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RT-qPCR and RT-Digital PCR:
A Comparison of Different Platforms for the Evaluation

of Residual Disease in Chronic Myeloid Leukemia
Mary Alikian,1,2* Alexandra S. Whale,3 Susanna Akiki,4 Kim Piechocki,4 Celia Torrado,1 Thet Myint,1

Simon Cowen,5 Michael Griffiths,4 Alistair G. Reid,1,2 Jane Apperley,2,7 Helen White,6 Jim F. Huggett,3,8

and Letizia Foroni2,7

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are the
cornerstone of successful clinical management of patients
with chronic myeloid leukemia (CML). Quantitative
monitoring of the percentage of the BCR, RhoGEF, and
GTPase activating protein–ABL proto-oncogene 1, non-
receptor tyrosine kinase fusion transcript BCR-ABL1IS

(%BCR-ABL1IS) by reverse transcription–quantitative
PCR (RT-qPCR) is the gold standard strategy for evalu-
ating patient response to TKIs and classification into
prognostic subgroups. However, this approach can be
challenging to perform in a reproducible manner.
Reverse-transcription digital PCR (RT-dPCR) is an ad-
aptation of this method that could provide the robust and
standardized workflow needed for truly standardized pa-
tient stratification.

METHODS: BCR-ABL1 and ABL1 transcript copy num-
bers were quantified in a total of 102 samples; 70 CML
patients undergoing TKI therapy and 32 non-CML in-
dividuals. 3 commercially available digital PCR plat-
forms (QS3D, QX200 and Raindrop) were compared
with the platform routinely used in the clinic for RT-
qPCR using the EAC (Europe Against Cancer) assay.

RESULTS: Measurements on all instruments correlated
well when the %BCR-ABL1IS was �0.1%. In patients
with residual disease below this level, greater variations
were measured both within and between instruments
limiting comparable performance to a 4 log dynamic
range.

CONCLUSIONS: RT-dPCR was able to quantify low-level
BCR-ABL1 transcript copies but was unable to improve
sensitivity below the level of detection achieved by RT-
qPCR. However, RT-dPCR was able to perform these
sensitive measurements without use of a calibration
curve. Adaptions to the protocol to increase the amount
of RNA measured are likely to be necessary to improve
the analytical sensitivity of BCR-ABL testing on a dPCR
platform.
© 2016 American Association for Clinical Chemistry

Tyrosine kinase inhibitors (TKIs)9 allow successful clin-
ical management of patients with chronic myeloid leuke-
mia (CML) (1 ). Quantitative monitoring of BCR,
RhoGEF, and GTPase activating protein–ABL proto-
oncogene 1, non-receptor tyrosine kinase (BCR-ABL1)10

transcripts in peripheral blood by reverse transcription-
quantitative PCR (RT-qPCR) is the gold standard strat-
egy to evaluate response to TKI therapy. The log reduc-
tion of transcript levels at particular time points is
prognostic and is used to stratify patients and to predict
the risk of treatment failure (2–6 ). This form of moni-
toring has been adopted into the ELN (European Leuke-
mia Network) guidelines. Patients are classified as good
responders when the percentage of BCR-ABL1IS (%BCR-
ABL1IS) is �10% at 3 months after treatment initiation
followed by �1% at 6 months and �0.1% at 12 months
[major molecular response (MMR)] (7 ). Further reduc-
tions in MR from a standardized baseline [the “interna-
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tional scale” (IS)] are defined as MR4 [detectable disease
�0.01% BCR-ABL1IS or undetectable disease in compli-
mentary DNA (cDNA) with �10000 ABL1 transcripts],
and MR4.5 (detectable disease �0.0032% BCR-ABL1IS

or undetectable disease in cDNA with �32000 ABL1
transcripts) (7 ).

