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Abstract. We give a global, intrinsic, and co-ordinate-free quantization formalism for Gromov–
Witten invariants and their B-model counterparts, which simultaneously generalizes the quantization
formalisms described by Witten, Givental, and Aganagic–Bouchard–Klemm. Descendant potentials
live in a Fock sheaf, consisting of local functions on Givental’s Lagrangian cone that satisfy the
(3g − 2)-jet condition of Eguchi–Xiong; they also satisfy a certain anomaly equation, which gen-
eralizes the Holomorphic Anomaly Equation of Bershadsky–Cecotti–Ooguri–Vafa. We interpret
Givental’s formula for the higher-genus potentials associated to a semisimple Frobenius manifold in
this setting, showing that, in the semisimple case, there is a canonical global section of the Fock
sheaf. This canonical section automatically has certain modularity properties. When X is a variety
with semisimple quantum cohomology, a theorem of Teleman implies that the canonical section
coincides with the geometric descendant potential defined by Gromov–Witten invariants of X. We
use our formalism to prove a higher-genus version of Ruan’s Crepant Transformation Conjecture for
compact toric orbifolds. When combined with our earlier joint work with Jiang, this shows that the
total descendant potential for compact toric orbifold X is a modular function for a certain group of
autoequivalences of the derived category of X.
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1. Introduction

Givental’s quantization formalism [61, 64] has been an essential ingredient in many recent ad-
vances in Gromov–Witten theory. These include the Quantum Lefschetz theorem [31, 33, 110],
the Abelian/non-Abelian correspondence [13, 30], connections to integrable systems [53, 63, 95]
and birational geometry [16, 17, 36, 38, 40, 71, 73], the Landau–Ginzburg/Calabi–Yau correspon-
dence [26, 84, 93], the study of relations in the tautological ring [85, 86, 98], and the theory of
quasimaps [24, 27–29]. The quantization formalism suggests, roughly speaking, that the Gromov–
Witten theory of a target space X is controlled by linear symplectic geometry in a certain symplectic
vector space1

HX = H•(X;C)⊗ C((z−1))

which can be thought of as the localized S1-equivariant Floer cohomology of the loop space of
X [59, 70, 96]. Genus-zero Gromov–Witten invariants of X determine and are determined by a

1In the main body of the text, we use the space of L2-functions on S1 (see §3.1) or a certain nuclear space (see
equation 4.32) instead of C((z−1)).
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Lagrangian cone LX ⊂ HX with very special geometric properties. Natural operations in Gromov–
Witten theory correspond to symplectic linear transformations U of HX : their effect on genus-
zero Gromov–Witten invariants is recorded by the effect of U on LX , and their effect on higher-
genus Gromov–Witten invariants is (or is expected to be) recorded by the action of the quantized

symplectic transformation Û on the total descendant potential ZX for X, which is a generating
function for all Gromov–Witten invariants of X. That is, the total descendant potential ZX , which
is the mathematical counterpart of the partition function in type IIA string theory, should be
thought of as an element of the Fock space arising from the geometric quantization of the Givental
space HX .

The symplectic transformation U is visible at the level of genus-zero Gromov–Witten invariants,
and so the quantization formalism is a powerful “genus zero controls higher genus” principle. One
of the most striking instances of this is Givental’s formula [61] for the total descendant potential of
a target space with generically semisimple quantum cohomology:

(1.1) ZX = eF
1(t)Ŝ−1

t Ψ̂R̂t

(
Z⊗Npt

)
Here Zpt is the total descendant potential for a point (the Kontsevich–Witten τ -function [82,111]);
N is the rank of H•(X;C); St, Ψ, and Rt are linear symplectomorphisms defined in terms of
genus-zero Gromov–Witten invariants of X; and F 1(t) is the genus-one non-descendant Gromov–
Witten potential. The formula (1.1) gives a closed-form expression for higher-genus Gromov–Witten
invariants of X in terms of genus-zero Gromov–Witten invariants of X and higher-genus Gromov–
Witten invariants of a point. It was conjectured by Givental and proven by him in the toric case [62];
it was proven for arbitrary generically semisimple Frobenius manifolds by Teleman [109], using the
classification of two-dimensional semisimple Family Topological Field Theories.

Since we have this powerful genus-zero controls higher genus principle, and since genus-zero
Gromov–Witten theory is in many cases reasonably well understood (for instance via mirror sym-
metry), it is surprising that this has not, to date, led to a better understanding of higher genus
Gromov–Witten theory. One reason for this is that Givental’s quantization formalism is rather dif-
ficult to use in practice: the quantized operators involved are defined as infinite sums over Feynman
diagrams, and there are delicate questions of convergence. In particular there is not a “Fock space”

on which Givental’s quantized operators act: the well-definedness of ÛZ is proven on a case-by-
case basis, using properties both of the particular transformation U and the particular generating
function Z.

The idea that the partition function should be regarded as a state in a Fock space arising from
geometric quantization was originally proposed by Witten [112] in the context of the B-model for a
Calabi–Yau 3-fold. Witten used this idea to give an interpretation of the holomorphic anomaly of
Bershadsky–Cecotti–Ooguri–Vafa [11,12]. It has had a number of important consequences, including
the discovery that the higher-genus Gromov–Witten potentials of local Calabi–Yau 3-folds should be
quasi-modular forms [2,4,18]. Building on these works [11,12,112], Aganagic–Bouchard–Klemm [2]
(see also [3]) described a concrete quantization procedure, in the context of the Calabi–Yau B-model,
which is free of many of the technical complexities of Givental’s quantization. We refer to this as
Witten quantization. In their setting, the relevant symplectic vector space is a finite dimensional
space given by the middle cohomology group of the Calabi–Yau 3-fold. The quantized operators
involved are defined as finite sums over Feynman diagrams, and so convergence and well-definedness
of the results are manifest.

This paper grew out of an attempt to understand and unify Givental quantization and Witten
quantization. We give a global, intrinsic, and co-ordinate-free quantization formalism, which reduces
to Givental quantization whenever they both make sense and which reduces to Witten quantization
in the Calabi–Yau 3-fold case. We now give a brief summary of this paper.
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Construction of a Fock Sheaf. Let M be a complex manifold. We start with a locally free
OM[[z]]-module F of finite rank equipped with a flat connection:

∇ : F→ Ω1
M ⊗ z−1F

and a ∇-flat, symmetric, non-degenerate and “z-sesquilinear” pairing:

(·, ·)F : (−)∗F⊗OM[[z]] F→ OM[[z]]

where (−)∗F means F on which z acts by −z. We call the triple (F,∇, (·, ·)F) a cTP structure,
extending the terminology of Hertling [67]; see Definition 4.4. A cTP structure arises from geometry
as the Dubrovin connection associated to quantum cohomology or as the Gauss–Manin connection
associated to deformation of complex manifolds or singularities. We need to assume that our cTP
structure satisfies a certain miniversality condition (see Assumption 4.9). We regard F as an infinite-
dimensional vector bundle over M and write L for the total space of the vector bundle zF → M.
The total space L is an analogue of Givental’s Lagrangian cone LX . As a polarization for geometric
quantization, we consider an OM-submodule P of F[z−1] such that:

• P is opposite to F, i.e. F⊕ P = F[z−1];
• P is isotropic with respect to the symplectic form Ω on F[z−1] defined by Ω(s1, s2) :=

Resz=0(s1, s2)F dz;
• P is parallel (∇P ⊂ Ω1

M ⊗ P) and closed under z−1 (z−1P ⊂ P).

We call P an opposite module2. This serves as a splitting of the (semi-infinite) Hodge filtration
and has been used to construct a Frobenius manifold structure (or flat structure) in the context of
singularity theory [104,105]. In terms of Givental’s symplectic space, P corresponds to a Lagrangian
subspace P ⊂ HX which is transversal to LX . The opposite module P defines an affine flat structure
on the total space L: we write ∇ for the corresponding flat connection on TL. Given an open set
U ⊂M and an opposite module P over U , the Fock space Fock(U ;P) consists of collections

C =
{
C(g)
µ1...µn : g ≥ 0, n ≥ 0, 2g − 2 + n > 0

}
of meromorphic symmetric tensors C

(g)
µ1...µn ∈ (T ∗L)⊗n over L|U , called the genus-g, n-point correla-

tion functions. We require that these tensors satisfy:

• the Jetness condition C
(g)
µ1...µn =∇µ1C

(g)
µ2...µn ;

• the Eguchi–Xiong (3g − 2)-jet condition (see equation 4.44 below or [51,52,57]);
• the Dilaton Equation (this is a homogeneity condition);
• a certain pole order condition along a discriminant divisor in L|U ;

see Definition 4.56. The genus-zero correlation functions are given by the Yukawa coupling and its
derivatives, which are determined by the cTP structure itself. We glue these Fock spaces to give a
sheaf of sets on M via a transformation rule

T (P, P̂) : Fock(U ;P)→ Fock(U ; P̂)

defined for two opposite modules P, P̂ over U . The element {Ĉ(h)
µ1...µm} ∈ Fock(U ; P̂) corresponding

to the element {C(g)
µ1...µn} ∈ Fock(U ;P) is given by a Feynman rule: each Ĉ

(g)
µ1...µm is expressed as

a finite sum over connected stable graphs, with vertex terms given by the C
(h)
µ1,...,µn , h ≤ g, and

propagator defined geometrically in terms of the two opposite modules P, P̂. The construction of a
Fock sheaf will be given in §4. We also refer the reader to §3 for a more informal account.

Comparison to Givental and Witten Quantization. Our transformation rule is given as a
finite sum over Feynman graphs and is a direct generalization of Witten quantization to infinite
dimensions. A key point is the use of a certain algebraic co-ordinate system on the total space
L. Every ingredient in the Feynman rule has a polynomial/rational expression in the algebraic

2We also consider P which does not satisfy the third condition: in this case P is called a pseudo-opposite module.
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co-ordinate system, and this fact makes evident that the Feynman rule is well-defined in infinite
dimensions. On the other hand, when we restrict correlation functions to the formal neighbourhood

L̂ of the fiber Lt of L at a point t ∈ M and write the Feynman rule in a flat co-ordinate system

on L̂, our transformation rule coincides exactly with the action of Givental’s quantized operator on
tame functions.

Theorem 1.1 (see Theorem 5.14 for a more precise formulation). The transformation rule T (P,P′)
matches with the action of Givental’s upper-triangular loop group over the formal neighbourhood L̂
of the fiber at each point on the base space.

In §5.3, we will adapt the transformation rule to an L2-setting. There we work with the L2-
subspace L2(L) ⊂ L, which is an infinite-dimensional Hilbert manifold, and describe a transforma-
tion rule for holomorphic correlation functions on L2(L). We see that one can define the quantized

operator Û for any linear symplectic transformation U that satisfies a certain “trace class” condition
(see Definitions 5.19, 5.26). This gives a uniform definition of quantization without insisting that

U be upper-triangular or lower-triangular. We also show in Remark 5.30 that this Û coincides with
Givental’s quantized operator whenever U is sufficiently close to the identity.

A Global Section of the Fock Sheaf in the Semisimple Case. There is a simple and attractive
interpretation of Givental’s formula (1.1) in our setting. Suppose that the flat connection ∇ of the
cTP structure is extended in the z-direction with poles of order 2 along z = 0 such that the pairing
(·, ·)F is flat in the z-direction: this is called a cTEP structure (see Definition 4.4). cTP structures
that come from geometry, such as quantum cohomology, are often cTEP structures, not just cTP
structures. We say that a cTEP structure is tame semisimple if the residue U ∈ End(F/zF) of ∇z∂z
is semisimple with distinct eigenvalues. We prove the following:

Theorem 1.2 (Definition 7.9, Theorem 7.14). There exists a canonical global section of the Fock
sheaf associated to a tame semisimple cTEP structure, which coincides with the potential given by
Givental’s formula (1.1) in the formal neighbourhood of each point of the base space. We call this
global section the Givental wave function.

We observe, via the Levelt–Turrittin formal decomposition of ∇z∂z , that any tame semisimple
cTEP structure of rank N + 1 is locally isomorphic to the cTEP structure associated with the
quantum cohomology of N + 1 points; moreover the isomorphism is unique up to (signed) permuta-
tion of N + 1 points (Proposition 7.2). This shows that a tame semisimple cTEP structure admits
a canonical semisimple opposite module Pss (Definition 7.3). Then the Gromov–Witten potential

Z⊗Npt of N points defines an element of Fock(M,Pss): this is the Givental wave function above.
Teleman’s theorem [109] can be rephrased in our language as:

Theorem 1.3 (see Theorem 7.15). When the quantum cohomology of X is generically semisimple,
the total descendant Gromov–Witten potential of X, when viewed as a section of the Fock sheaf,
coincides with the Givental wave function.

This is just a rephrasing of Givental’s formula (1.1) that says that ZX and Z⊗Npt are related by
a quantized symplectic operator; in our formalism, this quantized operator arises as the “transi-
tion function” T (Pss,Pstd) of the Fock sheaf between the semisimple opposite module Pss and the
standard opposite module Pstd (see Example 4.16) of the quantum cohomology of X.

Since the Givental wave function is canonically associated to a semisimple cTEP structure, it
is automatically “modular” in the following sense. Opposite modules P arising from geometry are
typically not monodromy invariant, and therefore the presentation CP of the Givental wave function
with respect to the polarization P is not single-valued in general. Regarding it as a function on
the universal cover of M, we have the following transformation property with respect to a deck-
transformation γ ∈ π1(M):

(1.2) γ?CP = T (P, γ?P)CP
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Since M typically arises as a moduli space of complex structures, the universal cover of M should
be regarded as an analogue of a Hermitian symmetric space. Thus we refer to the property (1.2) as
modularity; see also Remark 7.16.

The Crepant Transformation Conjecture in the Toric Case. Combining our global quantiza-
tion formalism with mirror symmetry, we deduce in §8.1 a higher-genus version of Ruan’s celebrated
Crepant Transformation Conjecture for compact toric orbifolds. We fix a convex lattice polytope ∆
in Zn containing the origin in its interior and consider the set Crep(∆) of weak-Fano toric orbifolds
having ∆ as the fan polytope. (See §8.1.1 for the precise conditions that we impose on ∆.) Toric
orbifolds from Crep(∆) are K-equivalent to each other; moreover they are derived equivalent. These
toric orbifolds have the same Landau–Ginzburg models as mirrors [58,69], each of them correspond-
ing to a different limit point of the B-model moduli space. The Landau–Ginzburg mirror produces
a generically semisimple cTEP structure over the B-model moduli space [6, 38, 46, 47, 71, 100, 101].
Therefore the Fock sheaf FockB associated to the B-model admits a global section given by the
Givental wave function. Mirror symmetry for toric orbifolds [32, 71] and Teleman’s theorem [109]
immediately imply:

Theorem 1.4 (see Theorem 8.1). There exists a global section of the B-model Fock sheaf FockB
which restricts to the total descendant Gromov–Witten potential ZX of X ∈ Crep(∆) (viewed as
a section of FockB) in a neighbourhood of the large radius limit point of X. In other words, the
Gromov–Witten potentials ZX with X ∈ Crep(∆) are analytically continued to each other as sections
of the B-model Fock sheaf.

This establishes the higher-genus Crepant Transformation Conjecture for toric orbifolds in
Crep(∆). Using the L2-formalism in §5.3, we recover an earlier formulation of the higher-genus
Crepant Transformation Conjecture [19,38,40] as follows3:

Theorem 1.5 (see Corollary 8.2). Let X1, X2 be compact weak-Fano toric orbifolds from Crep(∆).
There exists a linear symplectic transformation Uγ : HX1 → HX2 depending on a path γ on the
B-model moduli space connecting the two large radius limit points such that, under analytic contin-
uation along γ, we have

Z2 ∝ ÛγZ1

where Zi is the total descendant Gromov–Witten potential of Xi.

In our recent joint work with Jiang [36], we computed the symplectic transformation Uγ explicitly
for a certain path γ, and showed that it arises from a composition of Fourier–Mukai transformations

FM : Db(X1) ∼= Db(X2) via the Γ̂-integral structure in quantum cohomology [71, 75]. This means
that we have the following commutative diagram:

Db(X1)
FM //

��

Db(X2)

��

H̃X1
Uγ // H̃X2

where the vertical arrow is the map defining the Γ̂-integral structure and H̃Xi is a multi-valued
variant of Givental’s symplectic space (see [36]). Note that an auto-equivalence of Db(X) induces

a symplectic transformation of the Givental space HX via the Γ̂-integral structure, and we expect
that the total descendant potential ZX of X should be modular with respect to the group of
autoequivalences. Our joint work with Jiang [36] implies:

Theorem 1.6 (see Corollary 8.7). The total descendant potential ZX for a compact weak Fano toric
orbifold X is modular with respect to a certain non-trivial subgroup of the group of autoequivalences
of the bounded derived category of coherent sheaves on X.

3Note that we do not require any Hard Lefschetz hypothesis here [19].
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Remark 1.7. We remark on the analyticity of the genus-zero data with respect to z and its role
in the above Theorems 1.4–1.6. The B-model cTEP structure above can be in fact analytified in
the z-direction and lifted to a TEP structure (see Definition 4.1) globally over the B-model moduli
space [6,38,46,47,71,100,101]. Mirror symmetry implies that this global TEP structure restricts to
the quantum cohomology TEP structure of eachX ∈ Crep(∆) on a neighbourhood of the large radius
limit point of X: this is the content of the genus-zero crepant transformation conjecture [38,40,73]
(which was proved in [36] for the most general set-up for toric stacks). In Theorem 1.4, we do not
need this lift to a TEP structure since the analytic structure of the Fock sheaf depends only on the
underlying cTEP structure. On the other hand, in order to define a semi-infinite period map (see
§3.3 and §9.3) of the genus-zero data, we need its analyticity in z. This analyticity enables us to
compare Givental’s symplectic spaces HX1 ,HX2 via analytic continuation along the path γ. The
symplectic transformation Uγ : HX1 → HX2 in Theorem 1.5 arises in this way and matches up the
Lagrangian cones encoding the information of the genus-zero theory:

LX2 = UγLX1 .

Anomaly Equation. In our global quantization formalism, we also allow polarizations P which
are not parallel along M (see footnote 2 on page 4). In this case, the connection ∇ on the tangent

bundle TL is not flat, and correlation functions C
(g)
µ1...µn fail to satisfy the Jetness condition. We

have instead the following anomaly equation.

Theorem 1.8 (Theorem 4.86). Correlation functions under a non-parallel polarization P satisfy
the anomaly equation:

C(g)
µ1...µn =∇µ1C

(g)
µ2...µn +

1

2

∑
{2,...,n}=ItJ

k+l=g

C(k)
µI ,α

Λαβµ1
C

(l)
µJ ,β

+
1

2
C

(g−1)
µ2...µnαβ

Λαβµ1

where Λαβµ is a tensor which measures the deviation of P from being parallel.

In §9, we consider a cTP structure equipped with a real structure, which we call a TRP structure.
We impose the condition that the TRP structure is pure (see Definition 9.6). Quantum cohomology
or its B-model counterpart are often equipped with a natural real structure and give examples of
pure TRP structures [67, 72, 103]. For a pure TRP structure, we can consider a polarization which
is obtained as the complex conjugate of F. Such a polarization is called the Kähler polarization
or holomorphic polarization in the context of geometric quantization. This complex-conjugate
polarization is intrinsic to the TRP structure, and therefore if we have a single-valued section of the
Fock sheaf (such as the Givental wave function), its presentation with respect to this gives a single-
valued function. This should be a useful and important property. A drawback of this polarization is
that the corresponding correlation functions are not holomorphic. The anti-holomorphic dependence
is described precisely by the holomorphic anomaly equation.

Theorem 1.9 (Proposition 9.34). Correlation functions under the complex conjugate polarization
satisfy the following holomorphic anomaly equation:

0 = ∂µ1
C(g)
µ2...µn +

1

2

∑
{2,...,n}=ItJ

k+l=g

C(k)
µI ,α

Λαβµ1
C

(l)
µJ ,β

+
1

2
C

(g−1)
µ2...µnαβ

Λαβµ1

where Λαβµ is a tensor associated to the TRP structure.

This is analogous to the holomorphic anomaly equation of Bershadsky–Cecotti–Ooguri–Vafa [11,
12]. Given a parallel polarization P of the TRP structure, we introduce a positive scalar function
on the base M, called the half-density metric. This can be thought of heuristically as a Hermitian
metric on the half-density line bundle “det(T ∗L)1/2” of L; see Definition 9.41. The genus-one
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potential can be viewed as a holomorphic section of det(T ∗L)1/2, and the holomorphic anomaly

equation at genus one is a formula for the curvature of det(T ∗L)1/2 (see equation 9.15 and [11]).
Singularities and global properties of this metric will be the subject of a future study.

Relation to Other Work

In this paper we focus on the construction of a Fock sheaf and its fundamental properties, but
we only discuss how to construct a canonical section of the Fock sheaf in the semisimple case
(where we use Givental’s formula). To give a section of the Fock sheaf in general, we certainly need
more data from geometry. An approach based on Calabi–Yau categories and Topological Quantum
Field Theory has been proposed by Costello [41, 42], Kontsevich–Soibelman [81] and Katzarkov–
Kontsevich–Pantev [76]. Another approach based on renormalization and BCOV theory has been
developed by Costello–Li [43,89,90]; using a chain-level version of Givental’s symplectic space, they
construct a mathematical version of the higher-genus B-model. These works should give a canonical
global section of the Fock sheaf. We also remark that the approach based on Givental’s formula
(as in this paper) has been taken by several authors [84,87,93,94]; in particular Milanov–Ruan [93]
showed that the Gromov–Witten potential of an elliptic orbifold P1 is a quasi-modular form using
Givental’s formula.

Plan of the Paper

We begin by fixing notation for various objects in Gromov–Witten theory (§2). We give an in-
formal sketch of our quantization framework in §3, and give the rigorous construction in §4. In §5
we explain the precise connection between our quantization formalism and Givental’s. §6 describes
how the Gromov–Witten potential fits into our framework. §7 treats the semisimple case; in par-
ticular we explain how Givental’s formula (1.1) gives rise to a global section of the Fock sheaf.
In §8 we give two applications of our formalism to mirror symmetry, proving the higher-genus
Crepant Transformation Conjecture for toric orbifolds in §8.1 and discussing mirror symmetry
for Calabi–Yau manifolds in §8.2. In §9 we describe how the Holomorphic Anomaly Equation of
Bershadsky–Cecotti–Ooguri–Vafa arises from the anomaly equation for curved polarizations given
in §4.13.
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2. Notation in Gromov–Witten Theory

We use the same notation as [34]. Let X be a smooth projective variety and let HX be the even
part of H•(X;Q).
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2.1. Gromov–Witten Invariants. Let Xg,n,d denote the moduli space of n-pointed genus-g stable
maps to X of degree d ∈ H2(X;Z). Write〈

a1ψ
l1
1 , . . . , anψ

ln
n

〉X
g,n,d

=

∫
[Xg,n,d]vir

n∏
i=1

ev∗i (ai) ∪ ψlii(2.1)

where a1, . . . , an ∈ HX ; evi : Xg,n,d → X is the evaluation map at the ith marked point; ψ1, . . . , ψn ∈
H2
(
Xg,n,d;Q

)
are the universal cotangent line classes; l1, . . . , ln are non-negative integers; and the

integral denotes cap product with the virtual fundamental class [10,88]. The right-hand side of (2.1)
is a rational number, called a Gromov–Witten invariant of X (if li = 0 for all i) or a gravitational
descendant (if any of the li are non-zero).

2.2. Bases for Cohomology and Novikov Rings. Fix bases φ0, . . . , φN and φ0, . . . , φN for HX

such that:

(2.2)

• φ0 is the identity element 1 ∈ HX

• φ1, . . . , φr is a nef Z-basis for the free part of H2(X;Z) ⊂ HX

• each φi is homogeneous

• (φi)
i=N
i=0 and (φj)j=Nj=0 are dual with respect to the Poincaré pairing

Note that r is the rank of H2(X). Define the Novikov ring Λ = Q[[Q1, . . . , Qr]] and, for d ∈ H2(X;Z),

write Qd = Qd1
1 · · ·Qdrr where di = d · φi.

2.3. Quantum Cohomology. Let t0, . . . , tN be the co-ordinates of t ∈ HX defined by the basis
φ0, . . . , φN , so that t = t0φ0 + . . . + tNφN . Define the genus-zero Gromov–Witten potential F 0

X ∈
Λ[[t0, . . . , tN ]] by

F 0
X =

∑
d∈NE(X)

∞∑
n=0

Qd

n!

〈
t, . . . , t

〉X
0,n,d

where the first sum is over the set NE(X) of degrees of effective curves in X. This is a generating
function for genus-zero Gromov–Witten invariants. The quantum product ∗ is defined in terms of
the third partial derivatives of F 0

X :

(2.3) φi ∗ φj =
N∑
h=0

∂3F 0
X

∂ti∂tj∂th
φh

The product ∗ is bilinear over Λ, and defines a formal family of algebras on HX ⊗Λ parameterized
by t0, . . . , tN . This is the quantum cohomology or big quantum cohomology of X.

We have defined big quantum cohomology as a formal family of algebras, i.e. in terms of the ring
of formal power series Q[[Q1, . . . , Qr]][[t

0, . . . , tN ]]. In many cases however, including the examples
discussed in [34], the genus-zero Gromov–Witten potential F 0

X converges to an analytic function.
By this we mean the following. The Divisor Equation [79, §2.2.4] implies that

F 0
X ∈ Q[[t0, Q1e

t1 , . . . , Qre
tr , tr+1, tr+2, . . . , tN ]]

and one can often show, for example by using mirror symmetry, that F 0
X is the power series expansion

of an analytic function:

F 0
X ∈ Q

{
t0, Q1e

t1 , . . . , Qre
tr , tr+1, tr+2, . . . , tN

}
We can then set Q1 = · · · = Qr = 1, obtaining an analytic function

F 0
X ∈ Q

{
t0, et

1
, . . . , et

r
, tr+1, tr+2, . . . , tN

}
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of the variables t0, . . . , tN defined in a region{
|ti| < εi i = 0 or r < i ≤ N
<ti � 0 1 ≤ i ≤ r(2.4)

We refer to the limit point {
ti = 0 i = 0 or r < i ≤ N
<ti → −∞ 1 ≤ i ≤ r

as the large-radius limit point. When F 0
X converges to an analytic function in the sense just de-

scribed, the quantum product ∗ then defines a family of algebra structures on HX that depends
analytically on parameters t0, . . . , tN in the neighbourhood (2.4) of the large-radius limit point.

2.4. The Dubrovin Connection. Consider HX ⊗ Λ as a scheme over Λ and let M be a formal
neighbourhood of the origin in HX ⊗ Λ. The Euler vector field E on M is

(2.5) E = t0
∂

∂t0
+

r∑
i=1

ρi
∂

∂ti
+

N∑
i=r+1

(
1− 1

2deg φi
)
ti ∂
∂ti

where c1(X) = ρ1φ1 + · · ·+ ρrφr. The grading operator µ : HX → HX is defined by:

(2.6) µ(φi) = deg φi − 1
2 dimCX

Let π : M× A1 →M denote projection to the first factor. The extended Dubrovin connection is a
meromorphic flat connection ∇ on π∗TM∼= HX × (M× A1), defined by:

∇ ∂

∂ti
=

∂

∂ti
− 1

z

(
φi∗
)

0 ≤ i ≤ N

∇z ∂
∂z

= z
∂

∂z
+

1

z

(
E∗
)

+ µ where z is the co-ordinate on A1.

Together with the pairing on TM induced by the Poincaré pairing, the Dubrovin connection equips
M with the structure of a formal Frobenius manifold with extended structure connection [91].

The Dubrovin connection admits a canonical fundamental solution (see e.g. [97, Proposi-
tion 2], [71, Proposition 2.4]) L ∈ End(HX)⊗ Λ[[t]][[z−1]], defined by

(2.7) L(t, z)v = v +
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!

〈
v

z − ψ , t, . . . , t, φ
ε

〉X
0,n+2,d

φε

where v ∈ HX . The expression v/(z − ψ) in the correlator should be expanded as the series∑∞
n=0 vψ

nz−n−1. This satisfies ∇∂/∂ti(L(t, z)v) = 0 for all i = 0, . . . , N . The fundamental solution
also satisfies the unitarity property(

L(t,−z)v, L(t, z)w
)
HX

= (v, w)HX for all v, w ∈ HX

where (·, ·)HX denotes the Poincaré pairing on HX . Hence the inverse fundamental solution
M(t, z) := L(t, z)−1 is identified with the adjoint of L(t,−z):

(2.8) M(t, z)v = v +
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!

〈
φε

−z − ψ , t, . . . , t, v
〉X

0,n+2,d

φε

The Divisor Equation [1, Theorem 8.3.1] for descendant invariants shows that

(2.9) M(t, z)v = e−δ/z

v +
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

ed·δQd

n!

〈
φε

−z − ψ , t
′, . . . , t′, v

〉X
0,n+2,d

φε
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where t = δ + t′, δ ∈ H2(X), t′ ∈⊕p 6=1H
2p(X). This form will be helpful when we specialize the

Novikov variables Qi to 1 in the fundamental solutions.
If the genus-zero Gromov–Witten potential F 0

X converges to an analytic function, as discussed
in Section 2.3 above, then the extended Dubrovin connection with Q1 = · · · = Qr = 1 depends
analytically on t in a neighbourhood (2.4) of the large-radius limit point and defines an analytic
Frobenius manifold with extended structure connection. The fundamental solution with Q1 = · · · =
Qr = 1 then depends analytically on both t and z, where t lies in the neighbourhood (2.4) and z is
any point of C×.

2.5. Gromov–Witten Potentials. We introduce various generating functions for Gromov–Witten
invariants. They belong to certain rings of formal power series (in infinitely many variables), for
which we refer the reader to [34, §2.5].

Let (t0, t1, t2, . . .) be an infinite sequence of elements of HX and write tn = t0nφ0 + · · · + tNn φN .
The genus-g descendant potential

(2.10) FgX :=
∑

d∈NE(X)

∞∑
n=0

∞∑
l1=0

· · ·
∞∑
ln=0

Qd

n!

〈
tl1ψ

l1
1 , . . . , tlnψ

ln
n

〉X
g,n,d

is a generating function for genus-g gravitational descendants of X. The total descendant potential

(2.11) ZX := exp

( ∞∑
g=0

~g−1FgX

)
is a generating function for all gravitational descendants of X.

Consider now the morphism pm : Xg,m+n,d → Mg,m that forgets the map and the last n marked
points, and then stabilises the resulting prestable curve. Write ψm|i ∈ H2(Xg,n+m,d;Q) for the

pullback along pm of the ith universal cotangent line class on Mg,m, and write

(2.12)
〈
a1ψ̄

k1
1 , . . . , amψ̄

km
m : b1ψ

l1
m+1, . . . , bnψ

ln
m+n

〉X
g,m+n,d

=

∫
[Xg,m+n,d]vir

m∏
i=1

(
ev∗i (ai) ∪ ψkim|i

)
·
n∏
j=1

(
ev∗m+j(bj) ∪ ψ

lj
m+j

)
where a1, . . . , am ∈ HX ; b1, . . . , bn ∈ HX ; and k1, . . . , km, l1, . . . , ln are non-negative integers.

As above, consider t ∈ HX with t = t0φ0 + · · ·+ tNφN and a sequence (y0, y1, y2, . . . ) of elements
in HX with yn = y0

nφ0 + · · ·+ yNn φN . The genus-g ancestor potential is

(2.13) F̄gX :=
∑

d∈NE(X)

∞∑
n=0

∞∑
m=0

∞∑
l1=0

· · ·
∞∑

lm=0

Qd

n!m!

〈
yl1ψ̄

l1
1 , . . . , ylmψ̄

lm
m :

n︷ ︸︸ ︷
t, . . . , t

〉X
g,m+n,d

and the total ancestor potential is:

(2.14) AX := exp

( ∞∑
g=0

~g−1F̄gX

)
We will often want to emphasize the dependence of the ancestor potentials on the variable t, writing
F̄gt for F̄gX and At for AX . Note that the ancestor potentials (2.13) do not contain terms with g = 0

and m < 3, or with g = 1 and m = 0, as in these cases the space Mg,m is empty and so the map

pm : Xg,m+n,d →Mg,m is not defined.
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Let (t0, t1, t2, . . .) and (y0, y1, y2, . . .) be infinite sequences of elements of HX with tn = t0nφ0 +
· · ·+ tNn φN and yn = y0

nφ0 + · · ·+ yNn φN . Define the genus-g jet potential

Wg
X :=

∑
d∈NE(X)

∞∑
m=0

∞∑
k1=0

· · ·
∞∑

km=0

∞∑
n=0

∞∑
l1=0

· · ·
∞∑
ln=0

Qd

n!m!

〈
yk1ψ̄

k1
1 , . . . , ykmψ̄

km
m : tl1ψ

l1
m+1, . . . , tlnψ

ln
m+n

〉X
g,m+n,d

We write WX =
∑∞

g=0 ~g−1Wg
X . The total jet potential is:

(2.15) exp(WX) = exp

( ∞∑
g=0

~g−1Wg
X

)
The co-ordinates (t0, t1, t2, . . . ) are used for the descendant potentials and the co-ordinates

(y0, y1, y2, . . . ) are used for the ancestor potentials. We sometimes also use the co-ordinates
(q0, q1, q2, . . . ) with qn = q0

nφ0 + · · · + qNn φN related to (t0, t1, t2, . . . ) or (y0, y1, y2, . . . , ) by the
identification:

qin = −δn,1δi,0 + tin qin = −δn,1δi,0 + yin

This identification is called the Dilaton shift. See also §3.2 below.

2.6. The Orbifold Case. The discussion in this paper applies to the case where X is a smooth
algebraic orbifold or Deligne–Mumford stack, rather than a smooth algebraic variety. The discussion
above goes through in this situation with minimal changes, as follows:

• We take HX to be the even part4 of the Chen–Ruan orbifold cohomology H•CR(X;Q) rather
than the even part of the ordinary cohomology H•(X;Q).
• We replace:

– the usual grading on H•(X); by the age-shifted grading on H•CR(X)
– the Poincaré pairing on H•(X) by the orbifold Poincaré pairing on H•CR(X).

Note that H2(X) ⊂ H2
CR(X), and so definition (2.2) makes sense in the orbifold context.

• We define correlators (2.1) and (2.12) using orbifold Gromov–Witten invariants [1] rather
than usual Gromov–Witten invariants. There are two small differences:

– a subtlety in the definition of ev∗k, discussed in [1], [39, §2.2.2];
– the degree d of an orbifold stable map f : Σ → X lies in H2(|X|;Z), where |X| is the

coarse moduli space of X.

Having made these changes, the discussion in §§2.1–2.5 applies to orbifolds as well. In this context,
the family of algebras

(
HX ⊗ Λ, ∗

)
is called orbifold quantum cohomology [23].

3. Global Quantization: Motivation

In this section, as an introduction to global quantization, we review Givental’s symplectic formal-
ism [33,61,64] from the viewpoint of geometric quantization. This section is not logically necessary,
and can safely be skipped by the impatient reader, but provides motivation and context for the rest
of the paper. Roughly speaking one can think of our Fock space as obtained from the quantization
of Givental’s infinite-dimensional symplectic space H, and of the total descendant potential ZX as
an element of the Fock space. The aim of this section is to give an informal account of the ideas
behind the rigorous construction, which is given in §4 and §5.3.

4Here we mean the even part of the rational cohomology of the inertia stack IX with respect to the usual grading
on H•(IX), not the age-shifted grading; cf. [36, §2.2]
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3.1. Givental’s Symplectic Vector Space. Givental’s quantization is based on the Hilbert space

H = HX ⊗Q L
2(S1,C)

equipped with the symplectic form:

Ω(f(z), g(z)) =
1

2πi

∫
S1

(f(−z), g(z))HX dz

Here L2(S1,C) denotes the space of complex-valued L2 functions on S1 and (α, β)HX =
∫
X α ∪ β

is the Poincaré pairing. The co-ordinate z on S1 coincides with the variable that appeared in the
Dubrovin connection (see §2.4). We call (H,Ω) the Givental space for X. Each element f(z) ∈ H
has a Fourier expansion

f(x) =
∞∑
n=0

qnz
n +

∞∑
n=0

pn(−z)−n−1

with qn, pn ∈ HX ⊗ C. We have the decomposition H = H+ ⊕H− where:

H+ =

{
q =

∞∑
n=0

qnz
n ∈ H

}
H− =

{
p =

∞∑
n=0

pn(−z)−n−1 ∈ H
}

(3.1)

These are maximally isotropic subspaces. We set

qn =

N∑
i=0

qinφi pn =

N∑
i=0

pn,iφ
i(3.2)

and regard {qin, pn,i : 0 ≤ n <∞, 0 ≤ i ≤ N} as a complex co-ordinate system on H. These are
holomorphic Darboux co-ordinates, in the sense that:

Ω =
∞∑
n=0

N∑
i=0

dpn,i ∧ dqin

3.2. Dilaton Shift. Let us denote by Fg the genus-g descendant Gromov–Witten potential (2.10)
with Novikov variables specialized5 to 1 (i.e. Q1 = · · · = Qr = 1). We can regard Fg as a holomor-
phic function on an open subset U of H+

Fg : U → C
via the Dilaton shift

q = t− z1
where 1 ∈ HX is the identity element and we set:

t =

∞∑
n=0

N∑
i=0

tinφiz
n q =

∞∑
n=0

N∑
i=0

qinφiz
n

The open subset U contains a point −z1 + t with t in a neighbourhood (2.4) of the large radius
limit point and Fg|−z1+t gives the non-descendant genus-g Gromov–Witten potential F g(t) with
the Novikov variables specialized to 1.

5In order to make sense of this specialization, we need a certain convergence assumption for Fg [34, §8.1]. This
technical point will be explained in Definition 6.7 below.
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3.3. Lagrangian Submanifold and TP Structure. Here we introduce the Givental cone for X,
a submanifold L of H which encodes all information about the genus-zero Gromov–Witten theory
of X. Define L to be the following submanifold of H:

L =

{
q + p

∣∣∣∣∣ pn,i =
∂F0

∂qin
(q)

}
where we set p =

∑∞
n=0

∑N
i=0 pn,iφ

i(−z)−n−1. This is Lagrangian since it is the graph of the
differential dF0. Moreover, it has the following special geometric properties [33,64]:

• L is a cone, i.e. it is preserved by scalar multiplication.
• Tf , the tangent space of L at f ∈ L, is tangent to L exactly along zTf . This means:

(i) zTf ⊂ L;
(ii) For g ∈ zTf , we have Tg = Tf ;
(iii) Tf ∩ L = zTf .

The Lagrangian submanifold L is a submanifold-germ around the unique family of points on L of
the form:

t 7−→ J(t,−z) = −z1 + t+ pt pt ∈ H−
with t ∈ HC

X in a neighbourhood (2.4) of the large radius limit point, and the above properties
should be understood in the sense of germs. The set of all tangent spaces to L forms a finite
dimensional family: every tangent space coincides with Tt = TJ(t,−z)L at J(t,−z) for a unique

t ∈ HC
X . The point J(t,−z) on L is called the J-function. Moreover we can recover the Lagrangian

submanifold L as the union of tangent spaces:

L =
⋃
f∈L

zTf =
⋃
t∈HC

X

zTt

The special geometric properties of L can be rephrased as Griffiths transversality for the family
{Tt} of semi-infinite subspaces; {Tt} is an example of Barannikov’s variation of semi-infinite Hodge
structure [7].

We saw that L is ruled by infinite-dimensional spaces zTt. The ruling structure can be understood
via the identification of L with the total space of a certain infinite-dimensional vector bundle, as
follows. Consider the vector bundle H × HC

X → HC
X endowed with the (non-extended) Dubrovin

connection ∇ = d− 1
z

∑N
i=0(φi∗)dti (see §2.4). The inverse M(t, z) = L(t, z)−1 of the fundamental

solution (see equation 2.8) defines an isomorphism of flat bundles:

M :
(
H×HC

X → HC
X ,∇

) ∼−→
(
H×HC

X → HC
X , d

)
Here Novikov variables have (again) been specialized to 1 in ∇, L(t, z) and M(t, z). We have:

M(t, z)(−z1) = J(t,−z) M(t, z)zH+ = zTt

Therefore the Lagrangian submanifold L is obtained as the projection to the fiber H of the image
of the subbundle zH+ ×HC

X under the map M :

L = (prH ◦M)
(
zH+ ×HC

X

)
and the bundle structure zH+ ×HC

X → HC
X gives the ruling on L. See Figure 1.

Using this identification, we can introduce two different co-ordinate systems on L.

flat co-ordinates: (q0, q1, q2, · · · ) 7→ (q, dF0(q)). These are the co-ordinates given by the

projection to H+; here qn =
∑N

i=0 q
i
nφi ∈ HC

X .
algebraic co-ordinates: (t, x1, x2, . . . , ) 7→ M(t, z)(x1z + x2z

2 + x3z
3 + · · · ). These are the

co-ordinates coming from the standard co-ordinates on zH+ ×HC
X ; here t, xn ∈ HC

X .
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HC
X

H H

• •

zH+ zH+

6
−z1

• •

prH ◦M
-

6

H−

•
H+

6
dF0

zTt

−z1 + HC
X

•

•

−z1 + t

W

J(t, −z)

Figure 1. The subbundle zH+ ×HC
X → HC

X (left) and the ruled Lagrangian sub-
manifold L (right). By identifying all the fibers H by the ∇-parallel transportation
in the left picture, we get the picture on the right. The zero section collapses to the
origin and the section −z1 goes to the J-function J(t,−z).

We saw that the Lagrangian submanifold L can be identified with the total space of the infinite-
dimensional vector bundle zH+ ×HC

X → HC
X . This infinite-dimensional vector bundle arises from

the finite dimensional vector bundle

F = HC
X × (HC

X × Cz)→ HC
X × Cz

as its push-forward π∗(zO(F )) along the projection π : HC
X×Cz → HC

X ; here Cz denotes the complex

plane with co-ordinate z. The finite dimensional vector bundle F over HC
X ×Cz is endowed with a

flat connection ∇ and a ∇-flat pairing (·, ·)F . The structure (F,∇, (·, ·)F ) here is given the name
TP structure in Definition 4.1 below; this terminology is borrowed from Hertling [67]. The global
quantization formalism in §4 is based on a closely related structure called a cTP structure, for
‘complete TP’ structure: we replace the Lagrangian submanifold L above with the total space of a
cTP structure. The use of algebraic co-ordinates will be important there.

Remark 3.1. Both TP structures and variations of semi-infinite Hodge structure are generaliza-
tions of the notion of Variation of Hodge Structure (VHS), and in fact reduce to it when we deal
with the small quantum cohomology of a 3-dimensional Calabi–Yau manifold. These structures
originate from K. Saito’s theory of primitive forms [104], and have been rediscovered in the context
of integrable systems, string theory, and mirror symmetry [7, 49,75].

3.4. Geometric Quantization. The quantization of a real symplectic manifold H is given by a

Hilbert space Fock(H) called the Fock space, and an assignment of an operator F̂ acting on the Fock
space Fock(H) to a smooth function F : H → R such that

[F̂1, F̂2] = i~ ̂{F1, F2}+O(~2)

where {·, ·} is the Poisson bracket and ~ is a formal variable. In geometric quantization, the con-
struction of the Fock space depends on the choice of a polarization P , i.e. an integrable Lagrangian
subbundle of TH⊗C. To emphasize the dependence on P , we denote by Fock(H;P ) the Fock space
associated to P . We illustrate this in the following example.

Example 3.2 ( [78,113]). Take H to be the symplectic vector space R2n with co-ordinates (pµ, q
µ),

µ = 1, . . . , n. Let ω =
∑n

µ=1 dpµ ∧ dqµ be the symplectic form on H. The prequantum line bundle
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is a Hermitian line bundle L→ H endowed with a Hermitian connection ∇ such that the curvature
∇2 equals −iω/~, where ~ is a positive real parameter in this example. We take the following
prequantum line bundle:

L = H × C ∇ = d− i

2~

n∑
µ=1

(pµdq
µ − qµdpµ)

The connection ∇ here is Sp(H)-invariant. For F ∈ C∞(H,R), we define

F̂ := i~∇XF + F

where XF is the Hamiltonian vector field of F (i.e. ιXFω = dF ). This operator acts on the space

C∞(H,L) of sections of L and we have [F̂ , Ĝ] = i~{̂F,G}. This is called prequantization. However,
C∞(H,L) is too big and we need to take a smaller subspace. Let P ⊂ H ⊗ C be a Lagrangian
subspace. We can view P as a subbundle of TH ⊗ C which is invariant under translation. The
space of polarized sections of L is defined to be

ΓP (H,L) = {s ∈ C∞(H,L) : ∇V s = 0 for all V ∈ P}
Note that [∇V1 ,∇V2 ] = 0 for V1, V2 ∈ P because P is Lagrangian and ∇2 = −iω/~. There are two
important special cases:

• When P ⊂ H, it is called the real polarization. In this case, ΓP (H,L) is the space of sections
of L which are covariantly constant along each leaf v + P , v ∈ H.
• When P ⊕ P = H ⊗ C, it is called a Kähler or holomorphic polarization. This corresponds

to the choice of a complex structure IP on H such that ω(v1, v2) = ω(IP v1, IP v2) and
P = (H ⊗ C)0,1. In this case, ΓP (H,L) is the space of holomorphic sections of L (with
respect to IP ).

Suppose that P is non-negative, i.e. that iω(v, v) ≥ 0 for all v ∈ P . Then one can introduce a
certain L2-metric on the space of polarized sections [78] and define the Fock space Fock(H;P ) to be
the Hilbert space of L2-polarized sections. If the flow generated by XF preserves the polarization

P as a subbundle of TH ⊗ C, then the operator F̂ preserves the subspace ΓP (H,L) and acts on
the Fock space (possibly as an unbounded operator). In particular, the quantizations of the linear
functions pµ, q

µ act on Fock(H,P ) and satisfy the canonical commutation relation: [q̂µ, p̂ν ] = i~δµν .
Thus Fock(H,P ) becomes an irreducible unitary representation of the Heisenberg algebra. Because
an irreducible unitary representation of the Heisenberg algebra is unique up to isomorphism (the
Stone–von Neumann Theorem), Schur’s Lemma shows that there exists an isomorphism

TP,P ′ : Fock(H,P )
∼−→ Fock(H,P ′)

of representations of the Heisenberg algebra. This isomorphism TP,P ′ is unique up to scalar multi-
plication. For example, when P is the subbundle spanned by ∂/∂pµ and P ′ is spanned by ∂/∂qµ,
the isomorphism TP,P ′ is given by the Fourier transformation

(3.3) ψ(q) 7−→ ψ̂(p) =
1

(2π~)n/2

∫
Rn
e−ipq/~ψ(q) dq

where we identify elements of Fock(H,P ) (respectively of Fock(H,P ′)) as functions of the qµ (re-
spectively of the pµ) by restriction to pµ = 0 (respectively to qµ = 0). The transformation TP,P ′ is
known as a Segal–Shale–Weil representation or Bogoliubov transformation.

We regard the Givental spaceH as a complexification of a real symplectic vector spaceHR and try
to apply the above scheme to it. However, sinceH is infinite-dimensional, the quantization has many
difficulties. For example, it is known that there are uncountably many irreducible representaions
of the infinite-dimensional Heisenberg algebra [54,55], and so the argument in Example 3.2 fails in
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our situation. The following heuristic discussion will be only used as a motivation6. Consider the
following prequantum line bundle:

L = H× C ∇ = d− 1

2~

∞∑
n=0

N∑
i=0

(pn,idq
i
n − qindpn,i)

Here we dropped the imaginary unit since we will ignore the metric. As the standard polarization
of H, we take P = H− which is spanned by ∂/∂pn,i. In this case, a polarized section s of L should
take the form

s = exp

(
− 1

2~
q · p

)
f(q) q · p =

∞∑
n=0

N∑
i=0

qinpn,i

for some holomorphic function f on H+. Following Givental’s convention [61], we define the quan-
tized operator of a linear function F : H → C as:

F̂ :=
1√
~
(
− ~∇XF + F

)
Then it is easy to check that the actions of pn,i, q

i
n on polarized sections are given by:

p̂n,i

(
e−

1
2~q·pf(q)

)
= e−

1
2~q·p

(√
~
∂

∂qin
f(q)

)
q̂in

(
e−

1
2~q·pf(q)

)
= e−

1
2~q·p

(
qin√
~
f(q)

)
These give the Schrödinger representation. By Dilaton shift we regard the total descendant potential
Z = exp(

∑∞
g=0 ~g−1Fg) of X (see equation 2.11) as a function on H+. (Here again all Novikov

variables Q1, . . . , Qr have been specialized to 1.) We regard the total descendant potential as a
polarized section of L by the following extension:

(3.4) Z(q,p) = exp

(
− 1

2~
q · p

)
Z(q)

Let us consider the restriction of Z to the Lagrangian submanifold L. Note that F0 is homogeneous
of degree two in q since L is a cone. Therefore:

Z ′(q) = Z(q,p)
∣∣∣
(q,p)∈L

= exp

(
− 1

2~
q · dF0

)
Z(q) = exp

(
−1

~
F0

)
Z(q)

= exp
(
F1(q) + ~F2(q) + ~2F3(q) + · · ·

)
where the genus 0 potential cancelled in the second line. Therefore we can forget about the genus-
zero potential after restricting to L. Moreover the original polarized section can be reconstructed
from this restriction if we know the submanifold L. Therefore we shall define the Fock space to be
the set of certain functions Z ′ : L → C over L of the form

Z ′ = exp

 ∞∑
g=1

~g−1Fg


(without genus-zero term). Different choices of polarization give different ways of extending func-
tions Z ′ on L to H.

6 For example, we do not construct the Fock space as a representation of the Heisenberg algebra. Our Fock space
is not even a vector space.
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Remark 3.3. Givental [61] defined the quantized operator Û on the Fock space for a linear sym-
plectic transformation U ∈ Sp(H). In particular, if U(z) is an element of the loop group LGL(HC

X)

satisfying U(−z)†U(z) = 1, it defines a symplectic transformation U of H and its quantization Û.
(Here U(−z)† is the adjoint with respect to the Poincaré pairing on HX .) This is called the Givental
group action on the Fock space. The above interpretation in geometric quantization immediately
explains the lower triangular part of the Givental group action. If the Fourier expansion of U(z) con-
tains only non-positive powers in z, then U = U(z) preserves the standard polarization H−. In this

case, we can make it act on polarized sections s via the “co-ordinate change”: s 7→ Ûs := s◦U(z)−1.
For the polarized section Z in (3.4), we have:

(ÛZ)(p,q) = exp

(
− 1

2~
p · q

)
exp

(
1

2~
W (q,q)

)
Z
(
[U(z)−1q(z)]+

)
where [U(z)−1q(z)]+ ∈ H+ denotes the non-negative part as a z-series and W (q,q) is the quadratic
form defined by:

(3.5) W (q,q) = Ω([U(z)−1q(z)]+, [U(z)−1q(z)]−)

This coincides with Givental’s formula [61, Proposition 5.3] for Û.

3.5. Ancestor-Descendant Relation. We have seen that the total descendant potential Z gives
rise to a polarized section Z which restricts over L to the potential Z ′ which does not contain the
genus-zero term. A result of Kontsevich–Manin [80, Theorem 2.1], reformulated7 by Givental [61,
§5], tells us that Z ′ coincides with the total ancestor potential (2.14) with the zeroth variable y0 set
to be zero:

Z ′(q) = eF
1(t)At

∣∣∣
y0=0, y1=x1+1, y2=x2, y3=x3,...

where (t, x1, x2, . . . ) are the algebraic co-ordinates from page 14. Set x =
∑∞

n=1 xnz
n, and notice

that q and (t,x) are related by q = [M(t, z)x]+. In other words, for g ≥ 1, we have:

Fg(q) = δg,1F
1(t) + F̄gt

∣∣∣
y0=0, y1=x1+1, y2=x2, y3=x3,...

Strictly speaking, this relation is an equality of formal power series over the Novikov ring. We shall
explain how to make sense of it as an equality of analytic functions in Theorem 6.8 below, where
we discuss the specialization to Q1 = · · · = Qr = 1.

