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Abstract 

 

Interspecific competition is often proposed to shape mammalian evolution. Many 

studies use trait and distribution data on extant species, but this ignores temporal aspects 

of competition. Phylogeny provides a framework for integrating present-day data with 

clade histories. 

 

Here, I use phylogenetic comparative methods and present-day data to investigate the 

role of competition in the evolution of four mammalian clades: New World leaf-nosed 

bats (Phyllostomidae), New World monkeys (Platyrrhini), Australasian possums 

(Phalangeriformes), and ground squirrels (Marmotini). I ask four specific questions: (1) 

Do community phylogenies, and/or the traits of community members, show patterns 

expected under competition? (2) Is there evidence of competition in the relationship 

among species’ trait differences, phylogenetic differences and patterns of coexistence? 

(3) Does the intensity of competition affect rates of morphological evolution? (4) Are 

the tempo and/or mode of mammalian body size evolution influenced by competition? 

 

I found evidence for competition in monkeys and squirrels, but not bats or possums. 

Competition did not influence rates of morphological evolution; instead body mass was 

the most important correlate across the groups. Across all mammals, the best-supported 

model of body size evolution corresponded to a scenario in which mammals 

experienced a relatively early burst of morphological evolution, followed by a 

slowdown in rate as competition for niches increased. In addition, around 60% of the 

variation in the tempo of body-mass evolution was explained by just a few predictors. 

 

In conclusion, I find some support for competition shaping mammalian evolution. 

However, there is evidence that the importance of other processes may outweigh the 

effects of competition in some groups. Further study and methodological improvements 

are required to fully understand the relative role of competition in evolution. The 

methods developed in this thesis provide a useful starting point for such studies. 
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Chapter 1: General introduction 

1.1 Why use phylogenetic approaches for studying competition? 

 

“The theory of natural selection is grounded on the belief that each new variety, and 

ultimately each new species, is produced and maintained by having some advantage 

over those with which it comes into competition…” 

p.388, Darwin (1859). 

 

Interspecific competition is the negative effect one species has upon another by 

consuming, or controlling access to, a resource that is limited in availability (Keddy 

1989). Although primarily considered in an ecological context, Darwin recognised the 

critical role of competition in natural selection (see above; Darwin 1859). In fact, 

competition (or its absence) is invoked as the mechanism behind a variety of biological 

patterns and processes, including community assembly, adaptive radiations, mass 

extinctions, species’ morphological differences, and variation in evolutionary rates 

(Brusatte et al. 2008; Dayan & Simberloff 2005; Harmon et al. 2003; Schluter 2000; 

Simpson 1944; Simpson 1953; Stanley 1973a). All of these ideas are based on the very 

simple theories of competitive exclusion and limiting similarity (Gause 1934; 

Hutchinson 1959). These theories state that a pair of coexisting species with similar 

traits will compete fiercely, resulting in either competitive exclusion of the inferior 

competitor (Gause 1934), or greater differences in the traits of the species than expected 

by chance (i.e. character displacement; Brown & Wilson 1956) . 

 

Competition is expected to affect many present-day biodiversity patterns. For example, 

because of competition, species within a community are expected to have greater 
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variance in their traits than expected by chance. This could be the result of local 

extinction of intermediates caused by competitive exclusion, or character displacement 

among all the species within the community. In species rich systems, competition may 

also decrease rates of morphological evolution, because it prevents species from 

broadening their niches into the niche space of their competitors (de Mazancourt et al. 

2008). Most studies of competition investigate these patterns using information on the 

traits or distributions of the species involved. These include experimental field or 

laboratory studies, where species are removed from, or introduced to, a community and 

the effects monitored (see review in Schoener 1983), investigations of character 

displacement (see review in Dayan & Simberloff 2005), and theoretical models (e.g. 

Meszena et al. 2006; Taper & Case 1992). However, these methods only use 

information on extant species and current species’ distributions. In reality, the 

differences among species’ traits, niches and distributions which are observed today are 

the result of interspecific competition throughout the clade’s evolutionary history (i.e. 

they investigate the “ghost of competition past”; Connell 1980). Phylogeny provides a 

framework for the integration of present-day data with clade history. Thus, even in a 

group with a good fossil record, the best way of assessing the importance of competition 

to present-day diversity is to use explicitly phylogenetic approaches. 

 

There are two reasons phylogenetic methods are useful for studying competition. The 

first reason concerns the underlying philosophy of the analyses. As Dobzhansky (1964) 

so elegantly stated, “nothing in biology makes sense except in the light of evolution”. 

This is especially true for competition, as species only compete if they have similar 

resource-use traits, and close relatives tend to have more similar traits than distant 

relatives because they share a more recent common ancestor (Harvey & Pagel 1991). 
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This evolutionary dimension of competition was also recognised by Darwin (1859), 

who noted that species within the same genus generally compete more fiercely than 

species from different genera.  

 

The second reason is a more practical one; the traditional field-based approach is time 

consuming (a recent field-based study of competition in corals has been running for 40 

years; Connell et al. 2004), costly, and often only provides information on one particular 

system (e.g. Chihuahuan desert communities; Ernest et al. 2008). There are also limits 

on the size of an organism which can be easily removed or introduced, which may 

explain why most mammalian studies use rodents not larger species (Schoener 1983). 

Character displacement studies are less time consuming, but again often only analyse a 

few communities at a time (e.g. small cats of Israel; Dayan et al. 1990). Using 

phylogenetic approaches may provide a faster and more cost-effective way of gathering 

information on more general evolutionary patterns: even the most data and analysis 

heavy methods employed in this thesis could be done in the timeframe of a three-year 

research grant. 

 

1.2 Phylogeny, community membership and competition 

Some phylogenetic methods for studying competition already exist, particularly in the 

field of evolutionary community ecology (Webb et al. 2002). Competition has often 

been studied by community ecologists because competitive interactions are considered 

to be one of the factors which shape community assembly (Keddy 1989). For over a 

decade, biologists have been promoting the integration of community ecology and 

evolution with some success (Johnson & Stinchcombe 2007; Losos 1996; McPeek & 

Miller 1996; Webb et al. 2002), although the first studies combining the two were 
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carried out much earlier. Based on Darwin’s (1859) suggestion that species within a 

genus tend to compete fiercely, these studies looked at species-to-genus ratios with the 

assumption that, if competition were structuring communities, there would be few 

species per genus within each community (Elton 1946; Jaccard 1922; Moreau 1948). 

Although early studies usually supported this hypothesis (see Elton 1946 for a review), 

species-to-genus ratios depend strongly on the number of species involved and, once 

this was taken into account, many later studies revealed more species per genus than 

expected within each community (Jarvinen 1982). 

 

With the increasing availability of phylogenies, it became possible to use phylogeny 

rather than taxonomy to determine whether competition was shaping community 

structure. Webb (2000) proposed a simple way of doing this using two metrics he 

termed the net relatedness index (NRI) and the nearest-taxon index (NTI). In brief 

(these metrics are described in more detail in Chapter 3), these measures compare the 

phylogenetic distances between species in a community, to the phylogenetic distances 

between species in pseudo-communities randomly drawn from the species pool. If 

competition is structuring a community, species within the community should be, on 

average, less closely-related than the species within the randomly drawn pseudo-

communities. Webb (2000; Webb et al. 2002) called this pattern “phylogenetic 

overdispersion”. These approaches have collectively become known as “community 

phylogenetics” methods (Webb et al. 2002), and have been used widely in the last few 

years: a recent review article cites 23 examples from a range of taxa (Emerson & 

Gillespie 2008). Although 11 of these examples use metrics other than NRI and NTI, 

only NRI and NTI are used widely, i.e. by more than three studies. This is probably due 
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to their simplicity, and because they require only relatively simple data: a phylogeny 

and species lists. 

 

Despite their advantages, there are some problems associated with community 

phylogenetics methods. Firstly, the power of the methods to detect competition 

increases as the spatial scale of the species pool decreases (Kraft et al. 2007; Swenson et 

al. 2006); thus a variety of pool sizes should be tested in each analysis (e.g. Cardillo et 

al. 2008; Cavender-Bares et al. 2006; Cooper et al. 2008). Taxonomic scale, i.e. whether 

the community is defined as just the species within a genus, or includes all the species 

within a higher taxonomic unit, is also important where the study community has a 

broad taxonomic definition, e.g. all Floridian plants (Cavender-Bares et al. 2006). As 

taxonomic scale decreases, the likelihood of competition occurring increases, since the 

species are, on average, more similar than when broader taxonomic scales are used 

(Swenson et al. 2006). The results also depend on whether the resource-use traits of the 

species are phylogenetically conserved, i.e. more similar in close relatives than distant 

relatives (Cavender-Bares et al. 2004; Kraft et al. 2007; Webb et al. 2002). Phylogenetic 

overdispersion is interpreted as evidence for competition structuring the community, 

based on the idea that the traits of the species in the community are also overdispersed. 

If the traits are not conserved then this assumption is untrue and other processes must 

account for the pattern (Webb et al. 2002). Information on species’ traits is therefore 

essential for the correct interpretation of the results, yet only 12 of the 23 studies 

mentioned above considered the traits of the species within the communities in addition 

to their phylogenetic patterns (see Emerson & Gillespie 2008). There is however, a 

growing consensus that both resource-use traits and phylogeny need to be considered in 

these kinds of analyses (Kraft et al. 2007). 
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As well as being important in community ecology, competition is also a key component 

of certain models and theories of evolution, for example, the theory of adaptive 

radiation, the density dependent (or “niche-filling”) model of cladogenesis, logistic 

models of diversification, and the early burst, or acceleration-deceleration (ACDC), 

model of evolution (Blomberg et al. 2003; Harmon et al. in review; Rabosky & Lovette 

2008a; Schluter 2000; Sepkoski 1998; Valentine 1980; Walker & Valentine 1984). All 

of these models are based on the observation that clades often experience rapid 

diversification early in their history, followed by a slowdown in diversification rate 

towards the present. The suggested mechanism is that ecological opportunity is highest 

early in a clade’s history when there are more empty niches, fewer predators and fewer 

competitors, and that the subsequent reduction in diversification rate reflects the 

increased levels of competition for niches as they fill up. Although the only way this can 

be tested directly is by using field or laboratory experiments on species with short 

lifespans (e.g. Pseudomonas fluorescens colonies; Meyer & Kassen 2007), many studies 

instead investigate the pattern indirectly and propose that competition is part of the 

explanation. 

 

The simplest methods for investigating the relationship between diversification rate and 

clade age involve looking at the accumulation of species, or lineages, through time 

using the fossil record. If competition for niches is important in evolution as suggested 

above, such diversity-through-time plots should be logistic curves, i.e. high initial rates 

of species/lineage accumulation followed by decreasing rates towards the present. This 

is a common method in palaeontology but, although logistic curves are found in some 

marine groups (e.g. families of marine invertebrates; Sepkoski 1998), the overall pattern 
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in the terrestrial fossil record appears to be of species diversity increasing exponentially 

through time with no slowdown (Benton 1995; Benton & Emerson 2007).  

 

Rather than straightforward graphical analyses, diversification rates can also be 

examined using present-day species and modelling approaches that use extensions of 

simple birth-death models (Nee et al. 1994; Rabosky & Lovette 2008a), since 

diversification is, by one definition, the rate of speciation minus the rate of extinction. 

These modelling approaches have also been extended to detect whether the differences 

in diversification rate through time are due to variations in the speciation rate with time, 

or if the diversification rate decrease after the initial high rate is actually the result of 

increased extinction over time (Rabosky & Lovette 2008b).  

 

The diversification rate modelling methods described above are easy to apply and 

require only a phylogeny (albeit a comprehensive, fully-resolved, dated species-level 

phylogeny). However, they do not consider the traits of the species which are relevant to 

the strength of competition. They also often lack a spatial angle, unless the analyses are 

spatially-restricted to, for example, an island or island system. Consequently, these 

methods offer little mechanistic insight into the effects of competition on diversification 

history. Other methods, which explicitly consider traits and phylogeny simultaneously, 

are therefore better for assessing the importance of competition. Most of these methods 

involve fitting mathematical models of trait evolution across a phylogeny and then using 

the model parameter estimates to describe the mode of evolution (e.g. Blomberg et al. 

2003; Harmon et al. in review). For example, the early burst model of trait evolution 

uses maximum-likelihood approaches to estimate a parameter, r, which describes the 

changes in anagenetic rate through time (Harmon et al. in review). In more 
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comprehensive studies, a number of evolutionary models are tested and their fit to the 

data is compared using some kind of model selection criterion (e.g. Harmon et al. in 

review). 

 

The phylogenetic methods I have described for studying competition generally use 

phylogeny and one of either patterns of species’ coexistence, or species’ traits. 

However, data on the phylogeny, coexistence and traits are all needed in order to study 

competition. It would also be advantageous if the methods were relatively quick to carry 

out and easily generalised to a range of systems or communities. These are the kinds of 

methods I aim to develop in this thesis.  

 

In order to do this I have chosen to use present-day mammals as my study group; and in 

particular four mammalian clades: New World leaf-nosed bats (Phyllostomidae); New 

World monkeys (Platyrrhini); Australasian possums (Phalangeriformes); ground 

squirrels (Marmotini). I chose mammals because the evolutionary history and ecology 

of the group is very well-known: there is an almost complete species-level mammalian 

phylogeny and ecological and life-history data are available for many species (Bininda-

Emonds et al. 2007; 2008; Jones et al. in press). In addition, many classical evolutionary 

studies use mammalian examples (e.g. Simpson 1944; Stanley 1973a) so comparisons 

between my work and earlier studies will be possible. This makes mammals an 

excellent clade on which to further investigate the links between competition and 

evolution. 

1.3 Thesis aims and outline  

The overall aim of this thesis is to determine how important competition has been in 

shaping mammalian evolution, using novel, explicitly phylogenetic, comparative 
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methods and present-day data, rather than the more established non-phylogenetic 

approaches. To help do this, I ask the following research questions: 

 

1. Do community phylogenies and/or the traits of species within a community 

show patterns consistent with competition? 

2. Do models of the relationship among species’ trait differences, phylogenetic 

differences and patterns of coexistence, provide evidence of competition? 

3. Does the intensity of competition influence rates of morphological evolution? Is 

competition more or less important than other factors that shape rates of 

morphological evolution? 

4. How does mammalian body size evolve? Do the tempo and/or mode of body 

size evolution have any connection to competition? 

5. How important has competition been in shaping mammalian evolution? 

 

Obviously such an undertaking requires a lot of data, including species-level ecological 

and life-history data, high quality specimen-level morphometric data, information on the 

distributions of the species, and reliable phylogenies (for my study groups). Chapter 2 

deals with how these data were gathered and is referred to in the methods sections of the 

following chapters. It also introduces my four study clades in more detail. The 

subsequent four chapters are empirical analyses of the first four questions above. 

 

CHAPTER 3: Do community phylogenies and/or the traits of species within a 

community show patterns consistent with competition? 

In Chapter 3, I investigate whether community phylogenies support the prediction that 

competition is a powerful structuring force in mammalian communities. I first use the 
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community phylogenetics metrics of Webb et al. (2000; 2002) described briefly above, 

along with my own modifications, to investigate whether the assemblages show 

phylogenetic overdispersion; where species within a community are less closely-related 

than expected by chance. Since species which share a common ancestor tend to be 

similar, and competition is most fierce between similar species, phylogenetic 

overdispersion is expected in communities which are structured by competition. I find 

that overdispersion is commonplace in the communities, which suggests an important 

role for competition in mammalian community assembly. I then try to confirm these 

findings by testing for overdispersion in the traits of the species in the communities, 

using an analogous approach to community phylogenetics methods. I expect the traits of 

species within a community to be less similar than expected by chance, due to 

competition. I find overdispersion in the traits of one of my study groups and conclude 

that competition is probably responsible for these patterns in this group, but processes 

other than competition must affect the others. 

 

CHAPTER 4: Do models of the relationship between species’ trait differences, 

phylogenetic differences and patterns of coexistence, provide evidence of 

competition? 

Chapter 3 used either species’ coexistence patterns (i.e. whether or not a species was 

within a particular community) and phylogeny, or coexistence patterns and traits, to 

investigate competition. However, phylogeny, traits and coexistence all need to be 

combined if we are to fully understand how competition influences evolution. In 

Chapter 4, therefore, I include species’ traits, phylogeny and coexistence patterns to 

investigate competition in my study groups. Using a matrix-based approach, I model the 

difference between the morphological traits of a pair of species as a function of their 
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phylogenetic difference and the degree to which their present-day geographic ranges 

overlap. If competition is important then (when I control for phylogeny), as species’ 

geographic range overlap increases, species’ trait differences should also increase 

through character displacement. I find the opposite of my expectations in two study 

groups (and no pattern in the other two): as geographic range overlap increases, trait 

differences decrease. This suggests that factors other than competition may be 

influencing evolution in my study groups. 

 

CHAPTER 5: Does the intensity of competition influence rates of morphological 

evolution? Is competition more or less important than other factors that shape 

rates of morphological evolution? 

The results of Chapters 3 and 4 throw uncertainty on the hypothesised role of 

competition in the evolution of my study groups. One reason for these results may be 

that other factors influence evolution, and these may be more important for regulating 

the trait differences I observe than competition. Therefore in Chapter 5 I investigate a 

broad range of correlates of the rate of morphological evolution in my four study 

groups, to determine which variables correlate with rate, and whether they are more 

important than competition in shaping morphological evolution in my study groups. I 

derive a measure of the relative rate of morphological evolution for each species using a 

novel methodology, and then use phylogenetic comparative analyses to investigate 

correlates of the rate of evolution. Putative correlates include body size, environmental 

variables e.g. temperature, geographic range size, life-history variables e.g. basal 

metabolic rate, as well as a measure of the intensity of competition. I find that the most 

important correlate of the rate of morphological evolution across all the groups is body 

size, and the intensity of competition does not feature in any of the best models. 
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CHAPTER 6: How does mammalian body size evolve? Do the tempo and/or mode 

of body size evolution have any connection to competition? 

Since Chapter 5 showed that body size was the most important correlate of the rate of 

morphological evolution in my study groups, I decided to study body size evolution in 

more detail. In Chapter 6 I therefore investigate the tempo and mode of body size 

evolution in all extant mammals. Using three evolutionary models commonly used to 

characterise trait evolution, I first investigate which of these models best fits body-mass 

evolution across all mammals, and when mammals are split taxonomically and spatially. 

I find that across all mammals, the best model of body size evolution is where mammals 

experienced a burst of morphological evolution relatively early in their evolutionary 

history, followed by a slowdown in the rate of evolution, perhaps as available niches 

began to be filled and competition for niches became more intense. The best model of 

evolution varies when mammals are split taxonomically and spatially, however, the rate 

of body-mass evolution also varies spatially. I map this, then model the spatial variation 

in the rate of body size evolution using various predictors including environmental 

variables e.g. AET, geographical variables e.g. whether or not the area was an island, 

and variables pertaining to the species composition of the area e.g. species richness. I 

find that around 60% of the variation in the rate of evolution can be explained by just a 

few of these predictors, but that the remaining 40% is probably due to ecological 

factors, possibly including competition. 
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CHAPTER 7: How important has competition been in shaping mammalian 

evolution? 

Finally, in Chapter 7, I draw the results of the previous chapters together in order to 

summarise my results and discuss whether, together, they suggest a dominant role for 

competition in mammalian evolution. I also discuss whether studying competition using 

phylogenetic approaches is useful and sufficient, and suggest areas for future study. 
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Chapter 2: Data collection 

2.1 Introduction 

The analyses in Chapters 3, 4 and 5 use a database I compiled which contains 

morphometric, ecological and locality data for 2456 museum specimens. This methods 

chapter deals with how this data was collected and checked for errors, and also 

describes other data sources used in this thesis, e.g. assemblage lists, life-history data 

and phylogenies. This information will be referred to in later chapters but described in 

detail only here. Other methods specific to particular chapters can be found in the 

methods sections of those chapters. 

2.2 Study groups 

I selected clades to study on the basis of four criteria. The clades needed to (1) contain 

enough species for reasonable replication, but not so many that it would be unfeasible to 

measure them all in the time available (between 50 and 200); (2) have a phylogeny with 

a resolution of at least 70% in the recent supertree of Bininda-Emonds et al. (Bininda-

Emonds et al. 2007; 2008), with the dates of at least 70% of the nodes being estimated 

from molecular sequence or fossil data; (3) be well-represented in museum collections; 

and (4) represent novel research. The clades I selected were; (A) New World leaf-nosed 

bats (Phyllostomidae); (B) New World monkeys (Platyrrhini); (C) Australasian possums 

(Phalangeriformes); and (D) ground squirrels (Sciuridae: Xerinae: Marmotini) which I 

describe in more detail below. 

 

New World leaf-nosed bats (Phyllostomidae): This clade contains 160 species which 

are grouped into 55 genera and eight subfamilies (Wilson & Reeder 2005). The family 
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ranges from the south-western United States and the West Indies, south to northern 

Argentina and Central Chile. Within this area they occupy a wide variety of habitats 

from tropical forests to deserts (Nowak 1999). Phyllostomids are particularly interesting 

since they are the most ecologically diverse bat family, containing sanguivorous, 

carnivorous, frugivorous, nectarivorous and insectivorous members. The phyllostomid 

section of the Bininda-Emonds et al. (2007; 2008) mammal supertree is well-resolved 

(84%). 

 

New World monkeys (Platyrrhini): This clade contains 128 species, grouped into 16 

genera and four families (Atelidae; Aotidae; Cebidae, including callitrichids; and 

Pitheciidae: Wilson & Reeder 2005). New World monkeys are found in forests from 

north-eastern Mexico to northern Argentina (Nowak 1999). Most species (except for the 

almost entirely folivorous genus Alouatta) are omnivorous, but the degree to which they 

rely on fruit, flowers, seeds and insects varies among genera (Nowak 1999). The 

supertree for this group is 87% resolved (Bininda-Emonds et al. 2007; 2008) 

 

Australasian possums (Phalangeriformes): The 63 species of this clade are grouped 

into 20 genera and six families (Acrobatidae; Burramyidae; Petauridae; Phalangeridae; 

Pseudocheiridae and Tarsipedidae; Wilson & Reeder 2005). I excluded Tarsipedidae 

from my dataset since finding a complete specimen of its only member (Tarsipes 

rostratus) was not possible and it is also probably too small to compete with any of the 

other possums. Therefore, where I refer to Phalangeriformes throughout this thesis I 

mean only the families Acrobatidae, Burramyidae, Petauridae, Phalangeridae and 

Pseudocheiridae. Phalangeriformes are found in Australia, Tasmania and New Guinea 

as well as on islands from Sulawesi to the Solomons (Nowak 1999). They are, for the 
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most part, restricted to forested areas, and can be nectarivores, gumivores, folivores, 

frugivores or insectivores (Flannery 1995). The possum section of the mammal 

supertree is highly-resolved (92%; Bininda-Emonds et al. 2007; 2008).  

Ground squirrels (Marmotini): This tribe contains 65 North American and 27 

Eurasian species grouped into seven genera (Wilson & Reeder 2005). Note that, since 

the North American and Eurasian species will be unable to compete, I use only North 

American species in analyses where competition is predicted to cause the patterns 

observed (Chapters 3 and 4). Ground squirrels are found in a range of habitats from 

dense forests and shrubland to open grassland and desert. They are all, to some extent, 

omnivorous, although grassland species tend to be more herbivorous than their forest 

counterparts (Nowak 1999). The sciurid supertree is well-resolved (93%; Bininda-

Emonds et al. 2007; 2008), especially for the North American species. 

2.3 Morphometric traits 

Morphometric traits were chosen to be ecologically relevant (see below). Only cranial 

traits were chosen because postcranial material is much less available in museum 

collections. The morphometric measurements I took were as follows (see Figure 2.1): 

(1) condylobasal length (CBL); (2) maximum zygomatic width (MZW); (3) tooth row 

length (excluding canines) (TR); (4) incisor row length (IR); (5) canine height (except 

squirrels) (CH); (6) canine diameter (except squirrels) (CD); (7) coronoid process height 

(CP); (8) mandibular condyle height (MC); (9) P1 (premolar one) height (possums only) 

(P1); (10) P3 height (possums only) (P3); (11) diastema length (squirrels only) (DL). 

All of these traits have easily recognisable landmarks so they are repeatable, eight are 

present in at least three of the four study clades, and all have functional significance in 
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feeding (except CBL which was measured as an indication of skull size) as follows. The 

zygomatic arch (MZW) forms an attachment point for several muscles including the 

temporalis and masseter muscles. Species with wider zygomatic arches have increased 

masseter and temporalis muscle area which results in higher bite strength and allows 

increased usage of canines (Bogdanowicz et al. 1999; Freeman 1984). Larger temporalis 

muscles also help prevent jaw dislocation in species that use their incisors to rip at hard 

materials such as bark (Ball & Roth 1995). Both of these features are also associated 

with increasing carnivory and the hardness of food items that can be taken. The length 

of the two tooth rows (TR, IR), canine size (CH, CD) and diastema length (DL) are also 

related to diet. For example, nectarivorous species tend to have longer tooth rows than 

gumivores or frugivores (Dumont 1997) and, among carnivorous species, species with 

larger canines are more carnivorous and consume larger and/or harder prey than those 

with smaller canines (Bogdanowicz et al. 1999; Dayan & Simberloff 1994; Freeman 

1984). For the possum families I also measured the height of the first and third premolar 

(P1, P3), because variation within these teeth is a good indicator of diet in these species. 

For example, species feeding on hard food items tend to have a large blade-like P3, 

whereas nectar feeding species have small peg-like premolars (Flannery 1995). Low 

mandibular condyle height (MC) is associated with increasing gape allowing species to 

consume larger food items (Dumont 1997), whereas elevated mandibular condyle (and 

overall mandible) height is associated with an increase in masseter size, and hence bite 

strength, allowing harder food items to be consumed (Freeman 1979; Nogueira et al. 

2005). Similarly, coronoid process height (CP) is related to masseter volume and 

attachment strength. Short coronoid processes are a feature of nectarivorous species 

which require little masticatory musculature to consume their liquid food source 

(Dumont 1997). 
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. 

Figure 2.1: (a) Ventral view of a possum skull and (b) side view of a squirrel mandible showing 

morphometric measurements taken. 1 = CBL, 2 = MZW, 3 = tooth row length (TR), 4 = incisor row 

length (IR), 5 = canine height (except squirrels) (CH), 6 = canine diameter (except squirrels) (CD), 7 

= coronoid process height (CP), 8 = mandibular condyle height (MC), 9 = P1 height (possums only) 

(P1), 10 = P3 height (possums only) (P3), 11 = diastema length (DL). 

2.4 Data collection 

Overall, I measured 2405 specimens (803 bats, 574 monkeys, 382 possums, 646 

squirrels) from four museums (American Museum of Natural History, New York 

(AMNH), Harrison Zoological Museum, Sevenoaks (HZM), Natural History Museum, 

London (NHM), and Smithsonian Institute, Washington D.C. (SI)) over a period of 12 

weeks which equates to around 450 hours. Jack Lighten (J.L.) measured 51 additional 

callitrichid specimens from the NHM as part of his MSc project. For each specimen, all 

of the following data were entered into a Microsoft Access database. 

b) 

a) 
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Morphometric measurements 

Only data from female specimens from which it was possible to take every 

measurement were collected. I used only females to avoid any problems caused by 

sexual dimorphism which can lead to the two sexes forming separate morphospecies 

(e.g. Dayan et al. 1989; Dayan & Simberloff 1994). In the monkeys, possums and 

squirrels, males tend to be larger than females, but in bats, females tend to be larger than 

males (Lindenfors et al. 2007). The reasoning behind measuring only one sex applies 

regardless of whether males or females are the larger sex. Using females also removes 

the need to factor out differences caused by sexual selection on traits such as canine size 

in the males of some species. Where possible I used only adult specimens (defined as 

those with fully-erupted permanent dentition and completely-fused skull bones), so 

developmental differences were not an issue. However, in certain clades (most notably 

in Primates and rodents), complete skull fusion takes a long time (in humans complete 

spheno-occipital fusion does not occur until the age of fifteen or sixteen; Madeline & 

Elster 1995). To increase sample sizes I measured some intermediate specimens (bats: 

1%; monkeys: 86%; possums: 6%; squirrels: 42%), defined as those with fully erupted 

permanent dentition and closed, but unfused, skull bones. These are likely to be adult in 

all respects apart from their unfused skull bones and should not affect the analyses 

since, at worst, size should be the only difference between adults and intermediates and 

CBL can be used to factor this out of the analyses. To test this I performed paired t-tests 

to determine whether the second and third principal components of measurements from 

adult and intermediate specimens differed. I ignored the first principal component as 

this reflects differences in trait size. PC2 and PC3 from adult and intermediate 

specimens were not significantly different from one another (PC2: t55 = -0.48, p = 0.63; 
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PC3: t55 = 1.31, p = 0.19). Thus using intermediate specimens should not be 

problematic.  

