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Abstract—This paper presents a self-adaptive general type-2 

fuzzy autonomous learning system (GT2 FS) for online motor 

imagery (MI) decoding to build a brain-machine interface (BMI) 

and navigate a bi-pedal humanoid robot in a real experiment, 

using EEG brain recordings only. GT2 FSs are applied to BMI for 

the first time in this study. We also account for several constraints 

commonly associated with BMI in real practice: 1) maximum 

number of electroencephalography (EEG) channels is limited and 

fixed, 2) no possibility of performing repeated user training 

sessions, and 3) desirable use of unsupervised and low complexity 

features extraction methods. The novel online autonomous 

learning method presented in this paper consists of a self-adaptive 

GT2 FS that can both autonomously adapt its parameters and its 

structure via creation, fusion and scaling of the fuzzy system rules 

in an online BMI experiment with a real robot. The structure 

identification is based on an online GT2 Gath-Geva algorithm 

where every MI decoding class can be represented by multiple 

fuzzy rules (models), which are learnt in a continuous (trial-by-

trial) non-iterative basis. The effectiveness of the proposed method 

is demonstrated in a detailed BMI experiment where 15 untrained 

users can accurately interface with a humanoid robot, in a single 

thirty-minute experiment, using signals from six EEG electrodes 

only. 

 
Index Terms—General type-2 fuzzy systems, online brain 

machine interfaces, motor-imagery brain machine interfaces, 

autonomous learning systems, adaptive learning, phase synchrony 

features, non-iterative learning. 

I. INTRODUCTION 

HE application of brain-machine interfaces (BMIs) 

methods to the control of external devices and robots based 

on neural activity has raised increasing interests in recent years. 

Non-invasive modalities such as electroencephalography 

(EEG) have been widely adopted due to their ease of use and 

lower cost compared to other brain monitoring techniques 

allowing their use for real world applications [1, 2]. Yet, the 

effective development of such systems for wide acceptability is 

faced with many challenges. In particular, an important issue is 

concerned with poor signal-to-noise ratio and high non-

stationarity [3, 4]. This is particularly the case when users are 

first initiated to BMI and more prone to exhibiting a non-

stationary signal, with some even unable to produce stable EEG 

patterns. This problem is further intensified when BMI users are 

directly introduced to a real robot control scenario without prior 

experience.  

The goal of motor imagery BMI (MI-BMI) is to find a pattern 

in the EEG signal underlying the cognitive process associated 

with thinking about a specific motor command that implies 

movement [5]. In most cases, MI-BMI indeed requires users to 

go through repeated sessions of the same experiment, typically 

over different days, in order for them to generate stable patterns 

and achieve the required concentration levels for reliable 

control. Non-stationarity is common as users tend to vary their 

cognitive response, when changing the context of execution 

(e.g. from a simple visual experiment on a computer screen, to 

the real control of an object or robot). Participants can therefore 

become frustrated [6, 7] and opt out of the experiment or require 

long periods (e.g. several days) of repetitive training [8].  

The above challenges call for the development of effective 

BMIs through non-iterative adaptive and online learning that 

can incrementally update the model's knowledge [9 , 10]. 

Previous research has suggested the use of a co-learning 

paradigm as a solution to the above issues [11]. This paradigm 

is based on the extension of an initial basic session with an 

online adaptive BMI learning stage in which the user’s 

experience and the machine learning algorithm are jointly 

improved. Computationally expensive and supervised features 

are not recommended since their supervised nature adds another 

subjacent source of decalibration due to non-stationarity and 

their computational demand can indeed compromise the 

requirement of performing online learning as proposed. 

Fuzzy logic allows handling the uncertainty associated with 

the noisy signals encountered in realistic real-time scenarios 

and BMI applications. Indeed, general type-2 (GT2) fuzzy rules 

have been shown to provide higher robustness to noisy data and 

unexpected signal patterns such as extreme values and outliers 

[12, 13].  As EEG signals are non-stationary and the user’s brain 

behavior is highly unpredictable, general type-2 fuzzy systems 

(GT2 FSs) offer an excellent framework for learning using 

multiple models (i.e. rules in this case) in this remarkably noisy 

and changing BMI context. At the time when this article was 

written, we were not aware of a previous implementation of 

GT2 FSs in BMI. Additionally, rather than just tuning the 

model parameters, we propose an autonomous learning 

mechanism for GT2 FSs that provides a higher level of 

adaptation enabling the online and autonomous creation of new 

models, merging or re-scaling them to adapt to the 

unpredictable and fast-changing nature of brain activity. The 

learning is performed non-iteratively but continuously in a 

sample-per-sample basis. 

  In this paper, we present a GT2 fuzzy logic online self-

adaptive Gath-Geva method, with the following novelties: 1) 

first implementation of GT2 FSs in BMI; 2) a novel 

autonomous learning algorithm based on GT2 FSs with a 

system structure that is not fixed a priori but can self-develop 
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as well as adapt its parameters across the course of the online 

scenario.   

Our methodology is evaluated with the realistic navigation of 

a bipedal robot through the sole use of MI commands. The users 

are presented with an audio neuro-feedback with either 

increasing or decreasing volume given the online fuzzy 

confidence of the predicted MI class.  

In a nutshell, for the proposed experiment we set the 

following objectives and constraints: 1) Fast training of a group 

of participants for the control of a humanoid bipedal robot 

through MI; 2) Achieving high-accuracy MI robot control with 

as few trials as possible and no repeated sessions; 3) Only a 

small set of EEG measurement electrodes must be used and 

their number and locations should remain identical for all 

participants; 4) The features extracted from the EEG signals 

must be simple and few so as to permit fast real-time processing 

and model adaptation.  

After an overview of the related work in Section II, Section 

III presents the proposed self-adaptive GT2 fuzzy classification 

algorithm. Then, Section IV describes the BMI experiment with 

the humanoid robot. Finally, Section V presents the experiment 

and results, followed by the conclusions and future work in 

Section VI.  

II. RELATED WORK 

 This section introduces the related work that served as 

background and motivation for the present research: 

A. Motor Imagery BMI 

MI is a paradigm of particular interest to BMI research. In 

Millan et. al. [14], eight fronto-centro-parietal EEG channels 

were used to build a MI-BMI system based on two mental tasks 

(left and right movements). The processing method involved 

transforming the EEG potentials by means of surface Laplacian 

and a local neural classifier, yielding an overall accuracy of 

70%. Despite this, the classification model was not always 

capable of responding consistently, as reflected by an accuracy 

of only 20-25% for some users. Further work from the same 

group reported greater performance stability across all 

volunteers when considering a larger number of channels (up to 

26) [15], although repeated training sessions over three to five 

days were required for acceptable performance levels. In the 

work by LaFleur et al. [16], BMI was used for controlling a 

quadcopter via MI decoding of three movements (i.e. left hand, 

right hand and both hands), the users were able to control the 

device with overall accuracies ranging from 70 to 90% by the 

end of the study. Such results involved the use of a high-density 

EEG array of 64 channels as well as three days to three months 

of user training.  

The Berlin BMI group provides a collection of datasets 

organized by competitions that took place in different years. In 

Competition III, considering experiments of more than two 

classes, the smallest number of electrodes was 32 while the 

highest was 118, applying a processing methodology based on 

the subspace transformation of the EEG signals with offline 

classifiers [17]. This number in turn varied from 22 to 64 in 

Competition IV, where the best method used a supervised filter 

algorithm and common spatial pattern (CSP) combined with a 

set of offline classifiers [18]. Before testing, both experiments 

also required participant-specific, offline optimization 

searches, including the selection of relevant channels from the 

whole set of classifier parameters in order to improve accuracy. 

It is worth mentioning that the number of EEG electrodes used 

in this competition was much larger than the one proposed in 

the present study. Moreover, as regards the experimental 

setting, the mental task suggested on a screen had to be 

performed through simulated control; however, a translation 

into realistic BMI control was lacking. Yet, when BMI users are 

asked to simultaneously control a device, their cognitive 

perception is altered by the transfer of the experimental context 

and the attentional demands of the experiment, which can in 

turn alter their way of planning and executing the MI. In 

addition, most recruited participants were not defined as being 

new to BMI.  