3.6. Transformation Rule and the Fock Sheaf. We have so far discussed only local situations,
since the Lagrangian submanifold L is given a priori as a germ. Assume that L is analytically
continued to a certain global submanifold. We would like to construct a Fock sheaf over L by gluing
local Fock spaces. The essential point here is that a transversal polarization may not exist globally.
Take an open covering {Uα} of L. If each Uα is sufficiently small then we can choose a polarization
Pα ⊂ H which is transversal to L over Uα, i.e. Pα t TxL for x ∈ Uα. We take a Lagrangian subspace
S ⊂ H transversal to Pα. By the identification H = S ⊕ Pα ∼= T ∗S, we can express Uα ⊂ L as the
graph of the differential dF0 of a quadratic function:

F0 : S → C
This defines the genus-zero potential over Uα. (Here we identify Uα with a subset of S via the

projection H → S along Pα.) The third derivatives C
(0)
µνρ = ∂µ∂ν∂ρF0 in linear coordinates {xµ}

on S define a well-defined cubic tensor on L, independent of the choice of (S, Pα). The tensor∑
C

(0)
µνρdxµ ⊗ dxν ⊗ dxρ is called the Yukawa coupling.

7See Coates–Givental [33, Appendix 2] for a proof.
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Pα

PβL

Figure 2. We need to take a different polarization on each chart.

We define the local Fock space Fock(Uα;Pα) to be the set of functions Z ′ : Uα → C of the form
Z ′ = exp(

∑∞
g=1 ~g−1Fg) without the genus-zero term. When Uα ∩ Uβ 6= ∅, we shall define a

transformation rule8 (gluing map)

Tαβ : Fock(Uα ∩ Uβ;Pα)→ Fock(Uα ∩ Uβ;Pβ)

induced by the change of polarizations. This defines a sheaf of Fock spaces—the Fock sheaf —over
L. Moreover, if there exists a linear symplectic transformation U ∈ Sp(H) which leaves the global
Lagrangian submanifold invariant (U(L) = L), then U acts on sections of the Fock sheaf by pull-
back along U followed by the transformation rule induced from the difference of polarizations. (In
the context of mirror symmetry, such an automorphism U of L arises from the monodromy of the
mirror family.) For the Fock sheaf so constructed, we can ask the following questions.

Question 3.4. Does the total descendant potential extend to a global section of the Fock sheaf?

and if so:

Question 3.5. Let U ∈ Sp(H) be a symplectic transformation preserving L. Is the global section
invariant under U? (This should imply a “modularity” of the Gromov–Witten potential.)

The transformation rule Tαβ is described as follows. Let Tx denote the tangent space of L at
x ∈ L. For each x ∈ Uα ∩ Uβ, we have Tx ⊕ Pα = Tx ⊕ Pβ = H. Since Tx, Pα, Pβ are Lagrangian
subspaces, we can identify Pα, Pβ with the dual space of Tx via the symplectic form Ω. Take
ϕ ∈ T ∗x and let vα(ϕ) ∈ Pα, vβ(ϕ) ∈ Pβ be the corresponding vectors. Then vβ(ϕ) − vα(ϕ) is
symplectic-orthogonal to Tx, and thus belongs to Tx. Thus we have a map:

∆(x) : T ∗x −→ Tx ϕ 7−→ vβ(ϕ)− vα(ϕ)

We can regard ∆(x) as an element of Tx⊗Tx. Then ∆ defines a symmetric bivector field on Uα∩Uβ.
The polarization Pα defines an affine flat structure on Uα, via the open embedding to the vector
space Uα ↪→ H/Pα. Let {xµ} be a flat co-ordinate system on Uα. Write ∆ = ∆µν∂xµ ⊗ ∂xν . For
Z ′α = exp(

∑∞
g=1 ~g−1Fgα) ∈ Fock(Uα ∩ Uβ;Pα), we define:

(3.6) (TαβZ ′α)(x) := e
1
2

∫
C

(0)
µνρ(x)∆µν(x)dxρ exp

(
~
2

∆µν(x)∂yµ∂yν

)
Z ′′α(x; y)

∣∣∣∣
y=0

where
Z ′′α(x; y) = Z ′α(x+ y)e

1
~(F0(x+y)−F0(x)−(∂µF0(x))yµ− 1

2
(∂µ∂νF0)(x)yµyν)

8Our transformation rule Tαβ is defined up to a scalar multiple, due to the ambiguity at genus one, and TγαTβγTαβ =
cαβγ id for some constant cαβγ . Later we ignore the constant ambiguity and work with the genus-one one-form dF1

rather than the potential function F1. See Definition 4.56 and Proposition 4.70.



20 TOM COATES AND HIROSHI IRITANI

Remark 3.6. Take Lagrangian subspaces Sα, Sβ ⊂ H transversal to Pα, Pβ respectively. These
define genus-zero potentials F0

α, F0
β as above, and we set Zα = exp(F0

α/~)Z ′α, Zβ = exp(F0
β/~)Z ′β

for Z ′α ∈ Fock(Uα;Pα), Z ′β ∈ Fock(Uβ;Pβ). The definition (3.6) originates from the asymptotic

expansion as ~→ 0 of the Fourier-type transformation (cf. equation 3.3)

Zβ(x) =

∫
Sα

e−Gαβ(x,x′)/~Zα(x′) dx′

which would make rigorous sense if H were finite dimensional. In the finite dimensional case, this
integral representation and its asymptotic expansion were used by Aganagic–Bouchard–Klemm [2,
equation 2.8] to describe the transformation of topological string partition functions. HereGαβ(x, x′)
is a quadratic function (the so-called generating function) defined by

dGαβ(x, x′) =
∑

yµdx
µ −

∑
y′µdx

′µ

where (xµ, yµ) and (x′µ, y′µ) are Darboux co-ordinate systems on H compatible with the decompo-
sitions H = Sα ⊕ Pα and H = Sβ ⊕ Pβ respectively.

Remark 3.7. The discussion here is far from being rigorous. For instance, in the previous Remark
we assumed that (xµ, x′µ) form a co-ordinate system on H, which would hardly be true in our
infinite-dimensional setting. In §§4.10–4.12, we set up a correct function space for the Fock space
and show that the transformation rule is indeed well-defined. We will give another formulation
based on L2-topology in §5.3, which is more similar to the exposition here.

4. Global Quantization: General Theory

We now construct a rigorous version of the structure sketched out in §3. Let M be a complex
manifold and let OM denote the analytic structure sheaf. The space M will be the base space
of a (c)TP structure. Examples include the cohomology of a smooth projective variety (A-model
TP structure) and the base space of an unfolding of singularities (B-model TP structure). The
discussion in this section also applies to the case whereM is replaced with the formal neighbourhood
of a point on it, and in particular applies to formal Frobenius manifolds (such as those associated
to the A-model or B-model).

4.1. TP and TEP Structure. A TP structure is a certain coherent sheaf with extra structure
over M× C. Fix a co-ordinate z on the complex line C. Let (−) : M× C →M× C be the map
sending (t, z) to (t,−z) and let π : M× C→M be the projection.

Definition 4.1.

(1) A TP structure (F ,∇, (·, ·)F ) with base M consists of a locally free OM×C-module F of
rank N + 1, and a flat connection ∇ with pole along z = 0

∇ : F → π∗Ω1
M ⊗OM×C F(M×{0})

so that for f ∈ OM×C, s ∈ F , and tangent vector fields v1, v2 ∈ ΘM:

∇(fs) = df ⊗ s+ f∇s [∇v1 ,∇v2 ] = ∇[v1,v2]

together with a non-degenerate pairing

(·, ·)F : (−)∗F ⊗OM×C F → OM×C
which satisfies

((−)∗s1, s2)F = (−)∗((−)∗s2, s1)F
d((−)∗s1, s2)F = ((−)∗∇s1, s2)F + ((−)∗s1,∇s2)F

for s1, s2 ∈ F . Here F(M× {0}) denotes the sheaf of sections of F with poles of order at
most 1 along the divisor M×{0} ⊂ M× C.
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(2) A TEP structure is a TP structure such that the connection ∇ is extended in the z-direction
with a pole of order 2 along z = 0. More precisely, it is a TP structure (F ,∇, (·, ·)F ) equipped
with a π−1OM-module map

∇z∂z : F → F(M×{0})
such that for f ∈ OM×C, s, s1, s2 ∈ F , and v ∈ ΘM:

∇z∂z(fs) = z(∂zf)s+ f∇z∂zs [∇v,∇z∂z ] = 0

z∂z((−)∗s1, s2)F = ((−)∗∇z∂zs1, s2)F + ((−)∗s1,∇z∂zs2)F

Combining the M-direction with the z-direction, we can view ∇ as a map:

∇ : F → (π∗Ω1
M ⊕OM×Cz−1dz)⊗OM×C F(M×{0})

Remark 4.2. These notions are due to Hertling [67]. TEP here stands for Twister, Extension and
Pairing. Definitions similar to the one above were given in [38, Definition 2.6], [72, Definition 2.1].

Example 4.3. An important class of examples of TEP structure is provided by the quantum
cohomology of a projective algebraic variety X. If the genus-zero Gromov–Witten potential F 0

X
converges in the sense of §2.3 then, as discussed there, we can specialize Novikov variables, setting
Q1 = · · · = Qr = 1, and regard F 0

X as an analytic function on an open subset (2.4) of HX ⊗ C.
Denote this open set byMA. Then the Dubrovin connection (see §2.4) for the quantum cohomology
of X defines a TEP structure over the analytic space M = MA, which we call the A-model TEP
structure for X, by setting:

(4.1)

• F = HX ⊗Q OM×C;

• ∇ = d− 1
z

∑N
i=0(φi∗)dti + ( 1

z2 (E∗) + 1
zµ)dz;

• (α(−z), β(z))F =
∫
X α(−z) ∪ β(z);

where E is the Euler vector field (2.5) and µ is the grading operator (2.6). In the case where the
genus-zero Gromov–Witten potential is not known to converge, the same procedure defines a TEP
structure over the formal neighbourhood of the origin in HX ⊗ Λ, viewed as a formal scheme over
Λ.

4.2. cTP and cTEP Structure. A cTP structure is a certain coherent sheaf with extra structure
over M× Â1, where Â1 = Spf C[[z]] denotes the formal neighbourhood of zero in C. A sheaf of

modules overM× Â1 is the same thing as a sheaf of OM[[z]]-modules. Let (−) : M× Â1 →M× Â1

be the map sending (t, z) to (t,−z) as before. For an OM[[z]]-module F, the structure of an OM[[z]]-
module on the pull-back (−)∗F is defined by f(z)(−)∗α = (−)∗f(−z)α for f(z) ∈ OM[[z]] and
α ∈ F.

Definition 4.4.

(1) A cTP structure (F,∇, (·, ·)F) with base M consists of a locally free OM[[z]]-module F of
rank N + 1, and a flat connection ∇ with pole along z = 0

∇ : F→ Ω1
M ⊗OM z−1F

so that for f ∈ OM[[z]], s ∈ F, and tangent vector fields v1, v2 ∈ ΘM:

∇(fs) = df ⊗ s+ f∇s [∇v1 ,∇v2 ] = ∇[v1,v2]

together with a pairing

(·, ·)F : (−)∗F⊗OM[[z]] F→ OM[[z]]

which satisfies

((−)∗s1, s2)F = (−)∗((−)∗s2, s1)F

d((−)∗s1, s2)F = ((−)∗∇s1, s2)F + ((−)∗s1,∇s2)F
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for s1, s2 ∈ F. The pairing (·, ·)F is assumed to be non-degenerate in the sense that the
induced pairing on F0 := F/zF

(·, ·)F0 : F0 ⊗OM F0 → OM
is non-degenerate. We regard z−1F as a subsheaf of F[z−1] := F⊗OM[[z]] OM((z)).

(2) A cTEP structure is a cTP structure such that the connection ∇ is extended in the z-
direction with a pole of order 2 along z = 0. More precisely, it is a cTP structure (F,∇, (·, ·)F)
equipped with an OM-module map

∇z∂z : F→ z−1F

such that for f ∈ OM[[z]], s, s1, s2 ∈ F, and v ∈ ΘM:

∇z∂z(fs) = z(∂zf)s+ f∇z∂zs [∇v,∇z∂z ] = 0

z∂z((−)∗s1, s2)F = ((−)∗∇z∂zs1, s2)F + ((−)∗s1,∇z∂zs2)F

Combining the M-direction with the z-direction, we can view ∇ as a map:

∇ : F→ (Ω1
M ⊕OMz−1dz)⊗OM z−1F

Remark 4.5. A TP structure (respectively a TEP structure) in Definition 4.1 gives rise to a cTP
structure (respectively a cTEP structure) by restriction to the formal neighbourhood of z = 0 in
M × C. In particular, the A-model TEP structure in Example 4.3 defines the A-model cTEP
structure over the formal neighbourhood of z = 0. On the other hand, we do not know if every cTP
structure admits an extension to M× C. The first letter “c” of cTP stands for “complete”.

Remark 4.6. In the remainder of this section we work with cTP structures, without extending
the connection to the z-direction. Consequently the framework that we construct applies to cases,
such as equivariant quantum cohomology, where the flat connection cannot be extended to the
z-direction. An extension to the z-direction will play an important role when we construct a
semisimple opposite module in §7.1, and in certain Virasoro symmetries of the Fock space.

4.3. Total Space of a cTP Structure. We begin by studying the geometry of the total space of
a cTP structure. The total space of a cTP structure is an algebraic analogue of Givental cone L
discussed in §3.3.

Let (F,∇, (·, ·)F) be a cTP structure. Set F[z−1] := F ⊗OM[[z]] OM((z)). This is a locally free
OM((z))-module. The pairing (·, ·)F induces a symplectic pairing

Ω: F[z−1]⊗OM F[z−1]→ OM
defined by:

(4.2) Ω(s1, s2) = Resz=0((−)∗s1, s2)F dz

Note that this is anti-symmetric: Ω(s1, s2) = −Ω(s2, s1). We define the dual modules (znF)∨, n ∈ Z,
and F[z−1]∨ as:

(znF)∨ := lim−→
l

HomOM(znF/zlF,OM)

F[z−1]∨ := lim←−
n

lim−→
l

HomOM(z−nF/zlF,OM)
(4.3)

There is a sequence of natural projections:

F[z−1]∨ � · · ·� (z−2F)∨ � (z−1F)∨ � F∨ � (zF)∨ � · · ·
The dual (znF)∨ has the structure of an OM[[z]]-module such that the action of z is nilpotent. It is

locally isomorphic to (OM((z))/OM[[z]])⊕(N+1) as an OM[[z]]-module, where N + 1 is the rank of F.
Also F[z−1]∨ is a locally free OM((z))-module. The dual flat connection ∇∨ is defined by:

∇∨ : (z−1F)∨ → F∨ ⊗OM Ω1
M 〈∇∨ϕ, s〉 := d〈ϕ, s〉 − 〈ϕ,∇s〉(4.4)
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The symplectic pairing gives an isomorphism

F[z−1] ∼= F[z−1]∨ s 7→ ιsΩ = Ω(s, ·)
which in turn induces the dual symplectic pairing Ω∨ on F[z−1]∨:

(4.5) Ω∨ : F[z−1]∨ ⊗OM F[z−1]∨ → OM
Definition 4.7. The total space L of a cTP structure (F,∇, (·, ·)F) is the total space of the infinite-
dimensional vector bundle associated to zF. As a set, L consists of all pairs (t,x) such that t ∈ M
and x ∈ zFt. Let pr : L → M denote the natural projection. We endow L with the structure of a
ringed space so that we can regard it as a “fiberwise algebraic variety” over M. For a connected
open set U ⊂M such that F|U is a free OU [[z]]-module, the ring of regular functions on pr−1(U) is
defined to be the polynomial ring over O(U):

(4.6) O(pr−1(U)) := Sym•O(U) Γ(U, (zF)∨)

A basis of open sets of L is given by the complements in pr−1(U) of the zero-loci of regular functions
in O(pr−1(U)) for all such open sets U ⊂M. For a general open set V ⊂ L in this topology, O(V )
is the ring9 of C-valued functions which can be written locally as quotients f/g of some polynomials
f, g ∈ O(pr−1(U)).

Let U ⊂ M be a connected open set such that F|U is a free OU [[z]]-module. Then by (4.6),
O(pr−1(U)) is graded by the degree of polynomials:

On(pr−1(U)) = Symn
O(U) Γ(U, (zF)∨)

The OM-module (zF)∨ has the increasing filtration (zF)∨l = HomOM(zF/zl+2F,OM). This induces
the exhaustive increasing filtration on O(pr−1(U)):

Ol(pr−1(U)) = O(U) +
∞∑
n=1

∑
l1,...,ln≥0
l1+···+ln≤l

Γ
(
U, (zF)∨l1(zF)∨l2 · · · (zF)∨ln

)
l ≥ 0

O−1(pr−1(U)) := {0}
such that

{0} ⊂ O0(pr−1(U)) ⊂ O1(pr−1(U)) ⊂ O2(pr−1(U)) ⊂ · · ·
and Ol1(pr−1(U))Ol2(pr−1(U)) ⊂ Ol1+l2(pr−1(U)).

Let U ⊂M be a connected open set such that F|U is a free OU [[z]]-module. Take a trivialization
F|U ∼= CN+1 ⊗ OU [[z]]. This induces a trivialization F[z−1]|U ∼= CN+1 ⊗ OU ((z)) and defines a dual
frame xin ∈ F[z−1]∨, n ∈ Z, 0 ≤ i ≤ N , by:

xin : F[z−1]
∣∣∣
U

∼= CN+1 ⊗OU ((z)) −→ OU
∑
m∈Z

N∑
j=0

ajmejz
m 7−→ ain(4.7)

9When V = pr−1(U) for a connected open set U such that F|U can be trivialized, one can check that O(V ) coincides
with the original definition (4.6). More generally, for the complement D(h) of the zero-locus of h ∈ O(pr−1(U)),
O(D(h)) is the localization of the polynomial ring O(pr−1(U)) by h:

O(D(h)) = O(pr−1(U))h

Proof. Each element r ∈ O(D(h)) can be locally written as r = f/g for some f, g ∈ O(pr−1(U ′)) with U ′ ⊂ U . Then
by the standard argument using Hilbert’s Nullstellensatz, we can see that for each t ∈ U ′, there exists m ∈ N such
that hm(f/g) restricted to the fiber zFt is a polynomial on zFt (m here can depend on t). On the other hand, it is

clear that we can take m to be deg(g). Then rhdeg(g) is a polynomial in fiber variables with coefficients in holomorphic
functions on the base U . �
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Here ei, 0 ≤ i ≤ N , denotes the standard basis of CN+1. By restricting xin to zF, we obtain fiber
co-ordinates xin, n ≥ 1, 0 ≤ i ≤ N , on L|U . Assume that dimM = N +1 = rankF and let t0, . . . , tN

be a local co-ordinate system on U . We call {ti, xin : 0 ≤ i ≤ N, n ≥ 1} an algebraic local co-ordinate
system on L. This corresponds to the algebraic co-ordinate system on the Lagrangian submanifold
L discussed on page 14. In §4.7 below, we will introduce a flat co-ordinate system on the formal
neighbourhood (or an L2 or nuclear neighbourhood) of the fiber Lt = pr−1(t). We have:

O(pr−1(U)) = O(U)
[
xin : 0 ≤ i ≤ N,n ≥ 1

]
The grading is given by the degree as polynomials in the variables xin. The filtration is given by:

(4.8) Ol(pr−1(U)) =


∞∑
n=0

∑
l1,...,ln≥0
l1+···+ln≤l

∑
i1,...,in≥0

f l1,...,lni1,...,in
(t)xi1l1+1 · · ·xinln+1 : f l1,...,lni1,...,in

(t) ∈ O(U)


Under this trivialization, we present the flat connection ∇ as

(4.9) ∇s = ds− 1

z
C(t, z)s

where C(t, z) =
∑N

i=0 Ci(t, z)dti ∈ End(CN+1)⊗ Ω1
U [[z]] and s ∈ CN+1 ⊗OU [[z]] ∼= F|U . The residual

part C(t, 0) = (−z∇)|z=0 defines a section of End(F0) ⊗ Ω1
U , which is independent of the choice of

trivialization. In the case of the A-model TEP structure in Example 4.3, we have C(t, z) = C(t, 0) =∑N
i=0(φi∗)dti with respect to the standard trivialization.

Definition 4.8 (The open subset L◦ ⊂ L). Define the following open subsets:

F◦0,t := {x1 ∈ F0,t : TtM→ F0,t, v 7→ Cv(t, 0)x1 is an isomorphism}
L◦ := {(t,x) ∈ L : t ∈M, x ∈ zFt, (x/z)|z=0 ∈ F◦0,t}

We set F◦0 =
⋃
t∈M F◦0,t. This is an open subset of the total space of F0.

Henceforth we assume that our cTP structure (F,∇, (·, ·)F) is miniversal, which means:

Assumption 4.9. At every point t ∈M, F◦0,t is a non-empty Zariski open subset of F0,t.

This assumption implies in particular that dimM = rankF. Miniversality holds for the cTP
structure defined by quantum cohomology because φ0 = 1 is a section of F◦0. Using an algebraic
local co-ordinate system {ti, xin} on L, we can write L◦ as the complement of the zero-locus of the
degree N + 1 polynomial P (t, x1) defined by

(4.10) P (t, x1) := (−1)N+1 det
(
C0(t, 0)x1, C1(t, 0)x1, . . . , CN (t, 0)x1

)
∈ O(U)[x0

1, . . . , x
N
1 ]

where Ci(t, z) = C∂/∂ti(t, z). We call P the discriminant. More invariantly, we can think of

P (t, x1)dt0 ∧ · · · ∧ dtN as a section of the line bundle pr∗(det(F0) ⊗ KM) over L. In the case
of the A-model TEP structure in Example 4.3, we have P (t, x1) = det(−x1∗t) under the standard
trivialization. The ring of regular functions over pr−1(U)◦ := pr−1(U) ∩ L◦ is

O(pr−1(U)◦) = O(U)[{xin}n≥1,0≤i≤N , P (t, x1)−1].

Since P (t, x1) is homogeneous in x1 and lies in the zeroth filter,O(pr−1(U)◦) inherits the grading and
the filtration. Since we will almost always deal with open sets of the form pr−1(U) or pr−1(U)◦, we
will omit the domain pr−1(U) or pr−1(U)◦ from the notation, writing e.g. On, Ol for On(pr−1(U)),
Ol(pr−1(U)) (or for On(pr−1(U)◦), Ol(pr−1(U)◦)). We also write On

l := On ∩Ol.
The sheaf Ω1 of one-forms on L is defined on a local co-ordinate chart as

Ω1 =
N⊕
i=0

Odti ⊕
∞⊕
n=1

N⊕
i=0

Odxin
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and then glued in the obvious way. The grading and the filtration on Ω1 are determined by:

deg(dti) = 0 deg(dxin) = 1 filt(dti) = −1 filt(dxin) = n− 1(4.11)

Here filt(y) denotes the least number m such that y belongs to the mth filter. We have:

(Ω1)nl =
N⊕
i=0

On
l+1dt

i ⊕
⊕

l1+l2≤l

N⊕
i=0

On−1
l1

dxil2+1

More generally, we set:(
(Ω1)⊗m

)n
l

=
∑

l1+···+lm≤l

∑
n1+···+nm=n

(Ω1)n1
l1
⊗ · · · ⊗ (Ω1)nmlm

The sheaf Θ of tangent vector fields on L is the dual of Ω1:

Θ := HomO(Ω1,O) =
(locally)

N∏
i=0

O∂i ×
∞∏
n=1

N∏
i=0

O∂n,i

where ∂i := ∂/∂ti, ∂n,i := ∂/∂xin. Note that Ω1 is the direct sum whereas Θ is the direct product.

4.4. Yukawa Coupling and Kodaira–Spencer Map. Recall from §3.6 that the Yukawa coupling
is the third derivative of the genus-zero potential. In terms of an algebraic local co-ordinate system,
this has the following simple definition. We start by noting that the flatness of ∇ implies

[Ci(t, 0), Cj(t, 0)] = 0 for all i, j.

Also the flatness of the pairing implies:

(Ci(t, 0)s1, s2)F0 = (s1, Ci(t, 0)s2)F0

Hence the operators Ci(t, 0) together yield a structure similar to a Frobenius algebra. (In order to
define a Frobenius algebra structure on F0, one needs to choose an identity element from F◦0.)

Definition 4.10. The Yukawa coupling is a symmetric cubic tensor

Y =
∑
i,j,h

C
(0)
ijhdt

i ⊗ dtj ⊗ dth ∈ ((Ω1)⊗3)2
−3

on L defined in local co-ordinates by:

C
(0)
ijh(t,x) =

(
Ci(t, 0)x1, Cj(t, 0)Ch(t, 0)x1

)
F0

x1 = (x/z)|z=0

The tensor Y is the pull-back of a cubic tensor on F0.

Let pr : L → M denote the natural projection. We define the pull backs of the sheaves znF,
F[z−1], (znF)∨, F[z−1]∨ to L as follows10.

pr∗(znF) := lim←−
l

pr∗(znF/zlF) ∼= (pr−1 znF)⊗pr−1OM[[z]]O[[z]]

pr∗ F[z−1] := lim←−
l

pr∗(F[z−1]/zlF) ∼= (pr−1 F[z−1])⊗pr−1OM((z))O((z))

pr∗(znF)∨ := (pr−1(znF)∨)⊗pr−1OM O (the standard definition)

pr∗ F[z−1]∨ := lim←−
l

pr∗(z−lF)∨ ∼= (pr−1 F[z−1]∨)⊗pr−1OM((z))O((z))

(4.12)

10Note that the standard pull-back pr−1(znF)⊗pr−1 OMO of znF is different from the above definition of pr∗(znF).

We take the completion with respect to the z-adic topology.
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These are locally free modules over, respectively, O[[z]], O((z)), O((z))/O[[z]], and O((z)). The

pull-back pr∗ F admits a flat connection ∇̃ := pr∗∇:

(4.13) ∇̃ : pr∗ F→ Ω1 ⊗̂ pr∗(z−1F)

where ⊗̂ is the completed tensor product Ω1 ⊗̂ pr∗(z−1F) = lim←−n(Ω1 ⊗ pr∗(z−1F/znF)). A local

trivialization F|U ∼= CN+1⊗OU [[z]] induces a trivialization pr∗ F|pr−1(U)
∼= CN+1⊗O[[z]]. Under this

trivialization, we can write, using notation as in (4.9):

∇̃i = ∇̃∂/∂ti = ∂i −
1

z
Ci(t, z) ∇̃n,i = ∇̃∂/∂xin = ∂n,i, n ≥ 1

The trivialization also induces a trivialization pr∗ F[z−1]|pr−1(U)
∼= CN+1 ⊗O((z)). We denote by11

{ϕin : n ∈ Z, 0 ≤ i ≤ N} the local frame of pr∗ F[z−1]∨ defined by

ϕin : pr∗ F[z−1]
∣∣∣
pr−1(U)

∼= CN+1 ⊗O((z))→ O
∑
m∈Z

N∑
j=0

ajmejz
m 7→ ain(4.14)

(cf. equation 4.7). The tautological section x of pr∗(zF) is defined by

x(t,x) = x

where (t,x) denotes the point x ∈ zFt on L.

Definition 4.11. The Kodaira–Spencer map KS: Θ→ pr∗ F is defined by:

KS(v) = ∇̃vx v ∈ Θ

The dual Kodaira–Spencer map KS∗ : pr∗ F∨ → Ω1 is defined by:

KS∗(ϕ) = ϕ(∇̃x) ϕ ∈ pr∗ F∨

The maps KS and KS∗ are isomorphisms over L◦ ⊂ L.

In terms of the Lagrangian submanifold L in §3.3, the Kodaira–Spencer map corresponds to the
differential dι of the embedding ι : L ↪→ H; see also §5.3, §9.3.

Notation 4.12. For CN+1-valued power series f =
∑

n∈Z
∑N

i=0 a
i
neiz

n in z, we write [f ]in = ain.

Here e0, . . . , eN are the standard basis of CN+1.

Remark 4.13. In algebraic local co-ordinates {ti, xin} on L, we have:

(4.15)

KS(∂i) = −Ci(t, z)(x/z)
KS(∂n,i) = eiz

n n ≥ 1

KS∗(ϕin) = [dx− z−1C(t, z)x]in n ≥ 1

Here x =
∑∞

n=1 xnz
n and xn =

∑N
i=0 x

i
nei. (Note that KS∗(ϕi0) = −[C(t, 0)x1]i.) These formulae

make clear that KS and KS∗ are isomorphisms over L◦.

Lemma 4.14. The Yukawa coupling Y can be written as (id⊗(KS∗)⊗2) pr∗Υ for the following
section Υ ∈ Ω1

M ⊗ F∨ ⊗ F∨:

Υ(X, v,w) = ([v], CX(t, 0)[w])F0
X ∈ ΘM, v, w ∈ F

11We denote the frame of F[z−1]∨ by {xin} and the frame of pr∗ F[z−1]∨ by {ϕin} so that the co-ordinates on L and
the frame of pr∗ F[z−1]∨ are not confused.
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Proof. Note that KS∗(ϕi0) = −∑j [Cj(t, 0)x1]idtj by (4.15). Therefore:

Y =

N∑
i=0

N∑
j=0

N∑
h=0

(
Cj(t, 0)x1, Ci(t, 0)Ch(t, 0)x1

)
F0
dti ⊗ dtj ⊗ dth

=
N∑
i=0

N∑
j=0

N∑
h=0

N∑
f=0

N∑
g=0

(
ef , Ci(t, 0)eg

)
F0

[Cj(t, 0)x1]f [Ch(t, 0)x1]gdti ⊗ dtj ⊗ dth

=

N∑
i=0

N∑
f=0

N∑
g=0

(
ef , Ci(t, 0)eg

)
F0
dti ⊗KS∗(ϕf0)⊗KS∗(ϕg0)

(4.16)

The conclusion follows. �

4.5. Opposite Modules and Frobenius Manifolds. We now introduce the notion of opposite
module. In the construction of the Fock space, an opposite module plays the role of a polarization:
see §3.4. The content in this section is an adaptation of [38, §2.2.2] to the setting of miniversal cTP
structures (F,∇, (·, ·)F). Opposite modules were first used in singularity theory by M. Saito [105] in
order to construct K. Saito’s flat structure [104], or Dubrovin’s Frobenius manifold structure [49],
on the base space of miniversal unfolding of a singularity. A closely related discussion can be found
in Sabbah [102, VI, §2] and Hertling [67, §5.2].

Definition 4.15. A pseudo-opposite module P for a cTP structure (F,∇, (·, ·)F) is an OM-
submodule P of F[z−1] satisfying the following two conditions:

(Opp1): (opposedness) F[z−1] = F⊕ P; and
(Opp2): (isotropy) Ω(P,P) = 0.

A pseudo-opposite module P is said to be parallel if it satisfies

(Opp3): ∇ preserves P, i.e. ∇P ⊂ Ω1
M ⊗ P.

If P satisfies (Opp1–Opp3) and

(Opp4): (z−1-linearity) z−1P ⊂ P

then it is called an opposite module. When a pseudo-opposite module fails to satisfy the parallel
condition (Opp3), it is said to be curved.

Suppose that (F,∇, (·, ·)F) is a cTEP structure. An opposite module P for the underlying cTP
structure is said to be homogeneous if it satisfies

(Opp5): (homogeneity) ∇z∂zP ⊂ P.

The notion of a (pseudo-)opposite module is local. For an open set U ⊂M, P is called a (pseudo-
)opposite module over U if it is a (pseudo-)opposite module of the restriction (F,∇, (·, ·)F)|U .

Example 4.16. The A-model cTEP structure (see Example 4.3 and Remark 4.5) associated to a
smooth projective variety X admits a standard opposite module Pstd defined by:

Pstd = HX ⊗Q z
−1OMA

[z−1]

Moreover this opposite module is homogeneous. See Remark 4.22 below for the relationship between
a homogeneous opposite module and a Frobenius manifold structure.

A pseudo-opposite module P is necessarily a locally free OM-module with a countable basis
because P ∼= F[z−1]/F by opposedness (Opp1). We observe that an opposite module exists at least
in the formal neighbourhood of any point t in M.

Lemma 4.17. There exists an opposite module P in the formal neighbourhood M̂ of every point
t ∈ M. Here an opposite module in the formal neighbourhood means an OM̂-submodule P of

F̂[z−1] = lim←−n F[z−1]/mn
t F[z−1] satisfying the conditions (Opp1)-(Opp4) in Definition 4.15 with
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F[z−1] and M there replaced by F̂[z−1] and M̂, where mt is the maximal ideal of the local ring
OM,t.

Proof. The fiber Ft at t is a free C[[z]]-module of rank N + 1. We claim that there exists a basis
e0, . . . , eN of Ft over C[[z]] such that (ei, ej)F is independent of z. Take any basis e′0, . . . , e

′
N of Ft. By

transforming the basis by an element in GL(N + 1,C), one can assume that (e′i, e
′
j) = ciδij +O(z)

for some non-zero element ci ∈ C. After a further change of basis [e′0, . . . , e
′
N ] = [e0, . . . , eN ]A(z)

with A(z) = I + A1z + A2z
2 + · · · , we can assume that (ei, ej)F = ciδij . Once we have such

a basis, we can define a free C[z−1]-submodule Pt of Ft[z
−1] by Pt =

⊕N
i=0 C[z−1]z−1ei. This

is opposite to Ft, z
−1-linear and isotropic with respect to Ω. Next we extend it to the formal

neighbourhood of t. Let s0, . . . , sN ∈ mt be a regular system of parameters of the local ring OM,t.
We extend the basis e0, . . . , eN of Ft to a frame ẽ0, . . . , ẽN of F over an open neighbourhood of t.
This trivializes F in the formal neighbourhood: F|M̂ =

⊕N
i=0 C[[z, s0, . . . , sN ]]ẽi. In this frame, we

can solve for a flat section fi(s) ∈ F̂[z−1] =
⊕N

i=0 C((z−1))[[s0, . . . , sN ]]ẽi such that fi(0) = ei. Then

P =
⊕N

i=0 C[z−1][[s0, . . . , sN ]]z−1fi is parallel with respect to ∇ and gives an opposite module over

the formal neighbourhood M̂. �

Proposition 4.18 (cf. [38, §2.2.2], [73, Lemma 3.8]). For an open set U ⊂ M and an opposite
module P over U , the following hold.

(i) The natural maps F0 = F/zF← F ∩ zP→ zP/P are isomorphisms of OU -modules.
(ii) We have F = (F ∩ zP) ⊗ C[[z]] ∼= (zP/P) ⊗ C[[z]], which we call a flat trivialization. Note

that zP/P is a locally free coherent OU -module with a flat connection, and let ∇0 : zP/P→
Ω1
U ⊗OU (zP/P) denote the flat connection induced by ∇.

(iii) Under the flat trivialization, the connection ∇ takes the form

∇ = ∇0 − 1

z
C(t)

where C(t) is a z-independent End(zP/P)-valued one-form.
(iv) Under the flat trivialization, the pairing (·, ·)F induces and can be recovered from a z-

independent symmetric pairing

(·, ·)zP/P : (zP/P)⊗ (zP/P)→ OU
which is flat with respect to ∇0.

(v) Assume that there exists a section ζ of F ∩ zP over U which is flat with respect to ∇0 in
the flat trivialization and whose image under F → F0 = F/zF lies in F◦0. (This assumption
implies the miniversality of (F,∇, (·, ·)F).) We call such a section ζ a primitive section
associated to P. Then the base U carries the structure of a Frobenius manifold without
Euler vector field. It consists of:

– A flat symmetric OU -bilinear metric g : ΘU ⊗OU ΘU → OU , defined by:

g(v1, v2) = (z∇v1ζ, z∇v2ζ)F

– A commutative and associative product ∗ : ΘU ⊗OU ΘU → ΘU , defined by:

z∇v1z∇v2ζ = −z∇v1∗v2ζ

– A flat identity vector field e ∈ ΘU for the product ∗, defined by:

−z∇eζ = ζ

such that the connection ∇λv = ∇LC
v − λ(v∗) on the tangent sheaf ΘU is a flat pencil of

connections with parameter λ. Here ∇LC denotes the Levi-Civita connection for the metric
g.
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The same statements (i)-(v) here hold, with U replaced by M̂, for P an opposite module over the

formal neighbourhood M̂ of t ∈M (in the sense of Lemma 4.17).

Proof. The proof is similar to that in [38, §2.2.2]. For (i), the injectivity of the maps F∩zP→ F/zF,
F ∩ zP → zP/P follows from opposedness F[z−1] = F⊕ P = zF⊕ zP. For a local section s ∈ F/zF,
take a local lift s̃ ∈ F. By opposedness, one can write s̃ = s′ + s′′ with s′ ∈ zF and s′′ ∈ zP. Now
s′′ = s̃−s′ ∈ F∩zP and the image of s′′ in F/zF equals s. A similar argument shows the surjectivity
of F ∩ zP → zP/P. For (ii), we need to show that any local section s ∈ F has a unique expression
s =

∑∞
n=0 snz

n with sn ∈ F ∩ zP. The zeroth term s0 is given as the unique lift of [s] ∈ F/zF to
F ∩ zP (which exists by (i)). Then s − s0 ∈ zF. The first term s1z is given as the unique lift of
[s−s0] ∈ zF/z2F to zF∩z2P. Then s−s0−s1z ∈ z2F. Repeating this, we get the desired expression.
For (iii), take a section s ∈ F ∩ zP. Then ∇s = Ω1

U ⊗ (z−1F ∩ zP) because ∇(F) ⊂ Ω1
U ⊗ z−1F and

∇(zP) ⊂ Ω1
U ⊗ zP. By opposedness F[z−1] = F ⊕ P, we have z−1F ∩ zP = (z−1F ∩ P) ⊕ (F ∩ zP).

With respect to this decomposition, we can write ∇s = z−1C(t)s ⊕ ∇0s. For (iv), it suffices to
show that (s1, s2)F is independent of z for s1, s2 ∈ F ∩ zP. Because P is isotropic and z−1-linear,
we have (P,P)F ⊂ z−2OM[z−1]. Therefore (s1, s2)F ∈ (zP, zP)F ⊂ OM[z−1]. On the other hand
(s1, s2)F ∈ OM[[z]]. The ∇0-flatness of (·, ·)zP/P follows from the ∇-flatness of (·, ·)F and (iii). For
(v), one needs to show that the isomorphism ΘU 3 v 7→ −z∇vζ = Cv(t)ζ ∈ F ∩ zP translates
the given structures on F into the Frobenius manifold structure. The details here are left to the
reader. �

Example 4.19. The standard trivialization (4.1) of the A-model TEP structure is the flat trivial-
ization associated to the standard opposite module Pstd in Example 4.16.

Remark 4.20. The product ∗ in Proposition 4.18(v) does not depend on the choice of opposite
module P. In fact, the tangent sheaf ΘM of the base spaceM of a miniversal cTP structure carries
a natural product ∗ such that the embedding

ΘM → EndOM(F0) v 7→ z∇v
becomes a homomorphism of OM-algebras. The product ∗ endows M with the structure of an
F -manifold [66], since it arises from a Frobenius manifold structure at least infinitesimally by
Lemma 4.17 (cf. [38, §2.2], [73, §3.2]).

Remark 4.21. Let π : M×P1 →M denote the projection. An opposite module P gives rise to an

extension of F (regarded as a sheaf onM× Â1) to a locally free sheaf F (∞) overM× P1 such that

π∗F (∞) = F ∩ zP. The sheaf F (∞) gives a free OP1-module when restricted to each fiber {t} × P1.

Remark 4.22. Let (F,∇, (·, ·)F) be a cTEP structure. Under the miniversality assumption (As-
sumption 4.9), there is an Euler vector field E on the base which is uniquely characterized by the
condition that ∇z∂z +∇E has no poles along z = 0 (cf. [73, §3.2]), i.e. that:

(∇z∂z +∇E)F ⊂ F

Assume that we have a homogeneous opposite module P over U and also that there exists a primitive
section ζ associated to P, in the sense of Proposition 4.18 (v), which satisfies

(∇z∂z +∇E)ζ = − ĉ
2
ζ

for some ĉ ∈ C. Then the structures (g, ∗, e) in Proposition 4.18(v) together with the Euler vector
field E define a Frobenius manifold structure [49, Definition 1.2] on U with conformal dimension ĉ
(cf. [38, Proposition 2.12]). They satisfy the following additional properties:(

∇LC
)2
E = 0

Eg(v1, v2) = g([E, v1], v2) + g(v1, [E, v2]) + (2− ĉ)g(v1, v2)

[E, v1 ∗ v2] = [E, v1] ∗ v2 + v1 ∗ [E, v2] + v1 ∗ v2

(4.17)
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Conversely, any conformal Frobenius manifold determines a TEP structure: see Definition 7.6.
For the A-model cTEP structure, in the convergent case, the standard opposite module Pstd in
Example 4.16 gives rise to the standard Frobenius manifold structure on the set MA defined in
equation 2.4.

4.6. Connection on the Total Space L◦. Recall from §3.6 that a polarization P which is transver-
sal to L defines an affine flat structure on L via the projection L → H/P along P . In a similar
manner, we construct a flat structure on L associated to a parallel pseudo-opposite module P. The
choice of P also defines the genus-zero potential in §4.7.

The connection ∇̃ on pr∗ F in (4.13) extends z−1-linearly to the flat connection ∇̃ : pr∗ F[z−1]→
Ω1 ⊗̂pr∗ F[z−1] where Ω1 ⊗̂pr∗ F[z−1] := lim←−l(Ω

1⊗pr∗(F[z−1]/zlF)). Define the dual flat connection

∇̃∨ : pr∗ F[z−1]∨ → Ω1 ⊗̂ pr∗ F[z−1]∨ by:

〈∇̃∨ϕ, s〉 := d〈ϕ, s〉 − 〈ϕ, ∇̃s〉 s ∈ pr∗ F[z−1], ϕ ∈ pr∗ F[z−1]∨(4.18)

where Ω1 ⊗̂pr∗ F[z−1]∨ := lim←−l(Ω
1⊗pr∗(z−lF)∨). Under a local trivialization of F and the associated

frame {ϕin : n ∈ Z, 0 ≤ i ≤ N} of pr∗ F[z−1]∨, we can write (see Notation 4.12):

(4.19) ∇̃∨ϕin =
∑
l∈Z

N∑
j=0

[
C(t, z)ejzl

]i
n+1

ϕjl

where the summand in the right-hand side vanishes for l ≥ n+ 2. This induces the flat connection

∇̃∨ : pr∗(znF)∨ → Ω1 ⊗ pr∗(zn+1F)∨ for each n ∈ Z such that the following diagram commutes:

(4.20)

pr∗ F[z−1]∨ ∇̃∨ //

��

Ω1 ⊗̂ pr∗ F∨[z−1]

��
pr∗(znF)∨ ∇̃∨ // Ω1 ⊗ pr∗(zn+1F)∨

Definition 4.23. Let P be a pseudo-opposite module for a cTP structure (F,∇, (·, ·)F). Let
Π: F[z−1] = F⊕ P → F denote the projection along P. Set Ω1

◦ := Ω1|L◦ and Θ◦ = Θ|L◦ . Consider
the maps:

pr∗ F ∇̃ // Ω1 ⊗̂ pr∗(z−1F)
id⊗Π // Ω1 ⊗̂ pr∗ F

pr∗ F∨ Π∗ // pr∗(z−1F)∨ ∇̃∨ // Ω1 ⊗ pr∗ F∨

Via the (dual) Kodaira–Spencer isomorphisms KS: Θ◦ ∼= pr∗ F and KS∗ : pr∗ F∨ ∼= Ω1
◦ over L◦,

these maps induce respectively the connections

∇ : Θ◦ −→ Ω1
◦ ⊗̂Θ◦ ∇ : Ω1

◦ −→ Ω1
◦ ⊗Ω1

◦
on the tangent and the cotangent sheaves on L◦. These induced connections are dual to each other.
Here Ω1

◦ ⊗̂Θ◦ = lim←−n(Ω1
◦ ⊗ (Θ◦/Θ◦n)) with Θ◦n := KS−1(pr∗(znF)) ⊂ Θ◦. The connection on Ω1

◦
induces a connection on n-tensors:

∇ : (Ω1
◦)
⊗n → Ω1

◦ ⊗ (Ω1
◦)
⊗n n ≥ 0

For n = 0, this denotes the exterior derivative. When we want to emphasize the dependence on the
choice of P, we will write ΠP, ∇P for Π, ∇.

Proposition 4.24. The connection ∇ = ∇P : Θ◦ → Ω1
◦ ⊗̂ Θ◦ associated to a pseudo-opposite

module P is torsion-free. If P is parallel, then ∇ is flat. If P is parallel, then the dual connection
∇ : Ω1

◦ → Ω1
◦ ⊗Ω1

◦ is also flat.
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Proof. For v1, v2 ∈ Θ◦ and the tautological section x, we have

∇v1v2 −∇v2v1 = KS−1 Π(∇̃v1∇̃v2x− ∇̃v2∇̃v1x) = KS−1 Π(∇̃[v1,v2]x) =∇[v1,v2]

by the definition of the Kodaira–Spencer map and the flatness of ∇̃. This shows that ∇ is torsion-
free.

Suppose that P is parallel. To prove the flatness of ∇, it suffices to show that the connection

(id⊗Π) ◦ ∇̃ : pr∗ F→ Ω1 ⊗̂ pr∗ F on pr∗ F is flat. Therefore it suffices to prove that the connection
(id⊗Π) ◦ ∇ : F→ Ω1

M ⊗ F on F is flat. Under the decomposition F[z−1] = F⊕ P, we can write

∇ =

(
A 0
C B

)
with A ∈ HomC(F,Ω1

M ⊗ F), B ∈ HomC(P,Ω1
M ⊗ P), and C ∈ HomOM(F,Ω1

M ⊗ P), because P is
parallel. Here A = (id⊗Π) ◦ ∇. The flatness of ∇ implies that A and B are flat connections. �

Lemma 4.25. The connection ∇ : Ω1
◦ → Ω1

◦ ⊗Ω1
◦ associated to a pseudo-opposite module P raises

the pole order along the discriminant P = 0 (see equation 4.10) by at most one.

Proof. The connection ∇ arises from the connection ∇̃∨ ◦ Π∗ : pr∗ F∨ → Ω1 ⊗ pr∗ F∨ via the iso-

morphism KS∗ : pr∗ F∨|L◦ ∼= Ω1
◦. Both the connection ∇̃∨ ◦ Π∗ and KS∗ are regular along P = 0,

but the inverse KS∗−1 has a pole of order one along P = 0. The conclusion follows. (See also the
formula in Example 4.26.) �

Example 4.26. Assume that P is an opposite module and that we have a trivialization F ∼=
CN+1⊗O[[z]] such that P is identified in this trivialization as CN+1⊗z−1O[z−1]. (The trivialization
here is the flat trivialization associated to P in Proposition 4.18.) In this case, C(t, z) in the
presentation (4.9) of ∇ is independent of z. We write C = C(t) = C(t, z) below. Let {ti, xin} be the
associated algebraic local co-ordinate system on L. The flat connection ∇ : Ω1

◦ → Ω1
◦ ⊗Ω1

◦ is given
in these co-ordinates as:

∇dth = −[K(x1)−1Ciej ]h(dti ⊗ dxj1 + dxj1 ⊗ dti)
+ [K(x1)−1(CiCjx2 − (∂iCj)x1)]hdti ⊗ dtj ,

∇dxhn = −[K(xn+1)K(x1)−1Ciej ]h(dti ⊗ dxj1 + dxj1 ⊗ dti)
+
[
K(xn+1)K(x1)−1(CiCjx2 − (∂iCj)x1)− (CiCjxn+2 − (∂iCj)xn+1)

]h
dti ⊗ dtj

+ [Ciej ]h(dti ⊗ dxjn+1 + dxjn+1 ⊗ dti), n ≥ 1

where K(xn) ∈ End(CN+1) ⊗O is defined by K(xn)ei := Ci(t)xn and we used the Einstein sum-
mation convention for the repeated indices i, j, h.

Remark 4.27. When P is an opposite module, we have two different flat structures on the total
space L◦. Recall that the tangent bundle Θ◦ is identified with pr∗ F via the Kodaira–Spencer map

and the flat connection ∇P is induced from the flat connection ΠP ◦ ∇̃ on pr∗ F. Another flat
structure on L◦ is given by the flat trivialization F ∼= (F ∩ zP)[[z]] ∼= (zP/P)[[z]] that we discussed in

Proposition 4.18. This arises from the restriction of the flat connection ΠP ◦∇̃ to the flat-subbundle
pr∗(F ∩ zP) and its z-linear extension. Note that ∇P is not z-linear (under the identification
Θ◦ ∼= pr∗ F) whereas the latter flat structure is z-linear.

4.7. Flat Co-ordinates and Genus-Zero Potential. We construct a flat co-ordinate system
for ∇ = ∇P for a parallel pseudo-opposite module P and see that the Yukawa coupling is the
third derivative of a certain function, called the genus-zero potential. A flat co-ordinate system

and the genus-zero potential may only be defined in the formal12 neighbourhood L̂◦ of the fiber
L◦t = pr−1(t) ∩ L◦ at t ∈M.

12Or, rather than formal neighbourhood, in an L2- or nuclear neighbourhood: see Remarks 4.39 and 4.40.
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Let s0, . . . , sN be a regular system of parameters in the local ring OM,t at t ∈ M. The formal

neighbourhood M̂ of t is then given by:

M̂ = Spf C[[s0, . . . , sN ]]

Take a local trivialization F ∼=
⊕N

i=0O[[z]]ei in a neighbourhood of t and let {si, xin} be the cor-

responding algebraic local co-ordinate system on L as in §4.3. The formal neighbourhood L̂ of

Lt = pr−1(t) in L (respectively the formal neighbourhood L̂◦ of L◦t in L◦) is then given by

L̂ = Spf C
[
{xin}n≥1,0≤i≤N

]
[[s0, . . . , sN ]]

L̂◦ = Spf C
[
{xin}n≥1,0≤i≤N , P (t, x1)−1

]
[[s0, . . . , sN ]]

where P (t, x1) is the discriminant (4.10).

Let P be a parallel pseudo-opposite module over the formal neighbourhood M̂ of t
(see Lemma 4.17). The above local trivialization of F induces a trivialization F|M̂ ∼=⊕N

i=0 C[[z]][[s0, . . . , sN ]]ei on the formal neighbourhood M̂. We can solve for a unique flat section

fi(s) ∈ F̂[z−1] := lim←−n F[z−1]/mn
t F[z−1] ∼=

⊕N
i=0 C((z))[[s0, . . . , sN ]]ei such that:

∇fi(s) = 0 fi(0) = ei

This defines a parallel transportation map:

PT: F̂[z−1]
∼=−→ Ft[z

−1][[s0, . . . , sN ]] fi 7→ ei

which is an isomorphism of C((z))[[s0, . . . , sN ]]-modules. Since the symplectic form Ωt identifies Pt
with F∨t , there exist unique elements ξjm ∈ Pt, m ≥ 0, 0 ≤ j ≤ N , such that:

Ω(ξjm, eiz
n) = δji δn,m

Then we have a Darboux basis {eizn, ξjm}0≤n,m<∞,0≤i,j≤N of Ft[z
−1]. A general element of Ft[z

−1]
can be written as a linear combination

∞∑
n=0

N∑
i=0

qineiz
n +

∞∑
m=0

N∑
j=0

pm,jξ
j
m

and the coefficients {qin, pm,j} form a Darboux co-ordinate system on Ft[z
−1]. Pulling back the

Darboux co-ordinates via

emb: (zF)|M̂ ↪→ F̂[z−1]
PT−→ Ft[z

−1][[s0, . . . , sN ]]

we get regular functions qin, pm,j on the total space L̂ of (zF)|M̂:

qin := emb∗(qin) pm,j := emb∗(pm,j)

Definition 4.28. We call {qin}n≥0,0≤i≤N the flat co-ordinate system on the formal neighbourhood

L̂◦ of Lt. It depends only on the choice of a trivialization Ft ∼= CN+1[[z]] at the point t and on the
isotropic subspace Pt ⊂ Ft[z

−1] which is complementary to Ft. One can view this flat co-ordinate
system as a “projection” to the tangent space:

q =
∞∑
n=0

N∑
i=0

qineiz
n : L̂ −→ Ft

such that it is the identity on Lt = zFt and its derivative at any point x in Lt

Dq : Θx −→ Ft

coincides with the Kodaira–Spencer map (this will be verified in equation 4.28 below).
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The flatness of the co-ordinates qin will be shown momentarily. We write ei =
∑N

j=0 fj(s)M
j
i (s, z)

with M j
i ∈ C((z))[[s0, . . . , sN ]]. Let M(s, z) be the (N + 1) × (N + 1) matrix with matrix elements

M j
i (s, z). By definition, M(s, z) is a matrix representation of the parallel transportation map PT,

i.e. PT(ei) =
∑N

j=0M
j
i (s, z)ej . By the definition of the functions qin, pm,j on L̂, we have

(4.21) q + p = M(s, z)x

where:

q =
∞∑
n=0

N∑
i=0

qineiz
n p =

∞∑
n=0

N∑
i=0

pn,iξ
i
n x =

∞∑
n=1

N∑
i=0

xineiz
n

Here M(s, z) acts on the column vector x in the basis e0, . . . , eN . Let ∇ = d − z−1C(s, z) be
the presentation of the connection in the trivialization given by the frame e0, . . . , eN . The matrix
M(s, z) is a solution to the differential equation

(4.22) dM(s, z) = −z−1M(s, z)C(s, z)
with the initial condition M(0, z) = I; i.e. M is an inverse fundamental solution, cf. (2.8). Therefore
M(s, z) = I − z−1

∑
i Ci(0, z)si + h.o.t., where h.o.t. means terms of order 2 or more in s0, . . . , sN .

