoding proposed in Algorithm 5.1, and the
optimal decoding. Here, the individual decoding is referred to the case that each sensor
does not consider the side information from the other sensors and perform AMP decoding
using only the measurements at this particular sensor. In sequential decoding, one chooses
a sensor and apply the individual decoding to the measurements at the sensor, and then
in decoding the data at the other sensor, one uses both the decoded signal from the first
sensor and the raw data from the second sensor. The optimal decoding is essentially £g-
minimisation, or exhaustive search. It results in impractical computational complexity
but gives the best PT, i.e., §; = ¢, Vk € [K], in the information theoretical sense. This
limit can be verified using information dimension concept [111] (See a short derivation in
Appendix B.8). From the results presented in Figure 5.4, joint decoding is substantially
better than either individual decoding or sequential decoding by taking the raw data from
all sensors into account. It does not compete with the optimal decoder but it is practical.
Another interesting observation is the shape of the PT curve of joint decoding. It is
concave in the d1-69 plane, which suggests that equally allocate measurements by given a

total measurement budget is strictly suboptimal. Instead the optimal policy is to allocate
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Figure 5.4: The phase transitions for case K = 2 using joint AMP, from where the area
right above is the achievable area. The sparsity rates are e = 0.1. The signal is assumed
as Bernoulli-Gaussian distributed.

d¢ = € (given by information theoretical limit) to all but one sensors ¢ # k and let d; be
chosen to allow an exact recovery (denoted as “corner points” in the figure).

The concavity of PT curve can be observed for some other prior distributions, Here
we consider two-block signals with Bernoulli-Uniform px, x, (v1,72) = (1 —¢€)d(0,0) +
7Ux, (=1,1) - Ux, (—1,1). Then we do exactly the same derivations for the phase transi-
tions and results in a similar curve (shown in Figure 5.5) as in 5.4. Based on this test, we
conjecture that it is not because of Bernoulli-Gaussian distribution but, more generally, a
mixed (discontinuous-continuous) distribution providing the benefit of unequal measure-
ment allocation. A vitrifaction of this conjecture will potentially bring decent practical
value as it covers a large range of block sparse signals.

In Figure 5.6 we show that for block sparse signals with Bernoulli-Uniform, allocation
at “corner points” is also better than equal allocation for multiple group sparse signals

(K >2). We fix the the sparsity rates 0y = ¢, k = 2" K, K = 2,3,5,10. Phase transitions



CHAPTER 5. QUANTIFYING THE ASYMPTOTIC PERFORMANCE OF DCS 117

Convergence Check for the Bernoulli-Uniform Distributed Signals K=2

022 -
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0.1

Figure 5.5: The phase transitions for case K = 2 using joint AMP. The sparsity rates are
€ = 0.1. The signal is assumed as Bernoulli-Uniform distributed.
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Figure 5.6: Theoretical Phase Transitions of joint AMP with common support signals.
Allocations at corner points are presented in red lines, sequential decoding are in blue
dashed lines and the equal allocations are in green lines. Each group of lines from bottom
to top are for K = 2,3,5,10. Phase Transition Curve for signal block case is also plotted
in blue solid line, i.e., K = 1.

for joint decoding at “corner points” and equal allocation case are compared with sequential
decoding. The performance gain of joint decoding is noticeable for all plotted cases. It
can also been seen from Figure 5.6 that both joint and sequential decoding will reach the
theoretical limit when K — oo.

In practice, it is interesting to study the case that the nonzero x.; € RX contains cor-
related components, i.e., the model in (5.13) with a non-diagonal covariance matrix 3. For
simplicity, only consider the case K = 2. Define the correlation v := cov (X1, X2,) /03.
The corresponding joint decoding AMP algorithm can be obtained and the associated PT
can be quantified. Figure 5.7 depicts the PT curves for different v obtained from Algorithm
5.3 where the derivations of terms M}, i’s are shown in Appendix B.6 and computed by us-
ing numerical integrals. Consistent with intuition, the numbers of measurements required
for exact recovery present an opposite tendency to v. In the extreme case when v = 1,
x1 = x5 and the PT curve becomes a straight line. The concavity of the curves when

v # 1 shows that best allocation for the signals are always at the corner points.
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Figure 5.7: The minimum achieved sampling rates for common sparse support signals
(K =2, e =0.1) with given inter-correlation v € [0, 1].
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When additive white Gaussian noise is considered in model 5.2, terms T,’é in will still
converge (see in Proposition 6) and can be traced via the state evolution 5.33. Therefore

we can predict the reconstruction MSE for different sparse signal blocks.

Proposition 5.9. Given signal model (5.1) with the sparsity rate €, the sampling rate Oys

and noise variance 0,%. Then via joint-AMP (Algorithm 1), the reconstruction MSE for

signal block xy converges to M7, k € [K], where

! oM}
lim — il 5 = Ok, and kt’K < 0. (5.39)
t=oo T — O ory,

The limit equation in (5.39) is essentially another way of writing the convergent state

Mt , .
of (5.33). We also need to ensure that term th’;g doesn’t decrease with the update of 7},
k k

t
therefore 0 <T]\,J"f2> /1) < 0, which gives the inequality in (5.39). A practical way to find
k k

the convergent MSE can be obtained from Algorithm 5.3.

5.8 Numerical Study

Phase transitions are used to describe the underlying principles of a compressed sensing
reconstruction algorithm in the asymptotic regime. Actual uses in handling large dimen-
sional data usually reach very close performance to the theoretical results. In this section all
the simulation tests use randomly generated group sparse signal @ via Bernoulli-Gaussian
distribution (5.13). From the above inference we know that finding the theoretical phase
transition needs to compute integral 5.18. Due the limitation of the computer tools at
hand which does not support double integral on interval [—oo, 0o], we instead look for an
appropriate interval for the integral by using the 60 rules of the Gaussian distribution.

It is shown in Appendix B.7 that the calculation accuracy is enough of our demand (the

tolerance will be less than 1 — ;< (1 - 7.3 x 107%) - (1 -2 x 10_9)K_1 I[[,1-R)).

We firstly evaluate the accurate recovery of joint AMP. By doing this we choose single
signal and two signals models. For the two signal models, we choose three decoding strategy
including joint AMP with equal sampling rates, joint AMP with two signals with sampling

rates at “corner points” and sequential decoding (using AMP) as the comparison objects,

respectively. The measurement matrix Ay’s are drawn from the i.i.d. Gaussian distribution
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Figure 5.8: Numerical results (dashed lines) compare with the theoretical curves. Here
all the curves are shown in p against §. n = 1000. Each point is averaged from 100
realizations.

N (O, m%) Figure 5.8 shows the predicted and the empirical phase transitions for the
four comparison objects. Our experiment interval is chosen in (0.05,0.95). Each signal
block contains n = 1000 elements. The simulation result for each point is averaged from
100 repetitions. It is shown that the predicted results is quite accurate compared to
the empirical ones. The performance gain between joint decoding at “corner points” and
sequential decoding (red and green curves) is mainly reflected when the total sampling
0 <0.7.