B. Adaptive Motor Imagery BMI 

As a replacement for the brain’s normal neuromuscular 

channels, BMI systems crucially rely on feedback and should 
be able to adapt to accommodate the changes in the user’s brain 

behaviors as a response to this feedback. This paradigm was 

first envisioned by Wolpaw et al. [19] and later coined as co-

adaptive BMI by Vidaurre et. al. [20] who proposed two highly 

referenced algorithms, namely Adaptive Information Matrix 

(AdIM) and an online Linear Discriminant Analysis (oLDA) 

based on Kalman updates. In [21] the oLDA method was 

extended to allow unsupervised parameter updates of the 

weights and bias of the linear discriminant using the pooled 

mean and global sample covariance. This method has been 

employed with satisfactory performance in several other works. 

oLDA has been mainly proposed in conjunction with 
supervised feature extraction methods (CSP) and its model 

structure is fixed. 

C. Fuzzy Systems and Clustering in BMI 

Fuzzy provides a framework of particular interests to cope 

with the uncertainties typically associated with BMI 
applications, as follows: 1) uncertainties related to the 

reliability and quality of the electrode measurements as a results 

of evolving conditions across the experiment; 2) uncertainty 

about the user’s cognitive profile, i.e. users may alter the 

cognitive profile intentionally or unintentionally during the 

experiment [22]; 3) changes in the environmental conditions; 4) 

considering the BMI context, users may have different 

perceptual demands for different tasks, hence the uncertainties 

as to whether the same cognitive patterns will replicate for the 

same intentions. The first three are practically inherent to any 

BMI application, while the fourth one is raised by the goal of 

obtaining real-life BMI systems, where task-specific training 
data is difficult to obtain or very limited. 

 Type-2 fuzzy systems have been marginally applied to BMI 

with varying results. In the pioneer work by Herman et. al. [23, 

24], interval type-2 (IT2) fuzzy logic based systems 

outperformed conventional methods applied to BMI such as 

SVMs and LDA, as well as classic type-1 fuzzy systems (T1 

FSs). Das et al. [25] proposed an IT2 fuzzy inference system 

(IT2 FIS) with an online adaptable and self-adaptive structure 
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for MI BMI. Nevertheless, the extracted EEG features were 

based on CSP [26] and its logic is still based on interval fuzzy 

sets.  

An unsupervised fuzzy clustering algorithm known as Gath-

Geva (GG) was originally designed for the detection of sleeping 

stages from EEG data [27]. As a difference to fuzzy c-means 
(FCM), GG is an efficient algorithm for modelling arbitrary 

shaped clusters based on elliptical shapes defined by the general 

structure of covariance matrices. Besides, it exerts a level of 

control over the sensitivity of the number of points for each 

cluster, which is lacking in other fuzzy clustering algorithms 

such as FCM and Gustafson-Kessel (GK) [28]. GG algorithm 

uses a combination of cluster volume, fuzzy membership and 

frequentist inference in order to provide a flexible yet 

constrained adaptation, which is suitable for noisy, artifact-

prone and non-stationary signals, as with EEG. Additionally, 

the use of GT2 fuzzy sets provides an extra layer of protection 

towards the consolidation of stable models [12, 13]. Samples 
laying on the lower cuts in the third dimension weigh little 

during the inference process, while inversely intense areas 

around the cluster prototypes receive a large weight, thus 

consolidating the rule. This enhanced management of noise and 

extreme values positively contributes to improving 

performance with respect to current state-of-the-art methods. 

 A Self-Adaptive Algorithm for Autonomously Learn GT2 

classifiers.The proposed novel approach relies on an online 

unsupervised fuzzy GG algorithm to discover the prototypes 

(rule antecedents). Each prototype describes a relevant pattern 

in the EEG features. As the rules are fuzzy, each prototype can 
be associated to several classes and vice-versa. In order to 

associate each rule with the target BMI commands, an initial 

degree of association of each prototype (consequent) with a 

determined class is set by the programmer intuition or by 

processing a small labelled sample from a previous MI source 

task. In this paper, we use a small sample set from a standard 

offline screen-based task (basic task) prior to interfacing with 

the robot. During the online robot operation, as no more 

labelled samples can be provided, it is the responsibility of the 

learning algorithm to keep self-adapting to accommodate to the 

new and non-deterministic behavior of the incoming EEG 

feature data in real-time. Self-adaptation includes new 
generation, fusion and scaling of the model rules, as well as 

numerical adaptation of their model parameters. Sections A and 

B describe the background methodology while from sections D 

to F the proposed method is detailed.  

A. Type-1 Fuzzy GG Algorithm 

The original fuzzy GG algorithm tries to seek an exhaustive 

segmentation of the data that employs the gradual fuzzy 

membership of each point to a set of clusters. Let us define a 

dataset described by 1 2 3 N}{x ,x ,x ,...,xX = , nX R  where n  is 

the dimensionality of the dataset. The idea behind every fuzzy 

clustering algorithm is to minimize the following objective 

function: 
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m
i j i j

j i
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where (1,2,..., )j R  is the number of clusters, and ,i ju  is the 

membership degree of the ith sample data with respect to the jth 

cluster. An important element in this equation is m, i.e. the 

exponent of the membership function. This exponent defines 

the defuzzification degree, also called “fuzzifier” parameter. 

This value is relevant to the location and quality of the cluster. 

It identifies the amount of uncertainty that a cluster can cope 

with. For instance, if the value of m is close to 1, then the 

algorithm results in crisp clusters while if the value is greater 

than 3, then it results in spiky clusters. A common choice for 

the value of the parameter m is 2 [29, 30]. However, it has been 

noted in biological experiments that a value of 2 is not always 

the most suitable [31, 32]. Adding fuzziness on the parameter 

m provides a new dimension of uncertainty, which is a key 

factor for the extension of the fuzzy clustering algorithm from 

type-1 to type-2 fuzzy logic. As the distance of a same sample 

to the jth rule center is denoted as ,i jd and GG algorithms use a 

likelihood function to define distances, the distance is thus 

defined with the following equation [27]: 
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which is based on a maximum likelihood estimation. The 

parameter jv  denotes the center of rule with j  being its 

corresponding covariance matrix. The symbol |...| represents the 

determinant of the rule covariance while jP  is a measure 

indicating the a priori probability of the degree of association 

of a sample with a rule. This value is computed as the 

expectation from all the rule membership values that have been 

observed so far, which can be estimated with: 
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This value serves for eliminating the sensitivity of the algorithm 

to a set of clusters with an imbalanced number of points. The 

membership ,i ju  of the value that makes the cluster partition 

function can be computed as:  
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Following this, we now have all the elements enabling to 

compute the centroid and covariance of the cluster with the 

below expressions:  
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The whole algorithm is iterated until a stopping condition is 

accomplished, such as: 

 , ,,

1max ,i j i ji j

iter iteru u    (7) 

where iter  indicates the index of the iteration and   is a 

termination criterion usually set to a value between 0 and 1. The 

pseudocode of the type-1 fuzzy GG algorithm is detailed in 
Table I. 

 
TABLE I: TYPE-1 GG FUZZY ALGORITHM 

 
Input: 

Vector x , trial labels l , fuzziness 

level  {1, }m , number of clusters R .    

 Output: Clusters v ,  and u .     

1 Repeat  

2  For  i=1 to N 

3   Calculate distance from each center to all 
data samples by Eq. (2). 
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4   Compute degree of membership by the fuzzy 
partition function for all data samples 
by Eq. (4). 

5   Estimate fuzzy center of each cluster by 
Eq. (5). 

6   Estimate fuzzy covariance of each cluster 
by Eq. (6). 

7  End  

8  If condition (7) is satisfied 

9   Break loop. 

10  end  

11 end   

B. Offline Type-1 Fuzzy GG Classifier  

Unsupervised GG fuzzy algorithm can be converted into a 

supervised classifier by slightly extending its formulation to 

convert the set of clusters (a.k.a. rules) into a fuzzy mixture 

model [33]. Hence, the consequences are defined by a rule class 

association, denoted as ,j kh multiplied by the firing of a rule, 

expressed as ,i jf . The rule base is then defined in the following 

way: 
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The firing level of each rule is calculated as the quadratic 

multivariate classifier term [33]: 
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which is analogous to the distance, with the difference that the 

first term of the exponential value is inverted. The second term, 

in this case, is the degree of association of a sample with a rule. 