Thus we have, by (4.21):

q0 = −
∑
i

siCi(0, 0)x1 + h.o.t.

qn = xn −
∑
i

si[Ci(0, z)x]n+1 + h.o.t. n ≥ 1
(4.23)

where qn =
∑N

i=0 q
i
nei and [· · · ]n denotes the coefficient of zn. The lowest order term of the

first equation gives an invertible change of variables between {qi0}Ni=0 and {si}Ni=0 when the matrix
formed by the column vectors {Ci(0, 0)x1}Ni=0 is invertible, i.e. when P (t, x1) is invertible. Therefore

{qin : n ≥ 0, 0 ≤ i ≤ N} gives a co-ordinate system on L̂◦, in the sense that:

C
[
{xin}n≥1,0≤i≤N , P (t, x1)−1

]
[[s0, . . . , sN ]] = C

[
{qin}n≥1,0≤i≤N , P (t, q1)−1

]
[[q0

0, . . . , q
N
0 ]]

We elaborate on this in Lemma 4.30 below.

Remark 4.29. Notice a small difference between M in Gromov–Witten theory (see equation 2.8)
and M in the above construction (equation 4.21). In the construction above, M is normalized so
that it is the identity at the base point. In Gromov–Witten theory, however, it is normalized by the
asymptotic behaviour M ∼ e−δ/z at the large radius limit (see equation 2.9). The Gromov–Witten
case will be discussed in Example 4.42.

Lemma 4.30. When we invert the co-ordinate change (4.23) and express si, xin, n ≥ 1 as functions
of qin, n ≥ 0, we find

si ∈ PtC[q1, q2, Ptq3, P
2
t q4, . . . ][[P

−2
t q0]]

xin ∈ δn,1qi1 + P 2−n
t C[q1, q2, Ptq3, P

2
t q4, . . . ][[P

−2
t q0]] n ≥ 1

where Pt = P (t, q1). Moreover, we have:

N∑
i=0

siCi(0, 0)q1 ∈ P 2
t CN+1[q1, q2, Ptq3, P

2
t q4, . . . ][[P

−2
t q0]]

Proof. Because M(s, z) is a solution to the differential equation (4.22) with M(0, z) = id, we can
expand it in the form:

(4.24) M(s, z) = id +
∑
n>0

∑
I=(i1,...,in)

∑
m≥0

sIMI,mz
−n+m
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with sI = si1 · · · sin . Let Πt : Ft[z
−1] → Ft denote the projection along Pt. We set Πt(vz

−a) =∑∞
u=0 π

−a
u (v)zu for a > 0, where π−au ∈ End(CN+1). From (4.21), we have

qu = xu +
∑

l>0,n>0,m≥0
−n+m+l=u

∑
I

sIMI,mxl +
∑

l>0,n>0,m≥0
−n+m+l<0

∑
I

sIπ−n+m+l
u MI,mxl

for u ≥ 0. Here I = (i1, . . . , in), and we set x0 = 0. Setting

qin = P 2−n
t q̂in (n 6= 1), si = Ptŝ

i, xin = δn,1q
i
1 + P 2−n

t x̂in (n ≥ 1),

we can rewrite this in the following form:

(4.25)

q̂0 = P−1
t

N∑
i=0

ŝiMi,0q1 +

N∑
i=0

ŝiMi,0x̂1 +
∑

l>0,m≥0
n=m+l≥2

∑
I

Pmt ŝ
IMI,m(δl,1P

−1
t q1 + x̂l)

+
∑

l>0,n>0,m≥0
m+l<n

∑
I

Pn−lt ŝIπ−n+m+l
0 MI,m(δl,1P

−1
t q1 + x̂l)

0 = x̂1 +
∑

l>0,n>0,m≥0
m+l=n+1

∑
I

Pmt ŝ
IMI,m(δl,1P

−1
t q1 + x̂l)

+
∑

l>0,n>0,m≥0
m+l<n

∑
I

Pn−l+1
t ŝIπ−n+m+l

1 MI,m(δl,1P
−1
t q1 + x̂l)

q̂u = x̂u +
∑

l>0,n>0,m≥0
m+l=n+u

∑
I

Pmt ŝ
IMI,m(δl,1P

−1
t q1 + x̂l)

+
∑

l>0,n>0,m≥0
m+l<n

∑
I

P
u+(n−l)
t ŝIπ−n+m+l

u MI,m(δl,1P
−1
t q1 + x̂l) (u ≥ 2)

where again I = (i1, . . . , in). Note that the powers of P (t, q1) appearing on the right-hand side are

non-negative except for the leading term P−1
t

∑N
i=0 ŝ

iMi,0q1 in q̂0. From these equations, we can
solve for ŝi, x̂in as functions of q̂in, n 6= 1, and qi1. To do this, we need to invert the leading term
operator:

ŝ 7→ P (t, q1)−1
N∑
i=0

ŝiMi,0q1 = −P (t, q1)−1
N∑
i=0

ŝiCi(0, 0)q1

Because P (t, q1) = (−1)N+1 det
(
C0(0, 0)q1, . . . , CN (0, 0)q1

)
, the inverse operator is polynomial in

q0
1, . . . , q

N
1 . (The inverse is the transpose of the cofactor matrix of −(C0(0, 0)q1, . . . , CN (0, 0)q1).)

Therefore we have:

(4.26) ŝi, x̂in ∈ C[q1, q̂2, q̂3, . . . ][[q̂0]]

The first statement in the Lemma follows by substituting q̂n = P (t, q1)n−2qn, n 6= 1. Equations

(4.25) and (4.26) in turn show that P−1
t

∑N
i=0 ŝ

iMi,0q1 lies in C[q1, q̂2, q̂3, . . . ][[q̂0]]. The second
statement follows. �

Proposition 4.31 (flatness). ∇Pdqin = 0.

Proof. We regard q + p as an Ft[z
−1]-valued function on L̂. By (4.21) and (4.22), we have:

(4.27) dq + dp = (dM(s, z))x +M(s, z)dx = M(s, z)(−z−1C(s, z)x + dx) = M(s, z)∇̃x
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This is an equality in Ft[z
−1] ⊗̂Ω1 = lim←−n Ft[z

−1]⊗ (Ω1/mn
t Ω

1); ∇̃x is a section of pr∗ F ⊗̂Ω1 and

M(s, z) acts on the pr∗ F factor (via the trivialization). By (4.15), we have:

(4.28) KS∗−1(dq + dp) =

∞∑
n=0

N∑
i=0

M(s, z)eiz
n ⊗ ϕin

This is an equality in Ft[z
−1] ⊗̂ pr∗ F∨. For the map Π∗ : pr∗ F∨ → pr∗(z−1F)∨, we have:

Π∗ϕin = ϕin +
N∑
j=0

[
Πejz

−1
]i
n
ϕj−1

Hence for the map ∇̃∨ : pr∗(z−1F)∨ → Ω1 ⊗ pr∗ F∨ we have, from (4.19):

∇̃∨Π∗ϕin =
∞∑
l=0

N∑
j=0

[
C(s, z)ejzl

]i
n+1

ϕjl +
∞∑
l=0

N∑
j=0

N∑
h=0

[
Πejz

−1
]i
n

[
C(s, z)ehzl

]j
0
ϕhl

=
∞∑
l=0

N∑
j=0

[
z−1C(s, z)ejzl

]i
n
ϕjl +

N∑
h=0

[
ΠC(s, 0)ehz

−1
]i
n
ϕh0

Therefore, from (4.28) and (4.22):

∇̃∨Π∗KS∗−1(dq + dp)

=
∞∑
n=0

N∑
i=0

M(s, z)eiz
n ⊗

 ∞∑
l=0

N∑
j=0

[
z−1C(s, z)ejzl

]i
n
ϕjl +

N∑
h=0

[
ΠC(s, 0)ehz

−1
]i
n
ϕh0


−
∞∑
n=0

N∑
i=0

M(s, z)z−1C(s, z)eizn ⊗ ϕin

=
N∑
h=0

M(s, z)Π(C(s, 0)ehz
−1)⊗ ϕh0 −

N∑
i=0

M(s, z)C(s, 0)eiz
−1 ⊗ ϕi0

= −
N∑
i=0

M(s, z)
[
C(s, 0)eiz

−1
]
P
⊗ ϕi0

Here [C(s, 0)ehz
−1]P denotes the P-component of the section C(s, 0)ehz

−1 of Ω1
M⊗F[z−1] under the

decomposition F[z−1] = F⊕P. Applying id⊗KS∗ to the above equality and using (4.15), we obtain

(4.29) ∇(dq + dp) =

N∑
i=0

N∑
j=0

(
M(s, z)

[
z−1Ci(s, 0)Cj(s, 0)x1

]
P

)
dsi ⊗ dsj

where ∇ =∇P is the connection on Ω1
◦ associated to P. Since P is parallel and M(s, z) represents

the parallel transportation map to the fiber Ft[z
−1], the right-hand side is a Pt-valued quadratic

differential on L̂◦. �

Lemma 4.32. The tensor T := Ωt(dp ⊗ dq) =
∑∞

n=0

∑N
i=0 dpn,i ⊗ dqin on L̂ is symmetric. In

particular, (∂pn,i/∂q
j
m) is symmetric in (n, i) and (m, j).

Proof. Since pr∗ F ⊂ pr∗ F[z−1] is isotropic with respect to Ω, we have

Ω
(
∇̃x⊗ ∇̃x

)
= 0
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where we regard ∇̃x as a section of pr∗ F ⊗̂ Ω1 and Ω contracts the pr∗ F component. Since the
parallel transportation map M(s, z) to the fiber Ft preserves the symplectic form, by (4.27) we
have13

Ωt ((dq + dp)⊗ (dq + dp)) = 0

where Ωt denotes the symplectic form on Ft[z
−1]. This implies that

Ωt(dq⊗ dp) + Ωt(dp⊗ dq) = 0

which completes the proof. �

Definition 4.33. The genus-zero potential is a function on L̂ defined by:

(4.30) C(0) :=
1

2

∞∑
n=0

N∑
i=0

pn,iq
i
n

This depends on a choice of parallel pseudo-opposite module P over the formal neighbourhood M̂.

Lemma 4.34.

pn,i =
∂C(0)

∂qin

Proof. By Lemma 4.32, we have:

∂C(0)

∂qjl
=

1

2
pl,j +

1

2

∞∑
n=0

N∑
i=0

∂pn,i

∂qjl
qin =

1

2
pl,j +

1

2

∞∑
n=0

N∑
i=0

qin
∂pl,j
∂qin

= pl,j

Here we used the fact that the function pl,j is homogeneous of degree one with respect to the dilation

vector field
∑∞

n=0

∑N
i=0 q

i
n(∂/∂qin) =

∑∞
n=1

∑N
i=0 x

i
n(∂/∂xin). �

Proposition 4.35 (Potentiality). The Yukawa coupling Y is the third covariant derivative of C(0),

i.e. ∇3C(0) = ∇T = Y . Here ∇ = ∇P is the flat connection associated to the parallel pseudo-
opposite module P.

Proof. Using ∇dqin = 0, we have:

∇2C(0) =∇
( ∞∑
n=0

N∑
i=0

pn,idq
i
n

)
=
∞∑
n=0

N∑
i=0

dpn,i ⊗ dqin = T

Using ∇dq = 0, we have:

∇T =∇Ωt(dp⊗ dq) = Ωt((∇dp)⊗ dq) = Ωt(∇(dq + dp)⊗ (dq + dp))

Using (4.29), (4.27) and the fact that M(s, z) preserves the symplectic form, we have:

∇T =
N∑
i=0

N∑
j=0

Ω
(
[z−1Ci(s, 0)Cj(s, 0)x1]Pds

i ⊗ dsj ⊗ (dx− z−1C(s, z)x)
)

= Ω
(
z−1Ci(s, 0)Cj(s, 0)x1ds

i ⊗ dsj ⊗ (dx− z−1C(s, z)x)
)

This equals Y . �

Lemma 4.36 (genus-zero pole structure). The genus-zero potential C(0) is an element of
P 5
t C[q1, q2, Ptq3, P

2
t q4, . . . ][[P

−2
t q0]] where Pt = P (t, q1).

13Note that this is not a trivial equality.
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Proof. Set S := C[q1, q2, Ptq3, P
2
t q4, . . . ][[P

−2
t q0]]. Note that we have C(0)|q0=0 = C(0)|s=0 = 0. Thus

it suffices to show that p0,i = ∂C(0)/∂qi0 ∈ P 3
t S. We set Ωt(ejz

−n, ei) = hn;ij ∈ C. Using (4.21) and
the expansion (4.24) of M(s, z), we have:

p0,i = Ωt(q + p, ei) = Ω(M(s, z)x, ei)

=
∑

n>0,m≥0,l≥1

∑
I=(i1,...,in)

sIΩt(MI,mz
−n+m+lxl, ei)

=
∑

n>0,m≥0,l≥1
n>m+l

∑
I=(i1,...,in)

N∑
j=0

sIhn−m−l;ij [MI,mxl]
j

By Lemma 4.30, we have that si ∈ PtS and xl ∈ δl,1q1 + P 2−l
t S. From this we find that all the

terms on the right-hand side belong to P 3
t S except perhaps for the following one, which arises from

(n,m, l) = (2, 0, 1):
N∑
i1=0

N∑
i2=0

N∑
j=0

si1si2h1,ij [Mi1i2,0q1]j

But the differential equation (4.22) for M(s, z) shows that Mi1i2,0 = Ci1(0, 0)Ci2(0, 0). The second
part of Lemma 4.30 now shows that the above sum lies in P 3

t S as well. �

Remark 4.37. The genus-zero potential C(0) may only be defined on the formal neighborhood L̂◦

whereas the Yukawa coupling ∇3C(0) = Y is globally defined. The data C(0) and ∇ depend on the
choice of a parallel pseudo-opposite module P whereas Y =∇3C(0) does not.

Remark 4.38. The genus-zero potential is homogeneous of degree 2 with respect to the dilation
vector field.

Remark 4.39 (L2-neighbourhood). Let U ⊂M be an open set with co-ordinates s0, . . . , sN centred
at a point in U and let P be an opposite module on U . Then P defines a flat trivialization F|U ∼=
(zP/P) ⊗ C[[z]] (Proposition 4.18). Suppose that we can trivialize zP/P by a ∇0-flat frame over
U . This defines a trivialization F|U ∼= CN+1 ⊗ OU [[z]]. Using the local co-ordinate system {si, xin}
associated to this trivialization, we can define the L2-subspace L2(L) of L as:

L2(L) =

{
(s,x) ∈ L|U

∣∣∣ s ∈ U, ∞∑
n=1

N∑
i=0

|xin|2 <∞
}

This has the structure of a complex Hilbert manifold. In this case, p is a strictly negative power
series in z with respect to the trivialization (since it belongs to P). Because the inverse funda-
mental solution M(s, z) in (4.22) is holomorphic over U × C×, q and p given by (4.21) belong to

L2(S1,CN+1) when (s,x) ∈ L2(L). The genus-zero potential C(0) defined in (4.30) therefore con-
verges to a holomorphic function on L2(L). Moreover, the inverse function theorem for Hilbert spaces
implies that the map (s,x) 7→ q defines a local isomorphism between L2(L◦) and CN+1⊗L2(S1,C).
This means that {qin} is a co-ordinate system on an L2-neighbourhood of each point in L2(L◦).

Remark 4.40 (Nuclear neighbourhood). Following [34, §8.4], we define the space C{{z, z−1}} of
formal Laurent series in z to be

C{{z, z−1}} =
{
a ∈ C[[z, z−1]] : ‖a‖n <∞ for all n� 0

}
where ‖ · ‖n, n = 0, 1, 2, . . . is a family of Hilbert norms defined by

‖a‖n =

(∑
l∈Z

|al|2
|Γ(1

2 + l)|2 e
2nl

)1/2

for a =
∑
l∈Z

alz
l.
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We set:

C{{z}} = C{{z, z−1}} ∩ C[[z]] C{{z−1}} = C{{z, z−1}} ∩ C[[z−1]]

Then C{{z}} is a nuclear Frechet space14 whose topology is given by the countable norms15 ‖ · ‖n;
C{{z−1}} is the inductive limit of the Hilbert space completions of C[z−1] with respect to ‖ · ‖n and
is a nuclear (DF) space. We also know that C{{z, z−1}} is a topological ring [34, Lemma 8.5]. Let
us consider the same situation as in the previous Remark 4.39. We introduce a nuclear subspace of
L which is an infinite-dimensional complex manifold modelled on C{{z}}:

N (L) :=

{
(s,x) ∈ L|U

∣∣∣ s ∈ U, sup
0≤i≤N, l≥0

(
enl|xil|/l!

)
<∞, for all n ≥ 0

}
This contains L2(L) as a proper subspace. The genus-zero potential C(0) in this section defines an
analytic function on this nuclear subspace. This follows from the method of [34], as follows. Because
now C(s, z) is independent of z, the inverse fundamental solution M(s, z) satisfying (4.22) and the
initial condition M(0, z) = id can be written as M(s, z) = id +

∑∞
n=1Mn(s)z−n with

Mn(s) =

∫
0≤s1≤···≤sn≤s

(−C(s1)) · · · (−C(sn))

where s1, . . . , sn are on the line segment [0, s] ⊂ U . Therefore, after shrinking U if necessary, we
obtain the estimate

‖Mn(s)‖ ≤ Cn 1

n!
, s ∈ U

for some C > 0. Using the results in [34, §8.4], one finds easily that for (s,x) ∈ N (L), (q,p)

defined by (4.21) belongs to CN+1⊗C{{z, z−1}}. Thus C(0) = 1
2Ω(p,q) converges to a holomorphic

function on N (L), since C{{z, z−1}} is a ring. Moreover, one can use the Nash–Moser inverse
function theorem to show that map (s,x) 7→ q defines a local isomorphism between N (L◦) and
CN+1 ⊗ C{{z}} by the same method as [34, §8.5], i.e. {qin} gives a co-ordinate system on a nuclear
neighbourhood of each point in N (L◦).

Remark 4.41. When the cTP structure (F,∇, (·, ·)F) is the completion of a TP structure
(F ,∇, (·, ·)F ) (see Remark 4.5), the total space L has standard L2- and nuclear subspaces induced
from the TP structure F .

Example 4.42 (Genus-zero Gromov–Witten potential [34]). Recall from §3.2 that the genus-zero
descendant Gromov–Witten potential F0

X of X can be viewed as a function on H+ via the Dilaton
shift. Here we explain that the construction in this section starting from the A-model TEP structure
of X (Example 4.3) gives rise to the genus-zero descendant Gromov–Witten potential F0

X under an
identification of certain flat co-ordinates on L◦ with the linear co-ordinates {qin} on H+ in §3.1.

As in Example 4.3, we assume that the non-descendant genus-zero potential F 0
X (§2.3) is conver-

gent and defines an analytic function over an open subset MA ⊂ HX ⊗ C (after the specialization
Q1 = · · · = Qr = 1); then we have the A-model cTP structure (F,∇, (·, ·)F) over MA. We use the
standard opposite module Pstd described in Example 4.16. The associated standard trivialization
of the A-model cTP structure F (given by the basis in equation 2.2) together with the linear co-
ordinates {ti} on HX gives an algebraic local co-ordinate system {ti, xin} on the total space L of F.
The standard trivialization also defines subspaces L2(L) ⊂ N (L) ⊂ L as in Remarks 4.39, 4.40. Let
M(t, z) be the inverse fundamental solution (2.8) in Gromov–Witten theory. This is analytic on

14This space is Laplace-dual to the space of entire functions on C; see [34, Remark 8.6].
15All of the norms ‖ · ‖n are well-defined on C{{z}}.
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MA ×C× after specialization of Novikov variables Q1 = · · · = Qr = 1. The flat co-ordinate system
{qin} on N (L) is given by the formula (cf. equation 4.21)

(4.31) q + p = M(t, z)x
∣∣∣
Q1=···=Qr=1

where:

q =

∞∑
n=0

qinφiz
n p =

∞∑
n=0

pn,iφ
i(−z)−n−1 x =

∞∑
n=1

N∑
i=0

xinφiz
n

By [34, Lemmas 8.5, 8.8], we know that (q,p) here belongs to a nuclear version HNF of the Givental
space for X [34, Definition 8.7]:

HNF := HX ⊗ C{{z, z−1}} = HNF
+ ⊕HNF

− where HNF
+ := HX ⊗ C{{z}}
HNF
− := HX ⊗ z−1C{{z−1}}

(4.32)

whenever (t,x) ∈ N (L). Then the map (t,x) 7→ q defines a local isomorphism between N (L◦) and
HNF

+ [34, §8.5]. The genus-zero potential is defined by

(4.33) C(0) =
1

2

N∑
i=0

∞∑
n=0

pn,iq
i
n

(cf. equation 4.30). This is a holomorphic function on N (L). In this setting, we have:

• The genus-zero descendant potential F0
X is NF-convergent [34, Theorem 7.8], that is, the

power series (2.10) converges absolutely and uniformly on a polydisc of the form |til| <
ε(l!)/C l, |Qi| < ε for some ε > 0 and C > 0.
• As F0

X is NF-convergent, the specialization F0
X,an of F0

X to Q1 = · · · = Qr = 1 makes sense

as a holomorphic function on a domain U ⊂ HNF
+ [34, §8.1] via the Dilaton shift from §3.2

(see Definition 6.7 below).
• When t is sufficiently close to the large radius limit (2.4) and x ∈ zHNF

+ is sufficiently close
to −z1, the flat co-ordinate q = [M(t, z)x]+|Q1=···=Qr=1 of the point (t,x) ∈ N (L) belongs

to U . Then we have C(0) = F0
X,an(q) [34, Theorem 8.12].

Although the normalization for the inverse fundamental solution M(t, z) in Gromov–Witten theory
is different from the one that we used in the general construction (see Remark 4.29), the same
argument as in this section (§4.7) proves that the co-ordinates qαn on N (L◦) defined by (4.31) are

flat with respect to ∇Pstd , and that the third derivative of C(0) in (4.33) with respect to ∇Pstd

coincides with the Yukawa coupling over N (L◦). In particular we have:

(4.34) ∇n−3Y =
∞∑
l1=0

· · ·
∞∑
ln=0

N∑
i1=0

· · ·
N∑

in=0

∂nF (0)
X,an

∂qi1l1 · · · ∂q
in
ln

dqi1l1 ⊗ · · · ⊗ dq
in
ln

with ∇ =∇Pstd .

4.8. Propagator. Given two pseudo-opposite modules P1, P2 for a cTP structure F, we now define
a bivector field on the space L◦, called the propagator ∆. Let Πi : F[z−1] → F, i ∈ {1, 2}, be the
projection along Pi given by the decomposition F[z−1] = Pi ⊕ F.

Definition 4.43. The propagator ∆ = ∆(P1,P2) associated to pseudo-opposite modules P1, P2 is
the section of HomO(Ω1

◦ ⊗Ω1
◦,O) defined by

∆(ω1, ω2) := Ω∨(Π∗1 KS∗−1 ω1,Π
∗
2 KS∗−1 ω2), ω1, ω2 ∈ Ω1.

Here KS∗ : pr∗ F∨ → Ω1 is the dual Kodaira–Spencer map (Definition 4.11) and Ω∨ : F[z−1]∨ ⊗
F[z−1]∨ → OM is the dual symplectic form (4.5). One can identify ∆ with the push-forward of the
Poisson bivector on F[z−1] along Π1 ⊗Π2.
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Proposition 4.44. Let ∆ = ∆(P1,P2) be the propagator associated to pseudo-opposite modules P1,
P2.

(1) The propagator ∆ is symmetric: ∆(ω1, ω2) = ∆(ω2, ω1).
(2) If P1,P2 are parallel, then:

d∆(ω1, ω2) = ∆(∇P1ω1, ω2) + ∆(ω1,∇P2ω2)

(See Proposition 4.85 below for the non-parallel case.)

Proof. Write ϕi := KS∗−1 ωi ∈ pr∗ F∨ for i = 1, 2. Because Im Π∗i = P⊥i and Im(Π∗1 − Π∗2) ⊂ F⊥,
these subspaces are isotropic with respect to Ω∨. Hence we have:

0 = Ω∨((Π∗1 −Π∗2)ϕ1, (Π
∗
1 −Π∗2)ϕ2) = −Ω∨(Π∗1ϕ1,Π

∗
2ϕ2)− Ω∨(Π∗2ϕ1,Π

∗
1ϕ2)

= −Ω∨(Π∗1ϕ1,Π
∗
2ϕ2) + Ω∨(Π∗1ϕ2,Π

∗
2ϕ1)

This shows that ∆ is symmetric. For Part (2), we have:

d∆(ω1, ω2) = dΩ∨(Π∗1ϕ1,Π
∗
2ϕ2)

= Ω∨(∇̃∨Π∗1ϕ1,Π
∗
2ϕ2) + Ω∨(Π∗1ϕ1, ∇̃∨Π∗2ϕ2)

= Ω∨(∇̃∨Π∗1ϕ1, (Π
∗
2 −Π∗1)ϕ2) + Ω∨((Π∗1 −Π∗2)ϕ1, ∇̃∨Π∗2ϕ2)

+ Ω∨(∇̃∨Π∗1ϕ1,Π
∗
1ϕ2) + Ω∨(Π∗2ϕ1, ∇̃∨Π∗2ϕ2)

(4.35)

Note that Im Π∗i = P⊥i is preserved by ∇̃∨ because Pi is parallel. Therefore the two terms in the

last line vanish. Because both Π∗1(∇̃∨Π∗1ϕ1|F)− ∇̃∨Π∗1ϕ1 and (Π∗1 −Π∗2)ϕ2 lie in F⊥, we have:

Ω∨(∇̃∨Π∗1ϕ1, (Π
∗
2 −Π∗1)ϕ2) = Ω∨(Π∗1(∇̃∨Π∗1ϕ1|F), (Π∗2 −Π∗1)ϕ2)

= Ω∨(Π∗1 KS∗−1∇P1ω1, (Π
∗
2 −Π∗1)ϕ2)

= Ω∨(Π∗1 KS∗−1∇P1ω1,Π
∗
2ϕ2) = ∆(∇P1ω1, ω2)

Similarly we have Ω∨((Π∗1 −Π∗2)ϕ1, ∇̃∨Π∗2ϕ2) = ∆(ω1,∇P2ω2). The conclusion follows. �

We introduce tensor notation. Let {xµ} denote an arbitrary local co-ordinate system on L (or

on the formal neighbourhood L̂ of Lt). For example, this could be an algebraic local co-ordinate
system {ti, xin} (§4.3) associated to a local trivialization of F, or a flat co-ordinate system (§4.7) on

L̂ associated to a parallel pseudo-opposite module. In this co-ordinate system, we write the Yukawa
coupling and the propagator as

Y = C(0)
µνρdx

µ ⊗ dxν ⊗ dxρ, ∆ = ∆µν∂µ ⊗ ∂ν , where ∂µ =
∂

∂xµ
, ∂ν =

∂

∂xν
.

Here we adopt Einstein’s summation convention for repeated indices. The Christoffel symbol of the
connection ∇ =∇P on L◦ (for a pseudo-opposite P) is defined by

∇νdx
µ = −Γµνρdx

ρ ∇ν∂ρ = Γµνρ∂µ(4.36)

where ∇ν = ∇∂/∂xν . Note that Γµνρ = Γµρν because ∇ is torsion free; also ∆µν = ∆νµ by the
previous Proposition. The propagator has the following key properties.

Proposition 4.45. Let Pi be pseudo-opposite modules and Γ(i)µ
νρ denote the Christoffel symbols of

∇Pi, i = 1, 2. Let ∆ = ∆(P1,P2) be the associated propagator. Then:

(1) (∇P2 −∇P1)ω = ι(ιω∆)Y for ω ∈ Ω1
◦. In tensor notation:

(∇P2
µ −∇P1

µ )dxν = (Γ(1)ν

µρ − Γ(2)ν

µρ)dx
ρ = ∆νσC(0)

σµρdx
ρ

(2) If P1,P2 are parallel, we have (∇P1∆)(ω1⊗ω2) = ι(ιω1∆⊗ ιω2∆)Y for ω1, ω2 ∈ Ω1
◦, that is:

∇P1
µ ∆νρ(:= ∂µ∆νρ + Γ(1)ν

µσ∆σρ + Γ(1)ρ

µσ∆νσ) = ∆νσC(0)
σµτ∆τρ
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(See Proposition 4.85 below for the non-parallel case.)

Proof. Set ϕ = KS∗−1 ω ∈ pr∗ F∨. Note that ιω∆ is a section of Θ◦. For β ∈ pr∗ F[z−1], we have:

Ω(KS(ιω∆), β) = 〈KS(ιω∆),−ιβΩ〉 = 〈KS(ιω∆),−(ιβΩ)|pr∗ F〉
= −〈ιω∆,KS∗((ιβΩ)|pr∗ F)〉
= −∆(ω,KS∗((ιβΩ)|pr∗ F))

= −Ω∨(Π∗1ϕ,Π
∗
2((ιβΩ)|pr∗ F)) (by the definition of ∆)

= −Ω∨((Π∗1 −Π∗2)ϕ,Π∗2((ιβΩ)|pr∗ F))) (since Im Π∗2 = (pr∗ P2)⊥ is isotropic)

= −Ω∨((Π∗1 −Π∗2)ϕ, ιβΩ)

The last line follows from the fact that both (Π∗1−Π∗2)ϕ and ιβΩ−Π∗2((ιβΩ)|pr∗ F)) lie in the isotropic

subspace (pr∗ F)⊥. Thus:

(4.37) Ω(KS(ιω∆), β) = 〈(Π∗2 −Π∗1)ϕ, β〉 .
For X,Y ∈ Θ◦ and the tautological section x of pr∗ F, we have:〈

(∇P2 −∇P1)ω,X ⊗ Y
〉

=
〈

(id⊗KS∗)∇̃∨(Π∗2 −Π∗1)ϕ,X ⊗ Y
〉

=
〈
∇̃∨(Π∗2 −Π∗1)ϕ,X ⊗ ∇̃Y x

〉
=
〈
∇̃∨X(Π∗2 −Π∗1)ϕ, ∇̃Y x

〉
= X

〈
(Π∗2 −Π∗1)ϕ, ∇̃Y x

〉
−
〈

(Π∗2 −Π∗1)ϕ, ∇̃X∇̃Y x
〉

Because (Π∗2 −Π∗1)ϕ vanishes on pr∗ F, the first term vanishes. By (4.37), we now have:〈
(∇P2 −∇P1)ω,X ⊗ Y

〉
= −Ω(KS(ιω∆), ∇̃X∇̃Y x) = Y (ιω∆, X, Y )

This proves Part (1). For Part (2), using Proposition 4.44(2), we have:

d∆(ω1, ω2)−∆(∇P1ω1, ω2)−∆(ω1,∇P1ω2) = ∆(ω1, (∇P2 −∇P1)ω2)

This equals ι(ιω1∆⊗ ιω2∆)Y by Part (1). �

Proposition 4.46. Let P1,P2,P3 be pseudo-opposite modules and let ∆ij = ∆(Pi,Pj) denote the
corresponding propagators. We have:

∆13 = ∆12 + ∆23

In particular, ∆(P1,P2) = −∆(P2,P1).

Proof. Putting ϕi = KS∗−1 ωi ∈ pr∗ F∨, we have:

∆13(ω1, ω2) = Ω∨((Π∗1 −Π∗3)ϕ1,Π
∗
3ϕ2)

= Ω∨((Π∗1 −Π∗2)ϕ1,Π
∗
3ϕ2) + Ω∨((Π∗2 −Π∗3)ϕ1,Π

∗
3ϕ2)

= Ω∨((Π∗1 −Π∗2)ϕ1,Π
∗
2ϕ2) + Ω∨(Π∗2ϕ1,Π

∗
3ϕ2)

= ∆12(ω1, ω2) + ∆23(ω1, ω2)

We used the fact that Im Π∗i = P⊥i is isotropic and that Im(Π∗i − Π∗j ) is contained in the isotropic

subspace F⊥. The last statement follows from the case P1 = P3. �
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4.8.1. Givental’s Propagator. Suppose that we have two opposite modules P1,P2 over U and that
we have the corresponding two trivializations

Φi : CN+1 ⊗OU [[z]]→ F|U , i = 1, 2

such that:

• Pi = Φi(CN+1 ⊗ z−1OU [z−1]), i = 1, 2.
• The values gij = (Φ1(ei),Φ1(ej))F and g̃ij = (Φ2(ei),Φ2(ej))F are constant.

Here e0, . . . , eN are the standard basis of CN+1. Such a trivialization arises from the flat trivializa-
tion (see Proposition 4.18) associated to Pi and a ∇0-flat frame of zPi/Pi. Let R(z) = Φ−1

2 ◦ Φ1 =
R0 +R1z +R2z

2 + · · · ∈ GL(N + 1,O[[z]]) denote the gauge transformation between the two trivi-
alizations:

R(z) : CN+1 ⊗OU [[z]]
Φ1−→ F

Φ−1
2−→ CN+1 ⊗OU [[z]]

Let g, g̃ : CN+1 ⊗ CN+1 → C denote the pairings with the Gram matrices (gij), (g̃ij). Then the
gauge transformation intertwines these pairings:

(4.38) g̃(R(−z)v,R(z)w) = g(v, w), v, w ∈ CN+1

Definition 4.47 ( [61]). Givental’s propagator is a collection of elements V (n,j),(m,i) ∈ OU , 0 ≤
n,m <∞, 0 ≤ i, j ≤ N defined by the formula

(4.39)

∞∑
n=0

∞∑
m=0

(−1)n+mV (n,j),(m,i)wnzm = g

(
ej ,

R(w)†R(z)− id

z + w
ei
)

where R(w)† = R(−w)−1 denotes the adjoint of R(w) with respect to g and g̃ (see equation 4.38)
and ei =

∑
j g

ijej with (gij) the matrix inverse to (gij).

Let ϕim be the frame of pr∗ F[z−1]∨ defined by the trivialization Φ1 (cf. equation 4.14):

ϕim : pr∗ F[z−1]→ O ϕim(s) = [Φ−1
1 s]im

where Φ1 : CN+1 ⊗O((z)) ∼= pr∗ F[z−1] and we followed Notation 4.12.

Lemma 4.48. V (n,j),(m,i) = −
[
R(z)−1[R(z)(−z)−n−1ej ]+

]i
m

= Ω∨(Π∗1ϕ
j
n,Π∗2ϕ

i
m), where [· · · ]+

denotes the non-negative part as a z-series.

Proof. The first equality follows from the calculation:

equation (4.39) = g

(
R(z)†R(w)− id

z + w
ej , ei

)
= g

(
R(−z)−1

(
R(w)−R(−z)

z + w
ej
)
, ei
)

= −g
(
R(−z)−1

[
R(−z) ej

z + w

]
+

, ei
)

when |w| < |z|

= −
∞∑
n=0

(−1)ng
(
R(−z)−1

[
R(−z)z−n−1ej

]
+
, ei
)
wn

= −
∞∑
n=0

∞∑
m=0

(−1)n+m
[
R(z)−1

[
R(z)(−z)−n−1ej

]
+

]i
m
wnzm

In the second line, we expanded ej/(z + w) in power series in z−1 (i.e. around z =∞). Under the
trivialization Φ1, the projection Π2 can be presented as

Π2(ehz
n) = R(z)−1[R(z)ehz

n]+, n ∈ Z.
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Therefore, for m ≥ 0:

Π∗2ϕ
i
m =

∑
n∈Z

∑
h

[
R(z)−1 [R(z)ehz

n]+
]i
m
ϕhn

= ϕim +

∞∑
n=0

∑
h

[
R(z)−1

[
R(z)ehz

−n−1
]
+

]i
m
ϕh−n−1

Consequently, under the isomorphism F[z−1] ∼= F[z−1]∨, v 7→ ιvΩ, the section Π∗2ϕ
i
m ∈ F[z−1]∨

corresponds to:

vim = ei(−z)−m−1 +

∞∑
n=0

∑
h

[
R(z)−1[R(z)ehz

−n−1]+
]i
m

(−z)neh

Hence we have Ω∨(Π∗1ϕ
j
n,Π∗2ϕ

i
m) = 〈Π∗1ϕjn, vim〉 = 〈ϕjn, [vim]+〉 = V (n,j),(m,i). �

Proposition 4.49. For t ∈ M, let {qin}n≥0,0≤i≤N be the flat co-ordinate system (Definition 4.28)

on the formal neighbourhood L̂◦ of L◦t associated to the trivialization Φ1 and the opposite module
P1. The propagator ∆ = ∆(P1,P2) restricted to the fiber L◦t can be written in terms of the flat
co-ordinates as

∆
∣∣∣
L◦t

=

∞∑
n=0

∞∑
m=0

N∑
i=0

N∑
j=0

V (n,j),(m,i) ∂

∂qjn
⊗ ∂

∂qim

where V (n,j),(m,i) is Givental’s propagator in Definition 4.47.

Proof. Restricting (4.28) to the fiber Lt (i.e. s = 0), we have:

(4.40) KS∗−1 dqjn = ϕjn over Lt

Hence ∆(dqjn, dqim)|Lt = Ω∨(Π∗1ϕ
j
n,Π∗2ϕ

i
m) = V (n,j),(m,i) by Lemma 4.48. �

Remark 4.50. In terms of the algebraic co-ordinates (ti, xin)n≥1,0≤i≤N on L associated to the
trivialization Φ1, the propagator ∆ = ∆(P1,P2) can be written as

∆(dta ⊗ dtb) = [K(x1)−1ei]
a[K(x1)−1ej ]

bV (0,i),(0,j)

∆(dta ⊗ dxbn) = −[K(x1)−1ei]
aV (0,i),(n,b) + [K(x1)−1ei]

a[K(xn+1)K(x1)−1ei]
bV (0,i),(0,j)

∆(dxam ⊗ dxbn) = V (m,a),(n,b) − [K(xm+1)K(x1)−1ei]
aV (0,i),(n,b)

− [K(xn+1)K(x1)−1ej ]
bV (m,a),(0,j)

+ [K(xm+1)K(x1)−1ei]
a[K(xn+1)K(x1)−1ej ]

bV (0,i),(0,j)

where K(xn) is as in Example 4.26.

4.8.2. Difference One-Form.

Definition 4.51. For two pseudo-opposite modules P and Q, we define a one-form on L◦ by

(4.41) ωPQ =
1

2

∑
µ,ν,ρ

C(0)
µνρ∆

νρ(P,Q)dxµ =
1

2

∑
0≤i,j,h≤N

C
(0)
ijh∆jh(P,Q)dti

where in the second expression the indices i, j, h are labels of the t-variables of an algebraic local co-
ordinate system {ti, xin}n≥1,0≤i≤N . We call ωPQ the difference one-form, because it appears as the
difference of genus-one one-point functions (4.51). By Proposition 4.46, we have ωPQ + ωQR = ωPR

for any three pseudo-opposite modules P,Q,R.
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Lemma 4.52. The difference one-form ωPQ is pulled-back from the base M; we have:

ωPQ =

N∑
i=0

1

2
TrF0

(
(ΠP −ΠQ)∇i

)
dti

Proof. One can easily check that the operator (ΠP−ΠQ)∇i defines an OM-linear endomorphism of
F0 = F/zF. By Proposition 4.45(1), we have:

(∇Q
i −∇P

i )(∂/∂tj) = −C(0)
ijh∆hµ(P,Q)(∂/∂xµ)

Here xµ can be either ti or xin. The minus sign here is because we are working with connections on

the tangent bundle Θ. On the other hand, by the definition of ∇P and ∇Q, we have ∇Q
i −∇P

i =

KS−1(ΠQ − ΠP)∇̃i KS. Hence ∇Q
i −∇P

i induces a map Θ/KS−1(pr∗(zF)) → Θ/KS−1(pr∗(zF))

which is conjugate to (ΠQ−ΠP)∇̃i ∈ End(F0). Because {∂/∂ti} is a basis of Θ/KS−1(pr∗(zF)) ∼= F0,
the conclusion follows. �

4.9. Grading and Filtration. Recall that we introduced a grading and an increasing filtration
on O and Ω1 in §4.3. The grading and the filtration on pr∗ F[z−1]∨ are defined as follows. For a
pull-back pr∗ ϕ ∈ pr−1 F[z−1]∨ of ϕ ∈ F[z−1]∨, we set deg(pr∗ ϕ) = 0. The grading on pr∗ F[z−1]∨

is determined by this and the grading on O. To define the filtration, recall that F[z−1]∨ is the
projective limit of the sequence:

· · ·� (z−2F)∨ � (z−1F)∨ � F∨ � (zF)∨ � · · ·
Let F[z−1]∨n ⊂ F[z−1]∨ be the kernel of F[z−1]∨ � (zn+2F)∨. This defines an increasing filtration of
F[z−1]∨ by subsheaves. The filtration on pr∗ F[z−1]∨ is induced from this and the filtration on O:

(pr∗ F[z−1]∨)n =
∑
i+j≤n

Oi · pr−1(F[z−1]∨j )

Note that the filtration on O is bounded from below: {0} = O−1 ⊂ O0 ⊂ O1 ⊂ · · · whereas the
filtration on F[z−1]∨ is unbounded in both directions. The grading and the filtration on pr∗ F∨ are
induced from those on pr∗ F[z−1]∨ by the surjection pr∗ F[z−1]∨ � pr∗ F∨.

Take a local trivialization F|U ∼= CN+1 ⊗OU [[z]]. This defines a local frame {eizn}n∈Z,0≤i≤N for
pr∗ F[z−1] and the dual local frame {ϕin}n∈Z,0≤i≤N for pr∗ F[z−1]∨ (see equation 4.14). The image
of ϕin under pr∗ F[z−1]∨ � pr∗ F∨ is denoted by the same symbol. Note that we have

degϕin = 0, filtϕin = n− 1.

Here as before filt(y) denotes the least number m such that y belongs to the mth filter.

Lemma 4.53.

(1) The dual Kodaira–Spencer map KS∗ : pr∗ F∨ → Ω1 (respectively its inverse KS∗−1) raises
(respectively lowers) the degree by one and preserves the filtration.

(2) The connection ∇̃∨ : pr∗ F[z−1]∨ → pr∗ F[z−1]∨ ⊗ Ω1 preserves both the grading and the
filtration.

(3) Let Π: pr∗ F[z−1] → pr∗ F denote the projection along a pseudo-opposite module P. The
dual map Π∗ : pr∗ F∨ → pr∗ F[z−1]∨ preserves the grading and the filtration.

(4) The pairing Ω∨ : pr∗ F[z−1]∨⊗pr∗ F[z−1]∨ → O preserves the grading and raises the filtration
by three.

Proof. Part (1) follows easily from (4.15). Notice that d : O → Ω1 preserves the degree and the
filtration. Part (2) follows from this and (4.19). Part (3) is obvious from the definition. For Part

(4), notice that Ω∨(ϕim, ϕ
j
n) is in OU and of degree zero. Hence Ω∨ preserves the grading. Also, for

f, g ∈ O:

filt(Ω∨(fϕim, gϕ
j
n)) ≤ filt(f) + filt(g) + (m+ n+ 1) = filt(fϕim) + filt(gϕjn) + 3



A FOCK SHEAF FOR GIVENTAL QUANTIZATION 45

The first inequality follows from the fact that Ω∨(ϕim, ϕ
j
n) vanishes unless m+ n+ 1 ≥ 0. �

Proposition 4.54. The connection ∇ : Ω1
◦ → Ω1

◦ ⊗Ω1
◦ associated to a pseudo-opposite module P

preserves the grading and the filtration.

Proof. This follows from ∇ω = KS∗((∇̃∨Π∗P KS∗−1 ω)|pr∗ F) and Lemma 4.53. �

Proposition 4.55. Let P1,P2 be pseudo-opposite modules. The propagator

∆(P1,P2) : Ω1
◦ ⊗Ω1

◦ → O
lowers the degree by two and raises the filtration by two, that is, deg ∆ = −2, filt ∆ ≤ 2.

Proof. Recall that the propagator ∆ = ∆(P1,P2) is defined by:

∆(ω1, ω2) = Ω∨(Π∗1 KS∗−1 ω1,Π
∗
2 KS∗−1 ω2)

By Lemma 4.53, it follows that ∆ lowers the degree by two and raises the filtration by three. One
can improve the estimate on the filtration. Note that:

∆(ω1, ω2) = Ω∨(Π∗1 KS∗−1 ω1, (Π
∗
2 −Π∗1) KS∗−1 ω2)

We claim that Ω∨(·, (Π∗2 − Π∗1)·) : pr∗ F[z−1]∨ ⊗ pr∗ F∨ → O raises the filtration only by two. Let

l ≥ 0. Because (Π∗2 − Π∗1)ϕjl vanishes on pr∗ F, one can write (Π∗2 − Π∗1)ϕjl =
∑

m≤−1 cm,a(t)ϕ
a
m.

Thus Ω∨(ϕin, (Π
∗
2 − Π∗1)ϕjl ) ∈ OU can be non-zero only if n ≥ 0, so in particular only if n + l ≥ 0.

Therefore, for f, g ∈ O:

filt
(

Ω∨(fϕin, (Π
∗
2 −Π∗1)(gϕjl ))

)
≤ filt(f) + filt(g) + n+ l = filt(fϕin) + filt(gϕjl ) + 2

The conclusion follows. �

4.10. Local Fock Space. We work with a local co-ordinate system {ti, xin} on L associated to
a local trivialization of F (§4.3). This local co-ordinate system is denoted also by {xµ}. We use
the notation and summation convention which appeared in and above Proposition 4.45. For any
n-tensor Cµ1,...,µndx

µ1 ⊗ · · · ⊗ dxµn ∈ (Ω1
◦)
⊗n, we write

∇(Cµ1,...,µndx
µ1 ⊗ · · · ⊗ dxµn) = (∇νCµ1,...,µn)dxν ⊗ dxµ1 ⊗ · · · ⊗ dxµn

with

(4.42) ∇νCµ1,...,µn := ∂νCµ1,...,µn −
n∑
i=1

Cµ1,...,ρ
i
,...,µnΓρµiν

where Γρµiν is the Christoffel symbol (4.36) of ∇. Similarly, for a “contravariant” tensor

Cµ1,...,µn∂µ1 ⊗ · · · ⊗ ∂µn ∈ Θ⊗n◦ , we write ∇νC
µ1,...,µn = ∂νC

µ1,...,µn +
∑n

i=1C
µ1,...,

i
ρ,...,µnΓµiνρ.

Definition 4.56 (local Fock space). Let P be a parallel pseudo-opposite module over an open set
U ⊂M. Let ∇ be the associated flat connection on the total space L◦. Let {ti, xin}n≥1,0≤i≤N be an
algebraic local co-ordinate system on pr−1(U) and let P = P (t, x1) denote the discriminant (4.10).
The Fock space Fock(U ;P) over U associated with P consists of collections

C =
{
∇nC(g) ∈ (Ω1)⊗n(pr−1(U)◦) : g ≥ 0, n ≥ 0, 2g − 2 + n > 0

}
of completely symmetric tensors such that the following conditions are satisfied:

(Yukawa): ∇3C(0) is the Yukawa coupling Y (see §4.4);

(Jetness): ∇(∇nC(g)) =∇n+1C(g);

(Grading & Filtration): ∇nC(g) ∈
(
(Ω1)⊗n(pr−1(U)◦)

)2−2g

3g−3
;

(Pole): P∇C(1) extends to a regular one-form on pr−1(U), and for g ≥ 2:

C(g) ∈ P−(5g−5)O(U)[x1, x2, Px3, P
2x4, . . . , P

3g−4x3g−2]



46 TOM COATES AND HIROSHI IRITANI

Using local co-ordinates {xµ} = {ti, xin}, we write

∇nC(g) = C(g)
µ1,...,µndx

µ1 ⊗ · · · ⊗ dxµn

where once again we use Einstein’s summation convention for the indices µi. We call ∇nC(g) or

C
(g)
µ1,...,µn the genus-g, n-point correlation functions of C .

Remark 4.57.

(1) We do not define ∇nC(g) in the unstable range (g, n) = (0, 0), (0, 1), (0, 2), (1, 0). The
genus-zero data are given by the cubic tensor Y , and the genus-one data are given by a
one-form ∇C(1).

(2) The fact that C
(1)
µν = ∇µC

(1)
ν is symmetric implies that ∇C(1) = C

(1)
ν dxν is a closed one-

form. By (Grading & Filtration) and (Pole), one can write it in local co-ordinates as

(4.43) ∇C(1) =
1

P (t, x1)

(
N∑
i=0

Fi(t, x1)dti +

N∑
i=0

Gi(t, x1)dxi1

)
for some homogeneous polynomials Fi, Gi ∈ O(U)[x0

1, . . . , x
N
1 ] of degree N+1 and N respec-

tively. The condition (Grading & Filtration) does not prevent Fi from containing x2, but the

closedness of ∇C(1) implies that Fi does not depend on x2. The primitive C(1) =
∫
∇C(1)

is a multi-valued function defined up to a constant. The symmetry of ∇nC(g) is automatic
for g ≥ 2 because ∇ is flat; the symmetry of ∇nC(0) = ∇n−3Y , n ≥ 3 follows from the

existence of C(0) in the formal neighbourhood L̂ (Proposition 4.35).

(3) Because ∇nC(g) ∈ ((Ω1)⊗n)3g−3, we have

C(g)
µ1,...,µn ∈ O3g−3−|µ1|−···−|µn|+n

where we set

|µ| =
{
n if xµ = xin
0 if xµ = ti

so that dxµ ∈ (Ω1)|µ|−1. In particular, the following (3g − 2)-jet condition holds:

(4.44) C(g)
µ1,...,µn = 0 if |µ1|+ · · ·+ |µn| > 3g − 3 + n

For t ∈ U , let {qin}n≥0,0≤i≤N be the flat co-ordinate system (Definition 4.28) on the formal

neighbourhood L̂◦ of L◦t associated to P. Then we have (see equation 4.23):

∂

∂qin

∣∣∣∣∣
L◦t

=


a linear combination of ∂

∂ti

∣∣∣
L◦t

and ∂
∂xim

∣∣∣
L◦t

, m ≥ 1 if n = 0

∂
∂xin

∣∣∣
L◦t

otherwise

Therefore the (3g − 2)-jet condition implies the following tameness:

(4.45)
∂nC(g)

∂qi1l1 · · · ∂q
in
ln

∣∣∣∣∣
q0=0

= 0 if l1 + · · ·+ ln > 3g − 3 + n

(cf. [63]). Notice that we need the restriction to q0 = 0 here.
(4) The discriminant depends on the choice of local co-ordinates {ti} on U , and making a

different choice changes it as P → f(t)P for some function f(t) on U . Note however that
the condition (Pole) does not depend on the choice of co-ordinates.