While expressing the BCR-ABL1 transcript levels as
a percentage of the total number of ABL transcripts on
the IS has improved interlaboratory comparisons (8–9 ),
it requires regular and cumbersome standardization. Dig-
ital PCR (dPCR) is an adaption of the qPCR method
that could enable simple, standardized quantification of
nucleic acids, primarily due to its nonreliance on calibra-
tion curves (10 ), that could improve accuracy when mea-
suring RNA transcripts (11 ). dPCR was used to quantify
the ERM®-AD623 reference material that can be used
either for the calibration of secondary “inhouse” control
materials or to traceably calibrate BCR-ABL1 copy num-
bers (12 ). dPCR can also be used directly for the absolute
quantification of the BCR-ABL1 copy numbers. In this
study, we compared 3 different dPCR platforms and in-
vestigated whether they could be applied in a clinical
setting to quantify BCR-ABL1 transcripts in CML
patients.

Materials and Methods

All reverse transcription, qPCR and dPCR experiments
were in accordance with the minimum information for
publication of quantitative real-time PCR experiments
(MIQE) and digital MIQE (dMIQE) guidelines (see Ta-
ble S1 in the Data Supplement that accompanies the
online version of this article at http://www.clinchem.org/
content/vol63/issue2) (13–14).

MATERIALS

The ERM-AD623 (Sigma-Aldrich) plasmid produced
by the European Commission for Reference Materials
(12 ) in addition to an inhouse control, the “Wessex”
plasmid (provided by the National Genetics Regional
Laboratory), were used for the performance evaluation of
RT-dPCR. Both plasmids contain identical BCR-ABL1,
ABL1, and glucuronidase beta (GUSB) sequences. Ali-
quots of each were stored at �20 °C. Fresh dilutions of
between 50000 copies/ �L and 2 copies/�L were pre-
pared from the ERM plasmid, while dilutions of between
40000 copies/3 �L and 10 copies/3 �L were prepared
from the Wessex plasmid. The latter was routinely used
for the RT-qPCR calibration curve.

CLINICAL SAMPLES

In total 102 clinical samples were analyzed in this study.
Ethical approval was provided and informed consent was
obtained from all patients in accordance with the Decla-
ration of Helsinki. Archived cDNA material from 70

CML clinical samples encompassing 7 different disease
levels (as measured by RT-qPCR and expressed as a per-
centage of BCR-ABL1IS) were used: 20%, 10%, 1%,
0.1%, 0.01%, 0.001%, and �0.001% BCR-ABL1 (see
online Supplemental Table S2). A further 32 non-CML
samples were used as negative controls. These were ob-
tained from patients referred to the West Midlands Re-
gional Genetics Laboratory (WMRGL) [Sample Nega-
tive Birmingham (SNB): 19 samples] and Hammersmith
Hospital, London [Sample Negative Hammersmith
(SNH): 13 samples] for investigation of myeloprolifera-
tive neoplasms; they were classified as non-CML based
on cytogenetic and PCR tests (see online Supplemental
Table S2). Negative controls from healthy volunteers
were not included for practical reasons and because we
felt these would add no further information to the inves-
tigation of the assay’s limit of detection (LoD).

All cDNA samples were stored at �80 °C at the
Hammersmith Hospital (for a median of 2 years, range
1–7 years) following the processing of peripheral blood
samples as they arrived at the laboratory according to a
previously described protocol (15–16). Briefly, 20–30
mL of peripheral blood was washed in red cell lysis buffer
and the total white blood cell pellet was lysed in 1.5 mL
RLT buffer (Qiagen) and stored at �80 °C. RNA was
extracted from 350 �L of the RLT lysate using the Qia-
gen RNeasy Mini kit (Cat No. 74106, Qiagen) following
the manufacturer’s protocol on the QIAcube robotic
workstation (Qiagen). Reverse transcription was per-
formed using 480U of M-MLV reverse transcriptase (In-
vitrogen, Cat No. 28025013) and 0.6 �g of random
hexamers (Invitrogen, Cat No. N8080127) with 55 �L
of RNA added in a 100 �L final reaction. To maintain
routine feasibility, the RNA was added based on volume,
with no correction for RNA concentration, and was nei-
ther evaluated for RNA quality nor DNase treated, as is
normal practice in our diagnostic laboratory. Neverthe-
less, as part of the method development, RNA from a
subset of samples was reextracted from the RLT lysates
using the Qiagen RNeasy Mini plus kit (Qiagen) includ-
ing an on-column DNase digestion step.