As a difference to standard fuzzy rule-based (FRB) systems, 

since the firing level of a rule is already multivariate as in (9), a 

t-norm, which would have been represented by the logical 

operator “AND” over the feature space, is not used here. The 

rule class association is defined as the ratio of the sum of 

memberships for each class: 
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where   is a Kronecker delta function that takes a class index 

ki indicating a specific class and li as the class label of the ith 

sample. Likewise, the original distance formulated by GG does 

not provide any measure of affiliation to a particular MI class. 

In order to provide the rules with an initial supervision on the 

target BMI commands, either a small set of trials or current 

predictions can be used. Then the distance measurement in (2) 

is redefined as: 
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The final class of the sample is computed by the weighted 

average of the rule outputs, as center-of-gravity defuzzification: 
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where K is the number of classes and *k  the resulting predicted 

class. 

For a detailed background on the similarities of the method 

to a Gaussian Mixtures of Bayes classifier, we refer the reader 

to the work by Abony and Szeifert [33]. The pseudocode of the 

type-1 fuzzy GG classifier is described in Table II. 

C.  General Type-2 Fuzzy Gath-Geva (GT2FGG) Classifier  

From the formulation of the type-1 supervised model described 

in the previous section, we propose a set of amendments to 

extend the approach presented in the previous section to GT2 

fuzzy. To this end, we adopt the method proposed by Linda and 

Manic [13], where the cluster fuzzifier m is represented as a 

fuzzy set denoted by M. As the computation of the primary 

membership function ,i ju  is dependent on the value of m, we 

can understand this fuzzy set M as the fuzzy membership grades 

of ,i ju . Knowing that we have a primary and secondary inter-

related membership functions, we can define the fuzzy 

membership of a point x  by a type-2 fuzzy membership 

function ( , )A x u , representing the uncertainty related to the 

input data as a GT2 fuzzy set, itself defined as  [34]: 

      {(( , ), ( , )) | [0,1]},x xA x u x u X u J  (13) 

or in the equivalent form 

 
 

  ( , ) / ( , ), [0,1] ,
X

xx X u J
x u x u J  (14) 

where the integral means the union of all cases of x  and u [34]. 

Early representations of GT2 were computationally expensive 

[34] and less applicable to the fast input-output response 

required for BMI scenarios. Fortunately, alternative 

representations of GT2 have been introduced enabling to use 

them with efficient computation as in the work reported in and 

[35-37]. Both [35] and [37] aim at representing GT2 as a 

composition of multiple IT2 fuzzy sets. The relation of both 

methods in their terminology, which is explained in [38].   

 In the present paper we will use the notation of zSlices. A 

zSlice is formed by cutting a plane at level ze of the GT2 fuzzy 

sets over what is denoted as the third dimension that spans over 

the secondary membership. This slicing results in a zSlice eZ , 

which is defined as follows [35]: 

TABLE II: TYPE-1 FUZZY GG CLASSIFIER 

 Input: 
Vector x , trial labels l , fuzziness level 

 {1, }m , initial fuzzy membership u ,  

initial number of rules K.    

 Output: 
Rules v ,  , u , jp , jf  and ,j kh .       

1 Repeat  
2  Estimate the fuzzy center of each rule by Eq. 

(5). 
3  Estimate the fuzzy covariance of each rule by 

Eq. (6). 
4  Compute degree of membership by the fuzzy 

partition function for all data samples by Eq. 
(4). 

5  Estimate rule class associations by Eq. (10). 
6  Calculate a priori probability of the degree of 

association by Eq. (3) 
7  Compute distance from all samples by Eq. (11). 
8  Estimate fuzzy partition memberships by Eq. (4). 
9  Compute degree of activation for each rule by 

Eq. (9) 
10  If condition (7) is satisfied 
11   Break loop. 
12  end  
13 end   
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or similarly [35] 
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The GT2 fuzzy set can be recovered by integrating the 

collection of an infinite number of zSlices [35]: 
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or, for a discrete number [35]: 
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In this work, the concept of zSlices based GT2 fuzzy is 

reinterpreted in order to fit it to our fuzzy partition model. The 

zSlices-based GT2 fuzzy membership for the sample set X  can 

be obtained as:  
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where ,i ju  and ,i ju  are the upper and lower rule memberships, 

respectively for a determined zLevel. Fig. 1 shows a GT2 fuzzy 

set and displays some of their zSlices for selected zLevels. 

These memberships can be derived from the rule partition 

matrix with the following expressions: 
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where [ , ]
e ez zM M  are the left and right bounds of the fuzzy set 

M with cut at ez . The centroid of zSlices-based GT2 fuzzy sets 

can be computed by the composition of the centroids of its 

zSlices eZ . As such, this can be defined as [35]:  
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where Ze
C is composed of the left and right interval centroids 

[ , ]
e ez zc c . The computation of the centroids of the zSlices can 

straightforwardly be obtained through any type-reduction 

method for IT2 fuzzy sets. In the present work, given the need 

for providing a rapid response and decoding from the brain 

signal, we use the Enhanced Iterative Algorithm with Stopping 

Condition [39], which allows faster processing than the 

standard Karnik-Mendel method [40] and has successfully been 

applied to real-time applications [41], [42]. ZC  is a discrete set 

made of the centroids of all zLevels ez . The zLevel 0z is usually 

omitted because it represents samples that do not contribute to 

the GT2 fuzzy set. The centroid of the rule is defuzzified as a 

weighted average of the weighted outputs of the centroid of 

each zLevel as [35]: 
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Likewise, we can find the membership grade of a ith sample via 

defuzzification: 
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The value of  ( )ij x  is the membership of a sample to the GT2 

fuzzy set linked to rule j . This parameter is an interval value 
 [ , ]( ) ( )j i j ix x . Recall that the zSlices are defined by their lower 

and upper bounds in Eq. (19). Then,  ( )ij x  is type-reduced using 

the Nie-Tan method [43], resulting in  ( )ij x . The pseudocode 

of the GT2FGG classifier is detailed in Table III. 
 

TABLE III: GENERAL TYPE-2 FUZZY GATH-GEVA CLASSIFIER 

 Input: Vector x , trial labels l , fuzziness 
level m M , initial fuzzy partitions 

u ,  number of rules k .    
 Output: 

Rules v ,  , u , jp , jf  and ,j kh .       

1 Repeat  
2  Estimate fuzzy centroid of each rule by Eq. (5). 
3  Estimate fuzzy covariance of each rule by Eq. 

(6). 
4  Compute degree of membership by the fuzzy 

partition function for all data samples by Eq. 
(4). 

5  Estimate rule class associations by Eq. (10). 
  Calculate a priori probability of the degrees of 

association by Eq. (3) 
6  Compute distance from all samples to each rule 

by Eq. (11). 
7  Estimate interval values of the primary function 

(20 and 21). 
  Generate zSlices for each zLevel by Eq. (19). 
8  Compute zSlices centroids by Eq. (23). 
9  Compute membership grades by Eq. (24). 
10  Update sum partition functions by Eq. (25) and 

(26). 
11  If condition (7) is satisfied 
12   Break loop. 
13  end  
14 End   

D. Online Parameters Self-adaptation for GT2FGG  

As the amount of training is limited in BMI, it is necessary 

to re-train our fuzzy model during the test periods. Similar to 

semi-supervised learning, the test data may serve to adapt our 

fuzzy model so as to cope with the changeable nature of the 

brain response across the course of the study. In addition to 

model adaptability based on parameter tuning, we propose a 

further self-adaptive methodology to adapt the whole structure 

of the model. For this purpose, several equations from Sections 

 
Fig. 1.  The three colored graphs in a), b), and c) display an example of a general fuzzy set A with a cutting plane on the zLevels 0.5, 0.7, and 0.9, respectively. Their resulting 

zSlices are depicted in the grey-scaled graphs. 
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III.C and III.D must be updated to be able to adapt the model 

parameters as well as monitor the quality of the FRB in a 

sample-by-sample (i.e. trial-by-trial) basis. Thus, we define the 

sum of membership functions of all trials as: 

   


   1
1 ( ) ,j N

N N
j j x  (25) 

and the sum of the membership functions per class in each rule 

is represented by: 

 
1

, 1 ( )( ) ,N N
j k j j N k*,kx   


   (26) 

From parameters (25) and (26) the recursive update of 

equations (3) and (10) is straightforward:  

 
1

,1 1
, 1

1

1
.,

N
j kN N

j j j k N
j

N
p h








 


   (27) 

Another model parameter that requires updating is the fuzzy 

mean, which can accommodate a new value as follows: 

 







 

11
11

( ) .
N

N jN N
j j j NN

j

x v
v v x (28) 

Likewise, the fuzzy covariance is updated with the new sample: 

 


 
 




  

 
    
 
 

11
1 11 1

( )
( )( ) .