Each measurement was taken to the nearest 0.1 mm using 150 mm digital callipers 

(Mitutoyo™). In order to assess measurement repeatability I took each measurement 

three times (cycling through all the measurements once, then repeating, rather than 

taking one measurement three times in a row in order to avoid autocorrelation).  I 

repeated the bat measurements five times to account for the increased relative error 

introduced by their small size. 

Label data 

I recorded all the data on the specimen label including, where appropriate, notes made 

by curators and/or previous visitors. Label data included specimen number, genus, 

species, collection location and date, collector, details of associated material from the 

specimen in the collection (e.g. skin, postcranial skeleton), and any field measurements 

taken. I also recorded the age (adult or intermediate as defined above) of each specimen. 

Georeferencing 

Using mainly atlases and online geographic databases (see Appendices A1 and A2), I 

found locality data for each specimen. Specimen label locality data ranged in quality 

from precise coordinates to geographic regions (e.g. countries or continents), so the 

rationale for each choice was also recorded, as well as an ordinal representation of the 

accuracy of the locality data. I refer to this value as the accuracy rank of a locality and I 

defined this as follows: (1) Latitude and longitude given on label. This is the greatest 

level of accuracy possible for this kind of data; (2) Latitude and longitude of nearest 

town/city that could be uniquely identified; (3) Latitude and longitude of nearest 
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town/city that could not be uniquely identified. The coordinates assigned to these data 

are either an average of the towns or cities sharing a name if they are close together, or 

(where a choice can be justified) belongs to just one of the towns or cities; (4) Latitude 

and longitude of either (a) a nearby town or city where this is the second place listed on 

the specimen label, or (b) a geographical feature (including small islands), or (c) the 

midpoint of a small sub-national unit (e.g. US counties). Geographical features were not 

given an accuracy rank of (2) because they cover a much larger area than a town or city, 

thus are less accurate locality representations; (5) Latitude and longitude of the midpoint 

of a larger sub-national unit (e.g. US states); (6) Latitude and longitude of the midpoint 

of a country; (7) No label locality, or indecipherable label locality. 

Over 90% of the specimens have accuracy ranks of between 1 and 4; 56% have 

accuracy ranks of between 1 and 3 and 48% have accuracy ranks of 1 or 2. Only 22 

(0.86%) specimens have no locality data at all (accuracy rank 7). Less precise localities 

were omitted for analyses in which geographic distribution is important (Chapter 3).  

Taxonomy 

I recorded the genus, species and, where applicable, the subgenus, subfamily and family 

of each specimen and then, since the alpha taxonomy of museum specimens is often 

outdated due to curation lag, I converted them to the taxonomy of Wilson and Reeder 

(1993). I used this version of taxonomy rather than the updated 2005 taxonomy (Wilson 

& Reeder 2005) because initially the assemblage lists, species geographic range maps 

and phylogeny (see below) used the taxonomy of Wilson and Reeder (1993). Some of 

these have recently been updated (range maps: Jones et al. in press; phylogeny: Fritz et 

al. in press) but, since the taxonomy of the four clades did not change substantially 

between the two editions (see below), I have continued to use the 1993 taxonomy 
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throughout. Squirrel taxonomy did not change at all between 1993 and 2005, but within 

the bats, 13 new species were defined (10 through splitting of existing species and three 

new discoveries), eight changed genus, and two were lumped together. In the monkeys 

18 new species were defined (10 through splitting of existing species and eight new 

discoveries), one changed genus, one changed its name and three species were lumped 

together. Finally, within the possums measured, five new species were defined (two 

through splitting of existing species and three new discoveries) and five moved genus. 

Macroniche and Diet 

Eisenberg (1981) used a matrix containing eight categories of substrate use and 16 

categories of dietary specialisation to partition mammalian species into macroniches 

(see Table 2.1). Only five categories of substrate use (semi-fossorial, volant, terrestrial, 

scansorial and arboreal) and 12 categories of dietary specialisation (nectarivore, 

gumivore, gumivore/omnivore, aerial insectivore, foliage gleaning insectivore, 

insectivore/omnivore, frugivore/omnivore, frugivore/granivore, frugivore/herbivore, 

herbivore/browser, herbivore/grazer and sanguivore) are relevant for this study. 

Macroniches are equivalent to guilds (sensu Root 1967) in that species in a macroniche 

consume the same sorts of resource in the same way. I will use macroniches to define 

potential competitors in Chapters 4 and 5 as the paucity of species-level dietary 

information prevents any more accurate definition of guild. 
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Table 2.1: Macroniches (sensu Eisenberg 1981 with some modifications) of the four study clades. 

bats = Phyllostomidae; monkeys = Platyrrhini; possums = Phalangeriformes; squirrels = 

Marmotini. 

clade macroniches 

 substrate dietary specialisation 

bats Volant Carnivore 

Carnivore/Insectivore  

Carnivore/Omnivore  

Frugivore  

Frugivore/Insectivore  

Frugivore/Omnivore  

Insectivore  

Insectivore/Frugivore  

Nectarivore/Omnivore  

Omnivore  

Sanguivore 

 

 

monkeys Arboreal Folivore/Frugivore  

Frugivore/Omnivore  

Gumivore/Omnivore 

 

 

possums Arboreal 

 

 

 

 

Scansorial 

Frugivore/Herbivore  

Gumivore 

Herbivore/Browser  

Insectivore/Omnivore 

Nectarivore  

Frugivore/Herbivore 

 

 

squirrels Terrestrial/Semifossorial 

 

Terrestrial/Scansorial 

Herbivore/Grazer 

Omnivore 

Omnivore  
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Using PanTHERIA (Jones et al. in press) and other sources, including field guides and 

species accounts (Appendix A2), I recorded all food items eaten, which items made up 

the bulk of the diet, and the manner in which food resources were exploited, for each 

species in my dataset. This information was used in association with Eisenberg’s (1981) 

matrix to define the macroniche of each genus. I used slightly different dietary 

specialisation categories from Eisenberg (1981) to better represent the diets of the study 

species (Table 2.1). I was unable to define species-level macroniches in some less well-

known groups because only genus-level information was available. Where accurate 

dietary information was available for each species within a genus (e.g. bats: 

Glossophaga; monkeys: Cebus; possums: Phalanger; squirrels: Marmota), macroniche 

was conserved within genera, indicating that using genus-level macroniche designations 

is acceptable.  

2.5 Error checking
1
 

Morphometric datasets are prone to error, and although in many analyses error merely 

adds noise, some of my analyses are very susceptible to bias from measurement error. 

For example, some species are poorly-represented in museum collections; hence some 

of the species averages will be calculated using only a few specimens. If these have a lot 

of measurement error, the species-level analyses (e.g. Chapters 3, 4 and 5) could be 

biased. Accuracy and precision in data are also particularly important in phylogenetic 

analyses where measurement error combined with short branch lengths can appear to be 

signal. Therefore, before the analyses I thoroughly checked my data for errors. I 

identified four possible types of error in my dataset: (1) Typographical errors i.e. 

                                                
1 1 These error checking protocols have been published as an appendix to Cooper, N. and Purvis, A. (In 

press). What factors shape rates of phenotypic evolution? A comparative study of cranial morphology of 

four mammalian clades. Journal of Evolutionary Biology. 
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mistakes in spelling, typing or data entry; (2) Measurement error i.e. where the three (or 

five for bats) repeated measurements of a trait from a particular specimen are not the 

same. This could reflect either the limits of the precision of the callipers (0.1mm) or 

discrepant measurements; (3) Curation error, e.g. specimens labelled with the wrong 

species binomial; (4) Measurer error, i.e. differences in the way different people took 

the measurements. 

In my opinion, error checking was essential to the reliability of the data. However, most 

morphometric studies rarely correct for anything other than typographical errors and, to 

my knowledge, none correct for potential curation errors. This is the first time the 

methods below have been used for this purpose. In total I excluded data from 154 

specimens as described below. 

Typographical errors  

For each specimen I calculated the standard deviation of every trait measured. Where 

this was greater than unity I checked the measurements of the trait for typographical 

errors. In most cases these were easily remedied by the movement of a line of data or 

the insertion of a decimal point. Where there was an obvious typographical error but no 

clear solution to the problem, I excluded the specimen from all later analyses.  

Measurement errors 

To explore the error structure of the data, I calculated the coefficient of variation 

(standard deviation/mean * 100) for every trait of each specimen measured. However, 

for the analyses I needed an average value for each trait of each specimen. Since the 

distribution of the three (or five) repeated measures for each trait was often skewed due 

to an outlier (leading to a large coefficient of variation), the trait mean was not a good 
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measure of central tendency. Instead, I chose to use the median for each trait. Using the 

median also removes the need to deal with single measurements having large errors, 

provided that the other two (or four) measurements are close together. If all three (or 

five) measurements are evenly spread there is no way to tell if the median is a truly 

representative measure of central tendency. Therefore, I devised a method for 

determining the “spread” of the repeated measurements. For monkeys, possums and 

squirrels, the differences between each pair of the three measurements were first 

calculated. The smaller difference between two measurements was defined as a and the 

larger difference as d (see Figure 2.2). Percentage spread was then calculated as a/d * 

100. A small value indicates that two of the repeated measures are very similar and the 

third measurement is an outlier. A value near 50% indicates evenly-spaced 

measurements. For bats, the differences between the neighbouring measurements were 

calculated and labelled (from smallest to largest) as a, b, c and d. I then defined the 

difference between the smaller and larger measurement as e (Figure 2.2). Percentage 

spread was then calculated as (a/e + b/e + c/e) * 100. A value < 50% indicates that four 

of the measurements are within one half of the measurement range, with the fifth 

measurement being an outlier. 
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Figure 2.2: Diagram showing how percentage spread was calculated for a) specimens with three 

repeated measurements per trait, and b) specimens with five repeated measurements per trait. 

Each horizontal line represents a measurement. Note that the outlying measurement could also 

occur at the left-hand side of the distribution, and in b) a, b, c and d will not necessarily be in that 

order on the trait axis. 

Curation errors 

If a specimen were labelled with the wrong species name then it would tend to be more 

dissimilar to its proposed congeners than expected. In order to deal with this potential 

source of error I first assigned each specimen a vector (xi, yi, zi) which consisted of the 

first three principal components obtained from a principal components analysis using 

the residuals from regressions of each trait median on condylobasal length (CBL). I 

used residuals instead of absolute values because this removes size from the analysis 

leaving shape, which should vary less between specimens of different ages and 

geographical origin (Bookstein 1991). I then used these specimen vectors to calculate an 

average value for each species (the species centroid: x, y, z) by using the mean 

specimen values for each species. Finally, I calculated the distance squared ((x - xi)
2, (y 

- yi)
2, (z - zi)

2) between each specimen and its species centroid (Figure 2.3). Specimens 

with measurement errors (as defined above) were omitted from this analysis so they 

could not influence the results. 

a 

d 
 

c b 

e 

a 

 

a) b) d 
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Figure 2.3: Diagram showing how specimen distances from species centroids were calculated in 

order to identify potential labelling errors. 

 

Several specimens had a much greater distance from their species centroid than the 

other specimens (i.e. > 10 units greater). These specimens (which are disjunct from the 

rest of the distribution in Figure 2.4) were potentially mislabelled so I omitted them 

from all later analyses. When I removed these mislabelled specimens the distributions 

of the squared distances from species centroids were continuous for all clades, thus I 

determined that no further specimens needed to be omitted (Figure 2.4). Choosing this 

fairly lenient criterion for omission is arbitrary, as would be any criterion I selected. I 

chose this method because individuals within a species often vary substantially, thus 

choosing a more rigorous method may have led to the deletion of good data.

Specimen C 
(xC, yC, zC) 

Specimen B 
(xB, yB, zB) 

Specimen A 
(xA, yA, zA) 

Species 
centroid  
(x, y, z) 

Specimen D 
(xD, yD, zD) 
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Figure 2.4: Histograms showing the distribution of squared distances between specimens and their 

species centroid. a) bats (Phyllostomidae), b) monkeys (Platyrrhini), c) possums 

(Phalangeriformes), and d) squirrels (Marmotini). *represents specimens with a squared distance 

from their species centroid that is disjunct from the rest of the distribution. Histograms on the right 

have been redrawn omitting the disjunct (potentially mislabelled) specimens; note that the scale of 

the x-axes on the right and left are different. Specimens with measurement errors have been 

omitted. 
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Measurer errors 

Before using data collected by J.L., I needed to check that he had interpreted the 

landmarks in the way I intended, so that the analyses would not be biased by who 

measured the specimen. To do this I measured two specimens at random from the set of 

specimens used by J.L. I then calculated the median trait values for each specimen using 

first my measurements and then his measurements, and compared these two sets of 

median values using paired t-tests. The measurements were not significantly different, 

even when they were natural-log transformed prior to analysis, which suggests that 

measurer error was negligible (N.C. versus J.L.: untransformed values: t15 = 0.48, p = 

0.63, mean difference = 0.04 mm; natural-log transformed values: t15 = 1.43, p = 0.18, 

mean difference = 0.02 mm). 

Error checking summary 

 
In total, 154 specimens (79 bats, 18 monkeys, 47 possums and 10 squirrels), or 6.403% 

of the total number of specimens, were omitted from the analyses during error checking. 

Table 2.2 shows the mean coefficient of variation for the four clades before and after the 

removal of specimens as detailed above. 
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Table 2.2: Measurement error information. *represents values after removal of typographical 

errors. bats = Phyllostomidae; monkeys = Platyrrhini; possums = Phalangeriformes; squirrels = 

Marmotini. 

 before error checking* after error checking 

clade 
mean coefficient 

of variation 

standard 

deviation 

mean coefficient 

of variation 

standard 

deviation 

bats 1.49 1.96 1.39 1.80 

monkeys 0.80 1.34 0.78 1.30 

possums 1.77 2.47 1.60 2.03 

squirrels 0.71 0.89 0.70 0.87 

 

The amount of measurement error in the final dataset varied between clades and traits 

(Figure 2.5; Table 2.3), increasing slightly as the size of the trait decreased (regression: 

t17972 = -47.20, p < 0.001, slope = -0.030, r2 = 0.110). Mandibular condyle height had 

greater error than expected given its size, probably due to difficulty in locating the 

landmarks of this trait. The amount of error also varied significantly with clade 

(ANOVA: F3,17970 = 328.1, p < 0.001). Bats had significantly higher measurement error 

than squirrels and monkeys. The measurement error of the possums was significantly 

higher than that of the smaller bats (and the other three clades), probably because of the 

high error associated with the small premolar traits which were only measured in the 

possum clade. Squirrels had the least measurement error, probably because no small 

tooth measurements were taken from them.
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Figure 2.5: Mean coefficient of variation for different trait measurements in the a) bats (Phyllostomidae), b) monkeys (Platyrrhini) c) possums (Phalangeriformes), 

and d) squirrels (Marmotini). Error bars are ± standard error. CBL = condylobasal length, MZW = maximum zygomatic width, TR = tooth row length, IR = 

incisor row length, CH = canine height, CD = canine diameter, MC = mandibular condyle height, CP = coronoid process height, P1 = P1 height, P3 = P3 height, DL 

= diastema length. 



Chapter 2 

 51 

2.6 Dataset coverage 

The taxonomic and geographic coverage of the error-checked dataset are displayed in 

Table 2.3 and Figure 2.6.  

 

Table 2.3: The taxonomic coverage of the dataset (after specimens with errors were removed) using 

the taxonomy of Wilson and Reeder (1993). bats = Phyllostomidae; monkeys = Platyrrhini; 

possums = Phalangeriformes; squirrels = Marmotini. Singletons are species or genera represented 

by only one specimen. Numbers in brackets represent the percentages of the total number of 

genera/species in each of the clades. 

 
number of genera 

measured 

number of species 

measured 
 

clade total singletons total singletons 
total number 

of specimens 

bats 36 (77%) 1 104 (69%) 8 724 

monkeys 15 (100%) 0 73 (87%) 8 607 

possums 14 (70%) 0 36 (60%) 3 335 

squirrels 5 (71%) 0 78 (85%) 0 636 
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Figure 2.6: Point localities of bat (Phyllostomidae; black points), monkey (Platyrrhini; red points), possum (Phalangeriformes; green points) and squirrel 

(Marmotini; blue points) specimens. 
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2.7 Assemblage lists 

There are many definitions of the term “community”; most are very general (e.g. “an 

assemblage of species populations that occur together” Begon et al. 1996) with unclear 

or arbitrary boundaries (Underwood 1986). Although efforts have been made to clarify 

community definition these have been criticised for being too restrictive (Looijen & van 

Andel 1999; Parker 2004). This confusion has led to the abandonment of the term 

“community” by some authors to be replaced by the term “local assemblage”, defined as 

the “co-occurring species in a given habitat at a specific time and place” (Underwood & 

Pertraitis 1993). Strictly speaking I am using local assemblages where I use the term 

community in my thesis. 

 

Assemblage membership was determined using mammal species checklists for a 

particular area compiled by J.Rodríguez. These checklists were selected from a database 

of mammal assemblages including 376 georeferenced localities varying in size from 10 

to 440,000 km2 and distributed worldwide. The lists were obtained from several 

published sources reporting inventories of species observed to exist inside these areas. 

Only localities with inventories considered to be “complete” by the original source, or 

that may be assumed to be complete from the information provided therein, were 

included in the database. Exotic species were excluded and taxonomy was standardised 

following Wilson and Reeder (1993). Other examples of the application of this database 

may be seen in Hortal et al. (2008), Rodríguez (1999), Rodríguez (2006) and Rodríguez 

et al.(2006). In total I obtained data for 34 monkey, 13 possum and 95 squirrel 

assemblages, sources and details of which can be found in the online supplementary 

material associated with Cooper et al. (2008). 
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2.8 PanTHERIA database 

PanTHERIA (Jones et al. in press) includes taxonomic, life-history, geographic range 

and ecological data on almost every species of mammal (as defined by Wilson & 

Reeder 1993 and 2005), although not every species has entries for every trait. This 

database is the result of wide-ranging literature searches and rigorous error checking 

procedures over several years, thus it is a suitable source of data for the analyses. A 

complete description of the database can be found in Jones et al. (in press). 

 

I will use a number of PanTHERIA traits during the analyses. For analyses of correlates 

of morphological evolution (Chapter 5) I will use traits such as gestation length, basal 

metabolic rate, longevity, population size, geographic range size and adult body-mass. I 

will also use adult body-mass in analyses of body size evolution across all mammals 

(Chapter 6). Many analyses (Chapters 3, 4, 5 and 6) also use the species’ geographic 

range polygons. 

 

The trait I will rely on the most in the analyses (Chapters 5 and 6) is adult body-mass, 

for which PanTHERIA has data on all but 20 of my study species. To test the reliability 

of these data, I regressed each species’ body-mass against species’ mean CBL, which 

should strongly correlate with adult body-mass in all my study clades. The results are 

shown in Figure 2.7. CBL and body-mass are strongly correlated across all four clades 

(all clades: t254 = 58.4, r2 = 0.93, p < 0.001) and in three clades separately (monkeys: t69 

= 48.2, r2 = 0.97, p < 0.001, possums: t31 = 19.9, r2 = 0.93, p < 0.001, squirrels: t56 = 

26.3, r2 = 0.93, p < 0.001). In the bats, CBL and body size are less strongly correlated 

(t92 = 38.7, r2 = 0.56, p < 0.001) due to the presence of several outliers (see Figure 2.7) 

which have a much higher body-mass than expected given their skull length (Ametrida 
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centurio, Centurio senex, Macrophyllum macrophyllum, Phyllostomus latifolius, 

Sphaeronycteris toxophyllum, Vampyressa bidens and Vampyressa nymphaea). These 

species have flattened faces as an adaptation to feeding on fruit: when I omitted these 

species from the analysis the correlation became much stronger (t84 = 16.3, r2 = 0.76, p 

< 0.001). 
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Figure 2.7: Mean species’ condylobasal length (CBL) regressed against adult body-mass for bats 

(Phyllostomidae; black points), monkeys (Platyrrhini; red points), possums (Phalangeriformes; 

green points) and squirrels (Marmotini; blue points). 

2.9 Phylogeny 

Initially, I intended to use the mammal supertree (Bininda-Emonds et al. 2007, with 

corrected dates from Bininda-Emonds et al. 2008) for all analyses. However, although 

the supertree is generally well-resolved among genera, it is not well-resolved within 
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some genera (e.g., the monkey genus Aotus is represented as a single polytomy). Since 

some analyses are deleteriously affected by polytomies (e.g. analyses of character 

evolution), I modified the supertree as follows. There has been a lot of recent work on 

the molecular systematics of the Phyllostomidae (the supertree only used trees from 

sources published up to the end of 2000), which has altered understanding of the 

intergeneric relationships within the family. Therefore I built a new supertree for this 

group following the protocol described below. All phylogenetic topologies are shown in 

Appendix B. 

Bats 

The phylogeny of the phyllostomid bats has undergone various revisions since the 

publication of the Jones et al. (2002) supertree used in Bininda-Emonds et al. (2007). 

Since generic relationships have changed, I needed to construct a new supertree taking 

account of the current literature. Jones et al.(2002) used phylogenies published between 

1970 and 2000. I collected all of the source trees they used and also searched for trees 

published between 2000 and the end of March 2007. I performed Web of Knowledge 

and Google Scholar searches on the word phyllostomid* with phenogram*, cladogram*, 

cladistic*, system*, taxonom*, or phylogen* and collected all the trees I could find 

(Appendix A3). I then subjected all the trees to the supertree protocols of Bininda-

Emonds et al. (2004) as follows: 

 

Tree selection: (1) Validity and data quality. All of the source trees I selected 

represented valid analyses (sensu Bininda-Emonds et al. 2004). However, determining 

data quality was more difficult. Where I had the choice (i.e. multiple trees within a 

paper) I preferred strict consensus trees to majority rule consensus trees, bootstrapped 

trees to non-bootstrapped trees and avoided trees with very low node support values 
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where better-supported trees were available. (2) Independence. Only trees with non-

overlapping datasets (character data and taxon-set) should be entered into a supertree 

analysis so that data duplication does not lead to spurious signal enhancement (Bininda-

Emonds et al. 2004). If the taxon-set of a pair of trees did not overlap then I considered 

them as independent. If the taxon-set of a pair of trees did overlap then they were only 

considered independent if based on different data, i.e. different genes, different 

combinations of genes, different morphological characters, different combinations of 

morphological characters, or different combinations of molecular and morphological 

characters. This held unless one dataset was completely contained within another, e.g., 

regions within a gene or a subset of morphological characters from a large 

morphological dataset. For example, the phylogeny based on nectar-feeding attributes 

from the more complete morphological dataset in Carstens and Bryan (2002) is not 

independent of the phylogeny based on the complete dataset. Where the criteria for 

independence are not met there are a number of options. Where nonindependence 

occurred between studies, I used the most recent or most comprehensive (in terms of the 

number of taxa) study available. Where no obvious single choice existed (e.g. not all of 

the taxa were represented in any one study), I collected all the trees and created a “mini-

supertree” of these using the methods described below. This “mini-supertree” was then 

entered into the supertree analysis as one source tree. Bininda-Emonds et al. (2004) 

suggest other solutions to this problem but they recommend the “mini-supertree” 

approach due to its ease of application. Where nonindependence occurred within studies 

(often where the authors analysed the same dataset by a number of methods e.g. 

Bayesian, maximum likelihood, parsimony), I used either the most comprehensive study 

(in number of taxa or characters) or, if this was not possible, I used the phylogenetic 

hypothesis explicitly preferred by the authors. If neither of these approaches worked, I 
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created a strict consensus tree of all the available trees and used this instead. (3) 

Terminal taxa. I standardised the taxonomy of all terminal taxa using Wilson and 

Reeder (1993). Where trees showed only intergeneric relationships I used the species of 

the genera which had been analysed in order to get the tree. Where this was not stated I 

used the type species for that genus as defined in Wilson and Reeder (1993). 

 

Supertree construction: Once I had selected the source trees, I converted each into a 

MRP (matrix representation using parsimony) matrix using perl scripts written by Olaf 

Bininda-Emonds (O.B.E). In a standard MRP matrix, each character column is 

equivalent to a node in the phylogeny. The value in the matrix for a particular species is 

1 if the species is present in the branches subtending from that node, and 0 if it is not. 

Each tree was also given an outgroup (MRP outgroup). More details on the MRP 

method can be found in Baum and Ragan (2004). The MRP matrices for each tree were 

then combined to make a “super matrix” containing each node of each source tree as a 

character, and each species of bat. If a species was not present in a given source tree its 

value for that character was “?” (i.e. missing data). I then performed a heuristic search 

on this super MRP matrix with the parsimony ratchet in PAUP*4.0 (Swofford 2002) 

using perl scripts written by O.B.E. The final supertree was a strict consensus tree of all 

the most parsimonious trees found during these searches. 

 

For analyses in which soft polytomies are expected to bias the results (Chapters 3, 4 and 

5), 15 species were removed in order to completely resolve the supertree. The species 

chosen were those represented by the fewest specimens as follows: Artibeus amplus, 

Artibeus fraterculus, Artibeus jamaicensis, Artibeus lituratus, Lonchorhina aurita, 

Lonchorhina orinocensis, Platyrrhinus aurarius, Platyrrhinus brachycephalus, 
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Platyrrhinus helleri, Platyrrhinus recifinus, Sturnira magna, Tonatia schulzi, Tonatia 

bidens, Uroderma bilobatum and Uroderma magnirostrum. 

Monkeys 

Most of the lack of resolution within the monkey phylogeny is within genera (but see 

below). Therefore I used the primate supertree of Vos (2006) to resolve the genera 

Aotus and Alouatta, and to place Saimiri ustus, Saguinus inustus, and Callicebus 

personatus within the phylogeny. I was unable to use this approach to resolve the genus 

Pithecia because of the conflict between this supertree and the mammal supertree 

(Bininda-Emonds et al. 2007; 2008). To resolve this genus I instead deleted one of the 

species involved (Pithecia aequatorialis, one specimen).  

 

The mammal supertree represents the subfamilies Callitrichinae, Cebinae and the family 

Aotidae as a polytomy. Since the Callitrichinae and Cebinae are part of the same family 

(Cebidae; Wilson & Reeder 2005)  I resolved this polytomy by making them sister 

clades following Purvis (1995). 

Possums 

The mammal supertree (Bininda-Emonds et al. 2007; 2008) is well-resolved for most 

possum genera, particularly when only the species I have data for are included. There 

are three problematic polytomies: within the genera Dactylopsila, Petaurus and 

Pseudocheirus. Both involve only three species (requiring the omission of only one 

species to remove the polytomy). Since no recent phylogenies or taxonomies resolve 

these genera, I omitted one species from each polytomy in analyses which require a 

completely resolved tree. The species omitted were Dactylopsila tatei, Petaurus 
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australis and Pseudocheirus canescens, as these were represented by the fewest 

specimens. 

Squirrels 

The mammal supertree (Bininda-Emonds et al. 2007; 2008) is well resolved for 

squirrels. Within the genera there are several problematic polytomies within 

Ammospermophilus and within Spermophilus. I used suggested sister species or 

subgeneric taxonomy from Wilson and Reeder (1993; 2005) to resolve these polytomies 

as follows: Ammospermophilus harrisii, A. interpres, A. nelsoni and A. leucurus are 

represented as a polytomy in Bininda-Emonds et al. (2007; 2008). A. interpres is 

considered to be a primitive sister to the other species of Ammospermophilus (Wilson & 

Reeder 2005), so I placed it as the outgroup to the rest of the genus. A. harrisii and A. 

insularis are considered to be sister species so I made them sister species in the 

phylogeny. This resolved the polytomy. Within Spermophilus (for more details compare 

the topology of Bininda-Emonds et al. 2007 to the squirrel phylogenies in Appendix B), 

I first moved S. atricapillus to make it the sister species of S. beecheyi as indicated by 

Wilson and Reeder (2005). Secondly, I placed S. pygmaeus and S. relictus as the 

outgroup to the group including S. suslicus, S. beldingi, S. adocetus and S. mollis. 

Finally, I resolved the polytomies in the S. washingtoni clade, using sub-generic 

taxonomy of Wilson & Reeder  (2005): S. parryi, S. undulatus and S. columbianus are 

from the subgenus Urocitellus and S. armatus, S. richardsonii and S. washingtoni are 

from the subgenus Spermophilus. Making these groups sister species resolves the 

polytomies. Even with these amendments, there are still two polytomies in the squirrel 

tree but these are rectified by removing S. adocetus, S. fulvus and S. citellus in analyses 

where polytomies may affect the results (Chapters 3, 4 and 5). 
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In the mammal supertree (Bininda-Emonds et al. 2007; 2008) the genera Marmota, 

Cynomys and Spermophilus form a polytomy. No consensus exists in the literature as to 

how to resolve this polytomy so I resolved it in all of the three possible ways resulting 

in three phylogenies. I used all three phylogenies in each analysis which should indicate 

whether the analyses are sensitive to the phylogeny used (Chapters 3, 4 and 5). 