In Figure 5.9 we compare the performance gain between the joint AMP and sequential
decoding. We set the signal sparsity rate e = 0.3, fix 0, = €, k = 2 ~ K. The length of each
signal block n = 200 and the number of blocks K = 2,4,8,16. Each test is repeated by
400 times. The figures are plot under reconstruction rate against number of measurement
per signal block. The rapid rising part of the curve located more on the left means the

better the performance. Comparing the vertical interval of each pair of joint to sequential

decoding, we can see that joint decoding outperforms sequential decoding and the gain
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Figure 5.9: The performance gain from sequential decoding (dashed lines) to joint decoding
(solid lines). We choose signal blocks K = 2,4,8,16 in our trails. We compare the
reconstruction successful rate with the average number of measurement per signal block.
€ =0.3, n =200 - K. Each point is the average from 400 realizations.

becomes larger when there are more signals participate into the decoding process.

Further we compare the time saving by using type II update strategy. In Figure 5.10
we choose € = 0.1, n = 1000 and let K = 2 ~ 30. No noise is added and the the figures
plot the time consumed for accurate recoveries. Note that in each iteration type II strategy
contains %x computation cost of type I, however Type Il strategy considers the update
right above the phase transitions, it usually takes more iterations than the type I strategy.
Overall we can see linear increasing trend for both strategies and the slope for type I is
about 5x of type II.

In Figure 5.11 and 5.12 we test the noise sensitivity predictive performance. We con-
sider Bernoulli Gaussian distributed signals. By state evolution the reconstruction MSE
is always finite and we are able to predict it. We choose sparse signal with K = 2, each
signal has length 1000 and choose sparsity rate ¢ = 0.1 and 0.5, and then compare the
empirical MSE (eMSE) and the theoretical MSE (fMSE) curves from state evolution by

changing the sampling rates. 10dB white Gaussian noise is added on the observations y.
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Figure 5.10: The consuming time between joint AMP type I & II update strategy with
increasing the number K.
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Figure 5.11: Noise sensitivity test, theoretical results in solid lines and empirical results in
dashed lines. € = 0.1, v> = 0. Up:0; = o, down: 6y = e.
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Figure 5.12: Noise sensitivity test, theoretical results in solid lines and empirical results in
dashed lines. € = 0.5, 1> = 0. Up:0; = o, down: 6s = e.
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Figure 5.13: Noise sensitivity test, theoretical results in solid lines and empirical results in
dashed lines. € = 0.1, v> = 0.9. Up:6; = 62, down: dy = €.
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‘ 51 ‘ 52 ‘ ﬂ\/ISEl ‘ fMSE2 ‘ eMSE1 ‘ eMSEg ‘
0.051 | 0.051 | 0.093 0.093 0.092 0.093
0.078 | 0.055 | 0.087 0.091 0.087 0.091
0.105 | 0.055 | 0.078 0.091 0.079 0.091
0.149 | 0.053 | 0.061 0.088 0.062 0.089
0.192 | 0.051 | 0.035 0.084 0.037 0.084
0.074 | 0.074 | 0.087 0.087 0.087 0.087
0.102 | 0.070 | 0.079 | 0.087 | 0.079 0.087
0.148 | 0.066 | 0.061 0.085 0.062 0.085
0.192 | 0.062 | 0.034 | 0.081 0.037 0.081
0.097 | 0.097 | 0.079 0.079 0.079 0.080
0.146 | 0.093 | 0.060 0.077 0.061 0.077
0.194 | 0.086 | 0.029 0.071 0.031 0.070

Table 5.1: Comparison between the MSEs from formula (fMSE) and empirical results
(eMSE) of two-group sparse signals. Each group has length 1000 and the empirical results
are averaged from 1000 Monte Carlo realizations. The sparsity rate is chosen as € = 0.1.
The undersampling rates are given in column d; and &s.

In both Figure 5.11 and 5.12, we keep 41 = d2 in the upper figure only change §; while
keep 09 = € in the lower figure. A short conclusion on this experiment is, the eMSEs and
the fMSEs match well. Larger measurement on one signal is more supportive for denosing
the other. Further we take inter-correlation between signal non-zero components, i.e., set
3 # I in model 5.13 and repeat the tests. The results also match well as we predicted.
In [30] one considered the worst distributed signal for the phase transition bound pre-
dictions, thus when there is not enough measurement the reconstruction MSE eventually
blows up to infinity. However in this chapter we consider Bernoulli-Gaussian distributed
signals. By state evolution the reconstruction MSE is always finite and predictable. We
choose sparse signal with two blocks, each block has length 1000 and choose sparsity rate
e = 0.1, 0.5, and then compare the empirical MSE (eMSE) and the theoretical MSE
(fMSE) from state evolution by changing the undersampling rates (see Table 5.1 and Ta-
ble 5.2). A short conclusion on this experiment would be, the eMSEs and the fMSEs match
well. We also provide a three block signal comparison between the fMSEs and eMSEs (see
Table 5.3 and Table 5.4). For each block we increase the length to 2000 and keep the
sparsity rate € = 0.1 and 0.5 respectively. One of our observations is, as there are more
signal blocks joining in the model, in order to get the reconstruction MSE close enough to

the theoretical prediction it requires longer length for each signal block.
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| 6 | & | fMSE; [ IMSE; | eMSE; | eMSE; |
0.130 [ 0.130 | 0.433 | 0433 | 0.433 | 0.432
0.264 | 0.130 | 0.358 | 0.432 | 0.358 | 0.431
0.383 [ 0.129 | 0.285 | 0.430 | 0.284 | 0.431
0.502 | 0.128 | 0.205 | 0.428 | 0.206 | 0.428
0.600 | 0.127 | 0.134 | 0.424 | 0.140 | 0.424
0.244 [ 0.244 [ 0.368 | 0.368 | 0.369 | 0.368
0.376 | 0.241 | 0.288 | 0.367 | 0.288 | 0.366
0.496 | 0.238 | 0.207 | 0.363 | 0.208 | 0.364
0.604 [ 0.237 | 0.124 | 0.356 | 0.124 | 0.356
0.359 | 0.359 | 0.295 | 0.295 | 0.295 | 0.295
0.513 [ 0.353 | 0.190 | 0.290 | 0.192 | 0.291
0.630 | 0.343 | 0.095 | 0.282 | 0.099 | 0.283

Table 5.2: Comparison between the MSEs from formula (fMSE) and empirical results
(eMSE) of two-group sparse signals. Each group has length 1000 and the empirical results
are averaged from 1000 Monte Carlo realizations. The sparsity rate is chosen as € = 0.5.
The undersampling rates are given in column d; and ds.

