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ABSTRACT

Two-photon calcium imaging of the brain allows the spa-
tiotemporal activity of neuronal networks to be monitored at
cellular resolution. In order to analyse this activity it must first
be possible to detect, with high temporal resolution, spikes
from the time series corresponding to single neurons. Previ-
ous work has shown that finite rate of innovation (FRI) theory
can be used to reconstruct spike trains from noisy calcium
imaging data. In this paper we extend the FRI framework for
spike detection from calcium imaging data to encompass data
generated by a larger class of calcium indicators, including
the genetically encoded indicator GCaMP6s. Furthermore,
we implement least squares model-order estimation and per-
form a noise reduction procedure (‘pre-whitening’) in order
to increase the robustness of the algorithm. We demonstrate
high spike detection performance on real data generated by
GCaMP6s, detecting 90% of electrophysiologically-validated
spikes.

Index Terms— Calcium imaging, Calcium transient de-
tection, Finite rate of innovation, GCaMP6s

1. INTRODUCTION

Optical imaging of populations of neurons at cellular resolu-
tion may prove crucial to developing our understanding of the
function of the brain. In order to analyse the spatiotemporal
activity of neuronal networks, one must first be able to de-
tect, with high temporal precision, the time at which action
potentials (spikes) were fired from individual neurons.

As the concentration of intracellular free calcium is a
reliable indicator of spiking activity, several optical imaging
methods rely upon calcium-sensitive fluorescent indicators
(calcium indicators) which visualise spiking activity via a
change in their fluorescence intensity. Recent advances
in protein engineering have produced genetically encoded
calcium indicators (GECIs) which have, for the first time,
exceeded the sensitivity of the traditionally used synthetic
indicators [1]. GECIs have a proven capability for imaging
the same in vivo neuronal populations over multiple weeks
and they can be targeted to selected cellular and subcellular
compartments. Due to the above advantages of GECIs, they
are becoming the preferred tool for calcium imaging exper-

iments. Spike detection algorithms which are suited to the
kinetics of these indicators are thus required.

A spike in a neuron produces a pulse with a characteris-
tic shape in that neuron’s fluorescence signal, this pulse is
referred to as a calcium transient. Several algorithms em-
ploy template-matching approaches which locate portions of
the fluorescence signal that correspond to the expected pulse
template [2, 3]. The performance of such algorithms which
include strict assumptions on the template’s amplitude [3] de-
teriorates on real data, in which transient amplitudes vary
greatly. Vogelstein et al. developed a fast algorithm that per-
forms a maximum a posteriori estimation to infer the most
likely spike train given the imaging data and a model of intra-
cellular calcium dynamics [4].

In [5], Oñativia et al. exploited the fact that calcium imag-
ing data, which can be modelled as streams of decaying expo-
nentials, are a class of signals with a finite rate of innovation
(FRI) [6]. They used FRI theory to develop a fast spike de-
tection algorithm which demonstrated both high accuracy and
high temporal precision when detecting spikes from calcium
imaging data generated by the synthetic dye Oregon Green
BAPTA 1-AM (OGB-1).

The main focus of this paper is to extend the FRI frame-
work for calcium transient detection to be used on a larger
class of calcium indicators. Oñativia et al. modelled the char-
acteristic pulse shape as an instantaneous rise and an expo-
nential decay. This is a good approximation for some calcium
indicators, but not for those with a slow rise such as the GECI
GCaMP6s, which has already been shown to be highly useful
for the study of neuronal networks [1]. Transients generated
by GCaMP6s take 200-300ms to reach peak amplitude and
thus will be detected with low temporal precision by algo-
rithms which assume an instantaneous rise time.

In Section 2 we generalise the FRI framework for calcium
transient detection for a pulse template which approximates
the dynamics of a larger class of calcium indicators. In Sec-
tion 2.2 we introduce a method to increase the robustness of
spike detection from noisy fluorescence signals and in Sec-
tion 2.3 we outline our least squares model-order estimation
framework. Finally, in Section 3 we demonstrate the perfor-
mance of the modified FRI algorithm on real data generated
by the calcium indicator GCaMP6s.