N
j j NN N N N T

j j N j N jN N
j j

x
x v x v  (29) 

Note that this step does not require computing the centroids for 

all zLevels as in Eq. (23). The fuzzy covariance is updated using 

the resulting centroid membership of the new data sample, from 

which the inverse fuzzy covariance matrix can also be 

computed. Nowadays, robust solutions exist for computing 

matrix inversion and can be efficiently implemented using 

parallel programing [44]. As an alternative, the inverse 

covariance can also be updated recursively making use of the 

Sherman-Morrison-Woodbury inversion lemma for any non-

singular square matrix (see [45-47]). Thus the update of the 

fuzzy precision matrix can be defined as: 


  

 
 



 

 

  

 



  
    

   
    
  

1 1

1 1

1 1 1

1 1

1

( )( )
) .

( )( )

( )

N N

N j N j

N N

N j N j

N

j

N T
jN N

j jN N T
j jN N

j j
j N

x v x v

x v x v

x

(30) 

E. Online Self-Adaptive Autonomous Learning for GT2FGG  

First and foremost, adapting the FRB requires the definition 

of several conditions. These are based on different metrics that 
autonomously evaluate the state of the current model in relation 

to the new incoming data. To this end, we can use the online 

estimated model parameters presented in the previous section 

and some conditions that autonomously regulate the self-

adaptation process of the FRB. Three conditions are defined 

below: 

1) Condition A: If this condition is satisfied then the new data 

sample is considered as a potential candidate to become the 

center of a new rule. Similarly to working with Gaussians, we 

can imagine that each rule has a hyper-ellipsoidal area of 

influence defined by the Mahalanobis similarity function as 
follows: 

 
 


  

,
1

1
.

1 ( ) ( )
i j

T
i j i jx v x v

 (31) 

The leading rule that exerts the highest influence over the new 

point is defined as: 

 


  ,
1,...,

argmax .i j
j R

j  (32) 

The minimum influence that a leader rule can have over a 

sample is formulated as follows: 

 
2

' ( )(1 )
.

j n

j

j  


 









 

 (33) 

where  j  is a counter of the number of times that rule j  comes 

out as leader rule. Eq. (33) uses the value of a chi-square (  2
n ) 

distribution of n  degrees of freedom to delimit a statistical 

tolerance region over the Mahalanobis distance. This is used as 

a scaling term in the divisor of a function of counter  j , which 

permits rules with low backing to also preserve low minimum 

influence.   is a scaling parameter, with recommended value 

equals to the dimensionality of the data.    depicts a degree for 

the influence, which can simply be set to one. The inverse of 

the chi-square cumulative distribution function, with a desired 

confidence level  , can be estimated from any close 

approximation of the quantile function of the distribution, such 

as the Wilson-Hilferty method [48]. Finally, Condition A is 

defined as 

 , ji jA      (34) 

2) Condition B: While Condition A was based on the local 

relationship between the new data point and an existing rule, 

Condition B can be developed to add a level of vigilance over 

the hypervolume coverage. In practice, we want the new rule to 

cover a different area of the hyperspace from our existing rule. 

Thus, we estimate that the dispersion of the leader rule will be 

affected by the new sample. Then, let us define this ratio of 

difference between these volumes as: 

 







 




1

N
j

j N
j

 (35) 

where the symbol ||…|| represents the volume of the fuzzy 

covariance function. A common way of determining the hyper-

volume spanned by a covariance matrix is to use the 

determinant, albeit any other sophisticated methods for 

computing the volume of hyper-ellipsoids are also valid [49]. 

The values of   have been shown to follow a beta distribution 

defined by ( , ),Beta a b  when    1/ 2a N n and  / 2b n [50]. A 

threshold for Eq. (35) can be set as the values of the inverse 

cumulative distribution specified by a  and b  with significance 

level  . Condition B is then expressed as: 

 
   ( , )jB Beta a b  (36) 

3) Condition C: Last but not least, Condition C serves to 

correct the FRB and thus obtain a more compact and expressive 

set of rules. Then the overlap degree of every rule in the FRB is 

compared with the rest using the Bhattacharyya distance. The 

latter measures the closeness between two distributions, which 

can also be understood as the degree of overlap between the 

sample sets that both distributions represent [51]. Its equation 

for a multivariate normal distributions is: 

    


 
 

 

       

 

 
    
 
 
 

11 1
ln .

8 2

T j q

q j j q j q j q

j q

v v v v  (37) 

where   / 2q j q j        . Then, the rule with the largest 

overlap with *i  is defined by the following equation: 

   
    ,max( , {1,..., }, ).q jq q R q j  (38) 
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If the value of   q j  is greater than zero, we can consider it as a 

sign that both rules are collapsing. Therefore a merging 

operation of the rules represented by q and j  can be 

performed, using the following equations: 

 ,q j q j        (39) 

 ,
q q j j

q j
q j

v v
v

 



   

 

 


  (40) 

 

3 2 2

3 2 2

2
2 2

( 2 )
1

( 2 ) .

( )( )( )

q q j q j q

q j j j q j q j

Tq j
q j q j q j q jv v v v

     

      


   

     

       

 

       

  
 

    
 
     

 (41) 

Once the merge operation has been performed, an additional 

condition has been proposed in previous work to assess the 

homogeneity of the merged rules [52]. The differences in shape 

and orientation of the rules could result in the hypothetical case 

that the volume of the merged rule will cover an area that was 

not previously covered by rules q  and j . To ensure that this 

issue does not occur, a convenient vigilance condition is to 

compare the new merged rule with the old ones as follows [52]: 

         .q j q jn  (42) 

Finally, Condition C is given by: 

             0q j q j q jC AND n  (43) 

When a new rule is generated, the new point 1Nx
  is considered 

the center of the rule 1 1R Nv x
 
 . If this is the first rule to be 

added to the rule base then it can be defined as 

1 ( ( )),R diag range X

 otherwise it can be set as the average of the 

covariance of the already existing rules: 

 


 



 1

1

R

jj
R R

 (44)  

Fig. 2 and Table IV give an example of application of GT2FGG 

for a partition space with convex “banana shape” patterns. 