‘ 51 ‘ 52 ‘ (53 ‘ fMSEl ‘ fMSE2 ‘ fMSE3 ‘ eMSEl ‘ eMSEQ ‘ eMSE3 ‘
0.041 | 0.041 | 0.041 | 0.094 0.094 0.094 0.094 0.095 0.095
0.068 | 0.045 | 0.045 | 0.087 0.092 0.092 0.089 0.093 0.093
0.095 | 0.045 | 0.045 | 0.079 0.091 0.091 0.081 0.092 0.092
0.139 | 0.043 | 0.043 | 0.061 0.090 0.090 0.064 0.091 0.091
0.064 | 0.064 | 0.064 | 0.087 0.087 | 0.087 0.089 0.089 0.089
0.092 | 0.060 | 0.060 | 0.078 | 0.087 | 0.087 0.081 0.089 0.089
0.138 | 0.056 | 0.056 | 0.059 | 0.086 | 0.086 0.064 0.088 0.088
0.087 | 0.087 | 0.087 | 0.076 | 0.076 | 0.076 0.081 0.081 0.081
0.136 | 0.083 | 0.083 | 0.054 | 0.074 0.074 | 0.062 0.078 0.078

Table 5.3: Comparison between the MSEs from formula (fMSE) and empirical results
(eMSE) of three-group sparse signals. Each group has length 2000 and the empirical
results are averaged from 1000 Monte Carlo realizations. The sparsity rate is chosen as
€ = 0.1. The undersampling rates are given in column 41, d2 and d3, where do = 3.
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‘ 51 ‘ 52 ‘ (53 ‘ fMSEl ‘ fMSEQ ‘ fMSEg ‘ eMSE1 ‘ eMSEQ ‘ eMSEg ‘
0.100 | 0.100 | 0.100 | 0.457 0.457 | 0.457 0.449 0.448 0.449
0.234 | 0.100 | 0.100 | 0.370 0.446 0.446 0.375 0.449 0.447
0.353 | 0.099 | 0.099 | 0.296 0.445 0.445 0.304 0.447 0.447
0.472 | 0.098 | 0.098 | 0.216 0.443 0.443 0.225 0.446 0.445
0.570 | 0.097 | 0.097 | 0.143 0.441 0.441 0.154 0.443 0.443
0.214 | 0.214 | 0.214 | 0.374 0.374 0.374 0.383 0.385 0.384
0.346 | 0.211 | 0.211 | 0.289 | 0.373 | 0.373 0.305 0.383 0.383
0.466 | 0.208 | 0.208 | 0.205 | 0.371 | 0.371 0.226 0.381 0.381
0.574 | 0.207 | 0.207 | 0.121 | 0.365 0.365 | 0.146 | 0.376 0.375

Table 5.4: Comparison between the MSEs from formula (fMSE) and empirical results
(eMSE) of three-group sparse signals. Each group has length 2000 and the empirical
results are averaged from 1000 Monte Carlo realizations. The sparsity rate is chosen as
€ = 0.5. The undersampling rates are given in column 41, d2 and d3, where do = 3.

Before finishing this chapter we provide two example of applying the DCS algorithm
to image processing. The aim is to confirm the advantage of uneven sampling allocation
and its usage in practice. In the first example, we present two 128 x 128 pixel images with
geometric patterns in them. The patterns located at the same coordinate positions but
have different gray values. Since both images are in gray scale, the background shown in
black has value zero and therefore the two images together make up a two-block sparse
signal with common support. We do not append pre-transformation for the moment and
compress the two images via model (5.2). We choose two pairs of sampling rate (01, d2):
1) 01 = 02 = 0.55 and 2) §; = 0.65, d2 = 0.45. Note that the sparsity of both images is
€ = 0.43, thus the second pair of sampling rate is selected very closed to the “corner point”,
which we deem to be the optimal sampling strategy. Although the pixels contain values
which do not satisfy the Bernoulli Gaussian distribution, we stick to using the Bernoulli
Gaussian MMSE estimator for our AMP algorithm. It may worsen the final results but
do not affect what we tend to explain. Implement the joint AMP for the two pictures, we
obtain the results listed in the second and the fourth column in Figure 5.15. We can easily
observe a huge difference on the reconstruction quality. The sampling allocation at “corner
point” almost perfectly reconstructs the images while the equal allocation does not. We
also did experiment by individually reconstruct each of the two images. The results show
that even the one with §; = 0.65 is not able to obtain a good reconstruction. This speaks

for the effect of joint reconstruction algorithm and the sampling allocation strategy.
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Original1 61=0.55 (Joint) 61 = 0.65 (Individual) 81=0.65 (Joint)

Original2 82=0.55 (Joint) 82 = 0.45 (Individual) 62=0.45 (Joint)

Figure 5.15: Joint reconstruction and individual reconstruction of two images with the
same sparse support under a given basis (¢ = 0.43). Column 1: original images; column
2-4: reconstructed images from samples with given sampling rate d; and ds.
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Figure 5.16: The first frequency component of the original bird picture in Red ,Green and
Blue channel, respectively
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Figure 5.17: RGB image reconstruction (assuming € = 0.1 for each channel). This figure
compares the equal resource allocation for each channel and the near optimal allocation
(near “corner point”).
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In the second example we test RGB images. It is known that an RGB image can be
decomposed into three gray scale image, representing for the red, green and blue channel,
respectively. We pass the three channels via DCT linear transformation and obtain three
sparse signals in frequency domain (see fig. 5.16). The three signals actually have very sim-
ilar amplitude allocations which can be considered as they share the same sparse pattern.
Therefore we compress them and use the DCS signal model then apply the joint AMP
algorithm. The results show that by fixing the total sampling budget, equal allocation
strategy observes a blurred image with a strong color aberration. The “corner point” strat-
egy obtains a much better result. By comparing the joint and individual reconstruction
algorithm, we found that individual reconstruction results in more blurry reconstruction
as expected. This result is quite meaningful since it points out a possible future CMOS

design for digital cameras, as it suggests arrays with uneven proportion of color sensors.



Chapter 6

Conclusions

In this final section we summarise the whole thesis and point some potential problem for
future study.

In chapter 2 we have discussed the singularity issue occurring in dictionary update
problem as an inherent property. We argued that it is the main issue leading to the failure
of dictionary update algorithms. We proposed a smoothing technique under the SimCO
framework to address the singularity problem and applied Newton CG method for the
new algorithm implementation. Numerical test on both the singularity of mainstream
algorithms and the improved performance demonstration of Smoothed SimCO algorithm
are presented at the end of the chapter.

In chapter 3, we briefly introduced a development of the blind source separation algo-
rithms based on dictionary learning. In particular, we focus on the SparseBSS algorithm
and the optimization procedures. The singularity issue which might lead to the failure of
these algorithms. At the same time there are still some open questions to be addressed.