BCR-ABL1 AND ABL1 ASSAYS

Both the BCR-ABL1 and ABL1 assays used in this study
were published by the EAC (Europe Against Cancer)
initiative (17–18). For the RT-qPCR, QuantStudio™
3D Digital PCR System (QS3D) and QX200 platforms,
both assays were modified to allow a minor groove bind-
ing (MGB) quencher to be conjugated to the 3� end of
the hydrolysis probes as described previously (19 ) (see
online Supplemental Table S3). For the RainDrop plat-
form, a TET (tetrachlorofluorescein) quencher was con-
jugated to the 3� end of the hydrolysis probe (see online
Supplemental Table S3). Assay optimization was per-
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formed with primer and/or probe titrations and anneal-
ing temperature gradients for the 3 RT-dPCR platforms.

QUANTSTUDIOTM 3D dPCR SYSTEM

QS3D experiments were performed at Hammersmith
Hospital. For each sample, 15 �L reactions were pre-
pared containing 1� QS3D Digital PCR Master Mix,
900 nmol/L each of forward and reverse primer and 250
nmol/L of each of the probes. For analysis of both the
reference material and clinical samples, 1 �L of cDNA
was added to each reaction. A 2-fold dilution series
(512–2 copies per reaction) and a 5000-increment dilu-
tion series (50000–1000 copies per reaction) were pre-
pared from the reference material. In the clinical samples,
triplicate RT-dPCR reactions were performed for the 4
highest disease levels (20%, 10%, 1%, and 0.1%) and 9
replicate reactions were performed for the lower disease
groups and controls. For NTCs, 1 �L of nuclease-free
water was added in place of cDNA.

The reaction mix was loaded into a QS3D Digital
20K chip (V1) according to the manufacturer’s instruc-
tions and placed in an ABI 9700 thermocycler (Thermo
Fisher Scientific). Thermocycling conditions were 96 °C
for 10 min, followed by 40 cycles at 55 °C for 1 min and
98 °C for 30 s and a final extension at 55 °C for 2 min
with a 16 °C hold. The chips were read using the QS3D
reader and analyzed using the online Analysis SuiteTM

v1.0. Using the 2D scatter plots and histograms in con-
trol reactions, thresholds were set in both channels (FAM
and VIC) to classify the partitions containing positive or
negative amplification for the 2 targets.

QX200TM DROPLET dPCR SYSTEM

QX200 experiments were performed at LGC, London.
For each sample, 20 �L reactions were prepared contain-
ing 1� Bio-Rad RT-dPCR SuperMix, 900 nmol/L each
of forward and reverse primer, 250 nmol/L of each probe
in a duplex reaction and 1 �L of cDNA. As with the
QS3D, triplicate reactions were performed for samples in
the 4 highest disease level categories and 9 replicate reac-
tions were performed for the lower disease groups and
controls. For NTCs, 1 �L of nuclease-free water was
added in place of cDNA. Droplets were generated ac-
cording to the manufacturer’s instructions. Thermocy-
cling was performed with a C1000 Touch thermocycler
(Bio-Rad). Thermocycling conditions were 96 °C for 10
min, followed by 40 cycles at 94 °C for 30 s and 60 °C for
1 min. A final incubation at 98 °C for 10 min was per-
formed for signal stabilization followed by a 12 °C hold.
The ramp rate was 2 °C/s. Droplets were counted and
fluorescence determined using the QX200 Droplet
Reader and data was analyzed using the QuantaSoft
v.7.0.1 software. Using the 2D scatter plots and control
reactions, thresholds were set in both channels to classify
the positivity for the 2 targets.