(5) Recall that ∇ preserves the grading and the filtration (Proposition 4.54). Therefore (Grad-

ing & Filtration) for genus g ≥ 1 is equivalent to the condition that ∇C(1) ∈ O(pr−1(U)◦)0
0

and C(g) ∈ O(pr−1(U)◦)2−2g
3g−3 for g ≥ 2. Note that (Grading & Filtration) at genus zero

follows from Y ∈ ((Ω1)⊗3)2
−3.
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(6) The condition (Pole) for g ≥ 2 is equivalent to the fact that C(g) has the following expansion:

C(g) =
∞∑
n=0

∑
L=(l1,...,ln)
la≥2 for all a

∑
I=(i1,...,in)

1

n!

fg,L,I(t, x1)

P (t, x1)5g−5+2n−(l1+···+ln)
xi1l1 · · ·x

in
ln

for some polynomials fg,L,I(t, x1) in x1. This can be further rephrased as

P 5g−5+2n−(l1+···+ln) ∂nC(g)

∂xi1l1 · · · ∂x
in
ln

extends regularly to pr−1(U) for l1, . . . , ln ≥ 1.

Since C(g) ∈ O(pr−1(U)◦)3g−3, the exponent 5g − 5 + 2n− (l1 + · · ·+ ln) ≥ 2g − 2 + n here
is always positive unless the derivative is zero. Note that ∂/∂xi1 raises the pole order by at
most one, and that ∂/∂xi2 does not raise the pole order.

4.11. Pole Order Along The Discriminant. We next study the pole order of tensors ∇nC(g)

in algebraic local co-ordinates and also in flat co-ordinates on L̂◦.

Lemma 4.58. Let ∇ =∇P be the connection associated to a pseudo-opposite module P over U .

(1) The 4-tensor ∇Y is completely symmetric16 and is regular on pr−1(U).
(2) We have

∇Y = (id⊗3⊗KS∗)Ξ
for some regular section Ξ of (Ω1)⊗3 ⊗ pr∗ F∨ over pr−1(U) (cf. Lemma 4.14).

(3) For n ≥ 5, the n-tensor Pn−5∇n−3Y is regular on pr−1(U).

Proof. Using (4.16), we calculate: (writing Ci = Ci(t, 0))

∇Y =
∑

(d(Cief , eg)F0)⊗ dti ⊗KS∗(ϕf0)⊗KS∗(ϕg0)

+
∑

(Cief , eg)F0dx
ν ⊗∇νdt

i ⊗KS∗(ϕf0)⊗KS∗(ϕg0)

+
∑

(Cief , eg)F0dx
ν ⊗ dti ⊗∇ν KS∗(ϕf0)⊗KS∗(ϕg0)

+
∑

(Cief , eg)F0dx
ν ⊗ dti ⊗KS∗(ϕf0)⊗∇ν KS∗(ϕg0)

(4.46)

The first term is regular and is in the image of id⊗3⊗KS∗. So are the third and the fourth terms,

because ∇KS∗(ϕi0) = KS∗((∇̃∨Π∗ϕi0)|pr∗ F). Using KS∗(ϕf0) = −∑j [Cjx1]fdtj (see equation 4.15),
we can rewrite the second term as:∑

(CiCjx1, eg)F0(∇dti)⊗ dtj ⊗KS∗(ϕg0) =
∑

(Cjef , eg)F0 [Cix1]f (∇dti)⊗ dtj ⊗KS∗(ϕg0)

Using KS∗(ϕf0) = −∑i[Cix1]fdtj again, we have:∑
i

[Cix1]f (∇dti) = −∇(KS∗(ϕf0))−
∑
i

(d[Cix1]f )⊗ dti

The right-hand side is regular on pr−1(U) for the same reason as before. Thus the second term of
(4.46) is regular and is in the image of id⊗3⊗KS∗. This establishes the regularity of ∇Y and Part
(2). Next we show that∇Y is symmetric. Take an opposite module Q in the formal neighbourhood
of t ∈M (see Lemma 4.17). We have by Proposition 4.45(1)

∇P
µC

(0)
νρσ = ∂µC

(0)
νρσ − C(0)

τρσΓPτ
µν − C(0)

ντσΓPτ
µρ − C(0)

νρτΓPτ
µσ

=∇Q
µC

(0)
νρσ − C(0)

τρσ∆τκC(0)
κµν − C(0)

ντσ∆τκC(0)
κµρ − C(0)

νρτ∆τκC(0)
κµσ

16This is obvious if P is parallel, but we do not assume here that P is parallel.
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where ΓPτ
µν denotes the Christoffel symbol (see equation 4.36) of ∇P and ∆ = ∆(P,Q) is the prop-

agator. Because the propagator is symmetric (Proposition 4.44) and the tensor ∇Q
µC

(0)
νρσ associated

to a parallel Q is symmetric, we find that ∇PY is also symmetric. Finally we prove Part (3). We
can write

∇Y =
∑
a

κa ⊗ λa ⊗ µa ⊗ νa

with κa, λa, µa, νa ∈ Ω1 regular and νa the image under KS∗ of a regular section of pr∗ F∨. Then
we have:

(4.47) ∇2Y =
∑
a

[(∇κa)⊗ λa ⊗ µa ⊗ νa) + · · ·+ (κa ⊗ λa ⊗ µa ⊗∇νa)]

Note that ∇νa is regular, by the definition of ∇. We claim that the difference∑
a

(∇κa)⊗ λa ⊗ µa ⊗ νa −
∑
a

(∇νa)⊗ λa ⊗ µa ⊗ κa

is regular. Since ∇Y is symmetric, the image of∑
a

κa ⊗C λa ⊗C µa ⊗C νa −
∑
a

νa ⊗C λa ⊗C µa ⊗C κa ∈ Ω1 ⊗C Ω1 ⊗C Ω1 ⊗C Ω1

in Ω1 ⊗O Ω1 ⊗O ⊗Ω1 ⊗O Ω1 is zero. Therefore it is generated by elements of the form

fφ1 ⊗C φ2 ⊗C φ3 ⊗C φ4 − φ1 ⊗C fφ2 ⊗C φ3 ⊗C φ4,

φ1 ⊗C fφ2 ⊗C φ3 ⊗C φ4 − φ1 ⊗C φ2 ⊗C fφ3 ⊗C φ4,

φ1 ⊗C φ2 ⊗C fφ3 ⊗C φ4 − φ1 ⊗C φ2 ⊗C φ3 ⊗C fφ4

with f ∈ O regular and regular sections φi ∈ Ω1. If one applies ∇⊗ id⊗3 to any of these generators
and maps it to Ω1 ⊗O Ω1 ⊗O Ω1 ⊗O Ω1 ⊗O Ω1, we always get a regular 5-tensor. This proves the
claim. Because ∇νa is regular, it follows that every term in (4.47) is regular. Part (3) is proved.
Part (4) follows from Part (1), Part (3), and Lemma 4.25. �

Proposition 4.59. For C = {∇nC(g)}2g−2+n>0 ∈ Fock(U ;P), Pmax(5g−5+n,0)∇nC(g) extends to a
regular n-tensor on pr−1(U).

Proof. At genus zero, this was shown in the previous lemma. At higher genera, it follows from
Lemma 4.25 and the fact that C(g) has poles of order 5g − 5 along P (t, x1) = 0. �

Proposition 4.60 (Pole structure in flat co-ordinates). Let P be a parallel pseudo-opposite module
over an open set U ⊂M and let t ∈ U . Let {qin}n≥0,0≤i≤N be a flat co-ordinate system on the formal

neighbourhood L̂◦ of L◦t associated to P (see Definition 4.28). For any element C = {∇nC(g)} ∈
Fock(U ;P), we have

(4.48)
∂nC(g)

∂qi1l1 · · · ∂q
in
ln

∈ P−(5g−5+2n−(l1+···+ln))
t C[q1, q2, Ptq3, P

2
t q4, . . . ][[P

−2
t q0]]

whenever 2g − 2 + n > 0, where Pt = P (t, q1).

Proof. At genus zero, this follows from Lemma 4.36. For g ≥ 2, it suffices to show that C(g) lies in

P
−(5g−5)
t S where S := C[q1, q2, Ptq3, P

2
t q4, . . . ][[P

−2
t q0]]. Let s = (s0, . . . , sN ) be a local co-ordinate

on M centred at t ∈M as in §4.7, and write t+ s for the corresponding point in a neighbourhood
of t. The condition (Pole) implies that

C(g) ∈ P−(5g−5)O(U)[x1, x2, Px3, P
2x4, . . . , P

3g−4x3g−2]
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where P = P (t+ s, x1). By Lemma 4.30, we have xi1 ∈ qi1 +PtS, xin ∈ P 2−n
t S, n ≥ 2, and si ∈ PtS.

Thus we have
P/Pt = P (t+ s, x1)/P (t, q1) ∈ S

We also have Pt/P ∈ S, because (P/Pt)|q0=0 = 1 so that P/Pt is invertible in S. Therefore:

P−(5g−5) ∈ P−(5g−5)
t S, Pn−2xn ∈ S (n ≥ 2)

Hence C(g) ∈ P
−(5g−5)
t S for g ≥ 2. For g = 1, it suffices to show (4.48) for n = 1. Using the

expression (4.43), we have:

∂C(1)

∂qjl
=

1

P

N∑
i=0

(
Fi(t+ s, x1)

∂si

∂qjl
+Gi(t+ s, x1)

∂xi1

∂qjl

)
Because P−1 ∈ P−1

t S, Fi(t+ s, x1), Gi(t+ s, x1) ∈ S and ∂si/∂qil , ∂x
i
1/∂q

j
l ∈ P l−1

t S, the right-hand

side here belongs to P l−2
t S. �

Remark 4.61. The previous proposition implies, and is implied by

∂nC(g)

∂qi1l1 · · · ∂q
in
ln

∣∣∣∣∣
q0=0

=
fg,I,L(q1, q2, . . . )

P (t, q1)5g−5+2n−(l1+···+ln)

for some polynomial fg,I,L(q1, q2, . . . ). By tameness (4.45), the exponent 5g−5 + 2n− (l1 + · · ·+ ln)
is positive unless the derivative vanishes.

4.12. Transformation Rule and Fock Sheaf. As outlined in §3.6, we now define a Fock sheaf
by gluing local Fock spaces using a transformation rule.

Let {yµ} denote the fiber co-ordinates of the tangent bundle Θ dual to {xµ}. A general point on
the total space of Θ can be written as:∑

µ

yµ
(

∂

∂xµ

)
x

∈ Θx

Much as we did for L, one can give a co-ordinate-free definition of the total space of the tangent
bundle Θ, as a certain ringed space. To avoid excessive formalism, however, we will work in terms
of local co-ordinates {xµ, yµ} on Θ, regarding any polynomial (or formal power series) expression
in xµ, yµ as a regular (or formal) function on the total space of Θ.

Definition 4.62 (jet potential). An element C = {∇nC(g)}g,n of Fock(U ;P) is encoded by the
following formal function W on the total space of Θ|pr−1(U)◦ :

W(x, y) =
∞∑
g=0

~g−1Wg(x, y)

where:

Wg(x, y) =

∞∑
n=max(3−2g,0)

1

n!
C(g)
µ1,...,µn(x)yµ1 · · · yµn

We call Wg the genus-g jet potential and exp(W) the total jet potential associated to C .

Remark 4.63.

(1) For a fixed x ∈ L◦, Wg(x, y) should be viewed as a packaging of the multilinear tensors

{∇nC(g)}n on the tangent space Θx. This can be identified with the Taylor expansion at x
of the potential C(g) in flat co-ordinates. Namely the linear co-ordinates yµ on Θx play the
role of flat co-ordinates on L centred at x such that dyµ|x = dxµ|x. Notice however that the
constant term at genus one and the quadratic term at genus zero are ignored.
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(2) Let yin be the fiber co-ordinate dual to ∂/∂xin for n ≥ 1 and let yi0 be the fiber co-ordinate
dual to ∂/∂ti. Then the jet potential W(x, y) is an element of:

~−1O(U)
[
{xin}n≥1,0≤i≤N , P (t, x1)−1, {yin}n≥2,0≤i≤N

]
[[y0

0, . . . , y
N
0 , y

0
1, . . . , y

N
1 ]][[~]]

Moreover, the ~−1-coefficient of W (i.e. W0) vanishes along y0
0 = · · · = yN0 = 0 and thus

exp(W(x, y)) is a well-defined formal Laurent series in ~ (infinite in both directions).

To describe the transformation rule (or Feynman rule), we use the following terminology for
graphs. A graph Γ is given by four finite sets V (Γ), E(Γ), L(Γ), F (Γ) called (the sets of) vertices,
edges, legs and flags respectively, together with incidence maps

πV : F (Γ)→ V (Γ) πE : F (Γ)→ E(Γ) t L(Γ)

such that |π−1
E (e)| = 2 for each e ∈ E(Γ) and |π−1

E (l)| = 1 for each l ∈ L(Γ). We assign to an
edge e a closed interval Ie ∼= [0, 1], to a leg l a half-open interval Hl

∼= [0, 1), and to a vertex v a
point pv, and fix identifications π−1

E (e) ∼= ∂Ie, π
−1
E (l) ∼= ∂Hl. By identifying Ie, Hl, pv via the map

πV : F (Γ) ∼=
⊔
∂Ie t

⊔
∂Hl → V (Γ) ∼= {pv}, we get a topological realization |Γ| of the graph Γ. We

say that Γ is connected if |Γ| is connected; we also write χ(Γ) = χ(|Γ|) = |V (Γ)| − |E(Γ)| for the
topological Euler characterisitic of |Γ|.
Definition 4.64 (transformation rule). Let P1, P2 be parallel pseudo-opposite modules over U ⊂M
and let ∆ = ∆(P1,P2) be the propagator. The transformation rule T (P1,P2) : Fock(U ;P1) →
Fock(U ;P2) is a map which assigns, to the jet potential exp(W) for an element of Fock(U ;P1), the

jet potential exp(Ŵ) for an element of Fock(U ;P2) given by:

(4.49) exp(Ŵ(x, y)) = exp

(
~
2

∆µν∂yµ∂yν

)
exp(W(x, y))

Let C = {C(g)
µ1,...,µn}g,n, Ĉ = {Ĉ(g)

µ1,...,µn}g,n be the correlation functions corresponding respectively

to W, Ŵ. The above formula is equivalent to the following Feynman rule:

Ĉ(g)
µ1,...,µn =

∑
Γ

1

|Aut(Γ)| ContΓ(C ,∆)µ1,...,µn

Here the summation is over all connected decorated graphs Γ such that:

• To each vertex v ∈ V (Γ) is assigned a non-negative integer gv ≥ 0, called the genus;
• Γ has n labelled legs: an isomorphism L(Γ) ∼= {1, 2, . . . , n} is given;
• Γ is stable, i.e. 2gv − 2 + nv > 0 for every vertex v. Here nv = |π−1

V (v)| denotes the number
of edges or legs incident to v;
• g =

∑
v gv + 1− χ(Γ).

We put the index µi at the ith leg, the correlation function ∇nvC(gv) on the vertex v, and the
propagator ∆ on every edge. Then ContΓ(C ,∆)µ1,...,µn is defined to be the contraction of all these
tensors with the indices µ1, . . . , µn on the legs fixed. Here Aut(Γ) denotes the automorphism group
of the decorated graph Γ.

Example 4.65.

(1) The Feynman rule for genus-zero three point correlation functions is trivial:

(4.50) Ĉ(0)
µνρ = C(0)

µνρ

since there is only one genus-zero stable graph with three legs. This is compatible with the
fact that the Yukawa coupling was defined independently of the choice of pseudo-opposite
module.
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(2) The Feynman rule for genus-one one-point functions is given by:

(4.51) Ĉ(1)
µ = C(1)

µ +
1

2
C(0)
µνρ∆

νρ = C(1)
µ + (ωP1P2)µ

Here ωP1P2 is the difference one-form defined in (4.41) and comes from the graph µ−©.
(3) The Feynman rule for genus-two potentials is given by:

Ĉ(2) =C(2) +
1

2
C(1)
µν ∆µν +

1

2
C(1)
µ ∆µνC(1)

ν +
1

2
C(1)
µ ∆µνC(0)

νρσ∆ρσ

+
1

8
C(0)
µνρσ∆µν∆ρσ +

1

8
∆µνC(0)

µνρ∆
ρσC(0)

στω∆τω +
1

12
C(0)
µνρ∆

µµ′∆νν′∆ρρ′C
(0)
µ′ν′ρ′ .

cf. [2, Figure 1].

Remark 4.66. We can use the flat co-ordinate system {qin}n≥0,0≤i≤N associated to the parallel
pseudo-opposite P1 (see Definition 4.28) to expand the n-point correlation functions as follows:

∇nC(g) =
∑

l1,...,ln≥0
0≤i1,...,in≤N

∂nC(g)

∂qi1l1 · · · ∂q
in
ln

dqi1l1 ⊗ · · · ⊗ dq
in
ln

Written in flat co-ordinates, the transformation rule above matches with the action of Givental’s
quantized operators on tame potentials. This will be explained in §5.2 below.

We show in Lemmas 4.67–4.69 below that the transformation rule is well-defined, i.e. that Ĉ =

{Ĉ(g)
µ1,...,µn} in Definition 4.64 satisfies the conditions in Definition 4.56. Observe first that the tensor

Ĉ
(g)
µ1,...,µn defined by the Feynman rule is automatically completely symmetric. We already saw in

(4.50) that Ĉ
(0)
µνρ is the Yukawa coupling. Let ∇, ∇̂ denote the flat connections on L◦ associated

with P1, P2 respectively.

Lemma 4.67 (Jetness). ∇̂(∇̂
n
Ĉ(g)) = ∇̂

n+1
Ĉ(g), i.e. ∇̂νĈ

(g)
µ1,...,µn = Ĉ

(g)
ν,µ1,...,µn (see equation 4.42

for this notation).

Proof. We have

(4.52) ∇̂νĈ
(g)
µ1,...,µn =∇νĈ

(g)
µ1,...,µn + (∇̂−∇)νĈ

(g)
µ1,...,µn

By the Feynman rule for Ĉ
(g)
µ1,...,µn , we can write the first term as

∇νĈ
(g)
µ1,...,µn = Cvert + Cprop

where Cvert and Cprop arise from the vertex and the propagator differentiations respectively. The
term Cvert is the sum over stable graphs with one extra leg ν attached to a vertex v; note that
the vertex v satisfies 2gv − 2 + nv > 1. The term Cprop is the sum over stable graphs with the
differentiated propagator ∇ν∆ on one of the edges. By Proposition 4.45(2), we can replace the
edge ∇ν∆ by the genus-zero trivalent vertex with the leg ν:

•

•
∇ν∆ //

•
•

∆

•
•

∆

ν
g=0

By Proposition 4.45(1), the second term of (4.52) is:

(∇̂−∇)νĈ
(g)
µ1,...,µn =

n∑
i=1

∑
Γ

1

Aut(Γ)
ContΓ(C ,∆)µ1,...,σ

i
,...,µn∆σρC(0)

ρµiν

Namely, we add to the leg µi the genus-zero trivalent vertex:

(4.53) • µi // • •
g=0

∆
µi

ν
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On the other hand, by the Feynman rule, Ĉ
(g)
ν,µ1,...,µn can be written as a summation over genus-g

stable graphs with legs ν, µ1, . . . , µn; if v denotes the vertex incident to the leg ν, we have the
following three cases:

• nv + 2gv − 2 > 1
• gv = 0, nv = 3 and v has only one leg ν
• gv = 0, nv = 3 and v has two legs ν, µi

These three cases correspond to Cvert, Cprop and (∇̂−∇)νĈ
(g)
µ1,...,µn respectively. �

Lemma 4.68 (Grading & Filtration). ∇̂
n
Ĉ(g) ∈ ((Ω1)⊗n)2−2g

3g−3.

Proof. Let Γ be a decorated graph contributing to the Feynman rule of Ĉ
(g)
µ1,...,µn . We estimate

the grading and the filtration of the contribution from Γ. Recall that deg ∆ = −2, filt ∆ ≤ 2 by
Proposition 4.55 and deg∇ = 0, filt∇ ≤ 0 by Proposition 4.54. The degree can be calculated as:∑

v∈V (Γ)

(2− 2gv) +
∑

e∈E(Γ)

(−2) = 2− 2g

The filtration is estimated as:∑
v∈V (Γ)

(3gv − 3) +
∑

e∈E(Γ)

2 = 3g − 3− |E(Γ)| ≤ 3g − 3

The conclusion follows. �

Lemma 4.69 (Pole). Let P = P (t, x1) be the discriminant (4.10). Then P∇̂Ĉ(1) extends to a

regular 1-form on pr−1(U) and Ĉ(g) belongs to P−(5g−5)O(U)[x1, x2, Px3, P
2x4, . . . ] for g ≥ 2.

Proof. By the Feynman rule (4.51) at genus one, ∇̂Ĉ(1) differs from ∇C(1) by a regular one-form

ωP1P2 on U (see equation 4.41). Thus P∇̂Ĉ(1) is regular.
For g ≥ 2, we apply the Feynman rule to correlation functions written in flat co-ordinates.

Take a point t ∈ U and flat co-ordinates {qin}n≥0,0≤i≤N on the formal neighbourhood L̂◦ of L̂◦t
associated to P1. Take a graph Γ (without legs) which contributes to the Feynman rule for Ĉ(g).
By Proposition 4.60, the vertex term for v ∈ V (Γ)

∂nC(g)

∂qi1l1 · · · ∂q
in
ln

∣∣∣∣∣
q0=0

g = gv, n = nv

belongs to P
−(5gv−5+2nv−(l1+···+lm))
t C[q1, q2, Ptq3, P

2
t q4, . . . ] with Pt = P (t, q1). The propagator

∆(dqin, dq
j
m)
∣∣
q0=0

= Ω∨(Π∗1ϕ
i
n,Π

∗
2ϕ

j
m)

is constant (see equation 4.40) along the fiber Lt = {q0 = 0}. Using the formulae:∑
v∈V (Γ)

(gv − 1) = g − 1− |E(Γ)|
∑

v∈V (Γ)

nv = 2|E(Γ)|

we bound the pole order of ContΓ(C ,∆)|q0=0 along Pt = 0 from above as:∑
v∈V (Γ)

(5gv − 5 + 2nv) = 5g − 5− |E(Γ)| ≤ 5g − 5

Thus:
Ĉ(g)

∣∣
L◦t
∈ P−(5g−5)

t C[q1, q2, Ptq3, P
2
t q4, . . . ]

Since qin|Lt = xin (n ≥ 1) and this holds for every point t, the conclusion follows. �
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Proposition 4.70 (cocycle condition). Let P1,P2,P2 be parallel pseudo-opposite modules over an
open set U . The transformation rules Tij = T (Pi,Pj) : Fock(U ;Pi)→ Fock(U ;Pj) satisfy the cocycle
condition:

T13 = T23 ◦ T12.

Proof. This is immediate from the definition (4.49) and Proposition 4.46. �

We define the Fock sheaf over M under the following assumption. (The Fock sheaf without this
assumption will be considered in the next section §4.13.)

Assumption 4.71 (Covering Assumption). There exists an open covering {Uα}α∈A of M such
that we can find a parallel pseudo-opposite module Pα over Uα for each α ∈ A.

Definition 4.72 (Fock sheaf). The Fock sheaf is a sheaf of sets overM which is obtained by gluing
the local Fock spaces Fock(Uα;Pα) over Uα by the transformation rule:

Tαβ = T (Pα,Pβ) : Fock(Uαβ;Pα) −→ Fock(Uαβ;Pβ)

where Uαβ = Uα ∩Uβ. More precisely, we define the set Fock(U) for an open set U as the equalizer
of the sequence: ∏

α:U∩Uα 6=∅

Fock(U ∩ Uα;Pα)
π2

//
π1 // ∏

(α,β):U∩Uαβ 6=∅

Fock(U ∩ Uαβ;Pα)

where π1({uα}α) = {uα|U∩Uαβ}α,β and π2({uα}α) = {Tβα(uβ|U∩Uαβ )}α,β, that is:

Fock(U) =
{
{Cα ∈ Fock(U ∩ Uα;Pα)}α∈A

∣∣∣TαβCα|U∩Uα∩Uβ = Cβ|U∩Uα∩Uβ
}

Remark 4.73. Note that Fock(U) is not a C-vector space but is just a set. This is because the
transformation rule is not C-linear. A natural C-linear structure should be considered on the space
of exponentiated potentials exp(C(1) + ~C(2) + ~2C(3) + · · · ). In fact, we can construct a Fock sheaf
of C-vector spaces by choosing certain “orientation data” and regard these exponentiated potentials
as sections of the sheaf. We hope to discuss this issue elsewhere.

4.13. Anomaly Equation For Curved Polarizations. In this section we introduce a Fock
space for possibly curved pseudo-opposite modules. Correlation functions associated with a curved
pseudo-opposite module satisfy, instead of the jetness condition, a certain anomaly equation. As
we explain in §9 below, when the curved pseudo-opposite module is the so-called complex conju-
gate polarization, the anomaly equation becomes the celebrated holomorphic anomaly equation of
Bershadsky–Cecotti–Ooguri–Vafa [11,12].

Recall that a pseudo-opposite module for a cTP structure is said to be curved if it is not preserved
by ∇ (Definition 4.15). For a curved pseudo-opposite module Q, (∇Q)nC(g) is not necessarily
symmetric, because ∇Q is not flat. The completely symmetric correlation functions associated to
a curved pseudo-opposite module Q are defined in a different way, as follows. Suppose that we

are given an element {C(g)
P;µ1,...,µn

} ∈ Fock(U ;P) for a parallel pseudo-opposite module P. For each

t ∈ M, there is a unique parallel pseudo-opposite module Q̃(t) in the formal neighbourhood of t

such that Q̃(t)t = Qt (this is the parallel translation of Qt: see the proof of Lemma 4.17). From the
transformation rule, we obtain correlation functions

{C(g)

Q̃(t);µ1,...,µn
} = T (P, Q̃(t))

(
{C(g)

P;µ1,...,µn
}
)

over the formal neighbourhood of L◦t . Restricting these to the fiber L◦t and varying the point t, we

obtain the correlation functions C
(g)
Q;µ1,...,µn

associated to Q such that

C
(g)
Q;µ1,...,µn

∣∣∣
L◦t

= C
(g)

Q̃(t);µ1,...,µn

∣∣∣
L◦t
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for every t. Because the propagator ∆(P, Q̃(t)) coincides with ∆(P,Q) along the fiber L◦t , the new

correlation functions C
(g)
Q;µ1,...,µn

can be described using the same Feynman rule as before.

Definition 4.74. Let CP = {C(g)
P;µ1,...,µm

}g,m be an element of the local Fock space Fock(U ;P) associ-

ated to a parallel pseudo-opposite module P over U , and let exp(WP(x, y)) denote the corresponding
jet potential (Definition 4.62). Let Q be a (not necessarily parallel) pseudo-opposite module over U .

We define a set CQ = {C(g)
Q;µ1...,µn

: g ≥ 0, n ≥ 0, 2g − 2 + n > 0} of completely symmetric tensors

by the same Feynman rule as appears in Definition 4.64:

C
(g)
Q;µ1,...,µn

=
∑

Γ

1

|Aut(Γ)| ContΓ(CP,∆(P,Q))µ1,...,µn

We write
CQ = T (P,Q)CP

and call CQ the correlation functions under Q corresponding to CP. The jet potential associated to
Q

(4.54) WQ(x, y) =
∑

g,n≥0,2g−2+n>0

~g−1

n!
C

(g)
Q;µ1,...,µn

(x)yµ1 · · · yµn

is related to the jet potential WP associated to CP by the same formula (4.49) as before:

exp(WQ(x, y)) = exp

(
~
2

∆µν(P,Q)∂yµ∂yν

)
exp(WP(x, y))

Proposition 4.75. The correlation functions under a curved pseudo-opposite module Q correspond-
ing to a Fock space element satisfy the conditions (Yukawa), (Grading & Filtration) and (Pole) but
not necessarily the condition (Jetness) in Definition 4.56.

Proof. The proofs of Lemmas 4.68, 4.69 work for curved pseudo-opposite modules too. �

We will shortly (in Theorem 4.86 below) describe an anomaly equation that gives a substitute for
the jetness condition for correlation functions under a curved pseudo-opposite module. The simplest
case of this anomaly equation is the curvature condition for the genus-one one-point function: the

one-form C
(1)
Q;µdx

µ is not necessarily closed, but its derivative d(C
(1)
Q;µdx

µ) equals a certain two-form

ϑQ associated to Q.

Lemma 4.76. Let P be a parallel pseudo-opposite module and Q be a (not necessarily parallel)
pseudo-opposite module. Let ωPQ denote the difference one-form (4.41) between P and Q. The
two-form ϑQ = dωPQ does not depend on the choice of a parallel P and vanishes if Q is parallel.

Proof. When both P and Q are parallel, ωPQ arises as the difference (4.51) of the genus-one 1-forms

C
(1)
µ dxµ, which are closed. More directly, by Proposition 4.45(2), we have

2
(
∇PωPQ

)
µν

= (∇P
µC

(0)
νρτ )∆ρτ + C(0)

νρτ (∇P
µ∆ρτ ) = C(0)

µνρτ∆ρτ + C(0)
νρτ∆ρσC

(0)
σµλ∆λτ

where ∆ = ∆(P,Q). This 2-tensor is symmetric with respect to µ and ν; thus ωPQ is closed. Because
ωPQ − ωP′Q = ωPP′ , it follows that dωPQ does not depend on the choice of parallel P. �

Definition 4.77. The two-form ϑQ := dωPQ ∈ pr∗Ω2
M in the above Lemma is called the curvature

two-form of Q. This is the pull-back of a two-form on M. We will give an explicit and intrinsic
formula in (4.56) below.
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Proposition 4.78 (curvature condition). For a genus-one one point function C
(1)
Q;µdx

µ under Q

corresponding to a Fock space element in Fock(U ;P) with P a parallel pseudo-opposite module, we
have:

d(C
(1)
Q;µdx

µ) = ϑQ

Proof. This follows from the Feynman rule at genus zero: C
(1)
Q;µdx

µ = C
(1)
P;µdx

µ + ωPQ (see equa-

tion 4.51) and the definition of ϑQ. �

Let P be a parallel pseudo-opposite module and let Q be a possibly curved pseudo-opposite
module. An element of Fock(U ;P) induces correlation functions under Q. Conversely, an element
of Fock(U ;P) can be uniquely reconstructed from a genus-one one-point function and higher-genus
zero-point functions under Q.

Proposition 4.79. Let Q be a pseudo-opposite module over U . Assume that we have a one-form

C
(1)
Q;µdx

µ ∈ Ω1 and functions C
(g)
Q ∈ O for g ≥ 2 over pr−1(U)◦ satisfying the following conditions:

• (Grading & Filtration) C
(1)
Q;µdx

µ ∈ (Ω1)0
0; C

(g)
Q ∈ O2−2g

3g−3;

• (Curvature) d(C
(1)
Q;µdx

µ) = ϑQ, where ϑQ is the curvature two-form in Definition 4.77;

• (Pole) P (C
(1)
Q;µdx

µ) extends to a regular 1-form on pr−1(U); for g ≥ 2, C
(g)
Q ∈

P−(5g−5)O(U)[x1, x2, Px3, P
2x4, . . . , P

3g−4x3g−2];

where P = P (t, x1) is the discriminant (4.10). For a parallel pseudo-opposite module P over U ,

there exists a unique Fock space element CP = {C(g)
P;µ1,...,µn

}g,n ∈ Fock(U ;P) such that

• C(1)
Q;µ is the genus-one one-point correlation function under Q corresponding to CP;

• For g ≥ 2, C
(g)
Q is the genus-g zero-point correlation function under Q corresponding to CP.

The formula
CQ = T (P,Q)CP

reconstructs the multi-point correlation functions CQ = {C(g)
Q;µ1,...,µn

} under Q that satisfy the condi-

tions (Yukawa), (Grading & Filtration) and (Pole) in Definition 4.56. The multi-point correlation

functions C
(g)
Q;µ1,...,µn

are independent of the choice of P.

Proof. We solve for the Fock space element CP = {C(h)
P;ν1,...,νm

}h,m satisfying the Feynman rule (see

equation 4.51)

C
(1)
Q;µdx

µ = C
(1)
P;µdx

µ + ωPQ

C
(g)
Q =

∑
Γ

1

|Aut(Γ)| ContΓ(CP,∆(P,Q))

inductively on the genus and the number of insertions. Imposing the jetness:

(∇P)n−1C
(1)
P;µdx

µ = C
(1)
P;µ1,...,µn

dxµ1 ⊗ · · · ⊗ dxµn

(∇P)nC
(g)
P = C

(g)
P;µ1,...,µn

dxµ1 ⊗ · · · ⊗ dxµn (g ≥ 2)

and the condition C
(0)
P;µ1,...,µn

= (∇P)n−3Y , we can uniquely determine the symmetric tensors

C
(g)
P;µ1,...,µn

. The genus-one tensors C
(1)
P;µ1,...,µn

become completely symmetric by the curvature con-

dition d(C
(1)
Q;µdx

µ) = ϑQ = dωPQ. It remains to check that the reconstructed correlation functions

C
(g)
P;µ1,...,µn

satisfy the conditions (Grading & Filtration) and (Pole) in Definition 4.56. At genus

one, C
(1)
P;µdx

µ satisfies (Grading & Filtration) and (Pole) because so does C
(1)
Q;µdx

µ. Note that the
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conditions (Grading & Filtration) are stable under ∇P by Proposition 4.54. Suppose that (Grading

& Filtration) and (Pole) are satisfied up to genus g − 1. We can write C
(g)
P as the sum of C

(g)
Q

and the Feynman graph contributions from lower genus n-point functions C
(h)
P;µ1,...,µn

. Therefore the

argument of Lemmas 4.68 and 4.69 applies here too.
Finally we check that CQ is independent of the choice of parallel P. Suppose we have two

parallel pseudo-opposite modules P1,P2. The above procedure gives two Fock space elements
CP1 ∈ Fock(U ;P1), CP2 ∈ Fock(U ;P2). Then T (P1,Q)CP1 and T (P2,Q)CP2 have the same genus-
one one point functions and higher-genus zero-point functions. On the other hand we can write
T (P2,Q)CP2 = T (P1,Q)T (P2,P1)CP2 by the cocycle condition for the transformation rule (Propo-
sition 4.70). The above reconstruction procedure implies that CP1 = T (P2,P1)CP2 . Therefore
T (P1,Q)CP1 = T (P2,Q)CP2 . �

Remark 4.80. Since an opposite module exists in the formal neighbourhood of every point t ∈M
(Lemma 4.17), the reconstruction of multi-point correlation functions satisfying (Curvature), (Pole),

and (Grading & Filtration) from the data {C(1)
Q;µ, C

(2)
Q , C

(3)
Q , . . . } is always possible, even without

Assumption 4.71.

In view of the above Proposition, we make the following definition for the local Fock space with
respect to a possibly curved opposite module (cf. Definition 4.56). This definition does not rely on
Assumption 4.71.

Definition 4.81 (local Fock space and transformation rule: general case). Let Q be a (not neces-
sarily parallel) pseudo-opposite module over an open set U ⊂M. The local Fock space Fock(U ;Q)

consists of collections {C(1)
Q;µ, C

(2)
Q , C

(3)
Q , . . . } satisfying the conditions (Curvature), (Grading & Fil-

tration), and (Pole) in Proposition 4.79, where

C
(1)
Q;µdx

µ ∈ Ω1(pr−1(U)◦) and C
(g)
Q ∈ O(pr−1(U)◦) g ≥ 2.

Proposition 4.79 allows us to reconstruct multi-point correlation functions C
(g)
Q;µ1,...,µn

from the

data {C(1)
Q;µ, C

(2)
Q , C

(3)
Q , . . . } and they define the associated jet potential WQ(x, y) as in (4.54). For

two pseudo-opposite modules Q1, Q2 over U , the transformation rule T (Q1,Q2) : Fock(U ;Q1) →
Fock(U ;Q2) is defined in terms of jet potentials (reconstructed thus) in the same way as Defini-
tion 4.64:

exp(WQ2(x, y)) = exp

(
~
2

∆µν(Q1,Q2)∂yµ∂yν

)
exp(WQ1(x, y))

This can be also described by the Feynman rule in Definition 4.64.

Remark 4.82. For parallel Q, the above definition reduces to the original definitions of local Fock
spaces and the transformation rule. Multi-point correlation functions under a parallel Q can be
obtained by the covariant derivative ∇Q from zero-point correlation functions. The transforma-
tion rule for general pseudo-opposite modules satisfies the cocycle condition: the same proof as
Proposition 4.70 works.

Let Q be a possibly curved pseudo-opposite module over U . The reconstruction of multi-point

correlation functions C
(g)
Q;µ1,...,µn

from the data {C(1)
Q;µ, C

(2)
Q , C

(3)
Q , . . . } in Proposition 4.79 was implicit.

We can describe it in a more explicit and intrinsic way, without reference to a parallel pseudo-
opposite module. For this purpose, we introduce the following “background torsion” ΛQ associated
to Q.

Definition 4.83. Let Q be a pseudo-opposite module. The (background) torsion of Q is an operator
ΛQ : Ω1

◦ ×Ω1
◦ → Ω1

◦ defined by

ΛQ(ω1, ω2) = Ω∨(∇̃∨Π∗ϕ1,Π
∗ϕ2)
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where ϕi := (KS∗)−1ωi, i ∈ {1, 2}, and Π: pr∗ F[z−1]→ pr∗ F is the projection along Q. Recall that

∇̃∨ : pr∗ F[z−1]∨ → Ω1 ⊗̂ pr∗ F[z−1]∨ is the connection dual to ∇̃ (see §4.6).

Lemma 4.84.

(1) The operator ΛQ(ω1, ω2) is symmetric, O-bilinear, and takes values in pr∗Ω1
M.

(2) A pseudo-opposite module Q is parallel if and only if ΛQ = 0.

Proof. Write ϕi := (KS∗)−1ωi. Because Ω∨(Π∗ϕ1,Π
∗ϕ2) = 0, we have:

0 = dΩ∨(Π∗ϕ1,Π
∗ϕ2) = Ω∨(∇̃∨Π∗ϕ1,Π

∗ϕ2) + Ω∨(Π∗ϕ1, ∇̃∨Π∗ϕ2)

The right-hand side equals ΛQ(ω1, ω2) − ΛQ(ω2, ω1). By definition ΛQ is O-linear in ω2. Thus it
is also O-linear in ω1. Note that for a local co-ordinate system {ti, xin}n≥1,0≤i≤N on L, we have

∇̃∨n,i(pr∗Q)⊥ ⊂ (pr∗Q)⊥ for n ≥ 1, where we write ∇̃∨n,i := ∇̃∨
∂/∂xin

. This is because pr∗Q is

“constant” along the fiber of pr : L→M. Thus

〈ΛQ(ω1, ω2), ∂n,i〉 = Ω∨(∇̃∨n,iΠ∗ϕ1,Π
∗ϕ2) = 0 n ≥ 1

since Π∗ϕ1 ∈ (pr∗Q)⊥ ⊂ pr∗ F[z−1]∨. This proves Part (1). Note that Q is parallel if and only if
∇∨ preserves Q⊥ = Π∗F∨. This happens if and only if ∇∨(Π∗F∨) is perpendicular to Π∗F∨ with
respect to Ω∨, since Π∗F∨ is maximally isotropic. Part (2) follows. �

We use the following co-ordinate expression:

ΛQ(dxµ, dxν) = ΛQ
µν
ρ dxρ = ΛQ

µν
i dti

where {xµ} = {ti, xin} is a local co-ordinate system on L and {ti}Ni=0 is a local co-ordinate system
on M. We need to generalize Propositions 4.44 and 4.45 to curved pseudo-opposite modules.

Proposition 4.85 (cf. Propositions 4.44, 4.45). Let Q1, Q2 be possibly curved pseudo-opposite
modules and ∆ = ∆(Q1,Q2) be the propagator.

(1) We have:

d∆(ω1, ω2) = ∆(∇Q1ω1, ω2) + ∆(ω1,∇Q2ω2) + ΛQ1(ω1, ω2)− ΛQ2(ω1, ω2)

(2) We have

∇Q1
µ ∆νρ(:= ∂µ∆νρ + Γ(1)ν

µσ∆σρ + Γ(1)ρ

µσ∆νσ) = ΛQ1
νρ
µ − ΛQ2

νρ
µ + ∆νσC(0)

σµτ∆τρ

where Γ(1)ν
µρ are Christoffel coefficients of ∇Q1 (see equation 4.36).

Proof. Part (1) is essentially shown in the proof of Proposition 4.44. In fact, this formula appears in
(4.35). The last two terms of (4.35), which vanish there, correspond to ΛQ1(ω1, ω2)− ΛQ2(ω1, ω2).

Part (2) is also similar to the proof of Proposition 4.45(2). Using Part (1), we have

(∇Q1∆)(ω1, ω2) = d∆(ω1, ω2)−∆(∇Q1ω1, ω2)−∆(ω1,∇Q1ω2)

= ΛQ1(ω1, ω2)− ΛQ2(ω1, ω2) + ∆(ω1, (∇Q2 −∇Q1)ω2).

The conclusion follows from Proposition 4.45(1). �

Let Q be a possibly curved pseudo-opposite module and P be a parallel pseudo-opposite module,

both defined over U . Let CQ = {C(g)
Q;µ1,...,µn

} be the correlation functions under Q corresponding to

an element CP = {C(g)
P;µ1,...,µn

} ∈ Fock(U ;P) (see Definition 4.74). By differentiating the Feynman

rule expressing C
(g)
Q;µ1,...,µn

in terms of C
(h)
P;ν1,...,νm

and ∆(P,Q), we obtain the following anomaly
equation.
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Theorem 4.86 (anomaly equation). Multi-point correlation functions under a possibly curved
pseudo-opposite module Q satisfy the following anomaly equation (see equation 4.42 for the no-
tation for covariant derivatives):

(4.55) C
(g)
Q;µ1...µn

=∇Q
µ1
C

(g)
Q;µ2...µn

+
1

2

∑
{2,...,n}=ItJ

k+l=g

C
(k)
Q;µI ,α

ΛQ
αβ
µ1
C

(l)
Q;µJ ,β

+
1

2
C

(g−1)
Q;µ2...µnαβ

ΛQ
αβ
µ1

where µI stands for µi1 , . . . , µip if I = {i1, . . . , ip} and similarly for µJ .

Proof. The argument is very similar to the proof of (Jetnesss) in Lemma 4.67. We have

∇Q
ν C

(g)
Q;µ1,...,µn

=∇P
νC

(g)
Q;µ1,...,µn

+ (∇Q −∇P)νC
(g)
Q;µ1,...,µn

(cf. equation 4.52). The second term here corresponds to the modification of legs depicted in
(4.53), by Proposition 4.45(1), and the first term is the sum of the vertex derivative Cvert and the
propagator derivative Cprop. The vertex derivative Cvert is the same as in Lemma 4.67, but the

propagator derivative Cprop has extra contributions from −ΛQ because ∇P
µ∆(P,Q)νρ = −ΛQ

νρ
µ +

∆(P,Q)νσC
(0)
σµτ∆(P,Q)τρ by Proposition 4.85(2). Hence the difference from the computation in

Lemma 4.67 arises from the insertion of −ΛQ at internal edges. The second and third term on the
right-hand side of (4.55) correspond respectively to the cases where (i) the chosen edge separates the
graph or (ii) the chosen edge does not separate the graph. The factor 1/2 comes from automorphisms
exchanging the two branches of the edge. �

Remark 4.87. The anomaly equation gives a substitute for (Jetness) for correlation functions
under a curved pseudo-opposite module. Note that the parallel pseudo-opposite module P does not
appear explicitly in the anomaly equation. Therefore we can define the local Fock space for Q as

the set of symmetric tensors {C(g)
Q;µ1,...,µn

: g ≥ 0, n ≥ 0, 2g − 2 + n > 0} satisfying the conditions

(Yukawa), (Grading & Filtration), (Pole) in Definition 4.56 and the anomaly equation (4.55). The
condition (Curvature) is contained in the anomaly equation: see Remark 4.90.

Example 4.88. The anomaly equation allows us to calculate C
(g)
Q;µ1...µn

iteratively in terms of C
(h)
Q ,

h ≤ g, C
(1)
Q;νdx

ν , C
(0)
τρσ and their ∇Q-derivatives. We also need ΛQ and its derivatives in the iteration

process. For example:

C
(0)
1234 =∇1C

(0)
123

C
(0)
12345 =∇1∇2C

(0)
345 +

[
C

(0)
23αΛαβ1 C

(0)
45β + (2↔ 4) + (2↔ 5)

]
C

(0)
123456 =∇1∇2∇3C

(0)
456

+
1

2

∑
{3,4,5,6}=ItJ

(∇1C
(0)
Iα )Λαβ2 C

(0)
Jβ + C

(0)
Iα (∇1Λαβ2 )C

(0)
Jβ + C

(0)
Iα Λαβ2 (∇1C

(0)
Jβ )

+
∑

{2,3,4,5,6}=ItJ, |I|=3, |J |=2

C
(0)
Iα Λαβ1 C

(0)
Jβ

C
(1)
12 =∇1C

(1)
2 +

1

2
C

(0)
2αβΛαβ1

C
(1)
123 =∇1∇2C

(1)
3 +

1

2
(∇1C

(0)
3αβ)Λαβ2 +

1

2
C

(0)
3αβ(∇1Λαβ2 ) + C(1)

α Λαβ1 C
(0)
23β +

1

2
(∇2C

(0)
3αβ)Λαβ1

C
(2)
1 =∇1C

(2) +
1

2
C(1)
α Λαβ1 C

(1)
β

where we omit the super/subscript Q on∇, Λ and C
(g)
µ1,...,µn . (Here we used the numbers 1, 2, 3, 4, 5, 6

in place of small Greek letters; ∇1∇2C
(0)
345 denotes the dx1 ⊗ dx2 ⊗ dx3 ⊗ dx4 ⊗ dx5-component of
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∇2Y .) It is not obvious that these formulas give symmetric tensors C
(g)
Q;µ1,...,µn

, but this is ensured

by general theory.

We now calculate the curvature of the connection ∇Q and relate it to the curvature two-form ϑQ
(Definition 4.77) which appears in the condition (Curvature) in Proposition 4.79.

Proposition 4.89 (curvature). Let Q be a pseudo-opposite module and let Λ = ΛQ be the torsion

of Q. Let (∇Q)2 denote the curvature of ∇Q on Ω1
◦, which is an End(Ω1

◦)-valued 2-form on L◦.
(Note that it is minus the transpose of the curvature on the tangent bundle.) We also use a local
co-ordinate system {ti}Ni=0 on M which has Roman letters as indices.

(1) The curvature of ∇Q is given by:

(∇Q)2dxν = C(0)
µ1ρτΛτνµ2

(dxµ1 ∧ dxµ2)⊗ dxρ = C
(0)
ijkΛkνl (dti ∧ dtl)⊗ dtj

(2) The curvature two-form ϑQ is half of the trace of (∇Q)2:

ϑQ =
1

2
Tr((∇Q)2) =

1

2
C

(0)
ijkΛjkl dt

i ∧ dtl

= −1

4

N∑
a=0

N∑
b=0

TrF0 (ΠQ∇aΠQ∇b −ΠQ∇bΠQ∇a) dta ∧ dtb.
(4.56)

The trace here makes sense since (∇Q)2dxν above lies in the finite rank subbundle pr∗Ω2
M⊗

pr∗Ω1
M.

Proof. By Proposition 4.45(1), for a reference parallel pseudo-opposite module P, we have

∇Q
µdx

ν =∇P
µdx

ν + C(0)
µρσ∆σνdxρ

where ∆ = ∆(P,Q). Because ∇P is flat, one can calculate the curvature of ∇Q by regarding the

tensor C
(0)
µρσ∆σν as the Christoffel symbol:

[∇Q
µ1
,∇Q

µ2
]dxν

=
[
∇P
µ1

(C(0)
µ2ρσ∆σν)−∇P

µ2
(C(0)

µ1ρσ∆σν) + C(0)
µ1ρσ∆στC

(0)
µ2τσ′

∆σ′ν − C(0)
µ2ρσ∆στC

(0)
µ1τσ′

∆σ′ν
]
dxρ

This formula can be easily shown when xµ are flat co-ordinates with respect to ∇P. Then observe
that the right-hand side is tensorial with respect to µ1, µ2, ρ, ν. By Proposition 4.85, we have

∇P
µ∆νρ = −Λνρµ + ∆ντC

(0)
τµσ∆σρ. Using this we arrive at:

[∇Q
µ1
,∇Q

µ2
]dxν = (C(0)

µ1ρτΛτνµ2
− C(0)

µ2ρτΛτνµ1
)dxρ

This proves Part (1). Because∇P is torsion-free, ϑQ = dωPQ is the anti-symmetrization of∇PωPQ ∈
(Ω1
◦)
⊗2, i.e. (see equation 4.41):

dωPQ =
1

2
∇P
σ(C(0)

µνρ∆
νρ)dxσ ∧ dxµ

The first line of (4.56) follows from this and ∇P
µ∆νρ = −Λνρµ + ∆ντC

(0)
τµσ∆σρ. To see the second

line of (4.56), note that the trace of (∇Q)2 on Ω1
◦ is minus the trace of (∇Q)2 on Θ◦, and therefore

is minus the trace of the curvature of the connection ΠQ∇̃ on pr∗ F. On the other hand, the
operator ΠQ∇aΠQ∇b−ΠQ∇bΠQ∇a vanishes on zF (since ∇a∇b = ∇b∇a) and defines an OM-linear
endomorphism of F0 = F/zF; this means that the trace of the curvature operator ΠQ∇aΠQ∇b −
ΠQ∇bΠQ∇a on F is well-defined and coincides with the trace of the induced operator on F0. �
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Remark 4.90. Part (2) of Proposition 4.89 says, heuristically, that one can think of ϑQ as the

curvature of a line bundle “det(Ω1
◦)

1/2”. The anomaly equation in Theorem 4.86 at genus one gives:

C(1)
µν =∇Q

µC
(1)
ν +

1

2
C

(0)
αβνΛQ

αβ
µ

The fact that C
(1)
µν is symmetric now implies the curvature condition in Proposition 4.78. In fact,

we have

d(C(1)
ν dxν) = (∇Q

µC
(1)
ν )dxµ ∧ dxν =

1

2
C

(0)
αβµΛαβν dxµ ∧ dxν = ϑQ

by Proposition 4.89(2). Therefore the curvature condition is a special case of the anomaly equation.

4.14. Logarithmic Case. We have hitherto studied the case where the connection ∇ of the under-
lying cTP structure is smooth. In this section we allow logarithmic singularities for the connection—
in other words, we consider log-cTP structures rather than cTP-structures— and generalize the
construction of a Fock sheaf to this case. This extra generality is important in applications to
mirror symmetry: genus-zero Gromov–Witten theory (or quantum cohomology) naturally defines a
log-cTEP structure near the large radius limit point. Almost all the discussions in this section are
parallel to the previous ones.

4.14.1. log-cTP and log-cTEP Structures. We introduce the notions of log-cTP and log-cTEP struc-

ture (cf. Definition 4.4). As before, we write M for the base complex manifold and Â1 = Spf C[[z]]

for the formal neighbourhood of the origin in C. Let (−) : M× Â1 → M× Â1 denote the map
sending (t, z) to (t,−z). For a normal crossing divisor D ⊂M, we write Ω1

M(logD) for the sheaf of
one-forms onM with logarithmic poles along D. This is a locally free sheaf; its dual, the logarithmic
tangent sheaf, is denoted by ΘM(logD).

Definition 4.91 (cf. Definition 4.4). Let D be a normal crossing divisor in M.

(1) A log-cTP structure (F,∇, (·, ·)F) with base (M, D) consists of a locally free OM[[z]]-module
F of rank N + 1 and a meromorphic flat connection:

∇ : F→ Ω1
M(logD)⊗OM z−1F

together with a non-degenerate pairing:

(·, ·)F : (−)∗F⊗OM[[z]] F→ OM[[z]]

which satisfy the properties listed in Definition 4.4(1).
(2) A log-cTEP structure with base (M, D) is a log-cTP structure with base (M, D) such

that the connection ∇ is extended in the z-direction with a pole of order 2 along z = 0.
More precisely, it is a log-cTP structure (F,∇, (·, ·)F) equipped with an OM-module map
∇z∂z : F → z−1F satisfying the properties listed in Definition 4.4(2). Combining the M-
direction and the z-direction, we have a meromorphic flat connection:

∇ : F→
(
Ω1
M(logD)⊕OMz−1dz

)
⊗OM z−1F

We sometimes refer to D as the singularity divisor.