In dictionary learning, it remains open how to find an optimum choice of the redundancy
factor T = d/n of the over-complete dictionary. A higher redundancy factor leads to either
more sparse representation or more precise reconstruction. Moreover, one has to consider
the computational capabilities when implementing the algorithms. From this point of view,
it is better to keep the redundancy factor low. In the simulation, we have used 64 by 256
dictionary, which gives the redundancy factor 7 = 256/64 = 4. This choice is empirical:
the sparse representation results are good and the computational cost is limited. A rigorous

analysis on the selection of 7 is still missing.
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The relation between the parameters A, € and noise standard deviation o is also worth
investigating. As presented in the first experiment on blind audio separation, the relation
between A and o is discussed when the error bound € is fixed in the sparse coding stage.
One can roughly estimate the value of the parameter A assuming the noise level is known
a priori. Similar investigation is undertaken in [1|, where the authors claim that when
A = 0/30, the algorithm achieved similar reconstruction performance under various o’s.
From another perspective, the error bound € is proportional to the noise standard deviation.
It turns out that once a well approximated relation between € and ¢ is obtained, one may
get more precise estimation of parameter A, rather than keeping e fixed. This analysis,
therefore, is counted as another open question.

In chapter 4 we consider the power allocation problem for non-uniformly sparse signals.
We first show in the presence of noise, i.i.d. Gaussian random measurement matrix may
not be optimal in minimizing the reconstruction MSE. Then we considered how to allocate
a given total power across the columns of the measurement matrix. Given a power alloca-
tion, we derived the AMP.P(€) algorithm, and quantitatively analyzed the corresponding
minimax MSE. Based on it, the optimal power allocation policy has been identified. Both
theoretical and empirical results are presented with the clear consistency and verified the
performance gain. Further we change the objective function and show that our power
allocation scheme also finds an optimal strategy. This change shows the generality and the
potential wide usage of our contribution.

In chapter 5 we studied the rate allocation problem for DCS scenario. Given the sparse
signal distribution, we worked on finding block sparse measurement matrices where joint
approximate message passing can give asymptotically optimal reconstruction. It is suit-
able for both equal and unequal numbers of measurements for different signal blocks. We
considered Bernoulli-Gaussian distribution as the signal prior and analysed the theoretical
phase transition curves of the reconstruction algorithm in the asymptotic regime by using
the state evolution technique. The results show that, by fixing a total sensing resource, we
can enjoy a benefit by assigning unequal measurements to each signal block. We proposed
propositions to discuss how to find exact reconstructions by using as few measurements as
possible. We also gave reconstruction error estimations when independent additive Gaus-

sian noise is present in the signal model. Finally we introduced inter-correlations among
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non-zeros part of the signal blocks. This is to study how the numbers of measurement
required for each signal block are affected by the inter-correlation.

The work in chapter 5 has a good potential value and brings interesting prospective
problems that have not been reached. We currently assume that measurement matrices are
independent to each other. A more complicated case would be assuming all the signal blocks
sharing the same measurement matrix, i.e., the multiple measurement vectors (MMYV)
problem. It is worth mentioning that the extension from the DCS case to the MMV case
is not tricky since strong correlation is introduced between measurement matrices. One
may also generalise the signal prior to arbitrary distribution to study the phase transition
behavior of the problem. Furthermore in our work we assume all the parameters are
known in advance. However in real applications these parameters will probably be tuned
from more advanced techniques. Therefore a combination of the joint AMP and the EM

algorithm could be a useful research direction.



Appendix A

Proofs of Propositions in Chapter 2

A.1 Proof of Proposition 2.2

1. Represent f (D) = Zfz (D;). To prove f (D) is continuous when D is non-singular, it
suffices to show that fo; all i, f; (D;) is continuous.

When D is not singular, D; is of full column rank (i.e., rank (D;) = |Q(:,4)|) and
therefore (DZTDZ-)_1 exists. Referring to (2.6),

i (D) = ¥~ Di (DD DY Y|

Note that D; and DiT are continuous in D;, and additions, multiplications and combina-
tions of continuous functions are continuous. To show f; (D;) is continuous, it is sufficient
to prove that the inverse operator A~! is continuous in A when A is of full rank.

Now we shall show the continuity of the inverse operator. Consider the case that
we only change the (i,j)th element of A by 4. The resulting matrix can be written as
A+ 6eiejT. e; € R? is a column vector where its i*" element is one and all the other
elements are zero.

-1
The difference between A~! and (A + 5eie?> can be quantified by using Woodbury
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identity [45]:

A - (A + 5eie;‘-F)_1
—AT AT AT e (57 el AT ) el AT

=5A " e;e] AT/ (1+ e A ey),

which can be made arbitrary small when § — 0. This proves the continuity of the inverse

operator A~ hence the first part of the proposition.

2. Suppose that 3¢ such that rank (D;) < [Q(:,4)| and Y:; ¢ span (D;). Fix such i, we
first show that for this particular 4, f; (D;) is not continuous.

That the vector Y.; ¢ span (D;) implies f; (D;) > 0. We shall construct D; (¢) such
that D; (e) — D; as e — 0, but f; (D; (¢)) = 0. Since D; is not of column full rank, the

T
singular value decomposition of D; can be written as D; = > /\juj'v;fp, where r < | (:,7)].
Jj=1

Denote y, = (I — DiDZT) Y. ;. Since Y.; ¢ span (D; (¢)), yr # 0. Let g, = y,./ |lyr|l,. We
construct D; (e) = D; + ey,.vf, where the vector v, is of unit fo-norm and orthogonal to

all vjs, j € [r]. It is clear that Y.; € span (D; (¢)) when € # 0. Then we have

fi(D;(e)) =0, whene#0

fi(Dji(€)) >0, whene=0

and D; (¢) — D;. This implies the discontinuity of the atomic function f; (D;).

Now come back to the overall function

[ (D)= fi (D) +> _f;(Dy).
J#i
It is clear that

span (D; (0)) C lim span (Dj (e)) .

e—0
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Then we have f; (D; (€)) < f; (D; (0)) by the definition of projection.

lim f (D () = lim fi (D; () + Y lim f; (D; (¢))

e—0
JF
< hm fz 7 + Z f]
JF
< fz ) +Z f]
J#

The discontinuity of f (D) is hence proved.

A.2 Analysis of the Example in Section 2.3

Analysis of the MOD algorithm in Section 2.3.1

This appendix details the update formula (2.11) of variable € from €;_; under the MOD
optimization framework.

First we fix the dictionary D (ex—1) (2.9) and find the optimal coefficient matrix
X (€x—1). Recall the form of f (D) in (2.5). The first two columns of X (e;_1) depend
on dy and da, and therefore remain unchanged during the update. Hence X (e;x_1) can be

written as

1 0 0 X
X(er-1)=1]101 0 a1 |- (A.1)

OOSL'ng

where x1, x2, xszneed to be calculated by solving the least squares problem involved in

f (D). Vialong but straightforward algebra, the above least squares problem canbe solved:

N «/1_6k1 ll—ekl 6]@1 x:\/i (A2)
1= 76](,_1. .

Now we fix the updated X (e;—1) and update dictionary D (e). The MOD optimization
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framework updates the dictionary via

€; = arg GGTE?H IY — D (e) X (er—1) |7

As it is again a least squares problem, a long but straightforward computations show that

0.11‘2 — X3
== 9 A3
k 1,3 — 0.71‘2 ( )

Substitute (A.2) into (A.3). Finally we reach the formula in (2.11).

