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ABSTRACT: The methylammonium lead halides have become
champion photoactive semiconductors for solar cell applications;
however, issues still remain with respect to chemical instability and
potential toxicity. Recently, the Cs2AgBiX6 (X = Cl, Br) double
perovskite family has been synthesized and investigated as stable
nontoxic replacements. We probe the chemical bonding, physical
properties, and cation anti-site disorder of Cs2AgBiX6 and related
compounds from first-principles. We demonstrate that the
combination of Ag(I) and Bi(III) leads to the wide indirect band
gaps with large carrier effective masses owing to a mismatch in
angular momentum of the frontier atomic orbitals. The spectro-
scopically limited photovoltaic conversion efficiency is less than
10% for X = Cl or Br. This limitation can be overcome by replacing
Ag with In or Tl; however, the resulting compounds are predicted to
be unstable thermodynamically. The search for nontoxic bismuth perovskites must expand beyond the Cs2AgBiX6 motif.

In the 7 years since their first use in dye-sensitized solar
cells,1 photovoltaic (PV) devices based on hybrid
inorganic−organic lead halide perovskites have soared in

efficiency to over 22%, matching record CdTe and multi-
crystalline-Si cells and narrowing the gap to Cu(In,Ga)Se2 and
single-crystal Si.2,3 The lead halide perovskites possess a
number of advantages for PV applications in addition to a
direct band gap of 1.6 eV,4 including scalable synthesis
methods,5−7 strong absorption with a low Urbach energy,8

long carrier diffusion lengths and lifetimes,9,10 and defect
tolerance and self-regulation.11,12 Two major concerns are their
instability in air13−16 and the inclusion of lead, the toxicity of
which could present major barriers to commercialization.17

To counteract these issues, there have been multiple recent
movements to improve upon the hybrid lead halides.18 One of
these is the partial replacement of methylammonium with
cesium in devices, to improve stability without impacting
performance, with some substantial success.19,20 Other attempts
have included moving to layered thiocyanate systems21−23 and
replacing methylammonium with much larger cations like
phenylethylammonium, reducing dimensionality while improv-
ing stability, with record cells reaching 15% efficiency.24−26

Further investigations have included photoactive cations27−29

or moving beyond the perovskite structure altogether.30−33 So
far this year, there have been multiple investigations into
moving from the AIMIIX3 perovskite to the A2

IMIMIIIX6 double
perovskite. Doing so allows the replacement of lead by the
much less toxic bismuth (as Bi3+) and 1+ cations such as Ag+

through cation mutation, analogously to the relation between
CuInS2 and Cu2ZnSnS4. The Cs2NaBiX6 double perovskites,
called elpasolites, have been known and studied since the
1970s;34−36 however, replacing Na with Ag has been a novel
development.
Slavney et al. first synthesized the cubic Fm3 ̅m double

perovskite Cs2AgBiBr6 (see Figure 1), estimating an indirect
band gap of 1.95 eV from UV−vis spectroscopy, and discuss its
photoluminescence (PL) behavior.37 They found a long PL
decay time of 660 ns, which reflects the recombination lifetime,
and also note that, given the indirect band gap, this is
dominated by nonradiative pathways. McClure et al. were able
to synthesize both Cs2AgBiBr6 and Cs2AgBiCl6, reporting
indirect band gaps of 2.19 and 2.77 eV, respectively, from
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diffuse reflectance spectroscopy and 2.06 and 2.62 eV from
density functional theory (DFT) calculations, with the latter
confirming the indirect nature of the band gap.38 Volonakis et
al. have performed a theoretical screening of the double
perovskites, examining MI = Cu, Ag, Au and MIII = Bi, Sb and
predicting that band gaps for these materials can range from 0.5
to 2.7 eV and from 0.0 to 2.6 eV for Bi and Sb systems,
respectively.39 Cheetham and co-workers have synthesized two
methylammonium double perovski tes . These are
(CH3NH3)2KBiCl6, though like Cs2AgBiCl6, its indirect band
gap was large, around 3 eV,40 and (CH3NH3)2TlBiCl6,
possessing a direct but still large band gap of 2.16 eV.41 Even
more recent work has seen the prediction of band gaps for
Cs2AgBiX6 (X = Cl, Br), with many-body GW theory,42 of 2.4
and 1.8 eV, in reasonable agreement with experiment. An
assessment of the defect chemistry of Cs2AgBiBr6 reported that
VBi and AgBi form deep acceptor levels, and thus growth under
Br-poor/Bi-rich conditions could enhance performance.43