 

Dating the phylogenies  

All of the modified phylogenies described above were dated by Olaf Bininda-Emonds 

(O.B.E) using a procedure similar to that used to date the mammal supertree (Bininda-

Emonds et al. 2007). First, two outgroups were added to each tree (bats: Homo sapiens 

and Canis lupus; monkeys: Canis lupus and Rattus norvegicus; squirrels: Homo sapiens 

and Rattus norvegicus) to root the phylogenies and to enable the divergence time of the 

ingroup node in each to be estimated using sequence data. Next, sequence data for each 

taxon were obtained from the dataset used to date the mammal supertree (Bininda-

Emonds et al. 2007), with allowances being made for any changes in taxonomy for 

those trees based on the Wilson and Reeder (1993) taxonomy. The sequence data for 

each gene were then fitted to the respective tree under a maximum likelihood (ML) 

criterion using PAUP* version 4.0b10 (Swofford 2002) after determining the optimal 

model of evolution using ModelTEST version 3.6 (Posada & Crandall 1998). Initial 

divergence dates were obtained using relDate version 2.3 to determine the relative 

branch lengths and calibrate them against either fossil information (bats only) and/or 

information from the mammal supertree (Bininda-Emonds et al. 2007). These dates 

were then corrected for any potential negative branch lengths using chronoGrapher 

version 1.4 to obtain the final sets of divergence times. In addition, chronoGrapher was 

used to interpolate divergence dates for nodes missing such estimates based on the pure-
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birth model of Purvis (1995) and applied in Bininda-Emonds et al. (2007). The degree 

of interpolation varied between the different trees. For each of the squirrel trees, only 5 

of the 84 dates were based on interpolation. The amount of interpolation increased for 

the bat tree (24 of 94 nodes) and for the primate tree in particular (30 of 83 nodes). 

More detailed information about the dating procedure can be found in Bininda-Emonds 

et al. (2007). 
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Chapter 3: Are mammalian assemblages non-randomly 

assembled with respect to phylogeny and/or traits?2 

3.1 Abstract 

 
Interspecific competition has long been proposed as an important force in structuring 

mammalian communities. Although early work recognised that competition has a 

phylogenetic dimension, only with recent increases in the availability of phylogenies 

have truly phylogenetic investigations of mammalian community structure become 

possible. I test whether the phylogenetic structure of 142 assemblages from three 

mammalian clades (New World monkeys, North American ground squirrels and 

Australasian possums3) shows the imprint of competition. Across all assemblages there 

is a highly significant tendency for members to be more distantly related than expected 

by chance (phylogenetic overdispersion); this overdispersion is also significant within 

two of the clades (monkeys and squirrels) separately. This is the first demonstration of 

widespread overdispersion in mammal assemblages and implies an important role for 

either competition between close relatives where traits are conserved, habitat filtering 

where distant relatives share convergent traits, or both. Investigations of the species’ 

cranial skeletal traits show greater trait variances within assemblages than expected by 

chance, supporting competition as the mechanism behind this phylogenetic 

overdispersion. 

                                                
2 Many of the analyses in this chapter have been published in Cooper, N., Rodriguez, J. and Purvis, A. 

2008. A common tendency for phylogenetic overdispersion in mammalian assemblages. Proceedings of 

the Royal Society B: Biological Sciences, 275: 2031–2037. doi: 10.1098/rspb.2008.0420. N.C. wrote the 

manuscript and performed all analyses, J.R. provided assemblage lists, A.P. supervised. 

3 Phyllostomid bats, included in other chapters, were not included in this chapter as there were no 

assemblage lists available in J.R’s database. 



Chapter 3 

 64 

3.2 Introduction 

 
“As species of the same genus have usually, though by no means invariably, some 

similarity in habits and constitution, and always in structure, the struggle [for 

existence] will generally be more severe between species of the same genus, when they 

come into competition with one another, than between species of distinct genera.” 

        Charles Darwin (1859) 

 
Interspecific competition has been shown to occur frequently in nature (Connell 1983; 

Schoener 1983) and has long been suggested as an important force in structuring 

mammalian communities. This theory assumes that species which are “too similar” in 

terms of their ecology will be unable to coexist due to competitive exclusion of the 

inferior competitor (Hutchinson 1959), so communities should contain only species 

which are sufficiently different to coexist. Because ecological similarity is often highest 

among closely-related species which share traits from a recent common ancestor 

(Harvey & Pagel 1991), competition must have a phylogenetic dimension. This has long 

been recognised: Darwin (1859) proposed that species in the same genus would be more 

likely to compete than those in different genera. However, without access to 

phylogenies, early work on mammalian community structure could only use taxonomy 

as a surrogate for phylogeny by, for instance, looking at species-to-genus ratios (Elton 

1946).  

 

If competition is important in structuring mammalian communities, few species per 

genus are expected to coexist in each community (Elton 1946; Table 3.1). Early studies 

often found such a pattern; however, these ratios depend strongly on the number of 

species involved and, once this was taken into account, later work revealed that many 
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communities contained more species per genus than expected (Jarvinen 1982). This 

result suggests that other factors, such as habitat filtering, where only ecologically 

similar species that share traits enabling them to survive in a locality can coexist, may 

also be shaping community assembly. Such factors will also have a phylogenetic 

dimension (Harvey & Pagel 1991). 

 

With recent increases in the availability of phylogenies we can now use phylogeny, 

rather than taxonomy, to look at community structure. Table 3.1 outlines the taxonomic 

and phylogenetic patterns expected under different assembly rules. If competition 

affects community membership, then species in a community will be more distantly 

related than expected by chance (phylogenetic overdispersion: Webb et al. 2002). 

Conversely, if community membership is determined by habitat filtering, the species 

within a community will be more closely-related than expected by chance (phylogenetic 

clustering: Webb et al. 2002). Finally, if community assembly is not strongly influenced 

by phylogeny, or if multiple factors oppose and nullify each other, community lists will 

be randomly assembled with respect to phylogeny (Helmus et al. 2007). 
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Table 3.1: Schematic demonstrating how habitat filtering and competition affect patterns in the 

distribution of community members across phylogenies (black dots), species-to-genus ratios and the 

phylogenetic structure of communities. NRI = net relatedness index; NTI = nearest-taxon index. 

Process Habitat filtering: 
species share traits 
which allow them to 
exist in a particular 
environment 

Random: neither 
process strongly 
effects community 
assembly or multiple 
factors working in 
opposing directions.  

Competition: only 
species which are not 
too ecologically 
similar are able to 
coexist 

Traits Conserved. If traits 
are convergent the 
patterns are similar 
to those shown for 
competition. 

Either conserved or 
convergent. 

Conserved. If traits 
are convergent the 
patterns are similar to 
those shown for 
random communities. 

Distribution 

of 

community 

species on 

phylogeny 

   
 
 
 
 
 
 
 
 
 
 

Species: 

Genus ratio 

More species per 
genus than expected 
by chance 

No more or less 
species per genus than 
expected by chance 

Fewer species per 
genus than expected 
by chance 

Phylogenetic 

structure 

Phylogenetic 
clustering 
(positive NRI and 
NTI scores – see 
text) 

Random phylogenetic 
structure (NRI and 
NTI scores not 
significantly different 
from zero – see text) 

Phylogenetic 
overdispersion 
(negative NRI and 
NTI scores – see text) 

 

“Community phylogenetic” methods (Webb et al. 2002), which compare the 

phylogenetic position of community members with those of non-members from a 

regional source pool, have been developed to test these ideas. Unfortunately the patterns 

are not always easy to interpret: phylogenetic overdispersion may also result from 

convergence of distantly related species (where traits are convergent rather than 

conserved; Cavender-Bares et al. 2004; Kraft et al. 2007). Likewise, phylogenetic 

clustering may also be due to historical or biogeographical factors, in situ speciation, or 
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limits on species dispersal that prevent species from leaving their ancestral ranges. 

Some of these alternatives can be investigated if there is available data on the traits 

mediating competition and resource use. For example, if a pattern of phylogenetic 

overdispersion is observed, whether this pattern is due to competition or another factor 

is ambiguous. If however, we also have data on the traits of the species within that 

assemblage, we can determine whether the traits also show a pattern of overdispersion, 

i.e. greater trait variance among the members of an assemblage than expected by 

chance. If so this suggests that competition, rather than habitat filtering, is determining 

community structure. If, on the other hand, the traits of the species within the 

assemblage are more similar than expected by chance, this suggest that trait evolution in 

the group must be convergent rather than conserved, hence the pattern of phylogenetic 

overdispersion is probably not due to competition. 

 

Here I aim to determine whether community phylogenies support the prediction that 

competition is a powerful and widespread force in structuring mammalian communities. 

Previous studies of the phylogenetic structure of communities have focussed on plants 

and microbes (e.g. Cavender-Bares et al. 2004; Horner-Devine & Bohannon 2006; 

Webb 2000), but to my knowledge only one other study has looked at mammalian 

communities. Cardillo et al. (2008) performed a global-scale analysis of the 

phylogenetic structure of island mammal assemblages over broad taxonomic groupings. 

Here, I instead investigate patterns in three geographically restricted and moderately 

diverse mammalian clades: New World monkeys (Platyrrhini), Australasian possums 

(Phalangeriformes) and North American ground squirrels (Marmotini). This is the first 

time this question has been approached in this clade-based way, and this narrower 

phylogenetic focus should increase the likelihood of competition among the species 
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(Darwin 1859) as they should require more similar resources. In addition, the clades 

exhibit a range of life histories and live in a variety of habitats so I can test the 

generality of any patterns observed. Since competition and habitat filtering can both 

lead to phylogenetic overdispersion I also look at patterns of trait variances amongst 

communities to determine which of the two mechanisms is more likely. 

 

I use two measures of assemblage phylogenetic structure: Webb’s (2000; Webb et al. 

2002) net relatedness index (NRI) and nearest-taxon index (NTI), to investigate the 

phylogenetic structure of multiple assemblages for each clade and focus on general 

patterns rather than on those of individual assemblages (as done in most previous 

studies). In order to help with interpreting the results, I then use an analogous method to 

calculate the standardised trait variances across multiple assemblages for each clade, 

again focussing on general patterns. 

3.3 Materials and Methods 

DATA 

Species assemblages and species pools 

Assemblage membership was determined using mammal species checklists for a 

particular area compiled by J.R. as described in Chapter 2: section 2.7. In total I 

obtained data for 34 monkey, 13 possum and 95 squirrel assemblages, more details of 

which can be found in the online supplementary material of Cooper et al. (2008). 

 

The species pool for each assemblage was calculated by overlaying polygon geographic 

range maps in ArcGIS from Jones et al. (in press) and extracting all species occurring 

within the assemblage locality and up to a threshold distance of 500 km outside the 
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locality boundary. Community phylogenetic studies can be strongly dependent on the 

spatial scale of the species pool (Swenson et al. 2006), so I repeated the analyses using 

threshold distances of 100 km, 250 km and 1000 km when defining species pools. 

Assemblage phylogenetic structure is calculated relative to that of the species pool so it 

cannot be calculated if the assemblage constitutes the entire species pool. This happens 

more frequently with smaller thresholds: of the 142 assemblages, 67 represented the 

complete species pool when 100 km pools were used, 45 when 250 km pools were used, 

29 when 500 km pools were used and 26 when 1000 km pools were used. Since the 

1000 km pool analyses contained only three extra assemblages, and at this scale it is 

likely that some of the species included in the pool could not feasibly be members of the 

assemblage due to the geographic distances involved, I focus on results from the 500 

km species pool analyses. However, pool size made no qualitative difference to the 

results (Table 3.4) 

 

Phylogeny 

The phylogenies used are described in Chapter 2: section 2.9 and each was completely 

resolved. In the Bininda-Emonds et al. (2007; 2008) supertree, the relationship among 

the genera Cynomys, Marmota and Spermophilus is unresolved. I created three new 

phylogenies, one for each possible resolution of the polytomy, and analysed each in 

turn. The topology used had no qualitative influence on the results (Table 3.3), so I only 

discuss results for the Cynomys outgroup tree. 
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Morphological traits 

Traits were collected and error checked as described in Chapter 2: sections 2.3-2.5. I 

extracted the species means of each trait for each species before natural-log 

transforming them to normalise their distributions. All the morphological traits I used 

have some functional significance in resource use (see Chapter 2: section 2.3). 

ANALYSES 

All data analysis was carried out using R version 2.5.1 (R Development Core Team 

2008) and I analysed the three mammalian clades separately i.e. I analysed the squirrels 

in an assemblage separately to the monkeys where there was overlap.  

Measuring phylogenetic assemblage structure 

I determined NRI (net relatedness index) and NTI (nearest-taxon index) values (Webb 

2000; Webb et al. 2002; see Figure 3.1 for example calculations) for each assemblage 

that had more than one species and did not constitute the complete source pool (110 

assemblages in total using the 500 km species pools). NRI and NTI are both measures 

of the phylogenetic distance between taxa in an assemblage, where phylogenetic 

distance is defined as the sum of all intervening branch lengths between two taxa. 

However, they reflect phylogenetic structure in different parts of the phylogeny. NRI is 

based on the mean phylogenetic distance (MPD) of an assemblage, i.e. the mean 

phylogenetic distance between all possible pairs of taxa within the assemblage 

( obsMPD ), and significant values reflect clustering or overdispersion across the whole 

of the pool phylogeny. NTI, on the other hand, is based on the mean nearest neighbour 

distance (MNND), i.e. the mean distance between each of n taxa (where n is the number 

of taxa in the assemblage) within the assemblage and its nearest neighbour in the 

assemblage phylogeny ( obsMNND ). NTI is therefore most sensitive to clustering or 
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overdispersion near the tips of the pool phylogeny. To allow comparisons between 

multiple assemblages, these MPD and MNND values are then standardised by (i) 

subtracting the mean MPD/MNND expected for n taxa drawn at random from the 

species pool using 10,000 iterations ( nMPD / nMNND ), and then (ii) dividing by the 

standard deviation of the MPD/MNND from these 10,000 randomly-drawn pseudo-

assemblages ( )( nMPDs / )( nMNNDs ). Both values are then multiplied by -1 so that 

clustered NRI and NTI values are positive and overdispersed values are negative, which 

is more intuitive than the reverse. Thus NRI and NTI are calculated as follows:  

NRI = 








 −

−

)( n

nobs

MPDs

MPDMPD
     (1) 

 NTI = 








 −

−

)( n

nobs

MNNDs

MNNDMNND
    (2) 

This procedure should mean NTI and NRI are approximately normally distributed; 

however, previous studies have shown that NRI is generally biased towards detecting 

overdispersion because of the branching structure of phylogenies (Kembel & Hubbell 

2006; Swenson et al. 2006). Therefore, to test whether an individual assemblage was 

significantly clustered or overdispersed I compared MPD and MNND values for the real 

assemblage with those from the 10,000 randomly-generated pseudo-assemblages (with 

n species drawn at random from the assemblage’s species pool) used to calculate NRI 

and NTI. A particular assemblage was considered significantly clustered if less than 250 

(2.5%) of these random assemblages had a larger MPD/MNND value than that of the 

assemblage, or overdispersed if less than 250 (2.5%) had a lower MPD/MNND value 

than that of the assemblage. 
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Assemblage ABC Assemblage BCD 

MEAN PHYLOGENETIC DISTANCE (MPD) 

Species pairs PD Species pairs PD 

A and B 3 + 1 + 2 = 6 B and C 2 + 1 + 1 = 4 

A and C 3 + 1 + 1 + 1 = 6 B and D 2 + 1 + 1 = 4 

B and C 2 + 1 + 1 = 4 C and D 1 + 1 = 2 

MPD = (6 + 6 + 4)/3 = 5.333 MPD = (4 + 2 + 2)/3 = 3.333 

MEAN NEAREST NEIGHBOUR DISTANCE (MNND) 

Nearest 

neighbours 

Distance to nearest 

neighbour 

Nearest 

neighbours 

Distance to nearest 

neighbour 

A = B 3 + 1 + 2 = 6 B = C 2 + 1 + 1 = 4 

B = C 2 + 1 + 1 = 4 C = D 1 + 1 = 2 

C = B 2 + 1 + 1 = 4 D = C 1 + 1 = 2 

MPD = (6 + 6 + 4)/3 = 5.333 MPD = (4 + 2 + 2)/3 = 3.333 

Figure 3.1: Example calculations of mean phylogenetic distance (MPD) and mean nearest 

neighbour distance (MNND) 

 

Pooled NRI/NTI analyses 

Null model choice is vital to interpreting the results of all analyses including those using 

NRI and NTI (Kembel & Hubbell 2006). I was therefore unable to test for trends across 

all assemblages using raw NRI values as these values tend to be negatively skewed, 

making the null expectation of any test uncertain. Therefore, I devised a novel and 

simple non-parametric method to analyse the pooled data. 

 

3 

2 

1 

1 

1 

1 

A 

B 

C 

D 
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For each assemblage I first calculated NRI for 10,000 randomly-generated pseudo-

assemblages (with n species drawn at random from the assemblage’s species pool). I 

then determined the centile of the observed NRI (which I term NRI%) within this 

distribution; if the observed value was tied with multiple random assemblages, the 

centile of the median of these tied values was used.  If assemblage members are random 

picks from the source pool, the expected centile is 50 (i.e., the median of the null 

distribution). Thus, the expected median of the NRI% values, across the set of 

assemblages, was also 50. I therefore tested whether the median NRI% differed from 50 

using Wilcoxon tests. Since this result used assemblages from all three clades, I also 

used Kruskal-Wallis rank sum tests to determine whether the different clades had 

significantly different NRI% values from each other.  

 

NTI is expected to be approximately normally distributed with a mean of zero so I used 

t-tests to determine whether the mean of the distribution differed from zero, 

demonstrating a general trend towards either clustering or overdispersion. I then used 

analysis of variance (ANOVA) to determine whether the different clades had 

significantly different NTI values from each other. 

Methodological bias 

As mentioned in Chapter 2: section 2.7, the assemblage localities ranged in size from 10 

to 440,000 km2 and also contained different numbers of species. If NRI% or NTI values 

are affected by these factors they may bias the results. I therefore used Spearman’s rank 

correlation tests to determine whether NRI% or NTI values were correlated with the 

natural-log transformed area of the assemblage locality (km2), natural-log transformed 

assemblage species richness, natural-log transformed species pool species richness, or 
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assemblage:pool species richness ratio (calculated as assemblage species 

richness/species pool species richness).  

Trait analyses 

If competition is determining assemblage structure then the variance of traits which 

limit species coexistence should be greater among the members of an assemblage than 

expected by chance. In order to investigate this in my assemblages, I first calculated the 

variance for each trait in each assemblage ( vartrait ). Next, to allow comparisons 

between multiple assemblages, I standardised these trait variances by (i) subtracting the 

mean variance expected for n taxa drawn at random from the species pool using 10,000 

iterations ( ntrait var ), and (ii) dividing by the standard deviation of the trait variance 

from these 10,000 randomly-drawn pseudo-assemblages ( )var( ntraits ). Finally I 

multiplied the value by -1 so that values were positive where trait variance was lower 

than expected by chance and negative where trait variance was higher than expected by 

chance. This meant both the calculation and results were analogous to the NRI/NTI 

analyses. Standardised trait variances were therefore calculated as follows:  

  Standardised trait variance = 
)var(

)var(var

n

n

traits

traittrait −

   (3) 

 

Pooled trait analyses 

Standardised trait variance is expected to be approximately normally distributed with a 

mean of zero, so I used t-tests to determine whether the mean of the distribution differed 

from zero demonstrating a general trend towards either lower or higher trait variance 

than expected by chance. I then used analysis of variance (ANOVA) to determine 
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whether the different clades had significantly different standardised trait variance values 

from each other. 

3.4 Results 

NRI/NTI 

The Wilcoxon tests showed that the median NRI% (net relatedness index centiles) 

differed significantly from 50 for all assemblages combined (< 50, p = 0.004) and for 

monkeys (< 50, p = 0.001) but not for possums (p = 0.999) or squirrels (p = 0.082; 

Figure 3.2, Table 3.2). The results did not differ qualitatively when differently-sized 

species pools were used (Table 3.4). 

 

The t-tests showed that the mean NTI (nearest-taxon index) values differed significantly 

from zero for all assemblages combined (< 0, p = 0.002), for monkeys (< 0, p = 0.002), 

for squirrels (< 0, p = 0.043), but not for possums (p = 0.837; Figure 3.2, Table 3.2).  

The NRI% and NTI values for possums were closer to the null expectation but there 

were no significant differences among clades in either NRI% or NTI (NRI%: Kruskal-

Wallis χ2 = 2.910, d.f. = 2, p = 0.233; NTI: F2, 110 = 0.729, p = 0.485). The results did 

not differ qualitatively when differently sized species pools were used (Table 3.4). 
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Table 3.2: Results of Wilcoxon tests investigating whether the distribution of NRI% values have 

medians significantly different from 50, and of t-tests investigating whether the distribution of NTI 

values have means significantly different from zero, for all clades and each clade separately. 

monkeys = Platyrrhini; possums = Phalangeriformes; squirrels = North American Marmotini. n = 

number of communities. *p < 0.05; **p < 0.01. 

 

 

Table 3.3: Results of Wilcoxon tests showing that values of NRI% and NTI did not differ 

significantly when phylogenies with different squirrel genera as outgroups were used. These 

analyses used a 500 km species pool  

  NRI% NTI 

outgroup one outgroup two W p  W p  

Cynomys Marmota 6225 0.746 6461 0.877 

Cynomys Spermophilus 6230 0.754 6337 0.924 

Marmota Spermophilus 6725 0.490 6362 0.964 

 

clade n 
median NRI% (1st 

quartile, 3rd quartile) 
V mean NTI ± s.e. t 

monkeys 28 31.18 (19.58, 46.93) 67.00** -0.401 ± 0.118 -3.397** 

possums 10 49.45 (20.51, 73.12) 27.00 -0.055 ± 0.261 -0.212 

squirrels 75 37.09 (24.95, 64.00) 1095 -0.222 ± 0.108 -2.060* 

all 113 36.06 (20.80, 63.85) 2201** -0.251 ± 0.081 -3.122** 
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Figure 3.2: Distributions of NRI% values (left hand plots) and NTI values (right hand plots) for 

each clade separately and all clades combined. a) Platyrrhini; b) Phalangeriformes; c) North 

American Marmotini; d) all clades combined. In the NRI% plots the dashed line represents the 50th 

centile (median). In the NTI plots the dashed line is where NTI equals zero. 
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 Table 3.4: Results for three different species pool sizes of Wilcoxon tests investigating whether the 

distribution of NRI% values have medians significantly different from 50, and of t-tests 

investigating whether the distribution of NTI values have means significantly different from zero, 

for all clades and each clade separately. m = Platyrrhini; p = Phalangeriformes; s = North 

American Marmotini. n = number of communities. *p < 0.05; **p < 0.01; ***p < 0.001.  

pool  

size 

(km) 

clade n 

median NRI%  

(1st quartile,  

3rd quartile) 

V 
mean NTI  

± s.e. 
t 

100 m 11 33.44 (19.42, 40.08) 13.00 -0.373 ± 0.297 -1.255 

 p 7 37.66 (16.73, 78.01) 15.00 -0.285 ± 0.411 -0.693 

 s 57 42.03 (25.38, 67.08) 653.0 -0.172 ± 0.134 -1.268 

 all 75 37.27 (24.38, 66.01) 1058 -0.212 ± 0.116 -1.818 

250 m 22 34.12 (23.11, 58.52) 71.00 -0.186 ± 0.180 -1.035 

 p 9 43.86 (16.82, 77.70) 16.00 -0.162 ± 0.299 -0.541 

 s 66 35.27 (24.73, 65.84) 803.5 -0.296 ± 0.131 -2.254* 

 all 97 34.71 (22.10, 64.22) 1669* -0.259 ± 0.101 -2.552* 

1000 m 28 27.84 (10.62, 39.07) 40.00*** -0.594 ± 0.130 -4.567*** 

 p 10 50.67 (36.91, 77.27) 32.00 0.068 ± 0.230 0.297 

 s 78 44.83 (23.76, 68.62) 1253 -0.214 ± 0.105 -2.041* 

 all 116 39.67 (18.51, 65.78) 2321* -0.281 ± 0.081 -3.466** 

 

When the assemblages were considered individually, only six squirrel assemblages out 

of 75 (Coram Biosphere Reserve, MT: overdispersion: NRI = -1.707, p = 0.006; 

Dinosaur, NM: overdispersion: NTI = -1.666, p = 0.046; Guadalupe Mountains: 

overdispersion: NTI = -1.390, p = 0.04; Yellowstone NP: overdispersion: NRI = -1.099, 

p = 0.037; Zion: overdispersion: NRI = -1.230, p = 0.006, NTI = -2.056, p = 0.010) 

showed significant overdispersion. None of the individual monkey or possum 

assemblages were significantly overdispersed. No individual assemblages were 

significantly clustered. NRI and NTI values for individual localities can be found in the 

online supplementary material of Cooper et al. (2008). 
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Methodological bias 

 NRI% was not correlated with the area of the assemblage locality, the assemblage 

species richness or pool species richness, but was significantly correlated with the 

assemblage:pool species richness ratio (Table 3.5). NTI was not significantly correlated 

with the area of the assemblage locality, assemblage species richness or the 

assemblage:pool species richness ratio but was significantly correlated with species pool 

species richness (Table 3.5).  

 

Table 3.5: Results of Spearman’s rank correlation tests to determine whether NRI% or NTI values 

are associated with various predictor variables which may bias the results. Assemblage:pool species 

richness ratio = assemblage species richness/species pool species richness. ρ (rho) = Spearman’s 

rank correlation coefficient. n = 113. *p < 0.05. 

 NRI% NTI 

predictor variable ρ p ρ p 

Assemblage locality area (km2) 0.048 0.612 0.127 0.181 

Assemblage species richness -0.025 0.791 0.109 0.250 

Species pool species richness 0.151 0.111 0.222 0.018* 

Assemblage: pool species richness ratio -0.207 0.028* -0.114 0.228 

 

Trait variances 

As detailed in Table 3.6, the t-tests showed that the mean standardised trait variance 

differed significantly from zero for all traits using all assemblages combined (all traits: 

p < 0.001), and for squirrels (all traits: p < 0.001), but for no traits in monkeys (These 

results are also displayed in Figure 3.3). There were significant differences among 

clades in mean standardised trait variance, with monkeys having significantly lower 

standardised trait variance than squirrels for all shared traits (CBL: F2,107 = 9.246, p < 

0.001; MZW: F2,107 = 6.841, p < 0.001; TR: F2,107 = 6.686, p < 0.001; IR: F2,107 = 7.472, 

p < 0.001; MC: F2,107 = 5.309, p < 0.001; CP: F2,107 = 8.058, p < 0.001).
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Table 3.6: Results of t-tests investigating whether the distributions of standardised trait variances have means significantly different from zero, for all clades 

combined and each clade separately. monkeys = Platyrrhini; possums = Phalangeriformes; squirrels = North American Marmotini. n = number of 

communities. CBL = condylobasal length; MZW = maximum zygomatic width; TR = tooth row length; IR = incisor row length; CH = canine height; CD = 

canine diameter; MC = mandibular condyle height; CP = coronoid process; P1 = P1 height; P3 = P3 height; DL = diastema length. ***p < 0.001

 monkeys (n = 28) possums (n = 8) squirrels (n = 74) all (n = 110) 

trait 

mean 

standardised 

trait variance 

± s.e. 

t 

mean 

standardised 

trait variance 

± s.e. 

t 

mean 

standardised 

trait variance 

± s.e. 

t 

mean 

standardised 

trait variance 

± s.e. 

t 

CBL 0.178 ± 0.170 1.045 -0.253 ± 0.344 -0.737 -0.636 ± 0.097 -6.583*** -0.401 ± 0.088 -4.564*** 

MZW 0.197 ± 0.165 1.191 -0.235 ± 0.318 -0.741 -0.618 ± 0.099 -6.237*** -0.383 ± 0.088 -4.346*** 

TR 0.175 ± 0.169 1.038 -0.202 ± 0.340 -0.595 -0.627 ± 0.103 -6.111*** -0.392 ± 0.091 -4.326*** 

IR 0.210 ± 0.202 1.037 -0.264 ± 0.329 -0.803 -0.644 ± 0.096 -6.701*** -0.399 ± 0.092 -4.331*** 

CH 0.322 ± 0.164 1.959 0.056 ± 0.309 0.181 - - - - 

CD 0.242 ± 0.171 1.414 -0.133 ± 0.376 -0.354 - - - - 

MC 0.076 ± 0.144 0.527 -0.144 ± 0.317 -0.456 -0.462 ± 0.086 -5.365*** -0.302 ± 0.075 -4.025*** 

CP 0.144 ± 0.161 0.898 -0.321 ± 0.327 -0.981 -0.569 ± 0.089 -5.365*** -0.369 ± 0.081 -4.547*** 

P1 - - 0.040 ± 0.345 0.115 - - - - 

P3 - - -0.176 ± 0.467 -0.378 - - - - 

DL - - - - -0.656 ± 0.091 -7.239*** - - 
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Figure 3.3: Distributions of standardised trait variances for all clades combined. CBL = 

condylobasal length; MZW = maximum zygomatic width; TR = tooth row length; IR = incisor row 

length; MC = mandibular condyle height; CP = coronoid process. The dashed line is where 

standardised trait variance is equal to zero. 
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3.5 Discussion 

My results suggest a consistent tendency for mammalian assemblages to be more 

phylogenetically overdispersed than expected by chance, and that this tendency is only 

detectable by pooling many assemblages. This pattern is seen both across the whole 

phylogeny (net relatedness index/NRI results) and at the tips (nearest-taxon index/NTI 

results). Additionally, the three clades analysed do not have significantly different 

NRI% or NTI values suggesting that this could be a general, rather than a clade-specific, 

mammalian pattern.  

