The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study

Affiliations are listed at the end of the paper

Accepted 2016 August 17. Received 2016 August 2; in original form 2016 June 17

ABSTRACT
On 2016 Feb 19, nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, \textit{in situ} gas, dust and plasma instruments, and one dust collector. At 09:40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50 per cent of the neutral gas density at Rosetta to factors >100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors >10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from ~-16 V to -20 V during the outburst. A clear sequence
of events was observed at the distance of Rosetta (34 km from the nucleus): within 15 min the Star Tracker camera detected fast particles (~25 m s⁻¹) while 100 μm radius particles were detected by the GIADA dust instrument ~1 h later at a speed of 6 m s⁻¹. The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.

Key words: comets: individual: 67P/Churyumov-Gerasimenko.

1 INTRODUCTION

In 2014 August the Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko (67P). Since then, the spacecraft has been accompanying the comet on its journey around the Sun (Glassmeier et al. 2007a). During that time Rosetta used all its instruments to closely study the nucleus and its activity. In 2015 August Rosetta and 67P passed through perihelion at a distance of 1.25 au from the sun, and a firework display of cometary outbursts was observed (Vincent et al. 2016b). Six months later on 2016 Feb 19 nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of 67P. This paper is the first report of this most extensively studied cometary outburst.

The observations were carried out during the Rosetta mission extended phase, very close to the end of the intensive summer that the Southern hemisphere of the comet experienced between 2015 May and 2016 March. A large number of observations were under way in order to obtain final measurements to characterize the Southern hemisphere before it re-entered polar night, and to observe the return of the Northern hemisphere from its shorter polar night. Ground-based observations were most favourable during early 2016 because the comet was still relatively active (as exemplified by the event discussed in this paper) and was visible in the night sky as observed from Earth. During 2015 the spacecraft had been flying at greater distances from the comet than originally foreseen, in order to avoid the navigational interference caused by the appearance of dust particles in the star tracker cameras. Therefore, at perihelion the spacecraft was at a distance of around 400 km from the comet, as a result of the high dust fluxes produced at this time. The period discussed in this paper was particularly focused on achieving the lowest possible altitudes by orbiting in the terminator plane. As such, it was the first time the spacecraft had been within 50 km of the comet since 2015 April. These lower altitudes were designed to examine surface changes due to perihelion passage and the seasonal effects of the approach of equinox. In addition, an overall target for the mission had been to investigate active areas and jets from their origin at the surface of the comet to in situ at the spacecraft. However, such observations had been difficult to target specifically. Such a serendipitous event with the instrument coverage of 2016 February 19 was therefore most welcome. Earlier plans to perform an Activity Campaign by flying through a dust jet with all instruments monitoring the gas and dust environment and the source region on the nucleus underneath had been abandoned because of the star tracker interferences.

By 2016 February 19 the heliocentric distance had increased to almost twice the perihelion distance to 2.4 au. Rosetta flew hyperbolic arcs between 42 and 32 km with a speed relative to the comet centre of 0.174 m s⁻¹ (Fig. 1). At 10:00 on Feb 19 the distance of Rosetta from the centre of the comet was 34.5 km, the angular size of the nucleus was about 8°, and the solar phase angle was 63°. Rosetta was above the Southern hemisphere of 67P on the morning side at local time 07:51:37 (referring to the illumination by the sun).
2 OBSERVATIONS

Details of the positive observations of the outburst from Rosetta and ground-based astronomical observations are discussed in the following sections. Their order reflects the approximate time order of the maximum signals recorded. First were the OSIRIS and NAVCAM series of camera images and the ALICE UV observations, followed by the MIRO microwave observations, the RPC plasma and the ROSINA COPS gas density measurements. Later came the Star Tracker brightness measurements, and the GIADA dust detections and the MIDAS dust collections. These Rosetta observations are complemented by ground-based observations of the coma and tail.

No relevant observations were made by VIRTIS because the VIRTIS-Mapper was looking at the sub-solar limb, with the slit located away from the source region. No dust was collected by the COSIMA dust mass analyser during February 19 because it was in the dust analysing mode during that period. The Radio Science Investigation (RSI) did not see a sign of the outburst in the radio signal from Rosetta. Additionally, measurements of the gas drag from momentum wheel measurements by the attitude and articulation system of the spacecraft were unfavourable during the time period of the outburst.

2.1 OSIRIS

The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, Keller et al. 2007) on board the Rosetta spacecraft consists of a Narrow- and a Wide Angle Camera (NAC) and (WAC), each having a 2048×2048 pixel CCD detector, and fields of view (FOVs) of approximately $2^\circ \times 2^\circ$ and $12^\prime \times 12^\prime$, respectively. The cameras have regularly imaged the nucleus and the coma of 67P since 2014 March in 25 broad- and narrow-band filters covering the wavelength range 240–1000 nm (Sierks et al. 2015). The standard data processing on ground comprises bias-subtraction, flat-fielding, correction for distortion of the optical path, and flux calibration relative to standard stars.

From Feb 18 21:56 to Feb 19 12:10, OSIRIS obtained one NAC and two WAC images approximately every 30 min. The NAC images were taken in the orange filter (centred at 649 nm with a bandwidth of 85 nm, exposure time 3.75 s), and the WAC images were obtained using the green (537 nm, 63 nm, 3 s) and red (630 nm, 157 nm, 1.5 s) filters. At the 34.5 km distance of the comet from the spacecraft, the FOVs covered 1.4 km (NAC) and 6.9 km (WAC). The instrument boresights were pointed at the sub-solar limb. The WAC images cover a significant part of the nucleus.