RAINDROP DROPLET dPCR SYSTEM

RainDrop experiments were performed at the WMRGL.
For each sample, 40 �L reactions were prepared contain-
ing 1� Applied Biosystems® TaqMan® Universal PCR
Master Mix, 900 nmol/L of each primer, 200 nmol/L of
each probe, 1� Droplet Stabilizer, and 10 �L of cDNA.
Each sample was measured using duplicate reactions re-
gardless of the disease level. For NTCs, 10 �L of
nuclease-free water was added in place of cDNA. Drop-
lets were generated using the RainDrop Source according
to the manufacturer’s instructions and collected in an
Axygen 8 well tube strip (PN PCR-0208-C). Thermocy-
cling was performed with a C1000 Touch thermocycler
(Bio-Rad). Thermocycling conditions were 95 °C for 10
min, followed by 49 cycles at 95 °C for 15 s and 60 °C for
1 min. A final incubation at 98 °C for 10 min was per-
formed followed by a 10 °C hold. Droplets were counted
using the RainDrop Sense. Data were analyzed using the
RainDrop Analyst software.

Different cDNA volumes were used on different
dPCR platforms because the platforms have different re-
action volumes to which different amounts of cDNA can
be added with the larger reaction volume and partition
number of the Raindrop platform allowing more tem-
plate to be added. One microliter of cDNA on the dPCR
platforms with 20000 partitions represented a pragmatic
volume that enabled an optimal concentration of ABL1
to be measured without saturating the reactions.

QUANTITATIVE RT-qPCR

RT-qPCR experiments were performed at Hammer-
smith Hospital using the 7900 ABI qPCR system as de-
scribed previously (19 ).

ABSOLUTE COPY NUMBER MEASUREMENT

Files were exported from each RT-dPCR experiment
containing the number of positive partitions (k) for each
assay and the total number of partitions (n) per reaction.
These numbers were used to estimate the number of cop-
ies per partition (�) using the equation � � �ln (1 �
k/n) (13, 20–21). The BCR-ALB1 and ABL concentra-
tion in the reference materials and cDNA was calculated
by converting � to copies/�L:

Copies per �L �
�

Vp
�

Total reaction volume

Added template volume

Where Vp is the partition volume (�l) as published by the
manufacturer (QS3D; 0.000809 �L, QX200; 0.00085
�L, and RainDrop; 0.000005 �L). The percentage of
BCR-ABL1 was calculated as the ratio between the num-
ber of copies of BCR-ABL1 and ABL1. Estimated target
copy numbers per reaction were calculated by multiply-
ing the copies/ �L by the total reaction volume.

RT-Digital PCR Platform Comparison

Clinical Chemistry 63:2 (2017) 3
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STATISTICAL ANALYSIS

Graphing and basic statistical analysis including calcula-
tion of means, variances, SDs, CIs, and P values were
performed using Microsoft Excel 2013, GraphPad Prism
6.0, and the R statistical programming environment
(http://www.r-project.org/). For all statistical analyses,
P � 0.05 was considered significant. The workflow of the
statistical analysis is shown in (see online Supplemental
Fig. S1).

Results

PERFORMANCE EVALUATION OF THE DUPLEX BCR-ABL1 AND

ABL1 ASSAY BY RT-dPCR

Before the clinical analysis, validation experiments were
performed using the QS3D platform. The aim was to
assess the performance characteristics of a clinically ap-
plied RT-qPCR assay on an RT-dPCR platform. Dilu-
tions of the ERM-AD623 and Wessex plasmids were
used to measure and compare the 2 targets (BCR-ABL1
and ABL1). Performance characteristics evaluated in-
cluded the reaction set up (primer-probe concentrations,
annealing temperatures, and comparison of uniplex and
duplex reactions; also assessed on the other 2 digital plat-
forms), linearity and sensitivity of the assay, and identi-
fication of bias between the 2 targets (see online Supple-
mental Figs. S2–S6).