The band gaps of all of the currently synthesized compounds
are all likely too high for use in single-junction solar cells, yet
Volonakis et al. demonstrate the possibility of lower band gap
materials using iodides or alternate noble metals.39 Concerns
remain, however, regarding their indirect band gaps, which will
limit optical absorption, and their chemical stability; while
Slavney et al. found no decomposition of Cs2AgBiBr6 under
nitrogen, McClure et al. observed significant degeneration in its
reflectance after a month when stored in light and air. In this
Letter, we examine the origins of these issues through a
theoretical examination of the Cs2MBiX6 series and related
compounds and make an assessment of their utility in solar
energy conversion.
All crystal structures mentioned in this report were optimized

using the PBEsol functional; a comparison of the relaxed
structures of Cs2AgBiCl6 and Cs2AgBiBr6 to the experimental
structures of McClure et al. are displayed in Table 1, indicating
that PBEsol is able to replicate these structures well, with

neither lattice parameter differing by greater than 1% from
experiment. Additionally, structures for the potential double
perovskite compounds Cs2AgBiI6, Cs2InBiX6 (X = Cl, Br), and
Cs2TlBiX6 (X = Cl, Br) were constructed by replacing the
respective atoms within the known structures and performing a
volume relaxation.
From these crystal structures, the electronic band structures

for each compound were predicted using HSE06+SOC. The
band structure of Cs2AgBiBr6 is displayed in Figure 2a and acts
as an exemplar for the Cs2AgBiX6 series; our obtained band gap
is 1.79 eV and indirect, with the VBM at the X point of the
Brillouin zone, while the conduction band minimum (CBM) is
at L (the valence band maximum, VBM, in the chloride lies at
Γ). This is in accordance with the band structures presented by
McClure et al. and Volonakis et al. The lowest direct
(momentum-conserving) transition comes at X, with an energy
of 2.45 eV. As seen in the methylammonium lead perovskites
and the results of Volonakis et al., as the halide in Cs2AgBiX6
varies from Cl to I, the predicted fundamental band gaps in our
calculations shrink from 2.35 to 1.08 eV. As such, this would
leave the iodide, in analogy to methylammonium lead iodide,
within the optimal band gap range for single-junction PVs.
However, the difference between lowest indirect and direct
transitions increases down the halide group, leaving the lowest
direct transition at 1.79 eV. A summary of the lowest transitions
for all compounds is listed in Table 2. Yu and Zunger have
previously highlighted the importance of direct allowed
transitions for producing strong absorbance in PV materi-
als;44,45 an indirect band gap need not necessitate weak
absorption, provided a direct allowed transition exists only
slightly higher in energy. In the case of the Cs2AgBiX6
materials, however, such a large difference between the two
transitions (>0.5 eV) in all three compounds is likely to
severely impact strong absorption in the visible range. In the
context of solar cells, this will reduce both the photocurrent and
photovoltage, leading to poor device performance. Further
examination of the valence and conduction band character
reveals that an indirect band gap is unavoidable in these
materials.
To illustrate this fundamental difference, a “Cs2Pb2Br6” cubic

double perovskite was constructed by replacing the Ag and Bi
sites with Pb in the unit cell of Cs2AgBiBr6 to allow direct
comparison between the cesium lead halides and the silver−
bismuth double perovskites. It should be noted that at room
temperature CsPbBr3 actually crystallizes in the orthorhombic
space group Pnma, formed by tilting of the Pb−Br octahedra in
the cubic perovskite, and as such, the band gap is recorded at
around 2.2 eV.46,47 Here, however, we use the double
perovskite structure to demonstrate the potential for strong
Pb−Br−Pb bonding when the octahedra are in the fully cubic
arrangement. The resulting electronic band structure and
charge density isosurfaces of the upper valence bands and lower
conduction bands are shown in Figure 2b. Cs2Pb2Br6 possesses
a much smaller band gap than Cs2AgBiBr6, which is due to the
significantly wider conduction band in the lead compound that

Figure 1. Cubic crystal structure of the halide double perovskite
Cs2AgBiBr6. All of the cesium double perovskites (Cs2MM’X6) in
this Letter also use this structure. Silver atoms are in light gray,
bismuth is in purple, cesium is in turquoise, and bromine is in
brown.