As shown by Fig. 3, up until Feb 19 9:10 the images show a typical coma composed of faint dust structures. The nucleus has deep shadows and illuminated surfaces that are saturated on the detector, because the exposure times were optimized to capture the faint dust coma. The WAC images obtained at 09:40, however, show a brightening strong enough to saturate the detector in a region where the nucleus should be in shadow. By 10:10, the bright cloud had expanded across the entire WAC FOV, saturating the detector in front of the whole visible part of the big nucleus lobe. At 10:40 the overall coma brightness had diffused, but a large part of the shadowed nucleus was still hidden behind bright foreground dust. The dust diffused slowly in the following images, and several narrow coma structures became visible. These could be related to the outburst, but some may also reflect the typical activity of this region and local time.

The coma surface brightness as a function of time was measured in two reference areas in the FOVs of NAC (above the sun-lit limb)
The 2016 Feb 19 outburst of comet 67P/CG

Figure 3. OSIRIS WAC images taken at 08:40, 09:10, 09:40, 10:10, 10:40, 11:10, 11:40, and 12:10, respectively. Each image is about 11.5° × 6.2° in size, they were obtained in the broad-band green filter with 3s exposure time. The image brightness is scaled according to the square root of the measured flux, with minimum and maximum values of 1.5 × 10⁻⁷ (black) and 1.5 × 10⁻⁴ W m⁻² sr⁻¹ nm⁻¹ (white). The Sun is at the top.

The NAC images were zoomed and stretched to such detail that individual grains became visible. After subtracting the local background the image sequence shows a transition from a point-like granularity (grains that were distant or slow enough to appear as points) to a more linear texture dominated by grains either close or fast enough to be trailed across several pixels. The transition occurred between 11:10 and 11:40.

In the afternoon of February 19, from 14:30 to 21:30, OSIRIS took NAC and WAC images during a MIRO Great Circle Scan and WAC (in the lower left corner of the image). These were chosen to be sufficiently distant from the saturated area and from the limb, in order to minimize rotation-induced changes of the brightness as a consequence of changing limb-distance from the irregularly shaped nucleus. In the WAC reference area, located near the source region, the surface brightness of the coma (corresponding to the total dust cross-section) increased by two orders of magnitude between 09:40 and 10:10, and decreased back to a factor 10 above the pre-outburst level in the last image obtained at 12:10 (Fig. 4).
pointing most of the time far from nadir. At 14:30, the coma surface brightness was still one order of magnitude higher than at reference epochs with similar pointing. It decreased to normal level at 21:30, i.e. about one spin period after the start of the outburst.

2.2 NAVCAM

The Navigation Camera (NAVCAM) is part of the spacecraft subsystems. It is used by the Flight Dynamics team in order to determine the relative position between Rosetta and the comet nucleus. Its images are therefore essential for safely navigating the spacecraft in the comet environment. In addition, context images for scientific observations are also scheduled on request of the instrument teams.

There are two identical NAVCAMS on board the spacecraft, although only one of them is used in nominal operations. The camera’s field of view is 5° × 5° and its CCD detector consists of 1024 × 1024 pixels. The spectral sensitivity covers the visible wavelength range from approximately 550 to 850 nm. A mechanism makes it possible to select between different optical elements with or without attenuation coating. There are no spectral filters.

During the period of the outburst event NAVCAM context images without attenuation were acquired at 08:21, 10:14, and 12:29. Afterwards a navigation raster comprising four images at 12:51, 12:55, 13:01, and 13:05 was carried out with the attenuation filter. The uncalibrated data are available in the ESA Planetary Science Archive (Geiger & Barthelemy 2016).

A preliminary version of the foreseen radiometric calibration procedure (Geiger et al., in preparation) was applied in order to transform the raw pixel values to average spectral radiance values in the broad visible wavelength range. Fig. 5 depicts the two images acquired at 12:29 and 12:55. The NAVCAM images show that the collimated dust emission seen in the last images of the OSIRIS sequence (cf. Fig. 3) continues as the nucleus rotates. In addition to the diffuse component a few individual objects can be seen in the coma. However, from the images it is not possible to determine the distance from the spacecraft and hence the size of these objects.

2.3 Alice

Alice is a far-ultraviolet (70–205 nm) imaging spectrograph on board Rosetta that, amongst multiple objectives, is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P (Feldman et al. 2015) as well as reflected solar radiation from both the nucleus and the dust coma.
The 2016 Feb 19 outburst of comet 67P/CG

The onset time is consistent with that reported by the other remote nucleus. Considering the 10-min integration time of the Alice data, the increase in brightness in the direction of the small lobe of the instrument have been given by Stern et al. (2007).

Figure 2. The integration time was 1814 s.

Figure 6. An Alice spectral image beginning at UTC 11:19:44 showing the solar reflected radiation from the nucleus in the lower right. Dust in the coma shows up in the upper right. The orientation of the slit is as shown in Fig. 2. The integration time was 1814 s.