Remark 4.92. A closely related notion of log-trTLEP structure has been introduced by Re-
ichelt [99].

Remark 4.93. log-cTP and log-cTEP structures should be viewed as sheaves on M× Â1. The
letter “c” for log-cTP and log-cTEP means the completion with respect to the z-adic topology. One
can similarly define the corresponding analytic structures overM×C: these are log-TP or log-TEP
structures (cf. §4.1).
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Example 4.94. A key example is the A-model log-cTEP structure given by the quantum coho-
mology of a smooth projective variety X. Roughly speaking, this is obtained from the A-model
cTEP structure (Example 4.3, Remark 4.5) by taking the quotient of the base by H2(X; 2πiZ) and
partially compactifying it by adding a normal crossing divisor. We use the notation from §2. Let
H2(X; 2πiZ) act on the vector space HX ⊗ C by translation. By the Divisor Equation, the (ex-
tended) Dubrovin connection (see §2.4) is invariant under this action and descends to the quotient
space HX ⊗ C/H2(X; 2πiZ). The quotient space is partially compactified to CN+1 via the map:

HX ⊗ C/H2(X; 2πiZ) ↪→ CN+1[
t =

∑N
i=0 t

iφi

]
7−→ (t0, q1, . . . , qr, t

r+1, . . . , tN )

where qi = et
i

for 1 ≤ i ≤ r. The complement of the open embedding is the normal crossing divisor
q1q2 · · · qr = 0. The partial compactification here depends on the choice of a nef basis φ1, . . . , φr
of H2(X;Z). Suppose that F 0

X is convergent in the sense of §2.3. Then the A-model log-cTEP

structure is defined over the base (MA, D):

MA = {(t0, q1, . . . , qr, t
r+1, . . . , tN ) ∈ CN+1 : |ti| < ε, |qi| < ε}

D = {q1q2 · · · qr = 0}
with ε > 0 sufficiently small, by the following data (cf. equation 4.1):

• F = HX ⊗Q OMA
[[z]];

• ∇ = d− 1
z ((φ0∗)dt0 +

∑r
i=1(φi∗)dqiqi +

∑N
j=r+1(φj∗)dtj) + ( 1

z2 (E∗) + 1
zµ)dz;

• ((−)∗α, β)F =
∫
X α(−z) ∪ β(z)

Recall 4.95. The following objects associated to a log-cTP structure (F,∇, (·, ·)F) are defined
exactly as in the non-logarithmic case. We do not repeat their definitions.

• the dual sheaves (znF)∨, F[z−1]∨: see (4.3);
• the symplectic pairing Ω: F[z−1]⊗OM F[z−1]→ OM: see (4.2);
• the dual symplectic pairing Ω∨ : F[z−1]∨ ⊗OM F[z−1]∨ → OM: see (4.5);
• the dual flat connection ∇∨ : (z−1F)∨ → Ω1

M(logD)⊗OM F∨: see (4.4);
• the dual frame xin : F[z−1]|U → OU , n ∈ Z, 0 ≤ i ≤ N associated to a trivialization
F|U ∼= CN+1 ⊗OU [[z]] over U : see (4.7).

4.14.2. The Total Space of a log-cTP Structure. Let (F,∇, (·, ·)F) a log-cTP structure with base
(M, D).

Definition 4.96 (cf. Definition 4.7). The total space L of a log-cTP structure (F,∇, (·, ·)F) is the
total space of the infinite-dimensional vector bundle associated to zF. As a set, L consists of pairs
(t,x) such that t ∈ M and x ∈ zFt. We write pr : L →M for the natural projection. We equip L
with the structure of a ringed space as in Definition 4.7; we denote by O the structure sheaf of L.

An algebraic local co-ordinate system on L is given similarly to the non-logarithmic case; for the
sake of exposition we shall always use local co-ordinates of the following type, which are compatible
with logarithmic singularities.

Definition 4.97. Let U ⊂ M be a co-ordinate neighbourhood with co-ordinates
{t0, q1, . . . , qr, t

r+1, . . . , tM} such that D ∩ U is given by {q1q2 · · · qr = 0}. Choose a trivializa-
tion of F|U ∼= CN+1⊗OU [[z]] over U and define the corresponding dual frame xin ∈ F[z−1]∨. We call
the set

{t0, q1, . . . , qr, t
r+1, . . . , tM} ∪ {xin : 0 ≤ i ≤ N , n ≥ 1}

an algebraic local co-ordinate system on L. We also write qi = et
i

for 1 ≤ i ≤ r, so that we have:

dqi
qi

= dti and qi
∂

∂qi
=

∂

∂ti
(1 ≤ i ≤ r)
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Abusing notation, we write f(t) = f(t0, t1, . . . , tr, tr+1, . . . , tM ) to denote a function f : U → C on
U , where the identification ti = log qi with 1 ≤ i ≤ r is understood.

Using algebraic local co-ordinates on L|U , one has (as before):

O(pr−1(U)) = O(U)
[
xin : n ≥ 1, 0 ≤ i ≤ N

]
The ring O(pr−1(U)) is equipped with a grading and filtration as in Definition 4.7.

4.14.3. Miniversality. Let (F,∇, (·, ·)F) be a log-cTP structure with base (M, D). Here and here-
after we restrict to the case where M = N , that is, dimM = rankF. Choose a trivialization
F|U ∼= CN+1 ⊗OU [[z]] over U . We can write the connection ∇ in the form

(4.57) ∇s = ds− 1

z
C(t, z)s

with

(4.58) C(t, z) =
M∑
i=0

Ci(t, z)dti = C0(t, z)dt0 +
r∑
i=1

Ci(t, z)
dqi
qi

+
N∑

j=r+1

Cj(t, z)dtj

where s ∈ CN+1 ⊗ OU [[z]] ∼= F|U and Ci(t, z) ∈ End(CN+1) ⊗ OU [[z]]. The residual part C(t, 0) =
(−z∇)|z=0 determines a section of End(F0)⊗Ω1

U (logD), independently of the choice of trivialization.

Example 4.98. In the case of the A-model log-cTEP structure (Example 4.94), we have C(t, z) =

(φ0∗)dt0 +
∑r

i=1(φi∗)dqiqi +
∑N

i=r+1(φi∗)dti.
Definition 4.99 (cf. Definition 4.8). For a log-cTP structure (F,∇, (·, ·)F), we define:

F◦0,t := {x1 ∈ F0,t : ΘM(logD)t → F0,t, v 7→ ιvC(t, 0)x1 is an isomorphism}
L◦ := {(t,x) ∈ L : t ∈M, x ∈ zFt, (x/z)|z=0 ∈ F◦0,t}
F◦0 :=

⋃
t∈M

F◦0,t

These are Zariski open subsets of, respectively, F0,t, L, and F0. If for every point t ∈ M, F◦0,t is

non-empty, then we say that (F,∇, (·, ·)F) is miniversal. A miniversal log-cTP structure necessarily
satisfies dimM = rankF.

Henceforth all log-cTP structures are assumed to be miniversal unless otherwise stated. Choose
a trivialization of F|U and present the connection ∇ in terms of the trivialization as in (4.57), (4.58).
The discriminant in the logarithmic situation is defined to be

(4.59) P (t, x1) := (−1)N+1 det(C0(t, 0)x1, C1(t, 0)x1, . . . , CN (t, 0)x1)

(cf. equation 4.10). This is a polynomial in x1 of degree N + 1 and belongs to O(U)[x0
1, . . . , x

N
1 ].

The set L◦ is the complement of the zero-locus of P (t, x1). More invariantly, P (t, x1)dt0 ∧ · · · ∧ dtN
should be thought of as a section of the line bundle pr∗(det(F0) ⊗ ΩN+1

M (logD)) over L, and L◦ is
the complement of the zero-locus. The ring of regular functions over pr−1(U)◦ := pr−1(U) ∩ L◦ is:

O(pr−1(U)◦) = O(U)[{xin}n≥1,0≤i≤N , P (t, x1)−1]

As before, the grading and filtration on O(pr−1(U)) descends to O(pr−1(U)◦).
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4.14.4. Logarithmic One-Forms and Vector Fields on L. We need to consider the sheaves of loga-
rithmic one-forms and vector fields on the total space L. In terms of algebraic local co-ordinates

{ti, qj = et
j
, xkn}, they are defined by:

Ω1(logD) =

N⊕
j=0

Odtj ⊕
∞⊕
n=1

N⊕
i=0

Odxin

Θ(logD) = Hom (Ω1(logD),O) =
N∏
j=0

O∂j ×
∞∏
n=1

N∏
i=0

O∂n,i

where we set ∂j = ∂/∂tj and ∂n,i = ∂/∂xin. Recall that dti = dqi/qi and ∂i = qi(∂/∂qi) for

i = 1, . . . , r. The grading and filtration on Ω1(logD) is given by (4.11).

4.14.5. The Yukawa Coupling and the Kodaira–Spencer Map. The Yukawa coupling and Kodaira–

Spencer map can also be adapted to the logarithmic setting. Let {ti, qj = et
j
, xkn} be an algebraic

local co-ordinate system on the total space L and write the connection endomorphism as C(t, z) =∑N
i=0 Ci(t, z)dti (see equation 4.58).

Definition 4.100 (cf. Definition 4.10). The Yukawa coupling is a cubic tensor:

Y =
N∑
i=0

N∑
j=0

N∑
k=0

C
(0)
ijkdt

i ⊗ dtj ⊗ dtk ∈
(
(Ω1(logD))⊗3

)2
−3

where
C

(0)
ijk(t,x) =

(
Ci(t, 0)x1, Cj(t, 0)Ck(t, 0)x1

)
F0

with x1 = (x/z)|z=0. Recall again that dti = dqi/qi for i = 1, . . . , r.

The pulled-back sheaves pr∗(znF), pr∗ F[z−1], pr∗(znF)∨, pr∗ F[z−1]∨ on L are defined as in (4.12).

The connection ∇ induces a flat connection ∇̃ := pr∗∇ on pr∗ F[z−1] (cf. equation 4.13 and §4.6):

∇̃ : pr∗ F[z−1]→ Ω1(logD) ⊗̂ pr∗(F[z−1])

such that ∇̃ pr∗(znF) ⊂ Ω1(logD) ⊗̂ pr∗(zn−1F). The dual connection

∇̃∨ : pr∗ F[z−1]∨ → Ω1(logD) ⊗̂ pr∗ F[z−1]∨

is defined by 〈∇̃∨ϕ, s〉 := d〈ϕ, s〉 − 〈ϕ, ∇̃s〉. The explicit presentation (4.19) of ∇̃∨ holds also in the
logarithmic case; we also have a commutative diagram similar to (4.20).

Definition 4.101 (cf. Definition 4.11). Define the tautological section x of pr∗(zF) by

x(t,x) = x

where (t,x) denotes the point x ∈ zFt on L. The Kodaira–Spencer map KS: Θ(logD)→ pr∗ F and
the dual Kodaira–Spencer map KS∗ : pr∗ F∨ → Ω(logD) are defined by:

KS(v) = ∇̃vx KS∗(ϕ) = ϕ(∇̃x)

The maps KS and KS∗ are isomorphisms over L◦ ⊂ L.

Notation 4.102. As before we denote by Θ◦(logD) the restriction of Θ(logD) to L◦ ⊂ L, and
denote by Ω1

◦(logD) the restriction of Ω1(logD) to L◦ ⊂ L.
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4.14.6. Opposite Modules and Logarithmic Frobenius Manifolds. We extend the notion of (pseudo-)
opposite modules to the setting of log-cTP structures.

Definition 4.103 (cf. Definition 4.15). A pseudo-opposite module P for a log-cTP structure
(F,∇, (·, ·)F) is an OM-submodule P of F[z−1] satisfying the conditions

(Opp1): (opposedness) F[z−1] = F⊕ P and
(Opp2): (isotropy) Ω(P,P) = 0.

A pseudo-opposite module P is said to be parallel if it satisfies

(Opp3): ∇P ⊂ Ω1
M(logD)⊗ P.

If P satisfies (Opp1–Opp3) and

(Opp4): (z−1-linearity) z−1P ⊂ P

then it is called an opposite module.
Suppose that (F,∇, (·, ·)F) is a log-cTEP structure. An opposite module P for the underlying

log-cTP structure is said to be homogeneous if it satisfies

(Opp5): (homogeneity) ∇z∂zP ⊂ P.

Example 4.104 (cf. Example 4.16). The A-model log-cTEP structure (Example 4.94) is equipped
with a standard homogeneous opposite module Pstd = HX ⊗Q z

−1OMA
[z−1].

An opposite module always exists in a formal neighbourhood of a point outside the singularity
divisor D by virtue of Lemma 4.17. However it is not clear if Lemma 4.17 can be generalized to a
point on the divisor D. In practice, in a geometric example such as the A-model log-cTEP structure,
one can often find an opposite module that extends across D.

Similarly to §4.5, by choosing an opposite module P and a primitive section ζ for a miniversal log-
cTP (or log-cTEP) structure, one can equip the base with a logarithmic Frobenius manifold structure
(with or without Euler vector field) in the sense of Reichelt [99]. The argument is completely parallel
to Proposition 4.18 and Remark 4.22 and we give only the statement.

Proposition 4.105 (cf. Proposition 4.18, Remark 4.22, [99, Propositions 1.10, 1.11]). Consider
a log-cTP structure (F,∇, (·, ·)F) with base (M, D). Let P be an opposite module for (F,∇, (·, ·)F)
over U . Then:

(i) The natural maps F0 = F/zF← F ∩ zP→ zP/P are isomorphisms of OU -modules.
(ii) We have F = (F ∩ zP) ⊗ C[[z]] ∼= (zP/P) ⊗ C[[z]], which we call a flat trivialization. Note

that zP/P is a locally free coherent OU -module with a logarithmic flat connection, and let
∇0 : zP/P→ Ω1

U (logD)⊗OU (zP/P) denote the flat connection induced by ∇.
(iii) Under the flat trivialization, the connection ∇ takes the form

∇ = ∇0 − 1

z
C(t)

where C(t) ∈ Ω1
U (logD)⊗OU End(zP/P) is independent of z.

(iv) Under the flat trivialization, the pairing (·, ·)F induces and can be recovered from a z-
independent symmetric pairing

(·, ·)zP/P : (zP/P)⊗ (zP/P)→ OU
which is flat with respect to ∇0.

(v) Assume that there exists a section ζ of F over U which is flat with respect to ∇0 in the flat
trivialization and whose image under F → F0 = F/zF lies in F◦0. (This assumption implies
the miniversality of (F,∇, (·, ·)F).) We call such a section ζ a primitive section associated
to P. Then the base U carries the structure of a logarithmic Frobenius manifold without
Euler vector field. It consists of
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– A flat symmetric OU -bilinear metric g : ΘU (logD)⊗OU ΘU (logD)→ OU , defined by:

g(v1, v2) = (z∇v1ζ, z∇v2ζ)F

– A commutative and associative product ∗ : ΘU (logD) ⊗OU ΘU (logD) → ΘU (logD),
defined by:

z∇v1z∇v2ζ = −z∇v1∗v2ζ

– A flat identity vector field e ∈ ΘU (logD) for the product ∗, defined by:

−z∇eζ = ζ

such that the connection ∇λv = ∇LC
v − λ(v∗) on the logarithmic tangent sheaf ΘU (logD) is

a flat pencil of connections with parameter λ. Here ∇LC denotes the Levi-Civita connection
for the metric g.

(vi) Suppose now that (F,∇, (·, ·)F) is a miniversal log-cTEP structure with base (M, D).
Miniversality implies that there exists a unique logarithmic vector field E ∈ ΘM(logD)
such that:

(∇z∂z +∇E)F ⊂ F

This is called the Euler vector field. Suppose that we have a homogeneous opposite module
P for (F,∇, (·, ·)F) over U . This defines a flat trivialization of F as above. Suppose also that
there exists a section ζ of F over U such that ζ is flat respect to ∇0 in the flat trivialization,
satisfies the homogeneity condition

(∇z∂z +∇E)ζ = − ĉ
2
ζ

for some ĉ ∈ C, and is such that the image of ζ under F → F0 = F/zF lies in F◦0. Then
U carries the structure of a logarithmic Frobenius manifold. It is given by the structures
(g, ∗, e) from Part (v) and the Euler vector field E, which satisfy the additional properties
listed in (4.17).

Example 4.106. The A-model log-cTEP structure (Example 4.94) equipped with the standard
homogeneous opposite module Pstd (Example 4.104) yields the standard logarithmic Frobenius
manifold structure on the base MA.

4.14.7. Flat Connection on the Total Space. A pseudo-opposite module P determines flat connec-
tions on the logarithmic tangent sheaf and logarithmic cotangent sheaf of L◦, as follows.

Definition 4.107 (cf. Definition 4.23). Let P be a pseudo-opposite module for a log-cTP structure
(F,∇, (·, ·)F), and let Π: F[z−1]→ F be the projection along P. The composition of the maps:

pr∗ F ∇̃ // Ω1(logD) ⊗̂ pr∗(z−1F)
id⊗Π // Ω1(logD) ⊗̂ pr∗ F

pr∗ F∨ Π∨ // pr∗(z−1F)∨ ∇̃∨ // Ω1(logD)⊗ pr∗ F∨

(restricted to L◦) with the Kodaira–Spencer isomorphisms KS: Θ◦(logD)→ pr∗ F, KS∗ : pr∗ F∨ →
Ω1
◦(logD) induces connections:

(4.60)
∇ : Θ◦(logD)→ Ω1

◦(logD) ⊗̂Θ◦(logD)

∇ : Ω1
◦(logD)→ Ω1

◦(logD)⊗Ω1
◦(logD)

where Ω1
◦(logD) ⊗̂Θ◦(logD) := lim←−n

(
Ω1
◦(logD)⊗

(
Θ◦(logD)/KS−1(pr∗(znF))

))
. The connection

on Ω1
◦(logD) also induces the connection on logarithmic n-tensors:

∇ : Ω1
◦(logD)⊗n → Ω1

◦(logD)⊗Ω1
◦(logD)⊗n

The connections in (4.60) are dual to each other. The argument of Proposition 4.24 shows the
following:
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Proposition 4.108. The flat connection ∇ on Θ◦(logD) associated to a pseudo-opposite module
P is torsion-free. It is flat if P is parallel.

In the non-logarithmic case, given a parallel pseudo-opposite module, we constructed in §4.7 the

genus-zero potential and a flat co-ordinate system on the formal neighbourhood L̂◦t of L◦t in L◦. The
construction there does not work if t is on the singularity divisor D, but works if t is away from D.

4.14.8. Propagators. In the logarithmic case, propagators are defined as logarithmic bivector fields.

Definition 4.109 (cf. Definition 4.43). Let P1, P2 be pseudo-opposite modules for the log-cTP
structure (F,∇, (·, ·)F). Let Πi : F[z−1] → F, i ∈ {1, 2}, be the projection along Pi defined by the
decomposition F[z−1] = Pi⊕F. The propagator ∆ = ∆(P1,P2) ∈HomO(Ω1

◦(logD)⊗Ω1
◦(logD),O)

is defined by:

∆(ω1, ω2) = Ω∨
(
Π∗1 KS∗−1 ω1,Π

∗
2 KS∗−1 ω2

)
ω1, ω2 ∈ Ω1

◦(logD)

The logarithmic bivector field ∆ is identified, via the Kodaira–Spencer isomorphism KS∗, with the
push-forward along Π1 ×Π2 of the Poisson bivector field on F[z−1] defined by Ω∨.

The propagator in the logarithmic case satisfies the same properties as in the non-logarithmic
case. The proofs are completely parallel and are omitted.

Proposition 4.110 (cf. Propositions 4.44, 4.45). Let P1,P2 be pseudo-opposite modules for the
log-cTP structure (F,∇, (·, ·)F) and let ∆ = ∆(P1,P2) be the propagator. Then:

(1) ∆ is symmetric, i.e. ∆(ω1, ω2) = ∆(ω2, ω1);
(2) (∇P2 −∇P1)ω = ι(ιω)Y for ω ∈ Ω1

◦(logD);
(3) if P1,P2 are parallel, we have (∇P1∆)(ω1 ⊗ ω2) = ι(ιω1∆⊗ ιω2∆)Y for ω1, ω2 ∈ Ω1

◦(logD).

Proposition 4.111 (cf. Proposition 4.46). Let P1,P2,P3 be pseudo-opposite modules and let ∆ij =
∆(Pi,Pj), i, j ∈ {1, 2, 3}, be the propagators. Then ∆13 = ∆12 + ∆23.

4.14.9. Local Fock Space. Let {ti, qj = et
j
, xin} denote an algebraic local co-ordinate system on L as

in Definition 4.97. We write the co-ordinates {t0, log q1, . . . , log qr, t
r+1, . . . , tN , xin} as {xµ} and use

similar tensor notation as before, e.g. writing the Yukawa coupling and propagator as

Y = C(0)
µνρdx

µ ⊗ dxν ⊗ dxρ ∆ = ∆µν∂µ ⊗ ∂ν
where ∂ν = ∂/∂xν .

Definition 4.112 (cf. Definition 4.56). Consider a miniversal log-cTP structure (F,∇, (·, ·)F) with
base (M, D). Let P be a parallel pseudo-opposite module over an open set U ⊂M and let∇ =∇P

be the associated flat connection on L◦. Let P = P (t, x1) denote the discriminant (4.59). The local
Fock space Fock(U ;P) consists of collections:

C =
{
∇nC(g) ∈

(
Ω1(logD)

)⊗n(
pr−1(U)◦

)
: g ≥ 0, n ≥ 0, 2g − 2 + n > 0

}
of completely symmetric logarithmic n-tensors on pr−1(U)◦ such that the following conditions hold:

(Yukawa): ∇3C(0) is the Yukawa coupling Y in §4.14.5;

(Jetness): ∇(∇nC(g)) =∇n+1C(g);

(Grading & Filtration): ∇nC(g) ∈
((

Ω1(logD)
)⊗n(

pr−1(U)◦
))2−2g

3g−3
;

(Pole): P∇C(1) extends to a regular 1-form on pr−1(U), and for g ≥ 2:

C(g) ∈ P−(5g−5)O(U)[x1, x2, Px3, . . . , P
3g−4x3g−2]

In local co-ordinates {xµ}, we write

∇nC(g) = C
(g)
µ1···µndx

µ1 ⊗ · · · ⊗ dxµn

and refer to ∇nC(g) or C
(g)
µ1···µn as n-point correlation functions.
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4.14.10. Transformation Rule. As before we encode elements of the local Fock space Fock(U ;P)
by jet potentials on the total space of the logarithmic tangent bundle Θ(logD)|pr−1(U)◦ . The
transformation rule in the logarithmic case is then described in terms of jet potentials.

Let {yµ} denote the fiber co-ordinates of the logarithmic tangent bundle Θ(logD) dual to
{∂/∂xµ}, so that (x, y) denotes a point in the total space of Θ(logD)|pr−1(U)◦ .

Definition 4.113 (cf. Definition 4.62). Given an element C = {∇nC(g)}g,n of Fock(U ;P), we set:

W(x, y) =
∞∑
g=0

~g−1Wg(x, y)

where:

Wg(x, y) =

∞∑
n=max(3−2g,0)

1

n!
C(g)
µ1,...,µn(x)yµ1 · · · yµn

We call Wg the genus-g jet potential and exp(W) the total jet potential associated to C .

Definition 4.114 (cf. Definition 4.64). Let P1,P2 be parallel pseudo-opposite modules for the
log-cTP structure (F,∇, (·, ·)F). Let ∆ denote the propagator ∆(P1,P2). The transformation rule
T (P1,P2) : Fock(U ;P1) → Fock(U ;P2) is a map which assigns, to the jet potential exp(W) for an

element of Fock(U ;P1), the jet potential exp(Ŵ) for an element of Fock(U ;P2) given by:

(4.61) exp
(
Ŵ(x, y)

)
= exp

(
~
2

∆µν∂yµ∂yν

)
exp

(
W(x, y)

)
The transformation rule can be also expressed via a Feynman rule. In the notation of Definition 4.64,
we have

Ĉ(g)
µ1,...,µn =

∑
Γ

1

|Aut(Γ)| ContΓ({C(h)
ν1,...,νm},∆)µ1,...,µn

where {C(g)
µ1,...,µn} are the correlation functions associated to W and {Ĉ(g)

µ1,...,µn} are the correlation

functions associated to Ŵ.

Proposition 4.115 (cf. Lemmas 4.67–4.69). The transformation rule in Definition 4.114 is well-
defined, i.e. it preserves the conditions (Yukawa), (Jetness), (Grading & Filtration), and (Pole) in
the definition of the local Fock space Fock(U ;Pi).

Proof. We argue as in §4.12 using the co-ordinate system

{xµ} = {t0, log q1, . . . , log qr, t
r+1, . . . , tN , xin}

associated to the algebraic local co-ordinate system {t0, q1, . . . , qr, t
r+1, . . . , tN , xin} in Defini-

tion 4.97. The Yukawa coupling does not change: Ĉ
(0)
µνρ = C

(0)
µνρ under the transformation rule

(see equation 4.50) and the condition (Yukawa) holds. The condition (Jetness) for Ĉ
(g)
µ1,...,µn follows

from the same argument as in Lemma 4.67, using Proposition 4.110 instead of Proposition 4.45.
The analogues of Propositions 4.54, 4.55 hold in the logarithmic case, and the condition (Grading

& Filtration) for {Ĉ(g)
µ1,...,µn} follows from them and the argument in Lemma 4.68. Regarding the

condition (Pole), we can repeat the argument of Lemma 4.69 to show that Ĉ(g) for g ≥ 2 be-

longs to P−(5g−5)O(U \ D)[x1, x2, Px3, P
2x4, . . . , P

3g−4x3g−2]. (The argument there only applies

to t ∈ U \D, as a flat co-ordinate system exists only at such t.) On the other hand, Ĉ(g) belongs
to O(pr−1(U)◦) by the Feynman rule. The condition (Pole) now follows from Hartogs’ extension
theorem. �

The transformation rule satisfies the cocycle condition by virtue of Proposition 4.111.
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Proposition 4.116 (cf. Proposition 4.70). The transformation rule (4.61) satisfies the cocycle
condition: if P1, P2, P3 are parallel pseudo-opposite modules for F over U and Tij = T (Pi,Pj) is
the transformation rule from Fock(U ;Pi) to Fock(U ;Pj) then T13 = T23 ◦ T12.

4.14.11. Fock Sheaf. We now define the Fock sheaf in the logarithmic case.

Assumption 4.117 (cf. Assumption 4.71). There is an open covering {Uα}α∈A of M such that
for each α ∈ A there exists a parallel pseudo-opposite module Pα for F over Uα.

Definition 4.118 (cf. Definition 4.72). Suppose that Assumption 4.117 holds. We define the Fock
sheaf to be the sheaf of sets on M obtained by gluing the local Fock spaces Fock(Uα;Pα), α ∈ A,
using the transformation rule

T (Pα,Pβ) : Fock(Uαβ;Pα)→ Fock(Uαβ;Pβ) α, β ∈ A
over Uαβ = Uα ∩ Uβ.

Remark 4.119. Note that the Fock sheaf in logarithmic case is a sheaf over all ofM, not just over
M\D.

4.14.12. Correlation Functions Under Curved Opposite Modules. The discussion in §4.13 can be
easily adapted to the logarithmic setting. The difference one-form ωPQ (4.41) for pseudo-opposite
modules P, Q is now the pull-back of a logarithmic form in Ω1

M(logD). The curvature two-form
ϑQ = dωPQ (where P is a parallel pseudo-opposite module) in Definition 4.77 is the pull-back
of a logarithmic form in Ω2

M(logD). We now give a definition of the local Fock space and the
transformation rule for a general pseudo-opposite module in the logarithmic setting, leaving the
necessary details to the reader.

Definition 4.120 (cf. Definition 4.81, Proposition 4.79). Consider a log-cTP structure (F,∇, (·, ·)F).
Let Q be a (not necessarily parallel) pseudo-opposite module over U . The local Fock space

Fock(U ;Q) consists of collections {C(1)
Q,µdx

µ, C
(1)
Q , C

(2)
Q , C

(3)
Q , . . . }

C
(1)
Q,µdx

µ ∈ Ω1(logD)(pr−1(U)◦)

C
(g)
Q ∈ O(pr−1(U)◦) with g ≥ 2

such that the following conditions hold:

(Grading & Filtration): C
(1)
Q;µdx

µ ∈ (Ω1(logD))0
0; C

(g)
Q ∈ O2−2g

3g−3;

(Curvature): d(C
(1)
Q;µdx

µ) = ϑQ;

(Pole): P (C
(1)
Q;µdx

µ) extends to a regular 1-form on pr−1(U), and for g ≥ 2:

C
(g)
Q ∈ P−(5g−5)O(U)[x1, x2, Px3, P

2x4, . . . , P
3g−4x3g−2]

where P = P (t, x1) is the discriminant (4.59).

Following the procedure in Proposition 4.79 in the logarithmic context, we can reconstruct

multi-point correlation functions {C(g)
Q;µ1,...,µn

} from the element {C(1)
Q,µdx

µ, C
(1)
Q , C

(2)
Q , C

(3)
Q , . . . } in

Fock(U ;Q); these multi-point functions again satisfy the conditions (Yukawa), (Grading& Filtra-
tion) and (Pole) in Definition 4.112. (They do not necessarily satisfy (Jetness).) The transformation
rule T (Q1,Q2) : Fock(U ;Q1) → Fock(U ;Q2) for two pseudo-opposite modules Q1, Q2 is defined in
terms of these multi-point correlation functions and the Feynman rule as in Definition 4.112:

C
(g)
Q2;µ1,...,µn

=
∑

Γ

1

|Aut(Γ)| ContΓ

(
{C(h)

Q1;ν1,...,νm
}; ∆(Q1,Q2)

)
µ1,...,µn

or equivalently, in terms of the corresponding jet potentials as in (4.61).
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4.14.13. Anomaly Equation. Finally we remark on the anomaly equation in the logarithmic setting.
The background torsion ΛQ (Definition 4.83) is defined as an operator:

ΛQ : Ω1
◦(logD)⊗Ω1

◦(logD)→ pr∗Ω1
M(logD)

This vanishes if and only if Q is parallel and satisfies the same properties as in Proposition 4.85.

The multi-point correlation functions C
(g)
Q;µ1,...,µn

under a pseudo-opposite module Q satisfy the same

anomaly equation as before:

C
(g)
Q;µ1...µn

=∇Q
µ1
C

(g)
Q;µ2...µn

+
1

2

∑
{2,...,n}=S1tS2

k+l=g

C
(k)
Q;S1,α

ΛQ
αβ
µ1
C

(l)
Q;S2,β

+
1

2
C

(g−1)
Q;µ2...µnαβ

ΛQ
αβ
µ1

The curvature formulae in Proposition 4.89 also hold in the logarithmic setting: here the curvature
of ∇Q is an End(Ω1

◦(logD))-valued logarithmic 2-form on L◦.

5. Global Quantization and Givental Quantization

In this section we explain the relationship between Givental quantization [61] and the global

quantization constructed in §4. Givental defined the quantized operator Û for a linear symplectic
transformation U ∈ Sp(H) by specifying a certain normal ordering of quadratic Hamiltonians.
When U is given by an upper-triangular loop group element R = R(z) ∈ LGL+(HC

X), Givental

showed that R̂ acts on certain ancestor potentials satisfying the tameness condition. In §§5.1-5.2,

we will see that Givental’s operator R̂ on ancestor Fock spaces (see Definition 5.7) arises from our
transformation rule (Definition 4.64) in the formal neighbourhood of a point of L◦. In §5.3, we
adapt the global quantization formalism in §4 to the L2-setting and explain that an L2-version of
the transformation rule matches with Givental’s quantized operators for general (not necessarily
upper or lower triangular) symplectic transformations.

5.1. Ancestor Fock Space. Let K be a field containing Q and let V be a finite dimensional
K-vector space equipped with a symmetric non-degenerate pairing:

〈·, ·〉V : V ⊗K V → K

Recall Givental’s tameness condition (4.45). We now introduce a Fock space for “ancestor poten-
tials” as the set of certain formal power series on V [[z]] which satisfy tameness. Let (q0, q1, q2, . . . )
be a sequence of variables in V and denote a general element of V [[z]] by:

q =
∞∑
n=0

qnz
n

Choosing a basis {ei}Ni=0 of V , we write qn =
∑N

i=0 q
i
nei. For D ∈ zV [[z]], we introduce the co-

ordinate system y =
∑∞

n=0 ynz
n on V [[z]] shifted by D:

y = q + D

Writing D =
∑∞

n=1Dnz
n =

∑∞
n=1

∑N
i=0D

i
nz

nei, yn =
∑N

i=0 y
i
nei, this gives:

yin =

{
qi0 n = 0

qin +Di
n n ≥ 1

In other words, y is an affine co-ordinate system on V [[z]] centred at q(z) = −D. This shift of
co-ordinates is called the Dilaton shift (cf. §3.2). The following notions of ancestor Fock space
and rationality for ancestor potentials were originally worked out in a joint project with Hsian-Hua
Tseng; see also [34].
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Definition 5.1 (Ancestor Fock Space). Let V and D be as above. The ancestor Fock space
AFock(V,D) consists of formal power series

A = exp

 ∞∑
g=0

~g−1Fg


with Fg ∈ K[{yin}n≥2,0≤i≤N ][[y0
0, . . . , y

N
0 , y

0
1, . . . , y

N
1 ]] such that:

F0
∣∣
y=0

=
∂F0

∂yil

∣∣∣∣
y=0

=
∂2F0

∂yi1l1 ∂y
i2
l2

∣∣∣∣∣
y=0

= 0

F1
∣∣
y=0

= 0

∂nFg
∂yi1l1 · · · ∂y

in
ln

∣∣∣∣∣
y=0

= 0 if l1 + · · ·+ ln > 3g − 3 + n

(5.1)

An element A of AFock(V,D) should be considered as a function on the formal neighourhood of
q(z) = −D ∈ zV [[z]]. We call Fg the genus-g potential of A. Condition (5.1) is referred to as
tameness of the genus-g potential; cf. the corresponding conditions (4.44), (4.45) in the discussion
of global quantization. When comparing with (4.45), note that the third line of (5.1) automatically
implies:

∂nFg
∂yi1l1 · · · ∂y

in
ln

∣∣∣∣∣
y0=0

= 0 if l1 + · · ·+ ln > 3g − 3 + n

Definition 5.2 (Rationality). An element A of AFock(V,D) is said to be rational if there exists a
polynomial P ∈ K[V ∨] on V with P (−D1) = 1 such that, whenever (g, n) 6= (1, 0):

(5.2)
∂nFg

∂yi1l1 · · · ∂y
in
ln

∣∣∣∣∣
y=y1z=(q1+D1)z

=
fg,L,I(q1)

P (q1)5g−5+2n−(l1+···+ln)

for some polynomials fg,L,I ∈ K[V ∨] where L = {l1, . . . , ln} and I = {i1, . . . , in}. By tameness (5.1),
5g− 5 + 2n− (l1 + · · ·+ ln) = 3g− 3 +n− (l1 + · · ·+ ln) + 2g− 2 +n is positive unless the derivative
vanishes or (g, n) = (1, 0). We call P the discriminant of A. We denote by AFockrat(V,D, P ) the
set of rational elements in AFock(V,D) with discriminant P .

Remark 5.3. A potential satisfying tameness (5.1) and rationality (5.2) can be expanded in the
following form:

Fg = δg,1c
(1)(q1) +

∑
n:2g−2+n>0

1

n!

∑
L:L=(l1,...,ln)
lj 6= 1 for all j

l1+···+ln≤3g−3+n

∑
I=(i1,...,in)

c
(g)
L,I(q1) qi1l1 · · · q

in
ln

with
∂c(1)(q1)

∂qi1
=
f1,1,i(q1)

P (q1)
, c

(g)
L,I(q1) =

fg,L,I(q1)

P (q1)5g−5+2n−(l1+···+ln)

for some polynomials f1,1,i, fg,L,I(q1) ∈ R[V ∨]. The genus-one term c(1)(q1) is in general not a ra-
tional function (see Example 5.4 below). Given tameness, we can rephrase the rationality condition
as follows:

∂nFg
∂qi1l1 · · · ∂q

in
ln

∈ P (q1)−(5g−5+2n−(l1+···+ln))K[q1, q2, P (q1)q3, P (q1)2q4, . . . ][[P (q1)−2q0]]

for 2g − 2 + n > 0 (cf. equation 4.48).
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Example 5.4. The ancestor Gromov–Witten potential Apt,t of a point (2.14) does not depend on
t ∈ Hpt

∼= Q and coincides with the descendant potential Zpt in (2.11). This is called the Witten–
Kontsevich tau-function and denoted by τ(q). It defines an element of AFockrat(Hpt, 1,−q1) via the
Dilaton shift (§3.2):

qn = yn − δn,1
In fact, applying the Dilaton Equation, we find that:

(5.3) Fgpt = − 1

24
log(−q1)δg,1 +

∑
n:2g−2+n>0

1

n!

∑
l1,...,ln≥0

lj 6=1 for all j
l1+···+ln=3g−3+n

〈ψl11 , . . . , ψlnn 〉pt
g,n

(−q1)2g−2+n
ql1 · · · qln

Hence we can take P (q1) = −q1. Note that l1 + · · ·+ ln = 3g − 3 + n implies that:

2g − 2 + n = 5g − 5 + 2n− (l1 + · · ·+ ln)

Definition 5.5 (Shift isomorphism).

(1) For ξ ∈ z2V [[z]], the shift of co-ordinates ỹ = y + ξ preserves tameness (5.1) and defines a
canonical isomorphism

Tξ : AFock(V,D) ∼= AFock(V,D + ξ) for ξ ∈ z2V [[z]].

Thus AFock(V,D) essentially depends only on the leading term zD1 of D.
(2) Let P ∈ K[V ∨], D =

∑
n≥1Dnz

n ∈ zV [[z]], ξ =
∑

n≥1 ξnz
n ∈ zV [[z]] be such that P (−D1) =

1 and P (−D1−ξ1) 6= 0. A truncated Taylor expansion with respect to the shifted co-ordinate
ỹ = y + ξ defines an isomorphism:

Tξ : AFockrat(V,D, P ) ∼= AFockrat(V,D + ξ, P/P (−D1 − ξ1))

This is given by TξA = exp(
∑∞

g=0 ~g−1TξFg) with

TξFg =
∑

n:2g−2+n>0

∑
L=(l1,...,ln)
lj 6=1 for all j

∑
I=(i1,...,in)

1

n!

∂nFg
∂yi1l1 · · · ∂y

in
ln

∣∣∣∣∣
y=(ỹ1−ξ1)z

(ỹi1l1 − ξ
i2
l1

) · · · (ỹinln − ξ
in
ln

)

where we set ξi0 = 0, ξn =
∑N

i=0 ξ
i
n for n ≥ 1. It is easy to check that this shift preserves

tameness (5.1) and rationality (5.2). Note that the Taylor expansion of TξF1 is truncated
so that it is zero at the shifted origin ỹ = 0.

Let (V, 〈·, ·〉V ), (W, 〈·, ·〉W ) be K-vector spaces with perfect pairings. A K[[z]]-module isomorphism
R : V [[z]]→W [[z]] is said to be unitary if it satisfies

〈R(−z)v1, R(z)v2〉W = 〈v1, v2〉V
for all v1, v2 ∈ V . In this slightly more abstract setting, Givental’s propagator from §4.8.1 can be
described as follows.

Definition 5.6 ( [61]). Let R : V [[z]] → W [[z]] be a unitary isomorphism. Givental’s propagator
associated to R is a bivector field ∆ on V [[z]] defined by

∆ =

∞∑
n=0

∞∑
m=0

N∑
i=0

N∑
j=0

∆(n,i),(m,j) ∂

∂qin
⊗ ∂

∂qjm

with:
∞∑
n=0

∞∑
m=0

N∑
i=0

N∑
j=0

∆(n,i),(m,j)(−1)n+mwnzm =

〈
ei,

R(w)†R(z)− id

z + w
ej
〉
V

where {ei} is a basis of V dual to {ei} with respect to 〈·, ·〉V , and R(w)† denotes the adjoint of
R(w) with respect to 〈·, ·〉V and 〈·, ·〉W . (Unitarity implies that R(w)† = R(−w)−1.)



72 TOM COATES AND HIROSHI IRITANI

Definition 5.7 (Givental [61]). For a unitary isomorphism R : V [[z]]→ W [[z]], the quantized oper-
ator

R̂ : AFock(V,D)→ AFock(W,RD)

is defined as follows. For a given element A ∈ AFock(V,D), we set

Ã = exp

(
~
2

∆

)
A ∈ AFock(V,D)

where ∆ is Givental’s propagator associated to R, and then push Ã forward along the identification
R(z) : V [[z]] ∼= W [[z]], so that:

(R̂A)(q) := Ã(R−1q)

Theorem 5.8 (Givental [63], Coates–Iritani [34]). The quantized operator R̂ is well-defined, i.e. it

preserves the tameness condition (5.1). Moreover, R̂ preserves rationality and induces an operator

R̂ : AFockrat(V,D, P ) −→ AFockrat(W,RD, P ◦R−1
0 )

where R = R0 +R1z +R2z
2 +R3z

3 + · · · with Rn ∈ EndK(V,W ).

Remark 5.9. When combined with the shift isomorphism in Definition 5.5, the quantized operator
gives a map

TD′−RD ◦ R̂ : AFock(V,D) −→ AFock(W,D′)
for D ∈ zV [[z]], D′ ∈ zW [[z]] such that D′ − RD ∈ z2W [[z]]. On the subspace of rational elements,
we have a map:

TD′−RD ◦ R̂ : AFockrat(V,D, P ) −→ AFockrat(V,D
′, P ◦R−1

0 /P (−R−1
0 D′1))

when D′ =
∑∞

n=1D
′
nz

n ∈ zW [[z]] satisfies P (−R−1
0 D′1) 6= 0.

5.2. Global Quantization is Compatible with Givental Quantization. We now show that
Givental’s quantized operator on ancestor Fock spaces (Definition 5.7) arises from our transforma-
tion rule (Definition 4.64) in the formal neighbourhood of a point of L◦. Suppose that we are given
a miniversal17 cTP structure (F,∇, (·, ·)F) over M as in Definition 4.4. A unitary frame at t ∈ M
is a C[[z]]-linear isomorphism

Φ: V [[z]] ∼= Ft
with a C-vector space V such that

〈v1, v2〉V := (Φ(v1),Φ(v2))F

is independent of z for any v1, v2 ∈ V . A unitary frame Φ admits a unique extension to an
isomorphism V ((z)) ∼= Ft[z

−1] of C((z))-modules, which we also denote by Φ. The following lemma
is obvious from the proof of Lemma 4.17.

Lemma 5.10. Let V be a vector space over C of dimension (N + 1) = rankF. A unitary frame
Φ: V [[z]] ∼= Ft at t ∈ M defines a unique opposite module P over the formal neighbourhood of t
such that Pt = Φ(z−1V [z−1]). Conversely, any opposite module over the formal neighbourhood of t
determines a gauge equivalence class of unitary frame.

Definition 5.11 (Formalization map). Let P be an opposite module over an open set U . By
the preceding lemma, P associates to a point t ∈ U a unitary frame Φ: V [[z]] ∼= Ft such that
Φ(z−1V [z−1]) = Pt, where V is a C-vector space. Let e0, . . . , eN be a basis of V . Recall from

17See Assumption 4.9 for miniversality.
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Definition 4.28 that the trivialization Φ−1 : Ft ∼= V [[z]] =
⊕N

i=0 C[[z]]ei and the opposite module P

define a flat co-ordinate system {qin}n≥0,0≤i≤N on the formal neighbourhood L̂◦ of L◦t . Write:

q =
∞∑
n=0

N∑
i=0

qineiz
n : L̂◦ −→ V [[z]]

Take a point x ∈ L◦t and let −D = q|x ∈ zV [[z]] be the co-ordinate of x. The formalization map
Forx : Fock(U ;P)→ AFock(V,D) is defined by the Taylor expansion:

Forx(C ) = exp

 ∞∑
g=0

∑
n:2g−2+n>0

∑
l1,...,ln≥0

∑
0≤i1,...,in≤N

~g−1

n!

∂nC(g)

∂qi1l1 · · · ∂q
in
ln

(x)yi1l1 · · · y
in
ln


where C = {∇nC(g)} ∈ Fock(U ;P) and y =

∑∞
n=0

∑N
i=0 y

i
neiz

n = D + q.

Remark 5.12.

(1) The formalization Forx(C ) is nothing but the jet potential exp(W(x, y)) (Definition 4.62) at
the point x. A small difference here is that Forx(C ) is written in a specific co-ordinate system
{yin} on TxL

◦, induced by the flat co-ordinate system {qin} associated to a trivialization of
Fpr(x), whereas the jet potential is defined abstractly without a specific choice of co-ordinates.

(2) Because C(0), ∇C(0), ∇2C(0), C(1) are not defined, the Taylor series Forx(C ) is truncated
at genus zero and one.

Lemma 5.13. The image of the formalization map Forx lies in the subspace AFockrat(V,D, Pt,D1)
of rational elements with discriminant

Pt,D1(q1) = P (t, q1)/P (t,−D1) q1 ∈ V
where P (t, q1) is the discriminant (4.10) on the total space L written in terms of the unitary frame
Φ which we used to define Forx. Moreover we have the commutative diagram:

Fock(U ;P)
Forx // AFockrat(V,D, Pt,D1)

TD′−D

��
Fock(U ;P)

Forx′ // AFockrat(V,D
′, Pt,D′1)

where D′ is an element of zV [[z]] such that x′ = Φ(D′) ∈ L◦t and the right vertical arrow is the shift
isomorphism defined in Definition 5.5.

Proof. The tameness of the formalization was established in (4.45) and rationality was established
in Proposition 4.60. The commutativity of the diagram is obvious from the definition. �

Theorem 5.14. The transformation rule for the Fock sheaf is compatible with Givental’s quantized

operator R̂ in the following sense. Let P, P′ be two opposite modules over U and let Φ: V [[z]] ∼= Ft,
Φ′ : V ′[[z]] ∼= Ft be the corresponding unitary frames at t ∈ U via Lemma 5.10. Let R denote the
unitary isomorphism

R := Φ′−1 ◦ Φ: V [[z]]
∼=−→ V ′[[z]]

and let D ∈ zV [[z]], D′ ∈ zV ′[[z]] be such that x = Φ(D) ∈ L◦t and x′ = Φ′(D′) ∈ L◦t . Let P (t, q1),
q1 ∈ V , P ′(t, q′1), q′1 ∈ V ′ be the discriminants (4.10) written in terms of the trivializations Φ and

Φ′ respectively. Then we have P ′(t, q′1) = P (t, R−1
0 q′1) for R0 = R|z=0. Set:

Pt,D1(q1) = P (t, q1)/P (t,−D1) P ′t,D′1(q′1) = P ′(t, q′1)/P ′(t,−D′1)
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Then there is a commutative diagram:

Fock(U ;P)
T (P,P′) //

Forx
��

Fock(U ;P′)

Forx′

��
AFockrat(V,D, Pt,D1)

TD′−RD◦R̂ // AFockrat(V
′,D′, P ′t,D′1

)

Proof. By definition, the formalization map Forx assigns to a Fock space element the jet potential
at x viewed as a function on V [[z]], where V [[z]] is identified with Θx via dq = Φ−1 ◦ KS: Θx

∼=
V [[z]]. On the other hand, we showed in Proposition 4.49 that Givental’s propagator coincides with
the propagator for global quantization written in the frame V [[z]] ∼= Θx. The statement follows

immediately from this, the definitions of T (P,P′) and R̂, and Lemma 5.13. �

5.3. Global Quantization in the L2-Setting. We now describe global quantization in the L2-
setting and explain its relation to Givental’s quantization. In particular we describe the quantization

Û of a symplectic transformation U ∈ Sp(H) which is not necessarily lower or upper triangular.
One may notice a similarity between the L2-formalism in this section and the Segal–Wilson Grass-
mannian [107]; whereas the general theory in §4 is closer in spirit to the Sato Grassmannian [106].
The L2-formalism here also follows closely the heuristic argument in §3. Since the discussion is
analogous to §4, we will omit most of the details.

In this section, we fix a miniversal TP structure (F = O(F ),∇, (·, ·)F ) with base M. We write
(F,∇, (·, ·)F) for the corresponding cTP structure. Consider the space

Ht = L2({t} × S1, F )

of L2-sections over {t} × S1. This has a non-degenerate symplectic form

Ωt(u, v) =
1

2πi

∫
S1

(
u(−z), v(z)

)
F dz

and contains the Lagrangian subspace

Ft :=
{
s(z) ∈ Ht : s is the boundary value of a holomorphic section over {t} × D

}
where D = {z ∈ C : |z| < 1} is the unit open disc. The pair (Ht,Ωt) is an analogue of Givental’s
symplectic space (§3.1) and Ft corresponds to a tangent space to the Givental cone (§3.3). We fix
a separable complex Hilbert space H equipped with an orthonormal basis18 {eα, fα : α ∈ Z≥0} and
a symplectic form:

Ω(eα, fβ) = δαβ Ω(eα, eβ) = Ω(fα, fβ) = 0

We call {eα, fα} the Darboux basis ofH. We write {pα, qα : α ∈ Z≥0} for the dual linear co-ordinates
on H, so that we have Ω =

∑
α dpα ∧ dqα. We have the standard decomposition H = H+ ⊕ H−,

where H+ is spanned by fα and H− is spanned by eα. We write

p =

∞∑
α=0

pαf
α ∈ H− q =

∞∑
α=0

qαeα ∈ H+

for variables in H±.

Definition 5.15 (cf. unitary frame in §5.2). A Darboux frame of the TP structure (F ,∇, (·, ·)F )
at t ∈M is an isomorphism

Φt : H → Ht
of topological vector spaces such that:

(1) Φt intertwines the symplectic forms Ω and Ωt;

18The L2-metric does not play a role.
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(2) the projection Φ−1
t (Ft)→ H+ along H− is an isomorphism.

Suppose that a Darboux frame Φt at t is given. When t′ is close to t, parallel translation by ∇
defines a symplectic isomorphism

Ptt′ : Ht ∼= Ht′
and thus the Darboux frame Φt induces a frame Φt′ = Ptt′ ◦Φt : H ∼= Ht′ that respects the symplectic
forms. We note that condition (2) remains true for Φt′ whenever t′ is sufficiently close to t. Therefore
a Darboux frame at any point extends to its small neighbourhood by parallel translation.

Example 5.16. Suppose that we have a trivialization φ : CN+1 ⊗OC× ∼= F|{t}×C× such that:

• (φ(ei)(−z), φ(ej)(z))F = δij ;

• letting F (∞) be the extension of F|{t}×C across z =∞ such that the sections {φ(ei) : 0 ≤ i ≤
N} extend to z =∞ and form a basis there, we have that F (∞) is trivial as a holomorphic
vector bundle over P1.

This induces a Darboux frame, by identifying H with the space L2(S1,CN+1) equipped with the
Darboux basis {ei(−z)−n−1, eiz

n : n ≥ 0, 0 ≤ i ≤ N}. The subspace H+ corresponds to the space
of non-negative Fourier series

∑
n≥0 anz

n and the subspace H− corresponds to the space of strictly

negative Fourier series
∑

n<0 anz
n. Condition (2) follows from the triviality of F (∞).

Example 5.17. This is a special case of Example 5.16. Suppose that the genus-zero Gromov–
Witten potential F 0

X is convergent. Then the fundamental solution L(t, z) (equation 2.7) with
Q = 1 defines a Darboux frame of the A-model TP structure (Example 4.3), by identifying H with
Givental’s symplectic vector space (§3.1) for X.

Example 5.18. We say that a parallel pseudo-opposite module P for (F,∇, (·, ·)F) is compatible
with the L2-structure if:

• every element of Pt ⊂ Ft[z
−1] extends to a holomorphic section of F |{t}×D∗ over the unit

punctured disc D∗ = {z ∈ C : 0 < |z| < 1} and has an L2-boundary value along S1. Thus
Pt is a subspace of Ht = L2({t} × S1, F );
• the L2-closure Pt of Pt is complementary to Ft, i.e. Ht = Pt ⊕ Ft.