Using the ERM-AD623 reference material, duplex
reactions were performed with comparable results to uni-
plex reactions. There was no significant difference in
measured concentrations (P � 0.385) (see online Sup-
plemental Fig. S6A). For the investigated range, the ratio
between the 2 targets showed no significant deviation
from the expected ratio of 1 (P � 0.471; see online Sup-
plemental Fig. S6B). Therefore, duplex experiments were
used for the remainder of the study.

Linearity was maintained across the dilution range
for both targets with an R2 of 0.99 (see online Supple-
mental Fig. S6C). A dilution of the inhouse Wessex plas-
mid was set up and measurements compared to those
obtained with the ERM-AD623 standard. As the con-
centration of the former was determined by spectropho-
tometry, the comparison with the ERM-AD623 refer-
ence material was used to determine if a conversion factor
was needed. A highly significant systematic bias of ap-
proximately 50% was identified with the Wessex plasmid
compared with the ERM-AD623 (P � 0.0001) (see on-
line Supplemental Fig. S7A). A similar bias was also iden-
tified in the ERM evaluation study (12 ) and explained by
the assignment of copy numbers assuming a single-
stranded Wessex plasmid, but double stranded ERM
plasmid. Using Bland–Altman Ratio plots a conversion
factor of 0.46 was calculated and used for the remainder
of the study. Importantly, there was no significant differ-

ence in the ratio of both targets (see online Supplemental
Fig. S7B).

EVALUATION OF dPCR FOR QUANTIFICATION OF CLINICAL

SAMPLES

For all clinical samples BCR-ABL1 and ABL1 transcripts
were measured by RT-qPCR and RT-dPCR on same
cDNA samples, and the percentage ratio between the 2
targets was compared. For the QS3D platform, 2 nega-
tive ABL1 populations were observed in all samples.
These were not clearly separated from each other, but
obviously distinct from the positive population of parti-
tions (see online Supplemental Fig. S8). An investigation
of a subset of cDNA samples treated with and without
DNase, in addition to using different ABL1 assays, iden-
tified the cause of this problem to be genomic DNA
contamination from the extraction process. Therefore, in
all QS3D analyses, the additional negative populations
were included in the negative partition count by adjust-
ing the value of the fluorescent intensity threshold (see
online Supplemental Fig. S8). This was not observed in
experiments with the 2 droplet platforms.

ABL1 transcript copy numbers measured all 3 RT-
dPCR platforms showed good correlation with RT-
qPCR across all sample groups (R2 � 0.91, 0.93, and
0.95 for QS3D, QX200, RainDrop, respectively; Fig.
1A). RT-dPCR quantification of the BCR-ABL1 tran-
script copy numbers correlated well with RT-qPCR
across all 3 platforms only down to �0.1% (R2 � 0.85,
0.94, and 0.92 for QS3D, QX200, RainDrop, respec-
tively; Fig. 1B). Below 0.1%, while the copy number
correlations between RT-qPCR and the 3 RT-dPCR
measurements were maintained, RT-dPCR produced a
greater variation in the replicate measurements for each
sample which was not observed for the RT-qPCR coun-
terpart measurements. Interestingly, copy number con-
centrations for BCR-ABL1 transcripts were similar across
the 4 platforms whilst ABL1 concentrations showed
more variability. As %BCR-ABL1IS is intrinsically linked
to copy number concentrations for both targets, the in-
crease in variability of the ABL1 transcripts resulted in the
%BCR-ABLIS frequently varying by 1 order of magni-
tude when compared to RT-qPCR (R2 � 0.89, 0.92,
0.97 for QS3D, QX200, RainDrop, respectively; Fig.
1C). Furthermore, none of the platforms were able to
substantially improve the sensitivity of quantification by
RT-qPCR in patient samples with %BCR-ABL1IS level
�0.001%.