Table 1. Equilibrium Lattice Parameters, Following
Optimization Using PBEsol/DFT with Percentage
Differences from Experiment38 Given in Parentheses

compound a/Å volume/Å3

Cs2AgBiCl6 10.6959 (−0.75%) 1223.64 (−2.25%)
Cs2AgBiBr6 11.2011 (−0.43%) 1405.342 (−1.29%)
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is close to 2.5 eV compared to 0.75 eV in Cs2AgBiBr6. This
conduction bandwidth (CBW) arises from the interaction of
neighboring Pb nonbonding p orbitals at Γ compared to the
highly antibonding configuration at L. In Cs2AgBiBr6, the
frontier orbitals are confined to either only silver or bismuth,
requiring next-nearest-neighbor cation interactions and, there-
fore, leading to a more localized, narrow conduction band and a
large band gap.
In the valence band of Cs2AgBiBr6, at Γ, the band is localized

on only the Ag cations and Br anions. This is similar to the
conduction band, where the band is localized on only Bi or Ag
cations, and therefore, the band remains relatively flat.
Considering Cs2Pb2Br6 in comparison, the Pb atoms all

contribute equally, leading to a stronger interaction and a
high VBM at Γ. At X, however, the strongly directional
interaction of the Ag dz2 with the bromine atoms is able to
incorporate some Bi s character into the valence band as well,
leading to a much higher valence band compared to Γ. As a
result, the band gap of Cs2AgBiBr6 becomes indirect, enforced
by the preferential Ag d interactions at X. As these features are
replicated in the chloride and iodide, it appears that the
electronic mismatch between Ag and Bi is the fundamental
cause of the large, indirect band gaps of the Cs2AgBiX6 family.
In order to permit a direct band gap in a lead-free double

perovskite, silver must be replaced by an atom with valence s
states, for example, the “lone pair” 5s and 6s states in In+ and
Tl+. To test this, we have computationally examined “hypo-
thetical” chloride and bromide double perovskites containing Tl
and In in place of Ag, for example, Cs2TlBiBr6. By replacing Ag
with a valence ns2 cation, these s states are able to mix with the
Bi s and anion states, creating a direct allowed transition at Γ, as
seen in the proposed band structure for the hypothetical
Cs2TlBiBr6 in Figure 3. Notably, it is evident that the inclusion
of Tl enables the replication of many of the band features of the
“Cs2Pb2Br6” structure, including the wider conduction band
and high valence band at Γ as a result of the complementary
contributions of both Bi and Tl. Unlike the d orbitals of Ag, the
s contribution from Tl matches the Bi s contribution, in analogy
to the Pb s in Cs2Pb2Br6, leading to a completely symmetric
interaction with the bromine atoms. However, the introduction
of these levels does lead to a narrowing of the band gap,
particularly with In; this may be due to the higher-energy 5s
states in In, compared to Bi 6s. This leads to only Cs2TlBiCl6

Figure 2. HSE06+SOC band structures of (a) Cs2AgBiBr6 and (b) “Cs2Pb2Br6” (CsPbBr3 in the double perovskite structure), with respective
charge density isosurfaces of the VBM and CBM, pictured along (110) of the primitive cell and at specific k-points. Silver atoms are in light
gray, bismuth is in purple, lead is in dark gray, and bromine is in brown. The VBM is set to 0 eV.