Then we can find a Darboux frame Φt such that Φt(H−) = Pt. When this holds, we say that
the Darboux frame Φt is compatible with P. Given a Darboux frame, one may not be able to
find a parallel pseudo-opposite module compatible with the Darboux frame. Darboux frames from
Example 5.16 are compatible with the corresponding opposite modules.

Let Φ be a Darboux frame extended by parallel translation to a simply-connected open set
U ⊂M. We consider the map from the L2-subspace L2(L◦)|U (see Remarks 4.39, 4.41) into H:

ι : L2(L◦)|U → H (t,x) 7→ Φ−1
t x

Miniversality implies that the differential dι is injective and that dι(T(t,x)L
2(L◦)) = Φ−1

t Ft. There-

fore ι is a Lagrangian immersion. The image L = ι(L2(L◦)|U ) is preserved by multiplication by C×
and we call it the Givental cone associated to the Darboux frame Φ. The projection L → H+ along
H− is a local isomorphism (by the inverse function theorem for Hilbert manifolds) and therefore L
can be locally written as the graph

L =

{
(p,q) ∈ H : pα =

∂C(0)

∂qα

}
of the differential of a holomorphic function19 C(0) : H+ → C. The function C(0) is defined up to a
constant; we can fix the constant ambiguity by requiring that C(0) is homogeneous of degree two

19For holomorphic functions in infinite dimensions, we refer the reader to [22].
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with respect to the dilation of co-ordinates q. Thus we have:

C(0) =
1

2

∞∑
α=0

qα
∂C(0)

∂qα
=

1

2
Ω(p,q)

∣∣∣
L

We call C(0) the genus-zero potential associated to Φ. This is an L2-version of the genus-zero
potential in §4.7 (see also Remark 4.39). The third derivative

C
(0)
αβγ =

∂C(0)

∂qα∂qβ∂qγ

coincides with the Yukawa coupling on L2(L◦), via the projection L2(L◦) # H → H+. (Here #
means an immersion.)

Definition 5.19. Let Φ1, Φ2 be Darboux frames of the TP structure (F ,∇, (·, ·)F ) at t. We say
that Φ1 and Φ2 are close if the map

Π+Φ−1
2 Φ1 : H− Φ1−→ Ht

Φ−1
2−−→ H Π+−−→ H+

is of trace class. Here Π+ denotes the projection along H−. Being close is an equivalence relation.

Given two Darboux frames Φ1,Φ2, we have a symplectic transformation U such that Φ1 = Φ2U.
We write U in the block matrix form:

(5.4) U =

(
A B
C D

)
where A ∈ Hom(H−,H−), B ∈ Hom(H+,H−), C ∈ Hom(H−,H+), D ∈ Hom(H+,H+). The frame
Φ1 is close to Φ2 if and only if C is of trace class. Using the basis {eα, fα}, we regard A,B,C,D
as infinite matrices, writing Aeβ = Aα

βeα, Bfβ = Bαβe
α, Ceβ = Cαβfα, Dfβ = Dα

βfα. The
symplectic property of U implies that:

U−1 =

(
DT −BT

−CT AT

)
where T stands for the transpose. In particular, we see that Φ1 is close to Φ2 if and only if Φ2 is
close to Φ1.

Example 5.20. All Darboux frames arising from the method of Example 5.16 are close to each
other. In fact, the symplectic transformation U relating two Darboux frames in Example 5.16 is
given by the multiplication by a loop group element γ(z) ∈ C∞(S1, GLN+1(C)), which is the gauge
transformation between the two trivializations. In this case, the operator C ∈ Hom(H−,H+) is
given by f(z) 7→ [γ(z)f(z)]+ with f(z) ∈ H−. It is easy to see that this defines a linear operator
of trace class (see e.g. [107, Proposition 2.3]). If moreover γ(z) is a Laurent polynomial loop, we
can see that C is a finite rank operator. (This is the typical situation when U arises from the
monodromy of a TEP structure.)

Let Li, i ∈ {1, 2}, be the Givental cones associated to the Darboux frame Φi, i ∈ {1, 2}. The
symplectic transformation U maps L1 isomorphically onto L2: UL1 = L2. By identifying the two
Givental cones via U, we will mainly work with L1. For a point x ∈ L1, we have H = TxL1 ⊕H− =
TxL1 ⊕ U−1H−. Thus the symplectic form Ω defines two isomorphisms

]1 : H− ∼= (TxL1)′ v 7→ ιvΩ = Ω(v, ·)
]2 : U−1H− ∼= (TxL1)′ v 7→ ιvΩ = Ω(v, ·)

(5.5)

where (TxL1)′ means the topological dual of TxL1. We define the propagator in the L2-setting as
follows.
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Definition 5.21 (cf. Definition 4.43). The propagator ∆ = ∆(Φ1,Φ2) associated to the two Dar-
boux frames Φ1, Φ2 is the bivector field ∆ on L1 defined by

∆(v1, v2) = Ω
(
]−1
1 (v1), ]−1

2 (v2)
)

with v1, v2 ∈ (TxL1)′.

The propagator is symmetric.
The projection L1 → H+ along H− defines a local co-ordinate system (q0, q1, q2, q3, . . . ) on L1.

We will find a co-ordinate expression for the propagator. We write ∆αβ = ∆(dqα, dqβ). Let C(0)

denote the genus-zero potential associated with Φ1. Define τ to be the matrix with coefficients:

ταβ =
∂2C(0)

∂qα∂qβ

This defines a bounded bilinear form H+ × H+ → C; it can be also viewed as a bounded linear
operator H+ → H−.

Lemma 5.22. The operator Cτ +D : H+ → H+ is an isomorphism and the propagator is given by:

∆αβ = −
[
(Cτ +D)−1C

]αβ
In particular, if Φ1 and Φ2 are close, the propagator ∆αβ is of trace class as a linear operator
(TxL1)′ → TxL1.

Proof. The projection L2 → H+ along H− introduces co-ordinates (q0, q1, q2, . . . ) on L2. The
tangent map H+

∼= TxL1 → TU(x)L2
∼= H+ of U is given in these co-ordinates as:

q 7→
(
τq
q

)
U7−−−→

(
(Aτ +B)q
(Cτ +D)q

)
7→ (Cτ +D)q.

Thus Cτ +D is a linear isomorphism. These co-ordinates on L1, L2 identify the cotangent spaces
(TxL1)′, (TU(x)L2)′ with H−. Using these co-ordinatizations and the above identification TxL1

∼=
TU(x)L2, we can view the propagator as the bilinear form (TxL1)′ × (TU(x)L2)′ → C given by:

p1 × p2 7−→ Ω(p1,U−1p2) = −p1 · (CTp2)

Since the covector p2 ∈ (TU(x)L2)′ corresponds to the covector (Cτ+D)Tp2 ∈ (TxL1)′, the conclusion
follows. �

We give a definition of the local Fock space in the L2-setting. The definition here is very simple.

Definition 5.23 (cf. Definition 4.56). Let Φ be a Darboux frame and let L be the Givental cone
associated to Φ. For an open subset U of L, the local Fock space FockL2(U ,Φ) consists of tuples

{dC(1), C(2), C(3), . . . }
where dC(1) is a holomorphic closed one-form on U and C(g), g ≥ 2, are holomorphic functions on
U . We call C(g) the genus-g potential.

Remark 5.24. Suppose that a Darboux frame Φ is compatible with a parallel pseudo-opposite
module P. When U ⊂ L is the image of an open subset of L2(L◦)|U , there is a natural restriction
map Fock(U ;P)→ FockL2(U ; Φ).

Remark 5.25. The n-fold derivative of the genus-g potential defines an n-tensor:

C(g)
α1...αn =

∂nC(g)

∂qα1 · · · ∂qαn
At each point x ∈ L, this defines a bounded multi-linear form on TxL.
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We now describe the transformation rule in the L2-setting. Let Φ1, Φ2 be Darboux frames which
are close to each other in the sense of Definition 5.19. Let Li be the Givental cone associated
to Φi for i = 1, 2 and let ∆ = ∆(Φ1,Φ2) be the propagator. Let U = Φ−1

2 Φ1 be the symplectic
transformation. As usual we introduce co-ordinates on L1 by the projection L1 → H+ along H−
and we regard the genus-zero potential C(0) associated to Φ1 as a function on L1. We have another

genus-zero potential Ĉ(0) : H+ → C associated to the Darboux frame Φ2. Via the identification

U : L1
∼=−→ L2 followed by the projection L2 → H+, we also regard Ĉ(0) as a function on L1.

Although the functions C(0), Ĉ(0) do not match, the third derivatives match:

C
(0)
αβγ = Ĉ

(0)
αβγ

as they are the Yukawa coupling.

Definition 5.26 (transformation rule in the L2-setting; cf. Definition 4.64). Let Φ1,Φ2 be Darboux
frames which are close to each other. We use notation as above. Let U ⊂ L1 be an open subset.
For an element {dC(1), C(2), C(3), . . . } of FockL2(U ; Φ1), we define a tuple{

Ĉ(g)
α1,...,αn : g ≥ 0, n ≥ 0, 2g − 2 + n > 0

}
of holomorphic tensors on U by the same Feynman rule as in Definition 4.64:

Ĉ(g)
α1,...,αn =

∑
Γ

1

|Aut(Γ)| ContΓ({C(h)
β1,...,βm

},∆)α1,...,αn

where Γ ranges over all decorated stable graphs with legs α1, . . . , αn as in Definition 4.64. We
can check, by a similar argument to the previous case, that the new correlators satisfy the jetness
condition

∂Ĉ
(g)
α1...αn

∂qβ
= Ĉ

(g)
βα1...αn

and therefore they are determined by the tuple {dĈ(1), Ĉ(2), Ĉ(3), . . . }. We can regard Ĉ
(g)
α1...αn as a

tensor on U(U) ⊂ L2 via the identification U : L1
∼= L2. Therefore we obtain a transformation rule

Û : FockL2(U ; Φ1)→ FockL2(U(U); Φ2)

sending {dC(1), C(2), C(3), . . . } to {dĈ(1), Ĉ(2), Ĉ(3), . . . }. Integrating dC(1) and dĈ(1) locally to

holomorphic functions C(1) and Ĉ(1), we consider the total potentials:

Z = exp

(
1

~
C(0) + C(1) + C(2)~ + C(3)~2 · · ·

)
Ẑ = exp

(
1

~
Ĉ(0) + Ĉ(1) + Ĉ(2)~ + Ĉ(3)~2 · · ·

)
With this notation, we write

Ẑ ∝ ÛZ.
where ∝ indicates that we have a constant ambiguity at genus one.

Remark 5.27. In the above definition, it is important that Φ1 and Φ2 are close to each other in
the sense of Definition 5.19. The closeness implies that ∆ is of trace class by Lemma 5.22, and thus

ensures that the contraction Cont(Γ)α1...αn = ContΓ({C(h)
β1...βm

},∆)α1...αn over a graph Γ defines a

bounded multi-linear form on TxL1. We can prove this by induction on the number of edges: by
removing one edge from Γ we can write

Cont(Γ)α1...αn =

{
Cont(Γ1)αi1 ...αikβ1∆β1β2 Cont(Γ2)αj1 ...αjlβ2 separating case;

Cont(Γ′)α1...αnβ1β2∆β1β2 non-separating case
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where {i1, . . . , ik} t {j1, . . . , jl} = {1, . . . , n}. In the former case, the well-definedness follows from
the fact that ∆ is a bounded bilinear form and the induction hypothesis; in the latter case it follows
from the fact that ∆ is of trace class and the induction hypothesis.

Remark 5.28. The jetness of the new correlation functions Ĉ
(g)
α1...αn follows from the formula:

∂α∆ = (Cτ +D)−1C(∂ατ)(Cτ +D)−1C = ∆(∂ατ)∆.

This is an analogue of Proposition 4.45(2).

The following proposition is obvious from the definition.

Proposition 5.29. Let Φ1, Φ2 be Darboux frames and P1, P2 be parallel pseudo-opposite modules
for the cTP structure (F,∇, (·, ·)F) over U . Suppose that Φi is compatible with Pi for i = 1, 2. Then

the transformation rule Û above coincides with the transformation rule T (P1,P2) from Definition
4.64 under the identification L2(L◦)|U ∼= L1.

Remark 5.30. Here we describe the relationship to Givental’s quantization [61] of a symplectic
transformation U ∈ Sp(H). In Givental’s formalism, we regard the total potential Z (respectively

Ẑ) as a function on H+ via the projection L1 → H+ along H− (respectively via the projection
L2 → H+ along H−). We assume that the component C ∈ Hom(H−,H+) of U (see equation 5.4)
is of trace class as before. There are two cases20:

lower triangular: U preserves H−, i.e. C = 0.
upper triangular: U preserves H+, i.e. B = 0.

We describe Givental’s quantized operator Û in these two cases. More generally we decompose U into
the product U+U− of a lower-triangular transformation U− and an upper-triangular transformation

U+ and define Û = Û+Û−.

In the lower-triangular case, Û acts on the higher-genus potentials C(1), C(2), C(3), . . . by the
change of variables q→ D−1q and on the genus-zero potential C(0) by the same change of variables
followed by the shift by a quadratic function. We define (see [61, Proposition 5.3] and Remark 3.3):

(ÛZ)(q) = e
1
2~Ω(BD−1q,q)Z(D−1q)

This coincides with our transformation rule in Definition 5.26 as in this case we have ∆ = 0 and
the transformation rule is essentially a co-ordinate change.

In the upper-triangular case, the quantized operator Û is more complicated. The symplectic
condition for U now reads:

A = (DT)−1 ATC = CTA

Givental’s propagator V is defined by the formula (cf. §4.8.1):

V αβ = −(ATC)αβ = −(D−1C)αβ

This is a symmetric tensor of trace class. Givental’s propagator V arises from the definition of ∆
by replacing (TxL)′ in the isomorphisms (5.5) with (H+)′, namely, if we write [1 : H− ∼= (H+)′,
[2 : U−1H− ∼= (H+)′ for the isomorphisms given by the symplectic form, we have:

V αβ = Ω
(
[−1
1 dqα, [−1

2 dqβ
)

Givental’s quantized operator Û is given by the formula [61, Proposition 7.3]:

(5.6) (ÛZ)(q) =

(
exp

(
~
2
V αβ∂qα∂qβ

)
Z
)

(D−1q)

20Unfortunately these terminologies are opposite to the shape of the matrix U.
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We show that the right-hand side is well-defined if U is close to the identity (in the operator norm),
and gives the same result as the transformation rule from Definition 5.26. Suppose that the total
potential Z is defined in a neighbourhood of q1 ∈ H+ which is the projection of x = (p1,q1) ∈ L1

to H+. Here p1 = dC(0)(q1). Let

q2 = [Ux]+ = Cp1 +Dq1

denote the projection of the point Ux ∈ L2 to H+. We show that the total potential Ẑ = ÛZ
is well-defined in a neighbourhood of q2 (when U is close to the identity): we shall evaluate the
right-hand side of (5.6) at q = q2. We also write

(5.7) q′2 = D−1q2 = D−1Cp1 + q1 = −V p1 + q1

and assume that Z is analytically continued to q′2. This is possible if V p1 is small, so if U is close
to the identity. The formula (5.6) can be written as a similar Feynman rule:

Ĉ(g)(q2) =
∑

Γ

1

|Aut(Γ)| ContΓ

(
{C(h)

α1...αn(q′2)}, V
)

where Γ now ranges over connected decorated graphs without legs which are not necessarily stable:
we allow genus-zero vertices of Γ to have one or two incident edges. There are infinitely many such
graphs, and the convergence of the above sum is nontrivial. We consider the following process of
collapsing graphs and reduce the above sum to a sum over stable graphs. Let Γ be a possibly unstable
decorated graph without legs. We collapse every subtree of Γ consisting of genus-zero vertices to its
root vertex (see Figure 3). Let Γ′ be the graph obtained from Γ by this tree collapsing. The graph

Figure 3. Collapsing subtrees: black vertices are of genus zero and white vertices
in Γ′ are of genus ≥ 1 or have more than two edges.

Γ′ can be still unstable, as it can contain genus-zero two-valent vertices. This happens if Γ′ is an
affine An graph as in Figure 5 or if Γ′ contains An subgraphs as in Figure 4. If Γ′ is not an affine
An graph, we collapse every An subgraph of Γ′ to an edge to obtain a stable graph Γ′′.

We first compute the contribution of tree graphs with only genus-zero vertices. We claim that

[V p1]α = V αβ

(
the sum of contributions of trees

with one leg labelled by β

)
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• • • • • • =⇒ • •

Figure 4. An subgraph: the encircled vertices are either of higher genus g ≥ 1 or
have more than two edges; uncircled vertices are of genus zero.

•

•

•

•

••

•

•

• •

Figure 5. Affine An graphs: all vertices are of genus zero

Using (5.7), we have

[V p1]α =
[
V dC(0)(q1)

]α
=
[
V dC(0)(q′2 + V p1)

]α
=
∞∑
n=0

∑
γ1,...,γn

1

n!
V αβC

(0)
βγ1...γn

(q′2)[V p1]γ1 · · · [V pq]
γn

We can use this equation21 recursively to solve for V p1 for a given q′2: the answer can be written as
the sum over tree graphs. The claim follows. This sum over tree graphs converges if ‖V ‖ is small,
so if U is close to the identity.

We fix a graph Γ′ and sum over contributions from all the graphs which collapse to Γ′. This

amount to replacing each vertex term C
(g)
α1...αk(q′2) with

C(g)
α1...αk

(q1) = C(g)
α1...αk

(q′2 + V p1) =

∞∑
n=0

1

n!
C

(g)
α1...αkβ1...βn

(q′2)[V p1]β1 · · · [V p1]βn

where we again used the relation (5.7). The Taylor series is convergent if V p1 is sufficiently small.
In other words, the contribution of each Γ′ is given by the contraction:

1

Aut(Γ′)
ContΓ′(C

(h)
α1...αn(q1), V )

We now fix a stable decorated graph Γ′′ and sum over contributions from all Γ′ which collapse to
Γ′′. This amounts to replacing the propagator V αβ with

(1− V τ(q1))−1V =

∞∑
n=0

∑
γ1,...,γn

V αγ1τγ1γ2(q1)V γ2γ3τγ3γ4(q1)V γ4γ5 · · · τγn−1γn(q1)V γnβ

21We can view V p1 as a fixed point for the mapping x 7→ V dC(0)(q′2 + x): if V is sufficiently small, we have a
unique fixed point in a neighbourhood of x = 0 by the contraction mapping principle. The sum over trees in question
is precisely the limit of the sequence {xn} defined recursively by xn+1 = V dC(0)(q′2 + xn) together with x0 = 0.
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where we set ταβ(q) = C
(0)
αβ (q). Each summand is a contribution from an An graph. On the other

hand, by Lemma 5.22, the propagator of Definition 5.21 is given by:

∆(q1) = −(Cτ(q1) +D)−1C = (1− V τ(q1))−1V

Therefore the contribution of each stable graph Γ is:

1

|Aut(Γ)| ContΓ(C(h)
α1...αn(q1),∆(q1))

We have shown that Givental’s quantized operator matches with our transformation rule except
possibly at genus one. At genus one, we need to compute the contribution from affine An graphs
Γ′. This is:

log det
(
1− V τ(q1)

)
=
∞∑
n=1

1

n
Tr
(
(V τ(q1))n

)
where 1/n is the symmetry factor of the affine An graph. This sum converges if V is small. Recall
that an operator has a determinant if it differs from the identity by an operator of trace class.
Therefore we have:

Ĉ(1)(q2) = C(1)(q1) + log det(1− V τ(q1))

This gives an integrated form of the genus-one transformation rule.

6. The Gromov–Witten Wave Function

We next explain how one can regard the Gromov–Witten potential of X as a section of the Fock
sheaf associated to the genus-zero Gromov–Witten theory of X. For this, we need the following
convergence assumption on Gromov–Witten potentials.

Assumption 6.1 (Convergence).

(1) The genus-zero Gromov–Witten potential F 0
X converges in the sense of §2.3; in particular

its restriction to Q1 = · · · = Qr = 1 defines an analytic function on a region MA ⊂ HX ⊗C
of the form (2.4). We denote by ∗ the analytic quantum product over MA defined by the
third derivatives (see equation 2.3) of F 0

X |Q1=···=Qr=1.
(2) Recall that, for any target space X, the genus-g ancestor potential F̄gX , g = 0, 1, 2, . . . (see

equation 2.13) can be expanded as a power series in y0, y2, y3, y4,. . . :

F̄gX = δg,1c
(1)(t, y1;Q) +

∑
n : 2g−2+n>0

1

n!

∑
L=(l1,...,ln)

l1+···+ln≤3g−3+n
lj 6=1 for all j

∑
I=(i1,...,in)

c
(g)
L,I(t, y1;Q)yi1l1 · · · y

in
ln

where each coefficient c
(g)
L,I(t, y1;Q) belongs to:

Q[[t0, et
1
Q1, . . . , e

trQr, t
r+1, . . . , tN ]][[y0

1, . . . y
N
1 ]]

(This follows from the Divisor Equation.) In particular the restriction to Q1 = · · · = Qr = 1
makes sense. We assume that the restriction

c
(g)
L,I(t, y1) = c

(g)
L,I(t, y1;Q)|Q1=···=Qr=1

takes the form:

(6.1)
∂c(1)(t, y1)

∂yi1
=
f1,1,i(t, q1)

det(−q1∗)
, c

(g)
L,I(t, y1) =

fg,L,I(t, q1)

det(−q1∗)5g−5+2n−(i1+···+in)

under the Dilaton shift q1 = y1 − 1, for some polynomials

f1,1,i(t, q1), fg,L,I(t, q1) ∈ Q[[t0, et
1
, . . . , et

r
, tr+1, . . . , tN ]][q0

1, . . . , q
N
1 ]

Cf. the rationality condition appearing in Remark 5.3.
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(3) The polynomials f1,1,i(t, q1), fg,L,I(t, q1) in (2) are convergent as functions in t and belong

to O(MA)[q0
1, . . . , q

N
1 ].

Remark 6.2. Assumption 6.1 is equivalent to the notion of convergence for the total an-
cestor potential AX introduced in [34, Definition 3.13]; it implies that AX is an element of
AFockrat(HX ,1z,det(−q1∗t)) for t ∈ MA. We showed in [34, Theorem 6.5] that Assumption 6.1 is
satisfied when the quantum cohomology of X is convergent and generically semisimple.

Remark 6.3. It is not difficult to show that the rationality condition (6.1) holds at genus zero and

one. For example, at genus one, the term c(1)(t, y1) appearing in the assumption is given by [45]:

c(1)(t, y1) = − 1

24
log sdet(−q1∗t)

where sdet(−q1∗t) = detev(−q1∗t)/detodd(−q1∗t) denotes the superdeterminant of the quantum
product (−q1∗t) on the total cohomology ring Heven(X) ⊕ Hodd(X). Note that the determinant
det(−q1∗) in the assumption is the one on the even part. One can easily check that, when q1, t are
in Heven(X), every irreducible factor of detodd(−q1∗t) is a factor of deteven(−q1∗t), and thus the

rationality condition (6.1) holds for c(1)(t, y1).

Assumption 6.1 ensures that F̄gX |y0=0,Q1=···=Qr=1 for g ≥ 2 and d(F̄1
X |y0=0,Q1=···=Qr=1) depend

analytically on t ∈MA, rationally on y1, and polynomially on y2, . . . , y3g−2. Therefore the following
definition makes sense.

Definition 6.4 (Gromov–Witten wave function). Suppose that Assumption 6.1 holds. Then we
have the A-model cTEP structure (F,∇, (·, ·)F) over MA (see Example 4.3 and Remark 4.5). The
associated Fock sheaf FockX over MA is called the A-model Fock sheaf for X. Let {φi}Ni=0 be
a homogeneous basis of HX as in §2.2 and let {ti, xin}n≥1,0≤i≤N be the algebraic co-ordinates on
the total space L of the A-model cTEP structure. Let Pstd denote the standard opposite module
from Example 4.16. The Gromov–Witten potentials of X define a Gromov–Witten wave function

CX = {∇nC
(g)
X }g,n ∈ FockX(MA;Pstd) by

∇3C
(0)
X = Y =

N∑
i=0

N∑
j=0

N∑
k=0

dti ⊗ dtj ⊗ dtk
∫
X

(φi ∗ φj ∗ x1) ∪ (φk ∗ x1)

∣∣∣∣
Q1=···=Qr=1

∇C(1)
X = d(F 1

X(t) + F̄1
X)
∣∣∣
y0=0,Q1=···=Qr=1

C
(g)
X = F̄gX

∣∣∣
y0=0,Q1=···=Qr=1

(g ≥ 2)

and their covariant derivatives with respect to ∇ =∇Pstd . Here we used the Dilaton shift:

yin = xin + δ1
nδ
i
0 n ≥ 1

to identify the variables {ti, yin} on the right-hand side with the co-ordinates {ti, xin} on L, and
F 1
X(t) is the non-descendant genus-one Gromov–Witten potential:

F 1
X(t) =

∞∑
n=0

∑
d∈NE(X)

(n,d)6=(0,0)

Qd

n!
〈t, . . . , t〉1,n,d

with t =
∑N

i=0 t
iφi. (Assumption 6.1 implies in particular that F 1

X(t)|Q1=···=Qr=1 converges on
MA.)

Remark 6.5. Supposing again that Assumption 6.1 holds, we have the A-model log-cTEP structure
(Example 4.94) with base (MA, D) and the associated Fock sheaf FockX over MA. The Gromov–
Witten wave function CX extends to an element of FockX(MA;Pstd), where Pstd is the standard
opposite module from Example 4.104.
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Remark 6.6. One can check that the Gromov–Witten wave function satisfies the conditions
(Yukawa), (Jetness), (Grading & Filtration) and (Pole) in Definition 4.56. (Yukawa) and (Jet-
ness) are obvious. The Dilaton equation (see, e.g. [1, Theorem 8.3.1])〈

α1ψ̄
k1
1 , . . . , αmψ̄

km
m , ψ̄m+1 : t, . . . , t

〉X
g,1+m+n,d

= (2g − 2 +m)
〈
α1ψ̄

k1
1 , . . . , αmψ̄

km
m : t, . . . , t

〉X
g,m+n,d

shows that we have, for g ≥ 1:

∞∑
n=0

N∑
i=0

(δn,1δi,0 − yin)
∂

∂yin
F̄gX = (2g − 2)F̄gX + δg,1

1

24
F 1
X(t)

where the last term arises from the unstable term (g,m) = (1, 0) and the fact that
∫
M1,1

ψ = 1
24 .

This means that the function F̄gX for g ≥ 2, or the one-form dF̄1
X at genus one, is homogeneous of

degree 2−2g with respect to the Dilaton-shifted variables xin = −δn,1δi,0+yin. The grading condition

follows. The filtration condition follows from the dimension formula dimMg,n = 3g − 3 + n (see
equation 4.8). (Pole) follows from Assumption 6.1, in particular from (6.1).

For the rest of this section (§6) we will assume that Assumption 6.1 holds. In our previous
paper [34], we studied analytic properties of various Gromov–Witten potentials under this assump-
tion. We need to review some of these results. Recall from Remark 4.40 that we have the nuclear
subspace of the total space L of the A-model cTEP structure:

N (L) =

{
(t,x) ∈ L : t ∈MA, sup

0≤i≤N, l≥0
(enl|xil|/l!) <∞ for all n ≥ 0

}
As we explained in Example 4.42, there is a holomorphic mapping (see equation 4.31)

(6.2) q = [M(t, z)x]+

∣∣∣
Q1=···=Qr=1

: N (L) −→ HNF
+

taking values in the positive part of a nuclear version of Givental’s symplectic space (4.32). Here
M(t, z) is the inverse fundamental solution (2.8) in Gromov–Witten theory. This map q is a local
isomorphism between N (L◦) and HNF

+ [34, §8.5] and gives a flat co-ordinate system on N (L◦) with

respect to ∇Pstd . For (t,x) = (t,−z1), we have q = −z1 + t.
We showed in [34, Theorem 7.9] that the total descendant potential ZX is NF-convergent under

Assumption 6.1, i.e. that the power series (2.10) defining each genus-g descendant potential FgX
converges uniformly and absolutely on an infinite-dimensional polydisc of the form:

(6.3)

{
|til| < ε l!

Cl
0 ≤ i ≤ N , l ≥ 0

|Qi| < ε 0 ≤ i ≤ N
for some ε > 0 and C > 0 independent of g. Define an open subset U ⊂ HNF

+ by

(6.4) U :=
⋃

δ∈H2(X;C)
<(δi)<log ε

[
e−δ/z

(
−1z +

{
t ∈ HNF

+ : |til| < εl!/C l, 0 ≤ i ≤ N, l ≥ 0
})]

+

where ε, C are the constants in (6.3) and we write t =
∑∞

l=0

∑N
i=0 t

i
lφiz

l. The Divisor Equation
justifies the following definition (see [34, Lemma 8.1]):
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Definition 6.7 ( [34, Definition-Proposition 8.2]). Under Assumption 6.1, there is an analytic
function FgX,an : U → C such that

FgX,an([e−δ/zq]+) = FgX(q)
∣∣∣
Q1=eδ1 ,...,Qr=eδr

+ δg,0
1

2
Ω(e−δ/zq, [e−δ/zq]+)− δg,1

1

24

∫
X
δ ∪ cD−1(X)

where δ =
∑r

i=1 δiφi ∈ H2(X;C) and q = t − z1 are chosen so that Qi = eδi and til satisfy (6.3).
We call FgX,an the specialization of FgX to Q1 = · · · = Qr = 1. Note that the domain U contains the

locus −z1 + t with t in a neighbourhood (2.4) of the large radius limit.

Theorem 6.8 (analytic version of the Ancestor-Descendant relation; cf. §3.5). When t ∈ MA is
sufficiently close to the large radius limit (2.4) and x ∈ zHNF

+ is sufficiently close to −z1, the flat
co-ordinate q = [M(t, z)x]+|Q1=···=Qr=1 (6.2) of the point (t,x) ∈ N (L) lies in the domain U for
FgX,an. For g ≥ 1 and for such (t,x) ∈ N (L), we have:

FgX,an(q) = δg,1F
1
X(t) + F̄gt

∣∣∣
y0=0,y1=x1−1,yl=xl(l≥2),Q1=···=Qr=1

In particular, in a neighbourhood of such a point (t,x) ∈ N (L), the Gromov–Witten wave function
(Definition 6.4) can be written in terms of flat co-ordinates (6.2) as:

∇3C
(0)
X = Y =

∞∑
l=0

∞∑
m=0

∞∑
n=0

N∑
i=0

N∑
j=0

N∑
h=0

∂3F0
X,an(q)

∂qil∂q
j
n∂qhm

dqil ⊗ dqjn ⊗ dqhm

∇C(1)
X = dF1

X,an(q)

C
(g)
X = FgX,an(q) for g ≥ 2.

Proof. By equation (2.9), M(t, z) satisfies

eδ/zM(t, z)|Q1=···=Qr=1 = M(t− δ, z)|Q1=eδ1 ,...,Qr=eδr

for δ =
∑r

i=1 δiφi ∈ H2(X;C). Since q ∈ U , we can write q = [e−δ/zq̃]+ for some δ ∈ H2(X;C)

with <(δi) < log ε and q̃ = −z1 + t with |til| < εl!/C l. Then:

q̃ = [eδ/zq]+ = [eδ/zM(t, z)x]+

∣∣∣
Q1=···=Qr=1

= [M(t− δ, z)x]+

∣∣∣
Q1=eδ1 ,...,Qr=eδr

Thus we have for g ≥ 1:

FgX,an(q) = FgX(q̃)
∣∣∣
Q1=eδ1 ,...,Qr=eδr

− δg,1
1

24

∫
X
δ ∪ cD−1(X) (by definition)

= δg,1

(
F 1
X(t− δ)− 1

24

∫
X
δ ∪ cD−1(X)

)
+ F̄gt−δ

∣∣∣
y0=0,y1=x1+1,xl=yl(l≥2),Q1=eδ1 ,...Qr=eδr

by the original version of the ancestor-descendant relation (§3.5). The conclusion follows from the

Divisor Equation for F 1
X(t) and F̄gt . The formula for ∇3C

(0)
X appeared in Example 4.42, (4.34). �

6.1. The Jet-Descendant Relation. We next give a generalization of the Ancestor-Descendant
relation—called the Jet-Descendant relation—which justifies the name “jet” for the jet potential
WX (2.15) in Gromov–Witten theory. For a sequence (t0, t1, t2, . . . ) of variables in HX , we write
t(ψ) =

∑∞
n=0 tkψ

k. Define generalized (inverse) fundamental solutions (cf. equations 2.7 and 2.8)
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by

L(t, z)v = v +
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!

〈
v

z − ψ , t(ψ), . . . , t(ψ), φε
〉X

0,n+2,d

φε

M(t, z)v = v +
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!

〈
φε

−z − ψ , t(ψ), . . . , t(ψ), v

〉X
0,n+2,d

φε

A result of Dijkgraaf–Witten [45] (see also [64, equation 2], [57, Proposition 4.6]) shows that

L(t, z) = L(τ(q), z) M(t, z) = M(τ(q), z)(6.5)

for

(6.6) τ(q) :=

N∑
ε=0

∂2F0
X

∂q0
0∂q

ε
0

(q)φε

and thus that M(t, z) = L(t, z)−1 (recall from §2.4 that M(t, z) = L(t, z)−1). Here the Dilaton
shift q = −z1 + t is used.

Theorem 6.9 (Jet-Descendant relation). We regard the jet potential WX =
∑∞

g=0 ~g−1W g
X (2.15)

in Gromov–Witten theory as a function of q = −z1 + t = −z1 +
∑∞

n=0 tnz
n and y =

∑∞
n=0 ynz

n.
Introduce a new variable s =

∑∞
n=0 snz

n, sn ∈ HX depending on (q,y) as:

(6.7) s = [M(t, z)y]+

Then we have

(6.8)

Wg
X = FgX(q + s) for g ≥ 2

W1
X = F1

X(q + s)−F1
X(q)

W0
X = [F0

X(q + s)]≥3

where [F0
X(q + s)]≥3 denotes the degree ≥ 3 part with respect to s, i.e. the Taylor expansion of

F0
X(q + s) in s with the constant, linear, and quadratic terms removed.

Proof. The proof is a straightforward generalization of the argument in [33, 80]. The key point is
the following comparison of ψ-classes. Let ψi denote the cotangent line class on Xg,m+l,d and ψ̄i
denote the cotangent line class pulled back from Mg,m (both at the ith marking). Then the class
ψi−ψ̄i is Poincaré dual to the divisor consisting of stable maps whose ith marking is on a component
contracted under the forgetful morphism Xg,m+l,d →Mg,m, i.e.

ψi − ψ̄i =
∑

L1tL2={1,...,l}

∑
d=d1+d2

[
X0,3+|L1|,d1

×X X0,m+|L2|,d2

]vir

For any cohomology-valued polynomials a1(ψ, ψ̄), . . . , am(ψ, ψ̄) in two variables ψ and ψ̄, we write〈
a1(ψ, ψ̄), . . . , am(ψ, ψ̄)

〉
g,m

(t)

=
∑

d∈NE(X)

∞∑
l=0

Qd

l!

〈
a1(ψ1, ψ̄1), . . . , am(ψm, ψ̄m) : t(ψm+1), . . . , t(ψm+l)

〉X
g,m+l,d

where t(ψi) =
∑∞

n=0 tnψ
n
i as before. Then the above relation shows that〈

φiψ
a+1ψ̄b, . . .

〉
g,m

(t) =
〈
φiψ

aψ̄b+1, . . .
〉
g,m

(t) +
N∑
ε=0

〈φiψa, φε〉0,2 (t)
〈
φεψ̄b, . . .

〉
g,m

(t)



A FOCK SHEAF FOR GIVENTAL QUANTIZATION 87

where dots denote arbitrary insertions and are the same in all places. Using this repeatedly, we find
that:

〈φiψn, . . .〉g,m (t) =
〈
φiψ̄

n, . . .
〉
g,m

(t) +
n−1∑
k=0

N∑
ε=0

〈
φiψ

k, φε

〉
0,2

(t)
〈
φεψ̄n−k−1, . . .

〉
g,m

(t)

Multiplying by sin and summing over all n ≥ 0 and 0 ≤ i ≤ N yields

〈s(ψ), . . .〉g,m (t) =
〈
y(ψ̄), . . .

〉
g,m

(t)

for s(ψ) =
∑∞

n=0

∑N
i=0 s

i
nφiψ

n and y(ψ̄) =
∑∞

n=0

∑N
i=0 y

i
nφiψ̄

n, where y is given by:

yin = sin +
∞∑
l=0

N∑
j=0

sjl+n+1

〈
φjψ

l, φi
〉

0,2
(t)

This is equivalent to y = [L(t, z)s]+ and to (6.7). Repeating the same argument at other markings
gives:

〈s(ψ), . . . , s(ψ)〉g,m (t) =
〈
y(ψ̄), . . .y(ψ̄)

〉
g,m

(t)

Note that the right-hand side makes sense only for 2g − 2 +m > 0. We have, for g ≥ 2:

FgX(q + s) =

∞∑
m=0

1

m!
〈s(ψ), . . . , s(ψ)〉g,m (t)

=
∞∑
m=0

1

m!

〈
y(ψ̄), . . . ,y(ψ̄)

〉
g,m

(t) =Wg
X

For g = 0 or 1, restricting the above summation to the range m ≥ 3 or m ≥ 1 respectively yields
the remaining parts of (6.8). �

Remark 6.10. When restricted to q = −z1 + t and y0 = 0, the Jet-Descendant relation above
reduces to the Ancestor-Descendant relation from §3.5.

Next we study the analyticity of the Gromov–Witten jet potential WX (2.15) and discuss the
specialization to Q1 = · · · = Qr = 1. More precisely, we regard WX as a formal power series in
y =

∑∞
n=0 ynz

n with coefficients in analytic functions in q = −z1 + t = −z1 +
∑∞

n=0 tnz
n. Firstly

recall that, under Assumption 6.1, the descendant potentials FgX , g = 0, 1, 2, . . . , are NF-convergent
on the region (6.3). This means that the function τ(q) introduced in (6.6) is also convergent
on the same region. Since τ(q)|Q=t=0 = 0, after taking a bigger C or a smaller ε if necessary,
M(t, z) = M(τ(q), z) is convergent on the region (6.3). Thus Theorem 6.9 implies that each Taylor
coefficient of Wg with respect to y converges to an analytic function on the region (6.3). The
Divisor Equation shows that:

Wg
X([e−δ/zq]+,y) =Wg

X(q,y)
∣∣∣
Q1→eδ1Q1,...,Qr→eδrQr

This justifies the following definition (cf. Definition 6.7).

Definition 6.11. Let U ⊂ HNF
+ be the domain in (6.4). Under Assumption 6.1, there exists a

formal power series Wg
X,an(q,y) in the variable y =

∑∞
n=0

∑N
i=0 y

i
nφiz

n with coefficients in analytic
functions in q over U with the following property:

Wg
X,an([e−δ/zq]+,y) =Wg

X(q,y)
∣∣∣
Q1=eδ1 ,...,Qr=eδr

where (t = q + z1, Qi = eδi) lies in the convergence domain (6.3) for Wg
X . We refer to Wg

X,an as

the specialization of Wg
X to Q1 = · · · = Qr = 1.
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The Divisor Equation for F̄gX implies that

(6.9) Wg
X,an

∣∣∣
q=−z1+t

= F̄gt
∣∣∣
Q1=···=Qr=1

as a formal power series in y, for t in a neighbourhood (2.4) of the large radius limit. Let τan : U →
HX ⊗ C be the holomorphic map defined by

τan(q) =
N∑
ε=0

∂2F0
X,an

∂q0
0∂q

ε
0

(q)φε

(cf. equation 6.6). One can check directly from the definition of F0
X,an that

(6.10) τan([e−δ/zq]+) = τ(q)
∣∣∣
Q1=eδ1 ,...,Qr=eδr

+ δ

when (t = q + z1, Qi = eδi) satisfy (6.3). The following theorem follows from a routine application
of the Divisor Equation, much as in Theorem 6.8. We leave the details to the reader.

Theorem 6.12 (analytic version of Jet-Descendant relation). Let q ∈ HNF
+ be in the convergence

domain (6.4) for FgX,an and Wg
X,an. Then:

Wg
X,an(q,y) = FgX,an(q + s) g ≥ 2

W1
X,an(q,y) = F1

X,an(q + s)−F1
X,an(q)

W0
X,an(q,y) = [F0

X,an(q + s)]≥3

where s = [M(τan(q), z)y]+|Q1=···=Qr=1. These are identities of formal power series in y.

Lemma 6.13.

(1) Let x =
∑∞

n=1 xnz
n, q =

∑∞
n=0 qnz

n be variables in zHX [[z]] and HX [[z]] respectively. The
formula q = [M(t, z)x]+ defines an isomorphism over the Novikov ring Λ between the formal
neighbourhood of (t,x) = (0,−z1) in HX×zHX [[z]] and the formal neighbourhood of q = −z1
in HX [[z]]. The inverse map is given by

t = τ(q), x = [L(τ(q), z)q]+

where τ is given in (6.6).
(2) Let t ∈MA be sufficiently close to the large radius limit point and let x ∈ HNF

+ be sufficiently
close to −z1 so that the flat co-ordinate q = [M(t, z)x]+|Q1=···=Qr=1 (6.2) of the point

x = (t,x) ∈ N (L◦) lies in the domain U ⊂ HNF
+ of F0

X,an (6.4). Then we have t = τan(q).

Proof. (1) It was explained in [34, Remark 8.4] that q = [M(t, z)x]+ defines an isomorphism between
the formal neighbourhoods of (t,x) = (0,−z1) and q = −z1. Since L(t, z) = M(t, z)−1, we have:

x = [L(t, z)q]+

The variable t is determined implicitly by the equation [L(t, z)q]0 = 0, where [· · · ]0 denotes the
coefficient of z0. It now suffices to show that [L(τ(q), z)q]0 = 0. By (6.5), we have [L(τ(q), z)q]0 =
[L(t, z)q]0 under the Dilaton shift q = −z1 + t. Then:

[L(t, z)q]0 =

q +
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

〈
q

z − ψ , t(ψ), . . . , t(ψ), φε

〉
0,2+n,d

Qd

n!
φε


0

= q0 +
∞∑
n=0

N∑
i,ε=0

qin+1

∂2F0
X

∂qin∂q
ε
0

φε

The String equation (see [64]) shows that the last expression is identically zero.
(2) Part (2) follows from Part (1), (6.10) and an argument similar to the proof of Theorem 6.8. �
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Theorem 6.14. Let CX denote the Gromov–Witten wave function (Definition 6.4) of X. Let
t ∈ MA be sufficiently close to the large radius limit point and let x ∈ HNF

+ be sufficiently close to
−z1 so that the flat co-ordinate q = [M(t, z)x]+|Q1=···=Qr=1 (6.2) of the point x = (t,x) ∈ N (L◦) lies

in the domain U ⊂ HNF
+ for FgX,an and Wg

X,an. Let Forx be the formalization map (Definition 5.11)

at x associated to the standard unitary frame HX⊗C[[z]]→ Ft of the A-model cTEP structure. Then
we have

Forx CX = exp

 ∞∑
g=0

~g−1Wg
X,an(q,y)


as a formal power series in y. In particular, by (6.9),

Forx CX = AX,t
∣∣∣
Q1=···=Qr=1

when x = (t,x) = (t,−z1).

Proof. Recall that the formalization map (Definition 5.11) at x = (t,x) is defined as a truncated
Taylor expansion of the potential with respect to the flat co-ordinates associated to a given unitary
frame of Ft. The standard unitary frame at t ∈ HX defines the following flat co-ordinate system on
L◦ (see Definition 4.28 and equation 4.21):

(t+ s,x) 7→ qt = [M(t, z)−1M(t+ s, z)x]+

∣∣∣
Q1=···=Qr=1

Note that the inverse fundamental solution in (4.21) is normalized by the condition that it is
identity at t and so we need the factor M(t, z)−1 here. This is related to the flat co-ordinate
q in (6.2) by a linear transformation qt = [M(t, z)−1q]+|Q1=···=Qr=1. Also, by Lemma 6.13, we
have t = τan(q). The analytic version of Ancestor-Descendant relation (Theorem 6.8) shows that
Forx(CX) is a truncated Taylor expansion of exp(

∑∞
g=0 ~g−1FgX,an(q)) with respect to qt. Since the

co-ordinate change q 7→ qt here is the same as the co-ordinate change y 7→ s of jet co-ordinates in
the Jet-Descendant relation (Theorem 6.12), the conclusion follows. �

Remark 6.15. Theorem 6.14 shows that the jet potential (2.15) in Gromov–Witten theory can be
identified with the jet potential (Definition 4.62) associated with the Gromov–Witten wave function.

7. The Semisimple Case

In this section we use Givental’s formula for the higher-genus potentials associated to a semisimple
Frobenius manifold to define a canonical global section of the Fock sheaf for any tame semisimple
cTEP structure. This global section is called the Givental wave function. We use a theorem of
Teleman to show that if X has generically semisimple quantum cohomology then the Givental wave
function for the A-model cTEP structure associated to X coincides with the Gromov–Witten wave
function for X.

7.1. Semisimple Opposite Module. Recall from Definition 4.4 that a cTEP structure is a cTP
structure such that the connection ∇ is extended in the z-direction with a pole of order 2 along
z = 0. Let U : F0 → F0 denote the residual part of the connection defined by

U : F0 → F0 U [α] = [z2∇∂zα] for α ∈ F.

Flatness of the pairing implies that U is self-adjoint with respect to (·, ·)F0 .

Definition 7.1. A cTEP structure (F,∇, (·, ·)F) overM is said to be tame semisimple at t ∈M if
the residual part U ∈ End(F0,t) at t is a semisimple endomorphism without repeated eigenvalues.
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The following proposition shows that any tame semisimple cTEP structure of rank N + 1 is
locally isomorphic to the A-model cTEP structure (Remark 4.5) of N + 1 points. This can be
viewed, module the treatment on the pairing, as a special case of the classical Levelt–Turrittin
theorem on the formal structure of irregular connections (see, e.g. [102, Chapter II, Theorem 5.7]).
In fact, the existence of a pairing makes the proof easier. In the context of semisimple Frobenius
manifolds, similar results has appeared in Dubrovin [50, Lecture 4] and Givental [62, §1.3].

Proposition 7.2. Suppose that a cTEP structure (F,∇, (·, ·)F) is tame semisimple at t0 ∈ M.
Then there exists a trivialization over a neighbourhood of t0

Φss : CN+1 ⊗O[[z]] ∼= F

such that (Φss(ei),Φss(ej))F = δij and

Φ∗ss∇ =

N⊕
i=0

(d− d(ui/z))

where u0, . . . , uN are the eigenvalues of U . Moreover, the trivialization Φss is unique up to reordering
and changing the signs of the basis elements: ei 7→ ±eσ(i), σ ∈ SN+1. We call Φss the semisimple
trivialization of (F,∇, (·, ·)F).

Proof. The operator U has distinct eigenvalues u0, . . . , uN in a neighbourhood of t0. Throughout the
proof, we fix this neighbourhood and work over it. Let δi ∈ F0, i ∈ {0, . . . , N}, be the eigensection
of U with eigenvalue ui. We normalize δi by the condition (δi, δi)F0 = 1. Because U is self-adjoint,

it follows that (δi, δj)F0 = δij . There exist lifts δ̂i ∈ F of δi such that (δ̂i, δ̂j)F = 1. In the local basis

δ̂0, . . . , δ̂N , we write the connection in the form

∇ = d− 1

z

∑
j

Cj(z)dt
j + (U + zV (z))

dz

z2

where {tj} is a local co-ordinate system on M, U = diag(u0, . . . , uN ), and Cj(z), V (z) ∈
End(CN+1)⊗O[[z]]. The fact that ∇ preserves (·, ·)F implies that V (−z) + V (z)T = 0.

If we have a trivialization Φss satisfying the conditions in the statement, then [Φss(ei)] is an
eigenvector of U of eigenvalue ui and ([Φss(ei)], [Φss(ei)])F0 = 1. Therefore, up to the choice of signs

of δ̂i, we have (
Φss(e0), . . . ,Φss(eN )

)
=
(
δ̂0, . . . , δ̂N

)
R(z)

for some (N + 1, N + 1)-matrix R(z) with entries in O[[z]] such that R(0) = I. It thus suffices to
show that there exists a unique gauge transformation R(z) ∈ GL(N + 1,O[[z]]) such that R(0) = I
and:

R(z)−1 ◦ ∇ ◦R(z) = d− d(U/z)(7.1)

R(−z)TR(z) = id(7.2)

The differential equation (7.1) in the z-direction is:

∂zR+ z−2[U,R] + z−1V R = 0

Writing V (z) = V0 + V1z + V2z
2 + · · · and R(z) = I +R1z +R2z

2 + · · · , we find:

[U,R1] + V0 = 0

R1 + [U,R2] + V1 + V0R1 = 0

nRn + [U,Rn+1] + Vn + Vn−1R1 + · · ·+ V0Rn = 0 (n ≥ 1)

(7.3)
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We claim that the equations (7.3) can be solved inductively and uniquely. The off-diagonal part of
R1 can be determined from the first equation:

(R1)ij = − (V0)ij
ui − uj

i 6= j.

Here the solvability is ensured by (V0)ii = 0, which holds because V0 is anti-symmetric. The second
equation gives the diagonal part of R1:

(R1)ii = −(V1)ii −
∑
j:j 6=i

(V0)ij(R1)ji

Similarly, we can solve for R2, R3, . . . inductively. We check that R constructed in this way satisfies
unitarity (7.2). From the differential equation for R, we find:

∂

∂z
(R(−z)TR(z)) = − 1

z2
[U,R(−z)TR(z)]

Writing R(−z)TR(z) = I +M1z +M2z
2 + · · · gives:

[U,M1] = 0

nMn = −[U,Mn+1] (n ≥ 1)

The first equation shows that M1 is diagonal. The second equation with n = 1 shows that M1 is
off-diagonal. Thus M1 = 0. Hence [U,M2] = 0 and M2 is diagonal. The second equation with n = 2
shows that M2 is off-diagonal and M2 = 0. Repeating this, we find that Mn = 0 for all n ≥ 1.

Finally we show that R(z) satisfies the differential equation (7.1) in the t-direction. Note that
R(z) in the above construction depends analytically on t ∈M. We can write

(7.4) R(z)−1 ◦ ∇ ◦R(z) = d− 1

z

∑
j

Aj(z)dt
j + U

dz

z2

for some Aj(z) ∈ End(CN+1)⊗O[[z]]. The flatness of the connection yields:

∂jU −Aj(z) + z∂zAj − z−1[Aj(z), U ] = 0

Writing Aj(z) = Aj,0 +Aj,1z +Aj,2z
2 + · · · , we have

−[Aj,0, U ] = 0

∂jU −Aj,0 − [Aj,1, U ] = 0

−[Aj,2, U ] = 0

(n− 1)Aj,n − [Aj,n+1, U ] = 0 (n ≥ 2)

The first equation shows that Aj,0 is a diagonal matrix. The second equation shows Aj,0 = ∂jU and
[Aj,1, U ] = 0. Hence Aj,1 is diagonal. The third equation shows that Aj,2 is diagonal. The fourth
equation with n = 2 shows that Aj,2 = 0 and that Aj,3 is diagonal. Repeating this, we find that
Aj,n = 0 for all n ≥ 2. It remains to show that Aj,1 = 0. We know that ∇ preserves the pairing
(·, ·)F and that R(z) is unitary (7.2), thus the connection (7.4) also preserves the diagonal pairing.
This shows that Aj(−z)T = Aj(z). In particular Aj,1 is anti-symmetric. As we have already seen
that Aj,1 is diagonal, Aj,1 = 0. �

Definition 7.3. Let (F,∇, (·, ·)F) be a cTEP structure which is tame semisimple over an open
set Mss ⊂ M. The semisimple opposite module for (F,∇, (·, ·)F) is an opposite module Pss over
Mss such that, for any point t ∈ Mss and a semisimple trivialization Φss (Proposition 7.2) over a
neighbourhood of t, we have

Pss = Φss(CN+1 ⊗ z−1O[z−1])

in the neighbourhood. The opposite module Pss is independent of the choice of Φss.
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Remark 7.4. Even if the semisimple trivialization Φss has monodromy, the semisimple opposite
module Pss is single-valued on the tame semi-simple locus Mss. The semisimple opposite module
is automatically homogeneous: ∇z∂zPss ⊂ Pss.