2. FINITE RATE OF INNOVATION THEORY
APPLIED TO CALCIUM TRANSIENT DETECTION

A spike in a neuron produces a calcium transient with a char-
acteristic pulse shape in the corresponding neuron’s fluores-
cence signal. This signal can therefore be modelled as a con-
volution of the spike train x(t) =

∑K
k=1 akδ(t− tk) with the

known characteristic pulse shape p(t), such that

f(t) = x(t) ∗ p(t). (1)

Finite Rate of Innovation (FRI) theory is a framework for the
sampling and reconstruction of signals that can be completely
defined by a finite number of free parameters. The signal f(t)
is an example of such a signal as it is completely defined by
the parameter set {ak, tk}Kk=1.

In [5], Oñativia et al. developed an FRI algorithm to de-
tect the time points of calcium transients whose shape is char-
acterised by an instantaneous rise and an exponential decay.
They initially filter the signal f(t) with an exponential repro-
ducing kernel and compute weighted finite differences of the
samples. These operations allow the authors to transform the
problem from one of estimating the time points of calcium
transients to the classical FRI problem of retrieving the loca-
tions of a stream of Diracs. Transforming the problem into
a classical one in the FRI framework enables the authors to
use FRI methods (see [7]) to retrieve the time points of the
calcium transients.

We now focus on extending the FRI framework for cal-
cium transient detection to those whose shape is characterised
by a slower (not instantaneous) rise and an exponential decay.
We model their characteristic pulse shape as

p(t) =
(
e−αt − e−γt

)
1t≥0, (2)

where α and γ are known parameters. In order to use the
FRI framework for this pulse shape, we must first identify the
filtering scheme that transforms the estimation problem into
sampling and reconstructing a stream of Diracs.

Proposition 1. Filtering f(t) = x(t) ∗ p(t) with the scheme
in (3)

yn =
〈
f(t), ϕ

(
t
T − n

) 〉
zn = yn − e−αT yn−1
wn = zn − e−γT zn−1,

(3)

is analogous to sampling the stream of Diracs x(t) with the
kernel

ψ(t) = ϕ(t) ∗ β−αT (−t) ∗ β−γT (−t), (4)

where β−αT and β−γT are first order E-splines and T is the
sampling period.

Proof. From the initial filtering operation we obtain

yn =
〈
f(t), ϕ

(
t
T − n

)〉
=
〈
x(t) ∗ p(t), ϕ

(
t
T − n

)〉
=
〈
x(t), p(−t) ∗ ϕ

(
t
T − n

)〉
.

(5)

We take finite differences as in Eq. (3) so that we have

wn = yn −
(
e−αT + e−γT

)
yn−1 + e−αT e−γT yn−2. (6)

We write wn = 〈x(t), h(t)〉 where, from (5) and the linearity
of the inner product, we have

h(t) =p(−t) ∗ ϕ
(
t
T − n

)
−p(−t) ∗ ϕ

(
t
T − (n− 1)

) (
e−αT + e−γT

)
+p(−t) ∗ ϕ

(
t
T − (n− 2)

)
e−αT e−γT .

(7)

Due to Parseval’s relation wn can be expressed as

wn = 1
2π 〈F {x(t)} ,F {h(t)}〉 , (8)

where F {x(t)} := x̂(ω) denotes the Fourier Transform (FT)
of x(t). Noting that

F {p(−t)} = γ−α
(α−iω)(γ−iω) , (9)

F
{
ϕ
(
t
T − n

)}
= T ϕ̂(ωT )e−iwnT , (10)

we have

F {h(t)} = (11)

T ϕ̂(ωT )e−iwnT
(1−e−T (α−iω))(1−e−T (γ−iω))

(α−iω)(γ−iω) (γ − α) .