 

F. Online Feature Ranking and Rule Re-Scaling 

An important part of the BMI literature deals with the issue 

of determining which variables from the input data provide 

better discriminability for the target mental task. This is 

important to identify the channel or channel pair selection that 

best captures the underlying cortical activity patterns of the 

task. This is more challenging in the case of completely novice 

users given that the configuration may change across the course 

of the experiment whilst users stabilize their brain activity 

patterns based on the neurofeedback. Therefore, we provide a 

method for addressing this process incrementally. A practical 

indicator of class separability is given by the F-ratio criterion 

function, which computation is formulated as: 

 
Q

Q


( )
( ) ,

( )
b

w

tr
F x

tr
 (45) 

where bQ  and wQ  are the between- and within- scatter matrices, 

respectively. Intuitively, the idea is that the class separability 

capacity of a feature can be described by how much it 

maximizes ( )btr Q  whilst minimizing ( )wtr Q . Additionally, the 

trace of a matrix is an easy calculation. From the computation 

of GT2FGG, we indeed have all the necessary ingredients to 

estimate bQ  and wQ as an additional online processing step. The 

standard definition of wQ is the sum of the covariances from all 

subgroups, i.e.   1 2wQ   [53]. In our model, as the samples 

from one class can be subdivided into several rules, we then 

modify the standard definition into the following equation: 

 




= ,
hK R

j,k j jh
w

k=1 j=1 k

h p
Q

h
 (46) 

where 


 
1 ,

R

j j kkh h ,   is an index indicating a feature, and  is 

the set of all features distinct to . In Eq. (46), the covariance 

matrix of each rule is weighted by the normalized degree of 

class association and the expected a priori degree of association 

of a rule. As for the covariance matrix, only the rows and 

columns of the dimensions   are considered. The between 

scatter matrix is typically defined as 

1 0 1 0 2 2 0 2 0( )( ) ( )( )T T
bQ p v v v v p v v v v     

1  [53], where 
0

v is the 

global mean. In the present work, we define the global mean as 

the mean from all rule centers: 

 


 0 1

1
,

j

R

j
v v

R
 (47) 

and the class mean as: 

 



,

1
.

R j k j
k j

k

h v
v

h
 (48) 

Thus, we can define our between scatter as follows:  

 Q






 1

,
K k k

b k

h S

h
 (49) 

where S   
0 0

( )( )Tk k kv v v v  and 
 

1

K

k k
h h  for    ({1,..., } )n  

rows and columns in the covariance. From Eq. (46) and (47), 

we have the necessary parameters to compute (45). Note that 

Eq. (46) and (49) reuse the parameters obtained during the 

learning process of GT2FGG, so that it is not necessary to loop 

 
Fig. 2.  Shows the partition space in the main colored chart along with the 

GT2 fuzzy membership functions on the left and bottom as viewed from the 

top. Shaded areas from grey to back display the grades across the secondary 

membership function. The partition function goes from blue (lowest) to 

yellow (highest) for all points in the space. The white markers (+) indicate 

the location of the centroids while the white ellipsoids represent their lower 

(dotted line) and upper (solid line) dispersions. 

TABLE IV. RULE DESCRIPTIONS FOR THE EXAMPLE IN FIG. 2 

 Centroid Upper spread Lower spread 

Rule Dim. 1 Dim. 2 Dim.1 Dim.2 Dim.1 Dim. 2 

1 3.0414 10.9608 1.2688 4.6907 0.645 2.3219 

2 -7.3188 4.7448 1.4493 3.4232 0.7994 1.8642 

3 -2.8355 8.2532 3.8999 0.837 2.4677 0.5135 

4 -2.7138 -1.0634 2.9263 1.0347 1.7066 0.5962 

5 -2.1728 15.8757 4.0258 0.8434 2.4186 0.4925 

6 2.8185 3.5415 1.3385 4.4723 0.7328 2.3794 

7 -3.3881 -7.9124 3.3178 0.9739 1.7443 0.5057 

8 -8.5583 -2.0672 1.3364 5.9856 0.8249 3.4143 
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over all the training samples as with the original computation 

of the between- within- scatter matrices. Alternatively, for 

computational speed improvements, the update of the scatter 

matrices can be performed by computing the parameter 

differences with:  

   

    
       * * * * * * *

1 1 1

, , , , ,
, , ,N N N N N

j k j k j k k k j k j k
h h h h h h h h h  (50) 

 S S S   

       * * *

1 1, .N N N N
j j j k k k  (51)  

Note that the computation of the differences is only needed for 

the leader rule and the predicted class. Thus, an incremental 

update of the scatter matrices can be performed as: 

 Q Q    

 
     *

*

1, 1 1

,1

1N N N
w w j jj kN

k

h P
h

 (52) 

 Q Q S   


    * *

1, 1

1

1N N
b b k kN

h
h

 (53) 

Fig. 3 shows a comparison between the proposed method and 

a standard computation of the F-ratio that runs over the whole 

set of training samples. Although the resulting scores differ in 

magnitude, they exhibit a very high significant positive 

correlation. Ergo, our method supplies, for all practical 

purposes, a tantamount feature score. 

As formulated in (45), the value of the ratio should get higher 

for meaningful features. However, as specified in the inequality 

in (48) and (47), we are leaving out the queried feature to be 

able to assess the impact of the removal of this feature on the F-

ratio. Thus, the smaller the resulting F-ratio, the higher the 

relevance of the feature. For this reason, we take the inverse of 

the F-ratio to obtain the opposite trend and the resulting weight 

is viewed as a proportion of the feature with the maximum 

score. Therefore, the weight for feature   is defined as:   

 
 
Q Q

Q Q

 


 









1,...,

( ) / ( )
,

max ( ) / ( )
w b

w bn

tr tr

tr tr
 (54) 

 Once a feature weight is obtained, it can be used to re-scale 

the covariance matrix so that the features with low weights will 

have a smaller effect on the computation of the Mahalanobis 

similarity function in (31), as proposed in [52]. A common 

approach is to remove the low weighting features from the 

system. Alternatively, a practical method presented in [52] is to 

use these weights for penalizing the less important features 

during the model construction, i.e. the weights can serve to 

perform a shrinkage of the covariance matrix. This scaling is 

performed as follows: 

    scaled T
j V D V  (55) 

where V  comes from the singular value decomposition 

 T=VDV and   is the resulting mapping of the feature 

weights into the subspace spanned by the covariance of the rule 

as    ( ( ) )Tdiag V diag V . This scaling can be performed both with 

the covariance and its inverse. This scaled covariance with 

feature restrictions can be used in following operations 

involving these matrices, thus lowering the impact of redundant 

features without having to remove them.   

The pseudocode of the self-adaptive GT2FGG classifier is 

detailed in Table V along with a flowchart diagram in Fig. 4. 

TABLE V: ONLINE SELF-ADAPTIVE GENERAL TYPE-2 FUZZY GATH-GEVA 

CLASSIFIER 

 
Fig 4. A flowchart diagram illustrating the overall processing steps of the 
self-adaptive GT2FGG classifier. 

 Input: 
Test input x , fuzziness level m M .  

 Output: 
Rules v ,  , u , jp , jf  and ,j kh .       

1 Repeat  

2  Classify test sample x  by Eq. (12). 

3  Estimate upper and lower memberships for each 
zLevel by Eq. (20) and (21). 

4  Add the zSlices for each zLevel by Eq. (19). 

5  Compute membership grade by Eq. (24). 

6  Incrementally update model parameters by Eq. (25), 
(26), (27), (28), and (29). 

7  Compute hyper-ellipsoidal area of influence by Eq. 
(31). 

8  Find leader rule by Eq. (32). 

9  Compute minimum tolerated influence by Eq. (33). 

10  If Condition A (34) is satisfied Then 

11   Compute ratio of coverage by Eq. (35). 

12   If Condition B (36) is satisfied Then 

13    Create new rule. 

14   End 

15  end  

16  Compute measure of overlap by Eq. (37). 

17  Find rule with largest overlap by Eq. (38). 

18  Merge rules by Eq. (39), (40) and (41). 

19  If Condition C (43) is satisfied Then 

20 
  Remove rules q’ and j’, and keep their merged 

one 

21  end  

23  If feature weighting is active Then 

24   Compute scatter matrices by Eq. (45—49) 

 
Fig. 3. Shows the correlation between the standard F-ratio and the proposed 

method for a synthetic dataset. The synthetic test dataset with 200 samples 

was generated using two multivariate Gaussian distributions with different 

means as well as a diagonal covariance matrix with thirty dimensions and 

variances equal to 0.5. Gaussian noise was added to each dimension in scale 

from 1 to 30 signal-to-noise ratio per sample. The resulting scores are 

significantly and positively correlated [R=0.9932, p < 0.01 (Pearson)].  
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25   Estimate feature weights by Eq. (54) 

26   Rescale feature weights by Eq. (55) 

27  end  

28 End   

III. EXPERIMENTS AND SETTINGS 

A. EEG Settings and Filters  

The EEG signal was recorded using an EEG system with 

active electrodes as well as a BrainAMP DC amplifier (Brain 

Products GmbH). Only six electrodes were used as per the 

positions shown in Fig. 5. AFz and FCz were used a ground and 

reference electrodes. The EEG signal frequency was 500 Hz per 

channel. The users were asked to remain still and limit eye 

movements to avoid electrooculography (EOG) artifacts. 