Analysis of the K-SVD algorithm in Section 2.3.2

This appendix details the update of the dictionary D under the K-SVD optimization
framework.
2
We firstly compute Y™ =Y — Zd,w? Note that in this example Y. ; and Y. > depend
i=1

only on the fixed and optimized (dl, a:lT) , (dg, mg) To update the dictionary (more

precisely, to update d3), we can focus on the last two columns of Y, denoted by

0.7 Yi=¢
0.7 Vi=¢
M = ‘ . (A.4)
0.1 1
—0.1 1

Then SVD is used to update dg, that is, we solve

2
i M — dzxl]|.. A5
oin || M - dag || (A.5)
The vector d3 will be the eigenvector corresponding to the largest eigenvalue of MM7”

(denoted by A2 ):

max

(MM7")d; = N2

max

ds. (A.6)

In general, it is difficult to get the closed form results for (A.6). However, the M
matrix in (A.6) has a particular structure, i.e., the 2nd and 4th rows are repetition of the

1st and 3rd rows respectively. The eigen-decomposition can be obtained in a closed form.
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In particular, let M = [M .; M3 .]. Consider the eigen-decomposition

(MMT) d=32,.d. (A7)
Then it can be verified that A2, = 2;\12nax. Vector
ds =[di, di, da, do] /V2, (A.8)

where d; and dy are the two entries of vector d.

In particular, MM" = [a, ¢; ¢, b] where a = 0.49 + 15€ b = 1.01 and ¢ = —0.07 +
Nier:
€

. It can be verified that for any matrix of the form [a, ¢; ¢, b, its maximum eigen-

value is given by

c2
max 2
and the corresponding eigenvactor d= [dy, dQ]T satisfies
d S\max -
d% - f“ and d2 + d2 = 1. (A.9)

Substitute the values of a, b, ¢ into the formula (A.8) and (A.9). Using the Taylor

approximation, it can be verified that

\/1_€i_a—b c 3

03
€k o +a—b_(a_b)3+0<(a_b)3)- (AlO)

Substitute a (ex—1), b = 1.01 and ¢ (ex—1) denoted above into (A.10). After straightforward

computations we obtain

ex = €51 (1 — 0.07ej_1 — 0.48€¢;_1 + 0 (1_1)) -

Analysis of Regularized SimCO in Section 2.3.3

This appendix shows that Regularized SimCO may fail in this explicit example and con-
verge to a singular point. More specifically, we will first prove this proposition for a fixed

parameter u by showing a sufficient property in the objective function on which there ex-
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ists a local maximizer. Then we will explain the reason of failure even under the cooling
schedule of parameter p.

In Regularized SimCO, parameter p > 0. The solution of the least square problem

(2.12) is
2 2
f,lt (6) = 3—2(07 1 —¢€2— 0.16)2—%.
41 — L=
o L e
fal(e)

We look for the derivatives of f, (¢). Compute the derivative of fi(e) and fa(e),

/! €
(€)= 4 (0.7 1—e— 0.16) (0.1 + 07@) :

2
(&) =4+ (+p? 1) e/ (A+p?—1+e)
The following statements about f] and f can be verified.
e f1(0)=0.28, f5(0) =0 and f5(e) <0 for e € (0,1).

e By studying the second order derivative f{’ (€), it can be shown that fi (¢) mono-
tonically increases as € increases in [0, 0.1\@]. A uniform upper bound on f (€) for

€€ [0,0.1\/5] can be obtained by f] (¢) < f{ (0.1\/5) = 0.384+/2.

e By studying the second order derivative f (¢), it can be shown that f3 (¢) monoton-

ically decreases as € increases in [O, \/((1 +p)? - 1) /3] .

e For any given 1 < v2—1, let ¢, = 1/(1 + 1)> —1/10. Then

1002 1+p
2
101 (14 )2 —1

fo(ey) = —0.4 < —0.384V/2.

Combine the above results. Note that f}/L (e) = f{ (€) + fé (¢). One has
£1,(0) >0, and f}, (e,) <0.

As a result, there must exists a local mazimizer emax € (0,€,) such that f), (€max) = 0.
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For any given initial ¢y € (07 0.1\@) and any given 0 < p < min (\/ 1+100€5 — 1, V2 — 1),

it is clear that
€, =1/ (1+p)—1/10 < e.

From previous discussion, we show there exists a local maximizer enax () € (0,€,) on
fu (e).

Now we take the cooling schedule into consideration. Via further studying on fL (€),
it can be shown that epax (1) decreases as pu decreases. As a result, right after each time
1 decreases, the new local maximizer is always in front through the path to the global
minimum. With g — 0, the problem gradually degenerate to Primitive SimCO. Hence the

update will fail and finally converge to the singular point D (0).

A.3 Proof of Theorem 2.3

Theorem 2.3.1: First we show the continuity of f;(D;). Consider the limit

i fi(Di) = fi(D.)

:D}iinDi (fi(Di) = fi(De)) g:(D:) — fi(De) (9i(De) — g:(D;)) - (A.11)

e When D; is a singular, ¢;(D;) =0 and lim g¢;(D;) — g;(D.) = 0.

DE—)DZ‘

e Otherwise, lim fi(D;) — fi(De) =0 and lim g¢;(D;) — ¢i(D.) = 0.
D.—D; D

=D
Therefore, the limit (A.11) is always equal to zero, i.e., fi(D;) is continuous everywhere.
The continuity of fZ(DZ) implies that Dﬁ is a closed set, i.e., Dif; = Dﬂ‘

Theorem 2.3.3: Dy = D; « (Dy CD;) N (D;2Dy). Note that f(D) can be
written as a summation of finite many atomic functions (2.16). The statements in the
theorem hold if the statement hold for each atomic function f;(D;). We separate the proof
into two parts.

Part I: We prove Dj 2 Dy,. Note that Dj = {f;-gi <a} D {fi <a}N{g <1} =

{fi <a} =Dy, And Dy is a closed set. Therefore we have

sz D) sz‘ :>Df¢ :'D];i D) va','
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Part 1I: We prove Dﬁ_ C Difl From part I, we know that Dﬁ_ D Dy,. Here to prove
D i S Dy, is equivalent to prove D fi\Dfi C Dy, \Dy,. More specifically, we prove for
VD; € D;\Dy,, it also holds D; € D \Dy,.

Refer to Theorem A.3.2. When 01 = 09 — 0, for VD; € Dﬁ\wa D; is column rank
deficient. W.L.O.G, we may assume that D; = [dy, ..., dj, dj41, ..., d,,] where dj4q, ..., d,
is a maximal linear independent group of D;, and Vd;, j =1, ..., [, d; = i ¢jpdp. Then

p=I+1
the proof is equivalent to prove that there exist a sequence D (e;) € Dy,, where

{Di (Ek) £ D, +AD, - Ek’ k=1,2,...ande; > €9 > ... > 0}
such that lim D; (ex) — D;!
k—o0

Proof. Generate AD; = |y, ..., ¥y, di11, ..., dy
——
l

D; (&) = [di + €Y, ..., di + ey, (1+€x)digq,..., (1+€,)dy].