 

The traditional interpretation of phylogenetic overdispersion is that competition among 

ecologically similar close relatives has led to exclusion of the inferior competitors and 

hence an assemblage with more distantly related species than expected. However, if 

traits allowing a species to exist in an area have evolved convergently in more distant 

relatives, then habitat filtering could also cause overdispersion (Cavender-Bares et al. 

2004; Kraft et al. 2007). Determining whether competition or habitat filtering is more 

likely requires an analysis integrating data on the traits mediating competition and 

resource use. My analyses of traits in all clades provide support for competition being 

the mechanism behind the phylogenetic overdispersion, since every trait shows greater 

variance within assemblages than expected by chance. This fits with the predictions of 

earlier non-phylogenetic studies looking at how competition structures mammalian 

communities (Elton 1946), the results of Houle (1997), who found that primates that 

were phylogenetically “too close” did not coexist, and many previous studies which 

found similarly overdispersed trait values in other mammalian groups (see Dayan & 

Simberloff 2005 for a review).  
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When the clades were considered separately only the squirrels showed significant trait 

overdispersion. This suggests that closely-related squirrels (which will have similar trait 

values) do not coexist due to competition; instead squirrel assemblages are made up of 

species which are different enough to coexist. This has been seen on a smaller scale 

with other rodent species (Heske et al. 1994; Yom-Tov 1991). Monkey assemblage trait 

variances did not tend to depart from null expectations, although they were 

phylogenetically overdispersed. There are several possible explanations for this: firstly 

it is possible that the measured traits were not the ones which were most important for 

resource competition in monkeys. Thus there may be trait overdispersion which I could 

not detect with my morphological data. Secondly, different monkey genera are known 

to forage at different canopy levels (Fleagle 1999), and also vary the degree to which 

they include other items such as insects and sap in their diets (Nowak 1999). Perhaps 

these behavioural differences remove the need for morphological character 

displacement. Alternatively, it could be a taxonomic artefact: monkey species are often 

split into new species by taxonomists, and on these occasions their geographic ranges 

are split in two so there is no range overlap between sister species. Possum assemblages 

may generally be assembled at random with respect to phylogeny, perhaps because the 

traits involved in habitat filtering and competition in this group are independent of 

phylogeny, or because both mechanisms are acting and have cancelled each other out 

(e.g. Helmus et al. 2007). However, these results are based on only ten assemblages, so 

may not permit any robust conclusions. 

 

Interestingly, few individual assemblages had significantly overdispersed NRI or NTI 

values. This could be due to low statistical power, since both the assemblages and 

species pools tended to be small. Also most assemblages were either too small or too 
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large with respect to the pool for maximum power (Kraft et al. 2007). In addition, 

competition does not always lead to competitive exclusion.  Some species may be 

temporally or spatially segregated within the same habitat.  Other species show 

behavioural plasticity which allows similar species to coexist (Houle 1997; Lovette & 

Hochachka 2006), or rapidly evolve different ecotypes (Harmon et al. 2003). Finally, 

the results focus on how competition between close relatives may limit species 

distributions in some mammalian clades. However, other factors also influence where 

species occur, such as geographical boundaries, limits on dispersal, differential 

extinction (human-mediated or otherwise), the distribution of resources (e.g. food and 

shelter), and interactions with species from different clades (e.g. predation). Although 

the narrow taxonomic focus of my approach should increase the likelihood of detecting 

competition in the clades (Darwin 1859), distant relatives may also compete.  For 

example, in the Neotropics, frugivorous bats compete with birds (Palmeirim 1989) and 

potentially with monkeys as well. 

 

My assemblage lists come from species checklists which may be incomplete. This 

incompleteness could only undermine the results if, for some reason, the omissions 

caused the species on the lists to appear phylogenetically overdispersed. An alternative 

approach would be to use species’ range map overlap to determine assemblage 

membership (e.g. Davies et al. 2007). However, that approach is also problematic as 

maps tend to overestimate species’ ranges and hence species’ overlap (Hurlbert & Jetz 

2007). Species checklists, whilst imperfect, are much more likely to capture sets of 

interacting species. Here I use range maps only to delimit source pools, so any errors 

will affect only the pools; and I show that varying the threshold for inclusion in the 

source pool has no qualitative impact on the results. My NRI results also appear to be 
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influenced by the size of the species pool and the NTI results by the ratio of the number 

of species in the assemblage to the number of species in the pool (Table 3.5). Since 

where NRI was affected by these factors, NTI was not, and vice versa, I believe the 

general pattern of overdispersion in the assemblages was not merely due to 

methodological bias. However, these factors should be considered in future studies.  

 

My results suggest that species distributions, and perhaps trait values, are influenced by 

those of other, closely-related species. Since species’ geographic range maps do not 

reflect the local heterogeneity in distributions that may be caused by such interactions, 

our knowledge of where species actually occur may be unreliable. Previous authors 

have recognised this and its implications for biodiversity research and conservation 

(Hurlbert & Jetz 2007). Likewise, the current trend for mapping how geographic ranges 

will shift under particular climate change scenarios may underestimate how species will 

be affected if these among-species interactions are ignored. Such interactions may make 

it much harder to predict how species will respond to their rapidly-changing 

environment. 
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Chapter 4: Competition and the evolution of mammalian 

morphological traits: a phylogenetic comparative study 

4.1 Abstract 

Traditional studies of competition tend to focus on the link between species’ traits and 

coexistence. More recent studies have investigated the relationship between phylogeny 

and coexistence. However, few studies have so far considered the links between 

species’ traits, phylogeny and coexistence simultaneously. Here I propose a model 

which uses all three variables to investigate the effects of competition on morphological 

evolution. I use partial Mantel tests to investigate the association between species’ trait 

differences and geographic range overlap whilst controlling for phylogeny, in four 

mammalian clades. If competition has been important in the morphological evolution of 

the clades, I expect species’ traits to become increasingly different as the degree of 

geographic range overlap between the species increases, all other things being equal. I 

find no significant pattern across the clades as a whole. However, when I only consider 

species within the same macroniche to be competitors, I find a significant result for 

monkeys and squirrels but in the opposite direction to my expectations: coexisting 

species tend to have more similar traits than expected by chance. There are no 

significant patterns in the bats or possums. This suggests that habitat filtering, and/or 

convergent evolution, may be more important than competition in determining the 

species’ morphological traits, or that competition in these groups is reduced by 

different, perhaps behavioural, mechanisms. 
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4.2 Introduction 

Although studied primarily by ecologists, competition between species has been 

suggested to drive differences in evolutionary rates (Stanley 1973a) and is therefore of 

interest to evolutionary biologists. Despite this, traditional studies of competition have 

focussed on the link between traits and coexistence without explicitly considering 

evolution (e.g. Dayan & Simberloff 1994). In such studies, ecological theory states that 

co-occurring species with similar traits (and therefore niches) will compete fiercely, and 

those which are “too similar” will be unable to coexist due to competitive exclusion of 

the inferior competitor (Gause 1934; Hutchinson 1959). Thus species that compete and 

coexist should have greater differences in their trait values than expected by chance, i.e. 

their traits should show character displacement (Brown & Wilson 1956). However, the 

evolutionary component of competition is also important, since competition only occurs 

between species with similar niches/traits and which coexist (Keddy 1989), and the 

niche/traits of a species are, at least partly, determined by the species’ evolutionary 

history (Harvey & Pagel 1991). Therefore, in order to fully understand the influence of 

competition on evolution, we need to understand the links between species’ traits, 

evolutionary history (i.e. phylogeny) and coexistence.  

 

The evolutionary history of a species influences its traits in several ways. Firstly, close 

relatives tend to have similar traits because they share a common ancestor and hence a 

common starting point for their trait evolution (Harvey & Pagel 1991). In addition, the 

degree of adaptation to a given environment is dependent on physiological constraints 

which also have phylogenetic pattern; e.g. marine mammals possess a suite of 

adaptations to living in water but still need to breathe air because their mammalian 

ancestors had lungs not gills (Eisenberg 1981). Finally, historical environmental 
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conditions will have contributed to the trait evolution of species in the past, and hence 

may also influence their descendants. However, there are also striking examples of 

convergent evolution, where distantly related species with similar niches have evolved 

similar adaptations. For example, all subterranean mammals have reduced appendages 

to aid movement underground (Nevo 1979), so trait similarity is not necessarily 

connected to phylogenetic similarity. 

 

Species coexistence and phylogeny are also linked, though indirectly through their 

effects on species’ traits. Since species with similar traits are expected to compete, and 

close relatives have more similar traits than distant relatives (Harvey & Pagel 1991), 

patterns of species coexistence are expected to be phylogenetically structured. This idea 

has been used to develop “community phylogenetic” methods (Webb et al. 2002 and 

Chapter 3) which compare the phylogenetic position of community members with those 

of non-members from a regional source pool, to determine whether species within a 

community are more or less closely related than expected by chance. If competition 

affects community membership, then species in a community will be more distantly 

related than expected by chance (phylogenetic overdispersion: Webb et al. 2002). 

Conversely, species within a community could be more closely-related than expected by 

chance (phylogenetic clustering: Webb et al. 2002). The latter case would suggest that 

species within the community require similar traits in order to survive in the area, and 

that avoiding competition is a secondary concern. This is commonly called habitat 

filtering. Many examples of both phylogenetic overdispersion and clustering can be 

found in the literature (see Emerson & Gillespie 2008 for a recent list). Unfortunately, 

the interpretation of phylogenetic overdispersion and clustering is not always 

straightforward: for example, if species have undergone convergent evolution, 
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phylogenetic overdispersion may actually be the result of habitat filtering selecting 

species with similar traits, rather than competition selecting species with different traits 

(Webb et al. 2002). Therefore, although most studies of this kind use only phylogeny 

and ignore species’ traits, there is a growing consensus that both traits and phylogeny 

need to be considered (Kraft et al. 2007). 

 

My aim in this chapter is to determine whether species’ traits are influenced by 

competition, whilst controlling for the effects of phylogeny. Since competition is 

difficult to demonstrate and quantify without extensive field work, I instead use species’ 

coexistence (the degree of geographic range overlap) as a proxy for the potential 

intensity of competition between two species. Here I propose that the influence of 

competition on species’ morphological traits can be investigated using the following 

model:  

 Trait differences = f(phylogenetic difference, coexistence difference) (4) 

The important feature of this model is whether the coefficient for the coexistence term is 

negative or positive when controlling for phylogeny. If competition is important, this 

coefficient should be negative, so that as overlap with an ecologically similar species 

increases, trait differences also increase in order to reduce competition. Conversely, if 

habitat filtering is important, the coexistence coefficient will be positive so that as 

overlap with an ecologically similar species increases, trait differences decrease.  

 

This method is similar to one recently proposed by Freckleton and Jetz (2009). They 

modelled how species’ traits depended on both phylogeny and the geographical 

distances between species, with the prediction that as species become more closely-

related and/or closer together in space, phylogenetic niche conservatism and spatial 
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autocorrelation would ensure that their traits would also become more similar. At the 

fairly large (regional to global) spatial scales in which they are interested, their model 

(which does not consider interactions among species) is not contradicted by the method 

I propose here. However, the model suggests that, at the spatial scale of communities, 

interactions among species may oppose their model’s predictions: species in close 

proximity, both spatially and phylogenetically, will be more likely to compete and 

hence will be more different than expected by the method of Freckleton and Jetz (2009). 

 

Here I test the model using four mammalian study clades: New World monkeys, 

Australasian possums, North American ground squirrels and New World leaf-nosed bats 

(see Chapter 2: section 2.2). The first three of these clades have been suggested to 

exhibit competition using methods that consider their traits only (all clades combined 

and squirrels; Chapter 3) and their phylogeny only (all clades combined, monkeys and 

squirrels; Chapter 3 and Cooper et al. 2008). They therefore provide a useful test of this 

new method, which accounts for both traits and phylogeny. 

 

4.3 Materials and Methods 

DATA 

Morphological distance matrices 

I collected the trait data and error-checked it as described in Chapter 2: sections 2.3-2.5. 

I then created Euclidean distance matrices for each clade using the natural-log 

transformed species’ means of all the traits. These are the morphological distance 

matrices referred to throughout. 
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Phylogenetic distance matrices 

The phylogenies used are described in Chapter 2: section 2.9 and each was completely 

resolved. In the Bininda-Emonds et al. (2007; 2008) supertree, the relationship among 

the genera Cynomys, Marmota and Spermophilus is unresolved. I therefore created three 

phylogenies, one for each possible resolution of the polytomy, and analysed each in 

turn. The topology used made no qualitative difference to the results, but I report the 

results from each below. 

 

Since the amount of phylogenetic signal in a trait can vary substantially, I transformed 

each phylogeny using λ before performing any analyses. λ is a multiplier of the off-

diagonal elements of a phylogenetic variance covariance matrix that best fits the data, 

and varies between λ = 1, where the data are structured according to a Brownian motion 

model of trait evolution, and λ = 0, where the data have no phylogenetic structure (Pagel 

1999). I obtained the maximum likelihood (ML) estimate of λ using natural-log 

transformed condylobasal length (CBL) measurements for each species, with GEIGER 

(Harmon et al. 2008). I then transformed each phylogeny by the appropriate ML 

estimate of λ and these λ-transformed phylogenies were used to produce phylogenetic 

distance matrices (i.e. cophenetic rather than variance-covariance matrices which are 

phylogenetic similarity matrices) for each clade. 

 

Species co-occurrence matrices 

In order for a pair of species to compete and influence each others’ morphology, their 

geographic ranges must overlap. However, simply noting whether ranges overlap or not, 

is not a good indicator of species interaction strengths, since a species that is found 

across the entire range of another should have greater influence on it than a species 
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found in only a small part of its geographic range. Therefore, rather than using this 

naïve approach, I calculated the number of 1º grid cells the species pairs shared, and 

then divided this by the total number of 1º grid cells occupied by the first species, to get 

the proportion of shared cells (see Figure 4.1). Note that the resulting matrices were not 

symmetrical. Since the models required difference and not similarity matrices, I then 

subtracted these values from unity to create a coexistence difference matrix. An 

example of how these values were calculated is shown in Figure 4.1: species A and B 

share one 1º grid cell, species A occupies 12 1º grid cells, and species B occupies one 1º 

grid cell. Thus the value in the species’ coexistence matrix for species A with B is 1 - 

(1/12) = 0.917, and for species B with A it is 1 - (1/1) = 0 (i.e. zero difference). Species 

which overlap spatially do not necessarily compete. Thus I created another set of 

species coexistence matrices which only counted two species as sharing grid cells if the 

two species were in the same macroniche (Chapter 2: section 2.4; Eisenberg 1981). 

Using macroniches increases the likelihood that the species are actually competing 

because they are equivalent to ecological guilds (Chapter 2: section 2.4; Eisenberg 

1981). In the example (Figure 4.1), if A was a volant frugivore and B was a volant 

carnivore, the values in the species’ coexistence matrices would be 1 for both (i.e. 

completely different). I performed the analyses using both types of species coexistence 

matrix. 
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Figure 4.1: Example calculation for species’ coexistence matrices. Species A and B share one 1º grid 

cell, species A occupies 12 1º grid cells, and species B occupies one 1º grid cell. The value in the 

species’ coexistence matrix for species A with B is 1 - (1/12) = 0.917, and for species B with A it is 1 - 

(1/1) = 0. 

ANALYSES 

For each of the four clades, I performed partial Mantel tests (Manly 1997) controlling 

for the phylogenetic distance between the species, to determine whether there was any 

association between species’ coexistence and species’ morphological differences, 

independent of phylogeny. Since the elements of the matrices were not independent, 

significance testing was performed using 10,000 permutations (equivalent to α = 0.001; 

Manly 1997) of the columns and rows of the morphological distance matrix to 

determine whether the association was higher than that expected by chance (one-tailed 

test). 

 

All data analysis was carried out using R version 2.6.2 (R Development Core Team 

2008), and partial Mantel tests used the package vegan (Oksanen et al. 2008).  

4.4 Results 

Results of the partial Mantel tests are shown in Table 4.1. When all species are included 

in the species’ coexistence matrix there is a non-significant negative association 

between species’ coexistence and species’ morphological differences in all four clades. 

A 

B 
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However, when only species within the same macroniche are considered, the 

association is positive in all clades except possums, and significantly positive in 

monkeys and squirrels. The topology of the squirrel phylogeny I used had no qualitative 

effect on the results. 

 

Table 4.1: Results of partial Mantel tests looking for an association between species’ morphological 

differences and species’ coexistence whilst controlling for phylogeny. “all species” analyses use the 

complete species’ coexistence matrices; “same macroniche” analyses count species’ range overlaps 

only if the two species are in the same macroniche. r = correlation coefficient; C = Cynomys 

outgroup squirrel topology; M = Marmota outgroup squirrel topology; S = Spermophilus outgroup 

squirrel topology. 

   all species same macroniche 

clade n λ r p r p 

bats 87 1.000 -0.119 0.988 0.043 0.107 

monkeys 69 0.984 -0.030 0.844 0.057 0.029 

possums 30 1.000 -0.149 0.962 -0.016 0.602 

squirrels C 61 0.990 -0.046 0.818 0.131 < 0.001 

squirrels M 61 0.986 -0.047 0.824 0.137 < 0.001 

squirrels S 61 0.988 -0.046 0.816 0.131 < 0.001 

 

4.5 Discussion 

When phylogeny is taken into account, monkey and squirrel species tend to be more 

similar than expected by chance as the overlap between their geographic ranges 

increases. This result is the opposite of my expectations, i.e. that coexisting species 

would be less similar than expected by chance due to competition. This suggests that, 

for monkeys and squirrels, there is some evidence that habitat filtering or convergence 

to similar morphologies are more important than competition in determining their 

morphological traits. This result is also consistent with the model of Freckleton and Jetz 
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(2009), which suggests that species in close proximity will be similar due to spatial 

autocorrelation, and this may also be the result of habitat filtering. 

 

All of the monkeys (except for species in the genera Alouatta: howler monkeys and 

Brachyteles: woolly spider monkeys) are arboreal frugivore/omnivores and are therefore 

probably feeding on similar foods in similar areas. This may account for the similarity 

in the traits of the coexisting species, but does not necessarily mean that competition is 

unimportant in this group. The different genera are known to forage at different canopy 

levels (Fleagle 1999), and also vary the degree to which they include other items such as 

insects and sap in their diets (Nowak 1999). Perhaps these behavioural differences 

remove the need for morphological character displacement. Species may also reduce 

competition by taking differently-sized fruits, or by foraging at different times of the 

day (e.g. the genus Aotus, owl monkeys, are nocturnal; Nowak 1999). The other 

possible mechanism behind this result is that, rather than similar in situ adaptations to 

similar foods, habitat filtering has occurred, i.e. the species present in the area are there 

because they all have traits which enable them to survive there. It is likely that both 

convergent evolution and habitat filtering are involved in this pattern. Previous work 

(Chapter 3 and Cooper et al. 2008) proposed that habitat filtering combined with 

convergent trait evolution explains both the presence of phylogenetic overdispersion, 

and the absence of trait overdispersion in this group, and the results here seem to 

support this explanation. 

 

Evidence for habitat filtering in squirrels directly contradicts the results of earlier 

phylogenetic- and trait- based studies (Chapter 3 and Cooper et al. 2008), which both 

found convincing evidence for the influence of interspecific competition in the clade 
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outweighing that of habitat filtering. One mechanism for this difference could lie in the 

methods used. The models used in this chapter differ from those used by Cooper et al. 

(2008) and in Chapter 3 in several respects. Firstly, the previous models considered 

species within a community, rather than species pairs within the same macroniche, and 

assumed that they all had the same degree of influence on each other. In squirrels, 

species within the genera Marmota and Cynomys (marmots and prairie dogs 

respectively) are members of the terrestrial/semifossorial herbivore/grazer macroniche, 

species within the genera Ammospermophilus and Spermophilus (antelope ground 

squirrels and ground squirrels respectively) are in the terrestrial/semifossorial omnivore 

macroniche, and species within the genus Tamias (chipmunks) are in the 

terrestrial/scansorial omnivore macroniche. Thus, since only species within the same 

macroniche were expected to compete strongly, this method only considers either 

marmots and prairie dogs, or antelope ground squirrels and ground squirrels, or 

chipmunk species, as competitors. Conversely, the previous analyses assumed that 

species from all five genera would compete with one another. This explanation fits with 

the analyses of Davis (2005) which showed habitat filtering, but only within the genus 

Marmota. 

 

Together, the results of this method and those of my previous studies suggest that 

morphology is highly conserved within macroniches: i.e. the marmot and prairie dog 

species, ground squirrel species, and chipmunk species all have very similar adaptations 

to their niches. However, within a whole community, one generally finds overdispersion 

in both the species’ phylogeny and traits, because communities tend to contain a small 

number of species from each of the three macroniches (see community lists; online 

supplementary materials in Cooper et al. 2008). This suggests that the macroniches 
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exist, extrinsic to the taxa. It also suggests a future modelling approach, with low rates 

of morphological change within macroniches and high rates of morphological change 

where species move from one macroniche to another. 

 

Another factor that could explain the differences in the results are the different spatial 

and taxonomic scales of the two methods: Chapter 3 and Cooper et al. (2008) use 

broader geographic and taxonomic scales than the method described here (areas of 

assemblage localities versus 1º grid cells, and whole communities versus pairs of 

species within the same macroniche, which tends to be conserved within genera). 

However, using finer spatial and taxonomic scales should increase the likelihood of 

detecting overdispersion and competition (Swenson et al. 2006), whereas the opposite 

appears to be the case. 

 

The models described above are necessarily simplified versions of how evolution has 

actually taken place. Each entry in the matrices compares just one species to another 

species, and thus assumes any trait differences between the two are the result of their 

pairwise phylogenetic and geographic differences alone. In reality, each species’ traits 

are likely to be affected by a number of other species and reflect the combined effects of 

competing with all these species. In addition, I assumed that the geographic ranges of 

the species have remained constant throughout their evolutionary history. This is 

certainly not true and hence my method may infer competition where there is none, and 

miss historical competition due to more recent species range shifts. Additionally, factors 

other than evolutionary history and geographic range overlap are likely to influence 

morphological trait evolution and may confound the results. For example, 

environmental conditions can affect species’ traits via selection over relatively short 
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time-scales, e.g. woodrats (Neotoma cinerea) have decreased their body-mass in 

response to climatic warming in only 25,000 years (Smith et al. 1995). 

 

In conclusion, species within the monkey and squirrel clades tend to be more similar 

than expected by chance, as the overlap between their geographic ranges increases. This 

suggests that habitat filtering or convergence to similar morphologies is more important 

than competition in determining their morphological traits, or that competition in these 

groups is reduced by different, perhaps behavioural, methods. 
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Chapter 5: What factors shape rates of morphological 

evolution in mammals?
4
  

5.1 Abstract 

 
Understanding why rates of morphological evolution vary is a major goal in 

evolutionary biology. Classical work suggests that body size, interspecific competition, 

geographic range size and specialisation may all be important factors and each may 

increase or decrease rates of evolution. Many phylogenetic comparative methods, 

however, assume a constant rate of evolution of quantitative characters, which are 

logarithmically transformed prior to analysis so that rates of proportional change are 

studied. Here I investigate correlates of proportional evolutionary rates in New World 

leaf-nosed bats, New World monkeys, Australasian possums and ground squirrels, using 

phylogenetic comparative methods. I find variation in rates of morphological evolution 

both among, and within, the study groups. I also find that the most important correlate 

of the rate of evolution across all the groups is body size. Although large species evolve 

fastest in all four clades, and there is a non-linear relationship in monkeys and possums, 

with slowest evolution in species of intermediate size. I also find significant increases in 

rate with high environmental temperature in bats, and low mass-specific metabolic rate 

in squirrels. The mechanisms underlying these correlations are uncertain and appear to 

be size-specific. I conclude that there is significant variation in rates of evolution, but its 

meaning is not yet clear.

                                                
4 Many of the analyses in this chapter have been published as Cooper, N. and Purvis, A. (in press). What 

factors shape rates of phenotypic evolution? A comparative study of cranial morphology of four 

mammalian clades. Journal of Evolutionary Biology. N.C. collected the data, performed all the analyses 

and wrote the manuscript. A.P. supervised. 
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5.2 Introduction 

 

“It is abundantly evident that rates of evolution vary. They vary greatly from group to 

group, and even among closely related lineages there may be strikingly different rates. 

Differences in rates of evolution […] are among the reasons for the great diversity of 

organisms on the earth.” 

George Gaylord Simpson (1953) 

 

Rates of morphological evolution vary at all taxonomic levels: mammals have evolved 

faster than molluscs (Stanley 1973a); within mammals, carnivores have evolved faster 

than primates (rates of body-mass evolution; Mattila & Bokma 2008); and within 

primates, Strepsirrhines have evolved faster than Platyrrhines (rates of body-mass 

evolution; Purvis et al. 2003). Much work has focussed on quantifying rates of 

evolution (see review in Roopnarine 2003), but our understanding of why rates vary is 

far from complete. There are many longstanding hypotheses regarding the causes of rate 

variation, including life-history variables (e.g. body size), interactions with other species 

(e.g. competition), and environmental factors (Darwin 1859; Simpson 1953; Stanley 

1973a; 1979). However, these hypotheses were generally based on observational data 

and most have yet to be investigated in a modern quantitative framework. Here I aim to 

test some of these classical predictions about rate variation, and the interconnections 

between the variables involved, in order to improve understanding of evolutionary rates.  

 

In the classical evolutionary literature there are four main hypothesised correlates of 

morphological evolution: body size, interspecific competition, geographic range size 

and ecological specialisation (Figure 5.1). Note that where I refer to the “rate of 



Chapter 5 

 101 

morphological evolution”, I mean the rate of proportional change in morphology, i.e. 

the rate of change in log-transformed values. Body size is expected to affect rates of 

morphological evolution because it correlates with almost every aspect of a species’ 

biology (Calder 1984; Figure 5.1). However the direction of this relationship is 

disputed: Stanley (1979) and Simpson (1953) argued that large species evolve more 

quickly, possibly because their low population sizes and low fecundity restrict gene 

flow (Stanley 1979). However, smaller species tend to have faster life-histories, i.e. 

shorter generation times and shorter lifespans, which are predicted to increase the rate of 

evolution (Simpson 1953), although he notes that the correlations between evolutionary 

rates and generation time are often unpredictable.  

 

Each of the other three variables may also, theoretically, either increase or decrease 

rates of evolution. Competition can cause increased evolution away from the 

morphology and niche space of a competitor (i.e. character displacement; Dayan & 

Simberloff 2005). Alternatively it may inhibit the rate of evolution by preventing 

evolution into very different, already occupied niches, and instead cause species to 

evolve into niches that are very similar to their original niche, through the increased 

packing of niche space (de Mazancourt et al. 2008). Stanley (1979) believed species 

with large geographic ranges would show low rates of evolution, as the opposing forces 

of gene flow, which he believed would decrease rates, and local selection pressures, 

which he believed would increase rates, would cancel each other out. Darwin (1859), on 

the other hand, suggested that morphological evolutionary rates would be higher in 

widespread species since they would experience differing selection pressures (e.g. 

different environmental conditions, competitors and predators) across their range. 

Finally, ecological specialisation may increase rates of morphological evolution into 
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specialised niches (e.g. in adaptive radiations; Schluter 2000), whereas broadly adapted 

species may evolve more slowly due to selection for a more generalised morphology 

(Simpson 1953). 

 

 

Figure 5.1: Diagram showing the variables which are hypothesised to affect rates of morphological 

and/or molecular evolution along with selected references for the hypotheses. + = hypothesised 

positive relationship between the variable and evolutionary rate; - = hypothesised negative 

relationship between the variable and evolutionary rate. Note that these variables are themselves 

often interconnected, directly or indirectly, but the relationships between them have been omitted 

to increase clarity. 

 

All of these variables may interact with one another, and may be jointly influenced by 

other variables (not shown on Figure 5.1 for clarity). For example, body size is 

influenced by competitive interactions, predation, sexual selection and environmental 

variables such as temperature (e.g. Peters 1983; Rodríguez et al. 2008). Body size itself 
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is a surrogate for, or perhaps a result of, traits which have been hypothesised to 

influence evolutionary rates, e.g. population density, basal metabolic rate and speed of 

life-history (Charnov 1993; Kozlowski & Weiner 1997). Some of these variables are 

also affected by factors which influence body size, e.g. environmental temperature 

(Gillooly et al. 2001). Geographic range size is influenced by body size, competition 

and the ecological flexibility of the species involved (Gaston & Blackburn 2000). 