In particular, Alice is able to address the timing and duration of the event. The Alice observations were made with the small lobe of the nucleus in the lower half of the slit and the coma above the sunward limb in the upper half, as shown in Fig. 2. A spectrum taken on Feb 19 11:19:44 is shown in Fig. 6. A light curve derived from the Alice spectra is shown in Fig. 7. In two successive 10-min histograms beginning at UTC 09:45:59 Alice observed a ~50 per cent increase in brightness in the direction of the small lobe of the nucleus. Considering the 10-min integration time of the Alice data, the onset time is consistent with that reported by the other remote sensing instruments on Rosetta. At the same time the dust coma brightness increased by a factor ~5 and remained at that level for ~30 min. The following histograms had contamination of the coma from a bright star in the field of view leading to a 20-min data gap. From 11:10 until the end of the observation sequence at ~12:30 the coma brightness remained at a value of ~2.5 times the prior quiescent level. There were no further Alice observations with the same viewing geometry on February 19. The same data do not show any significant gas emissions at the time of the outburst.

2.4 MIRO

MIRO (Microwave Instrument for the Rosetta Orbiter) is a small radio telescope working at millimetre and submillimetre wavelengths (Gulkis et al. 2007). It has broadband continuum receivers designed to measure the sub-surface properties of the nucleus and to study dust in the coma. MIRO also has a high-resolution spectrometer, which can be used to probe the abundance, temperature, and velocity of several coma gases, including H$_2$O. MIRO is calibrated against two internal targets approximately every 30 min, and can also be calibrated against dark sky measurements when looking far from the nucleus. Here we focus on some of MIRO’s spectral observations during the outburst. A more complete description of MIRO’s view of the outburst is in Hofstader et al. (in preparation).

MIRO is a single-pixel instrument. From about 08:10 to 12:30 on 2016 February 19 Rosetta was performing a stare above the subsolar limb (Fig. 2). Most of that time MIRO’s footprint was above the limb, but from about 09:30 to 11:00 the rotation of the nucleus brought parts of the surface into its line of sight.

Water vapour all along MIRO’s line of sight contributes to the received signal, so interpreting the spectrum at all frequencies requires detailed consideration of the three-dimensional structure of the coma. Given the strength of the water line, however, there are frequencies at which the coma is optically thick, and MIRO senses only the gas relatively close to the spacecraft. The received signal is remarkably constant at these frequencies. Even as the nucleus moves into and out of MIRO’s LOS, the signal does not change because the nearby gas screens the view of everything beyond it. Under these optically thick conditions, the amount of radio energy received is set by the rotational temperature of the gas.

Fig. 7 shows the radio emission from the coma at an optically thick frequency, expressed as a brightness temperature. The frequency chosen corresponds to the H$_2$O line centre for gas moving at 620 m s$^{-1}$ towards the spacecraft. The H$_2$O spectrum in this region shows features indicative of being optically thick (Hofstader et al., in preparation) and the H$_2$O line shape confirms the gas expansion velocity near 600 m s$^{-1}$. In the figure, the brightness temperature rise of the gas by about 30 K was starting just before 10:00 on February 19, followed by a slow decrease for several hours.

At about 12:30 the spacecraft began pointing to different areas of the coma, and the measurements can no longer be directly compared to those shown. It is interesting to note that one nucleus rotation (about 12.4 h) before the outburst, the nucleus orientation and MIRO’s observing geometry were similar to that during the outburst. Fig. 8 also shows that the temperature of the coma at that time (times from ~02:00 to 00:00) is consistent with the values measured just before the outburst. This demonstrates that the change occurring near 10:00 is not due to normal diurnal variations.

Hofstader et al. (in preparation) explore three possible explanations for the increase in coma temperature. One is that the gas during the outburst is coming from a source region on the nucleus with a significantly higher physical temperature than the normally sublimating regions. Another possibility is that the local gas...
density during the outburst, either above or below the surface, increased enough to alter the adiabatic cooling expected as the gas expands into a near vacuum. The third explanation we are exploring is that the gas is warmed by the dust either via collisions or radiation. Gas by itself cools adiabatically very quickly as it expands into space, whereas dust by itself can stay warm because it cools radiatively much more slowly.

An important clue, discussed later (see Fig. 18), is that the increase in gas temperature near the spacecraft observed by MIRO occurs several minutes after dust is first seen rising from the nucleus, but several minutes before the local gas density increases. Note that dust travelling at metres per second takes over an hour to travel from the nucleus to the spacecraft, while gas moving at 620 m s\(^{-1}\) takes only about a minute. The relative timing of rising dust at the surface, the increase in gas temperature at the spacecraft, and then the increase in gas density at the spacecraft, is not yet understood.

2.5 RPC

The Rosetta Plasma Consortium (RPC, Carr et al. 2007) is a suit of five plasma sensors to monitor the electromagnetic field and the ionized environment around 67P. Among the RPC sensors, RPC-MIP (Mutual Impedance Probe, Troitignon et al. 2007) and RPC-LAP (Langmuir Probes, Eriksson et al. 2007) measure the plasma density. Following the increase in neutral density by a factor \(\sim 1.8\) (ROSINA-COPS, Section 2.6), MIP and LAP observed a local plasma density increase by a factor \(\sim 2.7-3\) during the outburst, both through the electron plasma frequency increase (MIP) and (negative) spacecraft potential increase (LAP), as shown in Figs 9 and 10. The spacecraft potential is proportional to the logarithm of the electron density. Note that a local decrease in the plasma density is observed just before the onset of the outburst, around 09:45. The energetic electrons observed during the outburst are colder than before and after the outburst, as suggested by RPC-IES electron spectra (Ion and Electron Spectrometer, Burch et al. 2007). This would be consistent with electron cooling during the outburst, in the region between the comet and the spacecraft. Such cooling may be the signature of an increase in electron-neutral collisions, which is consistent with the observed increase in the neutral density (Section 2.7). Those collisions may have increased the local ionization by electron impact in the region between the comet and the spacecraft. An increase in the ionization source closer to the comet could explain the significant relative increase in plasma density, which is larger than the relative increase in neutral density, observed at Rosetta during the outburst. However, other possible explanations exist, such as a reduced neutral outflow velocity or changes in composition. Further studies are needed to identify the exact mechanisms causing the variable plasma density as well as the faster plasma density decay compared to the neutral density decay. Finally, the plasma density relaxes to the pre-outburst value around 12:00 UT, faster than the neutral density, while cold electrons are still observed until 14:00 UT.