Because D (e) is column rank deficient, it always hold that

fi (Di (ex)) = Hzﬂlfs ly — D (ex) @ (e1)|[3 =0 < a,
x(ep

where

l
1 1
x () = 1,..., 1, E Yy — E c;
=1 (1+ R (I+e) 7"

Therefore we proved D;(e;) € Dy,. Plus the fact that lim Dj;(e;) — D;, we proved

k—o00

D,; e Difi\Dfi, i.e., the proof of Theorem A.3.3 is completed. O

'To simplify the proof we do not normalize each column of D; (¢x). The proof is also established if
D,; (ex) is column normalized.
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A.4 Derivation of V, (V),) in Section 2.5

Proposition A.1. (Orthonormal Basis) Let EY € R™ ™ be the matriz of which the entry

at row-k and column-l is given by

1 ifk=id,and [ =j,

(Eij)kz =

0 otherwise.

Then {Eij 1< <m, 1<5< n} is an orthonormal basis for R™*"™.
Let U € R™™ gnd V€ R™ ™ be the left and right singular vectors of A respectively,

where both U and V' are orthonormal. Then
{BY=U,V}: 1<i<m, 1<j<n}
forms another orthonormal basis for R™*™,

Proposition A.2. Let f be a mapping defined as f: R™" — R, X — f(X). Suppose

that [ is smooth in a neighborhood of X . Let A € R™*". Then the directional derivative

VAf(X) = lim f(X+A§) — f(X)

Write A as a linear combination: A =Y ¢;B*. For Yi, B* € R™*". Then
Vaf(X) =) cVpif(X).

Proof. By the definition of the gradient, f(X + At) = f(X)+(Vf(X), A) -t +o(t?) when

|t| is sufficiently small. Consider the directional derivative, we have

t—0 t
= lim (Vf(X), A) +o(t)

f(X + Bit) — f(X
pIRICES AR (ES

= lim
t—0

= ZC,;VBif(X).
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O]

Consider the singular value decomposition (SVD) of the matrix D;. It can be written
as D; = UAVT where U € R™*™_ V € R™ ", contain the left and right singular vectors,
respectively, and A € R™*" where the diagonal elements are sorted singular values. Denote

n € R™*" The derivative
U"(VyD)V =U" (V,U)A+ VA + A (V, VT V. (A.12)
This equation, as well as the following properties, are the key to compute the first and

second order derivatives of A,.

e The matrix U™ (V,U) is skew-symmetric, i.e. UT (V,U) = —UT (V,U)". This
can be verified by differentiating both sides of UTU = I. Similarly, the matrix
(VWVT) V is also skew-symmetric. A consequence of skew-symmetry is that the

diagonal entries are zero.
e The matrix V,A is diagonal.

e Recall the definitions of EY and B%. One can simplify U? (Vgi; D;)V = EY.
Refer to (A.12),

EY =py”T (Vi U)A+VpgiiA+ A (VBU VT) V. (A.13)

By the skew-symmetry of U (V,U) and (V,,VT) V', one has the diagonal elements

of which are zeros. The r*" diagonal element of (A.13) is
(Eij)rr - vBij AT.
Referring to Proposition 1,

VA = ZB” : vBij)\r = ZB” ’ (Eij)rr

i,J 1,J

=B =U.,V_..
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Next we compute

Vi (VA) = (VyU.yr) Vf +U., (VTIVY;)

for any given 7). From proposition 1 it is sufficient to compute Vgi;U. , and V gi; VI; We

also notice the skew-symmetry of U (Vgi;U) and (sz‘j VT) V, i.e., for any valid k,

(U'VEsU),, = = (U'VpsU),,.,

(VesVI) V), == ((VeuVT) V),

The off-diagonal elements of (A.13) (i.e. k # r) give

(EU)rk = —AkU?;ngw UIJ” + Ar (VBWV;) ‘/:,k if k <,
(EY), = \NULVEsU, — N\ (Ve VE) Vi if k <,

EY) = \ULYVpi,U., if k>r
kr , s

The above linear equations give that

/\T(E”)I;é»tig(E”)rk ifk<r
UV piU., = S (EV)./\ if k=r
0 if k>r
and
T VI v | A k<
0 if k=r

where the results for k = r case are directly from the skew-symmetry of U? (Vg U) and
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(VBijV ) V. As a result, for any n = USV7T = Z:SUB”7 we have

i
VaU., = Zsz’ijij U.,
2%
= Zsz‘jZU:,kUzj,;ch"j U.,
i k
= ZU:,kZSijUz;ch” U.,
k i\
r—1

= ZU k/\ Skr = MeSen + i U..Skr/ M-

)\2
k=r+1

With similar derivation, we have

VaVie =2_85)_ (VB Vir) ViVil
i

A Sy + oS
_Z k+kkv’k.
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Appendix B
Proofs of Propositions in Chapter 5

B.1 Derivation of the MSE closed form in Section 5.5
Denote the reconstruction MSE based on the least favorable distribution as

Mic (a,6) 2 E{ |na (y) — @[3}

Hereinafter we short My (o, €) to My and write it as two parts since they will be calculated

separately,

My =E{|lna () = 23| 2]y #0} + E{llna (v) - 23| |2, =0} (B.)

For the part when||x||, # 0, because we assume the least favorable distribution in (5.4),

)
)

we haveVi € [K],|x;| — co. Then

lyll - e
E {0 (y) - I3 2], # 0} —E{‘ RCRRDEE:

B H —a HyH—Ozw
lyll Iyl

E{l-a-1+wl3}

=a?+k.
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For the part when ||z||, = 0, i.e., signal = are all zero and therefore y = w. Then
[[w]]

=E{Jljwl - o}

= E{JJwl’ - 2ajw] + a*} .

2 {lna (v) - o]l = 0} = {qu—a

Let z = ||w||, then 22 is x? distributed with K degree of freedom. The probability density

function:

0 otherwise

-1
where ¢(K) = /27 - <2%_1 -r (%)) . T(t) is the Gamma function having I' (3) = /7,

I'l)=1and I'(t+ 1) = tI' (t). Now consider integral

1 o0 2\ 1 /OO K1 < 22>
— exp| —— | z27dz = — —z dexp [ ——
v27r/a P < 2 > 21 Ja P 2

= LozK_leXp ( > / exp <—22) dK1
27 V2T 2
e () e (4
= —« exp| —— | + ex
o P 2 21 Ja P

Define functions ¥, (K) = \/% [ exp (—%) Kdz, ¢ (a) = \/%exp (—%) and @ (o) =

\/% o exp (—%) dz. We have
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The second term of (B.1) has

E{HwHQ—QanH—i—QQ} /Oof(z)~(22—2az+a2) dz

= 22 K+1 K 2 K-1
c(K) exp |~ (= —2az" +a’z" ) dz
[0

=c(K) (Vo (K +1)—2aV, (K)+ oV, (K —1)).