When a cTEP structure is tame semisimple and miniversal, the semisimple opposite module
defines a (rather trivial) Frobenius manifold structure on the base by Proposition 4.18 and Re-
mark 4.22. Miniversality implies that the eigenvalues u0, . . . , uN form a local co-ordinate system.
The following proposition follows straightforwardly from Proposition 7.2.

Proposition 7.5. Let (F,∇, (·, ·)F) be a cTEP structure which is tame semisimple over an open set
Mss ⊂ M. The semisimple opposite module Pss over Mss defines a Frobenius manifold structure
on Mss which is isomorphic to the quantum cohomology Frobenius manifold of (N + 1) points. It
is given by:

• the flat metric

g

(
∂

∂ui
,
∂

∂uj

)
= δij

• the semisimple product
∂

∂ui
∗ ∂

∂uj
= δij

∂

∂ui

• the flat identity vector field e =
∑N

i=0 ∂/∂ui
• the Euler vector field E =

∑N
i=0 ui(∂/∂ui)

where u0, . . . , uN are the eigenvalues of the residual part U ; these are flat co-ordinates for this
Frobenius manifold.

7.2. A Section of the Fock Sheaf via Givental’s Formula. Givental has defined an abstract
ancestor potential associated to any semisimple Frobenius manifold [61, 62, 64]. We will see that
Givental’s formula gives rise to a global section of the Fock sheaf associated to a semisimple Frobe-
nius manifold (or more generally to a semisimple cTEP structure).

7.2.1. Givental’s Abstract Potential.

Definition 7.6 (cTEP Structure Associated to a Frobenius Manifold). Let (M, ∗, e, g, E) be a
Frobenius manifold (see Proposition 4.18 and Remark 4.22 for the notation). The Dubrovin con-
nection defines a miniversal cTEP structure (F,∇, (·, ·)F) over M:

F = TM[[z]]

∇ = ∇LC − 1

z

N∑
i=0

(
∂

∂ti
∗
)
dti + (E∗)dz

z2
+ µ

dz

z

(α(z), β(z))F = g(α(−z), β(z)) for α(z), β(z) ∈M[[z]]

where {ti}Ni=0 is a local co-ordinate system on M, ∇LC is the Levi-Civita connection of g, and

µ = (1 − D
2 ) id−∇LCE ∈ End(TM) with D the conformal dimension. This cTEP structure is

equipped with the standard homogeneous opposite module

Pstd = z−1TM[z−1]

and the standard unitary frame id: TuM[[z]] ∼= Fu.

Let (M, ∗, e, g, E) be a Frobenius manifold such that the Euler multiplication E∗ is semisimple
with distinct eigenvalues u0, . . . , uN . Such a Frobenius manifold is said to be tame semisimple. Then
the corresponding cTEP structure is tame semisimple. It is known that the co-ordinate vector fields
∂/∂ui, i ∈ {0, . . . , N}, form an idempotent frame for TM:

∂

∂ui
∗ ∂

∂uj
= δij

∂

∂ui
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We set:

∆i = g

(
∂

∂ui
,
∂

∂ui

)−1

By Proposition 7.2 and its proof, we have locally a semisimple trivialization Φss : CN+1 ⊗ O[[z]] ∼=
TM[[z]] such that:

Φss(ei) =
√

∆i
∂

∂ui
+O(z)

In view of Example 5.4, the product of Witten–Kontsevich tau-functions

T (q) =
N∏
i=0

τ(qi) with q = (q0, . . . ,qN ) ∈ CN+1[[z]]

is an element of AFockrat

(
CN+1, (1, . . . , 1),

∏N
i=0(−qi1)

)
. This is the descendant potential of (N + 1)

points22. For each u ∈M, Φss,u defines a unitary isomorphism between CN+1[[z]] and TuM[[z]], and
we have a quantized operator

Te−Φss,u(1,...,1) ◦ Φ̂ss,u :

AFockrat(CN+1, (1, . . . , 1),
∏N
i=0(−qi1)) −−−−→ AFockrat(TuM, e,det(−q1∗))

by Theorem 5.8 and Remark 5.9.

Definition 7.7 (Givental’s Formula [61]). The abstract ancestor potential Aabs
u is the element of

AFockrat(TuM, e,det(−q1∗)) given by:

Aabs
u = Te−Φss,u(1,...,1)Φ̂ss,uT

Remark 7.8. The abstract potential Aabs
u does not depend on the choice of a semisimple trivial-

ization Φss; see [34, Proposition 4.3]. Let us study what the shift isomorphism Te−Φss,u(1,...,1) does

to Φ̂ss,uT . Note that the genus-one potential F̂1 of Φ̂ss,uT satisfies :

F̂1
∣∣∣
q0=0,q1=−e

=
N∑
i=0

− 1

24
log
(
[Φ−1

ss,ue]
i
∣∣
z=0

)
=

1

48

N∑
i=0

log ∆i(u)

The shift isomorphism at genus one is a truncated Taylor expansion and this amounts to subtracting
the value at the new base point q = −ez. Thus we can write:

Aabs
u = e−

1
48

∑
i log ∆i(u)Φ̂ss,uT

This is the original form of Givental’s formula.

7.2.2. A Global Section of the Fock Sheaf Associated to a Semisimple cTEP Structure. We regard
the genus-g ancestor potential Fgpt of a point as a function of the co-ordinates (q0, q1, q2, . . . ) via

the Dilaton shift qn = yn − δn,1: see Example 5.4. When restricted to q0 = 0, Fgpt only depends on
finitely many variables q1, . . . , q3g−2. In this section we write

Fg(0, q1, q2, . . . , q3g−2) = Fgpt

∣∣∣
q0=0

making the argument explicit. Note that q5g−5
1 Fg|q0=0 is a polynomial for g ≥ 2, F1|q0=0 =

− 1
24 log(−q1) and F0|q0=0 = 0 (see equation 5.3).

22For N + 1 points, the descendant potential and the ancestor potential are the same.
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Definition 7.9. Let (F,∇, (·, ·)F) be a miniversal cTEP structure which is tame semisimple over
a non-empty open subset Mss ⊂ M. Let u0, . . . , uN be the eigenvalues of the residual part U , as
in Proposition 7.5; these give local co-ordinates on Mss. Let {ui, xin}n≥1,0≤i≤N be the local co-
ordinate system on L associated to a semisimple trivialization Φss of F as in Proposition 7.2. Define

an element Css = {∇nC
(g)
ss }n,g of Fock(Mss;Pss) (see Definition 4.56) by

∇3C(0)
ss = Y =

N∑
i=0

(xi1)2(dui)
⊗3

∇C(1)
ss =

N∑
i=0

dF1
pt(0, x

i
1) = −

N∑
i=0

1

24

dxi1
xi1

C(g)
ss =

N∑
i=0

Fgpt(0, x
i
1, x

i
2, . . . , x

i
3g−2), g ≥ 2

and their covariant derivatives with respect to ∇ = ∇Pss . The global section of the Fock sheaf
(Definition 4.72) overMss given by Css is called the Givental wave function. This does not depend
on the choice of a semisimple trivialization Φss.

Remark 7.10. It is easy to see that Css satisfies the conditions in Definition 4.56. The condition
(Grading & Filtration) follows from (5.3). The discriminant (4.10) is given by P (t, x1) =

∏N
i=0(−xi1).

Thus the condition (Pole) follows also from (5.3).

Remark 7.11. The element Css can be identified with the Gromov–Witten wave function for (N+1)
points which was introduced in Definition 6.4. (The Gromov–Witten potential of (N + 1) points
satisfies the necessary convergence condition stated in Assumption 6.1.)

Remark 7.12. Given any pseudo-opposite module P over an open subset U ⊂ Mss, the Givental
wave function gives rise to the element CP = T (Pss,P)Css ∈ Fock(U ;P) over U . We call CP the
(local) presentation of the Givental wave function under P.

Lemma 7.13. With notation as in Definition 7.9, the equality

∇nC(g)
ss =

N∑
i=0

∑
l1,...,ln≥0

〈
ψl11 , . . . , ψ

ln
n

〉pt

g,n
dxil1 ⊗ · · · ⊗ dxiln

holds along the locus {xi1 = −1, xi2 = xi3 = · · · = 0 : 0 ≤ i ≤ N} ⊂ L, where we set xi0 = ui on the
right-hand side. In other words, we have

For−zΦss,u(1,...,1) Css = T in AFockrat

(
CN+1, (1, . . . , 1),

∏N
i=0(−qi1)

)
where For−zΦss,u(1,...,1) is the formalization map (Definition 5.11) associated to the semisimple triv-
ialization Φss,u at u ∈M.

Proof. The formula For−zΦss,u(1,...,1) Css = T was proved more generally for a Gromov–Witten wave
function in Theorem 6.14; this lemma is a special case where X consists of (N + 1) points. Thus it
suffices to show that the former statement is equivalent to the latter. For simplicity we consider the
case N + 1 = dimM = 1; the general case is similar. Take a point u∗ ∈Mss. Under the semisimple
trivialization, the inverse fundamental solution M appearing in (4.22) is given by

M(u, z) = e−(u−u∗)/z

Therefore the flat co-ordinates q associated to the unitary frame Φss are given by

(7.5) q = [e−(u−u∗)/zx]+
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(see equation 4.21) with x =
∑∞

n=1 xnz
n, q =

∑∞
n=0 qnz

n. This shows that

du = dq0, dxn = dqn (n ≥ 1)

at the point (u,x) = (u∗,−z) ∈ Lu∗ . The conclusion follows from the definition of the formalization
map. �

Theorem 7.14. Let (F,∇, (·, ·)F) be the tame semisimple cTEP structure associated to a tame
semisimple Frobenius manifold M. Let Cstd = T (Pss,Pstd)Css ∈ Fock(M;Pstd) denote the presen-
tation of the Givental wave function of (F,∇, (·, ·)F) under the standard opposite module Pstd (see
Remark 7.12). Then we have

For−ze(Cstd) = Aabs
u

where For−ze is the formalization map at −ze ∈ L◦u associated with the standard unitary frame
TuM[[z]] ∼= Fu (see Definition 5.11 and Lemma 5.13) and Aabs

u is the abstract potential in Defini-
tion 7.7.

Proof. Combine Theorem 5.14, Lemma 7.13, and the definition of the abstract potential. �

The quantum cohomology of X is said to be generically semisimple if the analytic quantum
product ∗ (see Assumption 6.1, Part 1) is semisimple (i.e. isomorphic as a ring to a direct sum
of copies of C) over an open dense subset of MA. This is equivalent to ∗ being semisimple at a
single point. Then the Euler multiplication E∗ (see equation 2.5) has no repeated eigenvalues on
an open dense subset Mss

A ⊂ MA, and the A-model cTEP structure is tame semisimple over Mss
A

(see Definition 7.1). In particular, the Givental wave function defines a section of the A-model Fock
sheaf FockX over Mss

A. The following is a reformulation of a result of Teleman.

Theorem 7.15 (Teleman [109]). When the quantum cohomology of X is generically semisimple,
the Gromov–Witten wave function (Definition 6.4) coincides with the Givental wave function (Def-
inition 7.9).

Proof. Both wave functions are uniquely determined by their formalizations at (t,−z) ∈ L◦ with
t ∈Mss

A with respect to the standard opposite module Pstd (see Example 4.16). Theorem 6.14 shows
that the formalization of the Gromov–Witten wave function is the geometric ancestor potential AX,t
(with Q1 = · · · = Qr = 1). Theorem 7.14 shows that the formalization of the Givental wave function
is the abstract ancestor potential given by Givental’s formula (Definition 7.7). Teleman [109] showed
that the geometric ancestor potential coincides with the abstract one (see also [34, Theorems 6.4,
6.5]). The conclusion follows. �

Remark 7.16. The Givental wave function is automatically a ‘modular function’ in the following

sense. Let
(
F,∇, (·, ·)F

)
be a tame semisimple cTEP structure over M, and let π : M̃ →M be the

universal cover. Let C be the Givental wave function associated to
(
F,∇, (·, ·)F

)
. Suppose that we

have an opposite module P for π?
(
F,∇, (·, ·)F

)
over the universal cover M̃. The pull-back π?C of the

Givental wave function is obviously invariant under the group Γ = π1(M) of deck transformations,
however its presentation CP = (π?C )P with respect to P is not necessarily so since the opposite
module P may not be single-valued on M. Instead we have the transformation property:

(7.6) γ?CP = T (P, γ?P)CP

with respect to γ ∈ Γ, since γ?CP = Cγ?P. Suppose moreover that the cTEP structure
(
F,∇, (·, ·)F

)
is the restriction of a TEP structure

(
F = O(F ),∇, (·, ·)F

)
to the formal neighbourhood of z = 0

and that the opposite module P defines an extension of F across z =∞ (see Remark 4.21). In this
case, one can rephrase equation (7.6) using the L2-formalism in §5.3 as follows. The monodromy of(
F ,∇, (·, ·)F

)
along γ defines a symplectic transformation

Uγ : Ht → Ht
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where recall that Ht = L2({t}×S1, F ). Then the total potential Z associated to CP (see Definition
5.26) transforms under Γ as:

Z(γ−1t) ∝ ÛγZ(t) γ ∈ Γ

The quantization Ûγ here was defined in §5.3.

8. The Fock Sheaf and Mirror Symmetry

In this section we discuss applications of our global quantization formalism in the context of
mirror symmetry. We consider two cases: mirrors of toric orbifolds and mirrors of Calabi–Yau
hypersurfaces. In the former case, we construct a global section of the B-model Fock sheaf us-
ing Givental’s formula, thereby proving a higher-genus version of Ruan’s Crepant Transformation
Conjecture for toric orbifolds. In the latter case, the existence of a global section of the B-model
Fock sheaf (which corresponds under mirror symmetry to the Gromov–Witten wave function) is
conjectural; cf. recent work of Costello–Li [43].

8.1. The Crepant Transformation Conjecture in the Toric Case. A mirror partner of a
“Fano-like” manifold X is conjecturally given by a so-called Landau–Ginzburg model, which is a
pair (Ť ,W ) where Ť is a (non-compact) Calabi–Yau manifold and W : Ť → C is a holomorphic
function. Suppose that X has generically semisimple quantum cohomology and has a family of
Landau–Ginzburg models Wy : Ťy → C, y ∈ MB, as a mirror. The space MB here parametrizes
the Landau–Ginzburg models; we call it the B-model moduli space. Under mirror symmetry, the
Kähler moduli space MA ∩ H2(X;C) of X is identified with a small open patch of MB, and the
small quantum cohomology ring of X should be identified with the family of Jacobi rings for Wy

on this patch. Furthermore, the A-model TEP structure (Example 4.3) constructed from X should
be identified with the B-model TEP structure constructed from Wy. Our assumption that X has
generically semisimple quantum cohomology corresponds to the condition that, for generic y, all
critical points of Wy are isolated and non-degenerate. In such a situation, we can extend the total
descendant Gromov–Witten potential ZX to a global section of the B-model Fock sheaf over an
extended B-model moduli spaceMext

B ; this is the Givental wave function for the extended B-model
TEP structure. Furthermore it can happen that this global section restricts, on another small open
patch ofMB, to the Gromov–Witten potential ZY of another space Y which would typically be K-
equivalent (or derived equivalent) to X. Thus the global section ZX of the A-model Fock sheaf for
X would coincide, after analytic continuation, with the global section ZY of the A-model Fock sheaf
for Y . This gives a higher-genus version of Y. Ruan’s conjecture about the relationship between
Gromov–Witten theory and crepant birational (or derived categorical) geometry. We illustrate this
in the toric setting.

Givental [58] and Hori–Vafa [69] have described a Landau–Ginzburg model that gives a mirror to
a toric variety. Here the Calabi–Yau manifold Ť is (C×)D and the superpotential W : Ť → C is a
Laurent polynomial function on (C×)D with Newton polytope equal to the fan polytope of the toric
variety. The B-model TEP structure in this context has been studied by many people, including
Sabbah [101], Barannikov [6], Douai–Sabbah [46, 47], Coates–Iritani–Tseng [38], Iritani [71], and
Reichelt–Sevenheck [100]. In the rest of this section (8.1) we consider the mirrors to certain toric
orbifolds, following closely the exposition in [71, §3].

8.1.1. Toric Orbifolds as GIT Quotients. Borisov–Chen–Smith construct toric Deligne–Mumford
stacks from so-called stacky fans [14]. Let X be the toric Deligne–Mumford stack corresponding to
the stacky fan (N; Σ; b1, . . . , bm), so that:

• N is a finitely generated abelian group;
• Σ is a rational simplicial fan in NR = N⊗Z R;
• b1, . . . , bm ∈ N are such that their images in NR generate the one-dimensional cones of Σ.
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Let ∆ ⊂ NR denote the convex hull of b1, . . . , bm. This is called the fan polytope of X. We assume
that:

• X is an orbifold, i.e. the generic isotropy of X is trivial. This amounts to requiring that N
is torsion-free.
• the coarse moduli space of X is projective. This amounts to requiring that ∆ contains the

origin in its strict interior and that Σ admits a strictly convex piecewise-linear function.
• X is weak Fano. This amounts to requiring that b1, . . . , bm lie on the boundary of ∆.
• ∆ ∩N generates N over Z.

We now explain how to construct X as a GIT quotient.
Set ∆ ∩N = {b1, . . . , bm, bm+1, . . . , bn}, with n ≥ m, and define a lattice L ⊂ Zn by the exact

sequence

(8.1) 0 // L // Zn
β // N // 0

where β is the homomorphism that sends the ith standard basis vector ei to bi. The torus T :=
L ⊗ C× acts on Cn via the inclusion T ⊂ (C×)n induced by L ⊂ Zn. We denote by AΣ the set of
anti-cones, that is, the set of subsets I ⊂ {1, . . . , n} such that I contains {m + 1, . . . , n} and that
{bi : i ∈ {1, . . . , n} \ I} spans a cone of the fan Σ. Set

UΣ = Cn \
⋃
I /∈AΣ

CI

where CI = {(z1, . . . , zn) ∈ Cn : zi = 0 for i /∈ I}. The toric Deligne–Mumford stack X is con-
structed as the quotient stack:

(8.2) X =
[
UΣ/T

]
Let M : Zn → L∨ = Hom(L,Z) be the map dual to the inclusion L ⊂ Zn. The vector space

L∨R = L∨ ⊗R is canonically identified with H≤2
CR(X) [71, Remark 3.5]. The extended Kähler cone is

a cone CX ⊂ L∨R defined by:

CX =
⋂
I∈AΣ

M(RI>0)

Under the identification L∨R ∼= H≤2
CR(X), this matches with the product of the ordinary Kähler (or

ample) cone Amp(X) ⊂ H2(X;R) and the rays generated by positive generators of the twisted

sectors in H≤2
CR(X) and 1 ∈ H0(X) (see [71, Lemma 3.2]). The extended anticanonical class

−Kext
X := M(e1 + · · · + en) ∈ L∨ projects to the usual anticanonical class −KX ∈ H2(X) and

lies in the closure CX of CX by the weak Fano condition. The space L∨ is the space of stability
conditions for the action of T on Cn, and for any stability condition θ in the extended Kähler cone
CX , we have that the GIT (stack) quotient

[
Cn//θT

]
is equal to X, because

[
Cn//θT

]
=
[
UΣ/T

]
as

in (8.2).

8.1.2. Birational Toric Orbifolds Arising from Variation of GIT. We can have several different
projective stacky fan structures with the same fan polytope ∆. The corresponding toric stacks are
birational and are related by variation of GIT. Reversing the above construction, start now with
an integral polytope ∆ ⊂ NR such that the origin is contained in its strict interior and that ∆ ∩N
generates N over Z. Set ∆ ∩N = {b1, . . . , bn} as before. These vectors define the exact sequence
(8.1) and thus define an action of T := L ⊗ C× on Cn. A character θ ∈ L∨ = Hom(T,C×) of T
defines a stability condition for this action. Set Ceff = M(Rn≥0), where M : Zn → L∨ denotes the
map dual to the inclusion L ⊂ Zn as before; this is a strictly convex cone. Also define W ⊂ Ceff to
be the union of the cones M(RI≥0) for all subsets I ⊂ {1, . . . , n} such that {M(ei) : i ∈ I} does not

span L∨R over R. The walls W give a wall and chamber structure on Ceff ; this is the secondary fan
of Gelfand–Kapranov–Zelevinsky [56]. The GIT (stack) quotient Xθ :=

[
Cn//θT

]
is empty unless
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the stability parameter θ lies in Ceff . If θ ∈ Ceff \W then there are no strictly θ-semistable points
in Cn. Take θ ∈ Ceff \W and set Aθ = {I ⊂ {1, . . . , n} : θ ∈ M(RI>0)}. The corresponding GIT
quotient Xθ is the projective toric Deligne–Mumford stack given by the following stacky fan on N:

• bi is a specified generator of a one-dimensional cone if and only if {1, . . . , n} \ {i} ∈ Aθ;
• a subset {bi : i ∈ I} spans a cone of the fan if and only if {1, . . . , n} \ I ∈ Aθ.

Note that Aθ coincides with the set of anti-cones for this fan. The corresponding extended Kähler
cone Cθ :=

⋂
I∈Aθ M(RI>0) is the connected component of Ceff \W containing θ. The toric stack

Xθ depends on θ only via the chamber Cθ. The fan polytope of Xθ is a polytope contained in ∆
and contains the origin in its interior.

Let Toric(∆) denote the set of smooth projective toric stacks arising in this way; they are
parametrized by connected components of Ceff \ W, that is, by maximal cones in the secondary
fan. When a chamber Cθ ⊂ Ceff \W contains the vector M(e1 + · · ·+ en) in its closure, the corre-
sponding toric stack Xθ is weak Fano. In this case, the fan polytope of Xθ coincides with ∆ and all
the generators of one-dimensional cones of the stacky fan lie in the boundary of ∆ [71, Lemma 3.3].
Let Crep(∆) ⊂ Toric(∆) denote the subset consisting of toric stacks corresponding to a chamber
Cθ with M(e1 + · · · + en) ∈ Cθ. Toric stacks from Crep(∆) are all K-equivalent and also derived
equivalent to each other, via a composition of Fourier–Mukai transformations [37,77].

8.1.3. Mirror Landau–Ginzburg Models. Let X be a toric Deligne–Mumford stack, as in §8.1.1.
The mirror of X is given by a family of Laurent polynomials Wa on Ť = Hom(N,C×) ∼= (C×)D

parametrized by a = (a1, . . . , an) ∈ (C×)n:

(8.3) Wa(x) =
n∑
i=1

aix
bi

The torus Ť = Hom(N,C×) acts on the product (C×)n × Ť by

(a1, . . . , an, x) 7−→ (λb1a1, . . . , λ
bnan, λ

−1 · x) λ ∈ Ť
and the potential Wa(x) is invariant under this action. The family of Laurent polynomials
{Wa}a∈(C×)n therefore descends to give a family over the quotient space MB := (C×)n/Ť :

((C×)n × Ť )/Ť
W //

pr

��

C

MB

where pr is the projection to the first factor and W([a, x]) = Wa(x). Note that MB is identified
with Hom(L,C×) = L∨⊗C× via the exact sequence (8.1). For y ∈MB, we write Ťy := pr−1(y) ∼= Ť

and write Wy for the Laurent polynomial W restricted to Ťy. The parameter spaceMB is partially

compactified to a toric varietyMB defined by the secondary fan in L∨R = Hom(L,R). Note that all
toric stacks from Crep(∆) have the same mirror family, but each of them corresponds to a different
torus fixed point in the secondary toric variety MB. We call the fixed point in MB corresponding
to a toric stack X ∈ Crep(∆) the large radius limit point for X and denote it by oX . (A toric stack
X from Toric(∆) \ Crep(∆) also corresponds to a fixed point oX ∈MB, but in this case X either is
non-weak-Fano or has a fan polytope different from ∆; for such X, genus-zero mirror symmetry in
the form stated below does not hold.)

8.1.4. The B-Model TEP Structure. We now construct the B-model TEP structure from the
Landau–Ginzburg model. Let M◦B ⊂MB denote the (non-empty) Zariski open subset parametriz-
ing non-degenerate Laurent polynomials. Here a Laurent polynomial Wa is said to be non-
degenerate [83, 1.19] if for every face F ⊂ ∆ of dimension 0 ≤ dimF < D, the Laurent polynomial
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WF,a :=
∑

i:bi∈F aix
bi has no critical points in Ť . There is a local system R∨Z of relative homology

groups over M◦B × C× such that

R∨Z,(y,z) = HD

(
Ťy, {x ∈ Ťy : <(Wy(x)/z)� 0};Z

)
for (y, z) ∈M◦B×C×; see [71, Proposition 3.12]. By Morse theory and Kouchnirenko’s theorem [83],
we find that R∨Z,(y,z) is free of rank Vol(∆), with basis given by Lefschetz thimbles of Wy, and that

the intersection pairing between the fibers at (y,−z) and (y, z)

I∨ : R∨Z,(y,−z) ×R∨Z,(y,z) → Z

is perfect. Here Vol(·) denotes a normalized volume such that the standard simplex has volume one.
Dualizing, we obtain a local system RZ = Hom(R∨Z ,Z) of relative cohomology groups equipped with
a perfect pairing I : RZ,(y,−z) × RZ,(y,z) → Z. We write R = RZ ⊗ OM◦B×C× for the corresponding

locally free sheaf; this carries a flat connection ∇GM and a pairing I : (−)∗R⊗R → OM◦B×C× , where

(−) : M◦B × C→M◦B × C is the map sending (y, z) to (y,−z) as before.

Let ω denote the invariant holomorphic volume form on the torus Ť such that
∫
ŤR
ω = (2πi)D

with ŤR = Hom(N,R>0). An oscillatory differential form of the form

exp(Wy(x)/z)φ(x)ω with φ(x) ∈ C[Ťy]

defines a section of R via integration over Lefschetz thimbles. By requiring that these sections
extend across z = 0, we can define a locally free extension FB of R to M◦B × C; this extension is

denoted by R(0) in [71, §3.3.2]. The flat connection ∇GM extends to a meromorphic flat connection
on FB with poles along z = 0. The B-model TEP structure23 is given by the data (FB,∇B, (·, ·)B)
where:

• FB is as defined above. This is a locally free sheaf of rank Vol(∆) over M◦B × C;

• ∇B = ∇GM − D
2
dz
z ;

• (s1, s2)B = (−1)
D(D−1)

2 (2πiz)−DI(s1, s2) is a pairing (−)∗FB ⊗FB → OM◦B×C.

See [46, 47, 100, 101] for an algebraic construction of the B-model TEP structure via the Fourier–
Laplace transformation of the Gauss-Manin system associated to Wy. The B-model TEP structure
can be also described as a GKZ system associated to the fan polytope ∆ [71,100].

8.1.5. The Mirror Map and an Isomorphism of TEP Structures. Mirror symmetry gives an isomor-
phism between the A-model TEP structure (Example 4.3) and the B-model TEP structure, as we
now explain. First we recall the Galois action [71, §2.2] on the A-model TEP structure. In gen-
eral, the A-model TEP structure of a smooth Deligne–Mumford stack X has a discrete symmetry
given by the sheaf cohomology H2(X;Z) of the underlying topological stack X. The base space
H•CR(X) of the A-model TEP structure carries an action of H2(X;Z), and the TEP structure de-
scends to the quotient space H•CR(X)/H2(X;Z). (This is essentially due to the Divisor Equation.)
Let (FA,∇A, (·, ·)A)/H2(X;Z) denote the A-model TEP structure over (H•CR(X)/H2(X;Z)) × C.
Let X be a toric stack from Crep(∆); recall that there is a corresponding large radius limit point
oX ∈ MB. The Mirror Theorems for toric varieties [60] and toric Deligne–Mumford stacks [32]
imply, by [71, Proposition 4.8], that there exist an open neighbourhood UX of oX in MB, a mirror

map τ : UX ∩M◦B → H≤2
CR(X)/H2(X;Z), and a mirror isomorphism:

Mir : (FB,∇B, (·, ·)B)
∣∣∣
(UX∩M◦B)×C

∼= (τ × id)∗
(
(FA,∇A, (·, ·)A)/H2(X;Z)

)
23 The shift −D

2
dz
z

of the connection was introduced implicitly in [71, Equation (53)] as a factor (−2πz)−D/2

in oscillatory integrals; this also shifts the pairing by the factor (2πiz)−D [71, Equation 56]. Note that I is flat

with respect to ∇GM and (·, ·)B is flat with respect to ∇. The sign factor (−1)
D(D−1)

2 was missing in [71]. See [74,
footnote 16].
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such that:
Mir([exp(Wy(x)/z)ω]) = 1

The open set UX∩M◦B here is isomorphic to the punctured polydisc {(q1, . . . , qr) ∈ (C×)r : |qa| < ε}
for some ε > 0 (see [71, Lemma 3.8]) and the A-model TEP structure is convergent on the image
of the mirror map.

8.1.6. The Extended B-model TEP Structure. Our global quantization formalism is based on a
miniversal TP structure (Assumption 4.9), but the B-model TEP structure just discussed is not
miniversal. So we need to unfold it to a miniversal TEP structure. We use a reconstruction theorem
due to Hertling–Manin [68, Theorem 2.5, Lemma 3.2] to show that for generic y ∈ M◦B, the germ
(FB,∇B, (·, ·)B)|(MB,y)×C of a TEP structure at y can be extended to a miniversal TEP structure

over (M◦B, y)× (CVol(∆)−r, 0)×C, where r = dimMB = n−D. For this, we need to check Hertling–
Manin’s injectivity condition (IC) and generation condition (GC). The condition (IC) says that
there exists a local section ζ near y such that the map TyM◦B → FB|(y,0) defined by v 7→ z∇B

v ζ|(y,0)

is injective. The condition (GC) says that the iterated derivatives z∇B
v1
· · · z∇B

vk
ζ|(y,0) with respect

to local vector fields v1, . . . , vk ∈ TM◦B generate the fiber FB|(y,0). We claim that (IC) and (GC)
holds for ζ = [exp(Wy/z)ω] and for generic y. Since the mirror map τ is an embedding and since
(IC) holds for the A-model TEP structure, we deduce that (IC) holds for the B-model TEP structure
at generic y ∈M◦B. Since the B-model TEP structure is isomorphic to a GKZ system [71, Proof of
Proposition 4.8] and since the GKZ system is by definition cyclic, (GC) holds. By the universality of
the unfolding [68, Definition 2.3], these local unfoldings glue together [35] to give a global unfolding
(Fext

B ,∇B,ext, (·, ·)B,ext) of (FB,∇B, (·, ·)B) over an extended B-model moduli space Mext
B , which is

a complex manifold of dimension Vol(∆) containing a Zariski open subset ofM◦B as a submanifold.
Moreover, by universality again, the mirror map τ and the mirror isomorphism Mir can be extended
to a neighbourhood U ext

X of UX ∩M◦B in Mext
B , where X ∈ Crep(∆):

τ ext : U ext
X → H•CR(X)/H2(X;Z)

Mirext : (Fext
B ,∇B,ext, (·, ·)B,ext)

∣∣∣
Uext
X ×C

∼= (τ ext × id)∗
(
(FA,∇A, (·, ·)A)/H2(X;Z)

)
(More precisely, we need here the convergence of the A-model TEP structure over a full-dimensional
base, but this follows from the reconstruction argument: see [68, Lemma 2.9] and [25, §5.5].)

8.1.7. Conclusion. Let FockB denote the Fock sheaf overMext
B associated to the extended B-model

TEP structure (Fext
B ,∇B,ext, (·, ·)B,ext). We call it the B-model Fock sheaf. Via the mirror isomor-

phism, FockB restricts to the A-model Fock sheaf of X over U ext
X . The extended B-model TEP

structure is tame semisimple (Definition 7.1) on an open dense subset Mext
B, ss of Mext

B , because the

Jacobi ring of Wy is semisimple for a generic y ∈M◦B [71, Proposition 3.10]. Therefore FockB admits
the Givental wave function (Definition 7.9) overMext

B, ss, and by Theorem 7.15 (Teleman’s theorem)

this coincides with the Gromov–Witten wave function of X over U ext
X . This proves:

Theorem 8.1. There exists a global section CB of the B-model Fock sheaf FockB such that for
every X ∈ Crep(∆), CB restricts to the Gromov–Witten wave function of X over the neighbourhood
U ext
X of the large radius limit point oX of X, under the identification FockB|Uext

X

∼= FockX given by

genus-zero mirror symmetry. In particular, the Gromov–Witten wave functions CX associated to
X ∈ Crep(∆) coincide with each other after analytic continuation.

This is a higher-genus version of Ruan’s Crepant Transformation Conjecture. Note that analytic
continuation for sections of a Fock sheaf makes sense since we have the “Identity Theorem” for its
sections, just as the Identity Theorem for holomorphic functions. Note also that the B-model Fock
sheaf FockB depends only on the cTEP structure underlying the extended B-model TEP structure
(Fext

B ,∇B,ext, (·, ·)B,ext): as discussed in Remark 1.7, the analytic structure of the Fock sheaf is
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independent of the choice of a lift of the cTEP structure to a TEP structure. On the other hand,
the lift to a TEP structure constitutes a crucial piece of information in the genus-zero crepant
transformation conjecture. It also plays a role in Corollary 8.2 below.

We can rephrase Theorem 8.1 in terms of the L2-formalism in §5.3, as follows. Mirror symmetry
implies that for anyX1, X2 ∈ Crep(∆), the A-model TEP structures ofXi for i = 1, 2 are analytically
continued to each other over the B-model moduli space Mext

B . Recall from Example 5.17 that the
fundamental solution Li = Li(τ, z) of the Dubrovin connection of Xi (see equation 2.7) defines a
Darboux frame for the A-model TEP structure of Xi. The solution Li can be analytically continued
along any path in Mext

B to yield a frame Li of the B-model TEP structure
(
Fext

B ,∇B,ext, (·, ·)B,ext

)
over the universal covering M̃ext

B of Mext
B :

Li : HXi
∼=−−−→ L2

(
{t} × S1,Fext

B

∣∣
{t}×S1

)
with t ∈ M̃ext

B

where HXi is Givental’s symplectic vector space (§3.1) for Xi. The frame Li satisfies the transver-

sality condition in Definition 5.15(2) over an open dense subset of M̃ext
B and thus gives a Darboux

frame there. Then Givental’s wave function CB ∈ FockB induces an element of the Fock space in the
L2-setting (Definition 5.23) with respect to the Darboux frame Li, by Remark 5.24. As in Defini-
tion 5.26, the L2-Fock space element here is represented by a total potential Zi that is an analytic
function on the Givental cone associated to Li. Note that, via the projection to HXi+ , Zi can be

identified with an analytic continuation of the total descendant potential exp(
∑∞

g=0 ~g−1FgXi,an) of

Xi by Theorem 6.8 (see Definition 6.7 for FgXi,an). Choose a path γ from a point in U ext
X1

to a point

in U ext
X2

. Analytic continuation along the path γ defines a symplectic transformation

Uγ : HX1 → HX2

The two Darboux frames L1 and L2 are related by L1 = L2Uγ . Then we have

Corollary 8.2. Let X1, X2 be toric Deligne–Mumford stacks from Crep(∆) and let Zi be the total
descendant potential for Xi for i = 1, 2. Let γ be a path in Mext

B from a point in U ext
X1

to a point in

U ext
X2

and let Uγ be the symplectic transformation given by parallel translation along γ. Regarding

Zi as an element of the L2-Fock space as above, we have

Z2 ∝ ÛγZ1

under analytic continuation along the path γ.

Remark 8.3. This is close to the version of higher-genus Crepant Transformation Conjecture
proposed in [38, §5], [40, §10].

Considering the case X = X1 = X2, we obtain:

Corollary 8.4. Let X be a toric Deligne–Mumford stack from Crep(∆). The total descendant
potential ZX of X, regarded as an element of the L2-Fock space as above, has the following modular
property with respect to the group π1(Mext

B ): we have

(8.4) (γ−1)?ZX ∝ ÛγZX
for γ ∈ π1(Mext

B ), where in the left-hand side (γ−1)? means the pull-back by the deck transformation

γ−1 of the universal covering M̃ext
B →Mext

B .

Remark 8.5. The symplectic transformations Uγ with γ ∈ π1(Mext
B ) arise from the monodromy

of the extended B-model TEP structure (Fext
B ,∇B,ext, (·, ·)B,ext) along γ, and as such, they belong

to a finite-dimensional group. Here we describe such a group precisely. For a given TEP structure
(F = O(F ),∇, (·, ·)F ) with base M, the monodromy along a loop based at (t, z) ∈ M× C× takes
values in the group:

Gt,z = {U ∈ GL(Ft,z) : Mon ◦U = U ◦Mon, U preserves [·, ·)}
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where Mon denotes the monodromy of ∇ over the punctured z-plane {t} × C×z , and [·, ·) is a (not
necessarily symmetric) bilinear form on Ft,z defined by

[v, w) = (v′, w)F

with v, w ∈ Ft,z and v′ the parallel translate of v along the semicircular path [0, 1] 3 θ 7→ e−iπθz.
A transformation U ∈ Gt,z can be extended to a flat bundle automorphism of F over {t} × C×,
and thus defines an element U ∈ Sp(Ht). Here Ht = L2({t} × S1, F ) is the symplectic vector space
appearing in §5.3. For the A-model TEP structure, this group Gt,z can be described more concretely
as:{

U ∈ Sp(HXpoly) : U is C[z, z−1]-linear, U ◦ (z∂z + µ) = (z∂z + µ) ◦ U, U ◦ c1(X) = c1(X) ◦ U
}

where HXpoly = HX ⊗Q C[z, z−1] is a Laurent polynomial version of Givental’s symplectic space and

µ is the grading operator in (2.6). This follows from the following facts: (i) the Dubrovin connection
∇z∂z in the z-direction is conjugate to z∂z +µ+ c1(X)/z via the fundamental solution L(t, z) (2.7),
see, e.g. [71, Proposition 2.4], (ii) HXpoly is the rational structure consisting of sections of moderate

growth (see, e.g. [67, §7.2]) at z = 0,∞ with respect to the connection z∂z + µ + c1(X)/z, and
(iii) 2πic1(X) is the logarithm of the unipotent part of the monodromy. A similar description is
discussed also in [73, Lemma 3.16].

Remark 8.6. After shrinking Mext
B if necessary, we have a retraction from Mext

B to a Zariski
open subset of M◦B, and thus a natural surjective map p : π1(Mext

B ) → π1(M◦B). The symplectic
transformation Uγ for γ ∈ Ker(p) is trivial and the total potential ZX is invariant under deck
transformations γ ∈ Ker(p). Therefore the modularity (8.4) reduces to the group π1(M◦B).

Finally we remark on an implication of our recent joint work [36] with Jiang in this context.
There we calculated the symplectic transformation Uγ explicitly using so-called I-functions and the
Mellin–Barnes method. For a certain choice of the path γ, we showed that Uγ is induced by an

equivalence FM : Db(X1) ∼= Db(X2) of triangulated categories via the Γ̂-integral structure [71, 75]
on quantum cohomology. In other words, we have a commutative diagram of the form

Db(X1)
FM //

��

Db(X2)

��

H̃X1
Uγ // H̃X2

where the vertical maps are roughly speaking given by the Chern character followed by the mul-

tiplication by the Gamma class, and H̃Xi is a multi-valued variant of Givental’s symplectic vector
space (see [36] for more details). The derived equivalence FM is given as a composition of explicit
Fourier–Mukai transformations. It is likely that the fundamental groupoid24 ofM◦B is generated by
π1(UX ∩M◦B) for toric stacks X from Crep(∆) together with the classes of paths γ connecting the
large radius limit points for Crep(∆), which we show in [36] to correspond to derived equivalences.
It is easy to see that monodromy about loops in UX ∩M◦B corresponds to tensoring line bundles in

Db(X) [71, Proposition 2.10(ii)]. Therefore the result in [36] strongly suggests that the symplectic
transformation Uγ is induced by a derived equivalence for every path γ and that the total descendant

potential ZX should be ‘modular’ with respect to the group Auteq(Db(X)) of autoequivalences. Let
Γ be the group of autoequivalences of Db(X) generated by

• Fourier–Mukai functors Db(X1)
∼=−→ Db(X2) from [36,37] for some X1, X2 ∈ Crep(∆);

• autoequivalences of Db(X ′) given by tensoring line bundles for some X ′ ∈ Crep(∆).

24Here it is convenient to consider the fundamental groupoid instead of the fundamental group, since we are
considering paths connecting the large radius limit points of different X1, X2 ∈ Crep(∆).
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An element of Γ is of the form

(Lk⊗) ◦Ψk−1 ◦ (Lk−1⊗) ◦ · · · ◦Ψ1 ◦ (L1⊗) ◦Ψ0 ◦ (L0⊗)

where Ψi : D
b(Xi) → Db(Xi+1), i = 0, . . . , k − 1 are Fourier–Mukai functors from [36, 37], Li ∈

Pic(Xi), i = 0, . . . , k are line bundles, and X = X0, X1, . . . , Xk−1, Xk = X is a sequence in Crep(∆).
Then we have the following.

Corollary 8.7. The total descendant potential ZX of a toric Deligne–Mumford stack X ∈ Crep(∆)
satisfies the modularity (8.4) with respect to the subgroup Γ of Auteq(Db(X)).

Remark 8.8. A relationship between Fourier–Mukai transformations and analytic continuation of
solutions to the GKZ system was originally found by Borisov–Horja [15].

Remark 8.9. The monodromy representation gives a homomorphism U : π1(M◦B)→ Sp(HX) and

the Γ̂-integral structure gives a homomorphism Auteq(Db(X)) → Sp(HX). Homological mirror
symmetry suggests that the former map factors through the latter, i.e. we expect to have the
commutative diagram:

π1(M◦B)
U //

��

Sp(HX)

Auteq(Db(X))

77

Remark 8.10. The B-model TEP structure FB overM◦B has a natural real structure induced from
the Z-structure R∨Z. (More precisely, the real structure is obtained by tensoring the ∇B-flat local

system zD/2R∨Z with R.) By a result of Sabbah [103], this real structure endows FB with a pure
TRP structure in the sense of §9.1. Since the purity is an open property, this extends to a pure
real structure on Fext

B over a small neighbourhood of M◦B in Mext
B . Using the complex-conjugate

opposite module in Definition 9.8, we can present the Givental wave function CB as single-valued
(non-holomorphic) correlation functions.

We end this section with a discussion on singularities of the Givental wave function. Around each
large radius limit point, the B-model TEP structure is identified with the A-model TEP structure
and thus extends across a normal crossing divisor as a logarithmic TEP structure (see Example 4.94).
This extension was studied in details by Reichelt–Sevenheck [100]. The Givental wave function CB

extends regularly across these normal crossing divisors as a section of the logarithmic Fock sheaf in
§4.14 since so does the Gromov–Witten wave function. On the other hand, a result of Milanov [92]
must imply that CB extends regularly across the non-semisimple locusMext

B \Mext
B, ss. The remaining

important question is then:

Problem 8.11. Study the singularities of the Givental wave function CB along the locusMB \M◦B
of degenerate Laurent polynomials.

This problem is related to the conifold gap condition (see e.g. [4]) in the physics literature.

8.2. Calabi–Yau Hypersurfaces. Next we consider mirror symmetry for Calabi–Yau manifolds.
In this case we cannot apply Givental’s formula since the quantum cohomology is not semisimple.
We consider Batyrev’s mirror [9] for toric Calabi–Yau hypersurfaces.

LetX be a weak Fano toric stack such that the fan polytope ∆ is reflexive (i.e. the integral distance
between each facet of ∆ and the origin is one). Then X is Gorenstein and a generic anticanonical
section Y ⊂ X is a quasi-smooth Calabi–Yau orbifold [9]. Let Wy be the Laurent polynomials mirror

to X from §8.1.3. The Batyrev mirror of Y is a Calabi–Yau compactification Y̌y of the fiber W−1
y (1)

inside a toric variety X̌ with fan polytope given by the dual polytope ∆∗. To remove the ambiguity
of overall scaling, we consider Laurent polynomials Wy as in (8.3) with vanishing constant terms,
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so that ai = 0 when bi = 0. The corresponding moduli spaceM′B of Laurent polynomials is defined
similarly toMB but deleting the zero-vector from the set {b1, . . . , bn}; it can be identified with (an
open subset of) a toric divisor in MB. Moreover, we require that the affine hypersurface W−1

y (1)
is ∆-regular [8, Definition 3.3], which means that Wy is non-degenerate (see §8.1.4) and 1 is not
a critical value of Wy. Let Mreg

B ⊂ M′B denote the non-empty Zariski-open subset parametrizing

∆-regular hypersurfaces W−1
y (1). We use Mreg

B as the base space of the mirror family {Y̌y}. Note
that, as in the toric case (§8.1), all anticanonical hypersurfaces Y in toric stacks X from Crep(∆)
have the same mirror family {Y̌y}. However, they have different large radius limit points in the

toric compactification M′B.
We describe the genus-zero mirror isomorphism following [74, §6], and suggest the construction of

a global B-model Fock sheaf. Define the ambient part of the cohomology group of Y to be the image
of the pullback along the inclusion map: H∗amb(Y ) := Im(H∗CR(X)→ H•CR(Y )). The Dubrovin con-

nection of Y preserves the subsheaf Famb
A := H∗amb(Y )⊗OMA×C with fiber H∗amb(Y ) [74, Corollary

2.5], where MA ⊂ H•amb(Y ) denotes the convergence domain of the quantum product as in (2.4).
Hence by restriction to this subsheaf, the A-model TEP structure of Y induces a TEP structure
called the ambient A-model TEP structure (Famb

A ,∇A, (·, ·)A) of Y (cf. [74, Definition 6.2]). On the
mirror side, we consider the lowest weight piece WD−1(HD−1(W−1

y (1))) = grWD−1H
D−1(W−1

y (1))

of Deligne’s mixed Hodge structure on the middle cohomology of the affine hypersurface W−1
y (1).

It has a pure Hodge structure of weight D − 1. As explained in [74, §6.3], this can be naturally
identified with the subspace HD−1

res (Y̌y) ⊂ HD−1(Y̌y) of cohomogy classes obtained as the residues of

meromorphic D-forms (with poles along Y̌y) on the ambient toric variety X̌. It defines the residual
B-model VHS [74, Definition 6.5] (V,∇GM, F •V, Q) over Mreg

B , where:

• V is a locally free sheaf over Mreg
B with fiber Vy = HD−1

res (Y̌y) ∼= grWD−1(HD−1(W−1
y (1)));

• ∇GM is the Gauss-Manin connection;
• 0 ⊂ FD−1V ⊂ · · · ⊂ F 1V ⊂ F 0V = V is the Hodge filtration on V of weight D − 1;
• Q(α, β) = (−1)(D−1)(D−2)/2

∫
Y̌y
α ∪ β is the intersection form.

The residual B-model TEP structure (F res
B ,∇B, (·, ·)B) over Mreg

B is defined as follows:

• F res
B is an algebraic locally free sheaf over Mreg

B ×C, given by the subsheaf of π∗V with the
property

π∗F res
B = zD−1F 0V[z] + zD−2F 1V[z] + · · ·+ FD−1V[z] ⊂ V[z] = π∗π∗V

where π : Mreg
B × C→Mreg

B is the projection;

• ∇B = π∗∇GM − D−1
2

dz
z ;

• (α(−z), β(z))B = (2πiz)−(D−1)Q(α(−z), β(z)).

As before, each toric stack X ∈ Crep(∆) defines a large radius limit oX in the toric compactification

M′B of M′B. For a neighbourhood UX of oX in M′B, we have a mirror map ς : UX ∩ Mreg
B →

H2
amb(Y )/i∗H2(X;Z) and a mirror isomorphism25 [74, Theorem 6.9]:

Mir : (F res
B ,∇B, (·, ·)B)

∣∣∣
(UX∩Mreg

B )×C
∼= (ς × id)∗

(
(Famb

A ,∇A, (·, ·)A)/i∗H2(X;Z)
)

where the right-hand side is the quotient by the Galois action from the ambient H2(X;Z).
As in the previous section, we use Hertling–Manin’s reconstruction theorem [68] to unfold F res

B
to get a miniversal TEP structure. This is possible when:

• There exists a toric stack X ∈ Crep(∆) whose anticanonical hypersurface Y is a smooth
variety (no orbifold singularities); in this case the ambient cohomology H∗amb(Y ) is generated
by H2

amb(Y ) and thus the ambient quantum cohomology is also generated by H2
amb in a

25In [74, Theorem 6.9], the mirror isomorphism was stated for the corresponding VHSs, but the statement here
follows easily from it.
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neighbourhood of the large radius limit; by the mirror isomorphism the generation condition
(GC) holds generically over Mreg

B ;
• There exists a toric stack X ∈ Crep(∆) such that the map H2

CR(X) → H2
amb(Y ) is an

isomorphism; in this case the mirror map ς is locally injective and the injectivity condition
(IC) holds generically over Mreg

B .

For example, these conditions hold for a hypersurface Y in X = Pn (see [68, Theorem 8.1]). Under
these assumptions, we have a miniversal unfolding of F res

B and obtain the corresponding B-model
Fock sheaf over a complex manifold of dimension dimH∗amb(Y ) (which contains a Zariski open subset
of Mreg

B ). We conjecture the following:

Conjecture 8.12. There exists a global section of the above B-model Fock sheaf which restricts
to the Gromov–Witten wave function of each Calabi–Yau hypersurface Y in X ∈ Crep(∆) over a
neighbourhood of the large radius limit oX .

Remark 8.13. The existence of a global section of the B-model Fock sheaf will be shown in
forthcoming work by Costello–Li (see [43]) where they develop the mathematical B-model theory
at higher genus.

Sometimes we may encounter different types of limit points of the B-model moduli space M′B
which correspond to variants of Gromov–Witten theory. For the mirror of a quintic threefold,
Chiodo–Ruan [26] found that the global B-model theory (at genus zero) around the so-called
Landau–Ginzburg point (or Gepner point) can be identified with a theory of 5-spin curves (FJRW
theory); see also [25]. In particular the genus-zero Gromov–Witten theory and the genus-zero FJRW
theory are analytic continuations of each other. Chiodo–Ruan also conjecture a relationship between
the higher genus theories [26, Conjecture 3.2.1]. Their conjecture, rephrased in our language, is that
the global section in Conjecture 8.12 restricts to the FJRW wave function in a neighbourhood of
the Landau–Ginzburg point.

9. Complex-Conjugate Polarization and Holomorphic Anomaly

In this section we describe how the holomorphic anomaly equation of Bershadsky–Cecotti–
Ooguri–Vafa arises in our global quantization formalism, via the so-called complex-conjugate po-
larization. The holomorphic anomaly equation originally arose in the Kodaira–Spencer theory of
gravity [11, 12]. It can be considered as a special case of the general anomaly equation (Theo-
rem 4.86), but strictly speaking we need to extend the holomorphic structure sheaf on the base M
to the real-analytic structure sheaf. At genus zero, the complex conjugate polarization gives rise to
so-called tt∗-geometry.

9.1. TRP Structure and tt∗-Geometry. In this section we work with a TRP structure which is a
TP structure (Definition 4.1) equipped with a certain real structure. As usualM denotes a complex
manifold, (−) : M× C → M× C denotes the map sending (t, z) to (t,−z), and π : M× C → M
is the projection. Let γ : P1 → P1, γ(z) = 1/z, denote the anti-holomorphic involution which fixes
the equator S1 = {|z| = 1} ⊂ P1. The involution (t, z) 7→ (t, γ(z)) on M× P1 is also denoted by γ.
For a holomorphic vector bundle F over M×C, the vector bundle γ∗F over M× (P1 \ {0}) has a
holomorphic structure in the P1-direction and an anti-holomorphic structure in the M-direction.