While the electron density increased, the average magnetic field measured by RPC-MAG (Magnetometer, Glassmeier et al. 2007b) increased slightly from 16 nT to 19 nT. This change was mostly in the \(y\)-direction, meaning the direction in the ecliptic that is perpendicular to the Sun–comet line. At the same time the power
spectral density in the range of 50–100 mHz decreased by about a factor 1/2.

2.6 ROSINA

ROSINA is designed for in situ measurements of the cometary coma gas density and composition (Balsiger et al. 2007). The instrument package consists of two complementary mass spectrometers (DFMS and RTOF) for neutrals and primary ions and a pressure sensor (COPS). ROSINA-COPS is an in situ instrument consisting of two separate sensors, described by Balsiger et al. (2007). The noble gas (NG) measures the total ambient neutral gas number density at the spacecraft position and the ram gauge, which is normally pointing at the comet, measures the ram pressure of the outflowing gas of coma. All data presented in this study are from the NG sensor only. The neutral gas density is determined from the sensor signal as a linear combination of the abundances of the dominant species H$_2$O, CO$_2$, CO, and O$_2$ which are obtained by DFMS spectrometer measurements (Hässig et al. 2015).

The neutral gas density is modulated by the spacecraft location around the nucleus and the nucleus illumination conditions. Because of the highly irregular shape of the nucleus, the gas production varies by about a factor of 2 depending on the face that is illuminated by the Sun (Bieler et al. 2015). On Feb 19 the neutral gas density (Fig. 11) showed fluctuations of up to 103 cm$^{-3}$ due to the nucleus rotation. However, at ~10:00 the gas density rapidly increased to almost 1.5 × 106 cm$^{-3}$ which is more than 50 per cent higher than the normal fluctuations at a similar nucleus phase.

2.7 Star Tracker

The autonomous attitude control system of the spacecraft relies on Star Tracker measurements as the main source of information (Buemi, Landi & Procopio 2000). The field of view of the Star Tracker camera has a size of 16:4 × 16:4. The characteristics of its CCD detector are identical to those of the NAVCAM, i.e. 1024 × 1024 pixels and a broad spectral sensitivity in the visible wavelength range.

For redundancy two identical Star Trackers are available (STR-A and STR-B). Although they are both mounted on the -X-face of the spacecraft, their boresight directions differ by ~30°. In the period of interest STR-A was continuously active in the closed attitude control loop. In addition, STR-B was switched on for 15 min at around 13:00 UTC for a regular attitude acquisition test.

In their operational modes the Star Trackers track the positions and magnitudes of up to 9 stars in the field of view. Housekeeping telemetry downlinked to ground includes a parameter that reports the mean background signal in 20 × 20 pixel windows centred on the tracked stars. The value of this parameter quantifies the diffuse light contribution due to scattering by unresolved dust particles and provides valuable information about the temporal evolution of the outburst event.

We converted this parameter value into spectral radiance units by subtracting a bias value estimated from the available time series during the whole mission and by applying a calibration coefficient determined from the magnitude conversion relations specified by the manufacturer in the on-board software. The uncertainty of this rough radiance calibration is expected to be in the order of 50 per cent or better. The spectral radiance values should be understood as a weighted average over the broad visible sensitivity range.

The temporal evolution of the STR-A mean background radiance on February 19 is shown in Fig. 12. At the beginning of the depicted period the signal is at the noise level. However, shortly before 10:00 UTC the measured background radiance sharply increases, reaches its maximum at 11:00 UTC, and then slowly decreases. The step at about 14:00 UTC is due to a significant attitude change of the spacecraft due to the MIRO global coma scan. Before that time the spacecraft +Z-axis pointed towards the nucleus and consequently the STR-A boresight pointed 90° off-nucleus.

The radiance values measured by STR-B during its short operating period are in the same order as the STR-A results. Their quantitative difference is consistent with the different boresight directions of the two Star Trackers.

2.8 GIADA

GIADA (Grain Impact Analyzer and Dust Accumulator; Colangeli et al. 2007) consists of three sub-systems: (1) the Grain Detection System (GDS), which detects dust particles as they pass through a...
GIADA disentangled two particle families since Fulle et al. (2015) suggest that the showers are caused by showers are counted in the following only as five individual events of which were detected from 17:27:35 to 17:28:00. The five dust systems (Riedler et al. 2007; Bentley et al. 2016). Capable of resolving down to the nanometre level, the AFM operates by scanning a sharp tip over the sample and produces three-dimensional images of collected dust particles. During the outburst event MIDAS was exposing target 13 as part of a 3-d exposure (2016-02-16 23:25:25 until 2016-02-20 05:55:19). Coarse (64 × 64, 1.25 μm pixel⁻¹) images of the centre of this target immediately showed that new particles had been collected. Since this time a number of scans have been performed to investigate the coverage of this target, in particular to constrain whether the collection represents a large number of individual dust particles or a multitude of fragments originating from a few larger particles impacting the target. These scans are ongoing and the values presented here may change as more data is analysed.