Additionally, the FORCe method [54] was employed for online 

artefact removal on the training dataset. A posterior visual 

examination of the recordings was performed to confirm the 

absence of artifacts. A band-pass (4th order Butterworth filter) 

was applied between 0.5 and 50Hz. 

B. BMI Experiments 

Fifteen users (12 men and three women; mean age 27.33 ± 

4.8 years old; two left handed), untrained in BMI, were 

recruited to participate in the experiment. A programmable 

humanoid robot (Nao, Aldebaran Robotics) was used as the 

brain controlled device. Local research ethics committee 

approval was obtained (project number: 05/Q0403/142). Two 

different BMI learning approaches were implemented, namely 

a basic screen-based cue task (referred to as “basic task”) 

followed by an online robot navigation with a Nao Robot 

(referred to as “robot task”): 

1) Basic task (Fig. 6.1): A visual stimulus is displayed, 

highlighting a pointer symbol either left or right, upon which 

the user is given two seconds to perform a sustained MI task, 

i.e., for either right or left motion. Then, a relaxation period is 

allowed before the next iteration. Thus, each trial consists of 

one guided MI task performed by the user. For the first task, the 

visual cues are displayed in a random order with the condition 

that 10 trials of each MI task (i.e. left or right) are presented 

without any feedback. 

2) Robot task (Fig. 6.2): In this task, the user is initiated to a 

humanoid robot control, which continuously and slowly moves 
forward in a 25m2 empty space. The user is instructed to turn 

the robot left or right using MI towards the opposite side and a 

blue cone is intentionally placed on the robot trajectory. The 

user continues performing MI until the obstacle is avoided or 

removed. As regards the predictions, confidence values around 

0.6 indicate a poor confidence level, those around 0.7 a 

moderate confidence level, those around 0.8 a high confidence 

level, and those around 0.9 a very high agreement. For distorted 

confidence scores, the Platt’s scaling is used [55]. A system 

update is performed when the confidence level prediction 

reaches values higher than 0.8. Then, a short sound is produced 

and the robot proceeds with the corresponding action. The BMI 
commands and signals are annotated and recorded for posterior 

analysis.   

C. EEG Pre-Processing 

 A large majority of previous BMI approaches have been 

developed for features generated via CSP filters [56], which 
decompose the original EEG signal into a set of additive 

subcomponents, also called “bands”. In CSP, the feature 

generation requires knowing the covariance of the respective 

classes in advance in order to develop the subsequent spatial 

transformations of the features that provide maximum 

separability between the classes. 

A limitation of this approach is that, in order to apply CSP, a 

set of class labels must be provided a priori and, when the users 

are untrained, the class labels from the initial session can be 

unreliable. Moreover, in cases where the goal is to move from 

a basic BMI paradigm with visual cues on the screen to more 

demanding scenarios that involve controlling a robot in real-

time, the users’ brain responses may exhibit non-stationary 

 
Fig. 5.  EEG electrode placement used during the 

experiment based on the International 10-10 

system. The ground electrode is shown in grey, 

the reference electrode in blue, and the signal 

electrodes in yellow. 
 

Fig. 6. Processing schema and evaluation for the basic and robot tasks. 
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signal as a result of this context change. Then, a supervised 

feature extraction method may add another subjacent source of 

decalibration, in addition to the one experimented by the 

classifier. 

Features based on spatial filters such as surface Laplacian, 

are also frequently used in the BMI literature [57]. This method 

aims to estimate a radial current at the scalp, using the recorded 

EEG signal. Although this does not require class labels, for 

accurate estimations, it may involve operations of high 

computational complexity such as spherical spline 

interpolations. In the present work, we obtained the highest 

accuracy using phase synchrony features, which are class-free 

and their computation is nothing more than an analysis of the 

phase differences between the signals [58]. The phase 

synchrony features are computed from three pairs of channels 

displayed in Fig. 5, namely F3-F4, FC5-FC6, and C3-C4. The 

location of these pairs provides us with enough EEG coverage 

of the motor cortex. Then, the following steps are performed:  

1) Step 1. For each raw EEG signal from a specific channel 

  denoted by ( )t , every time the buffer gets filled for a 

period of length  , we compute the Hilbert transform of every 

signal at time t  as  1 1( ) ( ( ))t H t  [69].  

2) Step 2. Following step 1, we derive its Hilbert phase as: 

 






1

1

1

( )
( ) arctan ;

( )

t
t

t
 (56) 

3) Step 3. Finally, a value of phase synchronization can be 

estimated by the mean phase difference between two signals 

[70, 71]: 

 
1 21,2

1

[ ( ) ( )]1
,t tx e  



  







  (57) 

where 1    and x  is one dimension of the input used for 

the learning model.   

IV. PERFORMANCE ANALYSIS 

The result section consists of three analyses: A) performance 

results of the proposed method along with 14 other algorithms 

on the recorded data from both tasks; B) a statistical analysis of 

results comparison between the methods; C) performance 

results of the proposed method using different features. 

A. Performance Results 

For the basic task, the classifiers were allowed to be trained 

offline using a 5-fold cross-validation process. The predictions 

from each fold were copied in their corresponding trial order 

TABLE VI.  PERFORMANCE COMPARISON 
 Acc.: Accuracy; #R: number of rules or length of basic structure; T’’: seconds taken for retraining or sequential learning from one sample instance with Intel 

proc. i7 quad-core @3.4 GHz; s.v: support vectors; McIT2FIS: metacognitive interval type-2 fuzzy; oLDA: online linear discriminant analysis; AdIM: adaptive 

information matrix; DBN: deep belief nets; SCGNF: scaled conjugate gradient neuro fuzzy; ARTMAP: adaptive resonance theory mapping; T1FGG: type-1 

fuzzy Gath-Geva classifier; RF: random forests; RBFSVM: radial basis function support vector machine; LinSVM: linear support vector machine; NN: neural-

networks; T1FSIMclass: type-1 fuzzy simpl_eclass; SA-GT2FGG: Self-Adaptive General Type-2 Fuzzy Gath-Geva. 
 

Basic task Robot Task 

Learning  

Method 

Used 

in  BMI 

Type Acc.% TP 

rate 

TN 

rate 

#R Acc. 

% 

TP 

rate 

TN 

rate 

#R T’’ 

*SA-GT2FGG 

(Proposed) 

Yes GT2 

Fuzzy 

85.11 ± 

3.30 

0.86 ± 

0.10 

0.84 ± 

0.07 

5.1 ± 0.8 

rules 

85.78 ± 

2.05 

0.90 ± 

0.05 

0.81 ± 

0.05 

6.7 ± 0.7 

rules 

0.0026 ± 

0.0002 

*McIT2FIS [25]  Yes  IT2 

Fuzzy 

62.05 ± 

10.42 

0.63 ± 

0.144 

0.61 ± 

0.117 

6.3 ± 

1.58 

rules 

61.49 ± 

9.85 

0.78 ± 

0.148 

0.45 ± 

0.201 

8.9 

± 0.8 

rules 

0.0025 ± 

0.0002 

*oLDA [3] [21, 59] Yes  Linear 

discrit. 

52.81 ± 

12.16 

0.77 ± 

0.139 

0.30 ± 

0.181 

2 

cov. 

58.38 ± 

9.96 

0.65 ± 

0.133 

0.51 ± 

0.149 

1 

cov. 

0.0033 ± 

0.0001 

*AdIM [3]  Yes  Quadratic 

discrit. 

62.00 ± 

7.95 

0.70 ± 

0.118 

0.54 ± 

0.122 

2 

cov. 

69.63 ± 

7.25 

0.78 ± 

0.079 

0.61 ± 

0.103 

2 

cov. 