Definition 9.1 (TRP structure). A TRP structure (F = O(F ),∇, (·, ·)F , κ) with baseM consists
of a holomorphic vector bundle F of rank N+1 overM×C with the sheaf F = O(F ) of holomorphic
sections, a meromorphic flat connection

∇ : F → π∗Ω1
M ⊗F(M×{0})

a non-degenerate pairing
(·, ·)F : (−)∗F ⊗ F → OM×C
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that fiberwise defines a C-bilinear pairing F(t,−z) ⊗ F(t,z) → C, and a real-analytic bundle map

κ : F |M×C× → γ∗F |M×C×
that fiberwise defines a C-antilinear map κt,z : F(t,z) → F(t,γ(z)), such that:

• (F ,∇, (·, ·)F ) is a TP structure in the sense of Definition 4.1;
• κ is an involution: κt,γ(z) ◦ κt,z = id;

• when restricted to {t} × C× with t ∈ M, κ yields an isomorphism of holomorphic vector
bundles; in particular, we have an involution:

(9.1) κt : H
0(C×,O(Ft)) −→ H0(C×,O(γ∗Ft)) ∼= H0(C×,O(Ft))

where Ft := F |{t}×C;
• the pairing (·, ·)F is real with respect to κ, i.e. the following diagram commutes:

(9.2)

F(t,−z) ⊗ F(t,z)

(·,·)F //

κt,−z⊗κt,z
��

C

complex conjugation

��
F(t,−γ(z)) ⊗ F(t,γ(z))

(·,·)F // C

• parallel translation by the connection ∇ preserves κ.

Note that κ defines a real involution of the bundle F |M×S1 , where S1 = {|z| = 1}. The cor-
responding real subbundle FR = Ker(κ − id) of F |M×S1 is equipped with a real-valued pairing
FR,(t,−z) ⊗R FR,(t,z) → R (with z ∈ S1) and is flat in the M-direction.

Remark 9.2. A TRP structure is a TERP structure in the sense of Hertling [67] without “E”
i.e. without an extension of the connection in the z-direction. “R” stands for the real structure. It
is easy to see that a TERP(0) structure gives rise to a TRP structure by forgetting the connection
in the z-direction. A major portion of this section §9.1 is an adaptation of the framework of [67] to
our setting.

Example 9.3. tt∗-geometry was discovered by Cecotti–Vafa [20, 21] in their study of N = 2 su-
persymmetric quantum field theory. There are natural TRP (or TERP) structures coming from
geometry: the A-model and B-model. A TERP structure in singularity theory (the B-model) was
introduced by Hertling [67] using a natural real structure on the Gauss–Manin system. A TERP

structure in quantum cohomology (the A-model) was introduced by Iritani [72] using the Γ̂-class
and the K-group of vector bundles. The real structure on quantum cohomology is different from
the usual one coming from H•(X,R) ⊂ H•(X,C).

Remark 9.4. A TRP structure is determined by the holomorphic vector bundle F restricted to
M× {|z| ≤ 1}, the connection ∇, the pairing (·, ·)F , and the real subbundle FR of F |M×S1 . It is

given by gluing F |{|z|≤1} and γ∗(F |{|z|≤1}) along the circle via the real involution with respect to
FR.

Definition 9.5 (glued bundle F̂ ). From a TRP structure (F = O(F ),∇, (·, ·)F , κ), one can con-

struct a real-analytic complex vector bundle F̂ over M× P1 by gluing F with γ∗F via κ. The

bundle F̂ has a fiberwise holomorphic structure with respect to π : M× P1 → M. Let Avh(F̂ )

denote the sheaf of real-analytic sections of F̂ which are holomorphic along each fiber {t} × P1

(“vh” stands for “vertically holomorphic”). Let ApM denote the sheaf of real analytic p-forms on

M, and ApM =
⊕

i+j=pA
i,j
M denote the type decomposition. The connection ∇ on F = O(F ) can

be extended to a connection ∇ on Avh(F̂ ):

(9.3) ∇ : Avh(F̂ )→ π∗A1,0
M ⊗Avh(F̂ )(M×{0})⊕ π∗A0,1

M ⊗Avh(F̂ )(M×{∞})
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such that the (0, 1)-part coincides with the ∂-operator for the holomorphic bundle F . The (1, 0)-part
defines the anti-holomorphic structure of γ∗F in the M-direction. Since the gluing map κ matches
the pairing (·, ·)F on F with γ∗(·, ·)F on γ∗F , there is a non-degenerate pairing

(9.4) (·, ·)
F̂

: (−)∗Avh(F̂ )⊗AM×P1,vh
Avh(F̂ )→ AM×P1,vh

extending the pairing (·, ·)F on F , where AM×P1,vh denotes the sheaf of real-analytic functions on

M×P1 which are holomorphic in the P1-direction. The pairing (·, ·)
F̂

is ∇-flat, as in Definition 4.1.

Definition 9.6 (pure TRP structure). A TRP structure is said to be pure if the bundle F̂ |{t}×P1

is trivial as a holomorphic vector bundle for every t ∈ M. (A pure TRP structure corresponds to
a trTERP structure of Hertling [67] without “E”.)

The involution κt (see equation 9.1) acting on the space H0(C×,O(Ft)) is invariant under parallel
translation and satisfies

κt(fv) = γ∗f · κt(v) (κt(v), κt(w))F = γ∗((v, w)F )(9.5)

for f ∈ O(C×) and v, w ∈ H0(C×,O(Ft)). Conversely, a TRP structure is given by a TP structure
and a translation-invariant family of involutions κt of H0(C×,O(Ft)) with these properties. Set

F̂t := F̂ |{t}×P1 . The subspace H0(C,O(Ft)) ⊂ H0(C×,O(Ft)) consists of holomorphic sections of F̂t
over C× which extend to z = 0. Likewise, the subspace κt(H

0(C,O(Ft))) ⊂ H0(C×,O(Ft)) consists

of holomorphic sections of F̂t over C× which extend to z = ∞. Hence a TRP structure is pure if
and only if

(9.6) H0(C×,O(Ft)) = H0(C,O(Ft))⊕ z−1κt(H
0(C,O(Ft)))

for each t ∈M. One can therefore view z−1κt(H
0(C,O(Ft))) as defining an opposite module for a

pure TRP structure. It is, however, not parallel in the anti-holomorphic direction.

Remark 9.7. By identifying H0(C×,O(Ft)) with a fixed H0(C×,O(Ft0)) by parallel translation,
locally onM, a pure TRP structure is given by a real structure on a single infinite-dimensional sym-
plectic vector space H0(C×,O(Ft0)) such that H0(C,O(Ft)) and its complex conjugate multiplied
by z−1 are opposite (9.6); see [72] and §9.3 below.

Definition 9.8 (complex conjugate opposite module). Let (F,∇, (·, ·)F) denote the cTP struc-
ture associated to a pure TRP structure (F ,∇, (·, ·)F , κ), that is, (F,∇, (·, ·)F) is the restriction of
(F ,∇, (·, ·)F ) to the formal neighbourhood of M× {0} in M× C. Let AM denote the sheaf of
real-analytic functions on M and set:

AF := F⊗OM[[z]] AM[[z]]

We write Avh(F̂ )(∗(M× {0})) for the sheaf of real analytic sections of F̂ which are meromorphic
along each fiber with poles only along z = 0. The AM[z−1]-module AF is defined to be the push-
forward of this sheaf along π : M× P1 →M:

AF := π∗
(
Avh(F̂ )(∗(M×{0}))

)
The purity of the TRP structure implies that

(9.7) AF[z−1] = AF⊕ z−1AF
(cf. equation 9.6). We call z−1AF the complex conjugate opposite module or complex conjugate
polarization.

Remark 9.9. Note that the involution κt on H0(C×,O(Ft)) is ill-defined on the formal version
AF[z−1]; nonetheless AF can be regarded as the complex conjugate of AF.
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Restricting the connection (9.3) to the formal neighbourhood of z = 0, we obtain:

∇ : AF[z−1]→ A1
M ⊗AF[z−1]

∇ : AF→ A1,0
M ⊗ (z−1AF)⊕A0,1

M ⊗AF
∇ : AF→ A1,0

M ⊗AF⊕A
0,1
M ⊗ (zAF)

(9.8)

The third equation means that the complex conjugate opposite module is parallel in the holomorphic
direction, but not in the anti-holomorphic direction. Let

Ω: AF[z−1]⊗AM AF[z−1]→ AM
denote the symplectic pairing, defined as in (4.2). Suppose that the TRP structure is pure. Because

the pairing (9.4) is necessarily constant with respect to a holomorphic frame of H0(P1,O(F̂t)) over
P1, the pairing of two elements from z−1AFt has vanishing residue at z = 0. Thus:

(9.9) Ω(z−1AF, z−1AF) = 0

To summarize, we have (cf. Definition 4.15):

Proposition 9.10. The complex conjugate opposite module z−1AF associated to a pure TRP struc-
ture is z−1-linear, opposite to AF (9.7), and isotropic for Ω (9.9). It is parallel in the holomorphic
direction, but not necessarily in the anti-holomorphic direction.

Definition 9.11 (tt∗-bundle). A pure TRP structure overM defines a real-analytic complex vector
bundle K of rank N + 1 = rankF over M such that the sheaf A(K) of real-analytic sections is
given by:

A(K) := π∗Avh(F̂ ) ∼= AF ∩ AF
This bundle is equipped with:

• a complex anti-linear involution κ : K → K induced by κ (cf. equation 9.1);
• a Hermitian metric h(u, v) := ((−)∗κ(u), v)

F̂
, which may not be positive-definite, induced

from the pairing (9.4) and κ (the Hermitian metric here is complex anti-linear in the first
variable);
• a one parametric family of flat connections

∇(z) = D − 1

z
C − zC̃

induced by the connection∇ (9.3) onAvh(F̂ ), whereD : A(K)→ A1
M⊗A(K) is a connection

on K, C ∈ End(K)⊗A1,0
M , and C̃ ∈ End(K)⊗A0,1

M ;

such that26:

• the Hermitian metric h is real with respect to κ: h(κ(u), κ(v)) = h(u, v);
• D is real with respect to κ: D = κ ◦D ◦ κ;

• C̃ = κ ◦ C ◦ κ;
• D respects the Hermitian metric h;

• h(C̃u, v) = h(u, Cv).

The (0, 1)-part of ∇(z) defines a holomorphic structure on K depending on z which corresponds to
the holomorphic structure on F |M×{z}; in particular the holomorphic structure for z = 0 is defined

by D′′ = D(0,1) and coincides with that of F0 = F |M×{0}. Therefore D can be identified with the

26Here κ acts on forms by ordinary complex conjugation and h is extended to K-valued one forms sesqui-linearly.

In holomorphic co-ordinates {ti} on M, we have Dı = κ ◦Di ◦ κ, C̃ı = κ ◦ Ci ◦ κ, h(C̃ıu, v) = h(u, Civ).
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Chern connection for the holomorphic Hermitian bundle (F0, h) under the natural identification

F0
∼= K. The flatness of ∇(z) implies, in terms of holomorphic local co-ordinates {ti} on M,

DıCj = 0, DiC̃ = 0, [Ci, Cj ] = 0, [C̃ı, C̃] = 0, [Di, Dj ] = 0, [Dı, D] = 0,

DiCj −DjCi = 0, DıC̃ − C̃Dı = 0, [Di, D] + [Ci, C̃] = 0.

These are the tt∗-equations. In particular, C gives a holomorphic section of End(F0)⊗Ω1
M (via the

identification K ∼= F0).

Definition 9.12 (pure and polarized TRP structure). A pure TRP structure is said to be polarized
if the Hermitian metric h on K above is positive definite.

Example 9.13. Many TERP structures coming from geometry (see Example 9.3) are pure and
polarized. For the B-model, Sabbah [103] showed that the TERP structure associated to a tame
function on an affine variety is pure and polarized. For the A-model, under the identification
between H0(C×,O(Ft)) and the Givental space H given by the fundamental solution L (see §3.3),
we have

z−1κt(H
0(C,O(Ft))) −→ H−

when t approaches the large radius limit. This implies that the A-model TERP structure is pure
in a neighbourhood of the large radius limit point [72]. When we restrict ourselves to the algebraic

part
⊕dimX

p=0 Hp,p(X) of the quantum cohomology, it is also polarized in a neighbourhood of the

large radius limit point (ibid.)

9.2. The Connection ∇cc on the Total Space. In this section we fix a pure TRP structure
(F ,∇, (·, ·)F , κ) overM. The total space L of the TRP structure is defined to be the total space of
the underlying cTP structure (F,∇, (·, ·)F), that is, the total space of the infinite-dimensional vector
bundle associated to zF (see §4.3). We assume that (F,∇, (·, ·)F) is miniversal (Assumption 4.9),
and denote by pr: L→M the natural projection.

We need to extend the structure sheaf O on L by adding real-analytic functions on M. Set:

AO := (pr−1AM)⊗pr−1OM O

The sheaf Ω1 of one-forms on L is also extended as

AΩ1 := AΩ1,0 ⊕ pr∗A0,1
M

where AΩ1,0 and pr∗A0,1
M are given in terms of local co-ordinates {ti, xin} (see §4.3) as

AΩ1,0 =

N⊕
i=0

AOdti ⊕
∞⊕
n=1

N⊕
i=0

AOdxin pr∗A0,1
M =

N⊕
i=0

AOdti

We also write AΘ = AΘ1,0 ⊕ pr∗ T 0,1
M for the dual sheaf HomAO(AΩ1,AO), where T 0,1

M denotes
the sheaf of real-analytic vector fields of type (0, 1) onM. The gradings and (increasing) filtrations
on O, Ω1 considered in §4.3 can be naturally extended to AO and AΩ1,0. We set

AO(pr−1(U))n = A(U)⊗O(U)O(pr−1(U))n

AO(pr−1(U))l = A(U)⊗O(U)O(pr−1(U))l

and for AΩ1,0 we set, as in (4.11),

deg(dti) = 0 deg(dxin) = 1 filt(dti) = −1 filt(dxin) = n− 1

where filt(y) is the least number m such that y belongs to the mth filter.
The framework in §4 generalizes easily to this setting. The dual modules (znAF)∨, AF[z−1]∨ are

defined as in (4.3) but replacing OM with AM; the pull-backs of znAF, AF[z−1], (znAF)∨, AF[z−1]∨
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under pr : L→M are defined as in (4.12). The pull-back of the connection ∇ defined in (9.8) gives
a connection

∇̃ : pr∗AF→ AΩ1,0 ⊗̂ pr∗(z−1AF)⊕ pr∗A0,1
M ⊗ pr∗AF

on pr∗AF (cf. equation 4.13). Note that the (0, 1)-part of ∇̃ is nothing but the ∂-operator defining
the holomorphic structure pr∗ F.

Definition 9.14 (cf. Definition 4.11). The Kodaira–Spencer map KS: AΘ1,0 → pr∗AF and the
dual Kodaira–Spencer map KS∗ : pr∗AF∨ → AΩ1,0 are defined by

KS(v) = ∇̃vx KS∗(ϕ) = ϕ(∇̃(1,0)x)

where x is the tautological section of pr∗(zAF). They are simply the base changes of the Kodaira–
Spencer maps defined previously, and are isomorphisms over the open subset L◦ ⊂ L.

The complex conjugate opposite module z−1AF (Definition 9.8) determines connections ∇cc as
follows.

Definition 9.15 (cf. Definition 4.23). Let Πcc : AF[z−1] = AF⊕z−1AF→ AF denote the projection
along z−1AF. Set AΩ1

◦ := AΩ1|L◦ , AΩ1,0
◦ := AΩ1,0|L◦ , AΘ1

◦ := AΘ1|L◦ , AΘ1,0
◦ := AΘ1,0|L◦ .

Consider the maps

pr∗AF ∇̃ // AΩ1 ⊗̂ pr∗(z−1AF)
Πcc // AΩ1 ⊗̂ pr∗(AF)

pr∗AF∨ Π∗cc // pr∗(z−1AF)∨ ∇̃∨ // AΩ1 ⊗ pr∗AF∨

Via the (dual) Kodaira–Spencer isomorphisms KS: AΘ1,0
◦ ∼= pr∗AF and KS∗ : pr∗AF∨ ∼= AΩ1,0

◦ ,
these maps induce connections

∇cc : AΘ1,0
◦ → AΩ1

◦ ⊗̂ AΘ1,0
◦

∇cc : AΩ1,0
◦ → AΩ1

◦ ⊗AΩ1,0
◦

on the tangent and the cotangent sheaves of type (1, 0). Here the connection ∇̃∨ dual to ∇̃ is defined
as in (4.18), (4.20).

We shall see in the next section (§9.3) that the connection ∇cc can be viewed as the Chern
connection on L◦ associated to a certain Kähler metric.

Proposition 9.16. The connection ∇cc on AΘ◦ is a torsion-free connection whose (0, 1)-part is
the ∂-operator defining the holomorphic structure Θ◦.

Proof. It is obvious from the definition that the (0, 1)-part of∇cc is the ∂-operator. Torsion-freeness
follows from the same argument as Proposition 4.24. �

We next introduce the propagator ∆P,cc and the background torsion Λcc associated to the complex
conjugate opposite module.

Definition 9.17 (cf. Definition 4.43). Let P be a pseudo-opposite module of (F,∇, (·, ·)F) in the
sense of Definition 4.15. Write AP := AM⊗OMP and let ΠP : AF[z−1] = AF⊕AP→ AF denote the

projection along AP. The propagator ∆P,cc = ∆(P, z−1AF) between P and the complex conjugate

opposite module z−1AF is a homomorphism AΩ1,0
◦ ⊗AΩ1,0

◦ → AO defined by

∆P,cc(ω1, ω2) = Ω∨(Π∗Pϕ1,Π
∗
ccϕ2)

where ϕi := (KS∗)−1ωi, i ∈ {1, 2}.
The propagator is symmetric ∆P,cc(ω1, ω2) = ∆P,cc(ω2, ω1) (see the proof of Proposition 4.44) and
satisfies ∆P,cc −∆Q,cc = ∆(P,Q) (see the proof of Proposition 4.46).
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Definition 9.18 (cf. Definition 4.83). The (background) torsion associated to the complex conju-

gate opposite module z−1AF is an operator Λcc : AΩ1,0
◦ ×AΩ1,0

◦ → pr∗A0,1
M defined by

Λcc(ω1, ω2) = Ω∨(∇̃∨Π∗ccϕ1,Π
∗
ccϕ2)

where ϕi := (KS∗)−1ωi, i ∈ {1, 2}.
The background torsion takes values in pr∗A0,1

M because z−1AF is parallel in the holomorphic
direction. It is AO-bilinear and symmetric Λcc(ω1, ω2) = Λcc(ω2, ω1): see the proof of Lemma 4.84.

We use tensor notation as in Proposition 4.45 or Proposition 4.85. Let {xµ} = {ti, xin} denote an
algebraic local co-ordinate system on L (see §4.3). We use Roman letters i, j, k, . . . for the indices of
co-ordinates {ti} on M, and Greek letters µ, ν, ρ, . . . for the indices of co-ordinates {xµ}. We also
use the Einstein summation convention, as previously. The following proposition is an analogue of
Proposition 4.45(1) and Proposition 4.85(2). We remark that the connection ∇P associated to a
pseudo-opposite module P (Definition 4.23) can be naturally extended to a connection on AΩ1

◦ (or
on AΘ1

◦) such that the (0, 1)-part coincides with the ∂-operator.

Proposition 9.19. Let P be a pseudo-opposite module for (F,∇, (·, ·)F).

(1) The difference ∇cc −∇P defines a map AΩ1,0 → pr∗(A1,0
M ⊗A

1,0
M) given by:

(∇cc −∇P)dxν = ∆νσ
P,ccC

(0)
σijdt

i ⊗ dtj

(2) The covariant derivative of the propagator gives:

∇P
µ∆νρ

P,cc(:= ∂µ∆νρ + Γνµσ∆σρ + Γρµσ∆νσ) = ΛP
νρ
µ + ∆νσ

P,ccC
(0)
σµτ∆τρ

P,cc

∇P
ı ∆νρ

P,cc = ∂i∆
νρ
P,cc = −Λcc

νρ
ı

where ΛP is the torsion of P and Γνµρ are the Christoffel coefficients of ∇P as in (4.36). (In
the first line, only the case µ = i yields non-vanishing results.)

Proof. The proof is almost the same as Propositions 4.45, 4.85 and is omitted. �

Definition 9.20 (cf. equations 4.41 and 4.56). Let P be a pseudo-opposite module for (F,∇, (·, ·)F).

The difference one-form ωP,cc ∈ pr∗A1,0
M associated to P and the complex conjugate opposite module

z−1AF is defined to be

ωP,cc =
1

2

N∑
i=0

N∑
j=0

N∑
h=0

C
(0)
ijh∆jh

P,ccdt
i =

1

2

N∑
i=0

TrAF0((ΠP −Πcc)∇i)dti

where AF0 = AF/zAF (the proof of the second equality here is the same as that of Lemma 4.52).
We have ωP,cc − ωQ,cc = ωPQ. If P is parallel, then the two-form ϑcc := dωP,cc ∈ pr∗A2

M does not
depend on the choice of a parallel P. (This follows from the same argument as Lemma 4.76; see
Proposition 9.21 or equation 9.10 below for an explicit formula.) We call ϑcc the curvature two-form
of the complex conjugate opposite module. Both the difference one-form ωP,cc and the curvature
two-form ϑcc are pulled back from M.

Finally we give formulas for the curvature of ∇cc and its trace. The proofs of these are again
parallel to the argument in Proposition 4.89, and are omitted.

Proposition 9.21 (curvature). Let (∇cc)2 denote the curvature of ∇cc on the cotangent sheaf
AΩ1

◦, which is an End(AΩ1,0
◦ )-valued (1, 1)-form on L◦.

(1) The curvature (∇cc)2 defines a map AΩ1,0
◦ → pr∗(A1,1

M)⊗ pr∗(A1,0
M) given by:

(∇cc)2dxν = C
(0)
ijhΛcc

hν
l

(dti ∧ dtl)⊗ dtj
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(2) The curvature two-form ϑcc equals27 half of the trace of (∇cc)2:

ϑcc =
1

2
Tr((∇cc)2) =

1

2
C

(0)
ijhΛcc

jh

l
dti ∧ dtl

= −1

2

N∑
i=0

N∑
j=0

TrAF0(Πcc∇iΠcc∂j −Πcc∂jΠcc∇i)dti ∧ dtj

In particular, ϑcc is of type (1, 1).

Example 9.22. We give explicit formulae for the quantities ∇cc, ∆P,cc, Λcc, ϑcc in terms of local
co-ordinates. Let P be a reference opposite module. By Proposition 4.18, P defines (locally) a flat
trivialization of AF by choosing a flat frame of zP/P. We denote it by:

Φ: CN+1 ⊗AM[[z]] ∼= AF
The trivialization Φ induces a trivialization Φ0 of the holomorphic bundle F0 = F |z=0; by purity,

Φ0 extends to a trivialization of F̂ which is holomorphic along each fiber {t} × P1. Restricted to
the formal neighbourhood of z = 0, this gives rise to a different trivialization Φcc of AF:

Φcc : CN+1 ⊗AM[[z]] ∼= AF
The trivialization Φcc is only real-analytic and coincides with Φ along z = 0. The trivialization Φ
induces a Frobenius-type structure on the trivial bundle of rank N+1 as in Proposition 4.18, i.e. we
have a flat connection

Φ∗∇ = d− 1

z
C, C = C(t) ∈ End(CN+1)⊗ Ω1

M

and a constant symmetric pairing gij = g(ei, ej) = (Φ(ei),Φ(ej))zP/P on the trivial bundle. On
the other hand the trivialization Φcc induces a tt∗-bundle structure on the trivial bundle as in
Definition 9.11, i.e. we have a flat connection

Φcc∗∇ = D − 1

z
C − zC̃, C ∈ End(CN+1)⊗ Ω1

M, C̃ ∈ End(CN+1)⊗A0,1
M

(C is the same as above) and a complex anti-linear involution κ ∈ EndR(CN+1) ⊗ AM such that
D = d+h−1∂h is the Chern connection associated to the Hermitian metric h(u, v) = g(κ(u), v) and

C̃ = κ ◦ C ◦ κ. We write

R = R(t, t, z) = id +R1z +R2z
2 +R3z

3 + · · · := (Φcc)−1 ◦ Φ

for the gauge transformation which intertwines the connections R ◦ Φ∗∇ = Φcc∗∇ ◦R and satisfies
g(R(t, t,−z)u,R(t, t, z)v) = g(u, v) for u, v ∈ CN+1.

Let {ti, xin} denote the local co-ordinate system on L associated to28 the trivialization Φ. Then
we have (see also Example 4.26)

(∇cc −∇)dth = [K(x1)−1R1CiCj ]hdti ⊗ dtj

(∇cc −∇)dxhn = ([R−1CiCjx1]hn+1 + [K(xn+1)K(x1)−1R1CiCjx1]h)dti ⊗ dtj

where K(xn) ∈ End(CN+1) ⊗O is defined by K(xn)ei = Cixn (see Notation 4.12 for [· · · ]hn). The
curvature of ∇cc on AΩ1,0

◦ is given by

[∇cc
i ,∇cc

 ]dth = −[K(x1)−1C̃CiCx1]h

[∇cc
i ,∇cc

 ]dxhn = [R−1C̃CiCx1]hn − [K(xn+1)K(x1)−1C̃CiCx1]h

27The factor 1/2 instead of 1/4 in the second line here is not a typo; it reflects the asymmetry between i and j,
cf. (4.56).

28On the other hand, the co-ordinate system associated to Φcc is not holomorphic.



A FOCK SHEAF FOR GIVENTAL QUANTIZATION 113

with all the other components being zero. In particular we have:

(9.10) ϑcc =
1

2
Tr((∇cc)2) = −1

2

N∑
i=0

N∑
j=0

Tr(C̃Ci)dti ∧ dtj

Let {ϕin} denote the frame of pr∗AF[z−1]∨ given by the trivialization Φ (see equation 4.14). As in
§4.8.1, we set

V (n,j),(m,i)
cc := Ω∨(ϕjn,Π

∗
cc(ϕ

i
m|AF)) = (−1)ngju

[
R−1[Reuz

−n−1]+
]i
m

where (gij) is the matrix inverse to (gij). The V
(n,j),(m,i)

cc depend real-analytically on t. Explicit

formulae for the propagators ∆P,cc(dt
a ⊗ dtb), ∆P,cc(dt

a ⊗ dxbn), ∆P,cc(dx
a
m ⊗ dxbn) are given by the

same formulae as in Remark 4.50 with V (n,i),(m,j) there replaced with V
(n,i),(m,j)

cc . Using

Ω∨(∇̃Π∗cc(ϕ
i
n|AF),Π∗cc(ϕ

u
m|AF)) = (−1)n+m+1g(C̃Rmeu, Rnei)

where ei =
∑N

j=0 g
ijej , we obtain the following explicit formula for Λcc:

Λcc(dt
a ⊗ dtb) = −g(C̃K(x1)†−1ea,K(x1)†−1eb)

Λcc(dt
a ⊗ dxbn) = (−1)ng(C̃K(x1)†−1ea, Rne

b)− g(C̃K(x1)†−1ea,K(x1)†−1K(xn+1)†eb)

Λcc(dx
a
n ⊗ dxbm) = (−1)n+m+1g(C̃Rnea, Rmeb)

+ (−1)mg(C̃K(x1)†−1K(xn+1)†ea, Rmeb) + (−1)ng(C̃Rnea,K(x1)†−1K(xm+1)†eb)

− g(C̃K(x1)†−1K(xn+1)†ea,K(x1)†−1K(xm+1)†eb)

where K(x1)† is the adjoint of K(x1) with respect to the complex bilinear pairing g.

9.3. Kähler Geometry of the Total Space. We now introduce a (pseudo-)Kähler metric on the
L2-subspace L2(L◦) and identify ∇cc with the Chern connection. The propagator and the Yukawa
coupling also have descriptions in terms of the Kähler metric. Recently David and Strachan [44]
have considered an extension of tt∗-geometry to the big phase space; their construction seems to be
closely related to ours.

Let (F = O(F ),∇, (·, ·)F , κ) be a pure TRP structure over M and let (F,∇, (·, ·)F) denote the
corresponding cTP structure. Since F = O(F ) is defined over M× C, the total space L of the
TRP structure has a canonical L2-subspace L2(L) as follows (cf. Remark 4.39). Let Ft ⊂ Ft denote
the subspace consisting of elements in Ft which extend to holomorphic sections of F over the unit
disc {t} × D (where D = {z ∈ C : |z| < 1}) and have L2-boundary values over S1 (vector-valued
Hardy space). In other words, x ∈ Ft lies in Ft if and only if it has a square summable expansion
x =

∑∞
n=0 xnz

n for some (and hence any) trivialization of F |{t}×C. Then L2(L) consists of (t,x) ∈ L
such that x ∈ zFt. This has the structure of a complex Hilbert manifold (the total space of a Hilbert
vector bundle over M). We let

Ht := L2({t} × S1, F )

denote the space of L2-sections of F |{t}×S1 . We define the symplectic form on Ht as

Ωt(v, w) =
1

2πi

∫
S1

(v(−z), w(z))F dz

(cf. equation 4.2). The pair (Ht,Ωt) is an analogue of the Givental space (§3.1) for the TRP
structure. The involution κ of the TRP structure induces an involution κHt on Ht (cf. equation 9.1).
We have (cf. equation 9.5)

κHt(fv) = γ∗f · κHt(v)

for f ∈ L∞(S1;C). Note that parallel translation using the flat connection ∇ identifies all the triples
(Ht,Ωt, κHt) for t in a simply-connected open subset U of M. We work locally on M and write
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(H,Ω, κH) for nearby (Ht,Ωt, κHt), t ∈ U , identified with each other. The reality of the pairing
(·, ·)F (see equation 9.2) implies that the symplectic form is pure-imaginary with respect to the
shifted involution κ̃H := z−1κH (note that we still have κ̃H ◦ κ̃H = id):

Ω(κ̃H(v), κ̃H(w)) = −Ω(v, w).

The subspace Ft ⊂ Ht ∼= H is Lagrangian with respect to Ω. The family t 7→ Ft of subspaces of H
should be viewed as a semi-infinite period map (see §3.3, where the semi-infinite subspace is denoted
by Tt ⊂ H) which takes values in the semi-infinite Grassmannian Gr∞

2
(H). Locally one can imbed

the total space L2(L◦) into H via the semi-infinite period map:

ι : L2(L◦)|U =
⋃
t∈U

(zFt)◦ # H

where (zFt)◦ = L2(L◦t ) = zFt ∩ L◦t is a “Zariski open” subset of zFt = L2(Lt). The derivative of ι
defines an isomorphism:

(9.11) dι : T(t,x)L
2(L◦)|U ∼= Ft ⊂ H

which corresponds to the Kodaira–Spencer map (Definitions 4.11, 9.14). Note that Ft is identified
with the tangent space of L2(L◦) at (t,x).

Definition 9.23. We define a non-degenerate sesqui-linear pairing h on H by:

h(v, w) = −Ω(κ̃H(v), w) = −Ω(z−1κH(v), w)

This is Hermitian and purely imaginary; one can easily check that:

h(v, w) = h(w, v) h(αv,w) = αh(v, w) (α ∈ C)

h(κ̃H(v), κ̃H(w)) = −h(v, w) h(zv, zw) = −h(v, w)

Pulling back h along the local immersion ι : L2(L◦)|U # H gives a Hermitian metric h on L2(L◦).
Thus L2(L◦) has the structure of a (pseudo)-Kähler Hilbert manifold.

Remark 9.24. The pairing h on H is indefinite of signature (∞,∞). The metric h restricted to
L2(L◦) is non-degenerate under purity—this follows from the h-orthogonal decomposition (9.12)
below—and is also of signature (∞,∞).

Purity of the TRP structure implies (cf. equation 9.6) that:

(9.12) H = Ft ⊕ κ̃H(Ft)
The family t 7→ κ̃H(Ft) defines an L2-version of the complex conjugate opposite module z−1AF
from (9.7). Note that Ft and κ̃H(Ft) are orthogonal to each other with respect to h. In particular
the projection Πcc : H → Ft along κ̃H(Ft) (which is an L2-version of Πcc in Definition 9.15) is the
orthogonal projection to Ft. Therefore∇cc on L2(L◦) can be identified with the induced connection
on the immersed submanifold L2(L◦)|U # H via the orthogonal projection. This implies the
following proposition.

Proposition 9.25. The connection ∇cc on L2(L◦) (Definition 9.15) is the Chern connection asso-
ciated to the Hermitian metric h.

Corollary 9.26. The curvature two-form ϑcc is a pure-imaginary (1, 1)-form.

Proof. Recall from Proposition 9.21 and (9.10) that ϑcc is the half of the trace of the curvature of
∇cc. �

Let P be a parallel pseudo-opposite module for the underlying cTP structure (F,∇, (·, ·)) over U .
We assume here that P is compatible with the given L2-structure on F, namely that:
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• every element of Pt ⊂ Ft[z
−1] extends to a holomorphic section of F |{t}×D∗ over the unit

punctured disc D∗ = {z : 0 < |z| < 1} and has an L2-boundary value along S1. Thus Pt is
a subspace of Ht;
• the L2-closure Pt of Pt in Ht is complementary to Ft, i.e. Ht = Ft ⊕ Pt (as an algebraic

direct sum, not necessarily orthogonal).

The same notion already appeared in Example 5.18. Since P is parallel, it gives rise to a constant
Lagrangian subspace P in H ∼= Ht.
Definition 9.27. Let ΠP : H → Ft denote the projection along P. We define the complex-antilinear
endomorphism κP : TL2(L◦)|U → TL2(L◦)|U by κP(v) = (dι)−1ΠPκ̃H(dι(v)):

κP : T(t,x)L
2(L◦) ∼= Ft

κ̃H // κ̃H(Ft) ⊂ H
ΠP // Ft ∼= T(t,x)L

2(L◦)

where dι : T(t,x)L
2(L◦) ∼= Ft is the Kodaira–Spencer map (9.11).

Remark 9.28. In general, κP is neither an isomorphism nor an involution. It is easy to see that:

• κP is an isomorphism if and only if P⊕ κ̃H(Ft) = H;
• κP is an involution if and only if P is real, i.e. κ̃H(P) = P.

Let us prove the second statement. Note that v = κP(w) if and only if v − κ̃H(w) ∈ P. The “if”
part of the statement is obvious. Every p ∈ P can be written as p = v − κ̃H(w) for some v, w ∈ Ft
by purity (9.12). Then we have v = κP(w). If κP is an involution, we have w = κP(v) and thus
κ̃H(p) = κ̃H(v) − w lies in P. The “only if” part follows. It would be interesting to study parallel
pseudo-opposite modules P such that κP is an involution.

Remark 9.29. If P is an opposite module (i.e. is closed under z−1), then κP cannot be an iso-
morphism. Moreover if the flat trivialization (Proposition 4.18) of Ft given by P extends to a
smooth trivialization of the bundle F over the closed disc {t} × {|z| ≤ 1}, then κP is Hilbert–
Schmidt and hence compact. Proof : Let v ∈ H be a vector of unit length. The L2-distance
dist(z−nv,P) = dist(v, znP) goes to zero as n→∞ because

⋃
n≥0 z

nP is dense inH (see Lemma A.1).

Similarly, dist(z−nv, κ̃H(Ft)) → 0 as n → ∞. These together imply that the distance between the
unit spheres in P and in κ̃H(Ft) is zero (because ‖z−nv‖ = 1 for all n). Therefore we cannot have
P ⊕ κ̃H(Ft) = H. To see the latter statement, note that κP can be viewed as a Hankel operator
associated to the gauge transformation from the trivialization given by z−1AFt to the trivialization
given by Pt. Consequently κP is Hilbert–Schmidt if the gauge transformation extends smoothly to
the circle S1.

Remark 9.30. In the Calabi-Yau B-model [2, 112], the middle cohomology H3(X,C) of a Calabi-
Yau threefold X (equipped with the intersection form) is a symplectic vector space to be quantized.
The so-called “real polarization” in this context is a Lagrangian subspace P of H3(X,C) with
P = P . The above two remarks say that a real polarization in the infinite-dimensional setting
would be a rather exotic object: at least it is not given by an opposite module.

The following proposition gives an interpretation of the propagator ∆P,cc and the Yukawa coupling
Y in terms of Kähler geometry.

Proposition 9.31. Let h∨ denote the dual Hermitian metric on the cotangent bundle of L2(L◦).
Then we have

∆P,cc(ω1, ω2) = −h∨(κ∗Pω1, ω2)

Y (u,κPv, w) = (∇P
uh)(v, w)

for cotangent vectors ω1, ω2 ∈ T ∗L2(L◦) and tangent vectors u, v, w ∈ TL2(L◦).
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Proof. We identify the tangent space T(t,x)L
2(L◦) with Ft ⊂ H in the proof. Let H′, F′t denote

the topological duals of H, Ft. The dual symplectic form Ω∨ and the dual Hermitian form h∨ are
defined on H′ and are related by h∨(ω1, ω2) = −Ω∨(κ̃∗Hω1, ω2) for ωi ∈ H′. Thus we have

∆P,cc(ω1, ω2) = Ω∨(Π∗Pω1,Π
∗
ccω2) = −h∨(κ̃∗HΠ∗Pω1,Π

∗
ccω2)

for ω1, ω2 ∈ F′t. The right-hand side equals −h∨((κ̃∗HΠ∗Fω1)|F, ω2) = −h∨(κPω1, ω2) by the h-
orthogonal decomposition (9.12). �

9.4. Holomorphic Anomaly Equation. We now consider correlation functions under the com-
plex conjugate opposite module z−1AF from Definition 9.8. We show that they satisfy the
Bershadsky–Cecotti–Ooguri–Vafa holomorphic anomaly equation, and use this to define the Fock
space for z−1AF. Throughout the section we fix a pure TRP structure (F ,∇, (·, ·)F , κ) over M.
The associated cTP structure is denoted by (F,∇, (·, ·)F). We denote an algebraic local co-ordinate
system on the total space L by {xµ} = {ti, xin}, as usual.

Definition 9.32 (cf. Definition 4.74). Let P be a parallel pseudo-opposite module for the cTP

structure (F,∇, (·, ·)F), and let C = {C(g)
µ1,...,µn} ∈ Fock(U ;P) be a Fock space element. We define a

set of completely symmetric tensors

Ccc =
{
C(g)

cc;µ1,...,µndx
µ1 ⊗ · · · ⊗ dxµn ∈ (AΩ1,0

◦ )⊗n(pr−1(U)) : n ≥ 0, g ≥ 0, 2g − 2 + n > 0
}

via the Feynman rule in Definition 4.64

C(g)
cc;µ1,...,µn =

∑
Γ

1

Aut(Γ)
ContΓ(C ,∆P,cc)µ1,...,µn

and the propagator ∆P,cc in Definition 9.17. We call Ccc = {C(g)
cc;µ1,...,µn} the correlation functions

under the complex conjugate opposite module z−1AF corresponding to C and write:

Ccc = T
(
P, z−1AF

)
C

The corresponding jet potential is defined by

Wcc(x, y) =
∞∑
g=0

∞∑
n=max(3−2g,0)

~g−1

n!
C(g)

cc;µ1,...,µn(x)yµ1 · · · yµn

and we have

exp
(
Wcc(x, y)

)
= exp

(
~
2

∆µν(P, z−1AF)∂yµ∂yν

)
exp

(
W(x, y)

)
where W(x, y) is the jet potential associated to C .

Remark 9.33. The correlation functions C
(g)
cc;µ1,...,µn are holomorphic in {xin : n ≥ 1, 0 ≤ i ≤ N}

and are real analytic in t0, . . . , tN . Note that µ1, . . . , µn are holomorphic indices.

Proposition 9.34 (cf. Definition 4.56). Let P be a parallel pseudo-opposite module for the cTP

structure (F,∇, (·, ·)) and let C = {C(g)
µ1,...,µn} be an element of Fock(U ;P). The correlation functions

{C(g)
cc;µ1,...,µn} under z−1AF corresponding to C satisfy the following properties:

(Yukawa): C
(0)
cc;µνρdxµ ⊗ dxν ⊗ dxρ is the Yukawa coupling Y ;

(Jetness): ∇cc
µ1
C

(g)
cc;µ2,...,µn = C

(g)
cc;µ1,...,µn, where we use notation as in (4.42);

(Holomorphic Anomaly):

(9.13) 0 = ∂µ1
C(g)

cc;µ2,...,µn +
1

2

∑
{2,...,n}=ItJ

k+l=g

C(k)
cc;µI ,α

Λcc
αβ
µ1
C

(l)
cc;µJ ,β

+
1

2
C

(g−1)
cc;µ2,...,µn,α,β

Λcc
αβ
µ1

(Grading & Filtration): Ccc;µ1,...,µndx
µ1 ⊗ · · · ⊗ dxµn ∈ ((AΩ1,0)⊗n(pr−1(U)◦))2−2g

3g−3;
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(Pole): P (Ccc;µdx
µ) extends to a regular (1, 0)-form on pr−1(U), and for g ≥ 2 we have:

C(g)
cc ∈ P−(5g−5)A(U)[x1, x2, Px3, P

2x4, . . . , P
3g−4x3g−2]

where P = P (t, x1) is the discriminant (4.10).

Proof. The proof is similar to that of Lemmas 4.67–4.69 and Theorem 4.86. (Yukawa) is obvious

from the Feynman rule: C
(0)
cc;µνρ = C

(0)
µνρ. (Jetness) follows from the argument of Lemma 4.67,

using Proposition 9.19 instead of Proposition 4.45. To establish (Holomorphic Anomaly), we dif-

ferentiate with respect to t
i

the Feynman rule expressing C
(g)
cc;µ1,...,µn in terms of {C(h)

ν1,...,νm} and

∆ = ∆(P, z−1AF). The only non-holomorphic objects in the Feynman rule are propagators, and

we have that ∂i∆
µν = −Λcc

µν
ı by Proposition 9.19(2). Therefore ∂iC

(g)
cc;µ1,...,µn can be written as

the sum over graphs with one distinguished internal edge, on which the propagator is replaced with
−Λcc

µν
ı . The second and the third terms in equation (9.13) correspond (respectively) to the cases

where the distinguished edge separates and does not separate the graph. (Grading & Filtration)
follows from the argument of Lemma 4.68. Here we need to establish an analogue of Proposi-
tion 4.55 for ∆ = ∆(P, z−1AF), but this is straightforward. (Pole) follows from the argument of
Lemma 4.69. �

Remark 9.35. Since∇cc is flat in the holomorphic direction, the condition (Jetness) is compatible
with the symmetry of the correlation functions (see also Remark 4.57). Note that the holomorphic
anomaly equation (9.13) is non-trivial only when the index µ1 corresponds to one of the co-ordinates

{t0, . . . , tN} on M.

We deduce an important consequence of the holomorphic anomaly equation for the genus-one
one-point correlation function, which is similar to Proposition 4.78.

Proposition 9.36 (curvature condition). The genus-one one-point function under the complex
conjugate opposite module z−1AF satisfies:

d(C(1)
cc;µdx

µ) = ϑcc

Proof. (Jetness) implies that ∇cc
µ C

(1)
ν is symmetric in µ and ν. Thus C

(1)
cc;µdxµ is ∂-closed. The

holomorphic anomaly equation gives ∂ıC
(1)
cc,µ1 = −1

2C
(0)
µ1αβ

Λcc
αβ
ı , and this implies that ∂(C

(1)
cc;µdxµ) =

ϑcc in view of Proposition 9.21(2). �

Definition 9.37 (Fock space for the complex conjugate opposite module). The local Fock space
Fock(U ; z−1AF) for the TRP structure (F ,∇, (·, ·)F , κ) consists of collections{

C(g)
cc;µ1,...,µndx

µ1 ⊗ · · · ⊗ dxµn ∈ (AΩ1,0)⊗n(pr−1(U)◦) : g ≥ 0, n ≥ 0, 2g − 2 + n > 0
}

of completely symmetric tensors satisfying the conditions (Yukawa), (Jetness), (Holomorphic Anom-
aly), (Grading & Filtration), and (Pole) listed in Proposition 9.34.

Note that Definition 9.32 defines a transformation rule

T (P, z−1AF) : Fock(U ;P)→ Fock(U ; z−1AF)

for a parallel pseudo-opposite module P over U .

Proposition 9.38. Let P be a parallel pseudo-opposite module. The transformation rule
T (P, z−1AF) defines a bijection between Fock(U ;P) and Fock(U ; z−1AF). The inverse map is given
by a transformation rule T (z−1AF,P) defined in terms of the propagator ∆cc,P = −∆P,cc and the
Feynman rule similarly to Definition 9.32.
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Proof. Let Ccc be an element of Fock(U ; z−1AF). It suffices to show that C := T (z−1AF,P)Ccc

satisfies the conditions for elements in Fock(U ;P) in Definition 4.56. (It is clear from the definition
that the transformation rules T (P, z−1AF), T (z−1AF,P) are inverse to each other.) The conditions
(Yukawa), (Jetness), (Grading & Filtration), and (Pole) can be checked using the argument in
Lemmas 4.67–4.69. It suffices to show that each correlation function in C is holomorphic. Writing

Ccc = {C(g)
cc;µ1,...,µn} and C = {C(g)

µ1,...,µn}, we have the following Feynman rule:

C(1)
cc;µ = C(1)

µ + (ωP,cc)µ

C(g)
cc = C(g) +

∑
Γ

1

|Aut(Γ)| ContΓ(C ,∆P,cc) for g ≥ 2
(9.14)

where the trivial graph (with one genus-g vertex) is removed from the summation in the second line.

The curvature condition in Proposition 9.36 together with (9.14) shows that ∂(C
(1)
µ dxµ) = 0. Hence

C
(1)
µ is holomorphic. Suppose by induction that C(h) is holomorphic for all h < g for some g ≥ 2.

We differentiate the above Feynman rule (9.14) for C
(g)
cc with respect to t

i
. Using the argument in

the proof of Proposition 9.34 and the induction hypothesis, we find that the differentiation of the
second term (in the right-hand side) gives the negative of the second and the third terms of the
holomorphic anomaly equation (9.13). By the assumed holomorphic anomaly equation, we obtain

∂iC
(g) = 0. This completes the induction steps, and the proof. �

Remark 9.39. We have, as in Proposition 4.70,

T (P1, z
−1AF) = T (P2, z

−1AF) ◦ T (P1,P2)

T (z−1AF,P1) = T (P2,P1) ◦ T (z−1AF,P2)

for parallel pseudo-opposite modules P1,P2.

Lemma 9.40. Let P be a parallel pseudo-opposite module. Consider the difference one-form ω =
ωP,cc ∈ A1,0

M from Definition 9.20. Locally on M there exists a real-valued function u = uP such
that ∂u = ω. The function u is unique up to a real constant.

Proof. Recall from Corollary 9.26 that the curvature two-form ϑcc = dω is a purely imaginary (1, 1)-
form. Therefore ∂ω = 0 and ∂ω = ϑcc. Hence we can locally find a complex-valued function u with
∂u = ω. Also we have

∂∂(=u) = <(∂∂u) = <(∂ω) = <(ϑcc) = 0

since ∂∂ is a purely imaginary operator. Therefore =u is a pluri-harmonic function. We can locally
find an anti-holomorphic function f such that =f = =u. Replacing u with u − f , we obtain a
real-valued function u satisfying ∂u = ω. The ambiguity in u is a real-valued anti-holomorphic
function, and hence is a real constant. �

Definition 9.41. Let u = uP be the real-valued function in Lemma 9.40 associated to a parallel
pseudo-opposite module P. We call hP = exp(u) the half-density metric associated to P. This is a
locally defined function, unique up to multiplication by a real positive constant.

The curvature two-form ϑcc can be viewed as the curvature of the half-density line bundle
“det(Ω1

◦)
1/2” by Proposition 9.21. From the equation

∂∂ log hP = ϑcc

we may view hP as the Hermitian metric on “det(Ω1
◦)

1/2”. Let C
(1)
µ be a genus-one one-point function

under a parallel pseudo-opposite module P. Locally we can integrate this to obtain a multi-valued

genus-one potential C(1); see Remark 4.57(2). Let C
(1)
cc;µ be the corresponding genus-one one point
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function under the complex conjugate opposite module z−1AF. We can regard exp(C(1)) as a section

of the line bundle “det(Ω1
◦)

1/2” and define exp(C
(1)
cc ) to be the norm:∥∥∥exp(C(1))

∥∥∥2
:=
∣∣∣exp(C(1))

∣∣∣2 hP
In fact we have

∂ log
∥∥∥exp(C(1))

∥∥∥2
= ωP,cc + C(1)

µ dxµ = C(1)
cc;µdx

µ

and:

(9.15) ∂∂ log
∥∥∥exp(C(1))

∥∥∥2
= ϑcc

The latter equation is similar to the holomorphic anomaly equation at genus one considered in [11].

Remark 9.42. We defined the half-density metric for a TRP structure equipped with a parallel
pseudo-opposite module. In particular, this defines a CDV29 structure [67, Definition 1.2], which
is a mixture of a Frobenius manifold structure and a tt∗-structure. It would be interesting to
study singularity and monodromy of the half-density metric for CDV structures which arise from
singularity theory and quantum cohomology. For example, for quantum cohomology equipped with

the Γ̂-real structure [71, 72], is the half-density metric a single-valued function around the large
radius limit point?

Appendix A. Opposite Subspaces in the L2-picture.

In this Appendix we collect some facts about opposite subspaces in the L2-picture. Let
H = L2(S1,CN+1) be the Hilbert space of CN+1-valued square integrable functions on S1. (This
corresponds to the Givental space in the main body of the text.) Let H+ ⊂ H denote the subspace
consisting of boundary values of holomorphic functions D→ CN+1 on the unit disc D = {z : |z| < 1};
cf. (3.1).

Lemma A.1. Let P ⊂ H be a closed subspace such that z−1P ⊂ P and P⊕H+ = H (the direct sum
here is not necessarily orthogonal). Then

⋃
n≥0 z

nP is dense in H.

Proof. Let V be the closure of
⋃
n≥0 z

nP. Then V is a z±1-invariant subspace: zV = V . By a

vector-valued version of Wiener’s theorem [108], V is of the form

V = {Q(z)f(z) : f ∈ H}
for a measurable function Q : S1 → End(CN+1) such that Q(z) is an orthogonal projector for each
z ∈ S1, i.e. Q(z)2 = Q(z), Q(z)∗ = Q(z). On the other hand, V ∩ H+ is a z-invariant subspace of
H+: z(V ∩H+) ⊂ V ∩H+. The Beurling–Lax theorem (see e.g. [65]) tells us that it is of the form:

V ∩H+ = {T (z)f(z) : f ∈ H+}
where T : S1 → End(CN+1) is a measurable function with the following properties: (1) T is a
boundary value of a holomorphic function T : D → End(CN+1); (2) there exists a subspace U of
CN+1 such that, for each z ∈ S1, T (z)|U is an isometry on U and T (z)|U⊥ = 0. Arguing as in
the proof of Proposition 4.18(i), we see that V ∩ H+ ⊃ zP ∩ H+

∼= H+/zH+
∼= CN+1. Therefore

U = CN+1. Because V ∩ H+ ⊂ V and every element g ∈ V satisfies Q(z)g(z) = g(z), we have
Q(z)T (z)f(z) = T (z)f(z) for all f ∈ H+. This implies that Q(z) = id and V = H. �

Lemma A.2. Let P ⊂ H be as in the previous lemma. Then
⋂
n≥0 z

−nP = {0}.
29CDV structures are named after Cecotti, Dubrovin and Vafa [20,21,48,49].



120 TOM COATES AND HIROSHI IRITANI

Proof. Suppose that there is a non-zero vector x ∈ ⋂n≥0 z
−nP. Write znx = an+bn where an ∈ H+

and bn ∈ H− := (H+)⊥ (cf. equation 3.1). We have bn → 0 in the norm topology as n → ∞. The
projection H → H− along H+ induces an isomorphism P → H−. Let f : H− → P be the inverse
isomorphism. We have znx = (an + bn − f(bn)) + f(bn) with an + bn − f(bn) ∈ H+, f(bn) ∈ P, and
znx ∈ P. Therefore f(bn) = znx and so ‖f(bn)‖ = ‖znx‖ = ‖x‖. This contradicts the fact that
limn→∞ bn = 0.

�

Lemmas A.1 and A.2 together imply that the pair (H+,P) satisfies
⋃
n≥0 z

−nH+ =
⋃
n≥0 z

nP = H
and

⋂
n≥0 z

nH+ =
⋂
n≥0 z

−nP = {0}. A pair of complementary subspaces with these properties is

studied in [5] under the name “dual shift-invariant pair”.
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