Data have been processed by performing a polynomial plane subtraction and median line correction to remove the scanner-sample slope and correct for distortions during the scan. Particle count does not attempt to separate impact fragments from individual particles since the coverage is not yet sufficient to determine this, and thus represents an upper limit. For this reason, a true size distribution of the particles prior to collection cannot yet be established. Instead, some limits are given based on the effective diameters (the diameter of a circle having the same projected area as the particle) of the collected particles or fragments. Ninety per cent have an effective size less than 9.3 μm and 50 per cent less than 3.7 μm.

2.10 Ground-based observations

Hundreds of ground-based observers, both professional and amateur, have an interest in observing 67P because their data complement the in situ observations by Rosetta. In the following paragraph we present data obtained from a 30 cm amateur telescope and a professional group with a 60 cm telescope. We also report results from a second professional group with a 2 m telescope.

The Rosetta amateur observer campaign (http://rosetta.jpl.nasa.gov/rosetta-ground-based-campaign) provides a link between amateur astronomers and the ESA/Rosetta mission. The image provided by Efrain Morales (Fig. 14) shows the coma and tail about 10 d after the outburst. Most of the dust particles seen in the image were emitted after the perihelion passage in summer 2015. However, big mm and cm sized particles from the 2009 perihelion passage also contribute to the brightness in the trail. Particles emitted during the outburst on 2016 Feb 19 populate the bright central portion of the image.

The robotic 0.6-m telescope TRAPPIST (TRAnsiting Planets and Planetesimals Small Telescope; Jehin et al. 2011) is located at ESO’s La Silla Observatory. It is equipped with an FLI ProLine PL3041-BB camera with 2k × 2k pixels of 15 μm. Used with the 2 × 2 binning mode it results in a pixel scale of 1.3 arcsec and a field of view of 22 arcmin. The observations of comet 67P have been performed once or twice a week in 2016 with a Johnson–Cousins Rc filter and with exposure times ranging from 180 to 240 s. TRAPPIST images are reduced following a standard procedure described in Opitom et al. (2015). The sky background is subtracted and the photometric calibration is performed using...
regular observations of photometric standard stars. The \(A_f \) parameter (A’Hearn et al. 1984) is computed at a physical distance from the comet of 5000 km (Fig. 15). The observed brightness has been corrected for the varying phase angle (Sun-67P-observer) using a phase function that is the composite of two different empirical phase functions from Schleicher, Millis & Birch (1998) and Marcus (2007). During the first 100 d of 2016 the phase angle varied from 28° at the beginning of that period, through to a minimum phase angle of 4° at opposition, and finally to 9° at the end of that period. After 2016 Feb 19 the coma brightnesses in a 5000 km aperture show a clear increase of 25 per cent over values from earlier observations. This increased brightness was observed between February 29 and March 6. The beginning of the brightness increase cannot be precisely determined because of bad weather in the days following the February 19 outburst. On March 17, the brightness values are back to the normal trend. However, not much of this brightness enhancement remains after the application of the phase function correction because of the opposition surge of the applied empirical phase function, which was derived for observations of 1P/Halley (Schleicher et al. 1998). The phase correction at low phase angles is rather imperfect and may change after careful comparison with Rosetta observations (see below).

Boehnhardt et al. (2016) report 67P observations with the 2 m telescope on the Mt Wendelstein observatory of the University Observatory Munich. Their brightness values after 2016 Feb 19 deviate clearly beyond measurement uncertainty from the brightness trend using a fit to the earlier observations. However, application of a special phase function reduced the effect of the outburst. Contrary to an earlier outburst of 67P (2015 August 22-23), on 2016 Feb 21–22 the 67P coma appeared to be undisturbed in terms of geometric dust structures and radial gradient, except for an increase in the brightness.

In Fig. 15 the phase corrected \(A_f \) data are compared with the time period (shown by yellow stripes) when all burst particles with speeds \(\geq 4 \text{ m s}^{-1} \) are still within the aperture. The observations may show a \(\sim 10 \text{ per cent increase of } A_f \sim 10 \text{ cm} \) in the burst period compared with the values before the outburst. Later observations display the expected decrease of \(A_f \) with heliocentric distance and time.

The long lasting ‘bump’ in the brightness of the comet as seen in the TRAPPIST and in other data sets (Boehnhardt et al. 2016; Snodgrass et al., in preparation) is coincident with the outburst, but also with the comet being at opposition. It may therefore be a combination of a geometric effect and the prolonged increase in activity. There is some indication that the departure from a smooth decrease in \(A_f \) starts before February 19.

To estimate the total dust mass from the increased coma brightness observed with TRAPPIST, we assume that the increase in phase-corrected \(A_f \) by approximately 10 cm observed around 2016 Feb 19 was due to dust released during the outburst on February 19. With \(A_f = 4 \pi s^2 N/\rho \) (Müller 1999) and assuming a geometric albedo of \(\rho = 0.05 \), mean particle radius \(s = 100 \text{ m} \), and aperture radius of \(\rho = 5000 \text{ km} \), we find \(N = 2.5 \times 10^{11} \) particles in the aperture, corresponding to a total dust mass of \(10^7 \) kg for a bulk density of \(1000 \text{ kg m}^{-3} \).

3 DISCUSSIONS

In this section we describe the timing and duration of the outburst that was observed by the different instruments, and we discuss what this can tell us about the properties of the material released by this event. At first we start with the time relation of the data, secondly, we try to identify the time and source region of the outburst, and thirdly, we discuss the magnitude of the outburst. In order to do this we have to make some (not necessarily unanimously agreed) ad hoc assumptions just for the purpose to demonstrate the interrelations between the various observables. Eventually, such assumptions have to come from a comprehensive model of the outburst which is not the task of this first paper.