When using the QS3D there was good correlation
down to approximately 20 copies of BCR-ABL1 tran-
scripts, below which a plateau was observed (Fig. 2). For
quantification of the lowest 2 residual CML categories,
0.001% (where RT-qPCR returned a consistent value of
1 copy per 3 �L cDNA for all 10 patients) and �0.001%
(where the qPCR results were negative), all 3 RT-dPCR
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instruments detected amplification of BCR-ABL1 targets
(Fig. 2). However, the non-CML control groups also
showed a positive measurement for BCR-ABL1 that ren-
dered the measurements obtained in the low disease
groups indistinguishable from normal background noise
(Fig. 2). As expected, RT-qPCR was consistently nega-
tive with no BCR-ABL1 transcripts measured in the
�0.001% category (samples in this category were chosen
based on a zero reading by RT-qPCR), but detected 1–3
copies in some of the control patient groups and NTCs.
The QS3D and Raindrop platforms had an appreciable
false positivity rate (FPR) in the NTC reactions while
only a single positive droplet was observed in 1 of the 30
NTC reactions using the QX200 platform (Fig. 2).

For the QX200 platform, the plateau was less pro-
nounced than that observed with the QS3D. The FPR
was visibly lower than those of the QS3D and Raindrop
platforms. However, for the QX200, the readings ob-
tained from the lowest 3 CML categories (�0.01%) were

indistinguishable from the negative control patient
groups (Fig. 2). Only the Raindrop platform was able to
measure % BCR-ABL1 IS in the �0.001% range at a level
higher than the FPR in the control patient groups (Fig.
2). This was possibly related to the larger volume of
cDNA added to each reaction (10 �L as opposed to 1
�L). However, in the CML patient samples, the Rain-
drop platform did not identify any difference in the BCR-
ABL1 transcripts compared to the disease level they were
assigned by RT-qPCR (0.01%, 0.001% or �0.001%;
Fig. 2).

We explored the effect of differing quantities of
input cDNA on sensitivity by performing 9 replicate
reactions on the dPCR platforms with 20000 parti-
tions (i.e., using a total of 9 microliters of cDNA) for
samples known to be below MMR (0.1% IS) as a mean
for testing a larger volume of cDNA per sample. This
increased the quantitative precision but not the sensi-
tivity of the tests.

Fig. 1. Comparison of RT-qPCR with RT-dPCR for the quantification of BCR-ABL1 and ABL1 transcript copy numbers in clinical
samples.
Scatter plots demonstrating the linear relationship between the quantification of (A), BCR-ABL1, (B), ABL1, and (C), %BCR-ABL1IS. Quantifica-
tion of the cDNA derived from clinical samples by RT-qPCR (x-axis) was compared with the QS3D (blue), QX200 (green), and RainDrop (red)
platforms. Each data point represents the mean value derived from either triplicate or 9 replicate reactions. Correlation coeffiencies were as
follows: (R2 = 0.91, 0.93, 0.95 for QS3D, QX200, RainDrop, respectively) for ABL1 transcript copy numbers; (R2 = 0.85, 0.94, 0.92 for QS3D,
QX200, RainDrop, respectively) for BCR-ABL1 transcript copy numbers; (R2 = 0.89, 0.92, 0.97 for QS3D, QX200, RainDrop, respectively) for
%BCR-ABL1IS.
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Discussion

In this study, we assessed the performance of 3 different
RT-dPCR platforms for the future application of mea-
suring %BCR-ABL1IS levels in response to TKI therapy
and compared each with the RT-qPCR. RT-dPCR can
perform absolute quantification by counting cDNA
molecules and has been reported to offer high precision
and accuracy (22–25) as well as being described as
“calibration-free” (26 ). While these strengths of RT-
dPCR have facilitated its use in assigning specific values
to reference materials (12, 27–28), we wanted to explore
whether this method had the potential to be applied clin-
ically to CML samples. For this purpose, we compared
the gold-standard RT-qPCR test to 3 RT-dPCR instru-
ments. For patients with a relatively high level of disease
(�0.1% BCR-ABL1) the measurements provided by the
different platforms were highly concordant. However,
we identified false positivity in all 3 RT-dPCR platforms,
particularly at levels �0.01%, that precluded their use as
a more sensitive alternative to RT-qPCR.