Merge the two cases, we obtain the form of the whole denoising MSE (per element of x)

1

MK:?

(e(®+K)+(L—€)c(K) (Vo (K +1)—2aT, (K)+a®T, (K —1))).

(B.2)

Note that this least favorable form holds for the scale invariance property, i.e., if now we
change additive Gaussian noise w to i.i.d. random vector with N/~ (0, 0’21), the resulting
MSE is scaled by constant o?. This property is stated here and will be useful for deriving
the worse case state evolution.

The above result gives

M, :e(a2+1)—|—(1—6) (2(1+a2)<1>(—a)—2a¢(a)).

This result consists with the one in [74]. Also we have

My = %e (0®+2) + ‘/2% (1—¢€) (20 () — 2a® (—a)),

M; = %e (o +3) + % (1—¢) (—ag(a)+ (a®+3) @ (—a)),

ﬁ

_ Lo
M4—4e(a +4)+4\/§

(1—€) (8¢ () —6a® (—a)).

The closed form of Mg’s are functions of € and a. Note that Ve € (0,1), Mg is convex
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14 ‘ ‘ 6 ‘ ‘
——— k=1, 0=1.40, MSE=0.2039 ——— k=1, 0=0.86, MSE=0.5111
—— k=2, 0=1.78, MSE=0.1650 ——— k=2, 0=1.18, MSE=0.4564

12| (=3, 0=2.07, MSE=0.1487 ] 5| k=3, a=143, MSE=04323

— k=4, 0=2.30, MSE=0.1395 ——— k=4, 0=1.63, MSE=0.4184

0.8

o
o
MSE (per element)

MSE (per element)

o
S
T

0.2

Figure B.1: The convexity of the minimax MSE of DCS AMP algorithm against parameter
a. Left: € = 0.05; right: € = 0.2

respect to a. The proof is simply to check

OMy 2

o )¢ (K) - (o (K) = a¥ia (K ~1)))

+(1-
ca+ %(1—6) \/ﬂ/ exp< 2>2K1(z—a)dz,

where on the right hand side the two terms are both monotonic increasing functions and

the second is upper bounded. This implies there is only one intersection between function

OM g

5ok and the « axis, which means that My is convex on « and admits a unique minimum.

Therefore given the sparsity €, we are able to find the optimal threshold a’s to achieve the

minimum MSE for different K. We denote this minimum MSE as
M (€) £ minMj (e, ).

We choose ¢ = 0.05 and € = 0.2 and draw curves of a against Mk in Figure (B.1). In
practice the a to achieve M;? can be numerically determined. In Figure (B.3) we print out

the MSE curves choosing optimal a’s, i.e., Mﬁ’s against the sparsity e for K = 1,2, 3, 4.
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against e.
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B.2 Proof of Proposition 5.2

Proof. Assume K is even and approaches to an infinite large number (similar derivations

can also be done by assuming k is odd). We compute

lim 76\11(1 (K)
Koo Oa

= —a¥p(a) + (K — 1) <aK2¢> (o) PelE22) 2))

=—a"¢ () + (K - 1) (aK‘% (@) + <8aK_3¢ R 4))>

Oa

= —a"p(a) + (K~ 1 <¢ (a) + 8‘I’§a(0>>

= —a"o(a).
Use this result to compute

oM (p,9)
Oa
— % {2a6+ (1—¢€)c(K) (8\1}a (8};+ D_ QQan;K) -2V, (K) +a2w +2a¥, (K — 1))}

= %{2046 + (1 —€)c(K)(—2¥, (K) + 20V, (K — 1))}

=0

Then we have

_c(K) - (Vo (K) —a¥e (K — 1))
a+c(K)- (U (K)—aV, (K —1))

(B.3)

We write out the general term formula of ¥, (K) and ¥, (K — 1) using Taylor expansion.

Since we assume K is even, then

U (K)= (" "+ (K-1)a" P+ (K-1)(K-3)a" 7+ . +(K-1!l-a) ¢(a)

(K- (—a)

K/2

2 (2?— i +¢(_O‘))

i=1

= (K- (¢><a>

Wk 1. (¢ () V2r (; —-® (a)) exp (QQ) +o (a>>

2
(K — 1)1
2 b



APPENDIX B. PROOFS OF PROPOSITIONS IN CHAPTER 5 154

and

U (K-1)= (a2 4+ (K -2)a™*+ (K -2)(K-4)a" C+ . +(K-2)!'-a) - ¢(a)

K72 a2
= (K =20 ()} gy
i=1
042
(K =2
&2

Here (1) and (2) holds since lim Zfio ﬁ = exp (%) and

K—

K Q21 1 a2
li — = V21 | = — D (- — .
Kﬂnoo;(zz'ﬂ)!! ”( 2 O‘)) eXp(z)

-1
Recall that ¢(K) = 2 - (2%_1 F(%)) = (K\/_T;r)”. Substitute ¢ (K), Vo (K) and
U, (K — 1) into (B.3), we get

c(K) (‘PQ(K)—Q\IIQ(K_D):(K\/_277;)!!'<(K21)!!_(K\/2ij)” a)
T (K -1)!
V2 w2 “
® VK-1-a
~VK -«

. K—2)ll p
Here (3) holds since EKfl%,, ~ 5w {1 — 4(}(171) + 32([(171)2 - } for the odd number

(K —1) — oo. Then

6:1—&.

VK
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For the state evolution we have equation K¢ = My, (¢, «), then

K5=MK (6,04)

=ec(@®+K)+(1—e)-c(K) (o (K+1)—2aT, (K)+a’T, (K — 1))
c(K) 2

aE — (X €

—
W~
=

:6(@2+K)+m
(5)

= ¢ (a? + K) + VEKae — a’e
26\/E<a+\/g>.

Here (4) and (5) hold since —2ae = (1 —¢€) - c(K) - (—2¥, (K) +2a¥, (K — 1)) and

lim Y% — e Hence we proved that
nooo L'(n)

B.3 Derivation of MSE M}é; in Section 5.2

The expected MSE from (5.12) with the signal prior can be separated into two expectations,

Mff =E{|ln (X +W; A a) - X}
= B {|ln (X + W, A" ,a) = X3} §1x),-0 (B.4)

+ (=B {|ln (X + W, A7 0) = X[} } 61x),— (B.5)
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For term (B.4) where X =0, we have Y = W. Then

(B.6)

The last equal sign holds because of the isotropy of the random vector A=W
For term (B.5) where as || X ||, = oo and |W |, /|| X ||, — 0, we have HA_IYH2 / HA_IXH2 —

1. Then

E{Hn (X +W, A a) _Xug}

2
—a [A7IX]|, —a
=F X %%
[ATX]," A
2 2 5
K -1 2
—oX, | [ATX],-a
=E + Wi
{; (\A1X|2 [A—IX ],
K 2 K
9 > k1 Xi 2
= E{ZK _2X2}+ng
k=10 Mk k=1
Ka? K
:ﬁ + ZO’% (B?)