0.0014 ± 

0.0005 

*SA-GT2FGG 

(no feat. scaling) 

No GT2 

Fuzzy 

80.20 ± 

3.67 

0.81 ± 

0.072 

0.80 ± 

0.045 

6.08 

± 1.09 

rules 

82.52 ± 

4.23 

0.79 ± 

0.051 

0.87 ± 

0.059 

6.9 ± 

1.62 

rules 

0.0014 

± 

0.0002 

*SA-GT2FGG 

(with T1 Fuzzy) 

No T1 Fuzzy 69.80 ± 

8.31 

0.70 

± 0.097 

0.70 ± 

0.087 

9.26 

± 0.96 

rules 

73.45 ± 

4.47 

0.72 ± 

0.040 

0.76 ± 

0.063 

10.4 

± 1.76 

rules 

0.0022 ± 

0.0002 

*T1FSIMclass  

[60, 61] 

No T1 Fuzzy  69.85 ± 

9.36 

0.70 ± 

0.088 

0.71 ± 

0.116 

8.93 

± 2.52 

rules 

68.78 ± 

5.81 

0.68 ± 

0.063 

0.70 ± 

0.068 

14.2 ± 

2.04 

rules 

0.0019 ± 

0.0001 

DBN [62] No NN 55.66 ± 

5.64 

0.60 ± 

0.219 

0.45 ± 

0.467 

100 

neurons 

50.44 ± 

6.41 

0.40 ± 

0.161 

0.66 ± 

0.439 

100 

neurons 

0.6013 ± 

0.01 

SCGNF [63] [64] No Fuzzy 

NN  

71.08 ± 

7.00 

0.68 ± 

0.17 

0.68 ± 

0.15 

10 

neurons 

65.46 ± 

12.19 

0.69 ± 

0.109 

0.77 ± 

0.153 

10 

neurons 

0.2628 ± 

0.04 

Fuzzy ARTMAP 

[65] 

No Fuzzy 

ART 

71.75 ± 

7.75 

0.68 ± 

0.173 

0.69 ± 

0.152 

10 rules 67.46 ± 

13.83 

0.67 ± 

0.15 

0.74 ± 

0.17 

10 rules 0.2897 ± 

0.05 

T1FGG [33] No T1 Fuzzy 60.19 ± 

7.85 

0.62 ± 

0.142 

0.62 ± 

0.137 

10 rules 60.74 ± 

7.58 

0.60 ± 

0.121 

0.59 ± 

0.146 

10 rules 0.019 ± 

0.06 

RF [66] Yes Ensemble 

Trees 

74.68 ± 

7.69 

0.70 ± 

0.149 

0.79 ± 

0.093 

10 trees 67.33 ± 

9.10 

0.64 ± 

0.125 

0.71 ± 

0.127 

10 trees 0.1195 ± 

0.014 

RBFSVM [67] Yes Non-

linear 

SVM  

66.34 ± 

10.64 

0.56 ± 

0.212 

0.66 ± 

0.191 

9 ± 1 s.v. 61.15 ± 

12.84 

0.66 ± 

0.162 

0.67 ± 

0.186 

9 ± 1 

s.v. 

0.0089 ± 

0.001 

LinSVM [68] Yes Linear 

SVM 

63.57 ± 

11.90 

0.58 ± 

0.213 

0.64 ± 

0.201 

30.18 ± 

2.14 

62.30 ± 

12.44 

0.67 ± 

0.188 

0.63 ± 

0.202 

30.18 ± 

2.14 

0.0086 ± 

0.0009 



 11 

into a global prediction vector of size equal to the total number 

of trials in the original session of the corresponding user. This 

organization of the predictions enables to obtain a total 

evaluation metric per user, rather than averaged results from all 

folds. As the robot task is performed online, predicted values 

are recorded for each sequential trial and these are then 

compared against the ground truth annotations of the suggested 

actions at the end of the experiment. 

Several machine learning algorithms were compared to 

evaluate the performance of SA-GT2FGG against state-of-the-

art methods. We compared their brain decoding accuracy, both 

during the basic and robot tasks.  
TABLE VII. COMPARISON OF ACCURACY BETWEEN SA-GT2FGG AND 

ALTERNATIVE METHODS - BASIC TASK 

Method A Method B Test Estimate 
P-Value 

α=0.05 

SA-GT2FGG oLDA 0.03 p<0.01 

SA-GT2FGG AdIM 0.15 p<0.01 

SA-GT2FGG McIT2FIS -0.01 p<0.01 

SA-GT2FGG SA-GT2FGG-NS 0.03 p<0.01 

SA-GT2FGG SA-GT2FGG-T1FS 0.03 p<0.01 

SA-GT2FGG T1FSIMclass 0.07 p<0.01 

SA-GT2FGG DBN 0.13 p<0.01 

SA-GT2FGG SCGNF 0.09 p<0.01 

SA-GT2FGG ARTMAP -0.01 0.01 

SA-GT2FGG T1FGG 0.02 p<0.01 

SA-GT2FGG RF 0.01 p<0.01 

SA-GT2FGG RBFSVM 0.2 p<0.01 

SA-GT2FGG LinSVM -0.03 p<0.01 

All algorithms were allowed to use the data from the basic 

task as training data. In addition, adaptive/self-adaptive 

methods were allowed to update their models. Evaluating 

offline and online methods enables to identify whether offline 

classifiers are able to generalize well to the online robot control 

paradigm without the need for online adaptation. We added two 

alternatives of the proposed algorithm, one with the feature 

scaling deactivated and one that uses type-1 fuzzy sets rather 

than type-2. Some algorithms such as LDA and SVMs are quite 

popular in BMI, while random forests and ARTMAP are offline 

methods able to generalize well despite learning with small 

training sets.  

All methods were trained using phase synchrony features. As 

regards those methods that required the definition of parameters 

a priori, these were set-up to their optimal configurations as 

suggested in their original articles. 

In Table VI, a set of algorithms are compared using inter-

subject statistical metrics of performance: 


  

    
; ; ;

tp tn tp tn
Acc TPR TNR

tp fp fn tn tp fn tp fn
(58) 

where tp  and tn  are the numbers of true positives and true 

negatives, fp  is the number of false positives, and fn is the 

number of false negatives.  

B. Statistical Comparison of Results 

 A statistical analysis was performed to evaluate group 

differences between methods from all subject results in each 

task. Post-hoc analysis was performed after significant 

ANOVA (Welch’s F test). The Shapiro-Wilk test results with 

alpha set to 0.05 can be found in the supplementary material 

(SP). 

As regards the basic task, the post-hoc test results after 

significant ANOVA (F-value: 28.327, p < 0.01) are shown in 

Table VII (see complete table in SP). Thus, the results obtained 

with the proposed SA-GT2FGG method are significantly better 

than the ones obtained with the alternative methods, suggesting 

that, even in the situation of a basic screen-based cue BMI 

approach, SA-GT2FGG provides competitive performance 

with respect to the other methods. In addition, the results show 

that oLDA, AdIM, and McIT2FIS achieve a performance that 

is significantly above poorly performing methods in this 

scenario such as DBN. However, their accuracy varies in 

significant difference with respect to other methods such as 

SCGNF, T1FGG, ARTMAP, RF, RBFSVM and LinSVM. 

For the robot task, the detailed values of the post-hoc multi-

comparison tests are provided in Table VIII (see complete table 

in SP) after significant ANOVA test (F-value: 61.8163, p < 

0.01). Thus, we can observe that there is statistical difference in 

performance between the proposed SA-GT2FGG method and 

the other methods. Overall, there is some improvement using 

adaptive methods applied to BMI (oLDA, AdIM, McIT2FIS) 

during the robot task, although this is not sufficient to become 

statistically notable with respect to the other methods. 

 Finally, a Receiver Operating Characteristic (ROC) curve 

analysis is presented in Fig. 7 and Table IX for all the subjects 

studied, showing the performance of each method as its 

prediction confidence score (used feedback and adaptation) 

varies. We can observe that, while adaptive and linear methods 

such as oLDA and AdIM perform well (above the mid reference 

line) for several subjects, SA-GT2FGG still exhibits greater 

separability. Assigning maximum penalization for false 

positives, the optimal confidence threshold for SA-GT2FGG 

lies on 0.8254 ± 0.0249, which is right within the high 

confidence limit. 