Table 2. Lowest Indirect (Eg
i ) and Direct Allowed (Eg

da)
Transitions, with CBWs and Spectroscopic Limited
Maximum Efficiencies (SLMEs), Predicted Using
HSE06+SOC, of Cs2MBiX6 (M = Ag, In, Tl; X = Cl, Br, I)
and CsPbBr3 within the Cubic Double Perovskite Structure
(“Cs2Pb2Br6”)

compound Eg
i /eV Eg

da/eV CBW/eV SLME/%

Cs2AgBiCl6 2.35 2.87 0.58 3.90
Cs2AgBiBr6 1.79 2.45 0.75 7.92
Cs2AgBiI6 1.08 1.79 0.95 12.37
“Cs2Pb2Br6” 0.92 2.47 17.15
Cs2InBiCl6 0.28 2.17 10.25
Cs2InBiBr6 0.36 2.03 10.43
Cs2TlBiCl6 1.28 2.24 15.87
Cs2TlBiBr6 0.71 2.22 17.72
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possessing an optimal band gap for PV applications; yet
including Tl will reintroduce problems of toxicity, one of the
primary reasons for replacing lead. Alternatively, as Volonakis et
al. propose, introducing methylammonium in place of the
cesium could break the symmetry restriction on the direct
transition at Γ.
To investigate the possibility of methylammonium sub-

stitution and its potential effect on the electronic structure, two
structures were tried and calculated. The first is
(CH3NH3)2AgBi I 6 , the iod ide ana logue o f the
(CH3NH3)2AgBiCl6 calculated by Volonakis et al.,39 con-
structed by taking the orthorhombic structure of (CH3NH3)-
PbI3 with Pb replaced alternatively with Ag and Bi. For the
second, the methylammonium cation was introduced into the
Cs2AgBiBr6 primitive cell, in place of cesium, and the structure
was relaxed with the PBEsol functional. In the HSE06+SOC
band structure of “(CH3NH3)2AgBiI6”, the symmetry lowers
from Pnma in (CH3NH3)PbI3 to C2/m as a result of the Ag/Bi
substitution (Figure 3b in the Supporting Information). In
contrast to the results of Volonakis et al., the calculated
fundamental band gap of 1.38 eV is indirect, with the VBM at
A0 and CBM at D, although the direct transition at Γ of 1.59 eV
is fully symmetry-allowed. On the other hand, the band
structure of “(CH3NH3)2AgBiBr6”, based on the cubic double
perovskite structure, gives a substantially indirect band gap of
1.75 eV, with the lowest available direct transition at 2.40 eV
(Figure 4 in the Supporting Information). Using the special
cubic k-points from Cs2AgBiBr6 demonstrates that while the
methylammonium substitution lowers the degeneracy of many
of the bands, the effect on the band edges and band gap is
minimal (the VBM changes from X to W). The electronic
structure changes induced by methylammonium incorporation
are unlikely to enhance the PV performance; however, it is
possible that a distinct crystal structure with different properties
may be adopted for this composition.
The spectroscopic limited maximum efficiency (SLME) is a

metric proposed by Yu and Zunger that includes the strength of
optical absorption and the nature of the band gap in the overall
theoretical efficiency of an absorber material.44 The SLME
approach thus improves upon using the magnitude of the band
gap alone as an assessment of PV performance and has been
very useful in identifying and analyzing potential new PV
absorbers in previous studies.45,48,49 Thus, to quantify the effect
of the large difference between the indirect and direct band
gaps of these materials on the potential PV performance of the

Cs2AgBiX6 family, we present the SLMEs for all of the materials
discussed in Table 2. The SLMEs are calculated using a suitable
film thickness of L = 200 nm. The large, indirect nature of the
band gaps of the Cs2AgBiX6 series impacts their SLME
considerably, especially the chloride and bromide, which are
below 10%; in comparison, the SLME of the champion
absorber CuInSe2 is ∼23%.45 On the other hand, the
hypothetical Cs2TlBiCl6 and “Cs2Pb2Br6” possess SLMEs of
around 17%, despite their small, but direct, band gaps.
As highlighted above, poor stability is one of the major

reasons to look beyond the methylammonium lead halides for
emerging PV absorbers. In order to assess the stability of these
compounds, the energies of the competing phases of
Cs2AgBiX6 were obtained using PBEsol. The energies of the
double perovskites were then compared to the competing
phases using the program CPLAP50 to determine their
thermodynamic stability. As a result, Cs2AgBiCl6 and
Cs2AgBiBr6 were found to be stable with respect to
decomposition; the latter is supported by the lack of mass
loss in the thermogravimetric traces of Slavney et al. up to 430
°C, well above the decomposition of MAPI and the likely
operating range.37 Cs2AgBiI6, however, was found to be
thermodynamically unstable; in particular, further investigation
demonstrated that it is unstable when considering the
decomposition path in eq 1, with ΔHr = −0.41 eV per formula
unit.