Taken together the data presented here suggest that
RT-dPCR did not appreciably improve the sensitivity of
% BCR-ABL1IS measurement when an equal amount of
cDNA was investigated on both platform types. How-
ever, the main advantage of RT-dPCR over RT-qPCR is

that it can be performed without the requirement for a
calibration curve, thus offering a simpler means of ensur-
ing interlaboratory reproducibility. In addition, RT-
dPCR may offer greater confidence in the detection of
low BCR-ABL1 copy number concentrations at the limits
of the current RT-qPCR technology; this could allow
better distinction of patients in MR4 (�0.001% BCR-
ABL1IS) and MR4.5 (�0.0001% BCR-ABL1IS) in pa-
tients being considered for treatment cessation trials. The
expected improvement in performance and reduction in re-
agent costs over the next 3–5 years is therefore likely to
contribute to the implementation of dPCR on a larger scale.

Normalization using the ABL1 gene appeared to
confound the results as there was generally a better agree-
ment between RT-dPCR and RT-qPCR when measur-
ing BCR-ABL1 absolute values than for ABL1 (Fig. 1).
This would suggest that while ABL1 may be a good
choice of a reference gene for RT-qPCR (18 ), selection of
an alternative reference gene following MIQE and
dMIQE guidelines might be prudent if RT-dPCR is to
be adopted into clinical diagnostics (13–14).

The findings of our study suggest that RT-qPCR is
already working close to the physical LoD. To improve
sensitivity using RT-dPCR, an increase in the amount of
template would be required; this could be achieved either
by the addition of more cDNA to the reaction, or by
increasing the reaction volume. Other changes of poten-
tial benefit include the reduction of background noise to
reduce the false positivity in the negative control sets.
Further work is required to elucidate the causes of false
positivity. The reproducible identification of both target
molecules in the negative samples from Hammersmith
hospital on both platform types after the reextraction of
RNA from the original GTC lysates, confirmed that the
false positivity was not caused by contamination of the orig-
inal cDNA material. Certainly, RT-dPCR is at a greater risk
of false-positive findings compared with RT-qPCR as the
large numbers of partitions analyzed for each reaction in-
creases the chance that a small number of these partitions
will result in high fluorescence after 40 cycles of amplifica-
tion. A concerted effort by the molecular testing community
will be required to clarify the cause of these events.

Conclusion

The main findings of this study illustrate that RT-dPCR
has a comparable performance to RT-qPCR over a 4 log
dynamic range for the quantification of BCR-ABL1. To
further improve assay sensitivity and measure MR4 and
MR4.5 with confidence, changes to the upstream process-
ing are required. The unique format of RT-dPCR, which
essentially counts cDNA molecules, allows us to con-
clude that a major reason for this is that RT-qPCR is
already measuring close to the single molecule level. Pro-
tocol modifications would therefore be required to phys-

Fig. 2. Comparison of the BCR-ABL1 transcript copy num-
bers measured per reaction in low disease level patient
(≤0.01%) and matched control samples.
The 3 low disease level patients as measured by RT-qPCR (0.01%,
0.001%, and <0.001%) are shown with the matched non-CML
controls (SNH and SNB) that are nominally 0% BCR-ABL1IS. The
NTC reactions were generated with water in place of cDNA. The
box plots show the median and interquartile range with the whis-
kers showing the minimum and maximum data points from 9
replicates for each platform. The dashed horizontal line indicates
zero BCR-ABL1 transcript copies per reaction.
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ically increase the number of cDNA molecules made
available to the PCR to increase this limit. RT-dPCR
offers a powerful method to evaluate these modifications
to improve RT-qPCR in the short term, however with
further optimization and correct selection of reference
gene, RT-dPCR could provide a reproducible alternative
method to RT-qPCR in future.
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