Species with larger geographic ranges are likely to share their range with more 

competitors and predators, and are more likely to be habitat (and dietary) generalists, 

whereas specialists tend to have restricted ranges (Brown 1995). This complexity needs 

to be considered in analyses of evolutionary rates. In addition to these factors, 

speciation may also increase rates of morphological evolution if it occurs in a 

punctuated, rather than a gradual, manner (Eldredge & Gould 1972). However, to 

investigate whether speciation has an important influence on the rate of morphological 

evolution it is first necessary to distinguish the evolutionary mode of traits (either 

punctuated or gradual). Unfortunately it is difficult to distinguish evolutionary mode 

using present-day data (Bokma 2002), so I do not investigate speciation here. 

 

Recently there has been a growing body of literature on correlates of rates of molecular 

evolution. Rates of molecular evolution are also known to vary among lineages (Welch 

et al. 2008), the most famous examples being “slow” primates (especially hominoids) 

and “fast” rodents (Li et al. 1996). Many explanations for this rate heterogeneity have 

been proposed (see Figure 5.1 for a summary), and these overlap with the 

morphological rate correlates discussed above, although the predictions are not always 

the same (see below and Figure 5.1). Again, small body size is predicted to increase 

rates of evolution, since smaller species have shorter generation times, higher mass-
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specific metabolic rates (BMR) and shorter lifespans. Each of these factors is thought to 

increase mutation rates and hence evolutionary rates (Bromham et al. 1996; Li et al. 

1996; Martin & Palumbi 1993; Nabholz et al. 2008). In the molecular literature, high 

environmental temperatures are also expected to increase rates of molecular evolution 

since they may (though not necessarily in endotherms) increase individual growth rates, 

shorten generation times and increase BMR (Bromham & Cardillo 2003; Gillooly et al. 

2001; Wright et al. 2006). Rates of molecular evolution are also correlated with rates of 

diversification (Barraclough & Savolainen 2001). Since all morphological traits must 

have some genetic underpinning, it follows that there must be some, albeit very 

complex, connection between rates of morphological and molecular evolution (even 

though molecular and morphological rates are rarely directly correlated; Bromham et al. 

2002; Davies & Savolainen 2006). Therefore, I can test hypotheses in this study of rates 

of morphological evolution from both the recent molecular and classical morphological 

literature. 

 

Here I disentangle some of these predictions about why rates of evolution vary and 

investigate how the factors discussed above and shown in Figure 5.1 are interconnected. 

I investigate whether body size (and, where the data are available, the variables which 

are predicted to explain the effects of body size, e.g. BMR, population density, 

generation time and longevity), ecological generalisation, interspecific competition, 

geographic range size and environmental temperature, are correlated with rates of 

morphological evolution in mammals. I analyse each predictor’s effect individually, and 

in multiple regressions with the other variables, using phylogenetic generalised linear 

models (PGLM; Freckleton et al. 2002) to control for the effects of phylogeny. 

Mammals are an ideal clade on which to test these hypotheses because I have life-
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history, ecological and geographic range data for many extant species (see Chapter 2) 

and an almost complete species-level phylogeny (Bininda-Emonds et al. 2007; 2008). In 

addition, most of the literature discussed above used mammals as a study group. This 

kind of analysis requires a well-resolved phylogeny and high quality, specimen-level 

morphometric data on species’ morphological traits with dense taxon-sampling. My 

four study clades (New World leaf-nosed bats: Phyllostomidae; New World monkeys: 

Platyrrhini; Australasian possums: Phalangeriformes; and ground squirrels: Marmotini) 

meet all these criteria and are, therefore, ideal groups to work on. 

5.3 Methods 

DATA 

Morphological traits 

Traits were collected and checked for errors as described in Chapter 2: sections 2.3-2.5. 

I extracted the species’ means of each trait for each species then natural-log transformed 

them to normalise their distributions and to fit with the idea that growth is 

multiplicative. The null model used throughout is the Brownian motion model of 

character evolution, fitted to log-transformed data; this model is also referred to as “log-

Brownian”. 

 

Phylogeny 

The phylogenies used are described in Chapter 2: section 2.9 and each was completely 

resolved. In the Bininda-Emonds et al. (2007; 2008) supertree, the relationship among 

the genera Cynomys, Marmota and Spermophilus is unresolved. I created three new 

phylogenies, one for each possible resolution of the polytomy, and analysed each in 

turn. The topology used had no qualitative influence on the results (Tables 5.5-5.7 and 
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Table 5.9), so I focus on results for the Cynomys outgroup tree although all results are 

presented for comparison.  

Relative rates of evolution 

In order to calculate a measure of the relative rate of evolution, I first created Euclidean 

distance matrices for each clade using the species’ means of all the traits (see Chapter 2: 

section 2.3). I used all traits combined so that the correlates I obtained would represent 

more general patterns of evolution in the groups, rather than correlates of just one 

specific trait. The Euclidean distance matrices for each clade were then used to provide 

morphological branch lengths for the phylogenies described above, by setting the 

phylogenetic topology as a constraint tree and optimising the distance matrix along it 

using minimum evolution in PAUP*4.0 (Swofford 2002). This resulted in a non-

ultrametric tree for each study clade. We define the relative rate of morphological 

evolution for a particular species within a clade as the root-to-tip distance for that 

species using these optimised phylogenies. The morphological distance between two 

species is the result of the time they have been evolving, and differences in their rate of 

evolution. Since all the species within a study clade are extant and share a common 

ancestor, they have all had the same amount of time to evolve. Therefore, time is a 

constant in these analyses, and any differences between the root-to-tip distances of the 

species within a clade represent differences in the rate of change in morphology of the 

species. 

 

Other traits 

Adult body-mass (g), mass-specific basal metabolic rate (mLO2hr-1g-1), gestation length 

(days), maximum longevity (months), population density (individuals per km2), 

geographic range size (km2) and mean annual temperature across the geographic range 
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(ºC) were taken from PanTHERIA (Jones et al. in press). I filled gaps using some other 

sources (Appendix A4). As a proxy for the intensity of competition, I calculated the 

mean number of potential competitors (defined as species within the same macroniche; 

Chapter 2: section 2.4 and Eisenberg 1981) per 1º grid cell across the species’ 

geographic range. I also created an index of ecological generalisation/specialisation, 

defined as the habitat breadth of the species multiplied by its diet breadth. Habitat 

breadth was the number of WWF biomes (Olson et al. 2001) within which the species 

occurred, and diet breadth was the number of different food types eaten (from 

vertebrates/invertebrates/fruit/flowers, nectar and pollen/seeds/grass/leaves, branches 

and bark/roots and tubers: Jones et al. in press). An increase in either value represents 

increasing generalisation. Unfortunately data on every variable were not available for 

each clade. Table 5.1 shows the number of species with values for each variable within 

the four clades. 

 

ANALYSES 

All analyses were carried out in R version 2.6.2 (R Development Core Team 2008). 

Most variables were natural-log transformed to normalise their distributions and 

improve model diagnostics, with the following exceptions where I used different 

transformations which improved model diagnostics more than natural-log transforms: 

inverse transformed relative rate of evolution-1 (bats and possums), inverse transformed 

gestation length (bats), inverse transformed longevity (bats and monkeys), square root 

transformed geographic range size (bats), square root transformed number of 

competitors (bats and possums), untransformed number of competitors (monkeys and 

squirrels), square root transformed generalisation index (squirrels). 
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Table 5.1: Number of species with records for given variables for each clade. bats = 

Phyllostomidae; monkeys = Platyrrhini; possums = Phalangeriformes; squirrels = Marmotini. 

BMR = mass-specific basal metabolic rate; Competition = average number of competitors per 1º 

grid cell across the specie’s range; Generalisation = habitat breadth*diet breadth. 

 bats monkeys possums squirrels 

Total clade size 88 72 30 73 

Body-mass 88 71 28 65 

BMR 25 8 8 23 

Population density 0 51 12 32 

Gestation length 15 42 4 46 

Longevity 11 49 12 24 

Temperature 85 69 29 64 

Competition 87 69 29 73 

Geographic range 87 69 29 73 

Generalisation 87 69 29 73 

 

Correlates of relative rates of evolution 

I performed all analyses using phylogenetic generalised linear models (PGLM; 

Freckleton et al. 2002) using the R package CAIC (available at https://r-forge.r-

project.org/projects/caic) to account for the non-independence introduced because close 

relatives tend to be similar due to shared common ancestry (Harvey & Pagel 1991). The 

PGLM method is equivalent to the phylogenetic generalised least-squares (PGLS) 

approach and is based on the usual generalised least-squares (GLS) model except that 

the phylogenetic dependence of the data is incorporated into structure of the error term 

(Freckleton et al. 2002; Pagel 1999; Rohlf 2001). This error term consists of a matrix of 

expected trait covariances calculated using the maximum-likelihood (ML) estimate of λ. 

λ is a multiplier of the off-diagonal elements of a phylogenetic variance-covariance 

matrix that best fits the data, and varies between λ = 1, where the data are structured 
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according to a Brownian motion model of trait evolution, and λ = 0, where the data have 

no phylogenetic structure (Pagel 1999). For each regression, the ML estimate of λ is 

calculated along with the other regression parameters, thus the regressions are carried 

out whilst controlling for the actual degree of phylogenetic non-independence that is 

present (rather than assuming complete phylogenetic dependence, as in independent 

contrasts, or phylogenetic independence, as in non-phylogenetic regressions). 

 

I first used single predictor PGLM regressions to investigate the effects of body-mass, 

gestation length, BMR, longevity, geographic range size, environmental temperature, 

degree of generalisation and number of competitors, on the relative rate of 

morphological evolution. I also looked for non-linear relationships by including the 

square of each variable. I only carried out regressions where I had ten or more degrees 

of freedom (see Table 5.1).  

 

PGLM is a generalisation of the independent contrasts method (Rohlf 2006), and its 

performance is therefore likely to be reduced if the pattern of trait variation among 

species departs strongly from the assumed random-walk model. This can result in points 

with very high leverage that could affect the parameter estimates and increase the error 

rates of the regressions. To avoid this heteroscedasticity (Diaz-Uriarte & Garland 1996), 

I therefore repeated the regressions after removing any highly influential points (i.e. 

those with a studentised residual exceeding ±3; Jones & Purvis 1997). Deletion of 

points did not make a qualitative difference to any of the results, so I only report results 

after deletion to improve the clarity of the tables. 
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Before building multivariate models I checked the predictors for collinearity (following 

the method of Belsey et al. 1980) because it can lead to unreliable model parameter 

estimates. I found collinearity (i.e. variance inflation factors greater than 3) among the 

following variables. In bats, temperature was collinear with geographic range size; in 

possums, temperature, geographic range size, and generalisation were all collinear with 

one another, and in monkeys, body-mass was collinear with mass-specific metabolic 

rate. These combinations of variables were therefore not entered into the best model 

analyses (see below). All other combinations of variables had variance inflation factors 

below three and condition indices below nine (Belsey et al. 1980). 

 

Since I had too few degrees of freedom (see Table 5.1) to fit minimum adequate 

models, I instead fit every possible model for each clade given the following rules: (1) 

none of the variables could be collinear; (2) there were at least ten data points per 

parameter; and (3) any influential observations (see above) were removed. The most 

complex models contained three variables and all possible interaction terms. Since 

missing values prevented the use of AIC values in model selection, I instead defined the 

best model as the model with the highest adjusted-r2, where all predictors and 

interaction terms were significant (p < 0.05).  

Node density effect 

The node density effect (NDE) is an artefact of the way trees are constructed which can 

lead to greater root-to-tip lengths in clades with more terminal taxa (Fitch & Bruschi 

1987; Venditti et al. 2006). This occurs because when branch lengths are calculated 

during tree building, it is likely that multiple DNA sequence changes along a long 

unbroken branch will remain undetected, but might be revealed if the branch is 

subdivided by increasing the number of species, and hence nodes, which subtend from 
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the branch. This may affect the analyses since I use root-to-tip distances to calculate the 

relative rate of morphological evolution. If the NDE is problematic in this study, there 

will be a significant positive curvilinear relationship between the number of nodes 

crossed and the root-to-tip length. I tested each of my trees for such a curvilinear 

relationship using the “delta” test of Venditti et al. (2006), as implemented online at 

www.evolution.reading.ac.uk (Venditti et al. 2008). The NDE is indicated if the 

strength of the relationship (β) is significantly greater than zero, and the curvature of the 

relationship (δ) is significantly greater than unity. 

5.4 Results 

Correlates of relative rates of evolution 

Differences in the relative rates of evolution (i.e. root-to-tip distances) among the 

subgroups within each clade are shown in Figures 5.3. There appears to be marked 

variation within the groups. 
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Figure 5.2: Box and whisker plots showing how relative rates of evolution vary among and within: 

(a) bat (Phyllostomidae) subfamilies; (b) monkey (Platyrrhini) subfamilies; (c) possum 

(Phalangeriformes) families; and (d) squirrel (Marmotini) genera. Bold line = median; box = 

interquartile range; whiskers = 1.5*interquartile range; points = outliers. 

 

Results of single predictor phylogenetic generalised linear models (PGLM) predicting 

differences in rates of evolution are shown in Tables 5.2-5.7. All four clades showed 

significant correlations between rate and body-mass either linearly, such that large 

species evolved fastest (bats: r2 = 0.087; squirrels: r2 = 0.211), or non-linearly, such that 

small and large species evolved fastest (bats: r2 = 0.270; monkeys: r2 = 0.440; possums: 
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r2 = 0.451). Rates in both bats and squirrels were also correlated with BMR (bats: non-

linearly with high rates at low and high BMR: r2 = 0.248; squirrels: negatively, r2 = 

0.379; and non-linearly with high rates at low and high BMR, r2 = 0.509). Other 

variables were significant predictors in only one clade, e.g. environmental temperature 

(bats; non-linearly with highest rates at mid-range temperatures, r2 = 0.095); number of 

competitors (monkeys; non-linearly with highest rates for either many or few 

competitors, r2 = 0.078), geographic range size (monkeys; positively, r2 = 0.217), and 

gestation length (squirrels; non-linearly with highest rates at mid-range gestation 

lengths, r2 = 0.087). The squirrel phylogeny used made very slight qualitative or 

quantitative difference to the results (Tables 5.5-5.7): there were no significant non-

linear relationships between rate and gestation length, but there were significant 

negative correlations between rate and temperature. 

 

The best models for predicting each clade’s relative rate of evolution are shown in 

Tables 5.8 and 5.9. Body size is a significant correlate in each clade, either linearly 

(squirrels: positive correlation, r2 = 0.467) or non-linearly (bats: positive correlation, r2 

= 0.341; monkeys and possums: highest rates in the smallest and largest species, r2 = 

0.440 and r2 = 0.451). In bats, high relative rates of evolution are also associated with 

high environmental temperatures and there is a significant negative interaction between 

body-mass and environmental temperature. In squirrels, high rates were also correlated 

with low BMR. The squirrel phylogeny used made no qualitative, and very little 

quantitative, difference to the results (Table 5.9). The value of λ for the four best models 

varied between 0.495 in bats and 0.768 in possums, to λ > 0.950 in monkeys and 

squirrels. 
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Table 5.2: Results from PGLM regressions of various predictors on the rate of morphological 

evolution in bats (Phyllostomidae). BMR = mass-specific basal metabolic rate; GestationL = 

gestation length; Competition = average number of competitors per grid cell across the specie’s 

range; GR = geographic range size; Generalisation = habitat breadth*diet breadth. *p < 0.05, **p < 

0.01, ***p < 0.001. 

predictor λ slope ± se d.f. t r
2
 

Body-mass 0.636 0.126 ± 0.044 85 2.838** 0.087 

Body-mass & 

Body-mass2 

0.561 -1.115 ± 0.258 & 

0.190 ± 0.040 

76 -4.324*** & 

4.759*** 

0.270 

BMR < 0.001 -0.227 ± 0.163 23 -1.394 0.078 

BMR 

BMR2 

< 0.001 -1.093 ± 0.417 & 

0.980 ± 0.439 

22 -2.623* & 

2.229* 

0.248 

GestationL < 0.001 19.30 ± 41.88 13 0.461 0.016 

GestationL 

GestationL2 

< 0.001 -47.88 ± 425.8 & 

-4945 ± 31180 

12 -0.112 & 

-0.159 

0.018 

Temperature 0.746 -0.283 ± 0.353 80 -0.802 0.008 

Temperature & 

Temperature2 

0.766 123.8 ± 45.36 & 

-11.49 ± 4.196 

80 2.730** & 

-2.737** 

 

0.095 

Competition 0.593 -0.038 ± 0.032 82 -1.175 0.017 

Competition & 

Competition2 

0.715 -0.117 ± 0.115 & 

0.020 ± 0.023 

84 -1.015 & 

0.854 

0.014 

GR 0.684 < 0.001 ± < 0.001 79 1.425 0.025 

GR & 

GR2 

0.703 < 0.001 ± < 0.001 &  

< 0.001 ± < 0.001 

78 0.130 & 

0.289 

0.034 

Generalisation 0.702 0.003 ± 0.058 81 0.060 < 0.001 

Generalisation & 

Generalisation2 

0.768 0.226 ± 0.273 & 

-0.050 ± 0.061 

83 0.829 & 

-0.820 

0.008 
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Table 5.3: Results from PGLM regressions of various predictors on the rate of morphological 

evolution in monkeys (Platyrrhini). BMR = mass-specific basal metabolic rate; PopDensity = 

population density; GestationL = gestation length; Competition = average number of competitors 

per grid cell across the specie’s range; GR = geographic range size; Generalisation = habitat 

breadth*diet breadth. *p < 0.05, ***p < 0.001. †Longevity & Longevity
2
 result is not shown as the 

solution is computationally singular. 

predictor λ slope ± se d.f t r2 

Body-mass 1.000 0.046 ± 0.062 69 0.733 0.008 

Body-mass & 

Body-mass2 

0.968 -2.546 ± 0.359 & 

0.182 ± 0.025 

69 -7.097*** & 

7.264*** 

0.440 

PopDensity 1.000 0.003 ± 0.024 49 0.138 < 0.001 

PopDensity & 

PopDensity2 

1.000 0.081 ± 0.101 & 

-0.012 ± 0.016 

48 0.800 & 

-0.790 

0.013 

GestationL 1.000 0.093 ± 0.266 40 0.351 0.003 

GestationL & 

GestationL2 

1.000 -13.26 ± 16.03 & 

1.307 ± 1.569 

39 -0.827 & 

0.833 

0.021 

Longevity† 1.000 -15.94 ± 30.302 47 -0.526 0.006 

Temperature 1.000 -0.170 ± 0.288 65 -0.590 0.005 

Temperature & 

Temperature2 

0.988 1.403 ± 15.11 & 

-0.171 ± 1.388 

65 0.093 & 

-0.123 

0.046 

Competition 0.975 -0.003 ± 0.006 66 -0.540 0.004 

Competition & 

Competition2 

0.971 -0.048 ± 0.020 & 

0.003 ± 0.001 

66 -2.360* & 

2.286* 

0.078 

GR 1.000 0.019 ± 0.004 66 4.279*** 0.217 

GR &  

GR2 

1.000 0.019 ± 0.119 & 

< 0.001 ± 0.005 

64 0.156 & 

-0.097 

0.010 

Generalisation 1.000 0.003 ± 0.023 65 0.131 < 0.001 

Generalisation & 

Generalisation2 

0.982 < 0.001 ± 0.111 & 

0.005 ± 0.026 

65 -0.004 & 

0.203 

0.014 
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Table 5.4: Results from PGLM regressions of various predictors on the rate of morphological 

evolution in possums (Phalangeriformes). BMR = mass-specific basal metabolic rate; PopDensity = 

population density; Competition = average number of competitors per grid cell across the specie’s 

range; GR = geographic range size; Generalisation = habitat breadth*diet breadth. ***p < 0.001. 

predictor λ slope ± se d.f. t r
2
 

Body-mass 0.695 -0.098 ± 0.050 26 -1.950 0.128 

Body-mass & 

Body-mass2 

0.768 -1.118 ± 0.267 & 

0.084 ± 0.022 

25 -4.182*** & 

3.858*** 

0.451 

PopDensity < 0.001 0.011 ± 0.055 10 0.206 0.004 

PopDensity & 

PopDensity2 

< 0.001 0.296 ± 0.260 & 

-0.033 ± 0.029 

9 1.140 & 

-1.121 

0.126 

Longevity < 0.001 -0.215 ± 0.132 10 -1.635 0.211 

Longevity & 

Longevity2 

< 0.001 -3.034 ± 2.100 & 

0.327 ± 0.243 

9 -1.445 & 

1.345 

0.343 

Temperature 0.693 -0.236 ± 0.362 27 -0.652 0.015 

Temperature & 

Temperature2 

< 0.001 20.86 ± 22.08 & 

-1.980 ± 2.077 

26 0.945 & 

-0.954 

0.041 

Competition 0.701 0.012 ± 0.067 28 0.180 0.001 

Competition & 

Competition2 

0.660 -0.136 ± 0.226 & 

0.059 ± 0.087 

27 -0.601 & 

0.680 

0.018 

GR 0.786 0.026 ± 0.028 28 0.929 0.030 

GR & 

GR2 

0.818 0.005 ± 0.244 & 

0.001 ± 0.011 

27 0.022 & 

0.088 

0.031 

Generalisation 0.825 0.066 ± 0.048 28 1.385 0.064 

Generalisation & 

Generalisation2 

0.825 0.049 ± 0.151 & 

0.005 ± 0.042 

27 0.326 & 

0.118 

0.065 
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Table 5.5: Results from PGLM regressions of various predictors on the rate of morphological 

evolution in squirrels (Marmotini) using the Cynomys outgroup phylogeny. BMR = mass-specific 

basal metabolic rate; PopDensity = population density; GestationL = gestation length; Competition 

= average number of competitors per grid cell across the specie’s range; GR = geographic range 

size; Generalisation = habitat breadth*diet breadth. *p < 0.05, **p < 0.01, ***p < 0.001. †Longevity 

& Longevity
2
 result is not shown as the solution is computationally singular. 

predictor λ slope ± se d.f t r2 

Body-mass 0.994 0.301 ± 0.073 63 4.100*** 0.211 

Body-mass & 

Body-mass2 

0.980 0.700 ± 0.397 & 

-0.033 ± 0.029 

62 1.763 & 

-1.143 

0.192 

BMR 1.000 -1.093 ± 0.305 21 -3.582** 0.379 

BMR 

BMR2 

1.000 0.031 ± 0.562 & 

0.940 ± 0.408 

20 0.056 & 

2.302* 

0.509 

PopDensity 1.000 -0.041 ± 0.055 30 -0.740 0.018 

PopDensity & 

PopDensity2 

1.000 -0.123 ± 0.239 & 

0.007 ± 0.020 

29 -0.515 & 

0.354 

0.022 

GestationL 1.000 0.011 ± 0.650 44 0.017 < 0.001 

GestationL & 

GestationL2 

1.000 34.63 ± 17.14 & 

-5.032 ± 2.491 

43 2.020* & 

-2.020* 

0.087 

Longevity† 1.000 0.430 ± 0.390 22 1.103 0.052 

Temperature 1.000 -0.124 ± 0.063 57 -1.959 0.063 

Temperature & 

Temperature2 

1.000 0.001 ± 0.454 & 

-0.015 ± 0.055 

56 0.003 & 

-0.280 

0.064 

Competition 0.999 -0.048 ± 0.035 67 -1.365 0.027 

Competition & 

Competition2 

1.000 0.007 ± 0.113 & 

-0.008 ± 0.026 

66 0.061 & 

-0.309 

0.009 

GR 1.000 0.015 ± 0.010 68 1.447 0.030 

GR & 

GR2 

1.000 -0.086 ± 0.115 & 

0.004 ± 0.005 

65 -0.749 & 

0.836 

0.023 

Generalisation 1.000 0.016 ± 0.037 68 0.419 0.003 

Generalisation & 

Generalisation2 

1.000 -0.287 ± 0.335 & 

0.061 ± 0.067 

69 -0.858 & 

0.915 

0.015 
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Table 5.6: Results from PGLM regressions of various predictors on the rate of morphological 

evolution in squirrels (Marmotini) using the Marmota outgroup phylogeny. BMR = mass-specific 

basal metabolic rate; PopDensity = population density; GestationL = gestation length; Competition 

= average number of competitors per grid cell across the specie’s range; GR = geographic range 

size; Generalisation = habitat breadth*diet breadth. *p < 0.05, **p < 0.01, ***p < 0.001. †Longevity 

& Longevity
2
 result is not shown as the solution is computationally singular. 

predictor λ slope ± se d.f t r2 

Body-mass 0.975 0.329 ± 0.077 61 4.256*** 0.229 

Body-mass & 

Body-mass2 

0.989 0.759 ± 0.456 & 

-0.035 ± 0.034 

57 1.663 & 

-1.040 

0.217 

BMR 1.000 -1.119 ± 0.306 21 -3.650** 0.388 

BMR 

BMR2 

1.000 -0.023 ± 0.569 & 

0.911 ± 0.411 

20 -0.040 & 

2.214* 

0.509 

PopDensity 1.000 -0.039 ± 0.058 30 -0.679 0.015 

PopDensity & 

PopDensity2 

1.000 -0.113 ± 0.243 & 

0.006 ± 0.020 

29 -0.466 & 

0.315 

0.018 

GestationL 1.000 0.023 ± 0.658 44 0.035 < 0.001 

GestationL & 

GestationL2 

1.000 33.71 ± 17.62 & 

-4.894 ± 2.558 

43 1.913 &  

-1.913 

0.078 

Longevity† 1.000 0.408 ± 0.415 22 0.982 0.042 

Temperature 1.000 -0.154 ± 0.060 58 -2.547* 0.101 

Temperature & 

Temperature2 

1.000 0.216 ± 0.382 & 

-0.044 ± 0.045 

57 0.564 & 

-0.979 

0.116 

Competition 0.993 -0.033 ± 0.038 68 -0.863 0.011 

Competition & 

Competition2 

0.989 -0.048 ± 0.131 & 

0.002 ± 0.029 

63 -0.364 & 

0.067 

0.014 

GR 0.999 0.021 ± 0.010 67 2.027 0.058 

GR & 

GR2 

0.999 -0.100 ± 0.122 & 

0.005 ± 0.006 

66 -0.820 & 

0.988 

0.066 

Generalisation 1.000 0.048 ± 0.032 71 1.484 0.030 

Generalisation & 

Generalisation2 

1.000 -0.275 ± 0.324 & 

0.064 ± 0.064 

70 -0.849 & 

1.003 

0.044 
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Table 5.7: Results from PGLM regressions of various predictors on the rate of morphological 

evolution in squirrels (Marmotini) using the Spermophilus outgroup phylogeny. BMR = mass-

specific basal metabolic rate; PopDensity = population density; GestationL = gestation length; 

Competition = average number of competitors per grid cell across the specie’s range; GR = 

geographic range size; Generalisation = habitat breadth*diet breadth. *p < 0.05, **p < 0.01, ***p < 

0.001. †Longevity & Longevity
2
 result is not shown as the solution is computationally singular. 

predictor λ slope ± se d.f t r2 

Body-mass 0.981 0.293 ± 0.075 61 3.901*** 0.200 

Body-mass & 

Body-mass2 

0.996 0.714 ± 0.395 & 

-0.035 ± 0.029 

59 1.810 & 

-1.233 

0.181 

BMR 1.000 -1.088 ± 0.306 21 -3.549** 0.375 

BMR 

BMR2 

1.000 0.015 ± 0.563 & 

0.919 ± 0.029 

20 0.027 & 

2.257* 

0.502 

PopDensity 1.000 -0.041 ± 0.055 30 -0.752 0.019 

PopDensity & 

PopDensity2 

1.000 -0.125 ± 0.234 

0.007 ± 0.019 

29 -0.537 & 

0.371 

0.023 

GestationL 1.000 -0.033 ± 0.642 44 -0.052 < 0.001 

GestationL & 

GestationL2 

1.000 34.27 ± 17.32 & 

-4.982 ± 2.513 

43 1.979 & 

-1.982 

0.084 

Longevity† 1.000 0.446 ± 0.387 22 1.154 0.057 

Temperature 1.000 -0.122 ± 0.058 62 -2.105* 0.067 

Temperature & 

Temperature2 

1.000 0.119 ± 0.372 & 

-0.030 ± 0.046 

61 0.319 & 

-0.654 

0.073 

Competition 0.998 -0.029 ± 0.035 71 -0.843 0.010 

Competition & 

Competition2 

1.000 0.020 ± 0.108 & 

-0.011 ± 0.024 

69 0.186 & 

-0.455 

0.011 

GR 1.000 0.020 ± 0.012 68 1.761 0.044 

GR & 

GR2 

1.000 -0.090 ± 0.110 & 

 0.005 ± 0.005 

70 -0.815 & 

0.960 

0.048 

Generalisation 1.000 0.025 ± 0.043 68 0.575 0.005 

Generalisation & 

Generalisation2 

1.000 -0.200 ± 0.326 & 

0.045 ± 0.065 

67 -0.613 & 

0.695 

0.012 
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Table 5.8: Best models from a set of all possible models (see text) predicting the relative rate of morphological evolution in four clades. bats = 

Phyllostomidae; monkeys = Platyrrhini; possums = Phalangeriformes; BM = body-mass; Temp = temperature. *p < 0.05, **p < 0.01, ***p < 0.001. 

 bats monkeys possums 

 d.f. 80 d.f. 69 d.f. 25 

 λ 0.495 λ 0.968 λ 0.768 

 adjusted r2 0.341 adjusted r2 0.440 adjusted r2 0.451 

 log likelihood 7.736 log likelihood 27.00 log likelihood -3.157 

predictor slope ± se t slope ± se t slope ± se t 

BM 7.367 ± 3.173 2.322* -2.546 ± 0.359 -7.097*** -1.118 ± 0.267 -4.182*** 

BM2 0.192 ± 0.039 4.964*** 0.182 ± 0.025 7.264*** 0.084 ± 0.022 3.858*** 

Temp 4.239 ± 1.749 2.423* - - - - 

BM:Temp -1.552 ± 0.582  -2.668** - - - - 
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Table 5.9: Best models from a set of all possible models (see text) predicting the relative rate of morphological evolution in squirrels (Marmotini) using three 

different phylogenetic topologies. BM = body-mass; BMR = mass-specific basal metabolic rate. *p < 0.05. 