⎯ →⎯⎯ + +
Δ

2Cs AgBiX Cs Bi X 2AgX CsX
H

2 6 3 2 9
r

(1)

This is similar to recent findings that MAPI is intrinsically
unstable with respect to its constituent iodides13,14 and
indicates that even if it is possible to synthesize Cs2AgBiI6, it
may still suffer from instability issues in devices. Additionally,
the proposed structures for most of the indium and thallium
double perovskites were also unstable with respect to their
relative halides, as reported in Table 3. As such, while the
silver−bismuth chloride and bromide double perovskites
demonstrate improved stability compared to their methyl-
ammonium lead counterparts, moving to iodide-based systems
in particular leads to instability with respect to the M3Bi2I9 (M
= Cs, CH3NH3) competing phases, which have also been
examined for PV applications,51,52 as does introducing other ns2

cations on the Ag site.
Moving to the double perovskite motif also introduces the

possibility of disorder; with Ag+ and Bi3+ occupying similar

Figure 3. HSE06+SOC band structure of Cs2TlBiCl6, with respective charge density isosurfaces of VBM and CBM at specific k-points and
pictured along (110) of the primitive cell. Thallium atoms are in gray, bismuth is in purple, and chlorine is in green. The VBM is set to 0 eV.
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environments within the lattice, disorder on the cation sites is a
possibility. Given the observed impact of cation disorder on the
band gap and potentially a Voc deficit, in other solar absorbers
like Cu2ZnSnS4, ZnSnN2, and ZnSnP2,

53−56 high levels of
disorder could significantly influence the performance of these
materials. To investigate this, 3 × 3 × 3 primitive supercells
(270 atoms) were constructed of the fully ordered Cs2AgBiBr6
perovskite and a “special quasirandom structure” (SQS),57,58

representing maximal disorder; these cells were then relaxed
and their relative energies at equilibrium obtained. The ordered
perovskite is lower in energy, in line with McClure et al.’s
observation that Rietveld refinement of Cs2AgBiBr6 was not
improved by introducing cation disorder,38 with a difference in
energy of 29 meV/atom between the two supercells. In a
simple regular solution model, however, this relatively small
energy gap means that entropic contribution from disorder will
outweigh the enthalpic difference at a potential order/disorder
transition temperature of 477 K. This is sufficiently low that
synthesis temperature may affect different samples, particularly
annealed thin films. The band gaps of the two structures were
also calculated using PBEsol+SOC in order to assess the effect
of disorder on the electronic structure. The transition at Γ in
the disordered supercell was found to be 0.256 eV, much
smaller than 1.504 eV in the ordered supercell. From this, we
might expect that, should samples possess different degrees of
cation disorder, this could significantly alter the band gap
measured and therefore may partly explain the variance in
measured band gaps for the silver−bismuth double perovskites.
In this Letter, we have investigated the Cs2AgBiX6 double

perovskite family using GGA and hybrid DFT in order to
thoroughly assess their electronic structure and stability, gaining
insight into their suitability as nontoxic replacements to the
methylammonium lead halides. Careful investigation of their
orbital makeup reveals that the fundamental mismatch of Ag d
and Bi s orbitals at the band edges leads to an inherently
indirect, large band gap due to a reduced CBW. Hypothetical
replacement of Ag by ns2 ions such as Tl+, however,
demonstrates that the s−s nearest-neighbor cation interactions
restore the direct band gap. As a consequence of the highly
indirect band gaps, the SLME of the silver−bismuth double
perovskites is low. Additionally, we have predicted the
thermodynamic stability of these compounds; while
Cs2AgBiCl6 and Cs2AgBiBr6 are stable, the majority of the
other structures are unstable with respect to their ternary and
binary constituent iodides. Finally, the effect of Ag/Bi cation
disorder on the band gap was found to be significant, but
disorder is only predicted to be accessible at high temperature.
As a result, we present a number of inherent limitations of the
Cs2AgBiX6 family as solar absorbers and as potential replace-
ments of the methylammonium lead halides. In order to fully

access the same exceptional properties of the methylammonium
lead halides, future syntheses may require the matching of ns2

cations and possibly moving beyond the cubic double
perovskite structure.

