Since 1918, the association of co-infection with S aureus has been a persistent theme in the literature on influenza.\(^9\) Defects in bacterial killing by alveolar macrophages, neutrophil recruitment and function, and T-cell-dependent immune responses predispose the influenza-infected lung to S aureus superinfection.\(^{10}\)

In a meta-analysis of studies with enrolment during 1999–2012, the authors found that S aureus was the cause of 28% of bacterial coinfections with influenza.\(^{11}\)

In 33 US hospitals in 2013–14, we found that S aureus accounted for more than 36% of bacterial coinfections of severe influenza, and was the leading cause of such complications.\(^{12}\) Aliberti and colleagues did not record which patients had a concordant influenza infection and bacterial community-acquired pneumonia. Influenza coinfection in their study therefore might have been an unaccounted confounding variable biasing the geographic variability reported in the prevalence of S aureus.

Further research is necessary to delineate the worldwide molecular epidemiology of S aureus and MRSA pneumonia and the clinical and microbial risk factors that are responsible for the great disparity in their prevalence noted by Aliberti and colleagues in their impressively large and geographically diverse study.

Michael Z David
Departments of Medicine, Pediatrics, and Public Health Sciences,
University of Chicago, Chicago, IL 60637, USA
mdavid@medicine.bsd.uchicago.edu

I declare no competing interests.


immunity. Although oral poliovirus vaccine is known to induce a robust mucosal response (albeit one that wanes over time), IPV is only able to do so if individuals have been primed by previous exposure to live poliovirus (vaccine or wild-type).1 In The Lancet Infectious Diseases, Peter F Wright and colleagues2 report on a study seeking to clarify the impact of changes in routine vaccination on mucosal immunity to poliovirus. Infants from several countries in Latin America were immunised at 6, 10, and 14 weeks of age with bOPV, tOPV, or a mixed schedule of bOPV and IPV.3 Mucosal immunity to serotype 2 poliovirus was assessed at 18 weeks by measuring poliovirus-specific antibodies in stool samples and shedding of poliovirus after administration of a challenge dose of monovalent serotype 2 (mOPV2) oral poliovirus vaccine. Although oral poliovirus vaccine challenge is the gold standard for measurement of mucosal poliovirus protection, attenuated vaccine viruses might fail to replicate for several reasons, including interference by concurrent enteroviruses,4 so it is by no means perfect.

The assessment of antibodies in mucosal samples is fraught with complications, including cellular density, dilution effects during sample collection, and the breakdown of immunoglobulin by proteolytic enzymes. Despite these constraints, Wright and colleagues successfully quantified the neutralisation titre of stool samples using serotype 2 poliovirus pseudoviruses (comprising luciferase-encoding replicons surrounded by poliovirus capsid proteins). Neutralisation titre at the time of challenge was inversely correlated with the quantity of serotype 2 virus shedding 7 days later, supporting the use of this assay as a measure of mucosal protection. A similar association was noted not to be significant for poliovirus-specific IgA in stool, despite these antibodies being the probable mechanistic correlate of protection at the gut mucosa.

There are alternative approaches to measure mucosal immunity. A study5 of children in India showed that the number of circulating poliovirus-specific antibody-secreting cells expressing the gut-homing integrin α4β7 could be a correlate of mucosal immunity. And in populations immunised with oral poliovirus vaccines, serum neutralising-antibody titres are a reasonable correlate of mucosal protection and are used by the Global Polio Eradication Initiative to monitor progress in high-risk areas.6

The study by Wright and colleagues also draws attention to one of the major obstacles currently facing the polio endgame: the deficits in serotype 2 mucosal immunity after a mixed schedule of bOPV and IPV. Of 87 infants who received this schedule, 53 (61%) shed virus 7 days after mOPV2 challenge, compared with just two (5%) of 38 infants who were vaccinated with tOPV. As the tOPV era becomes more and more distant, the cohort of infants who have never been exposed to live serotype-2 poliovirus and thus lack mucosal immunity will expand.

Serotype 2 polioviruses will hopefully be consigned to the history books soon. However, the resurgence in August, 2016, of polio in Nigeria as a result of wild serotype 1 virus after more than 2 polio-free years provides a stark warning against complacency.7 Comprehensive surveillance of children with acute flaccid paralysis and environmental samples is undoubtedly crucial to the success of the polio endgame. Even with robust surveillance, a pivotal question remains: how long has to pass without detection of polio before it can be concluded that the disease is gone for good?

Edward P K Parker, *Nicholas C Grassly
Department of Infectious Disease Epidemiology, St Mary’s Campus, Imperial College London, London W2 1PG, UK
n.grassly@imperial.ac.uk

NCG is a member of the WHO Strategic Advisory Group of Experts on Immunisation polio working group. We declare no competing interests.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license.