 

 Cynomys outgroup Marmota outgroup Spermophilus outgroup 

 d.f. 20 d.f. 20 d.f. 20 

 λ 1.000 λ 1.000 λ 1.000 

 r2 0.467 r2 0.472 r2 0.455 

 log likelihood -16.29 log likelihood -16.64 log likelihood -16.47 

predictor slope ± se t slope ± se t slope ± se t 

BM 0.265 ± 0.112 2.369* 0.275 ± 0.117 2.345* 0.262 ± 0.115 2.284* 

BMR -0.817 ± 0.300 -2.723* -0.829 ± 0.304 -2.722* -0.825 ± 0.302 -2.727* 

 

 

Node density effect 

There was no evidence of the node density effect (NDE) in any of the four study clades (all clades: β significantly < 0; all clades: δ significantly 

< 1.000)  
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5.5 Discussion 

Rates of morphological evolution vary both within and among the four study clades, 

even within the more taxonomically-restricted squirrels. For each clade, 34-47% of the 

variation in rate can be explained by just a few predictors, one of which is always body 

size. High environmental temperatures in bats, and low mass-specific basal metabolic 

rates (BMR) in squirrels, are also associated with high rates of morphological evolution 

in the best models. 

 

Body size is the most commonly-hypothesised correlate of rate variation in the 

literature, but the proposed direction of this relationship differs between morphological 

(positive) and molecular (negative) studies, e.g. Simpson (1953) versus Bromham et al. 

(1996). My results suggest that both may be correct: in the best models, two of the 

clades (monkeys and possums) show a strong non-linear relationship between the rate of 

morphological evolution and body size, with the highest rates in large and small species. 

The other two clades show faster evolution in larger species (bats and squirrels). The 

different patterns in the four clades are not due to differences in the body-mass range of 

each clade since, although the bats are smaller than the other three clades, the squirrels 

have a similar body-mass range to that of the monkeys and possums which show a non-

linear relationship between body-mass and rate. This indicates that body size, or one of 

its correlates, is very important in determining rates of morphological evolution, but that 

the mechanism behind the relationship between body-mass and the rate of 

morphological evolution is probably different for the different clades. 
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Large body size is predicted to increase rates of morphological evolution because large 

species should have low population densities and hence reduced gene flow compared to 

smaller species (Stanley 1979). In squirrels, the large species also live in burrows and 

are highly philopatric (Solomon 2003) which may further reduce gene flow (see below). 

However, population density was not a significant correlate of rate in any clade, though 

present-day abundance may be a very poor reflection of abundance through 

evolutionary history. In addition, although larger species have lower population sizes, 

they are also better dispersers (Van Vuren 1998) which could ameliorate any reduction 

in gene flow caused by low abundance. Furthermore, although smaller populations are 

traditionally thought to evolve more quickly due to enhanced rates of fixation, in reality 

these rates are not much higher than those of large populations and, since large 

populations will have more mutations, morphological evolution should actually be 

faster in large, not small, populations (Price et al. 2009). If I do not accept the 

explanation of restricted gene flow (except perhaps in Marmotini; see below), why do 

large species evolve faster in the clades I studied? Since body size correlates with most 

species’ traits (Calder 1984), its significance in the models may represent some other 

variable, either an ecological trait for which I had too little data, or variables I did not 

include. One possibility is that large species have larger home ranges than smaller 

species (Eisenberg 1981) which could result in individuals of larger species 

encountering more varied selection pressures (in terms of the environment, predators, 

competitors etc.) than those of smaller species. Such individual-based variation in 

selection pressures would not necessarily be picked up by the geographic range 

variable. Alternatively, this result may be related to speciation rates (if most evolution 

occurs at speciation events, i.e. is punctuated rather than gradual), since large mammals 
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may have slightly higher origination rates than small mammals (Liow et al. 2008), 

though this effect would be weak. 

 

Understanding the mechanisms behind the correlation between rate and small body size 

is equally complex. Small species are predicted to evolve faster than large species 

because they have a faster speed of life-history, which increases the number of 

opportunities for mutation and selection (Bromham et al. 1996). However, apart from in 

the squirrels, none of the life-history speed variables (BMR, longevity, and gestation 

length) appeared in the best models. This could be because the small number of species 

in some models reduced the power of the analyses, or perhaps reflects a missing 

variable, for example, small species are worse dispersers than large species (Van Vuren 

1998), and have smaller home ranges (Eisenberg 1981), which may restrict their gene 

flow enough to increase rates of morphological evolution. 

 

Interestingly, the lowest rates of morphological evolution in each clade occur round the 

median body-mass for that clade. This suggests that there may be some kind of 

buffering effect of species diversity in all four clades (de Mazancourt et al. 2008). If one 

assumes that the body-mass of a species is a good indicator of its niche, this would 

mean that species close to the modal body-mass are unable to evolve a very different 

body-mass/niche because their niche space is restricted by competition with the many 

other species with similar body-masses/niches. Larger species (and also smaller species 

in monkeys and possums) may be less restricted as there are fewer species with the 

same body size to restrict their diversification, which would explain their higher rates of 

morphological evolution. 
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The bat model supports another prediction of the molecular literature: high rates of 

morphological evolution in bats are correlated with high environmental temperatures. 

There was also a negative interaction between environmental temperature and body size 

in the best bat model, such that, for a given environmental temperature, smaller bats 

evolve faster than larger ones. External temperatures are probably particularly important 

to bats, as the high metabolic costs of flight mean that thermoregulation is difficult. This 

result may also reflect the fact that at high latitudes bats tend to hibernate which slows 

their already slow life-history, and slow life-history characteristics are predicted to 

reduce rates of molecular evolution (Welch et al. 2008). In addition, environmental 

temperature is predicted to increase rates of molecular evolution by shortening 

generation-times and increasing BMR, even in endotherms (Gillooly et al. 2001), and 

since high BMR was quite strongly associated with high rates of morphological 

evolution (r2 = 0.248) in the bat PGLM (though not in the best model for bats), this is a 

possible mechanism. However, this relationship was non-linear; low BMR was also 

correlated with high rates, perhaps because large species have low BMR. 

 

In squirrels, the best model for predicting the rate of morphological evolution indicated 

that large species with low mass-specific BMR have the highest rates of evolution. Most 

previous studies have found a positive correlation between BMR and rate (e.g. Martin & 

Palumbi 1993), so this negative correlation in squirrels is interesting. It seems likely that 

some feature of the ecology of large, low BMR squirrels, i.e. marmots and prairie dogs, 

results in faster rates of morphological evolution. One candidate feature is that all of 

these species live in burrow systems. The transition to a burrowing lifestyle is thought 

to have resulted in adaptive radiations of several clades (Nevo 1979), and these 

burrowing squirrels tend to be highly philopatric (Solomon 2003) which will reduce 
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dispersal and hence gene flow, perhaps enough to increase the rate of morphological 

evolution.  

 

Even in the “best” models, over 50% of the variation in rates of morphological 

evolution in all clades remained unexplained. This may have been due to missing 

variables. The variation in λ for the best models provides some suggestions as to the 

kind of variables I may have missed: in monkeys and squirrels, λ was close to unity, 

indicating that much of the lack-of-fit had a phylogenetic basis. This could be a missing 

life-history variable, or some aspect of the species’ biogeography. The bat and possum 

models, on the other hand, had lower λ values suggesting that there may be missing 

ecological variables. Additionally, the power to detect relationships may have been low 

due the small number of species in some models, or perhaps correlates of morphological 

rates are highly idiosyncratic. This is likely since, in theory, all of the major correlates 

can both negatively and positively affect rates of morphological evolution. If these 

variations operate at the species-level then it is not surprising that I do not find many 

group-wide correlations. Another problem is the measure of rate, which reduces 

morphological differences in size and shape to one number. If size and shape have 

different evolutionary drivers I would find it hard to detect correlates with this method. 

Additionally, in studies of molecular rates, the significant correlates often depend on the 

gene used (Bromham et al. 1996); likewise in morphological studies the correlates may 

depend on the traits used. Mammalian cranial characters are generally thought to be 

under stabilising selection (Lynch 1990) and conserved phylogenetically, due to their 

functional complexity (Caumul & Polly 2005), which could account for the low number 

of correlations between the predictors and rate. However, factors such as dietary 

adaptations are known to influence skull shape and size in squirrels and monkeys 
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(Caumul & Polly 2005; Marroig & Cheverud 2001), suggesting that there is meaningful 

rate variation and it may be predictable, but I would need more predictors and/or data to 

understand it. More careful identification of the factors which shape morphological 

evolution in each group may provide a clearer understanding of why these rates vary. 

Finally, as in nearly all comparative analyses, I have used species’ mean values for all 

the traits and thus ignored intraspecific variation. This was unavoidable due to data 

limitations and because it is difficult to handle such variation within the same 

framework (but see Felsenstein 2008, for recent developments). It is likely that 

neglecting this variation reduces the chance of detecting significant effects, especially of 

variables with high intraspecific variance such as population density. However, this 

only makes the method more conservative, so does not reduce my confidence in the 

significant correlations I discovered. 

 

Body size appears to be the most important correlate of morphological evolution in the 

four mammalian study clades. This supports both classical and more recent predictions 

since the relationship is non-linear in both monkeys and possums, with highest rates in 

both small and large species. However, understanding the underlying mechanisms for 

these correlations is difficult, because variables predicted to underpin these body size 

correlations (e.g. low population density, fast speed of life-history) were not directly 

correlated with the rate of morphological evolution. In addition, it seems likely that the 

mechanisms behind rate variation may depend on the size of the species involved. I 

conclude therefore, that whilst there is significant variation in rates of morphological 

evolution, I do not yet know what it means. More study, and data, are needed to 

untangle the complex interactions among rates of morphological evolution, species’ 

traits, ecology, interspecific interactions and the environment. 
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Chapter 6: Body size evolution in mammals
5
 

6.1 Abstract 

 
Since body size correlates with virtually every aspect of species’ biology, investigation 

into the tempo and mode of body size evolution may provide many evolutionary 

insights. Here I use body-mass data from 3473 of 4510 extant mammalian species and 

an almost complete species-level phylogeny to determine the best model of body-mass 

evolution across all mammals, split taxonomically and spatially. I find that, of the three 

evolutionary models tested (the Brownian motion (BR) model, the Ornstein-Uhlenbeck 

(OU) model, and the early burst (EB) model), EB fits best across all mammals. 

However, within orders and ecoregions, it is generally not possible to differentiate 

among the three models (except for: Carnivora, Insectivora, Lagomorpha and 34 

ecoregions = BR; Chiroptera and Peramelemorphia = OU; Primates and 96 ecoregions = 

EB). I conclude that mammals experienced a burst of morphological evolution relatively 

early in their history followed by a slowdown in rate, perhaps caused by adaptive 

radiation followed by the decreased availability of empty niches. The rate of body-mass 

evolution also varies spatially: spatial simultaneous autoregressive (SAR) models show 

that over 60% of the variation in rate can be explained by just a few predictors. High 

rates of body-mass evolution are associated with low environmental temperatures, low 

elevations, low species richness, high ordinal richness (i.e. body plan disparity), 

mainlands and ecoregions which did not suffer extensive megafaunal extinctions in the 

Quaternary. I conclude that mammalian body size is the result of complex interplay 

among geography, the species composition of the area and past anthropogenic impacts. 

                                                
5 Many of the analyses in this chapter will soon be submitted to American Naturalist. N.C. performed all 

the analyses and wrote the manuscript. A.P. supervised. 
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6.2 Introduction 

Body size is possibly the most informative single trait of an organism, since it 

influences practically every aspect of a species’ biology (Calder 1984). Consequently, 

body size can be a good predictor of a large number of ecological and physiological 

traits. In mammals, for example, large species have a slower speed of life-history 

(Charnov 1993; Kozlowski & Weiner 1997), lower mass-specific metabolic rates 

(Kleiber 1932), smaller population sizes, lower abundance (Damuth 1993), slower rates 

of molecular evolution (Welch et al. 2008), shorter durations in the fossil record (Liow 

et al. 2008), wider geographic ranges (Gaston & Blackburn 2000), larger home ranges 

(Eisenberg 1981), and higher prevalence of extinction risk (Cardillo et al. 2005) than 

small species. Each of these traits may affect the tempo and mode of evolution, thus 

greater understanding of body size evolution may provide a greater understanding of 

evolution in general. 

 

Mammals are a good clade on which to investigate body size evolution in more detail. 

They differ greatly in their body sizes (ranging from < 2 grams to 105 kilograms; Jones 

et al. in press), I have body-mass data on most extant species (3473 of 4510) and an 

almost complete species-level phylogeny (Bininda-Emonds et al. 2007; 2008). In 

addition, variation has been reported in the rate of body-mass evolution among both 

clades (e.g. carnivores versus primates; Mattila & Bokma 2008; Webster & Purvis 

2002) and regions (Rodríguez et al. 2008). Using this data I can ask a range of questions 

about the evolution of body-mass in mammals: for example, how has body-mass 

evolved in mammals? How and why do the tempo and mode of body-mass evolution 

vary, both taxonomically and spatially?  
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The three models of body-mass evolution I investigate here are as follows: (1) the 

Brownian motion (BR) model, also known as the log-Brownian model when fitted to 

logarithmically transformed data. This assumes gradual evolution of body-mass through 

the phylogeny, with body-mass variance slowly increasing with time (Felsenstein 1973). 

I included the BR model as it is assumed to be the underlying mode of evolution in 

many comparative studies (although this assumption is rarely tested; Freckleton & 

Harvey 2006) and hence acts as a null model of trait evolution. (2) The Ornstein-

Uhlenbeck or “rubber-band” (OU) model. This is a modified BR model where body-

mass values are constantly pulled back towards an optimum by some kind of 

ecophysiological constraint (Hansen 1997). I chose to test the OU model as Clauset and 

Erwin (2008) recently showed apparent taxon-specific lower limits of mammalian body 

size, indicating that OU may be an appropriate model for this clade. Also the idea that 

evolutionary trends are the result of diffuse evolution within certain physiological 

bounds is pervasive in the palaeontological literature (Jablonski 1997; McShea 1994; 

Stanley 1973b). (3) The early burst (EB) model (also known as the ACDC model; 

Blomberg et al. 2003). This predicts that most diversification in body-mass occurs early 

in a lineage, with rates of body-mass evolution decreasing towards the present, so that 

subclades tend to retain their differences through time (Blomberg et al. 2003; Harmon et 

al. in review). This model is consistent with adaptive radiations early in the history of a 

clade followed by a slowdown in diversification rate due to, for instance, niche-filling. 

Such a pattern is often seen in the fossil record (e.g. declines in origination rates for 

higher taxa in fossil groups; Sepkoski 1998) and has been reported in mammals (Foote 

1997); thus I also chose to investigate this model.
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           a)     b)       c) 

   

 
Figure 6.1: Graphical representation of the three models of body-mass evolution a) Brownian motion (BR); b) Ornstein-Uhlenbeck (OU); c) early burst (EB). The 

histograms show the kinds of body-mass distributions expected from each model, i.e. a) normal distribution of body-mass values; b) normal distribution of body-

mass values but within set upper and lower bounds; c) similar body-masses within lineages. 

 

Here I first aim to determine which of the three models best explains body-mass evolution within mammals overall. However, mammals are a 

diverse group, thus it seems unlikely that all mammalian clades will have the same model of body-mass evolution. Certainly there is no 

consensus in the literature on an evolutionary model for all mammals. For example, Cenozoic ungulates show an early burst of morphological 

evolution followed by slowdown (Foote 1997), whereas Primates fit a Brownian model (Gillman 2007). In addition, there may be spatial 

variation in the mode of evolution. For example, tropical species are predicted to evolve more quickly than temperate species (Wright et al. 

2006), so may be more likely to show rapid bursts of evolution. Temperate species, on the other hand, are more constrained by the demands of  
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their environments than tropical species, so may be more likely to show OU-like 

patterns of body-mass evolution. To investigate this variation further, I therefore split 

mammals by Order (Wilson & Reeder 1993) and WWF ecoregion (Olson et al. 2001, 

see methods), to determine whether the models varied taxonomically and/or spatially. 

Rates of evolution are also predicted to vary spatially (e.g. fast rates in the tropics: 

Wright et al. 2006), so I also examined the spatial pattern of rate variation using within 

ecoregion rates of body-mass evolution.  

 

Finally, I looked for correlates of the rate of body-mass evolution. I first looked at rates 

within orders to determine whether there was a relationship between the rate of 

evolution and clade age, species richness, median body-mass or median geographic 

range size of the species within each order. However, few orders contain enough species 

to test in this way, so degrees of freedom were low. Therefore, I instead focussed on 

predicting spatial variations in rate of body-mass evolution, again using ecoregions as 

the spatial unit of my study. I predict that many factors may influence rates of body-

mass evolution within an ecoregion, including the ecoregion’s location, species 

composition and extinction filters. The location of an ecoregion may influence rates of 

body-mass evolution in several ways. Firstly, difficulties in colonising, or surviving on, 

islands mean that island faunas contain few large species (Lomolino 2005), which may 

reduce apparent rates of evolution in island ecoregions. Additionally, the island rule 

predicts that body size evolution will be faster on mainlands than on islands, since 

island species are apparently evolving towards a body-mass optimum (Lomolino 2005; 

but see Meiri et al. 2005). Secondly, the location of an ecoregion often defines its 

climate and I predict that rates will be positively correlated with AET and 

environmental temperature, since high-energy environments such as the tropics are 
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often thought to have high rates of evolution (Rohde 1978; but see Pawar 2005). 

Tropical ecoregions should therefore, also have higher rates of evolution than non-

tropical ecoregions. In addition, environmental variables may interact with elevation 

(which may also influence evolutionary rates; Bleiweiss 1998).  

 

The species composition of an ecoregion is also likely to influence rates. For example, 

the average body size of the species within an ecoregion, as well as the average 

geographic range size of the species, is predicted to influence rates of evolution, 

although the direction of the correlation is disputed (see Chapter 5). Including these 

variables also helps control for the different body-mass and geographic range size 

distributions of species in the tropics compared to those at higher latitudes.  

 

Much body-mass evolution probably occurred outside the focal ecoregion with species 

dispersing there later. This can have a big influence on apparent rates of body-mass 

evolution within an ecoregion, with high apparent rates where many different kinds of 

taxa dispersed into the area. To attempt to control for this, I include the degree of 

disparity in body plans (here indicated by the ordinal richness of an area; Foote 1997) as 

a predictor. I expect a positive correlation between the degree of disparity in body plans 

and the rate of body-mass evolution. This effect will be diluted as species richness 

increases. 

 

Finally, extinction filters may shape rates of body-mass evolution, since areas which 

have been exploited by humans for a long time (e.g. South America and Western 

Europe) are likely to have lost their megafauna and hence should have lower apparent 

rates of body-mass evolution than areas which suffered less human impact (e.g. Africa). 
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One of the major historical human impacts on mammals was the late Quaternary 

megafaunal extinction, when most large (≥ 44 kg) mammals became extinct everywhere 

except in Sub-Saharan Africa (Koch & Barnosky 2006). I therefore use whether an 

ecoregion is within Sub-Saharan Africa or not as a proxy for the effect of extinction 

filters. It was not possible to find a more accurate proxy at a fine enough spatial scale to 

be useful. 

 

I investigated both univariate and multivariate relationships between the rate of body-

mass evolution and the AET, environmental temperature, elevation, area, species 

richness and ordinal richness of each ecoregion, as well as the median body-mass and 

geographic range size of the species within the ecoregion. I also investigated whether 

the within ecoregion rate of body-mass evolution was higher in non-tropical or tropical 

biomes, on islands, archipelagos or mainlands, and within or outside Sub-Saharan 

Africa. 

6.3 Materials and methods 

DATA 

Body-mass and correlates data 

Median body-mass (g) for 3473 species was taken from PanTHERIA (Jones et al. in 

press). For analyses investigating spatial variation in models and rates of body-mass 

evolution (see below), I chose to use WWF ecoregions (Olson et al. 2001), rather than 

grid cells, as spatial units for three reasons. Firstly, ecoregions are at a relatively small 

scale compared to the whole globe, but have sufficiently large sample sizes for 

modelling. Secondly, ecoregions represent more natural units than grid cells since they 

delimit biogeographical areas with distinctive flora and fauna (Olson et al. 2001). 
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Finally, the coarser scale of ecoregions may avoid some of the errors arising from 

converting imprecise species’ geographic ranges to grid cell occurrence (Jetz et al. 

2008). In addition, grid cells are often smaller than species geographic ranges so this 

would increase small-scale spatial autocorrelation which would then immediately be 

removed in the spatial models (see below). To determine which species occurred within 

each ecoregion, I overlaid ecoregion shapefiles (Olson et al. 2001) with the 

PanTHERIA mammal geographic ranges (Jones et al. in press) in ArcMap version 9.2. 

This information was used to extract median body-mass (g) and median geographic 

range size (km2) within each WWF ecoregion. Ecoregion mean actual 

evapotranspiration (AET, mm; UNEP 1994), mean annual temperature (ºC; Hijmans et 

al. 2005), mean elevation (m; USGS EROS 1996), area (km2), whether the ecoregion 

was an island, archipelago or mainland, and WWF biogeographic realm and biome, 

were extracted from GIS layers by S. Fritz (pers.comm.).  

 

The species and ordinal richness within each ecoregion were calculated using the 

taxonomy of Wilson and Reeder (1993), because the phylogeny used (see below) uses 

this taxonomy. Ecoregions were defined as tropical if they were within the six entirely 

tropical/subtropical WWF biomes (tropical and subtropical coniferous forests; tropical 

and subtropical moist broadleaf forests; tropical and subtropical dry broadleaf forests; 

tropical and subtropical grasslands; savannas and shrublands; mangrove; and deserts 

and xeric shrublands) and non-tropical if they were within the remaining eight WWF 

biomes (tundra; boreal forests/taiga; temperate coniferous forests; temperate broadleaf 

and mixed forests; temperate grasslands; savannas and shrublands; Mediterranean 

forests; woodlands and shrub; montane grasslands and shrublands; flooded grasslands 

and savannas). As a proxy for the effect of extinction filters, ecoregions were classed as 
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being within Sub-Saharan Africa or not, since only Sub-Saharan Africa retained a large 

proportion of its megafauna after the Late Quaternary extinction (Koch & Barnosky 

2006). 

 

I used natural-log transformations of all continuous variables prior to analysis to 

normalise their distributions, except for environmental temperature and elevation 

variables which are sometimes negative. When I repeated the analyses using elevation 

deciles instead of raw values there was no qualitative change in the results (data not 

shown). Collinearity amongst predictor variables can lead to unreliability in model 

parameter estimates. Since I expect correlations among the variables, I checked the 

predictors for collinearity prior to model building (following the method of Belsey et al. 

1980). For all predictors, variance inflation factors are lower than three and condition 

indices are lower than nine, which indicates that no undesirable levels of collinearity are 

present (Belsey et al. 1980). 

 

Phylogeny 

Initially I used the mammal supertree of Bininda-Emonds et al (2007; 2008). However, 

this supertree has many polytomies which can affect estimates of evolutionary rates and 

parameters (Webster & Purvis 2002). Therefore I removed polytomies, based on the 

reliability of the body-mass data for the species involved. Since it is more likely that the 

species’ body-mass median will be unrepresentative of the species as a whole where it is 

based on only a few records, I defined the “data quality” of each species as the number 

of records (though note this is equivalent to the number of sources, not necessarily the 

number of specimens), used to produce its median body-mass. I then removed 

polytomies as follows: for polytomies at the tips, I kept the two species with the best 
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quality body-mass data, as defined above. Where there was a tie, two species were 

chosen at random from the set of species with the best quality data. For internal 

polytomies, I kept the two nodes which contained the greatest number of species. Where 

there was a tie, I kept the nodes which contained the set of species with the highest 

mean body-mass data quality. If there was still a tie, two nodes were chosen at random 

from the set of nodes with the highest species richness and mean body-mass data 

quality. Because selections were occasionally random, I repeated this process 100 times 

to get 100 fully-bifurcating trees. Each contained 1477 species in total and varied by 34-

37 species. I repeated the analyses testing the evolutionary models for each order (see 

below) using all 100 trees, to account for differences that may arise due to the different 

species left in the analyses. The results were quantitatively similar, and the phylogeny 

used did not alter which model of evolution was selected (data not shown but will be 

available as an online appendix to the paper). In all other analyses I use just one of the 

resolved trees chosen at random (models of evolution for all species and orders use tree 

10; models and correlates of rates of evolution within ecoregions use tree 48), since the 

analyses were too computationally intensive to repeat for all 100 trees. 

 

ANALYSES 

Models of body-mass evolution 

The three models of body-mass evolution described in the introduction have the 

following parameters: (1) the Brownian motion (BR) model has two parameters, the 

most important of which for my purposes is σ2, the Brownian rate parameter 

(Felsenstein 1973). This parameter is present in the other two models and I also used it 

as a measure of the relative rate of evolution (see below); (2) The Ornstein-Uhlenbeck 
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(OU) model is a modified BR model with an additional parameter, α, which describes 

the strength of the constraint force (Hansen 1997). Note that when α = 0, OU is 

equivalent to BR. (3) The early burst (EB) model also has three parameters. The r 

parameter describes how rates of evolution change over time: where r is negative, rates 

decrease through time, but when r = 0, EB is equivalent to BR (Blomberg et al. 2003; 

Harmon et al. in review).  

 

I fitted BR, OU and EB models to all species combined, each order separately (where 

number of species in the order > 9: resolved phylogeny = 15 orders; unresolved tree = 

16 orders), and each ecoregion (where number of species in the ecoregion > 9: 

unresolved tree = 722 ecoregions; unresolved tree = 734 ecoregions) using the R 

package GEIGER (Harmon et al. 2008). I then used the Bayesian information criterion 

(BIC) to determine the best model of body-mass evolution in each case. Note that I 

required the BIC of the best model to be at least 4 units smaller than that of the other 

two models in order to consider it a significantly better fit (Burnham & Anderson 2002). 

I used BIC rather than the Akaike information criterion (AIC), because AIC is often 

overly generous to models with more parameters (Burnham & Anderson 2002), which 

could lead to it favouring the three-parameter OU and EB models over the two-

parameter BR model. AIC and AIC weights are also presented in tables to allow 

comparisons with other papers. In order to determine the effects of phylogeny 

resolution, I fitted each of these models using both a resolved tree (tree 10) and the 

unresolved tree. 

Correlates of rates of body-mass evolution 

I defined the relative rate of body-mass evolution for an order, or ecoregion, as the 

Brownian rate parameter, σ2, obtained by fitting BR models of evolution for the species 
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within the order or ecoregion (using either the unresolved tree or, orders: resolved tree 

10, ecoregions: resolved tree 48). I used σ2 from the BR model, rather than the OU or 

EB models, as most of the orders and ecoregions did not strongly favour any of the three 

models (see Results) and BR is generally used as the null model of trait evolution. 

 

I first calculated σ2 for each of the orders with more than nine species (15 orders using 

resolved tree 10; 16 orders using the unresolved tree). I investigated the relationships 

between the rate of body-mass evolution within each order and the species richness, 

age, median body-mass and median geographic range size of the species within the 

order. I performed all of the regressions using independent contrasts (Felsenstein 1985), 

generated using the R package CAIC (available at https://r-forge.r-

project.org/projects/caic), to account for the non-independence introduced because close 

relatives tend to be similar due to shared common ancestry (Harvey & Pagel 1991). 