■ THEORETICAL METHODS

All calculations were performed using DFT within periodic
boundary conditions through the Vienna Ab Initio Simulation
Package (VASP).59−62 For geometry optimizations and stability
field calculations, the PBEsol functional was used,63 while for
band structure and optical calculations, the screened hybrid
functional HSE06 was used,64 with the addition of spin−orbit
effects (HSE06+SOC). HSE06 incorporates 25% Hartree−
Fock exchange with a screening parameter of ω = 0.11 bohr−1

in addition to 75% exchange and correlation from the
Generalized Gradient Approximation (GGA) functional
PBE.65 Scalar-relativistic pseudopotentials were used, and the
projector-augmented wave method was used to describe the
interaction between core and valence electrons.66 The optical
response was calculated using the method of Furthmüller et al.
to obtain the high-frequency real and imaginary dielectric
functions.67 This allowed the calculation of SLMEs using the
method of Yu and Zunger.44 A 3 × 3 × 3 Γ-centered k-mesh
and a 400 eV plane-wave cutoff were used for all electronic
structure calculations, while a tighter k-mesh of 4 × 4 × 4 was
used for the optical calculations. A convergence criterion of
0.01 eV Å−1 was used on the forces on each atom during
optimization. The equilibrium structures of the compounds
studied in this report are provided in an online repository:
https://github.com/SMTG-UCL/AgBi_double_perovskite.
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Cs2TlBiBr6 −0.21
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Ledinsky, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C. Organometallic halide
perovskites: sharp optical absorption edge and its relation to
photovoltaic performance. J. Phys. Chem. Lett. 2014, 5, 1035−1039.
(9) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.;
Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J.
Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an
Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341−
344.
(10) Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.;
Herz, L. M. High Charge Carrier Mobilities and Lifetimes in
Organolead Trihalide Perovskites. Adv. Mater. 2014, 26, 1584−1589.
(11) Brandt, R. E.; Stevanovic,́ V.; Ginley, D. S.; Buonassisi, T.
Identifying defect-tolerant semiconductors with high minority carrier
lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 2015,
5, 265−275.
(12) Walsh, A.; Scanlon, D. O.; Chen, S.; Gong, X. G.; Wei, S.-H.
Self-Regulation Mechanism for Charged Point Defects in Hybrid
Halide Perovskites. Angew. Chem., Int. Ed. 2015, 54, 1791−1794.
(13) Zhang, Y.-Y.; Chen, S.; Xu, P.; Xiang, H.; Gong, X.-G.; Walsh,
A.; Wei, S.-H. Intrinsic Instability of the Hybrid Halide Perovskite
Semiconductor CH3NH3PbI3. arXiv:1506.01301 [cond-mat.mtrl-sci]
2015.
(14) Nagabhushana, G. P.; Shivaramaiah, R.; Navrotsky, A. Direct
calorimetric verification of thermodynamic instability of lead halide
hybrid perovskites. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 7717−
7721.
(15) Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.;
Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. The Role of Oxygen in
the Degradation of Methylammonium Lead Trihalide Perovskite
Photoactive Layers. Angew. Chem., Int. Ed. 2015, 54, 8208−8212.
(16) Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.;
Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A.
Light and oxygen induced degradation limits the operational stability
of methylammonium lead triiodide perovskite solar cells. Energy
Environ. Sci. 2016, 9, 1655−1660.
(17) Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of
organometal halide perovskite solar cells. Nat. Mater. 2016, 15, 247−
251.
(18) Ganose, A. M.; Savory, C. N.; Scanlon, D. O. Beyond
methylammonium lead iodide: prospects for the emergent field of ns2

containing solar absorbers. Chem. Commun. 2016, DOI: 10.1039/
C6CC06475B.
(19) McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.;
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