The FT of a time-reversed and scaled E-spline with parameter
−αT is

F
{
β−αT

(
− t
T

)}
= 1−e−T (α−iω)

α−iω . (12)

From (10) and (12) it follows that

F {h(t)} =(γ − α)F
{
ϕ
(
t
T − n

)}
F
{
β−αT

(
− t
T

)}
F
{
β−γT

(
− t
T

)}
.

(13)

Using Parseval’s relation once more we can write

wn =(γ − α) 〈x(t),
ϕ
(
t
T − n

)
∗ β−αT

(
− t
T

)
∗ β−γT

(
− t
T

)
〉,

(14)

which, with ψ(t) = ϕ(t) ∗ β−αT (−t) ∗ β−γT (−t), is the
statement of the proposition.

2.1. Detection of calcium transients in the noisy scenario

The process of detecting the time points of calcium transients
from a noisy fluorescence signal is described in further detail
in this section and stated in Algorithm 1. We model the sam-
ples ỹn as being corrupted by additive white noise so that we
have

ỹn =
〈
f(t), ϕ

(
t
T − n

) 〉
+ εn = yn + εn, (15)

where εn are i.i.d Gaussian with zero mean and standard de-
viation σ. The sampling kernel ϕ is chosen to be an exponen-
tial reproducing kernel. This is defined such that, when it is
combined in a weighted sum with shifted versions of itself, it
reproduces exponentials:∑

n∈Z
cm,nϕ(t− n) = eθmt. (16)



Algorithm 1: Estimate spike times and amplitudes
Input: f(t), K, α, γ
Output: {âj , t̂j}Kj=1

1 Filter: ỹn =
〈
f(t), ϕ

(
t
T − n

)〉
+ εn

2 Weighted finite differences: z̃n = ỹn − e−αT ỹn−1
3 Weighted finite differences: w̃n = z̃n − e−γT z̃n−1
4 Compute sample moments: s̃m =

∑
n cm,nw̃n

5 Create Toeplitz matrix S̃ from s̃m
6 Pre-whiten Toeplitz matrix: S̃′ = S̃W

7 Use Matrix Pencil Method to estimate {t̂j}Kj=1 from S̃′

8 Estimate {âj}Kj=1 by least squares from samples and
resynthesized sample estimates

We refer to cm,n as the coefficients of the kernel. The
weighted finite differences in (3) result in noisy samples
w̃n = wn + ϑn, where ϑn are Gaussian but no longer i.i.d.
We compute sample moments

s̃m =
∑
n

dm,nw̃n =
∑
n

dm,nwn +
∑
n

dm,nϑn

= sm + bm,

(17)

using the coefficients dm,n of the kernel ψ (Eq. (4)) which
also reproduces exponentials (see [8]). By choosing ϕ so that
ψ reproduces exponents in the form ζm = ζ0 +mλ, we can
write sm in power-sum series form:

sm =

K∑
k=1

lku
m
k (18)

where lk = (γ−α)akeζ0
tk
T and uk = eλ

tk
T . The sample mo-

ments sm are used to construct a Toeplitz matrix S̃ = S+B,
where S is the idealised noiseless Toeplitz matrix and B is
due to the noise bm corrupting the sample moments. The pa-
rameters uk and thus the time points of the calcium transients
tk are then retrieved from S̃ by the matrix pencil method [9].
As the noise has been colored by the filtering process, we first
include a pre-whitening step which improves the robustness
of the subspace estimation from S̃.

2.2. Pre-whitening to increase robustness to noise

We implement the matrix pencil method to recover the pa-
rameters uk, and thus tk = T

λ ln (uk), from the noisy Toeplitz
matrix S̃ = S + B. This method performs well when the
matrix B is white, i.e. RB := E

[
BHB

]
= aI for a ∈ R.