 

Next, I calculated σ2 for each of the ecoregions with complete records for all the 

variables and greater than nine species within the ecoregion (711 ecoregions using 

resolved tree 48; 716 ecoregions using the unresolved tree). I aimed to investigate both 

univariate and multivariate relationships between σ2 and the AET, environmental 

temperature, elevation, area, species richness and ordinal richness of each ecoregion, as 

well as the median body-mass and geographic range size of the species within each 

ecoregion. I also aimed to determine whether σ2 was higher in non-tropical or tropical 

biomes, on islands, archipelagos or mainlands, and within or outside Sub-Saharan 

Africa. I repeated the island analyses omitting archipelagos, but this did not 

qualitatively affect the results (data not shown) so I left archipelagos in to increase 

degrees of freedom.  
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Spatial autocorrelation (SA) is likely to occur in these analyses since the values of a 

given variable will be more similar in nearby ecoregions than would be expected by 

chance (Legendre & Legendre 1998). Many methods for dealing with spatial 

autocorrelation exist. Here I use simultaneous autoregressive (SAR) models (Kissling & 

Carl 2008). These are linear regression models with an extra (autoregressive) term that 

describes the spatial autocorrelation structure of the dataset. This autoregressive term is 

a “spatial weights matrix” which identifies the neighbourhood of each ecoregion (i.e. 

which ecoregions are neighbours, defined by the great-circle distance between them) 

and the weight of each neighbour (so that, for example, closer neighbours have higher 

weighting than more distant ones). Neighbourhood definitions can be varied by 

changing the distance between ecoregions classed as neighbours and the weighting can 

be changed by altering the coding style for the spatial weights matrix. 

 

The performance of SAR models is dependent on three factors: (1) the specified model 

type (SARerror, SARlag or SARmixed models); (2) the coding style for the spatial weights 

matrix (either ‘B’ = binary, ‘W’ = row-standardised, or ‘S’ = variance-stabilising); and 

(3) the neighbourhood distance (i.e. how far apart two points can be and still be classed 

as neighbours). Kissling and Carl (2008) provide detailed descriptions of all the options. 

Here I use SARerror models with row-standardised (type ‘W’) coding (see Kissling & 

Carl 2008 for details), as these performed best across their simulations. Neighbourhood 

distance is harder to define because the degree of SA varies among datasets, and thus 

the neighbourhood distance required cannot be determined a priori. For example, a 

variable that gradually increases from north to south will have higher SA than a variable 

which changes rapidly. In this instance, two points 1 km apart would have values of the 
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gradually changing variable that were more similar than those of the rapidly changing 

variable, thus the neighbourhood distance would need to be larger for the former than 

the latter. To solve this problem, Lichstein et al (2002) suggest using the maximum 

distance at which residuals from an ordinary least squares (OLS) model are spatially 

autocorrelated as the neighbourhood distance, since past this distance there is no SA. 

This maximum distance is where a Moran’s I plot of the OLS model residuals first 

crosses the x-axis. Kissling and Carl (2008), however, recommend trying multiple 

distances and then using model selection criteria, e.g. AIC, to find the best 

neighbourhood distance. Here I develop this suggestion further: for each model I find 

the optimal neighbourhood distance (i.e. the one which gives the lowest AIC value in 

the SARerror model) between 500 km and the maximum distance at which residuals from 

an OLS model are autocorrelated. The maximum distances were obtained by 

investigation of Moran’s I plots of the OLS model residuals (Figure 6.2), and thus are 

different for each model. 

 
I used the R package spdep (Bivand 2008) to fit spatial SARerror models for each 

predictor against σ2 (see details above). After fitting each model I examined Moran’s I 

plots of the model residuals to ensure SA had been removed (Figure 6.2). I then 

calculated r2 values for the models using the following formula: 

    r2 = 1 – exp(-2/n(loglikfull – logliknull)   (5) 

where n = sample size, loglikfull = log likelihood of the fitted model, logliknull = 

likelihood of the null model (Nagelkerke 1991). The null model is a model containing 

the intercept and no autoregressive term (note: this can lead to very high r2 values as 

they describe not only how fitting a slope improves the model fit, but also how 

accounting for SA improves the model fit).  
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Next, I fitted spatial SARerror models, containing all variables and three interaction terms 

(median body-mass:median geographic range size; area:median geographic range size; 

environmental temperature:elevation), for predicting σ2 across ecoregions. I report only 

the results of the full models because, with so many parameters, the huge number of 

models would have made an information-theoretic approach unfeasible. I did not use 

stepwise regression to obtain minimum adequate models (MAM) because these methods 

have a greatly inflated Type I error rate (around 40% for models with ten parameters; 

Mundry & Nunn 2009), although the results are qualititatively similar when I did use 

MAMs (data not shown). I assessed the contribution of each variable in the full models 

to the model fit with likelihood ratio tests following the method of Lichstein et al. 

(2002). I also carried out non-spatial models so I could compare the results to those of 

non-spatial studies. 

 

Finally, I used ArcMap version 9.2 to create maps showing variations in the relative rate 

of body-mass evolution (σ2) across ecoregions. I also presented this information per 1º 

grid cell to allow comparisons with any future studies that may use grid cells as their 

spatial units. I also mapped the squared-residuals and fitted values obtained from the 

full models in order to determine which parts of the world fit the models well and which 

fit the models poorly. 

 

Except where otherwise stated, I used R version 2.6.2 in all analyses (R Development 

Core Team 2008). 
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6.4 Results 

Models of body-mass evolution 

Across all mammals, the best model of body-mass evolution was the early burst (EB) 

model (Table 6.1). However, within orders and ecoregions it was often impossible to 

choose among the three models, as their BIC values were not sufficiently different (i.e. 

< 4 units different; Burnham & Anderson 2002). The exceptions to this were as follows. 

In the resolved tree: Carnivora, Insectivora and Lagomorpha = BR; Chiroptera and 

Peramelemorphia = OU; Primates = EB; 34 ecoregions = BR; 96 ecoregions = EB 

(Table 6.2; Figure 6.3); unresolved tree: Chiroptera and Peramelemorphia = OU; 

Primates = EB; one ecoregion = OU; 363 ecoregions = EB (Table 6.3; Figure 6.3). The 

BR ecoregions are found in northern Africa, North America, central South America, 

north India and Papua New Guinea. The EB ecoregions are found in northern South 

America, Central America and east Africa. In the unresolved tree results, EB ecoregions 

are also found across much of central Asia, Eurasia and west North America and there is 

one OU ecoregion on the north-west coast of Australia. 

 

Soft polytomies create terminal branches that are too long, and although removing 

supernumerary terminal branches reduces some of the problems associated with 

polytomies, it still leaves these long branches. The long branches will artificially reduce 

rates towards the present and thus increase relative rates deeper in both the unresolved 

and resolved trees. This therefore predicts EB in areas and clades where the resolution 

of the mammal supertree is low. Within orders, only Primates are defined as EB and the 

resolution of their phylogeny is higher (approximately 86%) than that of the other 

groups (around 82%). However, the polytomy bias may be an issue in the ecoregion 

analyses since ecoregions defined as EB were significantly less-resolved than non-EB 
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ecoregions (t-test with Welch’s approximation for degrees of freedom: resolved tree: t = 

8.384, d.f. = 122.2, p < 0.001; unresolved tree: t = 7.773, d.f. = 646.9, p < 0.001), 

suggesting the EB ecoregions result may be an artefact of the poor resolution of the tree 

in some places. This problem is less apparent in the resolved tree analyses, which only 

have 96 EB ecoregions, as opposed the 363 EB ecoregions in the unresolved tree 

analyses. Another feature to note is that a single unusual datum can drive large clade 

differences: e.g. Dasyuromorphia (marsupial carnivores) have an inferred rate of body-

mass evolution which is ten times that of the other orders due to one very large species 

(Sarcophilus laniarius, Tasmanian devil). 
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Figure 6.2: Moran’s I plots for all continuous variables showing how the SARerror models remove 

spatial autocorrelation (SA) from the OLS models. Left-hand plots used a resolved phylogeny (tree 

48); right-hand plots used the unresolved tree. Red points = OLS model residuals with significant 

SA; green points = SARerror model residuals with significant SA; blue points = SARerror model 

residuals with no significant SA; a = AET; b = environmental temperature; c = elevation; d = 

species richness; e = ordinal richness; f = median body-mass; g = median geographic range size; h = 

tropical or non tropical; i = Sub-Saharan Africa or not Sub-Saharan Africa; k = island or 

mainlands.
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Table 6.1: Results of fitting BR, OU and EB models of body-mass evolution on all species using 

either a fully-resolved phylogeny (tree 10) or the unresolved tree. n = number of species; σ
2
 = 

Brownian rate parameter; α = OU constraint parameter; r = early burst parameter; AICw = AIC 

weight; best model = model with the lowest BIC. 

resolved phylogeny (n = 1477) 

model σ
2
 α r AIC AICw BIC 

BR 0.046 - - 3648 < 0.001 3659 

OU 0.047 <0.001 - 3650 < 0.001 3666 

EB 0.224 - -0.010 3621 1.000 3637 

 best model = EB 

unresolved phylogeny (n = 3473) 

model σ
2 α r AIC AICw BIC 

BR 0.038 - - 7452 < 0.001 7464 

OU 0.037 < 0.001 - 7455 < 0.001 7473 

EB 0.159 - -0.009 7410 1.000 7428 

 best model = EB 
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Table 6.2: Results of fitting BR, OU and EB models of body-mass evolution within each order using a fully-resolved phylogeny (tree 10). n = number of 

species; σ2 = Brownian rate parameter; α = OU constraint parameter; r = early burst parameter; best model = model with the lowest BIC (parameter values 

highlighted in bold). ? = BIC values which do not differ enough (< 4 units) for any model to be preferred over the others. *High rates of evolution in 

Dasyuromorphia are driven by a single large species: Sarcophilus laniarius. 

  BR OU EB  

Order n σ
2
 AIC BIC σ

2
 α AIC BIC σ

2
 r AIC BIC 

best 

model 

Artiodactyla 105 0.058 268.2 273.5 0.066 0.009 269.1 277.0 0.058 0 270.2 278.2 ? 

Carnivora 195 0.066 501.3 507.9 0.066 < 0.001 503.3 513.1 0.066 0 503.3 513.1 BR 

Cetacea 36 0.063 114.6 117.7 0.063 < 0.001 116.6 121.3 0.277 -0.042 111.5 116.3 ? 

Chiroptera 242 0.033 553.2 560.1 0.044 0.018 542.5 553.0 0.033 0 555.2 565.6 OU 

Dasyuromorphia 50 0.101* 153.4 157.2 0.137 0.031* 153.7 159.4 0.101* 0 155.4 161.2 ? 

Didelphimorphia 29 0.020 71.84 74.57 0.020 < 0.001 73.84 77.94 0.045 -0.021 72.70 76.80 ? 

Diprotodontia 83 0.062 230.0 234.8 0.062 < 0.001 232.0 239.2 0.144 -0.019 230.1 237.4 ? 

Insectivora 80 0.024 201.6 206.4 0.024 < 0.001 203.6 210.8 0.025 0 203.6 210.8 BR 

Lagomorpha 58 0.017 71.22 75.34 0.017 < 0.001 73.22 79.40 0.017 0 73.22 79.40 BR 

Macroscelidea 11 0.017 24.36 25.16 0.017 < 0.001 26.36 27.56 0.058 -0.038 25.48 26.68 ? 

Peramelemorphia 10 0.049 29.86 30.47 0.235 0.332 23.94 24.84 0.049 0 31.86 32.77 OU 

Perissodactyla 13 0.008 22.91 24.04 0.008 < 0.001 24.91 26.61 0.038 -0.043 22.75 24.44 ? 

Primates 163 0.020 212.5 218.7 0.020 < 0.001 214.5 223.8 1.100 -0.054 193.6 202.8 EB 

Rodentia 293 0.048 704.8 712.2 0.053 0.006 704.7 715.8 0.048 0 706.8 717.8 ? 

Xenarthra 16 0.039 46.98 48.53 0.100 0.065 44.74 47.06 0.039 0 48.98 51.30 ? 
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Table 6.3: Results of fitting BR, OU and EB models of body-mass evolution within each order using an unresolved tree. n = number of species; σ
2
 = Brownian 

rate parameter; α = OU constraint parameter; r = early burst parameter; best model = model with the lowest BIC (parameter values highlighted in bold).  ? 

= BIC values which do not differ enough (< 4 units) for any model to be preferred over the others. 

  BR OU EB  

Order n σ
2
 AIC BIC σ

2
 α AIC BIC σ

2
 r AIC BIC 

best  

model 

Artiodactyla 211 0.063 497.5 504.2 0.064 0.001 499.5 504.2 0.063 0 499.5 509.6 ? 

Carnivora 261 0.062 638.7 645.4 0.062 < 0.001 640.7 645.4 0.062 0 640.7 650.7 ? 

Cetacea 76 0.055 228.4 235.1 0.055 < 0.001 230.4 235.1 0.131 -0.023 228.0 238.0 ? 

Chiroptera 668 0.030 1293 1299 0.040 0.022 1260 1264 0.030 0 1295 1305 OU 

Dasyuromorphia 60 0.099 176.9 183.6 0.137 0.033 177.1 181.8 0.099 0 178.9 189.0 ? 

Didelphimorphia 62 0.020 144.0 150.7 0.020 < 0.001 146.0 150.7 0.071 -0.033 142.8 152.9 ? 

Diprotodontia 114 0.055 273.8 280.5 0.055 < 0.001 275.7 280.5 0.138 -0.021 273.2 283.2 ? 

Insectivora 233 0.029 515.1 521.8 0.030 < 0.001 517.1 521.8 0.029 0 517.1 527.2 ? 

Lagomorpha 60 0.019 77.80 84.50 0.019 0.002 79.75 84.45 0.019 0 79.80 89.85 ? 

Macroscelidea 14 0.013 26.12 32.83 0.013 < 0.001 28.12 32.83 0.061 -0.046 26.47 36.53 ? 

Peramelemorphia 19 0.055 46.92 53.62 0.359 0.319 42.13 46.83 0.055 0 48.92 58.97 OU 

Perissodactyla 18 0.007 26.52 33.23 0.007 < 0.001 28.52 33.23 0.033 -0.041 26.26 36.32 ? 

Primates 230 0.016 249.2 255.9 0.016 < 0.001 251.2 255.9 1.027 -0.056 221.6 231.7 EB 

Rodentia 1369 0.032 2653 2659 0.032 < 0.001 2655 2659 0.032 0 2655 2665 ? 

Scandentia 17 0.009 27.67 34.38 0.012 0.013 29.58 34.28 0.009 0 29.67 39.73 ? 

Xenarthra 29 0.048 88.94 95.64 0.051 0.003 90.89 95.59 0.048 0 90.94 101.0 ? 
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Figure 6.3: Best model of body size evolution within each ecoregion with > 9 species for a resolved phylogeny (top panel; tree 48) and an unresolved 

phylogeny (lower panel). Ecoregions in white were not evaluated (number of species in ecoregion ≤ 9 species). Ecoregions in grey have BIC values which were 

not different enough (< 4 units) for any model to be preferred over the others. 
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Figure 6.4: Relative rate of evolution (Brownian rate parameter σ
2
; top panel) and median natural-

log transformed body-mass (lower panel) within each ecoregion for ecoregions with > 9 species 

using a fully-resolved phylogeny (tree 48). Ecoregions in white were not evaluated (number of 

species in ecoregion ≤ 9 species). 

 

Correlates of rates of body-mass evolution 

Within orders, there are no significant relationships between σ2 and the species richness 

(t14 = 1.061, p = 0.306, r2 = 0.074), clade age (t14 = -1.679, p = 0.115, r2 = 0.168), 

median body-mass (t14 = 0.197, p = 0.847, r2 = 0.003) or median geographic range size 

(t13 = 0.581, p = 0.571, r2 = 0.025) of the species within the order. 
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Variations in the relative rate of body-mass evolution (Brownian rate parameter, σ2) 

within each ecoregion, along with the median body size of the species within each 

ecoregion, are shown in Figure 6.4 (resolved tree only). Rates are highest in northern 

North America and north-eastern Eurasia and lowest in South America. This pattern is 

similar for the unresolved phylogeny (not shown). In addition, high rates do not merely 

appear to be the result of either small or large body-mass of species within the 

ecoregions, because the body-mass median and σ2 maps are far from identical. Figure 

6.5 also shows the pattern of σ2 variation within each 1º grid cell (resolved tree only). 

The general pattern is similar to that in Figure 6.4, however, much of North Africa is 

missing as the grid cells there have too few species for models to be fitted. 

 

 

Figure 6.5: Relative rate of evolution (Brownian rate parameter σ
2
) within each 1º grid cell, for grid 

cells with more than nine species, using a fully-resolved phylogeny (tree 48). Grid cells in white 

were not evaluated (number of species in grid cell ≤ 9 species). 

 

Results from non-spatial and spatial models investigating correlates of the relative rate 

of evolution (σ2) per ecoregion are shown in Tables 6.4-6.7. In single predictor spatial 

models, σ2 increases with ordinal richness, median geographic range size and median 

body-mass; and decreases with increasing AET, environmental temperature, ecoregion 
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area and species richness. In the resolved tree analyses only, tropical species have a 

lower rate of body-mass evolution than non-tropical species and Sub-Saharan African 

species have a higher rate of body-mass evolution than non Sub-Saharan African 

species. 

 

The full spatial models predicting the relative rate of body-mass evolution per ecoregion 

(Tables 6.6 and 6.7) show that ecoregions with a high rate of body-mass evolution tend 

to be characterised by low environmental temperature, elevation, species richness and 

AET (unresolved tree model only), high ordinal richness, and tend to be on mainlands 

and within Sub-Saharan Africa (resolved tree model only). The most important of these 

predictors were low species richness and high ordinal richness, followed by low 

environmental temperature and low elevation. Note that although this appears to be a 

description of the cold, low elevation, low diversity ecoregions of the North Temperate 

Zone (e.g. Canada), the same qualitative result was obtained when only the tropical 

ecoregions were considered (data not shown), so the result is not driven by these 

northern ecoregions. The spatial and non-spatial models have fairly similar parameter 

estimates. More variables are significant in the non-spatial models, presumably due to 

spatial autocorrelation. 

 

Maps of fitted and squared residual σ2values obtained from the spatial model (resolved 

tree 48) are shown in Figure 6.6. Model fit is fairly good across most of the globe, but 

underestimates σ2 in some areas, e.g. Northern Africa, parts of Anatolia and Siberia. It 

also overestimates σ2 in parts of Europe, Western and Southern Africa, Central Australia 

and parts of Siberia. Model fit in Australia is particularly poor.
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Table 6.4: Results of single predictor non-spatial (OLS) and spatial (SARerror) models predicting rate of body-mass evolution (σ
2
) within each ecoregion using 

a resolved phylogeny (tree 48). nb dist = optimised neighbourhood distance (km); BM = body-mass; GR = geographic range size. *p < 0.05; **p < 0.01; ***p 

< 0.001. 

 non-spatial spatial SAR 

predictor slope ± se t709 r
2
 AIC nb dist  slope ± se z707 r

2
 AIC 

AET -0.019 ± 0.001 -19.30*** 0.345 -3518 885.3 -0.005 ± 0.001 -4.517*** 0.736 -4464 

Temperature < -0.001 ± < 0.001 -19.62*** 0.352 -3526 882.4 < -0.001 ± < 0.001 -2.859** 0.729 -4453 

Elevation < 0.001 ± < 0.001 1.509 0.003 -3220 940.9 < -0.001 ± < 0.001 -0.129 0.821 -4442 

Area of 
ecoregion 

0.004 ± 0.001 6.550*** 0.057 -3260 942.3 -0.001 ± < 0.001 -4290*** 0.816 -4460 

Species richness -0.018 ± 0.001 -14.21*** 0.222 -3396 853.1 -0.011 ± 0.001 -9.670*** 0.795 -4522 

Ordinal richness -0.012 ± 0.003 -4.191*** 0.024 -3235 977.9 0.005 ± 0.002 2.154* 0.817 -4442 

Median BM 0.013 ± 0.001 16.79*** 0.284 -3456 985.8 0.005 ± 0.001 6.782*** 0.764 -4481 

Median GR 0.008 ± 0.001 8.012*** 0.083 -3280 881.5 0.005 ± 0.001 3.696*** 0.810 -4459 

Tropical -0.024 ± 0.002 -13.88*** 0.214 -3389 881.6 -0.003 ± 0.001 -2.654** 0.822 -4453 

Africa -0.004 ± 0.003 -1.529 0.003 -3220 979.1 0.016 ± 0.005 3.108** 0.777 -4447 

Island -0.010 ± 0.002 -6.043*** 0.049 -3254 871.7 -0.001 ± 0.001 -1.071 0.813 -4442 
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Table 6.5: Results of single predictor non-spatial (OLS) and spatial (SARerror) models predicting rate of body-mass evolution (σ
2
) within each ecoregion using 

an unresolved tree. nb dist = optimised neighbourhood distance (km); BM = body-mass; GR = geographic range size. *p < 0.05; **p < 0.01; ***p < 0.001. 

 non-spatial spatial SAR 

predictor slope ± se t714 r2 AIC nb dist  slope ± se z712 r2 AIC 

AET -0.014 ± 0.001 -19.09*** 0.338 -4011 924.9 -0.004 ± 0.001 -3.783*** 0.681 -4828 

Temperature -0.001 ± <0.001 -23.51*** 0.436 -4127 1040 <-0.001 ± <0.001 -1.967* 0.616 -4809 

Elevation <0.001 ± <0.001 1.292 0.002 -3718 956.2 <-0.001 ± <0.001 -0.656 0.782 -4805 

Area of 
ecoregion 

0.003 ± <0.001 6.225*** 0.051 -3754 924.3 -0.001 ± <0.001 -6.718*** 0.786 -4858 

Species richness -0.013 ± 0.001 -14.86*** 0.236 -3909 852.7 -0.011 ± 0.001 -13.35*** 0.760 -4929 

Ordinal richness -0.009 ± 0.002 -4.510*** 0.028 -3736 1001 0.006 ± 0.002 3.342*** 0.780 -4818 

Median BM 0.011 ± <0.001 22.34*** 0.412 -4096 991.3 0.007 ± <0.001 14.43*** 0.713 -4988 

Median GR 0.007 ± 0.001 10.08*** 0.125 -3811 956.4 0.006 ± 0.001 5.695*** 0.762 -4836 

Tropical -0.019 ± 0.001 -16.02*** 0.265 -3936 1038 -0.001 ± 0.001 -1.728 0.705 -4809 

Africa -0.004 ± 0.002 -1.839 0.005 -3720 956.4 0.006 ± 0.004 1.336 0.781 -4806 

Island -0.006 ± 0.001 -5.615*** 0.042 -3747 991.3 -0.001 ± 0.001 -1.241  -4809 
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Table 6.6: Results of multi-predictor non-spatial (OLS) and spatial (SARerror) models predicting rate of body-mass evolution (σ
2
) within each ecoregion using 

a resolved phylogeny (tree 48). nb dist = optimised neighbourhood distance (km); BM = body-mass; GR = geographic range size; Temp = temperature; Elev 

= elevation. 
n.s.

p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 

 non-spatial spatial SAR (nb dist = 960.1) 

 d.f. = 696 r
2 = 664 AIC = -3966 d.f. = 694 r

2 = 604 AIC = -4624 

predictor slope*1000 ± se t LR slope*1000 ± se z LR 

AET -3.287 ± 1.197 -2.745** 7.658 0.379 ± 1.212 0.313 n.s. 0.097 

Temperature -0.951 ± 0.113 -8.427*** 69.07 -1.122 ± 0.159 -7.044*** 42.93 

Elevation -0.006 ± 0.001 -5.770*** 33.22 -0.006 ± 0.001 -6.438*** 38.04 

Area of ecoregion -7.686 ± 7.048 -1.091 n.s. 1.214 3.650 ± 4.109 0.889 n.s. 0.788 

Species richness -23.42 ± 1.946 -12.03*** 134.4 -15.40 ± 1.782 -8.643*** 70.93 

Ordinal richness 33.22 ± 3.290 10.10*** 97.20 22.38 ± 2.786 8.032*** 61.75 

BM 5.924 ± 13.35 0.444 n.s. 0.201 -12.31 ± 10.35 -1.189 n.s. 1.411 

GR -8.379 ± 6.202 -1.351 n.s. 1.862 -3.901 ± 4.426 -0.881 n.s. 0.776 

Tropical -2.387 ± 1.683 -1.418 n.s. 2.052 -1.294 ± 1.070 -1.210 n.s. 1.462 

Africa -0.948 ± 1.864 -0.508 n.s. 0.264 18.07 ± 4.523 3.995*** 15.37 

Island -6.759 ± 1.378 -4.904*** 24.15 -3.863 ± 1.150 -3.359** 11.18 

BM*GR 0.017 ± 0.860 0.020 n.s. < 0.001 0.947 ± 0.663 1.427 n.s. 2.032 

area*GR 0.573 ± 0.458 1.250 n.s. 1.596 -0.214 ± 0.267 -0.803 n.s. 0.644 

Temp*Elev < 0.001 ± < 0.001 2.173* 4.809 < 0.001 ± < 0.001 2.885** 8.272 
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Table 6.7: Results of multi-predictor non-spatial (OLS) and spatial (SARerror) models predicting rate of body-mass evolution (σ
2
) within each ecoregion using 

an unresolved tree. nb dist = optimised neighbourhood distance (km); BM = body-mass; GR = geographic range size; Temp = temperature; Elev = elevation. 

n.s.
p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 

 non-spatial spatial SAR (nb dist = 1062) 

 d.f. = 701 r
2 = 782 AIC = -4779 d.f. = 699 r

2 = 433 AIC = -5184 

predictor slope*1000 ± se t LR slope*1000 ± se z LR 

AET -0.658 ± 0.683 -0.964 n.s. 0.948 2.297 ± 0.800 2.873** 8.105 

Temperature -0.796 ± 0.065 -12.28*** 139.4 -0.910 ± 0.111 -8.234*** 47.30 

Elevation -0.005 ± 0.001 -8.499*** 70.22 -0.005 ± 0.001 -7.422*** 43.98 

Area of ecoregion -9.182 ± 4.009 -2.290* 5.339 0.419 ± 2.891 0.145 n.s. 0.021 

Species richness -13.47 ± 1.119 -12.03*** 134.4 -13.43 ± 1.208 -11.123*** 114.0 

Ordinal richness 19.76 ± 1.880 10.51*** 104.8 21.87 ± 1.884 11.607*** 123.3 

Median body-mass -11.69 ± 7.472 -1.565 n.s. 2.497 -11.96 ± 7.069 -1.692 n.s. 2.857 

Median GR -12.22 ± 3.512 -3.480** 12.26 -4.861 ± 3.052 -1.593 n.s. 2.532 

Tropical -1.534 ± 0.971 -1.580 n.s. 2.546 0.059 ± 0.751 0.078 n.s. 0.006 

Africa -1.438 ± 1.074 -1.339 n.s. 1.829 5.062 ± 2.793 1.812 n.s. 3.207 

Island -3.994 ± 0.782 -5.109*** 26.17 -3.831 ± 0.770 -4.978*** 24.31 

BM*GR 1.168 ± 0.480 2.434* 6.027 1.064 ± 0.452 2.357* 5.533 

area*GR 0.621 ± 0.260 2.383* 5.779 -0.026 ± -0.026 -0.138 n.s. 0.019 

Temp*Elev < 0.001 ± < 0.001 1.803 n.s. 3.313 < 0.001 ± < 0.001 2.366* 5.574 
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Figure 6.6: Fitted values (top panel) and squared residual values (lower panel) from spatial SARerror models predicting the relative rate of evolution (σ
2
) per 

ecoregion (for ecoregions with > 9 species and using a resolved phylogeny: tree 48).  
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6.5 Discussion 

Models of body-mass evolution 

Across all mammals, early burst (EB) is the best single model for explaining body-mass 

evolution. This suggests that mammals experienced a rapid burst of morphological 

diversification relatively early in their history, i.e. not necessarily in the Cretaceous, and 

their diversification rates subsequently slowed. The reasons for this pattern are probably 

ecological. Before mammals began to dominate the majority of global faunas, the 

species were able to diversify into many empty niches. This may have been due to 

colonisation of new areas (EB ecoregions coincide with areas supposed to have 

experienced major adaptive radiations of mammals, e.g. South America), rapid 

environmental changes (e.g. the Palaeocene-Eocene thermal maximum; Gingerich 

2006), “key innovations”, or competitive release following the K-T mass extinction 

event (Carroll 1997; but see Bininda-Emonds et al. 2007). As time went on, a higher 

proportion of the available niches became occupied and so the rate of morphological 

evolution slowed. This fits well with other phylogenetic studies on extant mammals 

(Bininda-Emonds et al. 2007), and also with palaeontological models and studies 

(assuming that increased higher taxon richness is correlated with increased 

morphological disparity; Foote 1997), which suggest that origination rates of higher 

taxa are faster near the start of a lineage and decrease through time (Sepkoski 1998; 

Valentine 1980). This pattern holds in Valentine’s (1980) model even when extinction 

is included, a factor that is missing from my models. 