3.1 Time relation of the data

Timing and duration of the outburst can be investigated because the clocks for the different instruments are synchronised with the spacecraft clock. The flight control team makes sure that the spacecraft
clock and ground time (UTC) is accurate within less than ∼10 ms. The measurement of any parameter takes a certain amount of time, which is called the integration time. If the integration time is short (<1 s), then this is of no concern here. Even if the measurement only takes a short time, the time tagging and the sampling of the available telemetry data points may be much less frequent than that. In the case of the data discussed here we assume that the accuracy of the sampling is of the order of a few seconds. Some images have longer integration times, which can be identified using the image data products, which carry a PDS label keyword IMAGE_TIME in the filename that refers to the middle of the integration time. The start and stop time of the integration are given by the START_TIME and STOP_TIME keywords in the image label files.

All measured parameters discussed above are displayed in Fig. 16 from 9:00 to 13:00 on 2016 Feb 19. For any given time the ratio of the intensity over the background value at 9:00 is displayed. Most parameters reached their maximum between 10:00 and 11:00. The intensity enhancements during the outburst ranged from ∼20 per cent (RPC-LAP) to a factor of 130 (STR-A). The parameter values at 9:00 and at maximum are also given in Table 1.

The majority of the observations refer to the dust emitted in the outburst (Fig. 17). These dust observations display a significant time lag between the observations by different instruments. The first signature was the dust cloud in the WAC images at 9:40. The next was the significantly enhanced coma brightness (≥10 per cent of max. value above background) observed by Alice at 9:51 followed at 9:58 by STR-A. Maximum brightness was observed by the OSIRIS WAC and NAC at 10:10. The GIADA smoothed count rate exceeded 10 per cent of maximum value above background at 10:42, and the trailed NAC images of near-by individual grains were observed at and after 11:40.

The enhanced coma brightnesses observed by Alice and OSIRIS refer to dust near the nucleus and their order is mostly determined by the respective sequence of observations. In contrast, the enhanced signatures in the STR-A, GIADA, and OSIRIS near-by grain data represent a clear time-of-flight relation of grains of different sizes and emission speeds. The mean speed of the GIADA grains (GDS_IS) is 6.5 m s⁻¹ and the mean mass is 4 × 10⁻⁸ kg, which corresponds to a radius of about 180 μm (at an assumed density of 1000 kg m⁻³).

For the STR-A camera to see any dust from the outburst, the emitted grains had to have traversed the distance of ∼30 km from the nucleus to the STR-A FOV. Therefore, the fastest particles that were seen by STR-A had to have a speed of at least 25 m s⁻¹. The

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Parameter</th>
<th>Value at 9:00</th>
<th>Maximum value</th>
<th>Factor</th>
<th>Time at maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSIRIS WAC</td>
<td>Surface brightness [W m⁻² sr⁻¹ nm⁻¹]</td>
<td>5.1 × 10⁻⁷</td>
<td>4.7 × 10⁻⁵</td>
<td>91.9</td>
<td>10 : 11.5</td>
</tr>
<tr>
<td>OSIRIS NAC</td>
<td>Surface brightness [W m⁻² sr⁻¹ nm⁻¹]</td>
<td>1.75 × 10⁻⁶</td>
<td>2.17 × 10⁻⁵</td>
<td>12.3</td>
<td>10 : 11.5</td>
</tr>
<tr>
<td>Alice</td>
<td>Surface brightness [rayleighs]</td>
<td>84.0</td>
<td>494.1</td>
<td>5.88</td>
<td>10 : 10.1</td>
</tr>
<tr>
<td>MIRO</td>
<td>Antenna temperature in the H₁⁰⁶O line [K]</td>
<td>19.4</td>
<td>53.0</td>
<td>2.73</td>
<td>10 : 26.9</td>
</tr>
<tr>
<td>RPC LAP</td>
<td>Spacecraft potential [V]</td>
<td>−16.7</td>
<td>−20.3</td>
<td>1.22</td>
<td>10 : 38.6</td>
</tr>
<tr>
<td>RPC MIP</td>
<td>Electron density [cm⁻³]</td>
<td>~440</td>
<td>~1200</td>
<td>2.7</td>
<td>10 : 37.6</td>
</tr>
<tr>
<td>ROSINA COPS</td>
<td>Gas density [cm⁻³]</td>
<td>0.83 × 10⁸</td>
<td>1.49 × 10⁸</td>
<td>1.80</td>
<td>10 : 45.3</td>
</tr>
<tr>
<td>STR-A</td>
<td>Brightness [W m⁻² sr⁻¹ nm⁻¹]</td>
<td>2.6 × 10⁻⁸</td>
<td>3.43 × 10⁻⁶</td>
<td>132.1</td>
<td>10 : 58.2</td>
</tr>
<tr>
<td>GIADA</td>
<td>Dust count rate [min⁻¹]</td>
<td>0.1</td>
<td>3.33</td>
<td>33.3</td>
<td>11 : 15.0</td>
</tr>
</tbody>
</table>
variety of them had speeds between 5 and 10 m s$^{-1}$. Similarly, the particles that had trails in the OSIRIS images had speeds of \leq4 m s$^{-1}$.

If we assume a speed-radius dependence of $v \sim r^{0.5}$ then the particle sizes range from \sim10 μm for the fastest STR-A particles to \sim300 μm for the OSIRIS individual particles. The smallest particles (\leq10 μm) were those collected by MIDAS.