C.  Signal Features and Settings Comparison 

 A performance analysis of SA-GT2FGG using signals from 

three different channel configurations and four feature 

extraction methods is implemented in this section. In order to 

TABLE VIII. COMPARISON OF ACCURACY BETWEEN SA-GT2FGG AND 

ALTERNATIVE METHODS - ROBOT TASK 

Method A Method B Test. Estimate 
P-Value 

α=0.05 

SA-GT2FGG oLDA 0.02 p<0.01 

SA-GT2FGG AdIM 0.16 p<0.01 

SA-GT2FGG McIT2FIS 0.07 p<0.01 

SA-GT2FGG SA-GT2FGG-NS 0.09 p<0.01 

SA-GT2FGG SA-GT2FGG-T1FS 0.08 p<0.01 

SA-GT2FGG T1FSIMclass 0.13 p<0.01 

SA-GT2FGG DBN 0.16 p<0.01 

SA-GT2FGG SCGNF 0.08 p<0.01 

SA-GT2FGG ARTMAP -0.02 p<0.01 

SA-GT2FGG T1FGG 0.07 p<0.01 

SA-GT2FGG RF 0.1 p<0.01 

SA-GT2FGG RBFSVM 0.29 p<0.01 

SA-GT2FGG LinSVM 0.07 p<0.01 
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compute CSP and band power features, a band-pass 8-30Hz 

filter is applied on the EEG signal a priori. Filter Band CSP 

takes as input a decomposition of the signal on eight frequency 

bands 4-8Hz, 8-12Hz…, subsequently up to 36-40Hz. Table IX 

displays the inter-subject results. Therefore, the analysis shows 

that SA-GT2FGG in conjunction with phase synchrony 

provides the best results, which is promising considering a very 

fast unsupervised feature extraction method such as phase 

synchrony. 

V. DISCUSSION 

 In this work, a novel BMI learning methodology was 

proposed to address the challenges raised by real online BMI 

systems with limited training data and changing context. In 

particular, two essential technical contributions can be 

highlighted: 1) implementation of GT2 FISs into a BMI 

experiment with real robot control using unsupervised signal 

features; 2) a novel GT2 fuzzy logic classifier that is able to  

autonomus learn by self-adapting its parameters and structure 

(number of rules) to accommodate to the very likely signal 

nonstationarities. The GT2 FRB stands on the foundations of 

GG likelihood dissimilarity and a rule-to-class association 

measure. The fuzzy inference of the proposed model was 

performed by applying the center-of-gravity principle of the 

rule’s firing level and rule-class association, i.e. no rule is 

specifically bounded to just one class. Each rule was composed 

of GT2 fuzzy sets, which zSlices were formed by the upper and 

lower fuzzy memberships with respect to a fuzzy soft 

partitioning with the fuzziness degree of a determined zLevel 

(19-21). As a difference to methods based on IT2 fuzzy sets, 

employing GT2 fuzzy sets removes the need for keeping two 

mirrored processing stacks for the upper and lower 

memberships (e.g. keeping track of upper   and lower 
covariance matrices). Once all the general fuzzy sets are type-

reduced and defuzzified, the resulting centroids are regarded as 

rule centers. As for the model  autonomous learning a self-

adaptive, an online monitoring method was presented based on 

a set of conditions that surveil the minimum influence exerted 

by the current model over a new sample, as well as the 

maximum coverage, and rule redundancy. The update of the 

fuzzy model parameters was then performed with online 

incremental updates.  
 The achieved performance was high for both the basic 

screen-based cue and online robot tasks using phase synchrony 

features. The basic task used for training only consisted of 10 

trials per class, meaning that performance in the robot task was 

fully dependent on adaptation. By the end of the experiment, all 

novice participants were able to perform the robot task 

accurately. Comparison results against T1 fuzzy and IT2 fuzzy 

methods indicate that scaling towards GT2 fuzzy models is an 

interesting option to improve performance. As to offline 

methods such as SVM and random forests, these seem to have 

failed to generalize to the robot task without adaptation 

capabilities. As regards popular adaptive methods in BMI such 

as oLDA and AdIM, the performance improved when 

adaptation was enabled, although they did not reach levels 
similar to the one obtained with SA-GT2FGG. While they 

remain relevant approaches due to their simplicity, their fixed 

structure may autonomous and evolving learning flexibility 

required for the pursued objectives of the proposed research.

 
Fig. 7. ROC and Area Under the Curve (AUC) during the robot task for each 

subject. 

TABLE IX. AREA UNDER THE CURVE STATISTICS (ROBOT TASK) 

 SA-GT2FGG oLDA AdIM McIT2FIS 

Subject 1 0.98 0.63 0.66 0.71 

Subject 2 0.97 0.5 0.6 0.74 

Subject 3 0.97 0.68 0.67 0.8 

Subject 4 0.98 0.73 0.87 0.85 

Subject 5 0.98 0.56 0.92 0.71 

Subject 6 0.98 0.8 0.81 0.62 

Subject 7 0.98 0.53 0.72 0.71 

Subject 8 0.97 0.62 0.65 0.59 

Subject 9 0.99 0.71 0.81 0.79 

Subject 10 0.99 0.77 0.88 0.84 

Subject 11 0.99 0.84 0.85 0.91 

Subject 12 0.98 0.53 0.68 0.62 

Subject 13 0.98 0.54 0.59 0.84 

Subject 14 0.99 0.77 0.61 0.73 

Subject 15 0.97 0.77 0.58 0.63 

VI. CONCLUSION AND FUTURE WORK 

 In conclusion, this work represents a step further in GT2 
fuzzy systems by implementing a learning model based on this 

extended fuzzy logic framework for adaptive BMI systems. As 

TABLE X.    ACCURACY COMPARISON ACROSS DIFFERENT FEATURES AND SETTINGS WITH SA-GT2FGG 

 Basic Task Robot Task 

Channels PS CPS 

(4 bands) 

FBCSP 

(4 bands) 

BP PS CSP 

(4 bands) 

FBCSP 

(4 bands) 

BP 

4 channels (F3, F4, C3, 

C4) 

75.64 

± 2.61 

51.30 

± 2.61 

74.53 

± 2.54 

50.61 

± 1.44 

74.64 

± 1.69 

49.66 

± 1.91 

71.24 

± 1.17 

47.43 

± 3.47 

6 channels (F3, F4, FC5, 

FC6, C3, C4) 

85.11  ± 

3.30 

64.50 

± 3.41 

75.54 

± 1.88 

50.37 

± 2.08 

85.78 ±  

2.05 

61.00 

± 2.29 

72.20 

± 1.38 

48.48  

± 1.97 

8 channels (F3, F4, FC5, 

FC6, C3, C4, CP4, CP6) 

72.02  

± 2.60 

42.09 

± 5.87 

73.23 

± 2.11 

50.69 

± 1.55 

72.14 

± 1.32 

41.50 

± 6.53 

70.62 

± 1.44 

50.67 

± 1.16 

PS: phase synchrony; CPS: common spatial pattern; FBCSP: Filter band common spatial pattern; BP: band power. 
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regards the experiment, in future research we will work on 

reducing the amount of supervised training even further. In the 

current robot task, the user is constrained to perform MI at 

specific controlled timings and within a set of determined 

commands. Therefore, we will aim at extending the 

experimentation towards asynchronous and free control. 
Likewise, we look forward to working with different control 

scenarios including rehabilitation devices and prostheses. As 

regards fuzzy methods, an area for future research would be to  

 further explore the suitability and applicability of the type-

reduction method for zSlice type-2 fuzzy such as centroid-flow 

algorithms. As for the FRB identification system, although we 

are satisfied with the trade-off between performance and 

complexity provided by our method for real-time operation, the 

self-adaptive structure could be extended to other applications 

and experiments by adding an autonomous rule-splitting 

condition in order to improve the specificity of the rules to the 

pattern distribution, at the cost of adding some extra 
computations. 
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