 

Within orders and ecoregions it is generally impossible to differentiate among the three 

models of evolution. This may reflect a mixture of evolutionary modes within a clade, 
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or perhaps the masking of the true model by subsequent events, e.g. extinction. There 

are, however, exceptions where clades do favour a certain model: carnivores, 

insectivores and lagomorphs all favour the Brownian model of evolution, which is 

consistent with the results of Harmon et al. (in review). Interestingly, bats favour the 

OU model of evolution, indicating that their body-mass evolution has been constrained. 

One possible explanation for this is flight: many have recognised that, due to gravity 

and energy requirements, there are upper and lower bounds on the size at which flight is 

possible (Rayner 1996; Stanley 1973b), although the upper limit for bats may reflect 

other trophic or behavioural factors such as competition with birds, or the constraints 

imposed by their hanging roosting posture (Rayner 1996). Harmon et al (in review) find 

that birds also favour an OU model of body size evolution, which lends support to this 

conjecture. Peramelemorphia (bandicoots and bilbies) also favour the OU model, but 

are a clade of low-diversity: the ten members of the clade present in this study all have 

very similar body sizes, and hence apparent bounds on their body-mass range. The one 

OU ecoregion reflects the high species-richness of Peramelemorphia there. 

 

Primates favour the early burst model of evolution. This suggests that relatively early in 

their evolution, the clades split into significantly differently-sized lineages (i.e. the large 

Old World monkeys, small New World species and the even smaller “primitive” species 

e.g. lemurs and galagos) but that body size was conserved within these lineages. This 

result is consistent with adaptive radiation in these groups as they colonised new areas 

(Schluter 2000), and is supported by significant differences among the body size 

distributions of Primate clades in different regions (Kappeler & Heymann 1996). 

However, this result may just reflect taxonomic inflation, i.e. the elevation of subspecies 

to the species level (Isaac et al. 2004), which would result in many similarly-sized 
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species towards the present with any body size differences being found deep within the 

tree. Unfortunately Primates are particularly prone to taxonomic inflation, as they are 

relatively large and charismatic (Isaac et al. 2004).  

 

The lack of decisiveness among the three models has advantages for comparative 

biologists. Many comparative studies assume a model of Brownian motion evolution, 

but have been criticised for not confirming this assumption (Freckleton & Harvey 

2006). This study shows that the Brownian motion model of evolution is probably an 

adequate model for most mammalian clades. Certainly the OU and EB models are often 

no better. This is also true of mammals in Harmon et al. (in review), although they find 

that within other clades, most notably fish, the OU model is consistently better than BR. 

In addition, this confirms that using the Brownian rate parameter for later analyses is 

sensible. 

 

Correlates of rates of body-mass evolution 

Within orders, rates of body-mass evolution cannot be explained by either the species 

richness or age of the order, nor by the median body-mass or median geographic range 

size of the species within the order. Instead, the variation among within order rates is 

probably idiosyncratic. For example, low rates in the Perissodactyla may reflect the 

severely reduced morphological disparity of the group, caused by extinction of many 

perissodactyls in the Quaternary and earlier (Koch & Barnosky 2006). The highest rates 

are seen in Artiodactyla and Carnivora, clades with broad geographic distributions, 

perhaps indicating that exposure to a wide variety of selection pressures increased their 

rates of evolution. 
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Around 60% of the variation in ecoregion rates of body-mass evolution can be 

explained by just a few predictors: high rates are associated with low temperature, low 

elevation, few species, many orders, whether the ecoregion was within Sub-Saharan 

Africa, and whether the ecoregion was on a mainland or archipelago rather than an 

island. 

 

The finding that low elevations are associated with high rates of body-mass evolution is 

consistent with work on molecular rates of evolution in hummingbirds (Bleiweiss 

1998). Topology is also known to influence mammalian body sizes in the Western 

hemisphere, with larger species found in lower areas (Rodríguez et al. 2008). However, 

the negative effect of temperature on rate of body-mass evolution is more surprising, 

since rates of molecular evolution in mammals are expected to increase with 

environmental temperature (Gillooly et al. 2001) and evolution is believed to be faster 

in high temperature areas, such as the tropics (Rohde 1978). Certainly species within 

colder climates are often larger than those in warmer areas (Rodríguez et al. 2008; Roy 

2008), so perhaps this causes an increase in the rate of body-mass evolution towards 

large body size in these areas. However, an increase in the rate of evolution could 

equally be towards smaller body sizes. Another possibility is that the currently cold 

ecoregions have been more unstable (in terms of temperature and vegetation) over time 

than currently warmer ecoregions, and that this climatic instability has promoted faster 

rates of evolution in low temperature areas due to rapidly changing selection pressures 

(Stanley 1979). We can be fairly sure that the colder temperate zones have been more 

climatically variable than the tropics since the last glacial maximum 21,000 years ago 

(and possibly for hundreds of thousands of years previously; Jansson 2003), but whether 

these differences operate at a finer spatial scale is unknown. Finally, this pattern could 
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be due to the differences in the body-mass distributions of species at low and high 

latitudes. In the tropics, the majority of species are small to medium-sized, whereas in 

the temperate zone there are species from across the whole size spectrum (Rosenzweig 

1995). This may account for the higher rates in colder places. I included the median 

body-mass of species within an ecoregion to attempt to control for this; however, the 

median may not completely capture the variation in body-mass distributions. 

 

As the ordinal richness of an area increases, so do the number of body plans. Thus rates 

of body-mass evolution will increase unless the body sizes of the two orders are similar. 

This effect will be diluted as the species richness of the different orders increases. High 

rates therefore reflect low numbers of species within each order. This fits with recent 

work that showed species diversity can inhibit species evolution and increase niche 

conservatism (de Mazancourt et al. 2008). 

 

I predicted higher apparent rates of body-mass evolution in Sub-Saharan Africa 

compared to the rest of the world, due to the Late Quaternary megafaunal extinctions 

which affected everywhere but Sub-Saharan Africa (Koch & Barnosky 2006): the 

apparently lower rates of evolution elsewhere are driven by the absence of species at the 

top end of the body-mass distribution. The model still overestimates rates of body-mass 

evolution in Europe, possibly due to more recent extinctions of large European 

mammals, or size-selective harvesting removing the largest individuals and reducing 

body-mass means (Roy 2008). I also found that island ecoregions had lower rates of 

body-mass evolution than mainland ecoregions. This is probably caused by differences 

in the body-mass distributions of island versus mainland mammals (i.e. both the largest 

and smallest species are absent from islands due to the difficulties of island 
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colonisation; Lomolino 2005) and would lead to lower apparent rates of body-mass 

evolution. In addition, large mammals may struggle to survive on small islands due to 

resource limitations, again removing species from the top-end of the body-mass 

distribution. The island rule also predicts a lower rate of evolution on islands, because 

island species are evolving towards a body-mass optimum (Lomolino 2005). However, I 

reject this explanation, as both the idea of an optimum body size for mammals and the 

island rule itself are probably unsound (Meiri et al. 2008; Meiri et al. 2005). 

 

Although the model describes around 60% of the variation in rate of body-mass 

evolution, what of the remaining 40%? Model fit differed among realms, with the best 

fit in the Neotropics and the worst fit in Australia. These differences may be 

idiosyncratic, or may reflect environmental or other predictors I failed to include in the 

models. Recent evolution due to ecological factors may account for the higher apparent 

rates of evolution at the edges of the Afrotropical and Palaearctic, Palaearctic and 

Indomalayan, Indomalayan and Australasian, Palaearctic and Nearctic biomes. These 

are all faunal interchange zones, thus the higher rates may be apparent, i.e. due to an 

increase in the number of orders emigrating to these areas, or real increases in rate 

towards the present due to the evolution of body-mass character displacement within 

these changeable communities. The interchange zone between the Nearctic and 

Neotropics, however, does not have a high apparent rate of body-mass evolution, 

perhaps because the land bridge there has existed for longer (around 5.3-1.8 million 

years compared to the Bering Strait land bridge which was only formed 70,000 years 

ago) allowing the communities affected by mammalian migrations to reach some kind 

of body-mass distribution equilibrium. 
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Clearly, the models I describe above are oversimplifications of the way evolution 

happened. Most species will have undergone range shifts and most ecoregions will have 

experienced climatic shifts. Thus even if all the species within an ecoregion did evolve 

there, it was most likely under different conditions. Making inferences from present-day 

patterns is therefore difficult. However, although this may confound my attempts to find 

correlates, it mainly makes the analyses more conservative (following the logic of 

Davies et al. 2004). Significant correlates of evolutionary rates should reflect the most 

important variables and may expose ecological factors influencing body-mass evolution 

closer to the present. Extinction is also an issue; any non-random loss of species of a 

particular body size will affect rates of evolution. This is quite likely, since we know 

that rates of both historical and human-mediated extinctions have been higher in large 

mammals (Cardillo et al. 2005; Liow et al. 2008). Although the interpretation of these 

results is difficult, they do provide an interesting starting point for further study of 

body-mass evolution in mammals, particularly on the role of ecological interactions in 

more recent periods. 

 

Mammalian body-mass evolution appears to be influenced by a complex combination of 

geography, climate, past human impacts and possibly climate history. This complexity 

is interesting and has implications for studies of this kind. Macroecologists analysing 

patterns of body-mass across the world consider geography and ecology, but rarely 

consider clade history. Conversely those working on body-mass evolution concentrate 

on historical factors but often ignore geography. My results show that combining both 

macroecological and macroevolutionary approaches is vital to improving our 

understanding of body-mass evolution and its associated effects on species’ ecology.
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Chapter 7: General Conclusions 

7.1 How important has competition been in shaping mammalian 

evolution? 

The overall aim of the preceding chapters was to determine how important competition 

has been in shaping mammalian evolution, using novel, phylogenetic comparative 

methods and present-day data. To do this I used four study groups: New World leaf-

nosed bats (Phyllostomidae), New World monkeys (Platyrrhini), Australasian possums 

(Phalangeriformes) and ground squirrels (Marmotini). Here I first summarise the results 

for each of these groups (Table 7.1), then discuss some of the limitations of my methods 

and whether phylogenetic approaches, and present-day data, are useful and sufficient for 

this type of study. 

 

Table 7.1: Summary table of results from preceding chapters. bats = Phyllostomidae; monkeys = 

Platyrrhini; possums = Phalangeriformes; squirrels = Marmotini. ���� = evidence of competition 

found; ���� = evidence of competition not found. 

 bats monkeys possums squirrels 

Chapter 3 NA �� �� �� 

Chapter 4 � � � � 

Chapter 5 � � � � 

Chapter 6 � � � � 

 

Bats 

I found no significant relationship between bat trait differences and the degree of 

overlap with competitors when I controlled for phylogeny (Chapter 4). I also found no 

significant correlation between the relative rate of morphological evolution in bats and 
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the intensity of competition (Chapter 5). Finally, although Chiroptera as a whole 

favoured an OU model of body-mass evolution, I was unable to distinguish between the 

three models of trait evolution tested when only phyllostomid bats were considered 

(data not shown; Chapter 6). There were no assemblage lists for bats so they were not 

included in Chapter 3. From these results alone, I conclude that competition was not a 

dominant factor in the evolution of phyllostomid bats. Although previous studies have 

shown character displacement within bats (e.g. Gannon & Racz 2006), overdispersed 

trait patterns are apparently uncommon in bat assemblages (Patterson et al. 2003; 

Stevens & Willig 2000). This is thought to be because other factors, such as the high 

mobility of the species, environmental conditions, the physiological constraints of 

flight, or predation (Patterson et al. 2003; Rydell & Speakman 1995), have greater 

influence on bat evolution than interspecific competition. 

 

Monkeys 

Monkey assemblages showed significant phylogenetic overdispersion, i.e. the species 

within the assemblages were more distantly related than expected by chance. However, 

the traits of the species within the assemblages were not overdispersed, suggesting that 

some process other than competition had caused the pattern of phylogenetic 

overdispersion (Chapter 3). This result was supported by the fact that species’ traits 

became more similar as overlap with competitors increased (Chapter 4). These results 

suggest that competition was not dominant in monkey evolution. However, this picture 

is complicated by results from later chapters which suggest that competition was 

important. For example, although not part of the best model, competition intensity was a 

significant correlate of the relative rate of morphological evolution in single predictor 

regressions (Chapter 5). In addition, the best model of evolution for Primates, and for 
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New World monkeys alone (data not shown), was the early burst model, which is 

designed to reflect increasing competition for niches with time (Chapter 6). The 

importance of competition in primate communities is supported by previous non-

phylogenetic studies (e.g. Fleagle 1999; Houle 1997; Peres & Janson 1999), however, 

species’ responses to competition may not be morphological (see below), which may 

explain why I do not always find evidence of competition. 

 

Another explanation for these conflicting results is taxonomic inflation, i.e. the 

elevation of subspecies to the species-level (Isaac et al. 2004). Primates are particularly 

susceptible to taxonomic inflation as they are large, charismatic and studied by many 

taxonomists (Isaac et al. 2004). When primates are split into new species, the 

geographic ranges of the elevated subspecies are often just the geographic range of the 

original species divided in two. This means that sister-species pairs cannot have 

overlapping geographic ranges, and apparent phylogenetic overdispersion is therefore 

inevitable (Chapter 3). This also has implications for the analyses where I defined 

potential competitors as species with overlapping geographic ranges (Chapters 4 and 5), 

since sister species created in such a way will not have overlapping ranges and thus 

would not be classed as competitors.  

 

Taxonomic inflation may also influence body size distributions across a phylogeny. 

Extra species near the present will result in many similarly-sized species at the tips of a 

phylogeny, and any significant body size differences would only be found deep within 

the tree. This is the same pattern predicted by the early burst model of trait evolution, 

the favoured model of body-mass evolution in monkeys. I realised taxonomic inflation 

might be a issue in primates but I believed that using the taxonomy of Wilson and 
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Reeder (1993) would reduce the problem compared to using newer taxonomies (e.g. 

Groves 2001; Wilson & Reeder 2005; see also Isaac et al. 2004). 

 

Possums 

The phylogenetic structure and traits of the possum assemblages did not differ from null 

expectations (Chapter 3). In addition, I found no significant relationship between the 

species’ trait differences and the degree of overlap with competitors when I controlled 

for phylogeny (Chapter 4). Nor did I find any significant correlation between the 

relative rate of morphological evolution in possums and the intensity of competition 

(Chapter 5). Finally, I was unable to distinguish between the three models of body-mass 

evolution tested, when either Diprotodontia or just Phalangeriformes were considered 

(data not shown; Chapter 6). From these results alone, I conclude that competition was 

not dominant in the evolution of possums. It should be noted however, that the possum 

dataset is small (only 36 species), which may have decreased the power of the analyses 

to such an extent that significant effects of competition were not detectable. Compared 

to the other three clades, possums are not well-studied, but several earlier studies on 

marsupials have implicated competition in community assembly (Russell et al. 1989). 

However, these results remain controversial since much of the evidence is equivocal 

(Lee & Cockburn 1985; Russell et al. 1989). 

 

Squirrels 

The squirrel assemblages showed significant phylogenetic overdispersion, i.e. the 

species within the assemblages were more distantly related than expected by chance. 

The traits of the species within the assemblages were also overdispersed, suggesting that 
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competition had played an important role in determining the pattern of phylogenetic 

overdispersion (Chapter 3). However, analyses in subsequent chapters provided 

evidence to the contrary. For example, after controlling for phylogeny, species’ traits 

became more similar as the amount of overlap with potential competitors increased 

(Chapter 4). In addition, I failed to find any correlation between the relative rate of 

morphological evolution in squirrels and the intensity of competition (Chapter 5). 

Finally, I was unable to distinguish between the three models of body-mass evolution 

tested. This was the case when either Rodentia or just the Marmotini (data not shown; 

Chapter 6) were considered.  The results of previous studies are also unclear with 

regards to the importance of competition in squirrel evolution: habitat filtering, rather 

than competition, has been reported in marmots (Davis 2005), but there are many 

examples of character displacement in rodents more generally (Dayan & Simberloff 

2005). 

 

7.2 Some limitations of the current study  

The results presented in this thesis suggest that competition has not been particularly 

important in shaping the evolution of bats or possums, but that it may have been 

important in monkeys and squirrels. Across all mammals however, the favoured model 

of body size evolution was the early burst model, which implies a role for competition 

in mammalian evolution (Chapter 6). In addition, few would disagree with the statement 

that mammals compete for resources. Why, then, do my methods not detect an 

unambiguous role for competition in the four study clades? 

 

One explanation is that, throughout this thesis, the measure of competition was flawed. 

In Chapter 3, I assumed that species would compete if they currently coexisted and were 
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within the same clade. In Chapters 4 and 5, I defined potential competitors as species 

which coexisted, were in within the same clade and the same macroniche. In addition, I 

assumed that the response of species to competition would either be distributional (i.e. 

competing species would not coexist in an assemblage; Chapter 3), or morphological 

(i.e. competing species would exhibit trait differences; Chapters 3, 4 and 5). These 

measures ignore four key points. Firstly, they assume that the dominant competitive 

interactions are among closely-related species. Whilst close relatives are, on average, 

expected to compete most fiercely (Darwin 1859), distant relatives may also compete 

strongly, e.g. frugivorous birds and bats (Palmeirim 1989). Secondly, the measures 

assume that the present-day coexistence (in terms of geographic range overlap) of two 

similar species necessarily implies that the species interact. Heterogeneity of habitats 

may mean that, although two species’ ranges overlap, the species never come into 

contact with one another. For example, rock squirrels (Spermophilus variegatus) and 

least chipmunks (Tamias minimus) have overlapping ranges, but rock squirrels live on 

rocky outcrops whereas the chipmunks live in forests or meadows (Kays & Wilson 

2002). As knowledge of habitat preferences increases, it will be possible to incorporate 

it into the framework used here. Thirdly, by only looking at distributional and 

morphological responses to competition, these measures do not detect occasions where 

competition is reduced by other, perhaps behavioural, mechanisms. For example, 

different monkey genera are known to forage at different canopy levels (Fleagle 1999), 

and also vary the degree to which they include other items such as insects and sap in 

their diets (Nowak 1999). Species may also reduce competition by taking differently-

sized food items, using different foraging methods (e.g. aerial versus foliage-gleaning 

insectivorous bats; Eisenberg 1981), or by foraging at different times of the day (e.g. the 

genus Aotus, owl monkeys, are nocturnal; Nowak 1999). Possums may also reduce 
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competition by having different altitudinal ranges (Flannery 1995). Finally, as in any 

analysis using present-day species’ geographic ranges, these measures do not consider 

that species’ ranges change through time due to habitat and climate changes. Therefore, 

a species’ current distribution and trait values may be the result of historical competition 

with a competitor that is now absent (the “ghost of competition past”; Connell 1980). 

 

It is possible that I find little evidence for competition shaping mammalian evolution 

because competition is truly of limited importance. Brusatte et al. (2008) recently 

showed that the radiation of the dinosaurs was not due to reduction in competition as 

previously thought. Other studies have suggested that the number of species has 

increased exponentially over time and has never reached its limit, which suggests that 

competitive interactions do not restrict species evolution (Benton & Emerson 2007). 

However, I think that, given the limitations of the data available to me, and the 

assumptions of the methods, finding even weak evidence for competition shaping 

mammalian evolution suggests that it must have some role. A more likely explanation 

for the weak effect is that the signal of competition has been confounded by the effects 

of other factors on evolution, such as predation, extinction, climate change or habitat 

change. These factors have been suggested to account for the weak effects of 

competition in other systems (Meyer & Kassen 2007; Patterson et al. 2003). All of these 

factors may also interact with competition to produce present-day patterns in mammals. 

Future studies should attempt to tease apart these potential drivers of evolutionary 

change. 
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7.3 Is studying competition using a phylogenetic approach useful and 

sufficient?  

This thesis demonstrates both the good and bad points of a phylogenetic approach. The 

advantages were that it was possible to relatively easily, cheaply and quickly study 

competition in four different study groups and in mammals as a whole (Chapter 6). This 

made it possible to draw some general conclusions about mammalian evolution. Also, 

by explicitly considering phylogeny, the phylogenetic relationships between the species 

were controlled for rather than ignored. 

 

There are, however, limitations to the phylogenetic approaches used here. The major 

problem was that without a good proxy to determine whether or not species compete, 

the results can be hard to interpret. For example, a null result could either reflect the 

absence of an effect of competition, or just that the measure of competition was flawed. 

It is clearly important that a more sophisticated proxy for the intensity of competition is 

found. The development of such a measure would require close collaboration between 

evolutionary biologists, field biologists and palaeoecologists, so that for a given 

community it would be possible to confirm current competition in the field, and to 

determine which species may have been interacting in the past. It would also be 

beneficial if future studies could analyse competition at a range of taxonomic scales. 

Here, I only considered species within a study clade as competitors, but a more realistic 

scenario would also include more distant relatives. For example, in tropical frugivores, 

mammals, birds and even insects should be included to get a true understanding of the 

role of competition in these systems. Some analyses have already considered 

competition among bats and birds (Palmeirim 1989; Rydell & Speakman 1995). In the 

shorter term, it would be interesting to try these methods on other mammalian clades, 
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and perhaps other groups such as birds, to determine whether the four study clades 

reflect general mammalian, or even general vertebrate, patterns of evolution. 

 

7.4 Conclusion 

In conclusion, I find some support for competition shaping mammalian evolution. 

However, there is evidence that the importance of other processes may outweigh the 

effects of competition in some groups. The factors which influence this balance between 

drivers of evolution remain poorly understood and further study and methodological 

improvements are required if we are to understand the relative role of competition in 

mammalian evolution. Generally phylogenetic comparative methods regard evolution in 

different lineages as independent, ignoring the effects of species interactions. The 

methods in this thesis present a first step towards including species’ interactions in 

evolutionary studies. 
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Appendix A: Supplementary references 

A1 Georeferencing webpages 

http://anic.ento.csiro.au/database 

http://en.wikipedia.org  

http://geonames.nrcan.gc.ca/search/search_e.php 

http://packyourgear.com 

http://reference.allrefer.com/gazetteer 

http://waterplan.state.wy.us 

http://web.sci.ccny.cuny.edu/~anderson/Bradypus.csv 

http://www.answers.com/ 

http://www.aroid.org/genera/anthurium/pachyneurinum/upalense.html 

http://www.bioone.org/archive/0003-0082/3356/1/pdf/i0003-0082-3356-1-1.pdf 

http://www.brainygeography.com 

http://www.calacademy.org/research/herpetology/catalog 

http://www.calsign.com/mining 

http://www.dtic.mil/whs/directives/corres/20051m_062305/Papua_New_Guinea.doc 

http://www.earthsearch.net 

http://www.fallingrain.com/world 

http://www.gps.caltech.edu/~meltzner/1916/SSA03204.PDF 

http://www.inforpressca.com/municipal/mapas_web 

http://www.lighthousefriends.com 

http://www.mapplanet.com/ 

http://www.mapsofworld.com/lat_long 

http://www.mapsofworld.com/lat_long 
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http://www.parks.ca.gov/lat_long_map/default.asp?lvl_id=224 

http://www.peakbagger.com 

http://www.peakfinder.com 

http://www.satelliteviews.net 

http://www.teachersparadise.com/ency/en/wikipedia 

http://www.traveljournals.net/explore 

http://www.un.org/Depts/Cartographic/english/htmain.htm 

http://www.viovio.com/travel/ 

 

A2 References for georeferencing (non webpage) and macroniches. 

Bailey, V. 1931. Mammals of New Mexico. North American Fauna Number 53, 

Washington, D.C.: United States Department of Agriculture, Bureau of 
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Bartels, M. & Thompson, D. 1993 Spermophilus lateralis. Mammalian Species 440, 1-
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Caire, W., Tyler, J.D., Glass, B.P. & Mares, M.A. 1989 Mammals of Oklahoma. 

Norman: University of Oklahoma Press. 

 

Cutts, M.J. 2003 Extinction risk in mammals: habitat loss and degradation versus over-

exploitation. M.Sc. Thesis. London: Imperial College of Science and 

Technology. 

 

Dobbyn, J. 1994. Atlas of the mammals of Ontario. Don Mills: Federation of Ontario 

Naturalists. 

 

Eisenberg, J.F. & Redford, K.H. 1999 Mammals of the Neotropics: The central 

Neotropics. Chicago and London: University of Chicago Press. 
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Emmons, L.H. 1990 Neotropical rainforest mammals: A field guide. Chicago and 

London: University of Chicago Press. 

 

Flannery, T.F. 1994 Possums of the world. Chatswood: GEO Productions Pty Ltd. 

 

Flannery, T.F. 1995 Mammals of New Guinea. Chatswood: Reed Books. 

 

Foresman, K.R. 2001 Mammals of Montana. Special Publications of the American 

Society of Naturalists. Lawrence: Allen Press Inc. 

 

Genoways, H.H. & Jones Jr., J.K. 1973 Ardops nicholsii. Mammalian species, 24. 

 

Hafner, D.J., Yensen, E. & Kirkland Jr., G. L. 1998 IUCN - North American rodents. 

Oxford: Information Press. 

 

Husson, A.M. 1978 The mammals of Suriname. Leiden: EJ Brill. 
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Ingles, L.G. 1965 Mammals of the Pacific states. Stanford: Stanford University Press. 
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California Press. 
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Princeton: Princeton University Press. 

 

Lauer, C.E. 1996 Macmillan world atlas. London: Macmillan Publishers. 

 

Lee, A.K. & Cockburn, A. 1985 Evolutionary ecology of marsupials. Cambridge: 

Cambridge University Press. 
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Mancina, C.A. & Rivera, L.G. 2000 Notes on the natural history of Phyllops falcatus 

Gray, 1839 (Phyllostomidae: Stenodermatinae) in Cuba. Chiroptera 

Neotropical, 6, 123-125. 

 

Nagarsen, D.W. 2000 Rodents and lagomorphs of British Colombia. Victoria: Royal 

British Colombia museum. 

 

Nowak, R.M. 1999 Walker's mammals of the world. Baltimore and London: Johns 

Hopkins University Press. 

 

Nowak, R.M. 2005 Walker's marsupials of the world. Baltimore: Johns Hopkins 

University Press. 

 

Philip’s World Atlas. 1995 London: Reed International Books Ltd. 
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Junk Publishers. 
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University Press. 
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Wainwright, M. 2002 The natural history of Costa Rican nammals. San José: Zona 

Tropical. 

 

Wilson, D.E. & Reeder, D.M. 1993 Mammal species of the world: A taxonomic and 
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Wilson, D.E. & Reeder, D.M. 2005 Mammal species of the world: A taxonomic and 

geographic reference. Baltimore: Johns Hopkins University Press. 

 

Zeveloff, S. I. 1988. Mammals of the intermountain west. Salt Lake City: University of 

Utah Press. 

 

A3 References for bat (Phyllostomidae) supertree 

 

All phylogenies contained within: 

Jones, K. E., Purvis, A., MacLarnon, A., Bininda-Emonds, O. R. P. & Simmons, N. 

2002 A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological 

Reviews 77, 223-259. 

 

With additional references: 

Baker, R. J., Fonseca, R. M., Parish, D. A., Phillips, C. J. & Hoffmann, F. G. 2004 New 

bat of the genus Lophostoma (Phyllostomidae: Phyllostominae) from 

Northwestern Ecuador. Occasional Papers of the Museum of Texas Tech 

University, 232 1-16. 

 

Baker, R. J., Hoofer, S. R., Porter, C. A. & Van Den Bussche, R. A. 2003 

Diversification among New World leaf-nosed bats: an evolutionary hypothesis 

and classification inferred from digenomic congruence of DNA sequence. 

Occasional Papers of the Museum of Texas Tech University 230, 1-32. 

 

Baker, R. J., Porter, C. A., Patton, J. C. & Van Den Bussche, R. A. 2000 Systematics of 

bats of the family Phyllostomidae based on Rag2 DNA sequences. Occasional 

Papers of the Museum of Texas Tech University 202, 1-16. 

 

Carstens, B. B. C. 2002 A phylogeny of the Neotropical nectar-feeding bats (Chiroptera: 

Phyllostomidae) based on morphological and molecular data. Journal of 

Mammalian Evolution 9, 23-53. 
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Davalos, L. M. 2004 Phylogeny of the Lonchophyllini (Chiroptera: Phyllostomidae). 

Journal of Mammalogy 85, 404-413. 

 

Davalos, L. M. 2007 Short-faced bats (Phyllostomidae: Stenodermatina): a Caribbean 

radiation of strict frugivores. Journal of Biogeography 34, 364-375. 

 

Faria, K. D. 2006 Genetic relationships between Brazilian species of Molossidae and 

Phyllostomidae (Chiroptera, Mammalia). Genetica 126, 215-225. 

 

Fonseca, R. M. & Pinto, C. M. 2004 A new Lophostoma (Chiroptera: Phyllostomidae: 
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Appendix B: Phylogenetic topologies. 

Australasian possums (Phalangeriformes). 
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New World leaf-nosed bats (Phyllostomidae). 
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New World Monkeys (Platyrrhini). 
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Ground squirrels (Marmotini):  a) Cynomys outgroup topology. 
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Ground squirrels (Marmotini):  b) Marmota outgroup topology. 
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 Ground squirrels (Marmotini):  c) Spermophilus outgroup topology. 

 