The earliest indication of gas in the outburst was observed by MIRO at 9:52 (Fig. 18). This is within a minute of the earliest dust observations by Alice. Both LOSs are very close to each other. However, Alice measurements refer to dust near the nucleus while the MIRO signal is assumed to originate near Rosetta.

ROSINA COPS detected significant gas density increase (>10 per cent of maximum) at the position of Rosetta at 9:57. There was a small dip in the gas density (~10 per cent of the following enhancement) for ~10 min just prior to the strong rise of the signal.

RPC-MIP observed an increase of the electron density at Rosetta at 10:00. However, a significant reduction of the electron density started already at 9:38, just at the expected time of the outburst. The dip in the electron density had an amplitude of ~15 per cent of the following enhancement.

The spacecraft potential monitored by RPC-LAP followed closely the course of the electron density becoming more negative at higher electron densities. At 9:00 the mean S/C potential was about -16.7 V; by 9:42 it was -15 V and became rapidly more negative reaching -20 V around 10:20. During the following 3 h the S/C potential excursion decreased to the normal value of -16 V.

3.2 Time and source region of the outburst

The first sign of the outburst was seen at 9:40 in the OSIRIS image (Fig. 3) close to the shadow region. Fig. 19 shows the same image with isophotes. The bottom centre brightness originates from the dust cloud that was generated in the outburst and became illuminated by the Sun. Fig. 2 shows the model scene with the complete nucleus and the shadow at 9:40 but without the dust cloud.

The potential source region is in the centre at or below the edge of the WAC image (in region Seth, Anubis, or Atum). The brightness of the dust cloud is in saturation. Most of the scene below the WAC image is in the shadow except for a cliff that just appeared in full sunlight. The gradient of the isophotes in the lower part of the image (Fig. 19) points to a maximum brightness close to the illuminated cliff which is \sim700 m below the edge of the image. At an expansion speed of \sim25 m s$^{-1}$ the time for the cloud to enter the FOV of the WAC camera is \leq120 s. This brings the outburst time to 9:38 ±1 min. The centre coordinates of the illuminated cliff are in the Atum region at longitude 232°3, latitude $-28.6°$, and radius 1738 m.

The outburst started close to the morning terminator and the source region rotated at a rate of \sim30° h$^{-1}$ into the Sun direction; at about 13:00 on Feb 19 the source region was near the sub-solar limb and at about 16:00 the source region reached the evening terminator and entered comet night.

3.3 Magnitude of the outburst

The peak brightnesses observed by Alice and OSIRIS provide a means to estimate the magnitude of the outburst. The increase in mean coma brightness in the 175–195 nm bandpass is \sim370 rayleighs. This translates to a radiance of $I = 1.58 \times 10^{-8}$ W m$^{-2}$ nm$^{-1}$ sr$^{-1}$ at 185.5 nm. The solar radiance at 185.5 nm and at 2.4 au is 1.58×10^{-4} W m$^{-2}$ nm$^{-1}$ sr$^{-1}$ so $I/F = 1.0 \times 10^{-4}$. From OSIRIS NAC we find $I/F \sim 3 \times 10^{-5}$ before the outburst and $\sim 2 \times 10^{-4}$ after the outburst, in good agreement with the Alice result. The filling factor, or optical depth, τ, is given by $I/F = j(\alpha)\tau$, where p is the geometric albedo and $j(\alpha)$ is the phase function. Assuming that the dust has the same properties as the nucleus (Feaga et al. 2015), $p = 0.04$, $j(63°) = 0.10$, so $\tau = 0.025$. OSIRIS WAC finds $\tau = 0.01$ before and $\tau = 0.1$ immediately after the outburst. This difference is not surprising since the LOSs of both instruments are different in relation to the centre of the outburst. Future detailed analysis and modelling the scattering properties of dust of different sizes at different wavelengths along similar LOSs may provide information on the size distribution of the particles. In addition the total cross-section of particles generated in the outburst may be estimated by modelling the particles’ emission.

There is another way to calculate the total cross-section of the emitted particles; this is from the in situ measurements by GIADA.
and MIDAS. MIDAS found an areal coverage of 4.2 per cent of bigger than 1 μm-radius particles. The total area of the GIADA IS detector is 10^{-2} m^{2}. The total cross-section of all particles detected during the outburst by GIADA is 7 \times 10^{-6} m^{2} corresponding to 1.2 \times 10^{-3} coverage of >100 μm-radius particles. Scaling the dust coverage to 2 km i.e. \sim 1/20th of the Rosetta distance then an optical depth of 1 is reached. This value is compatible with the saturated brightness of the inner dust cloud in the OSIRIS WAC image at 9:40. If detailed analysis confirms these values then during the outburst the dominant cross-section is in the MIDAS particles of radius <100 μm.

The total mass of >100 μm-radius particles detected by the 10^{-2} m^{2} GIADA IS and GDS sensors at 35 km from the nucleus is 1.33 \times 10^{-3} kg. If we assume that a similar mass flux of dust particles was emitted into a solid angle Ω_d = 1 sr then the total mass is M_{100 \mu m} = 1.6 \times 10^{3} kg not counting any mass contribution by smaller and much bigger particles. This mass is about 1.6 times the mass derived from Afo measurements in ground-based observations (Section 2.10). The width of the emission was therefore probably narrower than assumed above. The interpretation of the ground-based observations may also be improved by the comparison with Rosetta observations.