The weighted finite differences in Eq. (3) result in colored
noise, such that RB 6= aI. We therefore follow the method
of Urigüen et al. [11] to pre-whiten S̃. We do this by post-
multiplying S̃ with the matrix W := R

†/2
B (where †/2 denotes

the square root of the pseudo-inverse) to obtain

S̃′ : = S′ +B′ = SW +BW = S̃W. (19)

We thus have a noisy Toeplitz matrix S̃′ which is corrupted by
white noise. The matrix pencil method can then be applied
to S̃′ to obtain the same signal parameters uk as would be
obtained from S̃ whilst maintaining robustness to noise.

2.3. Least squares model-order estimation

We implement a least squares model-order estimation frame-
work similar to that proposed by Doğan et al. [12] to estimate
the number of spikes in a window of the trace. The train-
ing error between the samples and the resynthesized sample
estimates is computed for each possible model order k. We
estimate the model order k̂ as the value of k which minimises
the training error, we then estimate the corresponding spike
times, as in Algorithm 1. This procedure is completed se-
quentially in a sliding window along the fluorescence signal.
Finally, spike time estimates which are not consistently de-
tected across windows are deemed to be spurious spikes due
to noise and are pruned.

3. RESULTS

We now demonstrate the performance of the modified FRI al-
gorithm on real GCaMP6s imaging data [10] (for experimen-
tal methods see [1]). The dataset, which is recorded from in
vivo mouse V1 neurons, contains simultaneous calcium imag-
ing (sampled at 60Hz) and electrophysiology. This allows us
to compare estimated spike positions from the calcium imag-
ing data with the electrophysiological ground truth. We assess
algorithm performance on 3 traces of combined length 678s
containing 532 spikes.

A spike is deemed detected if an estimate is within 0.034s
(2 sample widths) of the real spike, in this case we denote
the estimate as a true positive. As the rise of a GCaMP6s
transient lasts approximately 15 sample widths, this is a strict
target. An estimate is deemed to be a false positive if it is not
within 2 samples of a real spike.

The modified FRI algorithm correctly detects over 90% of
electrophysiologically validated spikes (Fig. 1). Furthermore,
as is shown in Fig. 1c, the modified FRI algorithm correctly
detects a higher proportion of spikes on all three datasets than
both the original FRI algorithm and Vogelstein et al.’s fast
non-negative deconvolution algorithm [4].

Vogelstein et al.’s method detects a high proportion of
false positives on this dataset. This is likely due to their as-
sumption of a uniform fluorescence change per spike which,
as is noted in [1], is not true for GCaMP6s. Although the
deconvolution algorithm has previously shown good perfor-
mance on in vitro data generated by the synthetic dye OGB-1,
it doesn’t perform as well on GCaMP6s data. This demon-
strates the necessity of tailoring algorithms to the calcium in-
dicator when performing calcium transient detection.



(a) ROC analysis on one dataset (b) Spike detection results on a section of the trace (c)Average ROC over 3 datasets

Fig. 1: The modified FRI algorithm outperforms the original FRI algorithm and Vogelstein et al.’s algorithm [4] on three datasets
for which electrophysiological ground truth is available [10]. A spike is deemed detected if one is estimated within 0.034s (2
samples) of the true spike position. a) ROC curves on a dataset of length 239s containing 181 spikes. b) The modified FRI
algorithm’s spike detection performance on a section of the trace. c) ROC curves averaged over 3 datasets (total length 678s,
532 spikes). To compute the average curves per algorithm we averaged the least squares spline fit to each ROC curve.

4. CONCLUSION

We extended the FRI framework for spike detection from cal-
cium imaging data to encompass calcium transients with a
slow rise, such as those generated by the genetically encoded
calcium indicator GCaMP6s. We introduced a noise reduc-
tion technique (pre-whitening) and least squares model-order
estimation to improve the robustness of the algorithm. On real
GCaMP6s data we showed that these modifications increased
the spike detection rate of the algorithm for all false positive
rates. Furthermore, on real data we achieve spike detection
rates of 90% of electrophysiologically-validated spikes within
2 sample widths (0.034s) of the real spike.
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