The last equal sign holds in (B.7) because X; = 640, and X is isotropic, therefore X? =

X2,

B.4 Derivation of the two special cases in Section 5.5

Proof. of the equivalence between the double integral in the first special case and the

multiple integral (5.18) as 03 = ... = o7. We focus on integrand z, ..., zx in (5.18),
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denote

~ A C1 Hl;&l fe (2150,1)
Lk 1= R
C2*‘IL¢1fC'Cm;07 7
CC2
t/‘ ClIL¢1eXp(—"§>
= 2
c2 +c3 ][z exp (— 15’% %l)

) dxp

dwl\h

where ¢y, g are constants and @\ ; means the multiple integral is of [ = 2,3, ..., K. Denote

z= \/Z{LQ z7 and treat I; k as a function of z, then

- Cc1€exXp (—%)
I g 1dz = e /dwl\la (B.8)
co + c3exp (— 1—}%1 %) v

where v is that elemental shell volume at z (2, ..., zx ). Term [ da;; can be seen as the

area an (K — 2)-sphere [54] with radius z which is

Substituting (B.8), (B.9) into (5.18) and noticing that I'(k + 1) = kI'(k), it yields:

Ik = /fl,Kle

fa (331;0,1) F(K—l) IE%
:// LES dzqdz.

Use the similar analysis to prove the equivalence between the double integral (5.23)

and the multiple integral (5.18) as 0% = ... = a,%. Note that here vector « is isotropic, we
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can replace term xl by 22/K and have

_K-2 2
2772 ZK'Hexp(f%

) F(E) N
B 27¥2K_1ex _ B 22
1—¢ p( —R 2 )

1
1+€H1\/E (17Rl)%F(£)
2

Ry

K/ 1fX Z’l’K)l R dz
€ . 1
L qimh (515 K)

Ik,K:/il,KdZ

(B.10)

2
2 k le 20

.2 _
ficlzso7 k) = a"T(k/Q)

Substitute (B.10) into (5.17). With the number of signal blocks increase to K — oo, we

have
li -1 =0.
i F T =0

Therefore,
lim MkK—E(l—Rk IkK)—e

K—oo
]

B.5 Proof of Lemma 5.5
5 < 0. Note that the partial

Proof. To prove d]g]'%K < 0, we equivalently prove 9o

derivative
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And the order of the integrals and derivative are interchangeable as long as the integrand

is a smooth function. Then we have

Ol i

)

3012

:/3Ik,K/ H fa (%;071)35%
dof ) 14 1=

// oI, x HZ- fc (iUi; 0 1)z}

- Az (B.11)

R, o} 2 1 3
</ —c1 [exp (—1_1’%71) (xl — 1—7Rz> R} fe (2150,1) day

where c1, co are functions of (x4, Rjx) and are always positive.The inequality (B.11)

holds since V; € (—o00, 00),

B.6 Derivation of the MMSE estimator in Section 5.5

The joint probability of X and Y,

px.y (z,y) =px (z)  pw (W =y — )
=[(1—¢€)dp—0+epc (;0,Xx)] - fog (w =y —x;0, 2y )
_1 1 _
=1 —-e€)2nZw]| Zexp <—2yTEW1y> Oz—0

1 1 1
+€ |47r22W2X| 2 exp (QmT (2)_(1 + 21},1) T+ yTE‘jvlm — 2yT2;V1y) .
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Then we have the MMSE estimator,

X; =Ex [X;|Y = y]
_ [z pxy (x,y)de
[pxy (x,y)de
[ xiexp (—%wT (E}l + 21}1) T+ yTEx}/liﬂ - %yTEa,ly) de
e 2r Skl exp (<3 Sty + e (<5t (B3 + By @+ yTSyle - T Syly) de
(3" +=3) ' (=wly))

1

e (343 T e (TS (9343 Sity) +1

4

The covariance matrix

Y =Ey [IEX (X|Y = y]Ex [X]Y = y]T]
1 _ _ _ _ —1
2Wl?:/?:/TEW1 (Exl + 2Wl) & (y;0,2x + Zw)

e (= +33)
( X W) _% = dy
Sw (Sx +3w) | e (TS (5K + 20 T S0ty + 1)

efa (¥;0,Xx +Zw) (125

_ _1y—1 _ _ _ 1y —1
B / (X + 200 Sy s B 20 fo (40,5 + Sw) dy
1—e

27 (Bx + Zw) (B +33) EW]% fo (4;0.Zw (B +2y)) Zw) + 1

Directly from the above result, we have

Sz =By |(Ex [X|Y = 4] - X) (Ex [X[Y =y| - X)"]

= _EX + Xy,

where the diagonal elements of 37 is the MSE associated to the MMSE estimator X.

B.7 Numerial Accuracy of the integral in Section 5.8

In the theoretical phase transition curves, we need to compute integral 5.18. Due the

computer tools at hand does not support double integral on interval [—oo, 0o|, we instead
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look for an appropriate interval for the integral. Notice that

HlfG (xl;(),l)xi
L+ 2T i exp (_fﬁl%?)
S/ I1; fa (21;0,1) aj —dw
=1L \/11_7316}(1) (*f}%l%)
H(l—Rz)/fG (21;0,1 — Ry) zjida

l

dx

Iy x (R,€) = /

G
C1—c¢

Use the 60 rules of the Gaussian distribution. Choose the integral interval as [—6oy, 60y,
where a,? = 1 — Ry, is the variance of the Guassian function at hand. The cdf shall be

larger than 1 — 2 x 10~?. Thus we can compute

/fG (21;0,1 — R)) zjdx

6o 60
> fa ($k50>1—Rk)$zd$k'H/ fa (250,11 = Ry) day

—60 14k —60

60 ) g E—1
> fa (21;0,1 — Ry) wjday - (1 —2 % 1077)

—60

12¢ (6) gy K1

=|1—-————"—|-(1-2x1 1-—

—(1-73%x10"%)- (1-2x10)" " (1 - Ry).

Therefore we choose [—60y, 60y as the integral interval and the calculation tolerance shall

be less than (1 — 7.3 x 1078) - (1 -2 x 109" ' [, (1 - Ry).

B.8 The information dimension of theoretical phase transi-
tion in Section 5.7

iy H(mX])

Togm™ > where X is a real-

Use the Renyi information dimension definition d (X) =

m—ro0
valued random variable, m € N, floor function [-] is taken component-wise. Theorem 1
in [111] shows that when X has a discrete-continuous mixed distribution, e.g., Bernoulli-

Gaussian distribution, where H (| X |) < oo, then d(X) = e.

Now consider multi-variable X € R¥ with joint pdf (5.13) and ¥ = I, thus written in
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the following

px (2;6,0,I) = (1 —€) dz—0 + ¢fc (x;0,1).

Using Theorem 1 in [50], we define matrix B = eI + (1 — €) 0 which corresponds to our
joint pdf and have
d(X) =E (rank (B)) = Ke.

Therefore we have d (X|Xj21) = d(X) — d (Xjz1) = €.
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