Similarly, the gas production can be estimated from the measured extra gas density n_g \sim 5 \times 10^{7} cm^{-3} at Rosetta. We assume that the gas from the outburst is emitted into a solid angle Ω_g = 2π sr with a speed v_g \sim 600 m s^{-1}. The gas production rate in the outburst is then Q_g = Ω_g n_g v_g \approx 2.3 \times 10^{26} s^{-1} corresponding to \sim 10 kg s^{-1} H_{2}O, CO_2, and CO. The duration of the enhanced gas density was about 2 h; therefore a total of \sim 7 \times 10^{4} kg of gas was emitted during the outburst. This exceeds the total amount of dust detected by GIADA by at least a factor of 40, giving a lower limit for the dust-to-gas-mass-ratio of \sim 0.025. During the background emission Fulle et al. (2016) estimate the dust-to-gas-mass-ratio to be \sim 6 or larger.
4 CONCLUSIONS

The outburst on 2016 Feb 19 was unexpected, but serendipitously most Rosetta instruments were in suitable measuring conditions while the outburst unfolded. This was very special because for the many outbursts during perihelion passage (2015 July to September, Vincent et al. 2016b) we never had the situation that that many instruments observed the same outburst at once. In particular, the in situ dust instruments did not make significant observations of these outbursts. This was due to the large distances (up to 400 km) Rosetta had to maintain for safety reasons. The unique circumstances of the February 19 outburst enabled the in situ instruments to provide important measurements to quantify the outburst.

The likely outburst location in the Atum region at latitude -28.6° and longitude $+232.3^\circ$ (Fig. 20) is interesting because two other outbursts observed in 2015 were in the immediate vicinity (Vincent et al. 2016a). They were outburst no. 15 observed by NAVCAM on 2015-08-01T15:44 at latitude -32°, longitude $+227^\circ$ and no. 23 observed by OSIRIS-NAC on 2015-08-28T13:36 at latitude -31°, longitude $+229^\circ$.

The location of these outbursts is on the eastern slope of the body of 67P. It is in a region of a steep cliff to the east. The fact that the outburst started when this region just exited the shadow from the head suggests that thermal stress in the surface material may have triggered a landslide that exposed fresh (water) ice to direct solar illumination. Also other features of the observations support that idea: (1) the relative long duration of the GIADA dust impact phase which tells that the dust cone is very broad, (2) from looking at OSIRIS pictures, where one sees a cloud, not a narrow jet (3) from the fact that it is probably driven by water only. In this scenario the trigger of activity is thermal stress together with fracture mechanics and gravity in form of landslides or avalanches before solar heat can release gas from fresh ice which in turn accelerates dust released during this process.

At present, it is difficult to infer the nature of the icy material exposed to solar illumination. Recent simulations show that, in addition to sublimation of crystalline ice, clathrate destabilization and amorphous ice crystallization can lead to the formation of outbursts and pits with shapes consistent with those observed in the Seth region (Mousis et al. 2015). A proof of these ideas would come from the composition of the gas during this outburst. If the gas is lacking highly volatile species such as CO, N$_2$ or Ar, it would mean that the sublimating icy layer is close to the surface and was already partly devolatilized before, as shown by thermal evolution models (Mousis et al. 2015). Part of it could even be reprocessed water ice. In this case the outburst was not the ‘jet’ revealing fresh material from the interior, but just a surface effect. It may look completely different from the gas composition perspective than the outbursts last summer, where all volatiles except water peaked.

A further interesting feature of this outburst is that the gas production decreased much faster than expected from direct solar illumination. This may suggest that building up of a dust mantle quenched the gas emission. This outburst will trigger many further studies in the near future.

ACKNOWLEDGEMENTS

Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta’s Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI. We thank all elements of the Rosetta project for the magnificent job they are doing to make this mission an astounding success. The Alice team acknowledges continuing support from NASA’s Jet Propulsion Laboratory through contract 1336850. GIADA/Univ Parthenope NA/INAF/OAC/IAA/INAF-IAAPS: this research was supported by the Italian Space Agency (ASI) within the ASI-INAF agreements I/032/05/0 and I/024/12/0. OSIRIS was built by a consortium of the Max-Planck- Institut für Sonnensystemforschung, Göttingen, Germany, CISAS University of Padova, Italy, the Laboratoire d’Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain, the Research and Scientific Support Department of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politecnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, the UK(STMF), and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany. The support of the national funding agencies of Germany (DLR), France(CNES), Italy(ASI), Spain(MEC), Sweden(SNSB), and the ESA Technical Directorate is gratefully acknowledged. Work at LPC2E/CNRS was supported by CNES and by ANR under the financial agreement ANR-15-CE31-0009-01. Work on ROSINA COPS at the University of Bern was funded by the State of Bern, the Swiss National Science Foundation and by the European Space Agency PRODEX program. OM: this work has been partly carried out thanks to the support of the A*MIDEX project (no ANR-11-IDEX-0001-02) funded by the ‘Investissements d’Avenir’ French Government program, managed by the French National Research Agency (ANR). This work also benefited from the support of CNRS-INSU national program for planetology (PNP).

REFERENCES

Bentley M. S. et al., 2016, Nature, 537, 73
Della Corte V. et al., 2014, J. Astron. Instrum., 03, 1350011
Della Corte V. et al., 2016a, Acta Astron., 126, 205
Hässig M. et al., 2015, Science, 347, aaa0276
Jehin E. et al., 2011, The Messenger, 145, 2
This paper has been typeset from a TeX/LaTeX file prepared by the author.